2,295 research outputs found

    Optimal design of pipes in series: An explicit approximation

    Get PDF
    This paper introduces a new methodology for the optimum design of pipes in series, named Optimum Hydraulic Grade Line (OHGL). This methodology is explicit and is based on the knowledge of the series topology and the geometrical distribution of water demands on nodes, i.e. the way in which the pipe in series delivers water mass as function of the distance from the entrance. OHGL consists in the pre-determination of that hydraulic grade line which gives the minimum construction cost, in an explicit way. Once this line has been established, calculation of the pipeโ€™s continuous diameters is direct; after a round up to commercial diameters is developed. To validate the proposed methodology, several pipes in series were designed both using GA and OHGL. Four hundred series were used in total, each with different topological characteristics and demands. Keywords: Pipe in series, optimum design, genetic algorithms, optimum hydraulic grade line

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    Optimal Design or Rehabilitation of an Irrigation Project\u27s Pipe Network

    Get PDF

    Pipe smoothing genetic algorithm for least cost water distribution network design

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.GECCO '13 Proceedings of the 15th annual conference on Genetic and evolutionary computation Amsterdam, Netherlands โ€” July 06 - 10, 2013This paper describes the development of a Pipe Smoothing Genetic Algorithm (PSGA) and its application to the problem of least cost water distribution network design. Genetic algorithms have been used widely for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we propose a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm compared to a standard genetic algorithm. Both PSGA and the standard genetic algorithm were tested on benchmark water distribution networks from the literature. In all cases PSGA achieves higher optimality in fewer solution evaluations than the standard genetic algorithm

    by integrating deep learning, mechanistic model and field observations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋†๋ฆผ๊ธฐ์ƒํ•™, 2022. 8. Youngryel Ryu.Rice (Oryza sativa) is a vital cereal crop that feeds more than 50% of the world population. However, the traditional anaerobic management leads rice production to consume ~40% of the irrigation water and emit ~10% of the global anthropogenic methane. A new paradigm for sustainable rice farming is urgently required amid challenges from increasing food demand, water scarcity, and reducing greenhouse gases emissions. Rice plants transpire considerable water overnight. Saving nighttime water loss is desirable but first need to understand the underlying mechanism of nocturnal stomatal opening. Apart from the night, optimizing daytime management is pivotal for designing an environmentally sustainable rice farming system. In a long-term strategy, detailed and reliable crop type map is compulsory to upscale new leaf level findings and site level methods to regional or global scale. Therefore, in this dissertation, we improved mechanistic understanding of nocturnal stomatal conductance in rice plants (Chapter II); provided an interdisciplinary and heuristic approach for designing an environmentally sustainable rice farming system with a case study in South Korea (Chapter III); and developed a new crop type referencing method by mining off-the-shelf Google Street View images to map crop types (Chapter IV). In chapter II, we proposed a โ€œcoordinated leaf traitโ€ hypothesis to explain the ecological mechanism of nocturnal stomatal conductance (gsn) in rice. We conducted an open-field experiment by applying drought, nutrient deficiency, and the combined drought-nutrient deficiency stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient deficiency. With abiotic stress as a random effect, gsn was strongly positively correlated with nocturnal respiration (Rn). Notably, gsn primed early morning photosynthesis, as follows: Rn (โ†‘) โ†’ gsn (โ†‘) โ†’ gsd (daytime stomatal conductance) (โ†‘) โ†’ A (assimilation) (โ†‘). This photosynthesis priming effect diminished after mid-morning. Leaves were cooled by gsn as follows: gsn (โ†‘) โ†’ E (transpiration) (โ†‘) โ†’ Tleaf (leaf temperature) (โ†“). However, our results clearly suggest that evaporative cooling did not reduce Rn cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that leaf trait coordination (Rn โˆ’ gsn โˆ’ gsd โˆ’ A) is likely the primary mechanism controlling gsn. In chapter III, we aimed to increase current crop yield, reduce irrigation water consumption, and tackle the dilemma to simultaneously reducing CH4 and N2O emissions in a flooded rice production system. By proposing a heuristic and holistic method, we optimized farm management beyond previous most emphasized irrigation regimes while also exploring niches from other pivotal options regarding sowing window, fertilization rate, tillage depth, and their interactions. Specifically, we calibrated and validated the process-based DNDC model with five years of eddy covariance observations. The DNDC model later was integrated with the non-dominated sorting genetic algorithm (NSGA-III) to solve the multi-objective optimization problem. We found that the optimized management would maintain or even increase current crop yield to its potential (~10 t/ha) while reducing more than 50% irrigation demand and GHGs (CH4 & N2O) emissions. Our results indicate that earlier sowing window and improvements on irrigation practice together would be pivotal to maximizing crop yield while sustaining environmental benefits. We found that the optimal fraction of non-flooded days was around 54% of growing season length and its optimal temporal distributions were primarily in vegetative stages. Our study shows that the present farm yield (8.3-8.9 t/ha) in study site not only has not achieved its potential level but also comes at a great environmental cost to water resources (604-810 mm/yr) and GHGs emissions (CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr). Furthermore, this simple method could further be applied to evaluate the environmental sustainability of a farming system under various climate and local conditions and to guide policymakers and farming practices with comprehensive solutions. In chapter IV, we apply a convolutional neural network (CNN) model to explore the efficacy of automatic ground truthing via Google Street View (GSV) images in two distinct farming regions: Illinois and the Central Valley in California. Ground reference data are an essential prerequisite for supervised crop mapping. The lack of a low-cost and efficient ground referencing method results in pervasively limited reference data and hinders crop classification. In this study, we demonstrate the feasibility and reliability of our new ground referencing technique by performing pixel-based crop mapping at the state level using the cloud-based Google Earth Engine platform. The mapping results are evaluated using the United States Department of Agriculture (USDA) crop data layer (CDL) products. From ~130,000 GSV images, the CNN model identified ~9,400 target crop images. These images are well classified into crop types, including alfalfa, almond, corn, cotton, grape, rice, soybean, and pistachio. The overall GSV image classification accuracy is 92% for the Central Valley and 97% for Illinois. Subsequently, we shifted the image geographical coordinates 2โ€“3 times in a certain direction to produce 31,829 crop reference points: 17,358 in Illinois, and 14,471 in the Central Valley. Evaluation of the mapping results with CDL products revealed satisfactory coherence. GSV-derived mapping results capture the general pattern of crop type distributions for 2011โ€“2019. The overall agreement between CDL products and our mapping results is indicated by R2 values of 0.44โ€“0.99 for the Central Valley and 0.81โ€“0.98 for Illinois. To show the applicational value of the proposed method in other countries, we further mapped rice paddy (2014โ€“2018) in South Korea which yielded fairly well outcomes (R2=0.91). These results indicate that GSV images used with a deep learning model offer an efficient and cost-effective alternative method for ground referencing, in many regions of the world.์Œ€(์˜ค๋ฆฌ์ž ์‚ฌํ‹ฐ๋ฐ”)์€ ์„ธ๊ณ„ ์ธ๊ตฌ์˜ 50% ์ด์ƒ์„ ๋จน์—ฌ ์‚ด๋ฆฌ๋Š” ์ค‘์š”ํ•œ ๊ณก๋ฌผ ์ž‘๋ฌผ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ํ˜๊ธฐ์„ฑ ๊ด€๋ฆฌ๋Š” ์Œ€ ์ƒ์‚ฐ์œผ๋กœ ๊ด€๊ฐœ์ˆ˜์˜ 40%๋ฅผ ์†Œ๋น„ํ•˜๊ณ  ์ „ ์„ธ๊ณ„ ์ธ๊ณต ๋ฉ”ํƒ„์˜ 10%๋ฅผ ๋ฐฐ์ถœํ•œ๋‹ค. ์‹๋Ÿ‰ ์ˆ˜์š” ์ฆ๊ฐ€, ๋ฌผ ๋ถ€์กฑ, ์˜จ์‹ค๊ฐ€์Šค ๋ฐฐ์ถœ ๊ฐ์†Œ ๋“ฑ์˜ ๊ณผ์ œ ์†์—์„œ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ด ์‹œ๊ธ‰ํ•˜๋‹ค. ๋ฒผ๋Š” ํ•˜๋ฃป๋ฐค ์‚ฌ์ด์— ์ƒ๋‹นํ•œ ์–‘์˜ ๋ฌผ์„ ๋‚ด๋ฟœ๋Š”๋‹ค. ์•ผ๊ฐ„ ์ˆ˜๋ถ„ ์†์‹ค์„ ์ค„์ด๋Š” ๊ฒƒ์€ ๋ฐ”๋žŒ์งํ•˜์ง€๋งŒ, ๋จผ์ € ์•ผ๊ฐ„ ๊ธฐ๊ณต ๊ฐœ๋ฐฉ์˜ ๊ธฐ๋ณธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์•ผ๊ฐ„๊ณผ ๋ณ„๋„๋กœ ์ฃผ๊ฐ„ ๊ฒฝ์˜์˜ ์ตœ์ ํ™”๋Š” ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์žฅ๊ธฐ ์ „๋žต์—์„œ, ์ƒˆ๋กœ์šด ์žŽ ์ˆ˜์ค€ ๋ฐœ๊ฒฌ๊ณผ ํ˜„์žฅ ์ˆ˜์ค€ ๋ฐฉ๋ฒ•์„ ์ง€์—ญ์  ๋˜๋Š” ์ „์—ญ์  ๊ทœ๋ชจ๋กœ ์ƒํ–ฅ ์กฐ์ •ํ•˜๋ ค๋ฉด ์ƒ์„ธํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘๋ฌผ ์œ ํ˜• ๋งต์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฒผ๋†์‚ฌ์˜ ์•ผ๊ฐ„ ๊ธฐ๊ณต ์ „๋„๋„์— ๋Œ€ํ•œ ๊ธฐ๊ณ„์  ์ดํ•ด๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค(์ œ2์žฅ). ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ํ•™์ œ ๊ฐ„ ๋ฐ ํœด๋ฆฌ์Šคํ‹ฑ ์ ‘๊ทผ๋ฒ• ์ œ๊ณต(์ œ3์žฅ). ๊ทธ๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ์ž‘๋ฌผ ์œ ํ˜• ์ฐธ์กฐ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ๊ธฐ์„ฑํ’ˆ์ธ Google Street View ์ด๋ฏธ์ง€๋ฅผ ๋งˆ์ด๋‹ํ•˜์—ฌ ์ž๋ฅด๊ธฐ ์œ ํ˜•์„ ๋งคํ•‘ํ•ฉ๋‹ˆ๋‹ค. 2์žฅ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฒผ์˜ ์•ผํ–‰์„ฑ ๊ธฐ๊ณต ์ „๋„๋„(gsn)์˜ ์ƒํƒœํ•™์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด "ํ˜‘๋™๋œ ์žŽ ํ˜•์งˆ" ๊ฐ€์„ค์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฐ€๋ญ„, ์˜์–‘ ๊ฒฐํ• ๋ฐ ๊ฐ€๋ญ„-์˜์–‘์†Œ ๊ฒฐํ• ๋ณตํ•ฉ ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ์ ์šฉํ•˜์—ฌ ๋…ธ์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” gsn์ด ๊ฐ€๋ญ„์— ์˜ํ•ด ํฌ๊ฒŒ ๊ฐ์†Œํ•˜์ง€๋„ ์•Š๊ณ  ์˜์–‘ ๊ฒฐํ•์— ์˜ํ•ด ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์ง€๋„ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฌด์ƒ๋ฌผ์  ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ๋ฌด์ž‘์œ„ ํšจ๊ณผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ gsn์€ ์•ผ๊ฐ„ ํ˜ธํก(Rn)๊ณผ ๊ฐ•ํ•œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, gsn์€ Rn(โ†‘) โ†’ gsn(โ†‘) โ†’ gsd(์ฃผ๊ฐ„ ๊ธฐ๊ณต ์ „๋„๋„)(โ†‘) โ†’ A(๋™ํ™”)(โ†‘)์™€ ๊ฐ™์ด ์ด๋ฅธ ์•„์นจ ๊ด‘ํ•ฉ์„ฑ์„ ํ”„๋ผ์ด๋ฐํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ด‘ํ•ฉ์„ฑ ํ”„๋ผ์ด๋ฐ ํšจ๊ณผ๋Š” ์˜ค์ „ ์ค‘๋ฐ˜ ์ดํ›„์— ๊ฐ์†Œํ–ˆ์Šต๋‹ˆ๋‹ค. ์žŽ์€ gsn์— ์˜ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ƒ‰๊ฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค: gsn(โ†‘) โ†’ E(์ฆ์‚ฐ)(โ†‘) โ†’ Tleaf(์žŽ ์˜จ๋„)(โ†“). ๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ์ฆ๋ฐœ ๋ƒ‰๊ฐ์ด Rn ๋น„์šฉ์„ ๊ฐ์†Œ์‹œํ‚ค์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ถ„๋ช…ํžˆ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” gsn์ด ๋ฌผ ๋ฐ ์˜์–‘์†Œ ๊ฐ€์šฉ์„ฑ๋ณด๋‹ค ํƒ„์†Œ ํ˜ธํก ๋ฐ ๋™ํ™”์™€ ๋” ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ๋˜์–ด ์žˆ์œผ๋ฉฐ ์žŽ ํ˜•์งˆ ์กฐ์ •(Rn - gsn - gsd - A)์ด gsn์„ ์ œ์–ดํ•˜๋Š” ์ฃผ์š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ผ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ œ3์žฅ์—์„œ ์šฐ๋ฆฌ๋Š” ํ˜„์žฌ์˜ ์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ๋Š˜๋ฆฌ๊ณ  ๊ด€๊ฐœ ์šฉ์ˆ˜ ์†Œ๋น„๋ฅผ ์ค„์ด๋ฉฐ ์นจ์ˆ˜๋œ ์Œ€ ์ƒ์‚ฐ ์‹œ์Šคํ…œ์—์„œ CH4์™€ N2O ๋ฐฐ์ถœ๋Ÿ‰์„ ๋™์‹œ์— ์ค„์ด๋Š” ๋”œ๋ ˆ๋งˆ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ํœด๋ฆฌ์Šคํ‹ฑํ•˜๊ณ  ์ „์ฒด๋ก ์  ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•จ์œผ๋กœ์จ, ์šฐ๋ฆฌ๋Š” ์ด์ „์— ๊ฐ€์žฅ ๊ฐ•์กฐ๋˜์—ˆ๋˜ ๊ด€๊ฐœ ์ฒด์ œ๋ฅผ ๋„˜์–ด ๋†์žฅ ๊ด€๋ฆฌ๋ฅผ ์ตœ์ ํ™”ํ•จ๊ณผ ๋™์‹œ์— ํŒŒ์ข… ์ฐฝ, ์ˆ˜์ •๋ฅ , ๊ฒฝ์ž‘ ๊นŠ์ด ๋ฐ ์ด๋“ค์˜ ์ƒํ˜ธ ์ž‘์šฉ๊ณผ ๊ด€๋ จ๋œ ๋‹ค๋ฅธ ์ค‘์ถ”์  ์˜ต์…˜์˜ ํ‹ˆ์ƒˆ๋ฅผ ํƒ์ƒ‰ํ–ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” 5๋…„๊ฐ„์˜ ์™€๋ฅ˜ ๊ณต๋ถ„์‚ฐ ๊ด€์ฐฐ๋กœ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ DNDC ๋ชจ๋ธ์„ ๊ต์ •ํ•˜๊ณ  ๊ฒ€์ฆํ–ˆ๋‹ค. DNDC ๋ชจ๋ธ์€ ๋‚˜์ค‘์— ๋‹ค์ค‘ ๊ฐ๊ด€์  ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋น„์ง€๋ฐฐ์  ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ๋“ฌ(NSGA-III)๊ณผ ํ†ตํ•ฉ๋˜์—ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ตœ์ ํ™”๋œ ๊ด€๋ฆฌ๋ฅผ ํ†ตํ•ด 50% ์ด์ƒ์˜ ๊ด€๊ฐœ ์ˆ˜์š”์™€ GHG(CH4 & N2O) ๋ฐฐ์ถœ๋Ÿ‰์„ ์ค„์ด๋ฉด์„œ ํ˜„์žฌ ๋†์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ์ž ์žฌ๋ ฅ(~10t/ha)๊นŒ์ง€ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋” ์ด๋ฅธ ํŒŒ์ข… ๊ธฐ๊ฐ„๊ณผ ๊ด€๊ฐœ ๊ด€๊ฐœ ๊ด€ํ–‰์˜ ๊ฐœ์„ ์ด ํ™˜๊ฒฝ์  ์ด์ต์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋†์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์ถ”์ ์ผ ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์šฐ๋ฆฌ๋Š” ํ™์ˆ˜ ์—†๋Š” ๋‚ ์˜ ์ตœ์  ๋ถ€๋ถ„์ด ์„ฑ์žฅ๊ธฐ ๊ธธ์ด์˜ ์•ฝ 54%์˜€๊ณ  ์ตœ์ ์˜ ์‹œ๊ฐ„ ๋ถ„ํฌ๋Š” ์ฃผ๋กœ ์‹๋ฌผ ๋‹จ๊ณ„์— ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์—ฐ๊ตฌ๋Š” ์—ฐ๊ตฌ ํ˜„์žฅ์˜ ํ˜„์žฌ ๋†์žฅ ์ˆ˜ํ™•๋Ÿ‰(8.3-8.9 t/ha)์ด ์ž ์žฌ์  ์ˆ˜์ค€์„ ๋‹ฌ์„ฑํ–ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ˆ˜์ž์›(604-810 mm/yr)๊ณผ GHGs ๋ฐฐ์ถœ(CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr)์— ๋ง‰๋Œ€ํ•œ ํ™˜๊ฒฝ ๋น„์šฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ์ด ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๊ธฐํ›„ ๋ฐ ์ง€์—ญ ์กฐ๊ฑด ํ•˜์—์„œ ๋†์—… ์‹œ์Šคํ…œ์˜ ํ™˜๊ฒฝ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ •์ฑ… ์ž…์•ˆ์ž์™€ ๋†์—… ๊ด€ํ–‰์„ ํฌ๊ด„์ ์ธ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ์•ˆ๋‚ดํ•˜๋Š” ๋ฐ ์ถ”๊ฐ€๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ4์žฅ์—์„œ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN) ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๋‘ ๊ฐœ์˜ ๊ตฌ๋ณ„๋˜๋Š” ๋†์—… ์ง€์—ญ์—์„œ ๊ตฌ๊ธ€ ์ŠคํŠธ๋ฆฌํŠธ ๋ทฐ(GSV) ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ์ž๋™ ์ง€์ƒ ํŠธ๋Ÿฌ์‹ฑ์˜ ํšจ๊ณผ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ผ๋ฆฌ๋…ธ์ด์™€ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์˜ ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ. ์ง€์ƒ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ๋…๋œ ์ž‘๋ฌผ ๋งคํ•‘์„ ์œ„ํ•œ ํ•„์ˆ˜ ์ „์ œ ์กฐ๊ฑด์ด๋‹ค. ์ €๋ ดํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ง€์ƒ ์ฐธ์กฐ ๋ฐฉ๋ฒ•์ด ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ œํ•œ๋˜๊ณ  ์ž‘๋ฌผ ๋ถ„๋ฅ˜๋ฅผ ๋ฐฉํ•ดํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ Google ์–ด์Šค ์—”์ง„ ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒํƒœ ์ˆ˜์ค€์—์„œ ํ”ฝ์…€ ๊ธฐ๋ฐ˜ ํฌ๋กญ ๋งคํ•‘์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ง€์ƒ ์ฐธ์กฐ ๊ธฐ์ˆ ์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ๋งคํ•‘ ๊ฒฐ๊ณผ๋Š” ๋ฏธ๊ตญ ๋†๋ฌด๋ถ€(USDA) ์ž‘๋ฌผ ๋ฐ์ดํ„ฐ์ธต(CDL) ์ œํ’ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€๋œ๋‹ค. ์•ฝ 130,000๊ฐœ์˜ GSV ์ด๋ฏธ์ง€์—์„œ CNN ๋ชจ๋ธ์€ ์•ฝ 9,400๊ฐœ์˜ ๋ชฉํ‘œ ํฌ๋กญ ์ด๋ฏธ์ง€๋ฅผ ์‹๋ณ„ํ–ˆ๋‹ค. ์ด ์ด๋ฏธ์ง€๋“ค์€ ์•ŒํŒ”ํŒŒ, ์•„๋ชฌ๋“œ, ์˜ฅ์ˆ˜์ˆ˜, ๋ฉดํ™”, ํฌ๋„, ์Œ€, ์ฝฉ, ํ”ผ์Šคํƒ€์น˜์˜ค ๋“ฑ์˜ ์ž‘๋ฌผ ์œ ํ˜•์œผ๋กœ ์ž˜ ๋ถ„๋ฅ˜๋œ๋‹ค. ์ „์ฒด GSV ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋Š” ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์˜ ๊ฒฝ์šฐ 92%, ์ผ๋ฆฌ๋…ธ์ด ์ฃผ์˜ ๊ฒฝ์šฐ 97%์ด๋‹ค. ๊ทธ ํ›„ ์ด๋ฏธ์ง€ ์ง€๋ฆฌ์  ์ขŒํ‘œ๋ฅผ ํŠน์ • ๋ฐฉํ–ฅ์œผ๋กœ 2~3ํšŒ ์ด๋™ํ•˜์—ฌ 31,829๊ฐœ์˜ ํฌ๋กญ ๊ธฐ์ค€์ ์„ ์ƒ์„ฑํ–ˆ๋‹ค. ์ฆ‰, ์ผ๋ฆฌ๋…ธ์ด์—์„œ 17,358๊ฐœ, ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์—์„œ 14,471๊ฐœ์˜€๋‹ค. CDL ์ œํ’ˆ์œผ๋กœ ๋งคํ•‘ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ์ผ๊ด€์„ฑ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. GSV์—์„œ ํŒŒ์ƒ๋œ ๋งคํ•‘ ๊ฒฐ๊ณผ๋Š” 2011-2019๋…„ ์ž‘๋ฌผ ์œ ํ˜• ๋ถ„ํฌ์˜ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ํฌ์ฐฉํ•œ๋‹ค. CDL ์ œํ’ˆ๊ณผ ์šฐ๋ฆฌ์˜ ๋งคํ•‘ ๊ฒฐ๊ณผ ์‚ฌ์ด์˜ ์ „์ฒด ํ•ฉ์น˜๋Š” ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์˜ ๊ฒฝ์šฐ 0.44โ€“0.99์˜ R2 ๊ฐ’๊ณผ ์ผ๋ฆฌ๋…ธ์ด ์ฃผ์˜ ๊ฒฝ์šฐ 0.81โ€“0.98์˜ R2 ๊ฐ’์œผ๋กœ ํ‘œ์‹œ๋œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ๋‹ค๋ฅธ ๊ตญ๊ฐ€์—์„œ ์ ์šฉ ๊ฐ€์น˜๋ฅผ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, ๊ฝค ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์€ ํ•œ๊ตญ์˜ ๋…ผ(2014โ€“2018)์„ ์ถ”๊ฐ€๋กœ ๋งคํ•‘ํ–ˆ๋‹ค(R2=0.91). ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ๋˜๋Š” GSV ์ด๋ฏธ์ง€๊ฐ€ ์„ธ๊ณ„์˜ ๋งŽ์€ ์ง€์—ญ์—์„œ ์ง€์ƒ ์ฐธ์กฐ๋ฅผ ์œ„ํ•œ ํšจ์œจ์ ์ด๊ณ  ๋น„์šฉ ํšจ์œจ์ ์ธ ๋Œ€์ฒด ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.1. Abstract 3 LIST OF FIGURES 9 LIST OF TABLES 13 ACKNOWLEDGEMENTS 14 Chapter I. Introduction 15 1.1. Study Background 15 1.2. Purpose of Research 15 Chapter II. Nocturnal stomatal conductance in rice: a coordinating bridge between prior respiration and photosynthesis next dawn 17 Abstract 17 1. Introduction 18 2. Materials and Methods 22 2.1 Plants and growth conditions 22 2.2 Leaf physiological traits 22 2.3 Rapid A/Ci response curves 24 2.4 Stomatal anatomy measurements 24 2.5 Statistical analyses 24 3. Results 25 3.1 Effects of abiotic stress on leaf traits 25 3.2 Nighttime leaf physiological traits 26 3.3 Significant priming effects of gsn on early morning photosynthesis (~5:00 โ€“ 7:00) 27 3.4 Path analyses only support the leaf trait coordination 28 3.5 Impacts of gsn on gsd and Amax under light-saturated conditions 29 3.6 Photosynthesis priming effects not detected after mid-morning (9:00) 31 4. Discussion 32 4.1 Abiotic stress results: Implications for different hypotheses 33 4.2 Enhanced carbon assimilation through coordinated regulation by gsn 34 4.3 Evaporative cooling: Passive thermoregulation via leaf trait coordination 36 References 37 Chapter III. Multi-objective optimization of crop yield, water consumption, and greenhouse gases emissions for sustainable rice production 42 Abstract 42 1. Introduction 43 2. Materials and methods 46 2.1 Study site 46 2.2 DNDC model 46 2.3 In situ data 47 2.4 Multi-objective optimization (MOO) algorithm 48 2.5 DNDC-NSGA-III integration and optimization 48 3. Results 50 3.1 DNDC model validation 50 3.2 The gaps between the current farming outcomes and optimized objectives 53 3.3 Approaching Pareto fronts through the heuristic and holistic management 55 3.4 The gaps between current farming practices to potential crop yield with optimal holistic management 56 4. Discussion 58 4.1 Could heuristic and holistic management increase current rice yield with less irrigation water? 58 4.2 Could heuristic and holistic management simultaneously reduce CH4 and N2O emissions? 59 4.3 Limitations and uncertainties 60 Reference 61 Chapter IV. Exploring Google Street View with Deep Learning for Crop Type Mapping 70 Abstract 70 1. Introduction 71 2. Materials and Methods 74 2.1 Study area 74 2.2 General methodology 75 2.3 Google Street View image collection 76 2.4 CNN model training and validation 77 2.5 Producing ground reference data and quality control 79 2.6 Mapping crop types 80 2.7 Mapping results evaluation 81 2.8 Additional test case 82 3. Results 83 3.1 GSV image classification 83 3.2 Producing ground reference data from classified GSV images 84 3.3 Mapping using the GSV derived ground reference 86 4. Discussion 96 4.1 Can we use GSV images to efficiently produce low-cost, sufficient, and reliable crop type ground reference data covering large areas? 96 4.2 Can we use GSV-derived reference data as โ€œground truthโ€ to map crop types for large areas spanning many years? 97 Appendix 99 References 105 Chapter V. Conclusions 123 Supplementary Information Chapter II 125 Supplementary Information Chapter III 131 Supplementary Information Chapter IV 135 5. Abstract in Korean 138๋ฐ•

    Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks

    Full text link
    [EN] Water distribution networks (WDNs) are designed to meet water demand with minimum implementation costs. However, this approach leads to poor long-term results, since system resilience is also minimal, and this requires the rehabilitation of the network if the network is expanded or the demand increases. In addition, in emergency situations, such as pipe bursts, large areas will suffer water shortage. However, the use of resilience as a criterion for WDN design is a difficult task, since its economic value is subjective. Thus, in this paper, it is proposed that trunk networks (TNs) are rehabilitated when considering the generation of electrical energy using pumps as turbines (PATs) to compensate for an increase of resilience derived from increasing pipe diameters. During normal operation, these micro-hydros will control pressure and produce electricity. When an emergency occurs, a by-pass can be used to increase network pressure. The results that were obtained for two hypothetical networks show that a small increase in TN pipe diameters is sufficient to significantly improve the resilience of the WDN. In addition, the value of the energy produced surpasses the investment that is made during rehabilitation.The authors wish to thank the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014-2020.Meirelles, G.; Brentan, BM.; Izquierdo Sebastiรกn, J.; Ramos, HM.; Luvizotto, E. (2018). Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks. Water. 10(6):1-14. https://doi.org/10.3390/w10060693S114106Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., & Tan, C. L. (2003). Ant Colony Optimization for Design of Water Distribution Systems. Journal of Water Resources Planning and Management, 129(3), 200-209. doi:10.1061/(asce)0733-9496(2003)129:3(200)Suribabu, C. R., & Neelakantan, T. R. (2006). Design of water distribution networks using particle swarm optimization. Urban Water Journal, 3(2), 111-120. doi:10.1080/15730620600855928Baรฑos, R., Reca, J., Martรญnez, J., Gil, C., & Mรกrquez, A. L. (2011). Resilience Indexes for Water Distribution Network Design: A Performance Analysis Under Demand Uncertainty. Water Resources Management, 25(10), 2351-2366. doi:10.1007/s11269-011-9812-3Shokoohi, M., Tabesh, M., Nazif, S., & Dini, M. (2016). Water Quality Based Multi-objective Optimal Design of Water Distribution Systems. Water Resources Management, 31(1), 93-108. doi:10.1007/s11269-016-1512-6Marques, J., Cunha, M., & Saviฤ‡, D. (2015). Using Real Options in the Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 141(2), 04014052. doi:10.1061/(asce)wr.1943-5452.0000448Schwartz, R., Housh, M., & Ostfeld, A. (2016). Least-Cost Robust Design Optimization of Water Distribution Systems under Multiple Loading. Journal of Water Resources Planning and Management, 142(9), 04016031. doi:10.1061/(asce)wr.1943-5452.0000670Giustolisi, O., Laucelli, D., & Colombo, A. F. (2009). Deterministic versus Stochastic Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 135(2), 117-127. doi:10.1061/(asce)0733-9496(2009)135:2(117)Lansey, K. E., Duan, N., Mays, L. W., & Tung, Y. (1989). Water Distribution System Design Under Uncertainties. Journal of Water Resources Planning and Management, 115(5), 630-645. doi:10.1061/(asce)0733-9496(1989)115:5(630)Zheng, F., Simpson, A., & Zecchin, A. (2015). Improving the efficiency of multi-objective evolutionary algorithms through decomposition: An application to water distribution network design. Environmental Modelling & Software, 69, 240-252. doi:10.1016/j.envsoft.2014.08.022Geem, Z. (2015). Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search. Water, 7(12), 3613-3625. doi:10.3390/w7073613Prasad, T. D., & Park, N.-S. (2004). Multiobjective Genetic Algorithms for Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 130(1), 73-82. doi:10.1061/(asce)0733-9496(2004)130:1(73)Pรฉrez-Sรกnchez, M., Sรกnchez-Romero, F., Ramos, H., & Lรณpez-Jimรฉnez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097De Marchis, M., & Freni, G. (2015). Pump as turbine implementation in a dynamic numerical model: cost analysis for energy recovery in water distribution network. Journal of Hydroinformatics, 17(3), 347-360. doi:10.2166/hydro.2015.018Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411Lima, G. M., Luvizotto, E., Brentan, B. M., & Ramos, H. M. (2018). Leakage Control and Energy Recovery Using Variable Speed Pumps as Turbines. Journal of Water Resources Planning and Management, 144(1), 04017077. doi:10.1061/(asce)wr.1943-5452.0000852Carravetta, A., Del Giudice, G., Fecarotta, O., & Ramos, H. M. (2012). Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resources Management, 26(13), 3947-3959. doi:10.1007/s11269-012-0114-1Lydon, T., Coughlan, P., & McNabola, A. (2017). Pump-As-Turbine: Characterization as an Energy Recovery Device for the Water Distribution Network. Journal of Hydraulic Engineering, 143(8), 04017020. doi:10.1061/(asce)hy.1943-7900.0001316Afshar, A., Jemaa, F. B., & Mariรฑo, M. A. (1990). Optimization of Hydropower Plant Integration in Water Supply System. Journal of Water Resources Planning and Management, 116(5), 665-675. doi:10.1061/(asce)0733-9496(1990)116:5(665)Meirelles Lima, G., Brentan, B. M., & Luvizotto, E. (2018). Optimal design of water supply networks using an energy recovery approach. Renewable Energy, 117, 404-413. doi:10.1016/j.renene.2017.10.080Campbell, E., Izquierdo, J., Montalvo, I., Ilaya-Ayza, A., Pรฉrez-Garcรญa, R., & Tavera, M. (2015). A flexible methodology to sectorize water supply networks based on social network theory concepts and multi-objective optimization. Journal of Hydroinformatics, 18(1), 62-76. doi:10.2166/hydro.2015.146Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., & Santonastaso, G. F. (2017). Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Supply, 18(3), 767-777. doi:10.2166/ws.2017.124Bragalli, C., Dโ€™Ambrosio, C., Lee, J., Lodi, A., & Toth, P. (2011). On the optimal design of water distribution networks: a practical MINLP approach. Optimization and Engineering, 13(2), 219-246. doi:10.1007/s11081-011-9141-7Reca, J., & Martรญnez, J. (2006). Genetic algorithms for the design of looped irrigation water distribution networks. Water Resources Research, 42(5). doi:10.1029/2005wr004383Di Nardo, A., Di Natale, M., Santonastaso, G. F., Tzatchkov, V. G., & Alcocer-Yamanaka, V. H. (2014). Water Network Sectorization Based on Graph Theory and Energy Performance Indices. Journal of Water Resources Planning and Management, 140(5), 620-629. doi:10.1061/(asce)wr.1943-5452.0000364Hajebi, S., Temate, S., Barrett, S., Clarke, A., & Clarke, S. (2014). Water Distribution Network Sectorisation Using Structural Graph Partitioning and Multi-objective Optimization. Procedia Engineering, 89, 1144-1151. doi:10.1016/j.proeng.2014.11.238Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Brentan, B. M., Campbell, E., Meirelles, G. L., Luvizotto, E., & Izquierdo, J. (2017). Social Network Community Detection for DMA Creation: Criteria Analysis through Multilevel Optimization. Mathematical Problems in Engineering, 2017, 1-12. doi:10.1155/2017/9053238Lima, G. M., Luvizotto, E., & Brentan, B. M. (2017). Selection and location of Pumps as Turbines substituting pressure reducing valves. Renewable Energy, 109, 392-405. doi:10.1016/j.renene.2017.03.056Letting, L., Hamam, Y., & Abu-Mahfouz, A. (2017). Estimation of Water Demand in Water Distribution Systems Using Particle Swarm Optimization. Water, 9(8), 593. doi:10.3390/w908059

    Inferring efficient operating rules in multireservoir water resource systems: A review

    Full text link
    [EN] Coordinated and efficient operation of water resource systems becomes essential to deal with growing demands and uncertain resources in water-stressed regions. System analysis models and tools help address the complexities of multireservoir systems when defining operating rules. This paper reviews the state of the art in developing operating rules for multireservoir water resource systems, focusing on efficient system operation. This review focuses on how optimal operating rules can be derived and represented. Advantages and drawbacks of each approach are discussed. Major approaches to derive optimal operating rules include direct optimization of reservoir operation, embedding conditional operating rules in simulation-optimization frameworks, and inferring rules from optimization results. Suggestions on which approach to use depend on context. Parametrization-simulation-optimization or rule inference using heuristics are promising approaches. Increased forecasting capabilities will further benefit the use of model predictive control algorithms to improve system operation. This article is categorized under: Engineering Water > Water, Health, and Sanitation Engineering Water > MethodsThe study has been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program (PAID-10-18) of the Universitat Politecnica de Valencia (UPV).Macian-Sorribes, H.; Pulido-Velazquez, M. (2019). Inferring efficient operating rules in multireservoir water resource systems: A review. Wiley Interdisciplinary Reviews Water. 7(1):1-24. https://doi.org/10.1002/wat2.1400S12471Aboutalebi, M., Bozorg Haddad, O., & Loรกiciga, H. A. (2015). Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. Journal of Water Resources Planning and Management, 141(11), 04015029. doi:10.1061/(asce)wr.1943-5452.0000553Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir Optimization in Water Resources: a Review. Water Resources Management, 28(11), 3391-3405. doi:10.1007/s11269-014-0700-5Ahmadi, M., Bozorg Haddad, O., & Mariรฑo, M. A. (2013). Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules. Water Resources Management, 28(1), 131-147. doi:10.1007/s11269-013-0476-zAndreu, J., Capilla, J., & Sanchรญs, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAndreu, J., & Sahuquillo, A. (1987). Efficient Aquifer Simulation in Complex Systems. Journal of Water Resources Planning and Management, 113(1), 110-129. doi:10.1061/(asce)0733-9496(1987)113:1(110)Ashbolt, S. C., Maheepala, S., & Perera, B. J. C. (2016). Using Multiobjective Optimization to Find Optimal Operating Rules for Short-Term Planning of Water Grids. Journal of Water Resources Planning and Management, 142(10), 04016033. doi:10.1061/(asce)wr.1943-5452.0000675Ashbolt, S. C., & Perera, B. J. C. (2018). Multiobjective Optimization of Seasonal Operating Rules for Water Grids Using Streamflow Forecast Information. Journal of Water Resources Planning and Management, 144(4), 05018003. doi:10.1061/(asce)wr.1943-5452.0000902Azari, A., Hamzeh, S., & Naderi, S. (2018). Multi-Objective Optimization of the Reservoir System Operation by Using the Hedging Policy. Water Resources Management, 32(6), 2061-2078. doi:10.1007/s11269-018-1917-5Becker, L., & Yeh, W. W.-G. (1974). Optimization of real time operation of a multiple-reservoir system. Water Resources Research, 10(6), 1107-1112. doi:10.1029/wr010i006p01107Bellman, R. E., & Dreyfus, S. E. (1962). Applied Dynamic Programming. doi:10.1515/9781400874651Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. doi:10.1515/9781400831050Bessler, F. T., Savic, D. A., & Walters, G. A. (2003). Water Reservoir Control with Data Mining. Journal of Water Resources Planning and Management, 129(1), 26-34. doi:10.1061/(asce)0733-9496(2003)129:1(26)Bhaskar, N. R., & Whitlatch, E. E. (1980). Derivation of monthly reservoir release policies. Water Resources Research, 16(6), 987-993. doi:10.1029/wr016i006p00987Bianucci, P., Sordo-Ward, ร., Moralo, J., & Garrote, L. (2015). Probabilistic-Multiobjective Comparison of User-Defined Operating Rules. Case Study: Hydropower Dam in Spain. Water, 7(12), 956-974. doi:10.3390/w7030956Biglarbeigi, P., Giuliani, M., & Castelletti, A. (2018). Partitioning the Impacts of Streamflow and Evaporation Uncertainty on the Operations of Multipurpose Reservoirs in Arid Regions. Journal of Water Resources Planning and Management, 144(7), 05018008. doi:10.1061/(asce)wr.1943-5452.0000945Bolouri-Yazdeli, Y., Bozorg Haddad, O., Fallah-Mehdipour, E., & Mariรฑo, M. A. (2014). Evaluation of Real-Time Operation Rules in Reservoir Systems Operation. Water Resources Management, 28(3), 715-729. doi:10.1007/s11269-013-0510-1Borgomeo, E., Mortazavi-Naeini, M., Hall, J. W., Oโ€™Sullivan, M. J., & Watson, T. (2016). Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2), 622-643. doi:10.1002/2015wr018164Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S.-M., & Loรกiciga, H. A. (2017). WASPAS Application and Evolutionary Algorithm Benchmarking in Optimal Reservoir Optimization Problems. Journal of Water Resources Planning and Management, 143(1), 04016070. doi:10.1061/(asce)wr.1943-5452.0000716Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., & Loรกiciga, H. A. (2015). Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management, 141(8), 04014097. doi:10.1061/(asce)wr.1943-5452.0000498Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., โ€ฆ Brekke, L. (2015). The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research, 51(8), 6110-6124. doi:10.1002/2015wr017114Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Piece-by-Piece Approach to Solving Large Nonlinear Water Resources Management Models. Journal of Water Resources Planning and Management, 127(6), 363-368. doi:10.1061/(asce)0733-9496(2001)127:6(363)Cai, X., Vogel, R., & Ranjithan, R. (2013). Special Issue on the Role of Systems Analysis in Watershed Management. Journal of Water Resources Planning and Management, 139(5), 461-463. doi:10.1061/(asce)wr.1943-5452.0000341Cancelliere, A., Giuliano, G., Ancarani, A., & Rossi, G. (2002). Water Resources Management, 16(1), 71-88. doi:10.1023/a:1015563820136Caseri, A., Javelle, P., Ramos, M. H., & Leblois, E. (2015). Generating precipitation ensembles for flood alert and risk management. Journal of Flood Risk Management, 9(4), 402-415. doi:10.1111/jfr3.12203Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2010). Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research, 46(9). doi:10.1029/2009wr008898Castelletti, A., Pianosi, F., & Restelli, M. (2013). A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resources Research, 49(6), 3476-3486. doi:10.1002/wrcr.20295Castelletti, A., Pianosi, F., & Soncini-Sessa, R. (2008). Water reservoir control under economic, social and environmental constraints. Automatica, 44(6), 1595-1607. doi:10.1016/j.automatica.2008.03.003Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian networks in water resource modelling and management. Environmental Modelling & Software, 22(8), 1073-1074. doi:10.1016/j.envsoft.2006.06.001Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software, 22(8), 1075-1088. doi:10.1016/j.envsoft.2006.06.003Celeste, A. B., & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429-1443. doi:10.1016/j.advwatres.2009.06.008Celeste, A. B., Curi, W. F., & Curi, R. C. (2009). Implicit Stochastic Optimization for deriving reservoir operating rules in semiarid Brazil. Pesquisa Operacional, 29(1), 223-234. doi:10.1590/s0101-74382009000100011Chandramouli, V., & Raman, H. (2001). Multireservoir Modeling with Dynamic Programming and Neural Networks. Journal of Water Resources Planning and Management, 127(2), 89-98. doi:10.1061/(asce)0733-9496(2001)127:2(89)Chang, L.-C., & Chang, F.-J. (2001). Intelligent control for modelling of real-time reservoir operation. Hydrological Processes, 15(9), 1621-1634. doi:10.1002/hyp.226Chazarra, M., Garcรญa-Gonzรกlez, J., Pรฉrez-Dรญaz, J. I., & Arteseros, M. (2016). Stochastic optimization model for the weekly scheduling of a hydropower system in day-ahead and secondary regulation reserve markets. Electric Power Systems Research, 130, 67-77. doi:10.1016/j.epsr.2015.08.014Chen, D., Leon, A. S., Fuentes, C., Gibson, N. L., & Qin, H. (2018). Incorporating Filters in Random Search Algorithms for the Hourly Operation of a Multireservoir System. Journal of Water Resources Planning and Management, 144(2), 04017088. doi:10.1061/(asce)wr.1943-5452.0000876Coerver, H. M., Rutten, M. M., & van de Giesen, N. C. (2018). Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22(1), 831-851. doi:10.5194/hess-22-831-2018Cรดtรฉ, P., & Leconte, R. (2016). Comparison of Stochastic Optimization Algorithms for Hydropower Reservoir Operation with Ensemble Streamflow Prediction. Journal of Water Resources Planning and Management, 142(2), 04015046. doi:10.1061/(asce)wr.1943-5452.0000575Cui, L., & Kuczera, G. (2005). Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance. Water Resources Research, 41(5). doi:10.1029/2004wr003517Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., โ€ฆ Castelletti, A. (2016). A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768. doi:10.1002/2015wr018253Cunha, M. C., & Antunes, A. (2012). Simulated annealing algorithms for water systems optimization. WIT Transactions on State of the Art in Science and Engineering, 57-73. doi:10.2495/978-1-84564-664-6/04Dariane, A. B., & Momtahen, S. (2009). Optimization of Multireservoir Systems Operation Using Modified Direct Search Genetic Algorithm. Journal of Water Resources Planning and Management, 135(3), 141-148. doi:10.1061/(asce)0733-9496(2009)135:3(141)Das, B., Singh, A., Panda, S. N., & Yasuda, H. (2015). Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 42, 527-537. doi:10.1016/j.landusepol.2014.09.012Davidsen, C., Liu, S., Mo, X., Rosbjerg, D., & Bauer-Gottwein, P. (2016). The cost of ending groundwater overdraft on the North China Plain. Hydrology and Earth System Sciences, 20(2), 771-785. doi:10.5194/hess-20-771-2016Ehteram, M., Karami, H., & Farzin, S. (2018). Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models. Water Resources Management, 32(7), 2539-2560. doi:10.1007/s11269-018-1945-1Eisel, L. M. (1972). Chance constrained reservoir model. Water Resources Research, 8(2), 339-347. doi:10.1029/wr008i002p00339European Commission(2007). Communication from the Commission to the European Parliament and the Council: Addressing the challenge of water scarcity and droughts in the European Union COM(2007) 414 final. Brussels Belgium.European Commission. (2012a). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: A Blueprint to Safeguard Europe's Water Resources COM(2012) 673 final. Brussels Belgium.European Commission. (2012b). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy COM(2012) 672 final. Brussels Belgium.Fallah-Mehdipour, E., Bozorg Haddad, O., & Mariรฑo, M. A. (2012). Real-Time Operation of Reservoir System by Genetic Programming. Water Resources Management, 26(14), 4091-4103. doi:10.1007/s11269-012-0132-zFazlali, A., & Shourian, M. (2017). A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach. Water Resources Management, 32(1), 67-81. doi:10.1007/s11269-017-1791-6Ficchรฌ, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571Fu, Q., Li, T., Cui, S., Liu, D., & Lu, X. (2017). Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resources Management, 32(4), 1261-1274. doi:10.1007/s11269-017-1868-2Galelli, S., Goedbloed, A., Schwanenberg, D., & van Overloop, P.-J. (2014). Optimal Real-Time Operation of Multipurpose Urban Reservoirs: Case Study in Singapore. Journal of Water Resources Planning and Management, 140(4), 511-523. doi:10.1061/(asce)wr.1943-5452.0000342Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P. M. (2016). Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations. Journal of Water Resources Planning and Management, 142(2), 04015050. doi:10.1061/(asce)wr.1943-5452.0000570Giuliani, M., Herman, J. D., Castelletti, A., & Reed, P. (2014). Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management. Water Resources Research, 50(4), 3355-3377. doi:10.1002/2013wr014700Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363Giuliani, M., Quinn, J. D., Herman, J. D., Castelletti, A., & Reed, P. M. (2018). Scalable Multiobjective Control for Large-Scale Water Resources Systems Under Uncertainty. IEEE Transactions on Control Systems Technology, 26(4), 1492-1499. doi:10.1109/tcst.2017.2705162Grรผne, L., & Semmler, W. (2004). Using dynamic programming with adaptive grid scheme for optimal control problems in economics. Journal of Economic Dynamics and Control, 28(12), 2427-2456. doi:10.1016/j.jedc.2003.11.002Guariso, G., Rinaldi, S., & Soncini-Sessa, R. (1986). The Management of Lake Como: A Multiobjective Analysis. Water Resources Research, 22(2), 109-120. doi:10.1029/wr022i002p00109Gundelach, J., & ReVelle, C. (1975). Linear decision rule in reservoir management and design: 5. A general algorithm. Water Resources Research, 11(2), 204-207. doi:10.1029/wr011i002p00204Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139-148. doi:10.1061/(asce)wr.1943-5452.0000241Haddad, O. B., Afshar, A., & Mariรฑo, M. A. (2006). Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization. Water Resources Management, 20(5), 661-680. doi:10.1007/s11269-005-9001-3Hadka, D., Herman, J., Reed, P., & Keller, K. (2015). An open source framework for many-objective robust decision making. Environmental Modelling & Software, 74, 114-129. doi:10.1016/j.envsoft.2015.07.014Haguma, D., & Leconte, R. (2018). Long-Term Planning of Water Systems in the Context of Climate Non-Stationarity with Deterministic and Stochastic Optimization. Water Resources Management, 32(5), 1725-1739. doi:10.1007/s11269-017-1900-6Haguma, D., Leconte, R., & Cรดtรฉ, P. (2018). Evaluating Transition Probabilities for a Stochastic Dynamic Programming Model Used in Water System Optimization. Journal of Water Resources Planning and Management, 144(2), 04017090. doi:10.1061/(asce)wr.1943-5452.0000883Houck, M. H. (1979). A Chance Constrained Optimization Model for reservoir design and operation. Water Resources Research, 15(5), 1011-1016. doi:10.1029/wr015i005p01011Ji, C., Zhou, T., & Huang, H. (2014). Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression. Water Resources Management, 28(9), 2435-2451. doi:10.1007/s11269-014-0610-6Karamouz, M., & Houck, M. H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization. Water Resources Research, 18(5), 1337-1344. doi:10.1029/wr018i005p01337Karamouz, M., & Houck, M. H. (1987). COMPARISON OF STOCHASTIC AND DETERMINISTIC DYNAMIC PROGRAMMING FOR RESERVOIR OPERATING RULE GENERATION. Journal of the American Water Resources Association, 23(1), 1-9. doi:10.1111/j.1752-1688.1987.tb00778.xKaramouz, M., & Vasiliadis, H. V. (1992). Bayesian stochastic optimization of reservoir operation using uncertain forecasts. Water Resources Research, 28(5), 1221-1232. doi:10.1029/92wr00103Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007Kelman, J., Stedinger, J. R., Cooper, L. A., Hsu, E., & Yuan, S.-Q. (1990). Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 26(3), 447-454. doi:10.1029/wr026i003p00447Keshtkar, A. R., Salajegheh, A., Sadoddin, A., & Allan, M. G. (2013). Application of Bayesian networks for sustainability assessment in catchment modeling and management (Case study: The Hablehrood river catchment). Ecological Modelling, 268, 48-54. doi:10.1016/j.ecolmodel.2013.08.003Kim, T., Heo, J.-H., Bae, D.-H., & Kim, J.-H. (2008). Single-reservoir operating rules for a year using multiobjective genetic algorithm. Journal of Hydroinformatics, 10(2), 163-179. doi:10.2166/hydro.2008.019Koutsoyiannis, D., & Economou, A. (2003). Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resources Research, 39(6). doi:10.1029/2003wr002148Kumar, D. N., & Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose Reservoir Operation. Water Resources Management, 20(6), 879-898. doi:10.1007/s11269-005-9012-0Nagesh Kumar, D., & Janga Reddy, M. (2007). Multipurpose Reservoir Operation Using Particle Swarm Optimization. Journal of Water Resources Planning and Management, 133(3), 192-201. doi:10.1061/(asce)0733-9496(2007)133:3(192)Kumar, K., & Kasthurirengan, S. (2018). Generalized Linear Two-Point Hedging Rule for Water Supply Reservoir Operation. Journal of Water Resources Planning and Management, 144(9), 04018051. doi:10.1061/(asce)wr.1943-5452.0000964Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168-183. doi:10.1016/j.envsoft.2016.09.017Labadie, J. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of Water Resources Planning and Management, 130(2), 93-111. doi:10.1061/(asce)0733-9496(2004)130:2(93)Labadie J. W. Baldo M. &Larson R.(2000).MODSIM: Decision support system for river basin management. Documentation and user manual.Lee, J.-H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir systems via reinforcement learning. Water Resources Research, 43(11). doi:10.1029/2006wr005627Lei, X., Tan, Q., Wang, X., Wang, H., Wen, X., Wang, C., & Zhang, J. (2018). Stochastic optimal operation of reservoirs based on copula functions. Journal of Hydrology, 557, 265-275. doi:10.1016/j.jhydrol.2017.12.038Lerma, N., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2013). Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization. Hydrological Sciences Journal, 58(4), 797-812. doi:10.1080/02626667.2013.779777Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., & Sechi, G. M. (2015). Assessment of evolutionary algorithms for optimal operating rules design in real Water Resource Systems. Environmental Modelling & Software, 69, 425-436. doi:10.1016/j.envsoft.2014.09.024Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled humanโ€“natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017Lin, N. M., & Rutten, M. (2016). Optimal Operation of a Network of Multi-purpose Reservoir: A Review. Procedia Engineering, 154, 1376-1384. doi:10.1016/j.proeng.2016.07.504Liu, P., Cai, X., & Guo, S. (2011). Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resources Research, 47(8). doi:10.1029/2011wr010998Loucks, D. P. (1970). Some Comments on Linear Decision Rules and Chance Constraints. Water Resources Research, 6(2), 668-671. doi:10.1029/wr006i002p00668Loucks

    Water distribution networks optimization considering unknown flow directions and pipe diameters

    Get PDF
    Water Distribution Networks (WDN) are present in a large number of industrial processes and urban centers. Reservoirs, pipes, nodes, loops, and pumps compose WDN and their design can be formulated as an optimization problem. The main objective is the minimization of the network cost, which depends on the pipe diameters and flow directions known a priori. However, in the design of new WDN in real industrial problems, flow directions are unknown. In the present paper, a disjunctive Mixed Integer NonLinear Programming (MINLP) model is proposed for the synthesis of WDN considering unknown flow directions. Two case studies are employed to test the model and global optimization techniques are used in its solution. Results show that the global optima WDN cost with the correct flow directions is obtained for the studied cases without the necessity of using additional software to calculate pressure drops and velocities in the pipes.The authors gratefully acknowledge the financial support from the National Council for Scientific and Technological Development โ€”CNPq (Brazil), the Coordination for the Improvement of Higher Education Personnel โ€”Process 88881.171419/2018-01 โ€“CAPES (Brazil) and the Ministรฉrio de Economรญa, Industria y Competitividad CTQ2016-77968-C3-02-P (FEDER, UE)
    • โ€ฆ
    corecore