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ABSTRACT 

This paper describes the development of a Pipe Smoothing 

Genetic Algorithm (PSGA) and its application to the problem of 

least cost water distribution network design. Genetic algorithms 

have been used widely for the optimisation of both theoretical and 

real-world non-linear optimisation problems, including water 

system design and maintenance problems. In this work we 

propose a pipe smoothing based approach to the creation and 

mutation of chromosomes which utilises engineering expertise 

with the view to increasing the performance of the algorithm 

compared to a standard genetic algorithm. Both PSGA and the 

standard genetic algorithm were tested on benchmark water 

distribution networks from the literature. In all cases PSGA 

achieves higher optimality in fewer solution evaluations than the 

standard genetic algorithm.  

Categories and Subject Descriptors 

G.1.6 [Numerical Analysis]: Optimization – Constrained 

Optimization.  
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1. INTRODUCTION 
Evolutionary algorithms (EAs) are widely used for the 

optimisation of both theoretical and real-world problems. These 

problems tend to be highly complex and incorporate one or more 

constraints that limit the feasible space to be searched. One such 

problem is that of optimising a water distribution network where 

the task is to determine the optimally least-cost network design 

that still meets the requirements of the network (typically the 

provision of the required pressure at each of the points of 

demand).  EAs have been shown to be excellent tools for 

optimising such networks, but many formulations fail to take into 

account engineering expertise.  As such, the solutions they 

propose can be excellent from an objective function perspective, 

but are not able to be implemented in the real-world without 

considerable modification. 

In this work, we propose the use of a heuristic based approach for 

the initialization and mutation of chromosomes based on human 

engineering expertise and demonstrate this method on some water 

distribution network design problems. Although the heuristic used 

is specific to the problem, the method of constraining the 

solutions could be applied to other network problems in the 

literature including sewer networks, communications networks 

etc.  The heuristic-based ‘pipe smoothing’ approach is shown to 

perform better than a standard evolutionary algorithm on all water 

distribution network design problems tested, both in terms of 

outright performance and engineering feasibility. 

1.1 Water Distribution Network Design 

Problem 
Water distribution network (WDN) design is a complex non-linear 

optimisation problem, commonly involving a large number of 

different network components and hydraulic constraints. Due to the 

inherent complexity of WDN design, a simplified formulation of the 

problem is commonly employed when applied to optimisation 

techniques. This method is commonly comprised of the allocation 

of a diameter to each pipe in a given network layout, with the 

objective of minimising cost whilst satisfying pressure constraints at 

the nodes [1]. In this simplified version, design considerations such 

as water quality and network reliability are not included in the 

formulation of the problem. This method provides the designer with 

a base from which to solve the overall problem and allows the 

comparison of new optimisation techniques with the large amount 

of literature that employs this technique of problem formulation.  

The optimal design of a water distribution network is presented here 

using the following mathematical statement. The objective function 

is defined as the total cost of the network with regard to pipe length 

and diameter 

 

where  cost of pipe  with diameter  and length  

with  number of pipes in the network. This function is to be 

minimised whilst satisfying the following constraints. For each 

junction (excluding the source) the following continuity constraint 

has to be satisfied 
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where   inflow to the junction,  outflow from the 

junction and  external flow or junction demand which in this 

case is always positive. The pressure drop due to friction or head 

loss for a specific pipe  is calculated using the following 

equation 

 

where  = Hazen-Williams roughness coefficient,  = flow and 

, , and  are parameters of the equations. 

The minimum head constraint for each junction in the network is 

as follows 

 

where  = hydraulic head (water pressure) at junction ,  

minimum head requirement at junction  and  total number of 

junctions present in the network. 

In the case of this formulation of the WDN design problem the 

optimisation is exclusively concerned with the selection of pipe 

diameters. Each individual problem has a set of available pipe 

diameters which can be selected for each decision pipe in the 

network. These decisions are encoded as a binary bit sub-string 

with a length dictated by the number of pipe sizes available. The 

substrings are then concatenated to form the chromosome to 

represent the entire solution. 

1.2 Previous Work on WDN Optimisation 
The optimal design of water distribution networks is considered a 

NP-hard problem [2] and has been solved with a number of 

approaches, such as classic methods that include linear and 

dynamic programming [3][4][5][6][7] and various heuristic 

algorithms. Due to the discrete nature of the decision space and 

the advent of effective hydraulic solvers, the application of global 

stochastic optimisation algorithms has been proven to be a good 

approach to the WDN design problem. These approaches, 

although effective can induce a large number of hydraulic 

evaluations which in the case of large, real world WDNs can 

become extremely computationally expensive. Over the last two 

decades a considerable amount of research has been applied to the 

problem of WDN design especially in the field of EAs such as 

Genetic Algorithms (GAs) [8][9][10][11][12], Simulated 

Annealing[13], Shuffled Complex Evolution [14], Ant Colony 

Optimisation [15] and Harmony Search [16]. These techniques 

have proven to be effective on a number of benchmark WDN 

design problems.   

1.3 Constraint Handling In EAs 
In their basic form, EAs are unconstrained optimisation 

procedures. However, many problems have constraints imposed 

upon them especially in real-world optimisation problems. A 

common approach to dealing with constrained optimisation 

problems is to incorporate the constraints into the fitness function 

of the EA by adding a penalty function to the fitness function, 

where the value obtained from the penalty function represents the 

solution’s distance from feasibility. A frequently used approach is 

the static penalty [17], where the penalty factors remain constant 

throughout the evolutionary process. Another approach is the use 

of a dynamic penalty where the penalty function is varied over 

time, commonly tightening the constraints as the EA’s population 

develops. The notion of allowing an EA to explore the search 

space unimpeded before increasing the focus of the search and 

therefore potentially improving the scope of the search has lead 

some researchers to argue that dynamic penalties perform better 

than a static penalty approach. However, it has been found that 

deriving an effective dynamic penalty function is as difficult to 

achieve as producing good penalty factors for static functions 

[18]. 

Another approach when handling the constraints of a problem is 

to employ a repair algorithm. The repair algorithm has proven a 

popular choice for many combinatorial optimisation problems as 

it is often relatively easy to ‘repair’ an infeasible solution through 

the iterative modification of individual decision variables. When a 

solution can be transformed from infeasible to feasible at a low 

computational cost, repair algorithms have proven to be effective. 

However, it is not always possible to repair an infeasible solution 

at an acceptable computational cost and in some cases the 

algorithm can harm the evolutionary process by introducing a 

strong bias in the search [19]. 

A further method is to use an indirect representation where the 

genes do not code for variables in the problem directly, but via a 

heuristic that determines the phenotype given the genotype 

developed by the algorithm.  These approaches have been shown 

to work well in timetabling problems [20] but the relationship 

between the genotype and phenotype is more complex leading to 

a more multimodal fitness landscape. 

1.4 Pipe Smoothing Approach 
This paper describes the development of a Pipe Smoothing 

Genetic Algorithm (PSGA) and its application to the least cost 

WDN design problem. This method actively promotes 

engineering feasibility by directly influencing chromosome 

construction and mutation.  PSGA is based upon a standard 

genetic algorithm and incorporates a modified population 

initialiser and mutation operator which directly targets elements 

of a network with the aim to increase network smoothness (in 

terms of progression from one diameter to the next) using network 

element awareness and an elementary heuristic. Experiments are 

conducted to compare a standard genetic algorithm and PSGA for 

a number of benchmark WDN design problems. The results show 

that the PSGA approach exhibits improved performance over the 

standard GA, especially for parallel expansion WDN design 

problems.   

2. PIPE SMOOTHING GENETIC 

ALGORITHM 
The Pipe Smoothing Genetic Algorithm (PSGA) is based around 

the principle that in a gravity fed WDN the diameter of any pipe 

is never greater than the sum of the diameter(s) of the directly 

upstream pipes. Networks that adhere to this rule can be seen  to 

‘smoothly’ transition from large to small diameters from source to 

the extremities of the network. This rule is routinely and 

implicitly applied by engineers when designing such networks as 

it makes little sense to follow a smaller diameter pipe with a 

larger one in the majority of circumstances.  The larger pipe will 

cost more to install and will not add to the hydraulic capability of 

the system as it will be constrained by the smaller diameter pipe 

upstream.  One further negative aspect of this arrangement is that 

velocities will be lower in the larger pipe and high water age can 

become an issue.  A standard GA of course will mutate some of 

these inconsistent pipe selections from the final solution as they 

have a corresponding improvement in the cost function and no 

hydraulic penalty.  However extensive experimentation has 
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shown that even well-optimised solutions after hundreds of 

thousands of generations of a standard EA still contain significant 

numbers of incorrectly sized pipes in larger networks. 

 PSGA applies the rule described above directly to the genotype 

without evaluating the effect this process has on the phenotype. 

The heuristic employed by PSGA is developed from the network 

topology of a specific problem and remains constant throughout 

the evolutionary process. The heuristic is applied to a solution at 

initialization and through the mutation operator; where the 

probability of the heuristic being applied is defined by a preset 

algorithm parameter. It is the aim of the heuristic to guide the 

algorithm’s search to the engineering feasible solution space to 

locate smoother WDN designs whilst maintaining the 

performance of a standard genetic algorithm. The PSGA mutation 

operator does not perform any additional partial or full fitness 

evaluations, except a single hydraulic simulation at initialisation 

to determine flow directions. This was an important consideration 

when developing PSGA as additional fitness evaluations would 

require further hydraulic evaluations, increasing algorithm run 

time. 

PSGA is essentially a standard GA (SGA) which incorporates 

some additional features; these include a pipe smoothing 

initialiser heuristic based mutation operator. The standard GA 

used was a steady-state GA with tournament selection with 

tournament size t and single-point crossover with probability c. A 

Gray-coded binary string comprising of N sub-strings was 

employed where each sub-string represents the diameter of each 

pipe in the WDN. Mutation was conducted as a random bitwise 

mutation with probability m.  

2.1  Pipe Smoothing Initialiser 
The initial population of solutions is constructed by the pipe 

smoothing initialiser which applies a basic rule where the 

diameter of any pipe is never greater than the sum of the 

diameters of the pipes directly upstream. The operator first sets 

the diameter of all pipes directly connected to a reservoir to the 

maximum allowable diameter for the specific problem. The 

algorithm then selects each remaining downstream pipe in turn to 

allocate a diameter. The operator achieves this by calculating the 

maximum allowable diameter for the given pipe and randomly 

selecting a pipe diameter so as not to violate this constraint. 

Although the diameter selection is random, a skewed roulette 

wheel approach is employed to prioritise the selection of larger 

diameters. This results in larger allowable diameters having a 

greater probability of being chosen from the available list. It is 

later shown that when this operator is used to generate all 

chromosomes in the initial population this has a detrimental effect 

on the subsequent search of the genetic algorithm due to lack of 

diversity in the population. Therefore a mechanism was 

introduced to allow the probability of the pipe smoothing 

initialiser chromosome application to be varied. 

2.2 Pipe Smoothing Mutation Operator 
The pipe smoothing mutation operator randomly selects a pipe to 

be mutated. The sum of all the diameters of the directly upstream 

pipes is set as the maximum allowable diameter the current pipe 

can be. Much the same as the pipe smoothing initialiser, this 

operator employs a skewed roulette wheel approach to the random 

selection of the pipe diameter. This is achieved be weighting the 

larger pipe diameters that fall within the maximum allowable size 

so that the larger the diameter, the higher the probability there is 

of selection. Upon selection the pipe being mutated is changed to 

the selected diameter. 

To function correctly both the pipe smoothing initialiser and 

mutation operator require each pipe in the network to be ‘aware’ 

of the pipes directly up and down stream of their location. When 

changes are made to a WDN there is a possibility that flow 

direction could change in some pipes hence swapping up & down 

stream pipes relative to the pipe in question. The flow direction is 

logged at each hydraulic evaluation of the network, therefore to 

preserve this hydraulic data the pipe smoothing mutation operator 

precedes the crossover operator. This is illustrated in figure 1. 

 

Figure 1. Flow diagram illustrating the structure of PSGA 

 

3. COMPUTATIONAL RESULTS 
PSGA was coded in C++ and run on an Intel Core i7 3.07GHz 

PC. The test problems used to evaluate the algorithm including a 

number of benchmark networks from the literature. The following 

test cases can be found at 
emps.exeter.ac.uk/engineering/research/cws/downloads/benchmarks. 

In all test cases both PSGA and SGA are run using identical 

common parameters. 

3.1 Algorithm Development - Hanoi Problem 
PSGA was applied to the Hanoi problem; a single reservoir, 

gravity fed water distribution network consisting of 32 junctions 

and 34 pipes organised in 3 loops. The Hanoi problem was used 

in this case to explore the effectiveness of the pipe smoothing 

operators when the probability of application to a standard GA 

was varied. The current best known solution for this specific 

benchmark is $6.081 million, achieved with a GA variant[21].  

3.1.1 Probability of Pipe Smoothing Mutation 
The probability that the pipe smoothing mutation operator was 

employed was varied throughout a number of experiments. When 

the pipe smoothing mutation operator was not employed, the 

standard bitwise mutation operator was used instead. The pipe 

smoothing initialisation operator was not employed for this first 

set of runs. 
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The base algorithm used in the following runs was built on a 

simple single objective steady state genetic algorithm with a 

mutation rate of 0.05 and tournament size of 0.05N where N is the 

population size which in this case is 100. The probability of pipe 

smoothing mutation was varied between 0% and 100% at 25% 

intervals. For each parameter set the algorithm was run a total of 

20 times for 10,000 iterations (20,000 fitness evaluations) with 

different initial random seeds on the Hanoi problem with a 

penalty factor of 1,000,000 $/m head deficit. Below are the 

average results from these experiments. 

 

Table 1. Pipe Smoothing Rate Results for PSGA on Hanoi  

Probability of 

Pipe Smoothing 

Mutation 

Mean Best 

Feasible 

Solution Cost 

($) 

Mean Best Feasible 

Solution Cost 

Standard Deviation 

($) 

0% 6,344,188  132,334  

25% 6,308,339  111,084  

50% 6,297,480  113,869  

75% 6,303,149  102,811  

100% 6,380,882  141,364  

 

 

 

Figure 2. Mean Best Feasible Solution Cost 

 

The preceding results show that PSGA appears to perform best 

when pipe smoothing mutation and standard bitwise mutation are 

applied in equal proportions. The results do however suggest that 

when the pipe smoothing mutation operator is applied continually 

the algorithm prematurely converges on a suboptimal solution 

compared to that of the standard genetic algorithm.  The 

following figure (Figure 3) show the comparison between the 

standard genetic algorithm (PSGA_M_0%) and PSGA with 50% 

probability of pipe smoothing mutation. Note that this figure 

shows the average feasible solution (i.e. a solution that meets all 

hydraulic constraints) cost for all 20 runs. 

 

 

Figure 3. Mean Best Feasible Solution Cost- PSGA-Hanoi 

 

Figure 3 shows that the standard genetic algorithm has a faster 

initial rate of convergence in the first 250 iterations compared to 

the Pipe Smoothing Genetic Algorithm (PSGA). However PSGA 

does surpass the standard GA beyond 1000 iterations. 

3.1.2 Pipe Smoothing Population Initialiser    
Instead of generating a population of random solutions, the pipe 

smoothing initialisation operator uses a heuristic based approach 

that ensures no pipe is larger than that total diameter of pipes 

directly upstream whilst retaining a random element. In this set of 

experiments the proportion of the initial population which 

employs the pipe smoothing initialisation operator is varied 

between 0% and 100% at 25% intervals. When the pipe 

smoothing initialisation operator is not employed, the solution is 

generated randomly.  

The base algorithm used in the following runs is as described in 

section 3.1.1. Below are the average results from these 

experiments. 

 

Table 2. Pipe Smoothing Initialisation Rate Results for PSGA 

on Hanoi  

Probability of Pipe 

Smoothing 

Initialisation 

Mean Best 

Feasible 

Solution 

Cost ($) 

Mean Best Feasible 

Solution Cost 

Standard Deviation 

($) 

0% 6,344,188  132,334  

25% 6,321,749  103,841  

50% 6,316,813 110,051 

75% 6,335,983  117,362  

100% 6,380,001  99,466  
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Figure 4. Pipe Smoothing Initialisation Rate Results for PSGA 

on Hanoi, Mean Best Feasible Solution Cost 

 

These results suggest there is a performance increase when the 

pipe smoothing initialisation operator is applied to 25%, 50% and 

75% of the population. However, at 100% pipe smoothing 

initialisation the algorithm performs worse than the standard 

genetic algorithm (PSGA_M_0%_INIT_0%).  

 

Figure 5. Mean Best Feasible Solution Cost- PSGA 

Initialisation – Hanoi 

 

Figure 5 shows the comparison between the standard genetic 

algorithm with standard population initialisation and the standard 

GA with 25% pipe smoothing initialisation. The standard GA 

with pipe smoothing initialisation finds feasibility slightly sooner 

than the standard GA with standard initialisation, however there is 

not a notable difference in the convergence of the two algorithms. 

To further explore the effect of the pipe smoothing initialisation 

operator, this next experiment uses the best performing version of 

PSGA (PS mutation at 50%) and varies the pipe smoothing 

initialisation rate between 0% and 100% again at 25% intervals. 

 

Table 3. Pipe Smoothing Initialisation Rate Results for PSGA 

on Hanoi 

Probability of 

Pipe Smoothing 

Initialisation 

Mean Best 

Feasible 

Solution Cost 

($) 

Mean Best Feasible 

Solution Cost 

Standard Deviation 

($) 

0% 6,297,480  113,869  

25% 6,290,517  119,694  

50% 6,279,120  111,130  

75% 6,298,693  120,991  

100% 6,353,617  142,785  

 

The results shown in table 3 and figure 6 indicate that PSGA with 

a pipe smoothing mutation rate of 50% benefits from the pipe 

smoothing initiation operator up to 50% population application. 

 

Figure 6. Pipe Smoothing Initialisation Rate Results for PSGA 

M 50% on Hanoi, Mean Best Feasible Solution Cost 

 

As with the previous set of results, when pipe smoothing 

initialisation is applied to the whole starting population, the 

algorithm suffers premature convergence, achieving a suboptimal 

solution compared to the other algorithms. 

1313



 

Figure 7. Mean Best Feasible Solution Cost- PSGA M50% 

Initialisation – Hanoi 

 

Figure 7 shows the comparison between PSGA M50% with no 

pipe smoothing initialisation and the same algorithm with a pipe 

smoothing rate of 50%. The plots show that PSGA without pipe 

smoothing initialisation displays faster initial convergence, 

however it is outperformed in the later stages of the search by 

PSGA with pipe smoothing initialisation.    

These initial experiments suggest that the pipe smoothing genetic 

algorithm benefits from an equal mix of the pipe smoothing 

heuristic mutation and standard bitwise mutation. Also the pipe 

smoothing initialisation operator adds additional performance 

when used to generate a moderate proportion of the initial 

population. 

The following results show a direct comparison between the 

standard genetic algorithm and the best performing version of the 

pipe smoothing genetic algorithm. 

 

Table 4. Standard GA vs. PSGA on Hanoi 

Algorithm 
Mean Best 

Cost ($) 

Standard 

Deviation of 

Best Cost ($) 

Standard GA 6,344,188 132,334 

PSGA_M_50%_INIT_50% 6,279,120 111,130 

 

 

Figure 8. Mean Best Feasible Solution Cost- Standard GA vs. 

PSGA – Hanoi 

 

Although the standard algorithm displays faster initial 

convergence over PSGA in the first 300 iterations (600 fitness 

evaluations), PSGA starts to outperform the standard GA after 

1200 iterations (2400 fitness evaluations). PSGA achieves a better 

mean best feasible solution cost and with a lower standard 

deviation over the results of the standard GA although neither 

algorithm achieves the best known feasible solution ($6.081). 

This is not unexpected due to the number of solution evaluations 

allowed. 

 

Figure 9. Average Population Pipe Smooth Violations - 

Standard GA vs. PSGA – Hanoi 

 

Figure 9 shows the average population pipe smoothing violations. 

A violation occurs when a pipe’s diameter is larger than the sum 

of diameters of the directly upstream pipes. From these results it 

is apparent that PSGA out performs the standard genetic 

algorithm with regard to pipe smoothing violations resulting in a 
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population with smoother solutions and better performance.  A 

network with fewer smoothing violations is more likely to be 

accepted by the engineer for implementation.  The results in 

Figure 9 show that the PSGA solutions have approximately half 

the violations of those from the standard GA.  

3.2 New York Tunnels Problem 
The New York Tunnels Problem [3] is a parallel expansion 

problem consisting of 21 existing pipes and 20 junctions fed by a 

fixed head reservoir. The objective is to find the least cost 

configuration of pipes that could be installed parallel to the 

existing pipes to meet the head constraints of the problem. There 

are 16 available pipe diameters ranging from 0in to 804.0in 

therefore no encoding redundancy is required. 

PSGA was then applied to the New York Tunnels problem and 

compared again to the standard GA. The base algorithm used in 

the following runs is built on a simple single objective steady 

state genetic algorithm with a mutation rate of 0.05 and 

tournament size of 0.05N where N is the population size which in 

this case is 100. For each parameter set the algorithm was run a 

total of 20 times for 10,000 iterations (20,000 fitness evaluations) 

with different initial random seeds. A penalty factor of 7,000,000 

$/m head deficit was used. Below are the average results from 

these experiments. 

Table 5. Standard GA vs. PSGA on New York Tunnels 

Algorithm 
Mean Best 

Cost ($) 

Standard 

Deviation of 

Best Cost 

($) 

Standard GA 41,465,945 922,076 

PSGA_M_50%_INIT_50% 38,935,400 530,145 

 

 

Figure 10. Mean Best Feasible Solution Cost- Standard GA vs. 

PSGA – New York Tunnels 

 

In this set of runs, PSGA drastically outperforms the standard GA 

both in convergence rate and solution quality. It suggests that the 

heuristics used in PSGA directly complement the nature of the 

New York Tunnels problem as a parallel expansion problem.  

Figure 10 shows the PSGA reducing the feasible cost very close 

to the current best-known minimum [15] of $38.64 million in 

approximately 12000 fitness evaluations.  

 

Figure 11. Average Population Pipe Smooth Violations - 

Standard GA vs. PSGA – New York Tunnels 

 

Figure 11. shows the average pipe smoothing violation present in 

the population of both PSGA and the Standard GA. Although 

there is little difference between the two algorithms, PSGA does 

tend to outperform the Standard GA in terms of network 

smoothness after around 200 iterations (400 evaluations). 

 

4. CONCLUSIONS 
A ‘pipe-smoothing’ genetic algorithm has been created and tested 

on well-known benchmarks from the literature. Utilising a 

heuristic, PSGA encodes engineering expertise into a standard 

genetic algorithm with the view to improving the performance of 

the algorithm. The influence of the pipe smoothing initialisation 

and mutation operators of PSGA has proven to outperform a 

standard genetic algorithm on all benchmark problems tested in 

this paper without incurring additional fitness evaluations and 

hence computational complexity. For both problems tested in this 

paper, PSGA achieved lower cost solutions in less fitness 

evaluations than the standard genetic algorithm. 

These experiments show PSGA will outperform a standard 

genetic algorithm for benchmark problems as used in this study, 

although further, more extensive experiments should be 

performed to verify the effectiveness of the new algorithm on 

larger real-world networks. It is also apparent that PSGA achieves 

a smoother solution than that of the standard genetic algorithm, 

making the PSGA solutions more engineering feasible for real-

world application. However, the smoothness of a solution is not 

taken into account when assessing the network due to the nature 

of the fitness function which only computes the infrastructure cost 

and the head deficit information, thus it is most likely that smooth 

solutions are disregarded upon replacement. Also if we observe 

the behaviour of both the standard GA and the PSGA it is 

apparent that there is a potential correlation between the fitness of 

a solution and its smoothness. This leads to a question: Can search 

performance be improved by integrating a pipe smoothing 
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violation component into the fitness function or separate objective 

in a multi-objective algorithm? Although this question falls 

outside the scope of this paper, this would be the natural direction 

to take this research in future work. 
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