321 research outputs found

    Content Addressed P2P File System for the Web with Blockchain-Based Meta-Data Integrity

    Full text link
    With the exponentially scaled World Wide Web, the standard HTTP protocol has started showing its limitations. With the increased amount of data duplication & accidental deletion of files on the Internet, the P2P file system called IPFS completely changes the way files are stored. IPFS is a file storage protocol allowing files to be stored on decentralized systems. In the HTTP client-server protocol, files are downloaded from a single source. With files stored on a decentralized network, IPFS allows packet retrieval from multiple sources, simultaneously saving considerable bandwidth. IPFS uses a content-addressed block storage model with content-addressed hyperlinks. Large amounts of data is addressable with IPFS with the immutable and permanent IPFS links with meta-data stored as Blockchain transactions. This timestamps and secures the data, instead of having to put it on the chain itself. Our paper proposes a model that uses the decentralized file storage system of IPFS, and the integrity preservation properties of the Blockchain, to store and distribute data on the Web

    Blockchain-based Data Management for Smart Transportation

    Get PDF
    Smart services for Intelligent Transportation Systems (ITS) are currently deployed over centralized system solutions. Conversely, the use of decentralized systems to support these applications enables the distribution of data, only to those entities that have the authorization to access them, while at the same time guaranteeing data sovereignty to the data creators. This approach not only allows sharing information without the intervention of a “trusted” data silo, but promotes data verifiability and accountability. We discuss a possible framework based on decentralized systems, with a focus on four requirements, namely data integrity, confidentiality, access control and persistence. We also describe a prototype implementation and related performance results, showing the viability of the chosen approach

    A Review of Blockchain Technology Based Techniques to Preserve Privacy and to Secure for Electronic Health Records

    Get PDF
    Research has been done to broaden the block chain’s use cases outside of finance since Bitcoin introduced it. One sector where block chain is anticipated to have a big influence is healthcare. Researchers and practitioners in health informatics constantly struggle to keep up with the advancement of this field's new but quickly expanding body of research. This paper provides a thorough analysis of recent studies looking into the application of block chain based technology within the healthcare sector. Electronic health records (EHRs) are becoming a crucial tool for health care practitioners in achieving these objectives and providing high-quality treatment. Technology and regulatory barriers, such as concerns about results and privacy issues, make it difficult to use these technologies. Despite the fact that a variety of efforts have been introduced to focus on the specific privacy and security needs of future applications with functional parameters, there is still a need for research into the application, security and privacy complexities, and requirements of block chain based healthcare applications, as well as possible security threats and countermeasures. The primary objective of this article is to determine how to safeguard electronic health records (EHRs) using block chain technology in healthcare applications. It discusses contemporary HyperLedgerfabrics techniques, Interplanar file storage systems with block chain capabilities, privacy preservation techniques for EHRs, and recommender systems

    LCHAIN: A Secure Log Storage Mechanism using IPFS and Blockchain Technology

    Get PDF
    Data security is a very important and crucial part of Cloud storage. Day by day, thousands of operations function over the Cloud, verify logs generated from all transactions is very difficult. The attacker may temper or remove targeted logs or attack traces on the system with stealthy techniques. It is required to maintain the security of the log to trace back all the transactions to identify such tempering and loss of logs. Temper-proof log storage is a challenging issue on the Cloud. To overcome the issue, we propose strong and secure log storage using Blockchain technology and IPFS. Detecting log tempering and tracing is challenging due to large log volumes. We recommend the usage of Blockchain technology due to its inherent feature of immutability to address the issue of log tempering. We present LChain which provides immutable storage of logs with tracing. Blockchain technology helps yp create immutable logs but also offers non-repudiation and scalability. Smart contracts are used for efficient searching and enhancing computational power

    ANALYSIS AND IMPLEMENTATION OF NODES COMMUNICATION BETWEEN INTERPLANETARY FILE SYSTEM (IPFS) IN SMART CONTRACT ETHEREUM

    Get PDF
    Abstract. At present all business activities are bound to contracts or agreements. A written contract has several weaknesses, the contract can be lost and damaged, it is not cost effective and one party can commit fraud. The solution for that is to use the smart contract Ethereum. Smart contract Ethereum is a computer protocol that functions to facilitate, verify, or enforce digital negotiations written through the program code. Smart contract works without going through a third party and has a credible transaction process so that it cannot be tracked or changed. But Blockchain technology is not suitable for storing large amounts of data and expensive costs, the authors combine IPFS technology on Ethereum Blockchain. So the Ethereum Blockchain only stores the hash of the file, then the hash of this file can be connected to the file on IPFS to access it. In this study a web-based DApp (Decentralized applications) system was built that implemented IPFS on the smart contract Ethereum. The final result of this study is a discussion of data integrity and Quality of Service (QoS) communication between IPFS nodes on the smart contract Ethereum as a reference for implementation of the company. With the results of the implementation it  was found that the data integrity possessed by IPFS was very good by fulfilling aspects of information security and having Quality of Service with average throughput values of56.41 Kbps, 65.81 Kbps and 79.68 Kbps, for average packet loss values of 1.92%, 1.58% and 1.06%, while the average value of delay is 24.79 ms, 25.87 ms and 17.30 ms with the average value of the Quality of Service index which is 3 which meets the "Satisfying" category based on THIPON standards.Keywords: Blockchain, Smart Contract Ethereum, IPFS, Data Integrity, Quality of  Service (QoS

    Decentralized Personal Data Marketplaces: How Participation in a DAO Can Support the Production of Citizen-Generated Data

    Get PDF
    Big Tech companies operating in a data-driven economy offer services that rely on their users’ personal data and usually store this personal information in “data silos” that prevent transparency about their use and opportunities for data sharing for public interest. In this paper, we present a solution that promotes the development of decentralized personal data marketplaces, exploiting the use of Distributed Ledger Technologies (DLTs), Decentralized File Storages (DFS) and smart contracts for storing personal data and managing access control in a decentralized way. Moreover, we focus on the issue of a lack of efficient decentralized mechanisms in DLTs and DFSs for querying a certain type of data. For this reason, we propose the use of a hypercube-structured Distributed Hash Table (DHT) on top of DLTs, organized for efficient processing of multiple keyword-based queries on the ledger data. We test our approach with the implementation of a use case regarding the creation of citizen-generated data based on direct participation and the involvement of a Decentralized Autonomous Organization (DAO). The performance evaluation demonstrates the viability of our approach for decentralized data searches, distributed authorization mechanisms and smart contract exploitation

    Holistic Blockchain Approach to Foster Trust, Privacy and Security in IoT Based Ambient Assisted Living Environment

    Get PDF
    The application of blockchains techniques in the Internet of Things (IoT) is gaining much attention with new solutions proposed in diverse areas of the IoT. Conventionally IoT systems are designed to follow the centralised paradigm where security and privacy control is vested on a 'trusted' third-party. This design leaves the user at the mercy of a sovereign broker and in addition, susceptible to several attacks. The implicit trust and the inferred reliability of centralised systems have been challenged recently following several privacy violations and personal data breaches. Consequently, there is a call for more secure decentralised systems that allows for finer control of user privacy while providing secure communication. Propitiously, the blockchain holds much promise and may provide the necessary framework for the design of a secure IoT system that guarantees fine-grained user privacy in a trustless manner. In this paper, we propose a holistic blockchain-based decentralised model for Ambient Assisted Living (AAL) environment. The nodes in our proposed model utilize smart contracts to define interaction rules while working collaboratively to contribute storage and computing resources. Based on the blockchain technique, our proposed model promotes trustless interaction and enhanced user's privacy through the blockchain-Interplanetary File System (IPFS) alliance. The proposed model also addresses the shortfall of storage constraints exhibited in many IoT systems

    MEMORY ANALYSIS FOR IPFS IMPLEMENTATION ON ETHEREUM SMART CONTRACT

    Get PDF
    Abstract. Smart contract is an agreement between two entities established in the program code. All Smart contract transactions are stored on the Blockchain. But storing large data on the Blockchain is expensive, so many developers are currently creating a DApp (Decentralized Application) that integrates IPFS on smart contract Ethereum. Files will be stored on IPFS while the Blockchain only stores hash files from IPFS to access them again. Blockchain & IPFS are distributed peer-to-peer technologies for storing and distributing digital data supported by the confidentiality, integrity and authenticity of the data. The study was conducted to measure memory usage to run the DApp web that integrates IPFS on smart contract Ethereum and find out the effect of the file size uploaded via the web DApp and the number of nodes connected in the network. The memory usage test results will be used as a standard for the memory capacity planning to implement a DApp web system that integrates IPFS on smart contract Ethereum in an organization. Based on the research result, to run a web DApp that integrates IPFS on a smart contract requires 774MB of memory. The result proves that IPFS is suitable for handling large files. The efficiency of DApp's web performance that integrates IPFS on the smart contract Ethereum are obtained by a small file size and a large number of nodes connected in a network. The smaller the file size, the less memory usage. The more nodes that are connected in the network, the less memory usage.Keywords: Decentralized Application, IPFS, Smart Contract Ethereum, Blockchain, Memory Usage

    Blockchain Applications in Cybersecurity

    Get PDF
    Blockchain has been widely known thanks to Bitcoin and the cryptocurrencies. In this chapter, we analyze different aspects that relate to the application of blockchain with techniques commonly used in the field of cybersecurity. Beginning by introducing the use of blockchain technology as a secure infrastructure, the document delves into how blockchain can be useful to achieve several security requirements, common to most applications. The document has been focused on some specific cybersecurity disciplines to maintain simplicity: backup and recovery, threat intelligence and content delivery networks. As illustrated, some projects and initiatives are in the process of joining these two fields to provide solutions to existing problems
    • …
    corecore