101 research outputs found

    Real time depth of anaesthesia monitoring through electroencephalogram (EEG) signal analysis based on Bayesian method and analytical technique

    Get PDF
    The electroencephalogram (EEG) signal from the brain is used for analysing brain abnormality, diseases, and monitoring patient conditions during surgery. One of the applications of the EEG signals analysis is real-time anaesthesia monitoring, as the anaesthetic drugs normally targeted the central nervous system. Depth of anaesthesia has been clinically assessed through breathing pattern, heart rate, arterial blood pressure, pupil dilation, sweating and the presence of movement. Those assessments are useful but are an indirect-measurement of anaesthetic drug effects. A direct method of assessment is through EEG signals because most anaesthetic drugs affect neuronal activity and cause a changed pattern in EEG signals. The aim of this research is to improve real-time anaesthesia assessment through EEG signal analysis which includes the filtering process, EEG features extraction and signal analysis for depth of anaesthesia assessment. The first phase of the research is EEG signal acquisition. When EEG signal is recorded, noises are also recorded along with the brain waves. Therefore, the filtering is necessary for EEG signal analysis. The filtering method introduced in this dissertation is Bayesian adaptive least mean square (LMS) filter which applies the Bayesian based method to find the best filter weight step for filter adaptation. The results show that the filtering technique is able to remove the unwanted signals from the EEG signals. This dissertation proposed three methods for EEG signal features extraction and analysing. The first is the strong analytical signal analysis which is based on the Hilbert transform for EEG signal features' extraction and analysis. The second is to extract EEG signal features using the Bayesian spike accumulation technique. The third is to apply the robust Bayesian Student-t distribution for real-time anaesthesia assessment. Computational results from the three methods are analysed and compared with the recorded BIS index which is the most popular and widely accepted depth of anaesthesia monitor. The outcomes show that computation times from the three methods are leading the BIS index approximately 18-120 seconds. Furthermore, the responses to anaesthetic drugs are verified with the anaesthetist's documentation and then compared with the BIS index to evaluate the performance. The results indicate that the three methods are able to extract EEG signal features efficiently, improve computation time, and respond faster to anaesthetic drugs compared to the existing BIS index

    Structural integrity of aortic scaffolds decellularized by sonication decellularization system

    Get PDF
    Sonication decellularization technique has shown effectiveness to remove all the cellular components by the disruption of the cell membranes and removal of the cell debris to prepare the bioscaffolds. However, it is important to confirm whether this technique does not have a detrimental effect on elastin and collagen in bioscaffolds. The objectives of this study are to evaluate the structural integrity of bioscaffolds using histological staining and quantitatively collagen and elastin measurement. Aortic tissues were sonicated in 0.1% SDS for 10 hours at the frequency of 170 kHz with the power output of 15W and washed in Phosphate Buffer Solution (PBS) for 5 days. Then the sonicated aortic tissues were evaluated by Hematoxylin & Eosin (H&E) staining for cell removal analysis, Verhoeff-van Gieson (VVG) staining for visualizing elastin and Picrosirius Red (PSR) staining for visualizing collagen. The collagen and elastic fibres were semi-quantified by ImageJ software. The results showed that sonication decellularization system can remove all the cellular components while maintaining the structural integrity of elastin and collagen on bioscaffolds. This study indicates that sonication decellularization system could remove all cellular components and maintain the structure of the extracellular matrix

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    P300 classification using deep belief nets

    Get PDF
    2014 Summer.Includes bibliographical references.Electroencephalogram (EEG) is measure of the electrical activity of the brain. One of the most important EEG paradigm that has been explored in BCI systems is the P300 signal. The P300 wave is an endogenous event-related-potential which can be captured during the process of decision making as a subject reacts to a stimulus. One way to detect the P300 signal is to show a subject two types of visual stimuli occurring at different rates. The event occurring less frequently than the other elicits a positive signal component with a latency of roughly 250-500 ms. P300 detection has many applications in the BCI field. One of the most common applications of P300 detection is the P300 speller which enables users to type letters on the screen. Machine Learning algorithms play a crucial role in designing a BCI system. One important purpose of using the machine learning algorithms in BCI systems is the classification of EEG signals. In order to translate EEG signals to a control signal, BCI systems should first capture the pattern of EEG signals and discriminate them into different command categories. This is usually done using different machine learning-based classifiers. In the past, different linear and nonlinear methods have been used to discriminate the P300 signals from nonP300 signals. This thesis provides the first attempt to implement and examine the performance of the Deep Belief Networks (DBN) to model the P300 data for classification. The highest classification accuracy we achieved with DBN is 97 percent for testing trials. In our experiments, we used EEG data collected by the BCI lab at Colorado State University on both healthy and disabled subjects

    EZcap: a novel wearable for real-time automated seizure detection from EEG signals

    Get PDF
    Epileptic seizures present a serious danger to the lives of their victims, rendering them unconscious, lacking control, and may even result in death only a few seconds after onset. This gives rise to a crucial need for an effective seizure detection method that is fast, accurate, and has the potential for mass market adoption. Kriging methods have a good reputation for high accuracy in spatial prediction, hence, their extensive use in geostatistics. This paper demonstrates the successful application of Kriging methods for an effective seizure detection device in an edge computing environment by modeling the brain as a spatial panorama. We hereby propose a novel wearable for real-time automated seizure detection from EEG signals using three different types of Kriging, namely, Simple Kriging, Ordinary Kriging and Universal Kriging. After multiple experiments with electroencephalogram (EEG) signals obtained from seizure patients as well as those from their healthy counterparts, the results reveal that the three Kriging methods performed very well in accuracy, sensitivity and latency of detection. It was found however, that Simple Kriging outperforms the other Kriging methods with a mean seizure detection latency of 0.81 sec, a perfect specificity, an accuracy of 97.50% and a sensitivity of 94.74%. The results in this paper compare well with other seizure detection models in the literature but their excellent seizure detection latency surpasses the performance of most existing works in seizure detection

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    Developing a portable, customizable, single-channel EEG device for homecare and validating it against a commercial EEG device

    Get PDF
    There are several commercial electroencephalography (EEG) devices on the market; however, affordable devices are not versatile for diverse research applications. The purpose of this project was to investigate how to develop a low-cost, portable, single-channel EEG system for a research institute that could be used for neurofeedback-related applications in homecare. A device comparison was intended to examine what system requirements such a system would need to achieve the secondary objective of developing a neurofeedback application that demonstrates the functionalities of the new device. A portable, single-channel EEG device prototype was realized that consisted of an amplifier module called EEG Click, a single-board microcontroller, an electrode cable, some disposable wet electrode pads, and a custom 3D-printed headband. Three pieces of software were developed: firmware for the prototype, two supporting computer applications for data recording, and visual neurofeedback. The neurofeedback application replayed a first-person view roller coaster video at a varying frame rate based on the theta band's mean power spectral density (PSD). The prototype was compared against a commercial device, InteraXon MUSE 2 (Muse). Technical measurements included determining the amplitude-frequency characteristics and signal quality, such as signal-to-noise ratio (SNR), spurious-free dynamic range (SFDR), and total harmonic distortion (THD). Furthermore, four physiological measurements were performed on six human test subjects, aged between 21-31 (mean: 26.0, std: 3.11), to compare the altered brain activity and induced artifacts between the two devices. The four tests were respiratory exercise, head movement exercise, eye movement exercise, and paced auditory serial addition test (PASAT), where each measurement included several epochs with various stimuli. After the recordings, PSD was calculated for each bandpass filtered epoch, then the spectra were split into theta (4-8 Hz), alpha (8-12 Hz), and beta bands (12-30 Hz). The PSD values were averaged within each frequency band, and then these baseline-corrected mean values were the input for the repeated measures ANOVA statistical analysis. Results revealed that the amplitude-frequency characteristic of the prototype was low-pass filter-like and had a smaller slope than Muse's. The prototype's SNR, including and excluding the first five harmonics, was 6 dB higher, while SFDR and THD for the first five harmonics were roughly the same as Muse's. The two devices were comparable in detecting changes in most physiological measurements. Some differences between the two devices were that Muse was able to detect changes in respiratory activity in the beta band (F(8,16) = 2.510, p = .056), while the prototype was more sensitive to eye movement, especially lateral and circular eye movement in theta (F(2,8) = 9.144, p = .009) and alpha (F(2,8) = 6.095, p = .025) bands. A low-cost, portable EEG prototype was successfully realized and validated. The prototype was capable of performing homecare neurofeedback in the theta band. The results indicated it is worth exploring further the capabilities of the prototype. Since the sample size was too small, more complex physiological measurements with more test subjects would be more conclusive. Nevertheless, the findings are promising; the prototype may become a product once

    自然視条件下脳波計測の精度向上を可能にする眼球運動情報を用いた解析方法に関する研究

    Get PDF
    As the technique of electroencephalogram (EEG) developed for such many years, its application spreads and permeates into different areas, such like, clinical diagnosis, brain-computer interface, mental state estimation, and so on. Recently, using EEG as a tool for estimate people’s mental state and its extensional applications have jump into the limelight. These practical applications are urgently needed because the lack of subjectively estimating methods for the so called metal states, such as the concentration during study, the cognitive workload in driving, the calmness under mental training and so on. On the other hand, the application of EEG signals under daily life conditions especially when eye movements are totally without any constrains under a ‘fully free-view’ condition are obedient to the traditional ocular artifact suppression methods and how it meets the neuroscience standard has not been clearly expounded. This cause the ambiguities of explaining the obtain data and lead to susceptive results from data analysis. In our research, based on the basic idea of employing and extending EEG as the main tool for the estimation to mental state for daily life use, we confirmed the direction sensitivity of ocular artifacts induced by various types of eye movements and showed the most sensitive areas to the influence from it by multi zone-of-view experiment with standard neuroscience-targeted EEG devices. Enlightened from the results, we extended heuristic result on the use of more practical portable EEG devices. Besides, for a more realistic solution of the EEG based mental state estimation which is supposed to be applied for daily life environment, we studied the signal processing techniques of artifact suppression on low density electrode EEG and showed the importance of taking direction/eye position information into account when ocular artifact removal/suppression. In summary, this thesis has helped pave the practical way of using EEG signals toward the general use in daily life which has irregular eye movement patterns. We also pointed out the view-direction sensitivity of ocular artifact which helps the future studies to overcome the difficulties imposed on EEG applications by the free-view EEG tasks.九州工業大学博士学位論文 学位記番号:生工博甲第262号 学位授与年月日:平成28年3月26日1 Introduction|2 EEG measurements and ocular artifacts|3 Regression based solutions to ocular artifact suppression or removal in EEG|4 Measuring EEG with eye-tracking system|5 Direction and viewing area-sensitive influence of EOG artifacts revealed in the EEG topographic pattern analysis|6 Performance improvement of artifact removal with ocular information|7 Summary九州工業大学平成27年
    corecore