6 research outputs found

    Analyse post-Pareto en optimisation vectorielle stochastique et déterministe : étude théorique et algorithmes.

    Get PDF
    This thesis explore related aspects to post-Pareto analysis arising from Stochastic Vector Optimization Problem. A Stochastic Vector Optimization Problem is to optimize a random vector objective function defined on an arbitrary set, and taking values in a partially ordered set. Its solution set (called Pareto set) consists of the feasible solutions which ensure some sort of equilibrium amongst the objectives. That is to say, Pareto solutions are such that noneof the objectives values can be improved further without deterioring another. Technically speaking, each Pareto solution is acceptable. The natural question that arises is : how to choose one solution ? One possible answer is to optimize an other objective over the Pareto set. Considering the existence of a decision-maker with its own criteria, we deal with the post-Pareto Stochastic Optimization Problem of minimizing its real-valued criteria over the Pareto set.Cette thèse relate certains aspects liés à l'analyse post-Pareto issue de Problèmes d'Optimisation Vectorielle Stochastique. Un problème d'optimisation Vectorielle Stochastique consiste à optimiser l'espérance d'une fonction vectorielle aléatoire définie sur un ensemble arbitraire et à valeurs dans un espace sectoriel ordonné. L'ensemble des solutions de ce problème (appelé ensemble de Pareto) est composé des solutions admissibles qui assurent un certain équilibre entre les objectifs : il est impossible d'améliorer la valeur d'un objectif sans détériorer celle d'un autre. D'un point de vue technique, chaque solution de Pareto est acceptable. Nous nous posons alors le problème de la sélection de l'une d'entre elles : en supposant l'existence d'un décideur qui aurait son propre critère de décision, nous considérons le problème post-Pareto Stochastique qui vise à minimiser cette fonctionnelle sur l'ensemble de Pareto associé à un Problème d'Optimisation Vectorielle Stochastique

    Bilevel programming methods for computing single-leader-multi-follower equilibria in normal-form and polymatrix games

    Get PDF
    The concept of leader-follower (or Stackelberg) equilibrium plays a central role in a number of real-world applications bordering on mathematical optimization and game theory. While the single-follower case has been investigated since the inception of bilevel programming with the seminal work of von Stackelberg, results for the case with multiple followers are only sporadic and not many computationally affordable methods are available. In this work, we consider Stackelberg games with two or more followers who play a (pure or mixed) Nash equilibrium once the leader has committed to a (pure or mixed) strategy, focusing on normal-form and polymatrix games. As customary in bilevel programming, we address the two extreme cases where, if the leader\u2019s commitment originates more Nash equilibria in the followers\u2019 game, one which either maximizes (optimistic case) or minimizes (pessimistic case) the leader\u2019s utility is selected. First, we show that, in both cases and when assuming mixed strategies, the optimization problem associated with the search problem of finding a Stackelberg equilibrium is NP-hard and not in Poly-APX unless P= NP. We then consider different situations based on whether the leader or the followers can play mixed strategies or are restricted to pure strategies only, proposing exact nonconvex mathematical programming formulations for the optimistic case for normal-form and polymatrix games. For the pessimistic problem, which cannot be tackled with a (single-level) mathematical programming formulation, we propose a heuristic black-box algorithm. All the methods and formulations that we propose are thoroughly evaluated computationally

    Biobjective Optimization over the Efficient Set Methodology for Pareto Set Reduction in Multiobjective Decision Making: Theory and Application

    Get PDF
    A large number of available solutions to choose from poses a significant challenge for multiple criteria decision making. This research develops a methodology that reduces the set of efficient solutions under consideration. This dissertation is composed of three major parts: (i) the formalization of a theoretical framework; (ii) the development of a solution approach; and (iii) a case study application of the methodology. In the first part, the problem is posed as a multiobjective optimization over the efficient set and considers secondary robustness criteria when the exact values of decision variables are subjected to uncertainties during implementation. The contributions are centered at the modeling of uncertainty directly affecting decision variables, the use of robustness to provide additional trade-off analysis, the study of theoretical bounds on the measures of robustness, and properties to ensure that fewer solutions are identified. In the second part, the problem is reformulated as a biobjective mixed binary program and the secondary criteria are generalized to any convenient linear functions. A solution approach is devised in which an auxiliary mixed binary program searches for unsupported Pareto outcomes and a novel linear programming filtering excludes any dominated solutions in the space of the secondary criteria. Experiments show that the algorithm tends to run faster than existing approaches for mixed binary programs. The algorithm enables dealing with continuous Pareto sets, avoiding discretization procedures common to the related literature. In the last part, the methodology is applied in a case study regarding the electricity generation capacity expansion problem in Texas. While water and energy are interconnected issues, to the best of our knowledge, this is the first study to consider both water and cost objectives. Experiments illustrate how the methodology can facilitate decision making and be used to answer strategic questions pertaining to the trade-off among different generation technologies, power plant locations, and the effect of uncertainty. A simulation shows that robust solutions tend to maintain feasibility and stability of objective values when power plant design capacity values are perturbed
    corecore