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ABSTRACT

A large number of available solutions to choose from poses a significant challenge

for multiple criteria decision making. This research develops a methodology that

reduces the set of efficient solutions under consideration.

This dissertation is composed of three major parts: (i) the formalization of a

theoretical framework; (ii) the development of a solution approach; and (iii) a case

study application of the methodology.

In the first part, the problem is posed as a multiobjective optimization over

the efficient set and considers secondary robustness criteria when the exact values

of decision variables are subjected to uncertainties during implementation. The

contributions are centered at the modeling of uncertainty directly affecting decision

variables, the use of robustness to provide additional trade-off analysis, the study

of theoretical bounds on the measures of robustness, and properties to ensure that

fewer solutions are identified.

In the second part, the problem is reformulated as a biobjective mixed binary

program and the secondary criteria are generalized to any convenient linear func-

tions. A solution approach is devised in which an auxiliary mixed binary program

searches for unsupported Pareto outcomes and a novel linear programming filtering

excludes any dominated solutions in the space of the secondary criteria. Experiments

show that the algorithm tends to run faster than existing approaches for mixed bi-

nary programs. The algorithm enables dealing with continuous Pareto sets, avoiding

discretization procedures common to the related literature.

In the last part, the methodology is applied in a case study regarding the elec-

tricity generation capacity expansion problem in Texas. While water and energy are
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interconnected issues, to the best of our knowledge, this is the first study to con-

sider both water and cost objectives. Experiments illustrate how the methodology

can facilitate decision making and be used to answer strategic questions pertaining

to the trade-off among different generation technologies, power plant locations, and

the effect of uncertainty. A simulation shows that robust solutions tend to maintain

feasibility and stability of objective values when power plant design capacity values

are perturbed.
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NOMENCLATURE

BB Branch and bound

BO-CEP Biobjective electricity generation capacity expansion problem

BOLP Biobjective linear program
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1. INTRODUCTION: THE IMPORTANCE OF THE RESEARCH

This section discusses the motivations and contributions of the research, and

describes the research questions focus of this dissertation. In addition, it addresses

related literature and introduces basic notation common to subsequent sections. The

section ends by detailing the organization of this dissertation.

1.1 Motivation

Most real-life decision problems require taking into account multiple and often

conflicting objectives. For instance, when formulating new regulations for the energy

industry, policy makers must consider economic, environmental and social aspects,

among other factors. Even in our personal lives, decision problems are usually of

a multiobjective nature. For example, when deciding a career path, one should

consider not only his/her financial aspirations, but also other important factors such

as personal satisfaction, job location and stability, quality of life, opportunities for

career growth, etc.

One alternative that is optimal in view of one of the objectives will often perform

poorly in view of the remaining objectives. In the former example, posing strict en-

vironmental regulations will likely reduce the environmental impact associated with

power generation at the expense of increased electricity costs. Likewise, in the later,

deciding for a career in academia may require compromising one’s income aspirations

in order to engage in a personally rewarding path to research and teaching.

Because there are usually a large (if not infinite) number of alternatives to choose

from, decision making under multiple objectives becomes a non-trivial process. The

development of effective methodologies to aid decision making would expand the

applicability of multiobjective optimization, hence benefiting society in important
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sectors, including health care, national security, finance and manufacturing indus-

tries, among many others.

The field of multiple criteria decision making (MCDM) deals with methodologies

by which multiple objectives can be incorporated into a structured process in support

of decision making (Steuer, 1986). The first step towards decision making would be

eliminating all inferior solutions, i.e. those alternatives where there exists another

solution that is strictly better in view of one of the objectives and not worse in

view of the remaining objectives. For decision making purposes, non-inferiority is

a highly desirable characteristic associated with a solution, otherwise implementing

an inferior solution would imply a suboptimal performance across all criteria in the

multiobjective problem (Zeleny, 1982).

This leads decision making towards focusing on the set of non-inferior solutions,

termed efficient set (or its image on the space of the objective functions, termed

Pareto set). However, the efficient set (as well as the Pareto set) can still be very

large (if not infinite), posing significant challenges for decision making. For instance,

it is well-known that the size of the efficient set of can grow exponentially with the

number of objective functions in the problem (Deb and Saxena, 2005). Therefore,

the second step towards decision making would be to identify from the efficient set

fewer solutions having some desirable characteristics and restrict trade-off analysis

to this reduced subset of promising solutions.

Motivated by the aforementioned challenges associated with MCDM, the idea

of identifying a subset of promising efficient solutions to ease decision making lies

in the heart of this dissertation. This text formalizes theory and application of a

methodology aimed at the identification of such solutions.

2



1.2 Research objective and contribution

This section describes the main research objective and the contributions of the

dissertation, where the research questions are presented.

1.2.1 Research objective

The main objective of this dissertation is to develop a mathematical program-

ming methodology to aid decision making under multiple objective by introducing

secondary criteria to further breaking ties among the many efficient solutions in the

multiobjective program (MOP). In particular, this research is aimed to (i) formalize

theoretical properties of the resulting optimization problem that considers measures

of robustness as the secondary criteria to protect against uncertainties; (ii) develop

solution algorithms to solve a special case of the problem when the efficient set is

associated with a multiobjective linear program (MOLP); and (iii) illustrate the ad-

vantages of implementing the proposed methodology to aid decision making. The

detailed contributions of this dissertation are discussed next.

1.2.2 Contribution of the research

The main contribution of this dissertation to the academic body of knowledge

is the formalization of an optimization methodology to aid decision making under

multiple objectives, where secondary criteria are introduced to restrict trade-off anal-

ysis to a subset of the efficient solutions having desirable characteristics. The use of

secondary criteria provides further opportunities for trade-off analysis in the space

of these secondary objective functions, hence allowing for additional modeling infor-

mation to be taken into consideration in the selection of a most preferred solution.

Although the methodology may consider any convenient secondary objective func-

tions, particular focus was given to two robustness criteria when the actual values
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of the efficient solution selected for implementation are affected by uncertainties.

While trade-off analysis in the objective space of the MOP may be challenging due

to its possibly high dimensionality, decision making may be further facilitated with

trade-off analysis in the space associated with the robustness criteria because of its

reduced dimensionality.

The problem studied in this dissertation is posed as an optimization over the

efficient set. Since the efficient set is usually non-convex, the resulting problem falls

within the class of non-convex optimization. To address the challenges associated

with solving such a non-convex problem and applying the methodology to effectively

break ties among efficient solutions, the following research questions are studied in

this dissertation:

(a) Using mathematical programming, can a methodology be developed that may

ease decision making by restricting trade-off analysis to a subset of efficient

solutions that are robust to uncertainties?

(b) What are the theoretical properties of the problem and how does it relate to a

classical robust optimization approach?

(c) How effective is the methodology in breaking ties among the efficient solutions

of an MOP?

(d) Can a solution algorithm be developed which benefits from problem structure

and does not require discretization of the efficient set?

(e) How may the methodology be applied in a real-world problem and what would

be the advantages of using the proposed measures of robustness for MCDM?

Question (a) is associated with the main contribution of this dissertation and

is introduced in Section 2. Two robustness measures are proposed and allow for
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explicit trade-off analysis between objective function values loss of optimality and

solution feasibility when subjected to uncertainty. The robustness measures provide

complementary information to help in the selection of a solution for implementation.

Question (b) is dealt with in Section 2, where the findings allow for position-

ing the methodology within the context of robust optimization. In particular, it

shows that, under certain conditions, the set of robust solutions obtained from the

methodology is insensitive to the level of uncertainty; i.e. sufficient conditions where

the methodology will identify the same robust solutions, regardless of the decision

maker’s knowledge about the actual uncertainty bounds. This result expands the

applicability of the field of robustness assessment in situations where the lack of

data would otherwise prevent the use of a classical robust optimization approach.

Question (c) is aimed at assessing the effectiveness of the methodology to restrict

trade-off analysis to a smaller subset of solutions. In Section 2, a theoretical property

shows that, under certain conditions, only one solution will be identified by the

methodology, hence breaking ties among all efficient solutions. In addition, Section

4 illustrates the effectiveness of the methodology in a case study.

Question (d) is the focus of Section 3, where the secondary objective functions are

generalized to consider any linear functions with nonnegative coefficients. Additional

secondary decision variables and constraints are introduced. The problem is posed as

a biobjective optimization over the efficient set and a solution approach is presented.

Existing algorithm for optimization problems over the efficient set typically focus on

optimizing a single objective function. Therefore, the algorithm proposed in Section

3 expands the applicability of the field of optimization over the efficient set.

Question (e) is addressed in Section 4, where the methodology is applied in an

electricity generation capacity expansion problem to minimize cost and water with-

drawal. A case study application illustrates the methodology in the context of ca-

5



pacity planning for the State of Texas. The results show the effectiveness of the

approach in protecting against uncertainty, while providing the decision maker with

a reduced subset of solutions to trade-off.

1.3 Literature review

This section provides an overview of the broader literature on multiobjective

optimization methodologies related to this dissertation. The section also discusses

the limitations on the existing literature.

1.3.1 Background on multiobjective optimization

MCDM problems are broadly dealt with in three distinct categories. In the a

priori category, the decision maker expresses his/her preferences before the Pareto

set is generated. This assumes that the decision maker has full knowledge about

his/her preferences, expressed via a value function which aggregates all the objec-

tive functions of the MOP. The corresponding single objective problem is solved to

directly find a most preferred solution, hence without the need to generate the en-

tire Pareto set. One special case of value function is the linear weighted sum of

objective functions, where each objective is multiplied by a positive scalar weight.

One issue associated with this approach is that non-convex regions of the Pareto set

cannot be achieved via a positive (convex) combination of the objective functions

(Das and Dennis, 1997). Other approaches within the a priori category include

the lexicographic ordering (Fishburn, 1974) and goal programming (Charnes et al.,

1955). Although these approaches are computationally attractive (as they prevent

the generation of the entire Pareto set), the main challenge relies on the specification

of the value function, as it may be impossible to mathematically encode the decision

maker’s preferences reliably (Miettinen, 1999).

In the interactive category, few initial solutions are generated so that the decision
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maker is progressively asked to input his/her partial trade-offs in order to guide the

search procedure for yet unknown solutions until a final most preferred alternative is

achieved. For instance, in Engau and Wiecek (2007) and Engau and Wiecek (2008)

interactive methods based on an objective space decomposition procedure are ap-

plied to achieve a most preferred solution. One limitation of interactive methods

is that they rely on the progressive articulation of the decision maker’s preferences

in the search for a most preferred solution (Alves and Cĺımaco, 2007), hence poten-

tially requiring extensive human intervention and leaving unexplored regions of the

Pareto set (Benson and Sayin, 1997). The interested reader may refer to Steuer and

Choo (1983), Luque et al. (2010) and Luque et al. (2011) for further applications of

interactive methods.

In the a posteriori category, the decision maker intervention only occurs after the

Pareto set is generated. The literature on generating the Pareto set is vast. This

includes the development of exact algorithms for linear/non-linear problems (e.g.

Yu and Zeleny, 1975; Chankong and Haimes, 1983; Das and Dennis, 1998; Ehrgott

et al., 2007), approximating algorithms (e.g. Masin and Bukchin, 2008; Karasakal and

Köksalan, 2009), solution procedures for specific discrete problems (e.g. Van Wassen-

hove and Gelders, 1980; Warburton, 1987; Chen and Bulfin, 1993; Steiner and Radzik,

2008; Bérubé et al., 2009; Rong et al., 2015) and meta-heuristics applications (e.g.

Zitzler et al., 2001; Deb et al., 2002; Laumanns et al., 2006; Smith et al., 2008).

While the main advantages of a posteriori methods are that they provide a range of

solutions to choose from and don’t require human intervention in the optimization

phase, the main drawback is that they may generate a large number of solutions

that are of no real interest to the decision maker, hence raising additional difficulties

to the selection of a most preferred solution (Benson and Sayin, 1997; Alves and

Cĺımaco, 2007). In addition, selecting a single solution in a high dimensional objec-
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tive space can lead to challenging trade-off analysis (Engau and Wiecek, 2007). This

problem is augmented when considering the incommensurability of the objectives in

the MOP.

As the number of objective functions, variables and constraints increase, not

only is the computational burden of generating the Pareto set increased, but also

the issue of trading-off among all alternatives. Pareto set reduction (PSR) methods

are available in the literature to alleviate the problem of having to trade off among

several alternatives. In PSR methods, the Pareto set is assumed to be known and

the goal is to find a subset of solutions, which is typically based on ranking and

clustering methodologies.

Ranking methods attempt to prioritize solutions based on some function of their

objective values (e.g. Das, 1999a; Branke et al., 2004; Vafaeyan and Thibault, 2009;

Carrillo and Taboada, 2012), or rank solutions based on a degree to which each

objective function affects efficiency (e.g. Das, 1999b; Venkat et al., 2004; Kao and

Jacobson, 2008). Das (1999b) approached the PSR problem by proposing an or-

dering of efficient solutions based on a measure of non-dominance when one or more

objective functions are disregarded. Similarly, Venkat et al. (2004) proposed a greedy

heuristic to maximize a percentile function, which encapsulates the percentile ordinal

rankings of efficient solutions with respect to each objective function. The percentiles

values are computed with respect to the individual optimum for each criterion. In

Kao and Jacobson (2008), an exact method to solve the percentile ordinal ranking

was proposed and the problem was shown to be NP-complete.

Clustering methods aim at finding a representative subset of efficient solutions

(e.g. Steuer and Harris, 1980; Morse, 1980; Rosenman and Gero, 1985; Taboada and

Coit, 2008; Aguirre et al., 2011; Eusébio et al., 2014; Vaz et al., 2015). In these

methods, a cluster groups solutions with similar objective values; the reduced subset
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includes a representative solution from each cluster.

In a recent work, Vaz et al. (2015) formulate the PSR as a facility location problem

to find a representative set based on clustering solutions in the objective space of the

MOP. The model proposed by the authors assumes that the Pareto set is discrete

and is applied to the case of a biobjective program. Although similar, the problem

dealt with here does not attempt to find a representative subset from the Pareto set,

but rather, to provide additional trade-off context by introducing secondary criteria

related to both the objective and the decision spaces of the MOP in order to break

ties among the Pareto outcomes.

1.3.2 Summary of limitations from the existing literature

Considering the observations from the literature review, most PSR methods are

aimed at finding a representative subset of efficient solutions based on measures of

their proximities in the original objective space of the MOP, hence, without tak-

ing into account further information regarding their values in the decision space.

Nonetheless, the values of decision variables should be considered when selecting

a most preferred solution as they often represent important structural properties,

including the design or physical characteristics of devices. In spite of reducing the

size of the Pareto set, the existing methodologies do not provide further trade-off

information that could ease the selection of a most preferred solution.

Because existing methods will lead to trade-off only in the objective space, as the

number of objective functions increases, the analysis becomes cumbersome. Even

plotting the Pareto set is challenging for problems with more than 3 objective func-

tions.

Finally, the literature is limited to the case where the Pareto set is assumed to

be discrete. This poses a clear limitation for decision making. Especially for con-
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tinuous problems, discretization procedures may exclude from further consideration

potentially promising solutions.

This dissertation will address the aforementioned issues in the development of a

novel methodology for PSR.

1.4 Preliminaries and notation

This subsection gives preliminaries and introduces basic notation that is common

to all sections in this dissertation.

Let Rn, Rm and Rk be finite dimensional Euclidean vector spaces. For any two

sets Y ⊆ Rk and Z ⊆ Rk, (Y + Z) denotes the Minkowski sum, i.e.:

(Y + Z) = {y + z|y ∈ Y, z ∈ Z} and

(Y + ∅) = ∅

Let f = (f1, ..., fk)
T denote a vector-valued function of objective functions fi :

Rn → R, for i = 1, ..., k, where each fi assigns to each decision vector x ∈ Rn a real

number fi(x), such that f(x) = (f1(x), ..., fk(x))T .

Definition 1. (Stoer et al., 1970) A function f : Rn 7→ Rk is said to be positively

homogeneous if f(λx) = λf(x) for all x ∈ Rn and λ > 0.

Let X be the feasible set defined on the decision space Rn, such that X =

{x : hi(x) ≥ bi, i = 1, ...,m}, where bi ∈ R is the right-hand-side parameter of

the i-th constraint and the mapping hi : Rn → R assigns to each x ∈ Rn a real

number hi(x) defining the left-hand-side of the i-th constraint, for i = 1, ...,m. Let

Y = {y ∈ Rk : y = f(x), for x ∈ X} be the corresponding outcome set in the

objective space Rk. Then, the MOP is formulated as follows.
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Min f(x)

s.t. x ∈ X
(MOP)

For any x and x′ ∈ Rn, the following notation will be adopted: f(x) < f(x
′
) if

fi(x) < fi(x
′
) for all i = 1, ..., k; f(x) 5 f(x

′
) if fi(x) ≤ fi(x

′
) for all i = 1, ..., k; and

f(x) ≤ f(x
′
) if f(x) 5 f(x

′
) but f(x) 6= f(x

′
). Let Rk

= = {y ∈ Rk : y = 0} be the

nonnegative orthant of Rk. The sets Rk
≥ and Rk

> are defined similarly. Let int Y and

bd Y denote the interior and the boundary of the set Y , respectively.

To solve the above MOP is understood as to find its set of efficient solutions,

defined next.

Definition 2. (Yu and Zeleny, 1975) A solution x ∈ X to the MOP is called efficient

if and only if there does not exist another x′ ∈ X such that f(x′) ≤ f(x).

Any solution x ∈ X that does not satisfy efficiency is called a dominated solution.

A solution x′ ∈ X is said to dominate another solution x ∈ X if f(x′) ≤ f(x).

Definition 3. (Lowe et al., 1984) If x is an efficient solution and there does not

exist another x′ ∈ X such that f(x) = f(x′), then x is said to be strictly efficient.

Throughout this dissertation, the image of an efficient solution in the objective

space is referred to as a Pareto outcome. The set of all efficient solutions in the

decision space Rn is termed efficient set X , whereas the set of all Pareto outcomes

in the objective space Rk is referred to as the Pareto set Y . Here, we assume that X

and Y are non-empty compact sets. For details on the existence of the Pareto and

the efficient sets, see Sawaragi et al. (1985).

Let f
i

= min{fi(x) : x ∈ X} and let f i = max{fi(x) : x ∈ X} denote the

minimum and the maximum of the i-th objective function over the efficient set,
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respectively. It is assumed that f
i
6= f i or else objective function fi would be non-

conflicting in the MOP. The outcome f = (f
1
, ..., f

k
)T is referred as the ideal point

and f = (f 1, ..., fk)
T is referred as the Nadir point. In general, computing the Nadir

point can be computationally challenging. However, an estimate may be obtained

from a payoff table (Miettinen, 1999). For further details on computing the Nadir

point, the reader may refer to Ehrgott and Tenfelde-Podehl (2003) and Alves and

Costa (2009). In this dissertation, it is assumed that X , Y , f and f are known and

given as input.

1.5 Organization of the dissertation

This dissertation is organized in five sections, detailed as follows.

Section 2 formalizes the PSR problem, in which secondary robustness criteria

are introduced to further break ties among the many Pareto outcomes associated

with an MOP. The desired reduction is achieved by identifying the solutions that

are also efficient in view of the secondary robustness criteria. Structural properties

are uncovered, in particular when the MOP is an MOLP. These properties include

the study of theoretical bounds and sufficient conditions to guarantee that fewer

solutions are identified. Examples illustrate the characteristics of solutions obtained

from the methodology.

Section 3 focuses on the case of MOLPs and generalizes the PSR problem from

Section 2 to linear objective functions, where additional secondary decision variables

and constraints are considered. It is shown that the problem can be reformulated

as a biobjective mixed binary linear program when the efficient set is assumed to be

given as the union of the maximal efficient faces of the MOLP. The solution algorithm

recursively solves an auxiliary mixed binary linear program to find in the search for

unsupported Pareto outcomes; in turn, a novel linear programming filtering excludes

12



any solutions that are found to be dominated. The algorithm allows for solving the

problem without discretization procedures common to the existing literature on PSR

methods. The section ends by providing numerical experiments, suggesting that the

algorithm runs faster than existing algorithms for solving biobjective mixed binary

programs.

Section 4 illustrates the application of the methodology for assessing robustness

of solutions from the biobjective electricity generation capacity expansion problem

to minimize cost and water withdrawal. Each solution prescribes locations and tech-

nologies for new power plants, as well as their designed capacities. The problem is

modeled as a two-stage optimization process. The first stage finds the set of solutions

that are efficient in view of cost and water withdrawal objectives. The second stage

finds the subset of first-stage solutions that are robust when the designed capacities

of power plants are subjected to uncertainties at the time of their construction. The

methodology is illustrated in a case study with data from Texas, USA. We demon-

strate how the methodology can aid multiobjective decision making and be used to

answer strategic questions in expansion planning related to the trade-off among the

different technologies and locations, and the effect of uncertainty.

Finally, Section 5 presents summary of conclusions and contributions of this dis-

sertation, as well as paths for the related future research.
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2. BIOBJECTIVE ROBUST OPTIMIZATION OVER THE EFFICIENT SET

FOR PARETO SET REDUCTION

2.1 Introduction

This section formalizes a methodology for identifying a subset of robust solutions

from the Pareto set of an MOP. We term this problem the robust Pareto set reduction

(PSR) problem.

The Pareto set of an MOP contains solutions that are indistinguishable (i.e., non-

dominated) with respect to the objective functions for optimization. The size of the

Pareto set can be very large and possibly infinite, posing a significant challenge to a

decision maker needing to select a single solution for implementation.

PSR methods discussed in Section 1.3 are available to alleviate the problem of

having to trade off among several alternatives. Briefly, this section models the PSR

as the second stage in a two-stage optimization process. The first stage is the prob-

lem of generating the Pareto set (or an approximation) corresponding to an MOP;

the second stage (i.e. the PSR problem) is an optimization problem over the ef-

ficient set of the MOP to identify solutions that are also efficient with respect to

the aforementioned secondary objectives. It must be noted that the literature on

optimization over the efficient set typically focuses on algorithms to find an optimal

solution to a single objective (e.g Benson, 1984; Horst and Thoai, 1999; Sayin, 2000;

Yamamoto, 2002; Jorge, 2009; Thang, 2015). In contrast, this section focuses on

a new formulation and theoretical properties of the Pareto set reduction problem

when the first stage problem is an MOLP. It is implied that the secondary objec-

tives, although meaningful (i.e. they capture desirable characteristics of a solution),

are not as important as the ones in the first stage MOP; otherwise, they should be
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considered together with the objectives in the MOP typically resulting in a larger,

rather than reduced, Pareto set.

The consideration of robustness criteria to aid decision making is central to this

section. Kouvelis and Yu (1997) describes that decision problems can be broadly

classified into three categories: certainty, risk and uncertainty. Certainty category is

the case where no element of chance affects the realization of the selected decision.

Optimization problems that falls within this category can be solved via deterministic

optimization techniques (e.g. simplex method and specialized network optimization

algorithms). Risk category is the case where the connection between the selected

decision and its realization is given by known probabilities. In this case, optimiza-

tion problems are usually solved via stochastic optimization techniques. Uncertainty

category is the case where it is not possible to attribute probabilities to the possible

realizations of selected decisions. For instance, this may arise from the consideration

of future events of non-repeatable nature for which the quantification of probabili-

ties would yield unreliable information. One such example is the capacity expansion

problem dealt with in Section 4. Optimization problems in this case are usually

solved via robust optimization techniques.

Here a solution is deemed robust if it remains “close” to its optimal objective

values and/or “almost” feasible when affected by uncertainty. The notions of what

is “close” and “almost” are made precise later in the section. Mulvey et al. (1995)

termed the robustness with respect to objective value loss as solution robustness, and

robustness with respect to feasibility as model robustness. While it is unlikely that

a solution remains at the same time optimal and feasible when affected by uncer-

tainty, the robust optimization literature often focuses on finding solutions that will

remain feasible for all possible realizations within the uncertainty set (e.g. Ben-Tal

and Nemirovski, 2002; Bertsimas and Sim, 2004), hence not explicitly providing the
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decision maker with trade-off information between model and solution robustness;

see Bertsimas et al. (2011) for a survey on the extensive work in single objective ro-

bust optimization, and Gunawan and Azarm (2005), Deb and Gupta (2006), Ehrgott

et al. (2014), Mavrotas et al. (2015b) and Goberna et al. (2015) for literature on the

less studied multiobjective case. The choice of the uncertainty set plays an important

role in tractability of robust counterpart problems. For examples of different struc-

tures of uncertainty sets see Bertsimas and Brown (2009) and Bertsimas and Thiele

(2006a). Here, we focus on the box and cardinality-constrained uncertainty sets. A

major advantage from these cases is that they lead to tractable robust counterpart

problems in the linear case (Bertsimas and Sim, 2004).

A few recent papers deal with problems similar to the one presented here. A

methodology for identifying efficient solutions within a set of robust solutions was

proposed by Iancu and Trichakis (2013). The authors assessed efficiency of a solution

in terms of performance for all scenarios in the uncertainty set. Here our methodology

seeks the opposite, i.e. finding robust solutions within the set of efficient solutions

of the MOP. Finally, Mavrotas et al. (2015a) used Monte Carlo simulation to assess

the robustness of efficient solutions of an MOP using nominal values of the problem

parameters. A simulation trial consists of solving the MOP with an instantiation of

the uncertain problem parameters; in turn, the robustness of each nominal efficient

solution is evaluated by a ratio that reflects the number of times it belongs to the

efficient set across all Monte Carlo trials. Important differences are that the proposed

methodology is based on mathematical programming rather than simulation on a

finite efficient set, and that it explicitly considers model and solution robustness as

opposed to a unique robustness ratio.

The remainder of the section is organized as follows. Section 2.2 formalizes the

model, introducing notation and mathematical definitions used in the section. Sec-
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tion 2.3 describes the robust Pareto set reduction problem formulation and analysis.

Section 2.4 develops properties when the first stage problem is an MOLP. Section 2.5

provides numerical examples to illustrate the methodology and the characteristics of

robust solutions. Section 2.6 presents concluding remarks for the section.

2.2 Model description

In the modeling of uncertainty, this research is motivated by cases where the

prescribed values of the decision variables cannot be implemented exactly as com-

puted. These implementation errors, referred here to as implementation uncertainty,

will occur due to lack of model fidelity resulting from practical issues such as in-

sufficient modeling time or unavailable knowledge during model building. Ben-Tal

et al. (2009) state that implementation uncertainty may arise due to the inherent

characteristics of some physical devices (e.g. antenna design) and that these imple-

mentation uncertainties are equivalent to “appropriate artificial data uncertainties”.

Here, uncertainty is modeled directly affecting the decision variables; the results,

however, are applicable to both data and implementation uncertainty because the

focus here is on MOLPs. It must be noted that in other cases the equivalence is not as

straightforward; e.g. in conic quadratic programs under implementation uncertainty

with ellipsoidal uncertainty set (Ben-Tal and Den Hertog, 2011).

Next, we proceed by formalizing the general representation of the perturbation

on a solution values.

Definition 4. For some given uncertainty level α > 0, the perturbation factor β̃ =

(β̃1, ..., β̃n)T is a random vector such that 1 − α ≤ β̃j ≤ 1 + α, for all j = 1, ..., n.

Given a realization β of β̃, βx = (β1x1, ..., βjxj)
T denotes a perturbation on the

solution values of x.

Although this paper restricts the analysis to the case of a multiplicative pertuba-
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tion factor, the model may alternatively be defined by additive perturbations, which

would be equivalent to perturbing the right-hand-side of the constraint set. Let U

denote the uncertainty set of all possible realizations of the perturbation factor β̃.

At this point, no further structure is imposed on U other than being bounded.

To measure the degree of model robustness, let the function δ: Rn 7→ R= be

a mapping that assigns to each x ∈ Rn a non-negative real number, denoted by

δ(x) ∈ R=, that measures the degree of constraint violation due to perturbations on

the values of x, given as follows.

Definition 5. Let x ∈ Rn. Then,

δ(x) = sup
β∈U

i=1,...,m

{max {(bi − hi(βx)) / |bi| , 0}}

is called the infeasibility level associated with x.

It is further assumed that efficiency of a solution with respect to the MOP has

priority over hedging against the uncertainty. Hence, X restricts the feasible set for

the subsequent problem of finding those efficient solutions that satisfy model and/or

solution robustness.

Definition 5 requires that bi 6= 0; if some bi = 0, an alternative would be to

replace the denominator |bi| for |bi| + 1. The case when δ(x) = 0 implies that the

solution will remain feasible for any perturbation within the uncertainty set.

Similarly, in order to measure solution robustness let the function γ: Rn 7→ R=

be a mapping that assigns to each x ∈ Rn a non-negative real number, denoted

by γ(x) ∈ R=, that measures the degree of objective function values loss due to

perturbations on the values of x, given as follows.
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Definition 6. Let x ∈ Rn. Then,

γ(x) = sup
β∈U

i=1,...,k

{
max

{
fi(βx)− fi(x)

f i − f i
, 0

}}

is called the outcome degradation level associated with x.

In Definition 6, a normalization of objective function values is used due to the

possibly different ranges of the objective functions in the MOP. The case when

γ(x) = 0 implies that the perturbations on x within the uncertainty set will not

worsen any objective function value.

Considering both model and solution robustness, Definition 7 introduces the ro-

bustness projection set and the robustness space.

Definition 7. The robustness projection set D defined on the robustness space R2
=

contains the set of points

D =
{

(δ(x), γ(x))T , ∀x ∈ X
}

2.3 Problem formulation and analysis

Given the efficient set X of an MOP and the uncertainty set U , the robust Pareto

set reduction problem (RPSR) is a bicriterion program to minimize the infeasibility

and the outcome degradation levels over the efficient set of the MOP. The RPSR is

formulated as follows:
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Min (δ, γ)T

s.t. hi(βx) + |bi|δ ≥ bi ∀i = 1, ...,m, β ∈ U

fi(x)− fi(βx) + (f i − f i)γ ≥ 0 ∀i = 1, ..., k, β ∈ U

x ∈ X

δ, γ ≥ 0

(RPSR)

The formulation of the RPSR, in its general form, may contain infinitely many con-

straints because U is not explicitly specified. As in a classical robust optimization

approach, this issue is overcome by considering uncertainty sets with certain geome-

tries; in particular, the box and the cardinality-constrained uncertainty sets will be

used in the following sections.

Let X ′ denote the subset of efficient solutions to the RPSR, termed the robust

efficient set. Let Y ′ denote its image in the objective space, the robust Pareto set.

The set D′ = {(δ(x), γ(x)) : x ∈ X ′} is the image of the robust efficient set in the

robustness space. In general, Y ′ can still possess an infinite number of outcomes

when the MOP is a continuous problem. In this case, the term “reduction” is used

in a broader sense to denote that the RPSR identifies only the subset of Y that

contains robust solutions.

The model is illustrated in Figure 2.1. In the first stage, we assume that the MOP

is solved to generate the efficient set X and the Pareto set Y . In the second stage, i.e.

the PSR problem focus of this section, the efficient set X and the uncertainty set U

are taken as input to find the subset of efficient solutions that remain Pareto optimal

in the robustness space. The model defines a map Rk → R2 from the k-dimensional

objective space of the MOP onto a 2-dimensional robustness space (i.e. the objective

space of the RPSR).
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MOP RPSR 

Figure 2.1: Robust optimization model for Pareto set reduction

Solving the RPSR is not equivalent to solving a robust counterpart of the MOP,

i.e. when uncertainty is considered directly when solving the MOP from the first

stage. This could result in solutions dominated by the ones in X , as Y lies on

the boundary of Y . The RPSR formulation is neither analogue to introducing the

infeasibility and outcome degradation criteria directly into the MOP, i.e.:

Min (f1(x), ..., fk(x), δ, γ)T

s.t. hi(βx) + |bi|δ ≥ bi ∀i = 1, ...,m, β ∈ U

fi(x)− fi(βx) + (f i − f i)γ ≥ 0 ∀i = 1, ..., k, β ∈ U

x ∈ X

δ, γ ≥ 0

(P2)

Let X P2 be the efficient set of P2. Then, the following relates P2 and the RPSR.

Theorem 2.3.1. If all x ∈ X are strictly efficient, then X ′ ⊆ X P2.

The proof of Theorem 2.3.1 is straightforward by noting that X ′ ⊆ X and that,

by strict efficiency, X ⊆ X P2. Hence, adding the measures of robustness directly

when solving the MOP would not yield the desired set reduction.
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Next, limit conditions are presented for the infeasibility and the outcome degra-

dation levels.

Theorem 2.3.2. When hi : Rn 7→ R, for i = 1, ...,m, and fi : Rn 7→ R, for

i = 1, ..., k, are continuous functions, then for every ξ > 0 there exists ν > 0 such

that

0 < α < ν =⇒ 0 ≤ δ(x) < ξ and 0 ≤ γ(x) < ξ, for all x ∈ X .

The proof of Theorem 2.3.2 follows straightforward analysis of limits. As a result,

as α approaches zero, the values of infeasibility and outcome degradation levels of

all efficient solutions tend to zero.

2.4 Pareto set reduction in the linear case

Let Ci = (ci1, ..., c
i
n)T , i = 1, ..., k, be the cost vector for the i-th objective function.

Let X = {x : Ax = b, x = 0}, where A ∈ Rm×n is a matrix of elements aij for

i = 1, ...,m and j = 1, ..., n. Then, the RPSR associated with an MOLP will have

hi(x) =
∑n

j=1 aijxj, for i = 1, ...,m, and fi(x) =
∑n

j=1 c
i
jxj, for i = 1, ..., k.

The following subsections describe several structural properties of the problem

resulting from the linearity condition.

2.4.1 Upper bounds on the infeasibility and outcome degradation levels

The bounds presented next are developed as a function of the uncertainty level

α; hence if the value of α can be adjusted, the decision maker gains additional con-

trol over the robustness of the solution selected for implementation. For instance,

in engineering design problems (e.g. the antenna design in Ben-Tal et al. (2009)),

improving the precision of the manufacturing system would allow for a lower value

of α, hence decreasing the value of the upper bounds. Conversely, given a maxi-

mum infeasibility and outcome degradation levels that are acceptable to the decision
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maker, the bounds may be useful for finding a target value for α.

Theorem 2.4.1. For all x ∈ X , the infeasibility level is bounded by

δu(x) = α max
i=1,..,m

{
n∑
j=1

∣∣∣∣aijxjbi

∣∣∣∣
}

Proof. Let J+
i be the columns of row i in constraint matrix A where aij ≥ 0 and

let J−i be the columns where aij < 0. Then, for aij ∈ J+
i , the upper bound on the

constraint violation will be when βj = 1 − α. Similarly, for aij ∈ J−i , the upper

bound will be when βj = 1 + α. Therefore:

δ(x) ≤ max
i=1,...,m

max

bi −
(∑

j∈J+
i
aij(1− α)xj +

∑
j∈J−i

aij(1 + α)xj

)
|bi|

, 0




= max
i=1,...,m

{
max

{
bi −

∑n
j=1 aijxj

|bi|
− α

∑
j∈J−i

aijxj −
∑

j∈J+
i
aijxj

|bi|
, 0

}}

≤ max
i=1,...,m

{
max

{
−α
∑

j∈J−i
aijxj −

∑
j∈J+

i
aijxj

|bi|
, 0

}}

= α max
i=1,...,m

{
n∑
j=1

∣∣∣∣aijxjbi

∣∣∣∣
}

where the last inequality follows from the fact that bi −
∑n

j=1 aijxj ≤ 0, ∀i =

1, ...,m.

If parameters aij and b are non-negative, then the following corollary follows:

Corollary 2.4.2. If bi > 0 and aij ≥ 0 for all i = 1, ...,m and j = 1, ..., n, then for

all x ∈ X , the infeasibility level is bounded by δu(x) = α.

Proof. Because bi > 0, the modulus in the denominator of δ(x) can be dropped. The

upper bound on the constraint will be when βj = 1− α for all j = 1, ..., n. Then, it
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becomes:

δ(x) ≤ max
i=1,...,m

{
max

{
bi −

∑n
j=1 aij(1− α)xj

bi
, 0

}}
≤ max

i=1,...,m
{max {1− (1− α), 0}} = α

where the last inequality follows from the fact that
∑n

j=1 aijxj/bi ≥ 1,∀i = 1, ...,m.

Upper bounds for the outcome degradation level are developed next.

Theorem 2.4.3. For all x ∈ X , the outcome degradation level is bounded by

γu(x) = α max
i=1,...,k

{∑n
j=1

∣∣cij∣∣xj
f i − f i

}

Proof. Let J+
i be the columns j where, for objective function i = 1, ..., k, cij ≥ 0

and let J−i be the columns where cij < 0. Then, for cij ∈ J+
i , the upper bound on

γ(x) will be when βj = 1 + α. Similarly, for cij ∈ J−i , the upper bound will be when

βj = 1− α. Then, it follows that

γ(x) ≤ max
i=1,...,k

{∑
j∈J+

i
cij(1 + α)xj +

∑
j∈J−i

cij(1− α)xj −
∑n

j=1 c
i
jxj

f i − f i

}

= α max
i=1,...,k

{∑n
j=1

∣∣cij∣∣xj
f i − f i)

}

Corollary 2.4.4. If cij ≥ 0 for all i = 1, ..., k and j = 1, ..., n, then for all x ∈ X ,

the outcome degradation level is bounded by

γu(x) = α max
i=1,...,k

{
f i

f i − f i

}
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Proof. Because f i ≥
∑n

j=1 c
i
jxj ∀x ∈ X :

γ(x) ≤ α max
i=1,...,k

{∑n
j=1 c

i
jxj

f i − f i

}
≤ α max

i=1,...,k

{
f i

f i − f i

}

While Theorem 2.4.3 provides a tighter bound on the outcome degradation level,

the bound in Corollary 2.4.4 is independent from the value of the solution x.

2.4.2 Properties using the box uncertainty set

In this subsection, we assume that the uncertainty set is given as the box

U = {β ∈ Rn : 1− α ≤ βj ≤ 1 + α, j = 1, ..., n}

for some α > 0. Then, the worst case violation for the i-th constraint will have

βj = 1 + α, if aij < 0, and βj = 1 − α, if aij > 0. Similarly, the worst case

degradation for the i-th objective function value will have βj = 1 + α, if cij > 0, and

βj = 1− α, if cij < 0. Therefore, the RPSR formulation becomes:

Min (δ, γ)T

s.t.
n∑
j=1

(aij − |aij|α)xj + |bi|δ ≥ bi ∀i = 1, ...,m

(f i − f i)γ −
n∑
j=1

|cij|αxj ≥ 0 ∀i = 1, ..., k

x ∈ X

δ, γ ≥ 0

(B-RPSR)

If constraints x ∈ X are relaxed to x ∈ X, B-RPSR becomes a biobjective linear

programming problem. Since the efficient set can be represented by the correspond-

ing maximal efficient faces of X, this suggests that B-RPSR may be solved by an
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iterative procedure: in each iteration, a different maximal efficient face is fixed and

the corresponding constrained version of the B-RPSR is solved. After all maximal

efficient faces have been examined, a filtering would be necessary to eliminate all

obtained solutions that are dominated in the robustness space. In the worst case,

there might be exponentially many maximal efficient faces, and for each of these

faces there might be exponentially many extreme points, so that the problem grows

exponentially. A solution a approach that does not rely on exhaustive search over

the maximal efficient faces will be presented in Section 3.

Next, we show special properties of the B-RPSR and discuss their implication in

support of decision making.

Theorem 2.4.5. If all x ∈ X are strictly efficient, cij ≥ 0, j = 1, ..., n, i = 1, 2,

bi > 0 and aij ≥ 0, i = 1, ...,m, j = 1, ..., n, then solving the B-RPSR will result in

|X ′| = 1.

Proof. Because all perturbations β̃j can take the worst case simultaneously, and all

parameters are non-negative, the bounds from Corollary 2.4.2 and Theorem 2.4.3

will be tight, hence for x ∈ X :

δ(x) = α

γ(x) = αmax

{
f1(x)

f 1 − f 1

,
f2(x)

f 2 − f 2

}
Therefore, the set of robust solutions will be given by:

X ′ = arg min
x∈X

γ(x)

Because of efficiency, there does not exist x and x′ ∈ X : f1(x
′) ≤ f1(x) and f2(x

′) ≤
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f2(x) with at least one inequality holding strictly. Hence, it holds that:

X ′ = arg min
x∈X

γ(x) =

{
x ∈ X :

f1(x)

f 1 − f 1

=
f2(x)

f 2 − f 2

}

From strict efficiency, only one solution x ∈ X can satisfy the above condition, hence

|X ′| = 1.

Theorem 2.4.6. Let X ′(α′) be the set of robust solutions of B-RPSR for a given

value of α = α′ > 0. If bi > 0 and aij ≥ 0, i = 1, ...,m, j = 1, ..., n, then

X ′(α′) = X ′(α′′) for all α′′ > 0.

Proof. Since the box uncertainty set is assumed and constraint parameters are non-

negative, the bounds from Corollary 2.4.2 and Theorem 2.4.3 will be tight, hence for

and some α′ > 0:

δ(x) = α′

γ(x) = α′ max
i=1,...,k

{
|fi(x)|
f
i − f i

}
The definition of Pareto optimality induces a binary relation among outcomes that

is compatible with scalar multiplication; that is, for any x and x∗ ∈ X such that

δ(x) ≤ δ(x∗) and γ(x) ≤ γ(x∗) with at least one inequality holding strictly, it follows

that tδ(x) ≤ tδ(x∗) and tγ(x) ≤ tγ(x∗) for any t > 0, with at least one inequality

holding strictly. Let δα
′
(x) and γα

′
(x) denote the values of the the functions δ(x)

and γ(x) when α = α′. Given α′, t > 0, then for all x∗ ∈ X such that x∗ /∈ X ′(α′),

there exists some x ∈ X ′(α′) such that, with at least one inequality holding strictly:

δα
′
(x) ≤ δα

′
(x∗) =⇒ tδα

′
(x) ≤ tδα

′
(x∗)

=⇒ δtα
′
(x) ≤ δtα

′
(x∗)
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and

γα
′
(x) ≤ γα

′
(x∗) =⇒ tγα

′
(x) ≤ tγα

′
(x∗)

=⇒ γtα
′
(x) ≤ γtα

′
(x∗)

Taking t = α′′/α′ results in x∗ /∈ X ′(α′′) and x ∈ X ′(α′′), hence X ′(α′′) = X ′(α′).

The practical implications of Theorems 2.4.5 and 2.4.6 are significant. When

assuming the worst case robustness with the box uncertainty set, Theorem 2.4.5

provides a condition where the RPSR methodology effectively breaks ties among ef-

ficient solutions, leading the decision maker to a unique solution for implementation.

Moreover, Theorem 2.4.6 provides conditions where the set of robust solutions will

remain the same, regardless of the level of uncertainty α; in turn, the practitioner

may apply the proposed methodology even in situations when there is no knowledge

about the uncertainty bounds, circumventing limitations that would otherwise pre-

vent the application of a classical robust optimization approach (e.g. Ben-Tal and

Nemirovski, 2002; Bertsimas and Sim, 2004).

Of notice is that the result from Theorem 2.4.6 may be easily extended to uncer-

tainty sets with different geometries as long as the corresponding δ(x) and γ(x) are

positively homogeneous functions with respect to α.

2.4.3 Properties using the cardinality-constrained uncertainty set

The cardinality-constrained uncertainty set arises when the number of decision

variables that are simultaneously affected by uncertainty is limited by some given

non-negative integer Γ. As in Bertsimas and Sim (2003), the value of Γ can be

adjusted to control the level of conservatism when finding robust efficient solutions.

In this case, U is given by:
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U =

{
β ∈ Rn : (1− αyj) ≤ βj ≤ (1 + αyj),

n∑
j=1

yj ≤ Γ, y ∈ {0, 1}n
}

(2.1)

Let δc and γc denote the infeasibility and outcome degradation levels under the

cardinality-constrained uncertainty set. Then, the cardinality-constrained RPSR,

denoted as C-RPSR, becomes:

Min (δc, γc)T

s.t.
n∑
j=1

aijxj + |bi|δc − α max
yj∈{0,1}

{
n∑
j=1

|aij|xjyj :
n∑
j=1

yj ≤ Γ

}
≥ bi ∀i = 1, ...,m

(f i − f i)γ
c − α max

vj∈{0,1}

{
n∑
j=1

∣∣cij∣∣xjvj :
n∑
j=1

vj ≤ Γ

}
≥ 0 ∀i = 1, ..., k

x ∈ X

δc, γc ≥ 0

(C-RPSR)

where the first and second sets of constraints come from the application of the un-

certainty set (2.1) to Definitions 5 and 6, respectively.

In order to see that the first set of constraints follows, let J−i and J+
i denote the

set of columns in row i where coefficients aij are negative and positive, respectively.

With the cardinality restriction, the constraints
∑n

j=1 aijβjxj+|bi|δ ≥ bi in the RPSR

formulation become:

max
yj∈{0,1}

∑
j∈J+

i

aij(1− αyj)xj +
∑
j∈J−i

aij(1 + αyj)xj :
n∑
j=1

yj ≤ Γ

+ |bi|δc(x) ≥ bi

which yields the first set of constraints in the C-RPSR. Similarly, let J−i and J+
i

denote the set of columns in the i-th objective function where coefficients cij are
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negative and positive, respectively. The cardinality-constrained outcome degrada-

tion level from constraints
∑n

j=1 c
i
jxj −

∑n
j=1 c

i
jβjxj + (f i − f i)γ ≥ 0 in the RPSR

formulation becomes:

n∑
j=1

cijxj − max
vj∈{0,1}

∑
j∈J+

i

cij(1 + αvj)xj +
∑
j∈J−i

cij(1− αvj)xj :
n∑
j=1

vj ≤ Γ

+

(f i − f i)γ
c ≥ 0

which yields the second set of constraints in C-RPSR.

When X is approximated by a finite number of solutions (e.g. by solving the

MOLP using the ε-constraint method or some metaheuristic), xj’s can be regarded as

constants in the C-RPSR so that the values of infeasibility and outcome degradation

levels can be computed for each efficient solution. Then, the inner maxima in the

first and second sets of constraints in the C-RPSR consist of knapsack problems

with equal weights. Hence, the solution for a given x will be simply to set yj = 1

and vj = 1 for the columns with the Γ largest absolute values of aijxj and cijxj,

respectively. In the worst case, computing δ(x) and γ(x) for each solution can be done

in O((m+k)n) time, since: (i) finding the Γ largest |aijxj| values for each constraint

i = 1, ...,m, and the Γ largest |cijxj| values for each objective function i = 1, ..., k, are

selection problems and can be done in O(n) time in the worst case; (ii) taking the

maximum of the m constraint violations and the maximum of the k objective function

values degradations associated with the previous step require O(m) and O(k) time,

respectively. Filtering dominated solutions in the robustness space requires pairwise

comparisons of all solutions in the worst case. Hence, the computational complexity

associated with solving the C-RPSR is O(|X̂ |
2

+ |X̂ |(m + k)n), where X̂ is the
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approximation of X by a finite number of solutions.

In the C-RPSR formulation, the first and the second constraint sets are non-linear

due to the inner maxima in each of them. Similar to Bertsimas and Sim (2004), next

we show that using an LP relaxation of the binary variables and invoking strong

duality principles in the inner maxima yields an equivalent formulation of the C-

RPSR where the constraints related to the infeasibility and outcome degradation

levels are convex.

Theorem 2.4.7. The C-RPSR can be reformulated as:

Min (δc, γc)T

s.t.
n∑
j=1

aijxj + |bi|δc − α(Γωi +
n∑
j=1

πij) ≥ bi ∀i = 1, ...,m

(f i − f i)γ
c − α(Γρi +

n∑
j=1

ξij) ≥ 0 ∀i = 1, ..., k

ωi + πij − |aij|xj ≥ 0 ∀ = 1, ...,m; j = 1, ...n

ρi + ξij − |cij|xj ≥ 0 ∀ = 1, ..., k; j = 1, ...n

ωi ≥ 0 ∀ = 1, ...,m

ρi ≥ 0 ∀ = 1, ..., k

πij ≥ 0 ∀ = 1, ...,m; j = 1, ...n

ξij ≥ 0 ∀ = 1, ..., k; j = 1, ...n

δc, γc ≥ 0

x ∈ X

(C-D)

Proof. Notice that in the inner maxima from the C-RPSR formulation the only

variables are yj and vj, and that the corresponding constraints in the inner maxima

show the total unimodularity property (Heller and Tompkins, 1956). Hence the
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binary requirements on these variables can be dropped. Furthermore, in the first set

of constraints in the C-RPSR formulation, the dual of the inner maximum for the

i-th constraint becomes:

Min Γωi +
n∑
j=1

πij

s.t. ωi + πij ≥ |aij|xj ∀j = 1, ..., n

πij ≥ 0 ∀j = 1, ..., n

ωi ≥ 0

In the first set of constraints in the C-RPSR formulation, the inner maximum for

the i-th constraint will be always feasible and bounded for any 0 ≤ Γ ≤ n, so will be

the dual; hence by strong duality, their optimal objective values coincide. Applying

the same procedure to the second set of constraints in the C-RPSR formulation, and

substituting the duals for the maxima in the C-RPSR formulation yields the desired

result.

Therefore, as in the case with the box uncertainty set, the C-D formulation be-

comes a biobjective linear program when constraint x ∈ X is replaced by a maximal

efficient face of X. Hence, the solution procedure presented in Section 3 may be also

applied to solve the case with the cardinality-constrained uncertainty set.

In the formulation of the C-RPSR, if a low value of Γ is used, the actual re-

alization of the infeasibility and the outcome degradation levels might be higher

than the ones obtained from the C-RPSR. This is because, in reality, more than Γ

decision variables might be simultaneously affected by uncertainty. Indeed, in the

worst case, all columns would be simultaneously affected by uncertainty. Theorems

2.4.8 and 2.4.9 determine upper bounds on the probabilities of constraint viola-
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tions and objective function degradations that exceed the calculated values using

the cardinality-constrained uncertainty set. These theorems are extensions of Bertsi-

mas and Sim (2004) in the sense that the probability bounds are developed for i.i.d.

and bounded random variables with unknown distributions. However, in Bertsimas

and Sim (2004) the bounds were derived for the probability of constraint violations

of any size, whereas here the bounds are for the excess probability.

For i = 1, ...,m, let δ̃i(x) = max
{(
bi −

∑n
j=1 aijβ̃jxj

)
/ |bi| , 0

}
and denote the

cardinality-constrained infeasibility level for the i-th constraint, δci (x), as:

δci (x) = max

bi −
∑n

j=1 aijxj + αmaxy∈{0,1}n
{∑n

j=1 |aij|xjyj :
∑n

j=1 yj ≤ Γ
}

|bi|
, 0


=

bi −
∑n

j=1 aijxj + ui

|bi|
(2.2)

where ui = max
{
αmaxy∈{0,1}n

{∑n
j=1 |aij|xjyj :

∑n
j=1 yj ≤ Γ

}
,
∑n

j=1 aijxj − bi
}

.

For i = 1, ..., k let γ̃i(x) = max
{∑n

j=1 c
i
jxj(β̃j − 1)/(f i − f i), 0

}
and denote the

cardinality-constrained outcome degradation level for the i-th objective function,

γci (x), as:

γci (x) =

(
α max
v∈{0,1}n

{
n∑
j=1

|cij|xjvj :
n∑
j=1

vj ≤ Γ

})
/(f i − f i) (2.3)

The bounds using the cardinality-constrained uncertainty set are presented next.

Theorem 2.4.8. Let U be as in (2.1) and let β̃j from Definition 4 be symmetric

i.i.d. random variables centered at 1. For i = 1, ...,m, the probability that the i-th

constraint violation exceeds the value of δci is given by:

Pr
(
δ̃i(x) > δci (x)

)
≤ exp

(
− τ 2

i

2
∑n

j=1(aijxj)
2

)
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where τi = max

{
max

y∈{0,1}n

{∑n
j=1 |aij|xjyj :

∑n
j=1 yj ≤ Γ

}
,

Pn
j=1 aijxj−bi

α

}
Proof. Let ξ̃j = (1 − β̃j)/α, such that ξ̃j ∈ [−1, 1]. Let S̃in = α

∑n
j=1 aijxj ξ̃j. Then,

it follows that:

Pr
(
δ̃i(x) > δci (x)

)
= Pr

(
max

{
S̃in + bi −

∑n
j=1 aijxj

|bi|
, 0

}
> δci (x)

)

= Pr

(
S̃in > |bi|δci (x) +

n∑
j=1

aijxj − bi

)

≤ min
θ>0

{ ∏n
j=1 E[exp(θαaijxj ξ̃j)]

exp(θ(|bi|δci (x) +
∑n

j=1 aijxj − bi))

}
(2.4)

≤ min
θ>0

{ ∏n
j=1 exp((θαaijxj)

2/2)

exp(θ(|bi|δci (x) +
∑n

j=1 aijxj − bi))

}
(2.5)

= min
θ>0

{
exp(θ2α2/2

n∑
j=1

(aijxj)
2 − θ(|bi|δci (x) +

n∑
j=1

aijxj − bi))

}
(2.6)

= exp

−
(
|bi|δci (x) +

∑n
j=1 aijxj − bi

)2

2α2
∑n

j=1(aijxj)
2

 (2.7)

Because it holds that |bi|δci (x) +
∑n

j=1 aijxj − bi > 0 ∀i = 1, ...,m, inequality

(2.4) is a result of the Chernoff bound, following from independence of ξ̃j (Chernoff,

1952). Because E[ξ̃j] = 0 and −1 ≤ ξ̃j ≤ 1, inequality (2.5) follows from Hoeffd-

ing’s lemma (Hoeffding, 1963). In (2.6), selecting θ = (|bi|δci (x) +
∑n

j=1 aijxj −

bi)/(α
2
∑n

j=1(aijxj)
2), yields (2.7). Substituting for δci (x) in (2.7) results in the de-

sired bound.

Theorem 2.4.9. Let U be as in (2.1) and let β̃j from Definition 4 be symmetric

i.i.d. random variables centered at 1. For i = 1, ..., k, the probability of outcome

degradation for the i-th objective function that exceeds the value of γci is given by:
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Pr
(
γ̃i(x) > γci (x)

)
≤ exp

−
(

max
v∈{0,1}n

{∑n
j=1 |cij|xjvj :

∑n
j=1 vj ≤ Γ

})2

2
∑n

j=1(c
i
jxj)

2


Proof. The proof proceeds similar to the one from Theorem 2.4.8. Let ξ̃j = (β̃j−1)/α,

such that ξ̃j ∈ [−1, 1]. Then:

Pr
(
γ̃i(x) > γci (x)

)
= Pr

(
α

n∑
j=1

cijxj ξ̃j > γci (x)(f i − f i)

)

≤ min
θ>0

{∏n
j=1 E[exp(θαcijxj ξ̃j)]

exp(θγci (x)(f i − f i))

}
(2.8)

≤ min
θ>0

{∏n
j=1 exp((θαcijxj)

2/2)

exp(θγci (x)(f i − f i))

}
(2.9)

= min
θ>0

{
exp(θ2α2/2

n∑
j=1

(cijxj)
2 − θγci (x)(f i − f i))

}
(2.10)

= exp

(
−

(γci (x)(f i − f i))
2

2α2
∑n

j=1(c
i
jxj)

2

)
(2.11)

Since γci (x) > 0 ∀i = 1, ..., k and by independence of ξ̃j, the Chernoff bound yields

inequality (2.8). Because E[ξ̃j] = 0 and −1 ≤ ξ̃j ≤ 1, inequality (2.9) follows from

Hoeffding’s lemma. In (2.10), selecting θ = (γci (x)(f i− f i))/(α
2
∑n

j=1(c
i
jxj)

2), yields

(2.11). Substituting for γci (x) in (2.11) yields the bound.

For any realization of β̃ within the cardinality-constrained uncertainty set, the

formulation of the C-RPSR provides a deterministic guarantee that the actual in-

feasibility and outcome degradation levels will be less than or equal to δc(x) =

max {δc1(x), ..., δcm(x)} and γc(x) = max {γc1(x), ..., γck(x)}, respectively. Moreover,

even if the realization of β̃ falls outside the cardinality-constrained uncertainty set,
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Theorems 2.4.8 and 2.4.9 still provide probabilistic guarantees that the infeasibility

level associated with the i-th constraint, for i = 1, ...,m, and outcome degradation

levels associated with the i-th objective function, for i = 1, ..., k, will be less than or

equal to the values calculated from (2.2) and (2.3) using the cardinality-constrained

uncertainty set. Hence, Theorems 2.4.8 and 2.4.9 may be utilized to determine an

appropriate value for Γ according to the decision maker’s level of conservatism.

The bounds in Theorems 2.4.8 and 2.4.9 were developed for the general case of

bounded random variables. Next, we derive a simple-to-compute bound that is inde-

pendent of the solution value when perturbations on each xj are a composite random

variable β̃j ◦ ν̃j where ν̃j are i.i.d. Bernoulli trials. Let δ̃(x) = max {δ̃1(x), ..., δ̃m(x)}

and let γ̃(x) = max {γ̃1(x), ..., γ̃k(x)}. The bound is shown in Theorem 2.4.10.

Theorem 2.4.10. Let 1 − αν̃j ≤ β̃j ≤ 1 + αν̃j, where ν̃j are i.i.d. Bernoulli trials

with probability of success 0 < p < 1. If Γ ≥ pn− 1, the following upper bound holds:

Pr
(
δ̃(x) > δc(x)

)
< exp

(
−2n

(
Γ + 1

n
− p
)2
)

and

Pr (γ̃(x) > γc(x)) < exp

(
−2n

(
Γ + 1

n
− p
)2
)

Proof. We will proceed by showing the probability bound for δ̃(x) > δc(x). The proof

procedure for γ̃(x) > γc(x) follows analogously. It holds that Pr
(
δ̃(x) > δc(x)

)
=

1 − Pr
(
δ̃(x) ≤ δc(x)

)
= 1 − Pr

(
δ̃1(x) ≤ δc(x), ..., δ̃m(x) ≤ δc(x)

)
. Let T̃ =

∑n
j ν̃j.

Because 1 − αν̃j ≤ β̃j ≤ 1 + αν̃j, it follows from the C-RPSR formulation that

Pr
(
δ̃1(x) ≤ δc(x), ..., δ̃m(x) ≤ δc(x)|T̃ ≤ Γ

)
= 1. From Bayes’ Rule, it follows that:
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Pr
(
δ̃1(x) ≤ δc(x), ..., δ̃m(x) ≤ δc(x)

)
= Pr

(
T̃ ≤ Γ

) Pr
(
δ̃1(x) ≤ δc(x), ..., δ̃m(x) ≤ δc(x)|T̃ ≤ Γ

)
Pr
(
T̃ ≤ Γ|δ̃1(x) ≤ δc(x), ..., δ̃m(x) ≤ δc(x)

)
≥ Pr

(
T̃ ≤ Γ

)

Therefore Pr
(
δ̃(x) > δc(x)

)
≤ 1 − Pr

(
T̃ ≤ Γ

)
= Pr

(
T̃ ≥ Γ + 1

)
. Given that

T̃ ∼ B(n, p), from Okamoto’s inequality (Okamoto, 1959), we have that for any c ≥ 0

and 0 < p < 1, Pr
(
T̃ ≥ n(c+ p)

)
< exp (−2nc2). Selecting c = (Γ + 1)/n − p for

any Γ ≥ pn− 1, yields the desired result.

Clearly p, Γ, δ̃(x), γ̃(x) and the values of δc(x) and γc(x) are related. While

Γ controls the degree of conservatism of the formulation of the C-RPSR and hence

affects the calculated values of δc(x) and γc(x), the realized values associated with

δ̃(x) and γ̃(x) increase with p.

2.4.4 Relations with a classical robust optimization approach

The robust counterpart of the MOLP, represented via the minimax absolute ro-

bustness approach of Kouvelis and Yu (1997), introduces uncertainty directly when

solving the first-stage MOLP. In this section we assume the box uncertainty set, and

formulate the robust counterpart of the MOLP, denoted as RMOLP, as follows.

Min

(
n∑
j=1

(c1j + |c1j |α)xj, ...,
n∑
j=1

(ckj + |ckj |α)xj

)T

s.t.
n∑
j=1

(aij − |aij|α)xj ≥ bi ∀i = 1, ...,m

xj ≥ 0 ∀j = 1, ..., n

(RMOLP)
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Let XRMOLP denote the set of efficient solutions to the RMOLP. From Definition

5, it is straightforward to see that the RMOLP guarantees model robustness, i.e.

δ(x∗) = 0 for all x∗ ∈ XRMOLP . Using Definitions 5 and 6 to project x∗ ∈ XRMOLP

in the robustness space, the following relates XRMOLP and X ′.

Theorem 2.4.11. For the box uncertainty set, if X ⊆ Rn
>

⋂
bd X, the following

statements are true:

(a) For all x∗ ∈ XRMOLP @x ∈ X ′ : δ(x) ≤ δ(x∗) and γ(x) ≤ γ(x∗) with at least

one inequality holding strictly.

(b) If cij ≥ 0, j = 1, ..., n, i = 1, ..., k, it follows that for some x ∈ X ′ @x∗ ∈

XRMOLP : δ(x∗) ≤ δ(x) and γ(x∗) ≤ γ(x) with at least one inequality holding

strictly.

Proof. (a) follows trivially since δ(x∗) = 0 for all x∗ ∈ XRMOLP and δ(x) > 0 for

all x ∈ X ′ as X ′ ⊆ Rn
>

⋂
bd X.

(b) Assume that for all x ∈ X ′, ∃x∗ ∈ XRMOLP : δ(x∗) ≤ δ(x) and γ(x∗) ≤ γ(x)

with at least one inequality holding strictly. Let x
′

be an optimal solution to

lex min{γ(x), δ(x)|x ∈ X}, i.e. the solution with smallest value δ(x) among all

solutions with smallest value of γ(x). Notice that x
′ ∈ X ′. Because all pertur-

bations β̃j can take the worst case simultaneously, the bound from Theorem

2.4.3 will be tight and since cij ≥ 0 we have that ∀x ∈ X ′,∃x∗ ∈ XRMOLP :

γ(x∗) ≤ γ(x) =⇒ max
i=1,...,k

fi(x
∗)

f i − f i
≤ max

i=1,...,k

fi(x)

f i − f i

which implies that ∃x∗ ∈ XRMOLP :

max
i=1,...,k

fi(x
∗)

f i − f i
≤ max

i=1,...,k

fi(x
′
)

f i − f i
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Because X ⊆ Rn
>

⋂
bd X and cij ≥ 0, ∃x ∈ X such that fi(x) < fi(x

∗), ∀i =

1, ..., k. Hence, ∃x ∈ X : maxi=1,...,k fi(x)/(f i−f i) < maxi=1,...,k fi(x
∗)/(f i−f i).

Given that x
′

is optimal to minx∈X{maxi=1,...,k fi(x)/(f i − f i)}, it follows that

max
i=1,...,k

fi(x
′
)

f i − f i
< max

i=1,...,k

fi(x
∗)

f i − f i

which yields a contradiction.

Part (a) of Theorem 2.4.11 shows a case where the solutions obtained from intro-

ducing robustness directly when solving the MOLP (i.e. the RMOLP) will not be

dominated in the robustness space by any solution obtained from the RPSR. Part

(b) provides a condition where at least one solution obtained from the RPSR will

not be dominated in the robustness space by any solution from the RMOLP. While

the former is due to the fact that solutions from the RMOLP have zero infeasibility

level, the later shows that solutions from the proposed methodology may have lower

outcome degradation levels. This will be illustrated in Example 2 in Section 2.5.

The theoretical properties show that the RPSR may find fewer robust solutions

than a classical robust optimization approach, and at least one solution that is not

dominated in the robust space by any solution found by a classical robust optimiza-

tion approach. For the purpose of protecting against worst case model robustness,

one could argue that a classical robust optimization approach would be more appro-

priate since all solutions would remain feasible for all possible realizations within the

uncertainty set. On the other hand, in a less conservative case of model robustness

or when robustness is considered as secondary criteria, one could argue that the PSR

methodology would be more appropriate to aid decision making since it allows the

trade-off analysis between objective function values losses and constraint violations,

while providing the decision maker with a reduced subset of solutions.
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2.5 Numerical examples

The examples in this section are aimed to illustrate the proposed methodology

in the linear case previously discussed. In addition, the first example compares the

solution sets obtained via different PSR methods. The second example shows how the

methodology compares to a classical robust optimization approach, i.e. the RMOLP.

Moreover, it demonstrates that applying an approach often utilized to select a most

preferred alternative based on knee solutions (e.g. Das, 1999a; Branke et al., 2004)

may lead to the selection of a non-robust solution. While the first two examples

assume a box uncertainty set, the third one focuses on the cardinality-constrained

uncertainty set and illustrates how solutions vary with different values of Γ. For

simplicity, we use α = 0.10 in all instances.

The first stage MOLPs were solved via the ε-constraint method (Haimes et al.,

1971), programmed in C++ and CPLEX 12.6 was used as the solver. The assessment

of infeasibility and outcome degradation levels, as well as the filtering of non-robust

solutions, was coded in C++.

Example 1. The first instance is an MOLP with n = 3 decision variables, m = 6

constraints and k = 3 objective functions. The formulation is as follows:
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Min (3x1 + x2,−x1 + 3x2 + 10x3,−x3)
T

s.t. x1 + x2 − 2x3 ≥ 8

− x1 + x2 ≥ −9

− 2x1 − 3x2 + x3 ≥ −36

2x1 − x2 ≥ 12

3x1 + 2x2 + 5x3 ≥ 35

x1 + 11x2 ≥ 32

x1, x2, x3 ≥ 0

(N3M6O3)

The efficient set X of N3M6O3 is formed by all solutions lying on X ∩ ({x ∈

R3 : x1 + x2 − 2x3 = 8} ∪ {x ∈ R3 : x1 + 11x2 = 32}). The red points in Figure

2.2 show 1,407 efficient solutions obtained via the ε-constraint method. The RPSR

formulation of N3M6O3 is shown next.
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Min (δ, γ)T

s.t. 0.9x1 + 0.9x2 − 2.2x3 + 8δ ≥ 8

− 1.1x1 + 0.9x2 + 9δ ≥ −9

− 2.2x1 − 3.3x2 + 0.9x3 + 36δ ≥ −36

1.8x1 − 1.1x2 + 12δ ≥ 12

2.7x1 + 1.8x2 + 4.5x3 + 35δ ≥ 35

0.9x1 + 9.9x2 + 32δ ≥ 32

− 0.3x1 − 0.1x2 + 19.91γ ≥ 0

− 0.1x1 − 0.3x2 − 1x3 + 56.67γ ≥ 0

− 0.1x3 + 5.13γ ≥ 0

x ∈ X

δ, γ ≥ 0

The robust efficient set was obtained by computing δ(x) and γ(x) for each solution

x found by the ε-constraint method and filtering out the ones that were dominated

in the robustness space. The PSR methods considered in this instance were the

forward filtering clustering (FC) (Steuer and Harris, 1980) and the greedy reduction

for percentile maximization (GRP) (Venkat et al., 2004). In addition, the SEABOE

method (Das, 1999b) was applied, but no solutions of order of efficiency k = 2 were

found for the problem (i.e. no solutions in X would remain efficient if one of the

objective functions was dropped from the MOLP).

The FC algorithm was implemented using Minkowski’s distance metric and the

objectives were normalized to a [0,1] scale with indifference distance value set to

d = α. The GRP algorithm was implemented using equal weights in the percentile
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function. In order to have a more comprehensive analysis, different runs of the GRP

algorithm were performed with subset sizes from N ′ = 1 to 15 solutions. The run

with N ′ = 15 results in a superset of solutions from the other runs. Figures 2.2-

2.4 show the solutions obtained in the decision, robustness and objective spaces,

respectively.

Figure 2.2: Decision space - N3M6O3

Figure 2.3: Robustness space - N3M6O3 Figure 2.4: Objective space - N3M6O3

43



The plot in Figure 2.2 illustrates that the PSR methods can lead to distinct

regions of the decision space, capturing different aspects of the goodness of the so-

lutions. All solutions of the GRP algorithm were mapped to the same point in the

robustness space, having both a high outcome degradation and infeasibility levels.

The FC algorithm generated the entire representation of the Pareto set in a reduced

number of outcomes. Of notice is that the clustering technique is particularly useful

to understand the shape of the Pareto set while also achieving the desired size re-

duction. This suggests that clustering solutions may be used as input for the RPSR

in larger instances.

Alike other PSR methods, the RPSR was effective in reducing the size of the

Pareto set. However, the proposed methodology focuses only on the regions of the

efficient set that maintain efficiency of solutions in the robustness space (cf. Figure

2.3). In this example, the size of the robust Pareto set was reduced to 12 outcomes,

a 99.1% reduction compared to the discrete sample of the Pareto set of the MOLP.

Example 2. Instance N2M6O2 is a bicriterion program with n = 2 decision variables

and m = 6 constraints. The formulation is presented next.

Min (3x1 + x2,−x1 + 3x2)
T

s.t. x1 + x2 ≥ 12

− x1 + x2 ≥ −9

− 2x1 − 3x2 ≥ −36

2x1 − x2 ≥ 12

3x1 + 2x2 ≥ 33

x1 + 11x2 ≥ 32

x1, x2 ≥ 0

(N2M6O2)
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The efficient set of N2M6O2 is given by the union of three maximal efficient faces,

X = X∩({x ∈ R2 : 3x1 +2x2 = 33}∪{x ∈ R2 : x1 +x2 = 12}∪{x ∈ R2 : x1 +11x2 =

32}) (cf. red dotted lines in Figure 2.7). The RPSR becomes:

Min (δ, γ)T

s.t. 0.9x1 + 0.9x2 + 12δ ≥ 12

− 1.1x1 + 0.9x2 + 9δ ≥ −9

− 2.2x1 − 3.3x2 + 36δ ≥ −36

1.8x1 − 1.1x2 + 12δ ≥ 12

2.7x1 + 1.8x2 + 33δ ≥ 33

− 1.1x2 + 32δ ≥ 32

− 0.3x1 − 0.1x2 + 5.95γ ≥ 0

− 0.1x1 − 0.3x2 + 9.88γ ≥ 0

x ∈ X

δ, γ ≥ 0

To illustrate how the RPSR differs from a classical robust optimization approach,

robustness was incorporated directly in the MOLP by solving the RMOLP:
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Min (3.3x1 + 1.1x2,−0.9x1 + 3.3x2)
T

s.t. 0.9x1 + 0.9x2 ≥ 12

− 1.1x1 + 0.9x2 ≥ −9

− 2.2x1 − 3.3x2 ≥ −36

1.8x1 − 1.1x2 ≥ 12

2.7x1 + 1.8x2 ≥ 33

0.9x1 + 9.9x2 ≥ 32

x1, x2 ≥ 0

(N2M6O2-RMOLP)

Results are depicted in Figures 2.5-2.7.

Figure 2.5: Robustness space - N2M6O2 Figure 2.6: Objective space - N2M6O2
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Figure 2.7: Decision space - N2M6O2

The shaded areas in Figures 2.6 and 2.7 denote the outcome set Y and the feasible

set X, respectively. The red dotted lines in Figures 2.5-2.7 denote D, Y and X , while

the blue lines are the subsets D′, Y ′ and X ′, respectively.

As shown in Figure 2.6, the efficient solutions obtained from N2M6O2-RMOLP

are dominated by the efficient solutions of N2M6O2 in the objective space. Although

the conditions from Theorem 2.4.11 part (b) are not met (i.e. cij ≥ 0), Figure 2.5

shows that the robust efficient solutions obtained by the RPSR are non-dominated in

the robustness space with respect to the solutions obtained from the RMOLP. While

the solutions from the RMOLP remain always feasible, their outcome degradation

levels are higher than the ones from solutions in X ′. In fact, the robust efficient

solutions obtained by the RPSR are non-dominated in the robustness space with

respect to any feasible solution in problem N2M6O2 (cf. Figure 2.5). Although this

case is also observed in Example 1, it does not always hold true and is problem

dependent. In addition, during our experimentation, we have found cases where the

solutions from the RPSR dominate solutions from the RMOLP, and vice-versa.
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When compared to the knee approach, selecting solutions with maximum convex

bulge on the Pareto curve (e.g. solutions with objective values in the region of

f = (30, 0)T and (32,−4)T in Figure 2.6) would yield non-robust solutions. This

illustrates that an approach often utilized to select a most preferred alternative may

lead to a solution that is highly affected by uncertainty. Although the knee solutions

in Figure 2.6 show a low infeasibility level (δ(x) = 0.1 for all knee solutions), they

are all dominated in the robustness space by solutions in X ′, which maintain lower

outcome degradation levels.

The RPSR was able to reduce the number of maximal efficient faces that remained

robust efficient. In addition, only 11.6% of the length covered by the line segments

forming the Pareto set of N2M6O2 remained Pareto optimal in view of the RPSR.

Example 3. Instance N10M5O2 is a problem with n = 10 decision variables, m = 5

constraints and k = 2 objective functions. The formulation is presented next:

Min (10x1 + 5x2 + 3x3 + 2x4 + 2x5 + x6 + x7 + x8 + x9 + x10,

− x1 − x2 − x3 − x4 + 4x5 + 5x6 + 6x7 + 7x8 + 8x9 + 9x10)
T

s.t. x1 − 2x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≥ 5

− 2x1 − 2x2 − 3x3 − 5x4 − 10x5 + 20x6 + 3x7 + 2x8 + 5x9 + x10 ≥ 3

− x1 − x6 + 2x10 ≥ 1

6x1 + x2 − 2x8 ≥ 7

2x2 + 4x7 + x8 ≥ −1

x ≥ 0

(N10M5O2)

The RPSR was formulated using the cardinality-constrained uncertainty set with
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Γ varying from 1 to 10. Figure 2.8 shows D′ for the various values of Γ.
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Figure 2.8: Robustness space - N10M5O2 - with varying Γ

From Figure 2.8, the values of δ(x) and γ(x) increase with Γ. When the most

optimistic case of robustness is assumed, i.e. Γ = 1, the infeasibility and outcome

degradation levels are lower because only one decision variable is assumed to be

affected by uncertainty at one time. As the decision maker increases his/her level of

conservatism, i.e. by increasing Γ, the infeasibility and outcome degradation levels

also increase since more decision variables are assumed to be simultaneously affected

by uncertainty. As shown in Figure 2.8, the most conservative case, i.e. Γ = 10,

yields the same results as the case with Γ = 5. This is because the efficient solutions

have decision variables at zero, which suggests that using a value of Γ < n may still
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provide solutions that are highly protected against uncertainties.

If the perturbations on each xj are a composite random variable β̃j ◦ ν̃j where ν̃j

are i.i.d. Bernoulli trials with probability p, then Theorem 2.4.10 may be used to

guide the selection of the appropriate Γ according to the decision maker’s level of

conservatism. For instance, if p = 0.1, then the selection of Γ = 4 would guarantee

that the probability of constraint violations or outcome degradation levels exceeding

the calculated values from the C-RPSR formulation would be less than 0.04; similarly,

using a less conservative value of Γ = 3 would guarantee a probability bound from

Theorem 2.4.10 of 0.165.

2.6 Summary and conclusions

The large number of Pareto outcomes from an MOP makes it difficult for a deci-

sion maker to select a particular solution for implementation; this issue hinders the

applicability of multiobjective optimization in practice. To the best of our knowl-

edge, PSR methods mainly rely on clustering solutions according to their similarity

in the objective space of the MOP. This section poses the PSR as an optimization

problem over the efficient set based on the idea of incorporating secondary criteria re-

lated to both the objective and the decision spaces of the MOP in order to break ties

among the Pareto outcomes, providing the decision maker with additional trade-off

information in the space of the secondary criteria.

Although the methodology can be used with any secondary criteria of interest, in

this section we use model and solution robustness such that solutions in the reduced

set are less sensitive to uncertainties, in addition to being efficient with respect to

the original MOP. Hence, the proposed model integrates aspects from the areas of

multiobjective optimization and robustness to aid decision making.

The proposed formulation allows dealing with continuous Pareto sets circumvent-
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ing the need for discretization procedures that characterize existing PSR method-

ologies. However, since the PSR is a non-convex problem, of interest becomes the

development of an effective solution procedure. This leads us to the next section in

this dissertation.
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3. LINE SEARCH AND LINEAR PROGRAMMING FILTERING ALGORITHM

FOR A CLASS OF BIOBJECTIVE OPTIMIZATION PROBLEMS OVER

THE EFFICIENT SET

3.1 Introduction

This section presents an algorithm for solving a special case of a biobjective op-

timization problem over the efficient set of an MOLP. It is assumed that the efficient

set of the MOLP is known and given as the union of the maximal efficient faces.

The two objectives for optimization over the efficient set, termed secondary objec-

tive functions, are linear; and in addition to the efficient set, the feasible region is

complemented by linear constraints associated with continuous variables, termed sec-

ondary decision variables, also not present in the MOLP. As in bilevel programming

(Fülöp, 1993), this allows for a hierarchical decision process: first, the set of efficient

solutions to the MOLP is determined; then two secondary objective functions are

optimized over the efficient set with additional constraints to determine the subset

of efficient solutions and secondary decision variable values that are efficient in this

subsequent problem.

The literature on optimization over the efficient set is considerably vast, but

as pointed out in Section 2, it is limited to the optimization of a single objective

function (e.g. Benson, 1984; Horst and Thoai, 1999; Sayin, 2000; Yamamoto, 2002;

Jorge, 2009; Thang, 2015). Fülöp (1993) showed that the bilevel linear program can

be equivalently formulated as an optimization problem over the efficient set of an

MOLP. In bilevel programing, a mixed binary linear reformulation was proposed by

Fortuny-Amat and McCarl (1981) when both upper and lower level problems are

single objectives. Here we show that the problem dealt with in this section can be
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reformulated as a biobjective mixed binary linear program (BOMBLP). Each binary

variable in the reformulated problem is associated with a maximal efficient face of

the original MOLP and represents whether, or not, there exist solutions on the given

face that are also efficient in view of the secondary objective functions.

BOMBLPs are a class of multiobjective programs where both binary and contin-

uous variables are present. While it is well-known that the Pareto set of an MOLP

is connected (e.g. Ehrgott, 2005), this is not the case in multiobjective binary linear

programs. The Pareto set of a BOMBLP is formed by the union of line segments and

discrete outcomes, which may have connected as well as disconnected regions in the

objective space (Vincent et al., 2013). In BOMBLPs, fixing all values of the binary

variables to one or zero reduces the problem to a biobjective linear program (BOLP).

This suggests that the BOMBLP can be solved by taking the union of the Pareto

sets of BOLPs corresponding to all possible combinations of binary variables values,

and filtering out any dominated segments from the resulting set. Major drawbacks

from this approach are that the number of BOLPs to be explored increases exponen-

tially with problem size, and the filtering steps may be computationally challenging

(Boland et al., 2014).

Although there are only a few studies proposing algorithms to solve BOMBLPs,

the subject has been receiving growing attention in literature. This includes heuristic

approaches (e.g. Masin and Bukchin, 2008; Soylu, 2015), branch and bound (BB) al-

gorithms, which are based on solving a sequence of BOLP relaxations (e.g. Mavrotas

and Diakoulaki, 1998, 2005; Vincent et al., 2013; Stidsen et al., 2014), and objective

space search algorithms, which rely on solving mixed integer programs (MIPs) while

searching in the space of the outcomes (e.g. Boland et al., 2014; Rong et al., 2015).

It has been suggested that objective space search procedures are likely more suc-

cessful than decision space algorithms for solving multiobjective optimization prob-
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lems (e.g. Benson and Sun, 2000, 2002). In the case of BOMBLPs, experiments have

shown that objective space search algorithms tend to outperform runtimes of BB

algorithms (Boland et al., 2014). One reason for that is attributed to the fact that

the bounds in BB algorithms may not be as tight as the ones in single objective

optimization problems.

Objective space search algorithms follow a general two-phase approach (Stidsen

et al., 2014), which has been applied predominantly in pure integer multiobjective

optimization problems (e.g. Visée et al., 1998; Przybylski et al., 2008; Steiner and

Radzik, 2008), and more recently to BOMBLPs (e.g. Boland et al., 2014; Rong et al.,

2015). In the two-phase approach, phase 1 searches for extreme supported Pareto

outcomes, and is typically carried out by solving a scalirizing version of the BOMBLP

via the parametric weighted sum of objective functions. Phase 2 consists of searching

for unsupported Pareto outcomes (i.e. outcomes not found during phase 1) within

upper triangles formed by two successive extreme supported Pareto outcomes. The

search during phase 2 can be carried out in different ways and is often problem specific

(Stidsen et al., 2014). In the case of the triangle splitting (TS) algorithm (Boland

et al., 2014), the procedure checks whether all outcomes lying on the hypotenuse of

the upper triangle are Pareto optimal by solving an auxiliary mixed integer program.

If no Pareto outcome can be found on the hypotenuse, the triangle is split horizontally

or vertically in half, and the test is repeated in the new intervals until no further

Pareto outcomes can be found.

This section develops an objective space search algorithm, termed line search

and linear programming filtering (LS-LPF), for the BOMBLP formulation of the

biobjective optimization problem over the efficient set. In phase 1, the algorithm

searches for supported Pareto outcomes using the parametric weighted sum method.

In phase 2, the algorithm searches for unsupported Pareto outcomes taking advantage
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of a single-choice constraint in problem structure to solve a sequence of mixed binary

linear programs with decreasing number of free binary variables (i.e. variables not

already fixed to zero or one) at each iteration. In addition, auxiliary linear programs

(LPs) enables the implementation of filtering steps.

This section is organized as follows. Section 3.2 introduces the model and pre-

liminaries. Section 3.3 shows the problem formulation and its reformulation as a

BOMBLP. Section 3.4 describes the LS-LPF algorithm and provides an illustrative

example. Section 3.5 shows the results of an experimental analysis, while Section 3.6

presents concluding remarks.

3.2 Model and and preliminaries

Let X = {x : Ax = b, x = 0} be compact, where A ∈ Rm×n is a constraint

matrix of elements aij for i = 1, ...,m and j = 1, .., n and b ∈ Rm is the right-

hand-side vector. Let C ∈ Rk×n be a cost matrix of elements cij for i = 1, ..., k

and j = 1, .., n, where Ci = (ci1, ..., c
i
n) denotes the cost vector for the i-th objective

function. Then, the multiobjective linear program (MOLP) can be expressed as:

Min Cx

s.t. x ∈ X
(MOLP)

Proposition 3.2.1. (Zadeh, 1963) If there exists some w ∈ Rk
> such that x′ is an

optimal solution to minx∈X w
TCx, then x′ ∈ X .

A solution x′ ∈ X to the program in Proposition 3.2.1 is called a supported

efficient solution and y′ = Cx′ is termed a supported Pareto outcome. Likewise,

an efficient solution that does not satisfy Proposition 3.2.1 is called an unsupported

efficient solution and its image in the objective space is termed as an unsupported

Pareto outcome. In the case of MOLPs, it is well-known that all efficient solutions
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are supported efficient solutions (Steuer, 1986). For non-convex problems, it is also

well-known that there may exist unsupported efficient solutions (e.g. see Das and

Dennis, 1997).

If x is a supported efficient solution and y = Cx is an extreme point of conv(Y ),

then x is called an extreme supported efficient solution and y is called an extreme

supported Pareto outcome.

Given that X is assumed to be compact, the parametric program in Proposition

3.2.1 can be solved in a finite number of steps to find the set of extreme supported

efficient solutions and the corresponding extreme supported Pareto outcomes (Gass

and Saaty, 1955; Steuer, 1986).

The set of all efficient solutions X of an MOLP is connected; consequently, the

set Y is connected; moreover, Y lies on the boundary of Y (Yu and Zeleny, 1975;

Naccache, 1978; Steuer, 1986). In the BOLP, since Y is assumed to be compact, Y

can be characterized by the union of finitely many line segments, where each endpoint

of a line segment corresponds to an extreme supported Pareto outcome of the BOLP

(Boland et al., 2014).

Let F denote a face of X, i.e. a convex subset of X such that every line segment

in X with relative interior in F has both endpoints in F (Rockafellar, 1970). A face

F is called efficient if, for all x ∈ F , x ∈ X (Yu and Zeleny, 1975). F is termed

a maximal efficient face if F is an efficient face and there does not exists another

efficient face F ′ of X such that F ⊂ F ′ (Yu and Zeleny, 1975).

As in Sayin (1996), a maximal efficient face ofX is here represented by a collection

of indices corresponding to the constraints holding at equality at that face. Define

Â =

 A

I

 where I is an n× n identity matrix and let and b̂ be the corresponding

right-hand-side vector augmented by n zero elements. Let M = {1, ...,m+n}. Then,
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for some subset P ⊆ M , let ÂP and b̂P denote the matrix and vector, respectively,

obtained by excluding from Â and b̂ the rows whose indices are not in P . Hence,

F (P ) = {x ∈ X|ÂPx = b̂P} denotes the face of X formed by the constraint indices

in P holding at equality. Let S denote the number of maximal efficient faces of the

MOLP and let {P1, ..., PS} be the collection of subsets ofM that represent these faces.

Then, the efficient set of the MOLP is here assumed to be given by X =
⋃S
s=1 F (Ps)

(Yu and Zeleny, 1975). For further details on finding maximal efficient faces of an

MOLP, see the review by Ehrgott (2005) and the references therein.

3.3 Problem formulation

Given the efficient faces of the MOLP, we consider secondary decision variables

πj (i.e. variables not included in the formulation of the MOLP) and nonnegative

parameters d1
j and d2

j , for j = 1, ..., n2. The functions φ(π) =
∑n2

j=1 d
1
jπj and ψ(π) =∑n2

j=1 d
2
jπj to be minimized over the efficient set are termed secondary objective

functions. The biobjective optimization over the efficient set is formulated as:

Min

(
φ(π) =

n2∑
j=1

d1
jπj, ψ(π) =

n2∑
j=1

d2
jπj

)T

s.t.

n2∑
j=1

hijπj +
n∑
j=1

gijxj ≥ ui ∀i = 1, ...,m2

πj ≥ 0 ∀j = 1, ..., n2

x ∈ X

(P1)

where hij, g
i
j and ui are given parameters for the additional constraints relating the

decision variables x ∈ Rn of the MOLP and the secondary decision variables π ∈ Rn2 .

Let X ′ denote the subset of solutions that are efficient to problem P1 and let

D′ denote its image under the mappings of the secondary objective functions φ(π)

and ψ(π). Because X is usually non-convex even in the case of MOLPs, P1 is a
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non-convex problem. Here, since X is assumed to be known and given as the union

of the maximal efficient faces of the MOLP, one way of solving P1 would be to

find the projection of each efficient face onto the space of the secondary objective

functions, then filter out the dominated portions of the corresponding line segments,

as illustrated by the bold line segments in Figure 3.1.

Figure 3.1: Pareto outcomes to problem P1

For larger instances, however, the aforementioned approach is not practical since

it would require exhaustive search over all efficient faces. Next we show a reformu-

lation of the problem that allows for a different solution approach.

3.3.1 Mixed binary linear reformulation of problem P1

This subsection introduces a reformulation of P1 as a mixed binary linear program

by replacing the restriction x ∈ X with a series of constraints involving additional

auxiliary continuous and binary variables. Let zs denote a binary variable associated

with a efficient face F (Ps) of the MOLP, for s = 1, ..., S. Let zs = 1 if x ∈ F (Ps),

and zs = 0 otherwise. In addition, for each decision variable xj, j = 1, ..., n, let x′js
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denote a nonnegative continuous variables, for s = 1, ..., S, such that:

xj −
S∑
s=1

x′js = 0 ∀j = 1, ..., n

Disjunctive constraints are introduced to ensure that either a solution belongs

to the face F (Ps), hence forcing ÂPsx = b̂Ps , or simply Ax = b otherwise. This is

achieved with the additional constraints:

n∑
j=1

aijxj ≥ bi ∀i = 1, ...,m

n∑
j=1

âijx
′
js − b̂izs = 0 ∀i ∈ Ps : 1 ≤ i ≤ m, s = 1, ..., S

n∑
j=1

âijx
′
js −M(1− zs) ≤ 0 ∀i ∈ Ps : m+ 1 ≤ i ≤ m+ n, s = 1, ..., S

n∑
j=1

x′js −Mzs ≤ 0 ∀s = 1, ..., S

where âij and b̂i are elements of Â and b̂, respectively, and M is a large enough real.

Finally, a constraint is added to ensure with the previous disjunctions that the

solution will be related to an efficient face of the MOLP:

S∑
s=1

zs = 1

If zs = 1, for some s = 1, ..., S, then xj = x
′
js and

∑n
j=1 âijx

′
js = b̂i, for all

i ∈ Ps : 1 ≤ i ≤ m, and x′(i−m)s = 0, for all i ∈ Ps : m + 1 ≤ i ≤ m + n. Otherwise,

if zs = 0 then x
′
js = 0 for all j = 1, ..., n.

The previous constraints lead to the following reformulation of P1 as a biobjective

mixed binary linear program:
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Min

(
φ(π) =

n2∑
j=1

d1
jπj, ψ(π) =

n2∑
j=1

d2
jπj

)T

s.t.
n∑
j=1

aijxj ≥ bi ∀i = 1, ...,m

n2∑
j=1

hijπj +
n∑
j=1

gijxj ≥ ui ∀i = 1, ...,m2

n∑
j=1

âijx
′
js − b̂izs = 0 ∀i ∈ Ps : 1 ≤ i ≤ m, s = 1, ..., S

n∑
j=1

âijx
′
js −M(1− zs) ≤ 0 ∀i ∈ Ps : m+ 1 ≤ i ≤ m+ n, s = 1, ..., S

n∑
j=1

x′js −Mzs ≤ 0 ∀s = 1, ..., S

xj −
S∑
s=1

x′js = 0 ∀j = 1, ..., n

S∑
s=1

zs = 1

πj, xj, x
′
js ≥ 0

zs ∈ {0, 1}
(MB-P1)

The MB-P1 formulation has at most m(S+1)+n(S+1)+m2 +S+1 constraints,

n(S + 1) + n2 continuous variables and S binary variables. Of notice is that the

formulation is polynomial in size with respect to the number of efficient faces of the

original MOLP. Even when the MOLP possesses a large number of efficient faces,

and consequently a large number of binary variables in the MB-P1 formulation, the

single-choice constraint
∑S

s=1 zs = 1 guarantees that the number of branches in the

search tree only increases polynomially with the number of efficient faces.
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3.3.2 Linear programming formulation for filtering line segments

Since X is here assumed to be compact and P1 can be formulated as a BOMBLP,

D′ will be given as the union of finitely many line segments; each line segment will

be formed by solutions that are non-dominated in view of the secondary objective

functions. Next, we show that two auxiliary linear programming formulations can be

used to detect the segments of each line that correspond to non-dominated solutions.

Let Li and Lj be two closed line segments in the space R2
= of the secondary

objective functions. Define φLi = min
φ∈Li

{φ : φ =
∑n2

j=1 d
1
jπj} and φ

Li
= max

φ∈Li

{φ : φ =∑n2

j=1 d
1
jπj}. Similarly, let ψLi = min

ψ∈Li

{ψ : ψ =
∑n2

j=1 d
2
jπj} and ψ

Li
= max

ψ∈Li

{ψ :

ψ =
∑n2

j=1 d
2
jπj}. We represent a closed line segment by its two endpoints, e.g.

Li = [(φ
Li
, ψLi)T ; (φLi , ψ

Li
)T ]. Without loss of generality, we treat open and half-

opened line segments as closed line segments by subtracting a small enough quantity

∆ from their endpoints. Similarly, Li represents a singleton when φ
Li

= φLi and

ψ
Li

= ψLi . Define the following programs:

ZLP1 = min{ψ : ψ − aLiφ ≥ bLi , ψ ≥ ψLi , φ ≥ φLi , (φ, ψ)T ∈ Lj} (LP1(Li, Lj))

ZLP2 = min{φ : ψ − aLiφ ≥ bLi , ψ ≥ ψLi , φ ≥ φLi , (φ, ψ)T ∈ Lj} (LP2(Li, Lj))

where aLi and bLi are the slope and intercept of Li and φ =
∑n2

j=1 d
1
jπj and ψ =∑n2

j=1 d
2
jπj. For convenience, when Li is a singleton, define aLi = bLi = 0. Let the

optimal solutions to LP1(Li, Lj) and LP2(Li, Lj) be (φ, ψ)T = (φLP1
Lj

, ψLP1
Lj

)T and

(φLP2
Lj

, ψLP2
Lj

)T , respectively. We denote by +∞ the objective value of an infeasible

program.

Programs LP1(Li, Lj) and LP2(Li, Lj) can be used to check whether Lj con-

tains solutions that are dominated by solutions in Li. Theorem 3.3.1 formalizes the
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conclusions that can be drawn from solving LP1(Li, Lj) and LP2(Li, Lj).

Theorem 3.3.1. Given two line segments Li and Lj in the space of the secondary

objective functions, it holds that:

(a) ZLP1 = +∞ ⇐⇒ all solutions in Lj are non-dominated with respect to

solutions in Li.

(b) ψLP1
Lj

= ψLj and φLP2
Lj

= φLj =⇒ all solutions in Lj are dominated by solutions

in Li.

(c) ψLj < ψLP1
Lj
≤ ψ

Lj
or φLj < φLP2

Lj
≤ φ

Lj
=⇒ only solutions in the segment

L = [(φLP1
Lj

, ψLP1
Lj

)T ; (φLP2
Lj

, ψLP2
Lj

)T ] ⊂ Lj are dominated by solutions in Li.

The proof of Theorem 3.3.1 is straightforward. For part (a), the feasible sets of

LP1(Li, Lj) and LP2(Li, Lj) are the same and are given by (φ, ψ)T ∈ L = Lj
⋂

(Li+

R2
≥). Hence, ZLP1 = +∞ ⇐⇒ L = ∅ ⇐⇒ for all (φ, ψ)T ∈ Lj, there does not

exist (φ′, ψ′)T ∈ Li such that φ′ ≤ φ and ψ′ ≤ ψ with at least one inequality holding

strictly. In part (b), notice that Lj
⋂

(Li + R2
≥) = Lj, so the result follows. Part (c)

follows similarly.

Figure 3.2 illustrates the different cases arising from Theorem 3.3.1. In case (a),

all solutions in Lj are non-dominated with respect to solutions in Li; in case (b) all

solutions in Lj are dominated by solutions in Li; in case (c), example 1, all solutions in

Lj except the endpoint (ψLj , φ
Lj

)T are non-dominated with respect to solutions in Li,

while in example 2 all solutions in the line segment [(φLP1
Lj

, ψLP1
Lj

)T ; (φLP2
Lj

, ψLP2
Lj

)T ] ⊂

Lj are dominated by solutions in Li.
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𝐿𝑗 

𝐿𝑖 + ℝ≥
2  

Case (a)

𝐿𝑖  

𝐿𝑗 

𝐿𝑖 + ℝ≥
2  

Case (c) - example 1

𝐿𝑖  

𝐿𝑖 + ℝ≥
2  

Case (b)

𝐿𝑖  

𝐿𝑖 + ℝ≥
2  

Case (c) - example 2

Figure 3.2: Different cases from Theorem 3.3.1

3.4 Line search and linear programming filtering (LS-LPF) algorithm

This section presents the LS-LPF algorithm, which finds the set D′ of Pareto

outcomes of the mixed binary program MB-P1. The section ends by providing a

short illustrative example of the algorithm.

3.4.1 The algorithm

As a two-phase algorithm, the search begins by finding all extreme supported

Pareto outcomes via the weighted sum approach and proceeds by searching for un-

supported Pareto outcomes within upper triangles formed by successive pairs of

extreme supported Pareto outcomes that are found to be disconnected.

Let S = {1, ..., S} and let Q ⊂ S. In order to find the extreme supported Pareto
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outcomes of MB-P1, the parametric weighted sum program using weights wφ, wψ > 0

is defined next.

Min wφφ+ wψψ

s.t.
n∑
j=1

aijxj ≥ bi ∀i = 1, ...,m

n2∑
j=1

hijπj +
n∑
j=1

gijxj ≥ ui ∀i = 1, ...,m2

n∑
j=1

âijx
′
js − b̂izs = 0 ∀i ∈ Ps : 1 ≤ i ≤ m, s = 1, ..., S

n∑
j=1

âijx
′
js −M(1− zs) ≤ 0 ∀i ∈ Ps : m+ 1 ≤ i ≤ m+ n, s = 1, ..., S

n∑
j=1

x′js −Mzs ≤ 0 ∀s = 1, ..., S

xj −
S∑
s=1

x′js = 0 ∀j = 1, ..., n

S∑
s=1

zs = 1

∑
q∈Q

zq = 0

φ−
n2∑
j=1

d1
jπj ≥ 0

ψ −
n2∑
j=1

d2
jπj ≥ 0

φ ≤ φ ≤ φ

ψ ≤ ψ ≤ ψ

xj, x
′
js ≥ 0

zs ∈ {0, 1}
(WS(wφ, wψ, φ, φ, ψ, ψ,Q))
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Formulation WS(wφ, wψ, φ, φ, ψ, ψ,Q) defines a single objective program with

specified bounds on the objective values of the secondary objective functions. In

addition, the program defines a subset of binary variables zq, for q ∈ Q, that are set

to zero.

In the LS-LPF algorithm, the parametric program WS(wφ, wψ, φ, φ, ψ, ψ,Q) is

solved in phase 1 with Q = ∅ and varying weights wφ and wψ until all extreme sup-

ported Pareto outcomes of MB-P1 have been identified. In addition, WS(wφ, wψ, φ, φ,

ψ, ψ,Q) is successively solved in phase 2 of the algorithm with varying parameters

φ, φ, ψ, ψ and Q to find unsupported Pareto outcomes. Theorem 3.4.1 provides a

core property in the search for unsupported Pareto outcomes.

Theorem 3.4.1. Let (φ1, ψ1)T and (φ2, ψ2)T be two successive extreme supported

Pareto outcomes from program MB-P1 such that φ1 < φ2 and ψ2 < ψ1. Let s 6= q be

the indices of the binary variables associated with (φ1, ψ1)T and (φ2, φ2)T , such that

z1
s = 1 and z2

q = 1, respectively. If program WS(1 − ∆,∆, φ1, φ2, ψ2, ψ1, {s, q}) is

infeasible, then there does not exist another outcome (φ∗, ψ∗)T , such that φ1 < φ∗ <

φ2 and ψ2 < ψ∗ < ψ1, with index r, for s 6= r 6= q, such that z∗r = 1.

Proof. Because Q = {s, q}, we have that the feasible set for the binary variables in

program WS(1 −∆,∆, φ1, φ2, ψ2, ψ1,Q) is given by {zs = zq = 0, zi ∈ {0, 1} ∀i ∈

S \Q}. Since the feasible set is empty, there cannot exist a solution with zr = 1 for

r ∈ S \ Q.

Theorem 3.4.1 provides a condition when searching for unsupported Pareto out-

comes in the upper triangle defined by (φ1, ψ1)T and (φ2, ψ2)T . If the program in

Theorem 3.4.1 is infeasible, there will be no new Pareto outcomes in the interval

having a different binary variable at one. This provides a sufficient condition for
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stopping the search within the upper triangle and will be later detailed in the LS-

LPF algorithm.

Next, we present the procedure to solve the parametric program WS(wφ, wψ, φ, φ,

ψ, ψ,Q). As in Boland et al. (2014), the weights are successively calculated by the

slope of the imaginary line connecting two outcomes in the space of the secondary

objective functions.

Algorithm 1 Weighted sum algorithm for finding extreme supported Pareto out-
comes

1: procedure WeightedSum(φ, φ, ψ, ψ,Q)
2: initialize: LIST ← ∅; EO ← ∅
3: solve WS(1−∆,∆, φ, φ, ψ, ψ,Q)

4: let (φ, ψ)T = (φ1, ψ1)T be its optimal solution
5: let Z1 = (1−∆)φ1 + ∆ψ1 be the corresponding optimal objective value
6: if Z1 = +∞ then: STOP; return EO

7: solve WS(∆, 1−∆, φ, φ, ψ, ψ,Q)

8: let (φ, ψ)T = (φ2, ψ2)T be its optimal solution
9: add element E1 = {φ1, ψ1, φ2, ψ2} to LIST

10: if (φ1, ψ1)T 6= (φ2, ψ2)T then:
11: add outcomes (φ1, ψ1)T and (φ2, ψ2)T to EO
12: while LIST 6= ∅ do:
13: remove last element E|LIST | = {φ1, ψ1, φ2, ψ2} from LIST
14: solve WS(ψ1 − ψ2, φ2 − φ1, φ, φ, ψ, ψ,Q)

15: let (φ, ψ)T = (φ∗, ψ∗)T be its optimal solution
16: if φ1 < φ∗ < φ2 and ψ2 < ψ∗ < ψ1 then:
17: add element E|LIST |+1 = {φ1, ψ1, φ∗, ψ∗} to LIST
18: add element E|LIST |+1 = {φ∗, ψ∗, φ2, ψ2} to LIST
19: add outcome (φ∗, ψ∗)T to EO

20: else:
21: add outcome (φ1, ψ1)T to EO

22: return EO, with outcomes sorted by nondecreasing values of φ.

Procedure WeightedSum(φ, φ, ψ, ψ,Q) begins in lines 3-5 by finding the two ex-
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treme supported Pareto outcomes, (φ1, ψ1)T and (φ2, ψ2)T , within the region defined

by {φ, φ, ψ, ψ}. If the program is infeasible, the search ends in line 6. Otherwise,

the weights are parametrically changed according to the slope of successive outcomes

in LIST . If the optimal solution (φ∗, ψ∗)T in line 15 is different from the outcomes

(φ1, ψ1)T and (φ2, ψ2)T that defined the current weights, then lines 17 and 18 add to

LIST the new intervals of outcomes to be explored. This is illustrated in Figure 3.3,

where the new outcome (φ∗, ψ∗)T found by the algorithm defines two new intervals

given by {φ1, ψ1, φ∗, ψ∗} and {φ∗, ψ∗, φ2, ψ2} to be further explored. The algorithm

ends when there are no more intervals to be explored and LIST is empty, returning

the extreme supported Pareto outcomes, EO.

𝜙2, 𝜓2 𝑇 

𝜙1, 𝜓1 𝑇 

𝜙∗, 𝜓∗ 𝑇 

Figure 3.3: Finding new extreme supported Pareto outcome (φ∗, ψ∗)T in Algorithm 1

The outcomes found by Procedure WeightedSum(φ, φ, ψ, ψ,Q) are only guar-

anteed to be locally Pareto optimal within the given region defined by {φ, φ, ψ, ψ},

and considering the binary variables in Q that are fixed to zero; i.e. EO might

contain outcomes that are dominated in view of MB-P1. Therefore, another key
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component of the LS-LPF algorithm is a pairwise comparison of line segments asso-

ciated with outcomes in the space of the secondary objective functions. Procedure

Filter(LINES,D′) takes a set of line segments, LINES = {L1, ..., L|LINES|}, and

carries out the pairwise comparison to update the set D′ with only those segments

that correspond to non-dominated solutions. The filtering steps are shown in Algo-

rithm 2.

Algorithm 2 Filtering of non-dominated solutions from line segments

1: procedure Filter(LINES,D′)
2: initialize: LIST ← ∅; DLINES ← ∅
3: for i = 1, ..., |LINES| − 1 do:
4: for k = i+ 1, ..., LINES do:
5: let Li and Lk denote the i-th and the k-th lines in the set LINES
6: add the pair {Li, Lk} to LIST

7: while LIST 6= ∅ do:
8: remove the last pair of lines {Li, Lk} from LIST
9: if Li and Lk /∈ DLINES then:

10: let LA = Li and let LB = Lk
11: solve LP1(LA, LB) and LP2(LA, LB); let their optimal solutions be

(φ, ψ)T = (φLP1
LB

, ψLP1
LB

)T and (φLP2
LB

, ψLP2
LB

)T , respectively.
12: if ψLP1

LB
< +∞ then:

13: add LB to DLINES

14: if ψLB < ψLP1
LB
≤ ψ

LB
then:

15: define L1 = [(φ
LB
, ψLB)T ; (φLP1

LB
, ψLP1

LB
)T ); add L1 to LINES

16: for all pair of lines {L,L′} ∈ LIST do:
17: if L = LB then add the pair of lines {L1, L

′} to LIST

18: if L′ = LB then add the pair of lines {L,L1} to LIST

19: if φLB < φLP2
LB
≤ φ

LB
then:

20: define L2 = ((φLP2
LB

, ψLP2
LB

)T ; (φLB , ψ
LB

)T ]; add L2 to LINES
21: for all pair of lines {L,L′} ∈ LIST do:
22: if L = LB then add the pair of lines {L2, L

′} to LIST

23: if L′ = LB then add the pair of lines {L,L2} to LIST

24: let LA = Lk and LB = Li; go back to line 10

25: return D′ ← D′
⋃
LINES \DLINES
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Procedure Filter(LINES,D′) maintains an archive, LIST , of pairs of lines,

{Li, Lk}, to be checked for non-dominance, and an archive, DLINES ⊆ LINES,

of lines that contain dominated solutions. The procedure iteratively solves programs

LP1(Li, Lk) and LP2(Li, LK) in line 11 (and later, via line 24, LP1(Lk, Li) and

LP2(Lk, Li)) until LIST is empty. The validity of Algorithm 2 relies on Theorem

3.3.1. In line 12, if ψLP1
Lk

< +∞, from Theorem 3.3.1, there exist solutions in Lk that

are dominated by solutions in Li, hence Lk is added to the archive DLINES. If

ψLP1
Lk

= ψLk and φLP2
Lk

= φLk , then, according to Theorem 3.3.1, case (b), all solutions

in Lk are dominated by solutions in Li.

In line 14, if ψLk < ψLP1
Lk
≤ ψ

Lk
, then, by Theorem 3.3.1, case (c), all solutions

in segment L1 = [(φ
LB
, ψLB)T ; (φLP1

LB
, ψLP1

LB
)T ) ⊂ Lk are non-dominated with respect

to solutions from Li; hence, L1 is added to LINES for further exploration. The

loop in lines 16-18 updates the search archive LIST with the newly added segment

L1. Likewise, in line 19, if φLk < φLP2
Lk
≤ φ

Lk
, then all solutions in segment L2 =

((φLP2
Lk

, ψLP2
Lk

)T ; (φLk , ψ
Lk

)T ] are non-dominated with respect to solutions from Li;

hence L2 is added to LINES for further exploration. Lines 21-23 update the search

archive LIST with the newly added segment L2. At termination, the algorithm

outputs the segments in LINES, removing the ones in DLINES, which contain

dominated solutions.

Having defined the procedures to obtain extreme supported Pareto outcomes and

to filter out line segments corresponding to dominated solutions, we show next the

steps of the LS-LPF algorithm.
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Algorithm 3 Line search and linear programming filtering (LS-LPF) algorithm

1: initialize: D′ ← ∅
2: EO ←WeightedSum(0,∞, 0,∞, ∅) . (phase 1)
3: if |EO| ≤ 1 then D′ ← EO; stop and return D′
4: else:
5: for i = 1, ..., |EO| − 1 do:
6: if (zi1, ..., z

i
S)T = (zi+1

1 , ..., zi+1
S )T then:

7: add line Li = [(φi+1, ψi+1)T ; (φi, ψi)T ] to D′; next i

8: CONNECTED ← FALSE
9: for s = 1, ..., S do:

10: if WS(1, 0, φi+1, φi+1, ψi+1, ψi+1,S\{s}), WS(1, 0, φi, φi, ψi, ψi,S\{s})
are feasible then:

11: CONNECTED ← TRUE
12: add line Li = [(φi+1, ψi+1)T ; (φi, ψi)T ] to D′; break for

13: if CONNECTED = FALSE then: . (phase 2)
14: SP ← ∅; LINES ← ∅; POINTS ← ∅
15: loop:
16: solve WS(1 − ∆,∆, φi, φi+1, ψi+1, ψi, SP ); let (φ, ψ)T = (φ∗, ψ∗)T

be optimal solution values and Z∗ its objective value
17: if Z∗ < +∞ then:
18: let q be the binary variable index in the optimal solution of

WS(1−∆,∆, φi, φi+1, ψi+1, ψi, SP ) such that z∗q = 1
19: POINTS ←WeightedSum(φi, φi+1, ψi+1, ψi,S \ {q})
20: if |POINTS| = 1 then:
21: L = [(φ∗, ψ∗)T ; (φ∗, ψ∗)T ] is a singleton
22: if φ∗ 6= φi and φ∗ 6= φi+1 then:
23: add L to LINES
24: else:
25: for j = 1, ..., |POINTS| − 1 do:
26: add line Lj = [(φj+1, ψj+1)T ; (φj, ψj)T ] to LINES

27: SP ← SP
⋃
{q}

28: else break loop

29: if |LINES| > 1 then D′ ← Filter(LINES,D′)
30: else D′ ← D′

⋃
LINES

31: return D′

The LS-LPF algorithm begins phase 1 in line 2 by finding all extreme supported

Pareto outcomes of MB-P1 via procedure WeightedSum(0,∞, 0,∞, ∅). In line 3,
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if only one outcome is found, then the ideal point is attainable and the search ends.

Likewise, if the program is infeasible, EO is empty and the search ends. Else, the

algorithm loops through all extreme supported Pareto outcomes in EO. In line 6, if

the values of the binary variables in the current extreme supported Pareto outcome

(φi, ψi)T are the same as in the subsequent outcome (φi+1, ψi+1)T , then the outcomes

are connected and a line segment joining them is added to D′. Else, the loop in lines

9-12 solves a sequence of LPs, as each time a different binary variable is set to one. If

both programs WS(1, 0, φi+1, φi+1, ψi+1, ψi+1,S \ {p}) and WS(1, 0, φi, φi, ψi, ψi,S \

{p}) are feasible, then the outcomes (φi, ψi)T and (φi+1, ψi+1)T are connected as they

share the same binary variable with value equal to one (cf. line 11 of the algorithm).

When the outcomes (φi, ψi)T and (φi+1, ψi+1)T are not connected, line 13 starts

phase 2 and the algorithm searches for line segments in the upper triangle defined

by (φi, ψi)T and (φi+1, ψi+1)T . At the beginning, no binary variables are restricted,

so the archive of indices of binary variables, SP , is empty. The archives of line

segments, LINES, and potential Pareto outcomes in the region, POINTS, are

initialized in line 14. At each iteration of the loop, line 16 solves an MIP with de-

creasing number of free binary variables, i.e. variables that are not set to zero. If

the MIP is feasible with optimal value of binary variable zq = 1, then Procedure

WeightedSum(φi, φi+1, ψi+1, ψi,S \ {q}) in line 19 finds all locally extreme sup-

ported Pareto outcomes of the BOLP corresponding to fixing the binary variable

zq to one. If only one locally extreme supported Pareto outcomes is found, L is

a singleton and is added to LINES in line 23. Otherwise, all pairs of successive

locally extreme supported Pareto outcomes of the BOLP are connected in line 26 to

form line segments, which are added to LINES. The binary variable index q is then

added in line 27 to the archive of indices of binary variables set to zero, SP , and

the loop proceeds to the next iteration in line 15. If the MIP from line 16 becomes
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infeasible, by Theorem 3.4.1, no further Pareto outcomes can be found in the interval

between (φi, ψi)T and (φi+1, ψi+1)T with different binary variables at one; hence line

28 breaks the search for new line segments in the interval. Finally, all lines identified

in the upper triangle defined by (φi, ψi)T and (φi+1, ψi+1)T are filtered in line 29 via

Procedure Filter(LINES,D′) and the set D′ is updated accordingly. Of notice is

that the filtering steps are only necessary if the search has identified more than one

line segment in the interval. The search then proceeds to the next pair of extreme

supported Pareto outcomes (φi+1, ψi+1)T and (φi+2, ψi+2)T , until all the |EO| − 1

regions have been explored.

The validity of the LS-LPF algorithm relies on identifying all extreme supported

Pareto outcomes of MB-P1 in phase 1, connecting those that share the same values

of the binary variables, and finding all line segments in the upper triangle formed

by pairs of successive extreme supported Pareto outcomes that are not connected.

Phase 1 exploits Proposition 3.2.1, so that all extreme supported Pareto outcomes

can be found by a positive combination of weights in the weighted sum problem

WS(wφ, wψ, 0,∞, 0,∞, ∅). Phase 2 exploits Theorem 3.4.1 and finds all line segments

by searching for BOLPs that are feasible in each upper triangle; each BOLP solved

during phase 2 corresponds to fixing a single binary variable to one and restricting

the values φi ≤ φ ≤ φi+1 and ψi+1 ≤ ψ ≤ ψi in MB-P1. Finally, Procedure

Filter(LINES,D′) is used to remove the segments containing dominated solutions,

exploiting conditions from Theorem 3.3.1.

Even though the efficient set is assumed to be known and given as input, of notice

is that in the worst case there might be exponentially many maximal efficient faces,

so that the computational complexity of generating X , i.e. solving the first stage

problem, may grow exponentially. Empirical analysis have shown that the number of

maximal efficient faces in an MOLP, in general, does not increase exponentially with
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problem size (Sayin, 1996). However, for each of these faces, in the worst case there

might be exponentially many extreme points, resulting in an exponential number

of line segments in the LS-LPF algorithm. Let (Li : Lj) denote the verification of

whether line Li contains solutions dominated by the ones in Lj. Let us consider

the example shown in Figure 3.4 and restrict our attention to L1. When comparing

(L1 : L3), we find the two bold segments corresponding to the solutions in L1 that

are not dominated by solutions from L3. Hence, L1 becomes the collection of the

two bold segments denoted by L1.1 and L1.2. Similarly, because L2 also contains

solutions dominated by the ones in L3, line L2 becomes the collection of L2.1 and

L2.2. Therefore, (L1 : L2) implies performing (L1.1 : L2.1), (L1.2 : L2.1), (L1.2 : L2.2)

and (L1.1 : L2.2), resulting in a total of 5 comparisons associated with the filtering

of L1. Hence, in line 29 of the LS-LPF algorithm, if all N segments in the set

LINES are parallel in such a way that each will split another line segment in half

(as in the example from Figure 3.4), the number of filtering problems to be solved

will be bounded by N
∑N−1

i=1 22(i−1), hence growing exponentially in the worst case.

This illustrates the challenges associated with solving such a non-convex problem.

However, the empirical study in Section 3.5 suggests that the LS-LPF algorithm tends

to run faster than existing algorithm for biobjective mixed binary programs, i.e. the

TS method. One reason for that, as discussed in Section 3.5, may be attributed to

the fact that phase 2 of the LS-LPF algorithm involves solving a sequence of MIPs

with decreasing number of free binary variables and takes advantage of the early

stopping condition from Theorem 3.4.1.
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𝐿1 𝐿2 

𝐿3 

Figure 3.4: Example of worst case scenario for filtering steps from the LS-LPF Algorithm

3.4.2 Illustration of the algorithm

To illustrate the algorithm, consider the following biobjective linear program,

N6M5O2:

Min (5x1 + 8x2 + 12x3 + 4x4 − x5 − x6,−5x1 + 2x2 + 14x3 − 4x4 + 5x5 + 5x6)
T

s.t. − 2x1 − 3x2 − 5x3 − 3x4 − 4x5 − 4x6 ≥ −105

2x1 − x2 − 3x3 + x4 − x5 + 4x6 ≥ 10

− 4x3 + 3x4 + 3x6 ≥ 10

2x2 − 5x3 − 3x4 − 4x5 ≥ −50

− 4x1 + 3x2 + 4x3 − x4 + 2x5 ≥ 20

x ∈ R6
=

(N6M5O2)

Applying the procedure from Sayin (1996), the following three maximal efficient

faces are obtained:
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F (P1) =


x ∈ X : 2x1 − 1x2 − 3x3 + x4 − x5 + 4x6 = 10;

−4x1 + 3x2 + 4x3 − x4 + 2x5 = 20;

x1 = x3 = x4 = 0



F (P2) =


x ∈ X : 2x1 − 1x2 − 3x3 + x4 − x5 + 4x6 = 10;

−4x1 + 3x2 + 4x3 − x4 + 2x5 = 20;

x1 = x3 = x5 = 0


F (P3) =

{
x ∈ X : x1 = x2 = x3 = x4 = 0

}
with f = (189.25, 131.25)T and f = (−26.25− 51.25)T .

Consider the following nonnegative secondary decision variables δ and γ, and the

additional constraints:

n∑
j=1

(aij − |aij|α)xj + |bi|δ ≥ bi, ∀i = 1, ...,m (3.1)

(f i − f i)γ −
n∑
j=1

α|cij|xj ≥ 0, ∀i = 1, ..., k (3.2)

for some α > 0 and x ∈ X . Given constraints (3.1) and (3.2), the variables δ and γ

represent measures of robustness of an efficient solution associated with maximum

relative constraint violations and objective values losses, respectively, for a given

uncertainty level α > 0 (cf. Definitions from 5 and 6 introduced in Section 2).

The minimization of δ and γ will be used as the secondary objective functions.

For α = 0.1, the biobjective optimization problem over the efficient set of N6M5O2

is formulated as the B-RPSR introduced in Section 2, where parameters aij, bi and

cij are given from the formulation N6M5O2. The mixed binary reformulation of

from instance N6M5O2 contains 36 constraints, 26 continuous variables and 3 binary
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variables, and is shown in Appendix A.

In phase 1, the LS-LPF algorithm solves the weighted sum problem to find the

two extreme supported Pareto outcomes A and B shown in Figure 3.5. Outcome A

is given by (δ, γ)T = (0, 0.0474)T , and is associated with face F (P3), while outcome

B is given by (δ, γ)T = (0.2459, 0.0230)T , and is associated with both faces F (P1)

and F (P2).

Because outcomes A and B don’t share the same values for the binary variables

in the MB-P1 reformulation (i.e. zA = (0, 0, 3)T and zB = (1, 0, 0)T and (0, 1, 0)T ),

phase 2 is necessary in order to search for unsupported Pareto outcomes in the upper

triangle defined by (δ, γ)T = (0, 0.0474)T and (0.2459, 0.0230)T . From the loop in

lines 15-28 of the LS-LPF algorithm, one line segment is found associated with faces

F (P1) and F (P2) and two line segments are found associated with face F (P3). Table

3.1 summarizes these steps.

Efficient Line segments by the LS-LPF algorithm
face Before filtering After filtering
F (P3) L1 = [(0.1, 0.043)T ; (0, 0.047)T ] [(0.1, 0.043)T ; (0, 0.047)T ]

L2 = [(0.246, 0.041)T ; (0.1, 0.043)T ] ((0.233, 0.042)T ; (0.1, 0.043)T ]
F (P1),F (P2) L3 = [(0.246, 0.023)T ; (0.233, 0.03)T ] [(0.246, 0.023)T ; (0.233, 0.03)T ]

Table 3.1: Line segments found during phase 2 of the LS-LPF algorithm - instance N6M5O2

As shown in Figure 3.6, L2 contains solutions that are dominated by solutions

from L3. In the last step of the LS-LPF algorithm, Procedure Filter(LINES,D′)

removes the segment of line L2 that corresponds to the dominated solutions. Figure

3.7 displays the final set D′.
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Figure 3.5: Phase 1 - instance N6M5O2 Figure 3.6: Phase 2 - search for line segments

Figure 3.7: Final Pareto set - instance N6M5O2

3.5 Experimental analysis

This section provides an experimental analysis of the LS-LPF algorithm applied

to randomly generated instances. The secondary objective functions are the mini-

mization of the infeasibility and outcome degradation levels using the box uncertainty
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set. The LS-LPF algorithm was coded in C++ and CPLEX 12.6 was used as the

solver, with tolerance set to 10−5. All experiments were run on a 2.8GHz 8-CPU

CentOS 6.6 64-bits system with 16MB RAM.

The MOLPs were generated based on Steuer (1994), with k ∈ {2, 5} objective

functions. Problem parameters were randomly generated with cij ∈ [−5, 15], aij ∈

[−5, 5], bi ∈ [−5, 5] and density of zeros in the LHS matrix set to 0.20. The efficient

faces of each MOLP were found using the algorithm proposed by Sayin (1996). In a

preliminary analysis, only smaller instances were solved due to the exponential nature

of the algorithm from Sayin (1996) for finding the efficient faces of the MOLPs. These

instances were generated with a number of 5 to 10 decision variables and 5 to 15

constraints. For each problem, 5 different instances were generated.

Table 3.2 shows the results of only those instances where D′ contains outcomes

from more than one efficient face of the MOLP, i.e. excluding the trivial instances

where the weighted sum approach would suffice to find D′. In Table 3.2, NCTR

denotes the number of constraints in the MB-P1 formulation, while NCV and NBV

are the number of continuous and binary variables, respectively; NFACES is the

number of faces of the MOLP containing solutions that are also efficient in view of

the secondary objective functions; the last column denotes the total solution time of

the LS-LPF algorithm.
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Instance NCTR NCV NBV NFACES LS-LPF Runtime
(secs.)

1 45 22 3 2 0.02
2 65 22 3 2 0.02
3 51 26 3 2 0.04
4 53 27 4 2 0.03
5 81 42 4 2 0.04
6 131 58 6 2 0.1
7 110 50 7 3 0.15
8 111 58 7 2 0.08
9 176 82 7 3 0.22
10 168 83 8 2 0.23
11 168 98 11 3 0.21
12 253 146 15 3 0.26
13 257 146 15 2 0.31
14 486 262 25 3 1.04
15 405 234 28 2 1.00

Table 3.2: Experiments with the LS-LPF algorithm on randomly generated instances

Table 3.2 shows that the LS-LPF algorithm can solve relatively small instances

in a short computational time. In order to have a more comprehensive analysis

and a comparison with the TS algorithm, larger instances of MOLPs were randomly

generated with the number of decision variables ranging from 40 to 80 and the number

of constraints set to twice the number of decision variables. For these larger instances,

a simple heuristic was devised to generate efficient faces of the MOLPs. The heuristic

procedure is a modification of the algorithm of Sayin (1996) and consists of generating

n+m faces of the MOLP; each face is denoted by a binary string corresponding to

the indices of the constraints of the problem that are holding at equality at the face.

The heuristic retains only those faces that satisfy efficiency, however it does not

guarantee that the face is maximally efficient.

Table 3.3 compares the runtimes between the LS-LPF and the TS algorithms.
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The last column in Table 3.3 denotes the relative runtime reduction, calculated as

1 - LS-LPF Runtime/TS Runtime. The TS algorithm was also coded in C++ with

the same CPLEX tolerance setting.

Results from Table 3.3 show that the LS-LPF algorithm achieves an average

runtime reduction of 25.8%, with a p-value of 8.8 × 10−6. As before, only those

instances where NFACES > 1 were considered. Of notice is that NFACES is an

upper bound on the actual number of distinct efficient faces of the MOLP that are

associated with solutions that are efficient to MB-P1; this is due to the fact that the

representation of a face by a subset of constraint indices is not necessarily unique

(Sayin, 1996). Although the number of variables and constraints greatly vary in

these instances (e.g. from 346 to 3,420 constraints), NFACES only varies from 2 to

4 efficient faces. This observation is in line with empirical analysis of Sayin (1996)

in the context of MOLP, suggesting that the number of efficient faces typically does

not increase exponentially with the problem size.
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Instance NCTR NCV NBV NFACES TS LS-LPF Improvement
Runtime Runtime
(secs.) (secs.)

1 368 152 2 2 14.4 10.5 26.8%
2 346 162 3 2 12.7 8.9 29.6%
3 394 202 4 2 11.5 6.3 44.9%
4 441 242 5 2 12.3 9.0 26.3%
5 546 302 5 2 37.4 20.7 44.7%
6 482 282 6 2 18.1 15.0 17.0%
7 482 282 6 2 12.9 8.9 30.9%
8 721 452 8 2 48.6 37.5 22.8%
9 1149 722 8 4 343.9 263.2 23.5%
10 801 502 9 2 64.9 44.3 31.8%
11 727 482 11 3 66.6 44.4 33.4%
12 1616 1122 13 2 322.0 334.8 -4.0%
13 1830 1282 15 3 791.5 725.9 8.3%
14 1005 722 17 4 99.3 41.0 58.7%
15 1130 842 20 3 155.9 77.3 50.4%
16 1489 1102 21 3 87.8 78.3 10.8%
17 2762 2082 25 3 2299.2 2448.6 -6.5%
18 3420 2642 32 3 1294.9 1101.0 15.0%

Table 3.3: Runtime analysis of TS and LS-LPF algorithms on randomly generated instances

In order to demonstrate that the runtime reduction from Table 3.3 is not simply

due to improvements on the implementation of the weighted sum method in phase 1

of the algorithm, Table 3.4 compares the runtimes of the LS-LPF and TS algorithms

on instances where NFACES = 1.
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Instance NCTR NCV NBV TS Runtime LS-LPF Runtime Improvement
(secs.) (secs.)

1 1209 952 18 2.19 2.07 5.48%
2 2537 2082 25 2.33 2.56 -9.87%
3 1147 962 31 1.16 1.12 3.45%
4 4224 3682 45 9.04 11.57 -27.99%
5 2739 2402 47 5.82 5.7 2.06%
6 1770 1532 50 1.8 1.71 5.00%
7 2940 2552 50 3.77 3.67 2.65%
8 3063 2802 53 3.77 3.41 9.55%
9 5099 4552 64 4.01 4.66 -16.21%
10 3580 3202 79 8.75 9.53 -8.91%
11 7135 6402 79 4.6 6.99 -51.96%
12 3631 3322 82 2.85 3.17 -11.23%
13 4016 3682 91 10.82 9.79 9.52%
14 5359 4852 96 2.16 2.41 -11.57%
15 4515 4082 101 5.29 4.72 10.78%
16 4785 4322 107 11.45 12.63 -10.31%
17 4907 4442 110 17.14 12.56 26.72%
18 15725 14562 207 193.14 202.5 -4.85%

Table 3.4: Experiments with problems with NFACES = 1

Results from Table 3.4 indicate that the difference between runtimes of the

weighted sum steps in the LS-LPF and TS algorithms are not significant (p-value

of 0.30). Hence, the average runtime improvement of the LS-LPF algorithm on in-

stances in Table 3.3 is likely due to the steps involving phase 2 of the algorithm,

i.e. the search for unsupported Pareto outcomes. While the search in phase 2 of

the TS algorithm can be expensive because they involve a sequence of MIPs with

equal combinatorial complexity, the LS-LPF algorithm solves MIPs with decreasing

number of free binary variables. The approach is possible because the single-choice

constraint
∑S

s=1 zs = 1 in MB-P1 limits the maximum number of MIPs to S in each

upper triangle of phase 2, while Theorem 3.4.1 defines an early stopping condition.
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Otherwise, the possible exponential number of MIPs to be solved would likely hinder

the applicability of the approach.

3.6 Summary and conclusions

This section presented a biobjective mixed binary linear programming formula-

tion to optimize two linear functions, termed secondary objective functions, over

the given efficient set of an MOLP with additional secondary decision variables and

constraints. The formulation connects the areas of biobjective mixed binary linear

programming and biobjective optimization over the efficient set.

The LS-LPF algorithm proposed in this section uses problem structure, which

contains a single-choice constraint, to carry out a search over the efficient faces of

the MOLP and is amenable to parallelization. The procedure can be parallelized

since the search for unsupported Pareto outcomes in different upper triangles is

independent.

Experimental analysis showed runtime improvement with respect to general pur-

pose algorithm for biobjective mixed binary linear programs. The algorithm was

illustrated in the context of finding efficient solutions that are robust to perturba-

tions, using measures of maximum relative constraint violation and objective value

losses as the secondary objective functions.
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4. CASE STUDY APPLICATION IN THE ELECTRICITY GENERATION

CAPACITY EXPANSION PROBLEM TO MINIMIZE COST AND WATER

WITHDRAWAL

4.1 Introduction

Several studies have shown the degree of dependency of electricity generation

on water availability (e.g. Gleick, 1994; Kenny et al., 2009; Blackhurst et al., 2010;

Stillwell et al., 2011; Macknick et al., 2012; Scanlon et al., 2013). Water is intensively

used for cooling processes in thermal power plants, such as in natural gas and coal-

fired facilities. Approximately 40% of total freshwater withdrawals in the U.S. are

used in thermoelectric power plants and water scarcity is a cause of concern for

power grid operators. During the 2011 drought in Texas, a heat wave caused demand

for electricity to reach historic levels, while less than half of the water supply was

available due to the drought. In some cases, water had to be diverted from farm

areas. Some facilities had to reduce operations during night so that the necessary

water would be available for operation during the day, when demand would reach its

peak (Galbraith, 2011; Faeth, 2013; Scanlon et al., 2013). Despite the connections

between water usage and electricity generation, few studies have considered water

requirements when addressing the capacity expansion problem (e.g. Stults, 2015).

The literature is mainly focused on models to optimize cost (e.g. Teghem and Kunsch,

1985; Rabensteiner, 1987; Malcolm and Zenios, 1994; Rentizelas and Tatsiopoulos,

2010; Chaudry et al., 2014) and, more recently, to minimize greenhouse gas emissions

(e.g. Tekiner et al., 2010; Stoyan and Dessouky, 2012; Zhang et al., 2013; Walmsley

et al., 2014; Chen et al., 2015a). This section deals with the case where both cost

and water withdrawal requirements are included in the expansion planning. While
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fossil-fueled technologies are typically price-competitive, their intensive use of water

poses a risk for electricity generation, as illustrated in the previous example. On

the other hand, renewable technologies (e.g. wind and solar power plants) require

minimal use of water. Therefore, the different technologies for capacity expansion

must be analyzed in light of cost and water objectives.

The consideration of uncertainty when addressing the capacity expansion prob-

lem is fundamental to this section; for instance, at the time of building the power

plants, uncertain events or situations not considered in the optimization model may

occur (e.g. changes in regulation and environmental policies, access to limited financ-

ing resources, unexpected land availability or environmental changes, etc.) forcing

those power plants to be built with capacities different to the ones prescribed by the

optimization model, which in turn force design revisions to make the altered system

operable under the new capacities. This example illustrates how systems may be

implemented somewhat different to how they were originally prescribed by an opti-

mization model. While robust optimization typically focus on data uncertainty, such

as the variability on electricity demand and fuel prices (e.g. Murphy et al., 1982;

Malcolm and Zenios, 1994; Jin et al., 2011; Tolis and Rentizelas, 2011; Feng and

Ryan, 2013; Dehghan et al., 2014), our model considers the uncertainty affecting the

designed capacities of the power plants at the time of implementation; we refer to

this as “implementation uncertainty”. In the previous example, one would consider

a solution to be robust if the final power plant capacities yield a total cost and water

withdrawal close to the values previously prescribed by the optimization model; fur-

thermore, assuming that small constraint violations associated with a solution not

meeting the total demand require minor system design modifications, the solution

could also be considered robust if it is almost feasible under the final off-target ca-

pacities. Arguably, this issue may be avoided by increasing the fidelity of the model;
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however, in most real-life problems model fidelity will be limited by the complex-

ity of the mathematical formulation, time constraints, availability and accuracy of

modeling information, among other factors.

Motivated by the need to protect against implementation uncertainty, this section

applies the two-stage methodology introduced in Section 2 for assessing robustness

of solutions from the electricity generation capacity expansion problem. The first

stage considers the biobjective optimization problem to minimize cost and water

withdrawal and finds the corresponding set of efficient solutions. Each solution pre-

scribes a set of locations and technologies for new power plants, as well as their

designed capacities. The second stage considers the problem of finding the subset of

efficient solutions that tend to maintain feasibility and their prescribed cost and wa-

ter withdrawal objective values in the face of unforeseen deviations of their specified

capacities at the time of implementation. A novelty of the proposed methodology is

that the modeling of uncertainty is not conflictive with models considering problem

data uncertainty when solving the first stage problem, which is illustrated in the nu-

merical experiments. In the two-stage methodology, hedging against implementation

uncertainty would be considered hierarchically secondary with respect to solving the

first stage problem, hence providing the decision maker with secondary criteria to

break ties among technologies and locations for the new power plants.

The applicability of the methodology is illustrated in the context of Texas, USA,

to demonstrate how it could be used to answer strategic questions concerning long-

term capacity expansion planning. Strategic questions considered include: how does

the trade-off among cost, water withdrawal and uncertainty affect technology and

location selection required to meet demand for 2040; how robust solutions compare

to other efficient solutions when subjected to implementation uncertainty; the loca-

tions that should be prioritized in order to minimize cost and water requirements;
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the minimum number of power plants that should be built; the effect of demand un-

certainty; and the impact of varying dispatchability requirements. The experiments

demonstrate how it might be advantageous to use robustness as secondary criteria

to break ties among technologies and locations in the selection of power plants.

The remainder of this section is organized as follows. Section 4.2 introduces the

model and formulation of the biobjective electricity generation capacity expansion

problem. Section 4.3 describes the robustness assessment methodology. Section

4.4 shows the experimental analysis applied in the case of Texas, while section 4.5

provides concluding remarks.

4.2 Definition and formulation of the electricity generation capacity expansion

problem

The electricity generation capacity expansion problem dealt with in this section

is defined as the optimization problem to find locations, technology types and design

capacities for new power plants required for meeting additional forecasted demand

for electricity. The decisions variables are to determine the locations and technologies

of new power plants, as well as their designed capacities, and the objective functions

minimize cost and water withdrawal, while satisfying the additional demand for

electricity generation.

The set of available technologies include both dispatchable and non-dispatchable

alternatives. A dispatchable technology, such as nuclear and natural gas-fired power

plants, is one that can be turned on and off as needed with relative ease, allowing

the operator to control the level of supply based on the economic attractiveness of

the technology and on demand variability. While wind and other forms of renewable

energy might be advantageous for minimizing environmental impact, such as green-

house gas emissions, the electricity generated by these technologies is intermittent

87



due to weather conditions, hence cannot be controlled by the operator in the same

way that dispatchable technologies are (Joskow, 2011). Therefore, we model the ca-

pacity expansion problem such that at least a given p % of the additional electricity

generated by new facilities is required to rely on dispatchable technologies. Here, p

is termed the dispatchability requirement.

A cost parameter relates the $/MWh of generating electricity from a new power

plant in a specific location, for a given technology. It is assumed that the parameter

includes all annualized costs necessary for generating electricity, such as capital costs,

operating expenses, emissions, maintenance and financial costs.

A water withdrawal parameter relates the amount of water required to generate

1 MWh of electricity utilizing a specific technology. A weight factor penalizes wa-

ter withdrawals in those power plants that are prescribed in locations where water

resources are more scarce. Therefore, the problem not only prescribes the technolo-

gies that minimize water withdrawal, but also considers their locations in order to

minimize the impact on areas most affected by droughts.

The design capacities of the prescribed power plants are required to comply with

given upper and lower bounds. These bounds typically represent engineering design

limitations associated with each technology.

The problem is modeled considering assumptions that are frequent in the related

literature (e.g. Tekiner et al., 2010; Mustakerov and Borissova, 2011; Stults, 2015):

(1) the additional electricity demand should be met from new power plant capacity

(i.e. as opposed to meeting the demand from reserve levels); (2) at most one new

power plant is allowed to open at each potential location; (3) problem parameters

are known (this assumption will be partially relaxed in the experimental analysis,

where we will demonstrate how implementation uncertainty may be dealt with in the

case where electricity demand is also assumed to be uncertain); (4) the model does
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not account for transmissions losses. Transmission losses may be incorporated into

the model by further considering the available transmission lines and their distances

to each location; (5) capacity factors are given for each technology, independently of

the location of a power plant. While the model may be further extended to consider

data at a location-level (such as wind speed at each location to determine a more

accurate capacity factor dependent on the region), we utilize a constant capacity

factor across locations for the sake of illustrating the proposed methodology for

long-term planning.

Symbol Description
Sets :
J Set of available technologies
Jd Subset of technologies that are dispatchable, Jd ⊆ J
I Set of potential locations for power plants
Parameters :
cij Cost of electricity generation using technology j ∈ J at location i ∈ I

in $/MWh
wj Water withdrawal requirement for technology j ∈ J in gal/MWh
si Water scarcity factor at location i ∈ I (dimensionless)
gj Capacity factor for technology j ∈ J (dimensionless)
E Energy generation requirement in MWh to satisfy additional demand
p Minimum proportion of energy generation requirement to be met from

dispatchable technologies
Lj Minimum capacity (MW) required from a new power plant using tech-

nology j ∈ J
Uj Maximum capacity (MW) required from a new power plant using tech-

nology j ∈ J
Decision variables :
xij Designed capacity (MW) of a power plant at location i ∈ I using tech-

nology j ∈ J
yij Equals 1 if technology j ∈ J is selected at location i ∈ I and 0 otherwise

Table 4.1: Notation of the BO-CEP
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The notation in the formulation of the problem is presented in Table 4.1. The

biobjective electricity generation capacity expansion problem (BO-CEP) is formu-

lated as a bicriterion program to minimize total cost and water withdrawal. The

formulation is shown next:

Min

(
f1(x) =

∑
i∈I

∑
j∈J

8760cijgjxij, f2(x) =
∑
i∈I

∑
j∈J

8760siwjgjxij

)T

(4.1)

s.t. 8760
∑
i∈I

∑
j∈J

gjxij ≥ E (4.2)

8760
∑
i∈I

∑
j∈Jd

gjxij ≥ pE (4.3)

∑
j∈J

yij ≤ 1 ∀i ∈ I

(4.4)

Ujyij − xij ≥ 0 ∀j ∈ J ; i ∈ I

(4.5)

xij − Ljyij ≥ 0 ∀j ∈ J ; i ∈ I

(4.6)

xij ≥ 0 ∀j ∈ J ; i ∈ I

(4.7)

yij ∈ {0, 1} ∀j ∈ J ; i ∈ I

(4.8)

The objective functions in (4.1) minimize total annual cost for generating the

required additional electricity and total annual water withdrawals, weighted by a

scarcity factor si associated with the extent to which water resources are available
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at each location i ∈ I. Constraint (4.2) ensures that the capacity expansion will

meet the additional demand for electricity while (4.3) guarantees that p % of the

energy generated will come from dispatchable technologies. Constraints (4.4) allow

at most one new power plant per location. Constraints (4.5) and (4.6) ensure that

the capacity of each new power plant will fall within the given minimum and max-

imum capacity bounds associated with each technology. Nonnegativity and binary

requirements are given by (4.7) and (4.8).

The BO-CEP is a mixed binary linear program and the efficient set can be dis-

connected in the general case (Vincent et al., 2013). In this section, we solve the

BO-CEP via the ε-constraint method (Haimes et al., 1971) in order to obtain a dis-

crete set of efficient solutions. In the ε-constraint method, one of the objectives is

selected as the single objective function to be minimized, whiled the remaining ob-

jectives are converted into constraints, where their upper bounds are systematically

modified. In Miettinen (1999), it is shown that every solution obtained from altering

the upper bounds in the ε-constraint approach is efficient.

4.3 Methodology for robustness assessment in the BO-CEP

This section describes how the methodology to assess robustness of efficient so-

lutions previously introduced in Section 2 may be applied to the BO-CEP when

the prescribed capacities of the power plants are subjected to implementation un-

certainty. The uncertainty is given by a multiplicative perturbation factor on the

prescribed capacities of power plants. Definition 8 is an adaptation of Definition 4

to the case of the BO-CEP and is formalized next.

Definition 8. For some level of uncertainty α > 0, the perturbation factor β̃ =

(β̃11, ..., β̃|I||J |)
T is a random vector such that 1−α ≤ β̃ij ≤ 1+α, for all i ∈ I, j ∈ J .

Given a realization β of β̃, βx = (β11x11, ..., β|I||J |x|I||J |)
T denotes a perturbation on
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the prescribed power plant capacity values.

Let U denote the uncertainty set of all possible realizations of the perturbation

factor β̃. In this section, two particular uncertainty sets are considered: the box

and the cardinality-constrained uncertainty sets. The former represents the most

conservative case where it is assumed that all power plant design capacities can be

simultaneously affected by uncertainty. The later allows the decision maker to control

the level of conservatism when finding robust solutions, and arises when the number

of power plant capacities that are simultaneously affected by uncertainty is limited

by some non-negative integer parameter Γ. The most optimistic case is represented

by letting Γ = 1, implying that only 1 power plant will have its design capacity

affected by perturbations; the worst case, i.e. when the decision maker assumes

that all n power plant capacities can be simultaneously affected by perturbations, is

represented by letting Γ = n. Of notice is that Γ = 0 reduces to the deterministic

problem, where all values of the variables are assumed to be known with certainty.

The box uncertainty set is the special case of the cardinality constrained uncertainty

set with Γ = n.

Considering the box and the cardinality-constrained geometries, the uncertainty

sets in the BO-CEP will given by, respectively:

Ubox = {β ∈ R|I||J | : (1− α) ≤ βij ≤ (1 + α) ∀i ∈ I, j ∈ J} (4.9)

Ucard = {β ∈ R|I||J | : (1− α)zij ≤ βij ≤ (1 + α)zij ∀i ∈ I, j ∈ J ;
∑
i∈I

∑
j∈J

zij ≤ Γ;

z ∈ {0, 1}|I||J |} (4.10)
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Given the demand satisfaction constraint (4.2) and the dispatchability require-

ments (4.3) in the BO-CEP formulation, the worst case constraint violation will be

when the perturbation factor takes the value βij = 1 − α, for all locations i ∈ I

and technologies j ∈ J ; in contrast, the worst case objective value loss will be when

βij = 1 + α, for all i ∈ I and j ∈ J .

In this section, we consider the degree of infeasibility with respect to constraints

(4.2) and (4.3) in the BO-CEP. It is implied that violating capacity bounds con-

straints (4.5) and (4.6) are not as significant as violating the constraints associated

with the demand for electricity generation from constraints (4.2) and (4.3). Hence,

the infeasibility level from Definition 5 becomes:

δ(x) = max
β∈U

{
E − 8760

∑
j∈J
∑

i∈I βijgjxij

E
,
pE − 8760

∑
j∈Jd

∑
i∈I βijgjxij

pE

}
(4.11)

In order to assess solution robustness, the outcome degradation level from Defi-

nition 6 becomes:

γ(x) = max
β∈U

{
f1(βx)− f1(x)

f 1 − f 1

,
f2(βx)− f2(x)

f 2 − f 2

}
(4.12)

where the values of f 1, f 1
, f 2 and f

2
are the individual maximum and minimum of

cost and water objectives, respectively, over the set of solutions in X .

The set of robust solutions is given by X ′ = {x ∈ X : @x′ ∈ X such that

δ(x′) ≤ δ(x) and γ(x′) ≤ γ(x) with at least one inequality holding strictly}, and

denotes the subset of efficient solutions from the BO-CEP that are non-dominated

with respect to the measures of infeasibility and outcome degradation levels. Given
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that X is assumed to be represented by a discrete set of solutions in this section,

X ′ may be obtained by computing the values of the functions in δ(x) and γ(x) for

each solution x ∈ X and filtering out the ones that are dominated in view of the

robustness measures. The filter in this case, simply consist of pairwise dominance

comparisons of the efficient solutions identified by the ε-constrained method. Figure

4.1 summarizes the application of the methodology in the BO-CEP.
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Efficient solutions 
from the BO-CEP 

Subset of robust 
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Figure 4.1: Robustness methodology applied to the BO-CEP

As will be illustrated in our experimental study in Section 4.4, the set of effi-

cient solutions X in the BO-CEP may comprise a large number of solutions. The

robustness measures as given in (4.11) and (4.12) may aid decision making for ca-

pacity expansion planning by providing secondary criteria to break ties among those

efficient solutions that are more stable in face of implementation uncertainty.
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4.4 Electricity generation capacity expansion in the case of Texas

The State of Texas withdraws an average of 23,600 million gallons of freshwater

per day, of which 9,680 million gallons are dedicated to power plant cooling, the sec-

ond highest averages across all States in the U.S. (Kenny et al., 2009). With demand

for electricity expected to grow by an average of 0.7% per year for the next decades

(EIA, 2015a), water requirements for cooling processes may introduce vulnerabil-

ity into the system, i.e. if the capacity expansion mainly relies on thermoelectric

power plants and the severity of droughts in Texas increases, water shortages may

hamper operations of the new power plants. Motivated by these circumstances, this

section shows the application of the proposed biobjective formulation and robust-

ness methodology to discuss key strategic questions for long-term capacity expansion

planning for meeting the projected electricity demand for year 2040 in Texas. In par-

ticular, numerical experiments are developed and the following issues are discussed:

(Q1) How does the trade-off among cost, water withdrawal and implementation un-

certainty affect the technology and location selection of power plants required

to meet projected electricity demand?

(Q2) How do robust solutions compare to other efficient solutions when subjected

to implementation uncertainty?

(Q3) What are the locations that should be prioritized for deploying the new power

plants in order to minimize cost and water withdrawal? What is the minimum

number of new power plants that should be built in order to meet the projected

electricity demand?

(Q4) What is the impact of demand uncertainty on the robust technology-location

solutions?
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(Q5) What is the impact of changing the dispatchability requirement of new power

plants on the resulting technology-location solutions, as well as on cost and

water withdrawal?

If the focus for capacity expansion is on reducing water withdrawal, renewable

technologies would be probably prioritized as their water requirements are marginal.

On the other hand, solutions that focus on reducing cost would likely rely on fossil-

fueled technologies. Therefore, it must be considered how cost and water withdrawal

are affected by different combinations of technologies and locations, while meeting

the necessary demand and dispatchability requirements. Since the number of efficient

solutions in the BO-CEP may be large, of interest is to consider how effective is the

methodology in breaking ties among solutions, to provide the decision maker with

a reduced set of technologies and locations to choose from. Hence, of interest is to

study the trade-off among cost, water withdrawal and robustness of solutions.

The advantages of implementing second-stage robust solutions, rather than other

first-stage non-robust solutions, must be evaluated to demonstrate the benefit of the

proposed methodology. In addition, if the level of uncertainty is unknown, it becomes

necessary to assess the sensitivity of robust solutions with respect to changes α. This

would allow the decision maker to understand how different levels of uncertainty may

affect the selection of a solution for implementation.

The locations of the new power plants must also be considered because the perfor-

mance in terms of cost and water withdrawal are likely dependent on the prescribed

regions for these facilities. Technologies that require a more intensive use of land,

such as in the case of biomass power plants, may need to focus on less expensive land

areas. Similarly, droughts can vary significantly across different regions; thermoelec-

tric power plants that require more extensive water withdrawals would probably need
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to focus on areas where water resources are less scarce. Deploying new power plants

across several regions would likely require challenging coordination within govern-

mental agencies, public organizations and the private sector. Hence, it becomes

necessary to consider what would the minimum number of new power plants that

should be built and what locations should be prioritized in order to minimize cost

and water withdrawal, while being robust to implementation uncertainty.

One of the major difficulties facing decision makers in long-term capacity ex-

pansion planning is demand uncertainty. Although the proposed methodology is in-

tended to hedge against implementation uncertainty, it is non-conflictive with models

that take into account uncertainty in problem data. Therefore, of interest becomes

analyzing how electricity demand uncertainty can affect the set of solutions that are

robust to implementation uncertainty.

Another important factor for deploying the new power plants is related to the

amount of electricity generated from dispatchable technologies since they provide

means to satisfy peak demand. While renewable sources of energy require minimal

use of water, such as in wind and solar power plants, these are non-dispatchable

technologies, leaving the operator with less flexibility to adapt to demand variability.

Changing the dispatchability requirement p can affect the prescribed technologies and

locations for the new power plants. Therefore, it becomes necessary to understand

how different levels of dispatchability requirements may affect the resulting set of

solutions, as well as their impact on total cost and water withdrawal requirements.

4.4.1 Problem data

In Texas, the total required electricity generation E to meet additional demand for

year 2040 was estimated as 67,539 GWh. The value of E was obtained by considering

the net generated load of 339,643 GWh during 2014 on the ERCOT grid (ERCOT,
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2014) and the expected annual increase of 0.7% in electricity demand (EIA, 2015a).

The available technologies and their cooling systems, where applicable, were the

following: (1) conventional coal, cooling tower; (2) advanced coal, cooling tower; (3)

natural gas conventional combined cycle, pond cooling; (4) advanced natural gas

combined cycle, open loop cooling; (5) nuclear, pond cooling; (6) biomass from en-

ergy crop, pond cooling; (7) wind onshore; (8) solar PV flat paneled. Geothermal

and hydro power plants were not considered in this case study due to the nature

of geological formation and geography of Texas. Technologies (1)-(6) are considered

dispatchable, while (7)-(8) are non-dispatchable. Water withdrawal requirement pa-

rameters wj were taken from Macknick et al. (2011) for biomass technology, and from

Meldrum et al. (2013) for the remaining technologies. Their values are presented in

Table 4.2. The use of water in wind and solar power plants are minimal and are

required for periodic cleaning.

The upper and lower bounds on the design capacity for power plants from each

technology were defined by considering current minimum and maximum nameplate

capacities of power plants in operation in the U.S. (EIA, 2013). The capacity factors,

gj, were assumed from EIA (2015b).

The potential locations considered for the new power plants were taken from

TAMU (2015) and are given by 33 land market areas (LMA) in Texas, as illustrated

in Figure 4.4.1.

The scarcity factor, si, was obtained by considering the Palmer Drought Sever-

ity Index (PDSI) at each location, which reflects long-term drought and considers

temperature, and precipitation data (TWDB, 2015b). In the experimental analysis,

the median monthly PDSI values between 2013 and 2014 were used, normalized to

a scale from zero to one. Table 4.3 shows the values of water scarcity factor for each

location.
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Figure 4.2: Potential locations for new power plants

Adapted from: TAMU (2015)

In order to estimate the cost parameters, cij, the values from EIA (2015b) of

levelized cost of electricity (LCOE) and levelized avoided cost of electricity (LACE)

for year 2040 were considered for each technology. As suggested by EIA (2015b),

comparing each technology’s LACE to its LCOE may be used in order to deter-

mine which set of technologies provide the best net economic value for the capacity

expansion planning, and is appropriate for situations where both dispatchable and

non-dispatchable technology options are considered. Subtracting LACE from LCOE

provides a surrogate measure associated with the generating cost per MWh of the

corresponding technology.

The cost parameters will be likely dependent on land prices, and the impact of
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land price on cost is typically higher on those technologies requiring more extensive

use of land. In order to adjust the cost parameter to a specific technology, the

required land area to generate 1 MWh of electricity was taken from McDonald et al.

(2009). To further adjust the cost to a specific location, the 2014 median price

per acre at each potential location was taken from TAMU (2015). Mone et al.

(2015) estimate that the contribution of land price on the LCOE of onshore wind

technology is approximately 3%, so the variation of the cost for wind technology

among all locations was restricted to 3% of the total range of variability on the cost

from EIA (2015b) for wind. Taking wind as a reference case, the variations of the

cost parameter for the remaining technologies were restricted from 1% to 15% of the

corresponding total ranges of variability in EIA (2015b), proportionally to the land

use of each technology. This is shown in Table 4.2.

Technology Cost parameter ($/MWh) Water withdrawal
Lower limit Median Upper limit (gal/MWh)

Conv. coal 12.62 12.8 12.98 660
Adv. coal 26.44 26.6 26.76 600
Conv. natural gas 3.24 3.3 3.36 6,000
Adv. natural gas 0.05 0.1 0.15 9,000
Nuclear 10.20 10.3 10.40 1,100
Biomass 11.47 13.9 16.33 450
Wind - onshore 2.61 3.4 4.19 1
Solar PV 15.41 16.1 16.79 6

Table 4.2: Water withdrawal requirements and range of variation for cost parameters

From Table 4.2, the cost associated with each technology at each location was

adjusted by land prices. Table 4.3 shows the resulting cost parameters, cij, for each
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location and technology used in the experiments. Appendix B provides further details

on the formula used to adjust the cost parameters.

LMA Conv.
Coal

Adv.
Coal

Conv.
N.G.

Adv.
N.G.

Nu-
clear

Bio-
mass

Wind Solar
PV

Water
scarcity

1 12.67 26.49 3.26 0.06 10.23 12.23 2.85 15.62 0.7508
2 12.65 26.47 3.25 0.05 10.22 11.87 2.74 15.52 0.7508
3 12.66 26.48 3.25 0.06 10.23 12.06 2.80 15.58 0.7508
4 12.64 26.46 3.25 0.05 10.22 11.77 2.71 15.49 0.7508
5 12.65 26.47 3.25 0.06 10.22 11.94 2.76 15.54 0.7508
6 12.64 26.47 3.25 0.05 10.22 11.80 2.72 15.50 0.7542
7 12.65 26.48 3.25 0.06 10.22 11.96 2.77 15.55 0.7542
8 12.62 26.44 3.24 0.05 10.20 11.47 2.61 15.41 0.7096
9 12.67 26.49 3.26 0.06 10.23 12.18 2.84 15.61 0.7100
10 12.78 26.58 3.29 0.09 10.29 13.64 3.32 16.03 0.7058
11 12.69 26.51 3.26 0.07 10.24 12.44 2.93 15.69 0.7058
12 12.67 26.49 3.26 0.06 10.24 12.25 2.86 15.63 0.6749
13 12.72 26.53 3.27 0.08 10.26 12.82 3.05 15.79 0.6749
14 12.75 26.55 3.28 0.08 10.27 13.19 3.17 15.90 0.7100
15 12.72 26.54 3.27 0.08 10.26 12.89 3.07 15.81 0.7100
16 12.86 26.65 3.32 0.12 10.33 14.74 3.67 16.34 0.7100
17 12.98 26.76 3.36 0.15 10.40 16.33 4.19 16.79 0.7100
18 12.83 26.62 3.31 0.11 10.31 14.26 3.52 16.20 0.7492
19 12.87 26.66 3.32 0.12 10.34 14.85 3.71 16.37 0.7492
20 12.75 26.56 3.28 0.09 10.28 13.27 3.19 15.92 0.7492
21 12.77 26.57 3.29 0.09 10.28 13.44 3.25 15.97 0.6892
22 12.79 26.59 3.30 0.10 10.30 13.78 3.36 16.06 0.6749
23 12.88 26.66 3.33 0.12 10.34 14.89 3.72 16.38 0.6749
24 12.76 26.57 3.29 0.09 10.28 13.43 3.25 15.97 0.6749
25 12.73 26.54 3.28 0.08 10.26 12.95 3.09 15.83 0.6749
26 12.84 26.64 3.31 0.11 10.32 14.49 3.59 16.27 0.7492
27 12.86 26.65 3.32 0.12 10.33 14.65 3.65 16.31 0.5379
28 12.96 26.74 3.35 0.15 10.38 16.02 4.09 16.70 0.6892
29 12.70 26.52 3.27 0.07 10.25 12.62 2.98 15.74 0.5379
30 12.73 26.54 3.28 0.08 10.27 13.03 3.12 15.85 0.5379
31 12.73 26.54 3.28 0.08 10.26 12.97 3.10 15.84 0.5379
32 12.75 26.56 3.28 0.09 10.28 13.27 3.19 15.92 0.5488
33 12.92 26.70 3.34 0.14 10.36 15.53 3.93 16.57 0.7096

Table 4.3: Cost ($/MWh) and water scarcity parameters used in the experimental analysis

In this study, the base case scenario for dispatchability requirement was set to
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p = 50%. This would enable the State of Texas to reach up to 17 % of its electricity

generated from renewable sources, close to the leading States in the U.S. in the use

of such technologies (EIA, 2011). For the sake of illustration, the level of uncertainty

was assumed as α = 0.05. Where indicated, different values for both the level of

uncertainty and the dispatchability requirements were also tested. The BO-CEP

was solved via the ε-constraint method using a step increment of 500 Kgal for the

water objective. The ε-constraint method was programmed in C++ and CPLEX

12.6 was used as the solver. The robustness methodology was applied using the

cardinality constrained uncertainty set with Γ = 1, as well as the box uncertainty

set, in order to show the behavior of robust solutions in the most optimistic and the

most conservative cases of robustness. The assessment of infeasibility and outcome

degradation levels, as well as the filtering of non-robust solutions, was coded in C++.

4.4.2 Strategic analysis

This section presents the results on the experimental study and the analysis in

light of the strategic questions mentioned before.

4.4.2.1 How does the trade-off among cost, water withdrawal and implementation

uncertainty affect the technology and location selection of power plants?

The trade-off between cost and water withdrawal is illustrated in Figure 4.3,

corresponding to 100 efficient solutions obtained via the ε-constraint method. The

solutions that are robust to implementation uncertainty, as well as solutions that are

optimal to cost and water objectives, are labeled with their corresponding solution

indices.
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Figure 4.3: Trade-off among cost, water and robustness

The cost objective values in Figure 4.3 range from $377/hour to $71,259/hour,

while water withdrawal objective values range from 1,232,059 gal/hour to 50,732,059

gal/hour. While there were 100 efficient solutions obtained via the ε-constraint

method, the set of robust solutions contains only 1 solution in the case with the box

uncertainty set and 4 solutions in the case with the cardinality constraint; this clearly

illustrates how the proposed methodology helps the decision maker select promising

solutions from a large set of efficient solutions. In the case with the box uncertainty

set, only Solution 74 is found to be robust to implementation uncertainty. As per

Theorem 2.4.5, this will be always the case. Solution 74 is a compromise between

water and cost objectives lying close to the middle of the ranges of both objec-

tives. In the case with the cardinality constraint, the set of robust solutions is given

by: Solutions 71-73, which are a compromise between the two objective functions

(similar to Solution 74); and Solution 100, which is also the optimal solution for
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water withdrawal. Figure 4.4 shows the trade-offs between infeasibility and outcome

degradation levels.
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Figure 4.4: Trade-off between infeasibility and outcome degradation levels

While the values of infeasibility and outcome degradation levels for Solutions

71-74 remain somewhat close, Solution 100 has a higher outcome degradation and a

lower infeasibility level in the box uncertainty set case. For the purpose of illustration,

Solution 1, which is optimal for cost, is also shown in Figure 4.4. Solution 1 is not

robust neither in the box nor in the cardinality constrained cases; in fact, Solution

1 has the worst outcome degradation level when considering the case with the box

uncertainty set. This suggests that selecting a solution purely on cost objective may

yield an alternative that is highly sensitive to implementation uncertainty.

Figure 4.5 shows the locations and technologies for those solutions that are op-

timal for cost (Solution 1) and water (Solution 100), as well as the unique solution
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that is robust in the case with the box uncertainty (Solution 74). Solutions 71-73

(robust in the case with the cardinality constraint) prescribe the same locations and

technologies as Solution 74, with the only difference being the designed capacities

associated with the power plants. Table 4.4 presents the capacity prescribed by each

solution for each technology and the associated objective values.

Capacity Sol.1 Sol. 71 Sol. 72 Sol. 73 Sol. 74 Sol. 100
Conv. Coal (MW) - - - - - 1,337
Adv. Coal (MW) - - - - - 753
Conv. N.G. (MW) - 2,090 2,446 2,802 3,158 -
Adv. N.G. (MW) 8,862 2,341 1,985 1,629 1,273 -
Biomass (MW) - - - - - 2,504
Wind (MW) - 10,708 10,708 10,708 10,708 10,708
Object. values
f1(x) ($/hour) 377 17,084 18,074 19,064 20,055 71,259
f2(x) (gal/hour) 50,732,059 15,732,059 15,232,059 14,732,059 14,232,059 1,232,059

Table 4.4: Additional capacity prescribed by solutions from the BO-CEP

The cost-optimal Solution 1 prescribes the deployment of 3 advanced natural gas

power plants. Although Solution 1 is optimal for cost, it is the worst efficient solution

in terms of water withdrawal. The prescribed locations are within the regions most

affected by droughts in Texas: the high plains and the low rolling plains, in the west-

ern half of Texas. In addition, Solution 1 is highly sensitive to uncertainty, as shown

in Figure 4.4. These reasons would likely hinder its selection for implementation.
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The water-optimal Solution 100 prescribes the deployment of power plants in

all of the 33 locations. This would likely require challenging coordination among

several entities (public/private sector) for implementation. Although Solution 100

is optimal for water withdrawal and robust in the optimistic case, it is the worst

efficient solution in terms of cost. In addition, it prescribes deploying new coal-fired

power plants. Although not considered in the model, environmental regulations tend

to limit the construction of new coal-fired facilities (e.g. Venkatesh et al., 2012);

hence, the selection of such a solution would be unlikely.

The robust Solutions 71-74 prescribe the deployment of wind power plants across

several locations in Texas, mostly clustered in the high plains and low rolling plains,

hence avoiding any additional water withdrawal in areas where droughts occur more

often. They also prescribe natural gas power plants in East Texas, where water

resources tend to be less scarce.

Considering the different technologies among efficient solutions, Figure 4.6 shows

that power plants prescribed with biomass, wind and advanced coal technologies

tend to have lower design capacity values; this is mainly due to the associated design

upper bound constraints (4.5) in the BO-CEP formulation. In contrast, advanced

natural gas power plants are prescribed with a higher average capacity.

The experiments show that the total capacity from wind and advanced natural

gas technologies influence the cost and water withdrawal associated with a solution.

These are the predominant technologies within the set of efficient solutions; other

technologies, such as nuclear and coal, are not as often prescribed. Figure 4.7 shows

the effect of wind and advanced natural gas technologies on cost and water objec-

tives. As the contribution of advanced natural gas on total capacity increases, the

associated cost of the solution decreases, at the expense of higher water withdrawals.

As wind capacity is increased, the associated cost of a solution is also increased, while
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Figure 4.6: Power capacity per technology

water withdrawal is reduced. Of notice is that there are no cases where solar tech-

nology is prescribed. Although solar only requires marginal water withdrawals, its

cost is higher than the one for wind technology (EIA, 2015b); arguably, this scenario

could change if the associated costs are affected.

The solutions indicate different regions for deployment of the necessary power

plants. Figure 4.8 shows the average capacity prescribed at each location, across all

solutions. Figure 4.9 presents the allocation of capacity for each technology at the

top 10 locations with higher average capacities from Figure 4.8. Solutions that select

locations 29-31, in East Texas, predominantly rely on natural gas and other fossil-

fueled technologies. In contrast, solutions that select locations 2-8, in West Texas,

rely mainly on wind technology. While fossil-fueled power plants are prescribed with

larger designed capacities and contribute towards minimizing cost and satisfying

dispatchability requirements, wind power plants are allocated in regions where water

resources are more scarce, contributing towards reducing total water withdrawal.
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Figure 4.7: Effect of wind and advanced natural gas on cost and water
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4.4.2.2 How do robust solutions compare to other efficient solutions when

subjected to implementation uncertainty?

To demonstrate advantages of using robustness measures as secondary criteria

to further break ties among the many efficient solutions from the first-stage MOP,

a simulation model was devised to randomly perturb the designed capacities of the

power plants and assessed the actual infeasibility and outcome degradation levels.

For each of the efficient solution previously found, a simulation trial consisted of

randomly perturbing the designed capacity associated with each power plant by a

multiplicative factor β̃ ∼ U(1−α, 1+α) and computing the corresponding infeasibil-

ity and outcome degradation levels associated with the perturbed values. A total of

10,000 simulation trials were generated. Figure 4.10 presents the average simulated

values of infeasibility and outcome degradation levels for each efficient solution.
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Figure 4.10: Average values for the simulation run
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As shown in Figure 4.10, the set of solutions that are robust in the simulation

run is given by Solutions 71-74 and 100. They are the union of robust solutions

previously obtained from the different levels of decision maker’s conservatism. This

demonstrates that robust solutions tend to effectively maintain feasibility and sta-

bility of objective values. While selecting a most preferred solution out of the 100

efficient solutions may be challenging for decision making, the two-stage methodology

narrowed the selection problem to only five solutions in the simulation run.

To emphasize the benefits of selecting from the set of robust solutions, consider

two common sense approaches for finding a most preferred solution: the knee and the

weighted sum approaches. In the knee approach (Branke et al., 2004), the decision

maker selects from efficient solutions where a small improvement in one objective

would lead to a large deterioration in at least on other objective. The two knee solu-

tions in this example (Solutions 28 and 65) have their average simulated infeasibility

and outcome degradation levels shown in Figure 4.10. These solutions tend to be

highly sensitive to implementation uncertainties and are dominated by the robust

Solution 100 in terms of infeasibility and outcome degradation levels in the simula-

tion run. In the weighted sum approach (Steuer, 1986), the decision maker selects

the efficient solution that minimizes the weighted sum of the objective functions,

where the weights point to the direction of the gradient of the decision maker’s util-

ity function. The knee Solution 65 would also be the weighted sum optimal solution

when assuming a weight factor of 0.5 for each objective function and normalizing

the objective values to a range from zero to one. These examples show how common

sense may lead decision making to solutions having high infeasibility and outcome

degradation levels.

In order to compare the maximum degradation of cost and water objective values,

consider the robust Solution 74, and the non-robust Solutions 1 and 92. Assuming the
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box uncertainty set, the cost and water objective values and their maximum degra-

dation are shown in Figure 4.11. When subjected to implementation uncertainties,

it is evident that the cost and water withdrawal are severely affected for Solution

92 and Solution 1, respectively. In contrast, the maximum degradation of objective

values in robust Solution 74 is a balance between cost and water withdrawal, and

so are the objective values of the solution. This suggests that using the proposed

measures of robustness to break ties among technologies and locations tends to drive

decision making in the conservative case towards solutions that are less affected by

implementation uncertainty in a compromise between water and cost objectives.
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Figure 4.11: Cost and water objective values and their degradations

While using the proposed methodology to break ties among technologies and

locations, of interest is the consideration of how sensitive the robust solutions are

to changes in the level of uncertainty. In the case with the box uncertainty set,

Theorem 2.4.6 guarantees that Solution 74 will remain robust for any value of α.

In order to illustrate how the robust set is affected in the case with the cardinality
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constraint, the second stage problem was solved considering the cases of α = 0.01

and α = 0.50. The associated infeasibility and outcome degradation levels are shown

in Figure 4.12. In both cases, the set of robust solutions is comprised by Solutions

71-73 and 100, the same as in the base case, when α = 0.05 was assumed.
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Figure 4.12: Robust solutions for different values α; optimistic case (cardinality constraint,
Γ = 1)

In this experimental study, even when the cardinality-constrained uncertainty

set is assumed, the corresponding set of robust solutions showed to be insensitive to

implementation uncertainty. This suggests that the methodology may be effectively

utilized even when the level of uncertainty, given by parameter α, is unknown.

4.4.2.3 What are the locations that should be prioritized for deploying the new

power plants in order to minimize cost and water withdrawal? What is the

minimum number of new power plants that should be built?

The analysis of the efficient solutions from the BO-CEP indicates that at least 3

power plants should be built in order to provide the additional capacity. Figure 4.13
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shows that as the number of power plants increases, total cost increases, while water

withdrawal tends to decrease.
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Figure 4.13: Effect of the number of power plants on cost and water withdrawal

Figure 4.14 shows that the number of different technologies prescribed in a so-

lution increases with the number of locations. When the number of locations is

minimal, only one technology is prescribed: advanced natural gas; in this case, the

solution will have a lower cost and a higher water withdrawal, as illustrated previ-

ously for Solution 1. Solutions that select a larger number of locations across Texas

tend to rely on a larger number of technologies. For instance, this is the case of

Solution 100, previously discussed.
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The frequency that a location is selected varies across different regions, as shown

in Figure 4.15. Regions having a higher land price, such as locations 17, 28 and

33, tend to be selected less frequently. The allocation of wind power plants tends to

concentrate in the western areas of Texas, such as in locations 1-9. On the other hand,

fossil-fueled technologies tend to cluster in locations 29-31, in East and Northeast

Texas. This result is in agreement with the current distribution of power plants in

Texas: the western half of the State, where droughts occur more often, rely more

on wind technology, while eastern areas, which receive more rainfall, rely mostly on

natural gas and coal-fired power plants (Stillwell et al., 2011).
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Figure 4.15: Frequency of selection of each location

4.4.2.4 What is the impact of demand uncertainty on the robust

technology-location solutions?

A simulation-optimization model was developed in order to assess how electricity

demand uncertainty can affect the set of solutions that are robust to implementation

uncertainty. For the purpose of this study, it was assumed that demand is uniformly

distributed centered at the nominal value E = 67, 539 GWh, ±20%. A simulation

trial consisted of randomly generating a demand value from U(0.8E, 1.2E), solving

the associated instance of the BO-CEP and computing the infeasibility and outcome

degradation levels of the corresponding efficient solutions. A total of 1,000 trials

were generated.

Figures 4.16 and 4.17 show the frequency that each location and technology is

prescribed in the set of robust solutions from the simulation run in the case with the

box and the cardinality-constrained uncertainty sets, respectively.
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Figure 4.16: Robust solutions in the simulation run; conservative case (box uncertainty

set)

In the box uncertainty set case, the robust solutions prescribe technologies and

locations similar to the case when demand is assumed to be known: wind is assigned

in locations 1-9, 11-15, 25 and 29, while natural gas is assigned in locations 30-

31. There were cases where additional natural gas power plants were allocated in

locations 27 and 29, when demand was higher than the average.
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Figure 4.17: Robust solutions in the simulation run; optimistic case (cardinality constraint,

Γ = 1)

In the cardinality constraint case, robust solutions are also similar to the ones

when demand is assumed to be known: wind is prescribed across several regions,

such as in locations 1-9 and 11-15, while natural gas is prescribed mainly in 29-31.

A few cases of biomass are also prescribed, similar to Solution 100, when demand

was assumed to be known. The main differences between the conservative and the

optimistic cases in Figures 4.16 and 4.17, respectively, is that the former only contains

solutions that are a compromise between water and cost objectives, while the later,

in addition, contains solutions that are water-optimal, which prescribe power plants

in all locations, as in the previous case with known demand.

The example illustrates how problem data uncertainty can be taken into account

within the two-stage methodology, and suggests that the set of locations and tech-

nologies that are robust to implementation uncertainty tends to be insensitive to

demand uncertainty.
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4.4.2.5 What is the impact of changing the dispatchability requirement of new

power plants on the resulting technology-location solutions, as well as on

cost and water withdrawal?

In order to assess how dispatchability requirement can affect the allocation of

technologies and locations, the BO-CEP was solved with p = 0.3 and p = 0.7, and

the resulting solution sets were compared with the base case, when p = 0.5 was

assumed.

Figure 4.18 shows the trade-off between cost and water withdrawal when the dis-

patchability requirement is set to p = 0.3 and p = 0.7. The effect of increasing the

dispatchability requirement is higher on solutions having lower water withdrawals.

This is because solutions that are close to the optimal cost mainly rely on dispatch-

able technologies; i.e., all power plants in Solution 1, previously discussed, are based

on natural gas technology, hence are not affected by p.
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Figure 4.18: Trade-off between cost and water withdrawal for different values of p

Of notice is that the efficient solutions from the case where p = 0.3 tend to
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dominate the ones from the case where p = 0.7. In order to see why this is the case,

Figure 4.19 examines the solutions having minimal water withdrawal for p = 0.3 and

p = 0.7. For these solutions, cost and water withdrawal increase with p; in turn,

a higher dispatchability requirement will lead to more capacity allocated to coal,

natural gas, biomass and nuclear technologies, and lower capacity allocated to wind

power plants. From Table 4.2, the cost parameters for coal, biomass and nuclear

technologies are higher than the cost associated with wind technology. Therefore,

the optimal solution for water objective in the case with p = 0.7 will be dominated

by the optimal solution for water objective when p = 0.3.
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Figure 4.19: Solution with minimal water withdrawal for different values of p

Figure 4.20 shows how dispatchability requirement affect the locations of power

plants associated with robust solutions in the case with the box uncertainty set. As

in the base case (from robust Solution 74 previously discussed), wind power plants

are prescribed in locations 1-9, even when p is changed. However, by increasing the
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dispatchability requirement, more capacity is allocated to natural gas facilities, and

a nuclear power plant is prescribed in location 31.
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Figure 4.20: Robust solutions for different dispatchability requirements; conservative case
(box uncertainty set)

Figures 4.21 and 4.22 summarize the set of robust solutions in the case with the

cardinality-constrained uncertainty set, for p = 0.3 and p = 0.7, respectively. As be-

fore, wind power plants are prescribed in locations 1-9. By increasing dispatchability

requirements, more capacity is allocated to biomass power plants, as well as nuclear

facilities in locations 27 and 29. When p = 0.3, the robust solutions tend to allocate

more capacity to wind power plants. In this case, the two natural gas facilities in

locations 27 and 30 provide the necessary capacity from dispatchable technologies.
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Figure 4.21: Robust solutions, low dispatchability (p = 0.3); optimistic case (cardinality

constraint, Γ = 1)
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Figure 4.22: Robust solutions, high dispatchability (p = 0.7); optimistic case (cardinality

constraint, Γ = 1)
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4.5 Summary and conclusions

This section proposed a biobjective formulation for the electricity generation ca-

pacity expansion problem to minimize cost and water withdrawal. It showed how

the methodology can be applied to find solutions that are robust when the designed

capacities of the power plants are subjected to uncertainty at the time of their con-

struction. In addition, the methodology mas applied to effectively break ties among

efficient solutions by restricting decision making to the smaller subset of robust so-

lutions.

The methodology was illustrated in a case study to analyze many strategic ques-

tions for capacity expansion in the State of Texas, USA. To the best of our knowledge,

this was the first case study to consider both cost and water withdrawal objectives in

capacity expansion planning. The results are encouraging for decision makers, as the

solutions obtained from the methodology tend to maintain stability of objective val-

ues and remain feasible in both the optimistic and conservative cases of robustness.

In addition, from Theorem 2.4.6, the methodology provides a set of solutions that

is insensitive to the level of uncertainty when the worst case robustness is assumed

(box uncertainty set). This result expands the applicability of robustness assessment

in cases where the lack of information on the level of uncertainty would prevent the

use of a classical robust optimization approach.
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5. CONCLUSIONS AND FUTURE RESEARCH

This section begins by summarizing the objectives and main contributions from

this dissertation. Finally, it provides directions on possible extensions and related

future research.

5.1 Summary

Motivated by the difficulties associated with selecting a most preferred alternative

from the many efficient solutions of an MOP, this dissertation aimed at developing

a mathematical programming methodology to aid MCDM. The overarching contri-

butions to the academic body of knowledge are as follows:

• The methodology provides rigorous foundations for the PSR problem, allowing

for the consideration of additional secondary criteria to restrict trade-off anal-

ysis to a smaller set of the efficient solutions having desirable characteristics.

• The proposed secondary criteria consider characteristics of a solution associated

with the objective and the decision spaces of the MOP, hence allowing for

additional modeling information to be considered for trade-off analysis.

• The modeling of the PSR as an optimization problem over the efficient set

allows for its reformulation as a mixed binary program. In turn, the developed

solution procedure enables the handling of continuous efficient sets, circum-

venting a limitation that is common to the related PSR literature.

• The methodology was shown to effectively break-ties among efficient solutions

in a case study applied to the electricity generation capacity expansion problem

in the State of Texas, hence facilitating decision making.
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Section 2 addressed research questions (a), (b) and (c) previously presented in

Section 1.2.2. While it is unlikely that a solution remains both optimal and feasi-

ble when affected by uncertainty, the classical robust optimization approach focuses

on finding solutions that remain feasible for all possible realizations within the un-

certainty set. In contrast, the proposed methodology explicitly provides trade-off

information between model and solution robustness, expanding the field of robust-

ness assessment. While trade-off analysis in the original objective space of the MOP

may be challenging due to the possibly high dimensionality, decision making can be

further facilitated with trade-off analysis in the 2-dimensional robustness space. In

addition, the section uncovered several theoretical properties of the problem in the

case of MOLPs. The main implications from these properties are summarized in

Table 5.1.

Section 3 focused on the research question (d) when the efficient set is associated

with an MOLP. The main theoretical contribution in Section 3 is the reformulation

of the PSR as a biobjective mixed binary linear program, which allowed for the

development of a solution approach to solve the problem. The experimental study

suggests that the proposed algorithm runs faster than existing methods for biobjec-

tive mixed binary problems, i.e. the TS algorithm. The main practical contribution

in this section is that the solution approach allows the handling of continuous ef-

ficient sets, hence avoiding discretization procedures typically required in existing

PSR literature. In addition, the solution approach allows for any linear secondary

objective functions with nonnegative parameters to be considered.

Section 4 centered at the research question (e), and illustrated how the method-

ology may be applied in a real problem, such as in the electricity generation capacity

expansion problem. While water and energy are interconnected issues, to the best of
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Theoretical contribution Practical contribution
Theorem 2.4.6: sufficient condition to
guarantee that the set of robust solu-
tions will be insensitive to the level of
uncertainty

The methodology may be applied even
when the practitioner has no knowledge
about the uncertainty bounds

Theorem 2.4.5: sufficient condition to
guarantee that the set of robust solu-
tions will contain only one solution

The methodology effectively breaks ties
among all solutions

Theorems 2.4.1 and 2.4.3: upper bounds
on the values of δ(x) and γ(x), regard-
less of the uncertainty set

The decision maker gains control over
the robustness of solutions by adjust-
ing the uncertainty level α. Conversely,
given a maximum infeasibility and out-
come degradation levels that are accept-
able to the decision maker, the bounds
ca be used to select a target value for α

Theorems 2.4.8−2.4.10: Probabilistic
guarantees that the actual infeasibility
and outcome degradation levels will be
less than or equal to the values calcu-
lated using the cardinality-constrained
formulation

The probabilistic guarantees may be
utilized to determine an appropriate
value for Γ according to the decision
maker’s level of conservatism

Table 5.1: Implications from main properties in Section 2

your knowledge, this was the first case study in this area to consider both the mini-

mization of cost and water withdrawal. The study demonstrated how the methodol-

ogy may aid MCDM by providing a reduced subset of robust solutions. In addition,

experiments illustrated how the methodology may be utilized to aid in answering

key strategic questions for expansion planning. The main findings show that:

• The proposed methodology was effective in identifying a smaller set of efficient

solutions.

• Robust solutions identified by the methodology tend to effectively maintain

feasibility and stability of objective values when compared to other solutions
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in the efficient set.

• Using common sense approach for selecting a solution from the efficient set,

such as the weighted sum or the knee approaches, may lead to a solution that

is highly sensitive to uncertainties.

• A simulation-optimization model illustrates that the methodology can be inte-

grated with a model that hedges against electricity demand uncertainty in the

first stage MOP.

5.2 Future research

Two major areas of particular interest for future research are discussed next.

The first area relates to the application of the proposed two-stage methodology.

This would include different fields of application and the consideration of secondary

criteria other than robustness to aid decision making. The second area relates to

the development of solution algorithms and heuristic approaches for a variety of

cases. Since the PSR is posed as an optimization problem over the efficient set,

the problem is usually non-convex, hence specialized approaches become relevant for

effective application of the methodology in large-scale problems. These opportunities

are detailed next.

5.2.1 Applications

In the case of the electricity generation capacity expansion problem presented in

Section 4, further analysis becomes necessary to enhance model fidelity and data ac-

curacy to go beyond proof-of-concept. This would require detailed data at a location-

level, such as:

• Sun radiation data: while the research assumed the national average values for

power plant capacity factors, Texas is known for its high level of sun insolation,
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which may lead to higher-than-average capacity factors associated with solar

power plants and potentially lower-than-average cost per MWh. The consid-

eration of such data could make solar technologies part of the solution set in a

detailed model. Sun radiation data could be considered from NREL (2015b).

• Wind speed data: the consideration of wind speed data at each location can

be used to define a more precise capacity factor for wind power plants at each

specific location. Wind speed data could be considered from EERE (2015).

• Energy crop availability: transportation of energy crops can be a large com-

ponent of electricity production in biomass power plants. Hence, the cost

parameter could be further enhanced by considering the distances from each

power plant location to the available energy crop fields. Energy crop data could

be considered from NREL (2015a).

• Groundwater availability: power plants may use groundwater reservoirs for

cooling processes. The availability of such reservoirs should be taken into

account in the computation of the scarcity factor in order to have a more

precise evaluation of the limited availability of water resources at each location.

Groundwater availability data could be considered from TWDB (2015a).

• Inclusion of other objective functions: while the case study focused on the min-

imization of water and cost, growing environmental concerns would require the

additional consideration of greenhouse gas emissions in the expansion planning.

Furthermore, in order to minimize risk associated with fluctuations on the cost

per MWh, a technology diversity maximization objective function could be also

considered. In this scenario, solar would likely become one of the prescribed

technologies, as its water usage is minimal. Another advantage of considering
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such diversification of technologies is that wind speed may be lower during the

day, hence the additional required electricity generation could be complemented

by solar power plants.

• Geothermal resources: of interest is also the analysis of the geothermal poten-

tial from abandoned oil wells in the State of Texas for the purpose of electricity

generation. As indicated in a study by Davis and Michaelides (2009), this may

provide a sustainable source for capacity expansion in the future if the tech-

nology is further developed.

The aforementioned extensions should consider an interdisciplinary research team.

For instance, this could involve collaboration with researchers from the Texas A&M

Energy Institute, and different Departments, such as Geology, Civil Engineering and

Petroleum Engineering. The detailed analysis could be valuable for governmental

agencies in policy formation. Opportunities would include the DE-FOA-0001289 call

for proposals from the Department of Energy Advanced Research Projects Agency-

Energy (ARPA-E) in the area of network optimization for energy systems, and the

PD 13-7607 call for proposals from the National Science Foundation (NSF) in the

area of Energy, Power, Control and Networks (EPCN).

Although the proposed methodology was illustrated in the context of electricity

generation capacity expansion planning, many other problems are also faced with

implementation uncertainties and could benefit from the methodology. These include

areas such as:

• Health-care: patient scheduling problems prescribe optimal time allocation for

health-related procedures, but the actual arrival time of each patient may be

subjected to uncertainty. The multiple objectives may include the maximiza-

tion of room utilization (e.g. Silva et al., 2015) and the minimization of cost
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(e.g. Mak et al., 2015) and lead time between patient request and surgery date

(e.g. Astaraky and Patrick, 2015), among others.

• Manufacturing: product design specifies physical characteristics for devices,

but the actual values of the product characteristics are manufactured within

a limited precision. Examples of such problems include the antenna and truss

design (e.g. Ben-Tal and Nemirovski, 2002) and the vehicle design structure

problem (e.g. Koch et al., 2004).

• Inventory control: inventory optimization problems specify optimal inventory

levels, however unforeseen conditions not included in the model may force the

decision makers to order a different replenishment quantity, affecting inventory

levels. The multiple objectives may include profit and service level maximiza-

tion (e.g. Chen et al., 2015b) and cost minimization (e.g. Bertsimas and Thiele,

2006b), among others.

While this research focused on robustness measures, other secondary criteria may

be used in breaking ties among the efficient solution. In particular, the methodology

may be applied in hierarchical decision making processes as it portrays a bilevel

model, where the upper level decision maker requires efficiency of a solution, and

the lower level introduces his/her additional secondary criteria in the selection of

a most preferred alternative. In addition, the methodology may also be modified

to the case of single objective optimization problems. The secondary criteria would

provide means to break ties in the presence of alternative optimal solutions.

5.2.2 Algorithms and heuristics development

The solution algorithm presented in Section 3 is restricted to the case where the

efficient set is associated with an MOLP. Nonetheless, extensions in the realm of
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integer, binary and mixed-integer programming should also be explored. In these

cases, not only the solution algorithm will require special consideration, but also the

modeling of uncertainty. For instance, in the case of binary variables, one possibility

would be to model the perturbation factor as a permutation. In turn, this would

allow the methodology to be extended to the area of reliability modeling; i.e. a binary

decision variable that might fail would be represented by its value being perturbed

to zero.

Regarding the LS-LPF algorithm, an immediate extension would be to further

explore the opportunities for parallelization. Since the algorithm performs a search

over the different regions defined by pairs of supported Pareto outcomes that are

found to be disconnected, the process may be parallelized. The effectiveness of such

parallelization should be studied. In addition, it may be challenging to solve larger

instances with the LS-LPF algorithm because the PSR is a non-convex problem.

Hence, of interest becomes the study of heuristic procedures.

Another avenue for future research would be the development of solution algo-

rithms to solve the PSR when the efficient set is assumed to be unknown. This

would likely require the exploration of bilevel programming algorithms. In this case,

the challenge arises from the fact that the solution to the lower level problem, i.e.

the optimization of secondary objective functions, is not uniquely determined, pre-

venting the upper level problem to compute its optimal solution. When addressing

multiple objectives in the bilevel program, the literature mainly deals with the case

of multiobjective functions on the upper level problem (e.g. Yin, 2002; Ye, 2011; Long

et al., 2014). The fewer cases to deal with a bilevel multiobjective program in both

levels usually consider a simplification at the lower level by assuming pessimistic and

optimistic scenarios, or a combination of both (e.g. Eichfelder, 2010; Dedzo et al.,

2012; Dempe et al., 2013). In the optimistic scenario, it is assumed that the lower
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level will choose the solution that will optimize the upper level problem, while the

pessimistic assumes that the lower level will choose the solution that will be the

worst possible for the upper level. Hence, extensions in that area would contribute

towards the body of knowledge in bilevel programing.
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APPENDIX A

MB-P1 FORMULATION OF INSTANCE N6M5O2

Min (δ, γ)T

s.t. 2x1 + 3x2 + 5x3 + 3x4 + 4x5 + 4x6 <= 105

− 2x1 + x2 + 3x3 − x4 + x5 − 4x6 <= −10

4x3 − 3x4 − 3x6 <= −10

− 2x2 + 5x3 + 3x4 + 4x5 <= 50

4x1 − 3x2 − 4x3 + x4 − 2x5 <= −20

− 105δ + 2.2x1 + 3.3x2 + 5.5x3 + 3.3x4 + 4.4x5 + 4.4x6 <= 105

− 10δ − 1.8x1 + 1.1x2 + 3.3x3 − 0.9x4 + 1.1x5 − 3.6x6 <= −10

− 10δ + 4.4x3 − 2.7x4 − 2.7x6 <= −10

− 50δ − 1.8x2 + 5.5x3 + 3.3x4 + 4.4x5 <= 50

− 20δ + 4.4x1 − 2.7x2 − 3.6x3 + 1.1x4 − 1.8x5 <= −20

− 215.5γ + 0.5x1 + 0.8x2 + 1.2x3 + 0.4x4 + 0.1x5 + 0.1x6 <= 0

− 182.5γ + 0.5x1 + 0.2x2 + 1.4x3 + 0.4x4 + 0.5x5 + 0.5x6 <= 0

− 2x1,1 + x2,1 + 3x3,1 − x4,1 + x5,1 − 4x6,1 + 10z1 = 0

4x1,1 − 3x2,1 − 4x3,1 + x4,1 − 2x5,1 + 20z1 = 0

− 2x1,2 + x2,2 + 3x3,2 − x4,2 + x5,2 − 4x6,2 + 10z2 = 0

4x1,2 − 3x2,2 − 4x3,2 + x4,2 − 2x5,2 + 20z2 = 0

xi,1 + 1000000z1 <= 1000000 ∀i = 1, 3, 4

xi,2 + 1000000z2 <= 1000000 ∀i = 1, 3, 5

xi,3 + 1000000z3 <= 1000000 ∀i = 1, ..., 4

x1,i + x2,i + x3,i + x4,i + x5,i + x6,i − 1000000zi <= 0 ∀i = 1, ..., 3

xi − xi,1 − xi,2 − xi,3 = 0 ∀i = 1, ..., 6

z1 + z2 + z3 = 1

δ, γ ≥ 0, x ∈ R26
= , z ∈ {0, 1}

3
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APPENDIX B

FORMULA TO ESTIMATE THE COST AT EACH LOCATION AND
TECHNOLOGY

This appendix provides details on the formula used to estimate the cost parameter
for each location.

EIA (2015b) provides the following cost estimates for each technology:

Technology Cost parameter ($/MWh)
Minimum Average Maximum

Conv. coal 3.5 12.8 34.6
Adv. coal 17.1 26.6 43.3
Conv. natural gas 1.2 3.3 9.9
Adv. natural gas -2.1 0.1 5.6
Nuclear 0.2 10.3 19.3
Biomass 1.6 13.9 34
Wind - onshore -8.6 3.4 47.9
Solar PV -3 16.1 70.1

Table B.1: Cost estimates from EIA (2015b)

Let tj be the average generating cost associated with technology j ∈ J on Table
B.1, and let rj be the corresponding range of variation of the cost associated with
technology j ∈ J (cf. columns Maximum − Minimum on Table B.1).

From TAMU (2015), let `i be the median land price per acre at location i ∈ I
normalized to a scale [−1, 1]. The values of land price are shown in Table B.2.

150



Location i Median $/acre Normalized value `i
1 275 -0.688
2 182 -0.837
3 231 -0.759
4 158 -0.875
5 200 -0.808
6 166 -0.863
7 206 -0.799
8 80 -1.000
9 262 -0.709
10 639 -0.107
11 331 -0.599
12 280 -0.681
13 429 -0.442
14 524 -0.291
15 447 -0.414
16 923 0.347
17 1,332 1.000
18 800 0.150
19 951 0.391
20 543 -0.260
21 588 -0.188
22 674 -0.051
23 962 0.409
24 586 -0.192
25 462 -0.390
26 858 0.243
27 900 0.310
28 1,251 0.871
29 376 -0.527
30 482 -0.358
31 467 -0.382
32 543 -0.260
33 1,127 0.673

Table B.2: Land prices ($/acre) from TAMU (2015) and normalized values of land price

Let vj denote the estimated contribution of land price on the generating cost for
technology j ∈ J . The values of vj were estimated as detailed in Section 4.4 and are
given in Table B.3:
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Technology vj
Conv. coal 0.012
Adv. coal 0.012
Conv. natural gas 0.014
Adv. natural gas 0.014
Nuclear 0.010
Biomass 0.150
Wind - onshore 0.028
Solar PV 0.019

Table B.3: Contribution of land price on cost

Then, the cost for generating 1 MWh of electricity at location i ∈ I using tech-
nology j ∈ J was estimated as:

cij = tj + `irjvj/2 (B.1)

As an example, consider the average cost tbiomass = $13.9/MWh for biomass
technology and the corresponding range of variation rbiomass = $32.4/MWh from
Table B.1. From Table B.3, the estimated contribution of land price on the generating
cost for biomass technology is vbiomass = 15%. Consider locations i = 8 and i = 17,
which have the lowest and highest median land prices, respectively. Then, the cost
for generating 1 MWh from equation (B.1) will be:

c8,biomass = tbiomass + `8rbiomassvbiomass/2 = 13.9− 1× 32.4× 0.15/2 = 11.47

c17,biomass = tbiomass + `17rbiomassvbiomass/2 = 13.9 + 1× 32.4× 0.15/2 = 16.33

Table 4.3 in Subsection 4.4.1 shows the cost parameters for each location and
technology resulting from the application of equation (B.1).
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