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Abstract.  Semivectorial bilevel problems (SVBLP) deal with the optimization 

of a single function at the upper level and multiple objective functions at the 

lower level of hierarchical decisions. Therefore, a set of nondominated solutions 

to the lower level decision maker (the follower) exists and should be exploited 

for each setting of decision variables controlled by the upper level decision maker 

(the leader). This paper presents a new algorithmic approach based on differential 

evolution to compute a set of four extreme solutions to the SVBLP. These solu-

tions capture not just the optimistic vs. pessimistic leader’s attitude but also pos-

sible follower’s reactions more or less favorable to the leader within the lower 

level nondominated solution set. The differential evolution approach is compared 

with a particle swarm optimization algorithm. In this experimental comparison 

we draw attention to pitfalls associated with the interpretation of results and as-

sessment of the performance of algorithms in SVBLP.  
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1 Introduction 

A semivectorial bilevel problem (SVBLP) is an optimization problem with a single 

objective function at the upper (leader’s) level and multiple objective functions at the 

lower (follower’s) level of hierarchical non-cooperative decisions. Hence, a multiobjec-

tive (MO) optimization problem contributes to define the feasible region to the leader’s 

problem, in the sense that a lower level nondominated region exists for each setting of 

upper level variables. Thus, when solving his/her optimization problem, the leader must 

anticipate the follower’s choice of a nondominated solution embodying a trade-off be-

tween the lower level multiple objectives. The follower’s reaction may strongly affect 

the leader’s optimal solution, depending on the follower’s preference structure vis-à-

vis the nondominated region established by the instantiation of the leader’s decision 

variables. Therefore, it is useful for the leader to have an overview of possible optimal 

solutions resulting from different attitudes (optimistic or pessimistic) in face of his/her 
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expectation of the more or less favorable follower’s choice. In addition to the intrinsic 

theoretical and computational difficulty in computing solutions to the SVBLP, the 

leader does not have a-priori information about the nondominated solution the follower 

will choose according to his/her (unknown) preferences. 

In this setting, this paper presents an algorithmic approach intertwining single and 

MO versions of Differential Evolution (DE) for the upper level and lower level prob-

lems, which is aimed at computing a set of extreme solutions to the SVBLP. These 

extreme solutions are: the optimistic solution offering the leader the best objective func-

tion value when the follower’s decision for each setting of upper level variables is the 

best for the leader; the deceiving solution when the leader adopts an optimistic approach 

but the follower’s reaction is the worst for the leader; the pessimistic solution offering 

the best objective function value for the leader when the follower’s decision for each 

setting of upper level variables is the worst for the leader; and the rewarding solution 

when the leader adopts a pessimistic approach but the follower’s reaction is the most 

favorable to the leader.  

The algorithmic approach introduces new concepts of optimistic and pessimistic 

frontiers and adapts DE mechanisms to combine the search at both levels with the pop-

ulation split between orientations to each frontier. This approach is compared with a 

Particle Swarm Optimization (PSO) algorithm we have previously developed [1], 

which has been extended herein to compute these four extreme solutions. The algo-

rithms are tested on a set of benchmark problems for multiobjective bilevel (MOBL) 

optimization (considering only one of the objective functions in the upper level). We 

were able to determine analytically the exact solutions to these problems, which enable 

to assess the quality of the solutions obtained by the algorithms. A thorough analysis of 

the computational results allowed us to unveil pitfalls associated with the interpretation 

of results and assessment of the algorithm performance in SVBL and MOBL optimiza-

tion. This paper also aims at drawing attention to these pitfalls.  

In section 2, the SVBLP is presented and the definitions of the extreme (optimistic, 

deceiving, pessimistic and rewarding) solutions are introduced. Algorithmic ap-

proaches to deal with the SVBLP are also briefly reviewed in this section. The concepts 

of optimistic and pessimistic frontiers are presented and illustrated in section 3. In sec-

tion 4, the Semivectorial Bilevel Differential Evolution (SVBLDE) algorithm is pro-

posed. Computational results are presented and discussed in section 5. Concluding re-

marks are presented in section 6.  

2 The SVBLP: Optimistic vs. Pessimistic Approaches 

The SVBLP is a bilevel optimization problem with a single objective function at the 

upper level F(x, y) and multiple objective functions mkyxf k ,...,1),.,(   at the lower 

level. 
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with 1nX   and 2nY  , which impose bounds (box constraints) on the upper level 

variables x (which are controlled by the leader) and on the lower level variables y 

(which are controlled by the follower), respectively.  G(x,y) ≤ 0  and g(x,y) ≤ 0 are 

general constraints, respectively in the upper and the lower level problems. 

Since the decision process is sequential and the leader decides first, x assumes a 

constant vector in the optimization of mkyxfk ,...,1),,(  . For each Xx there is a set 

of efficient (Pareto optimal or nondominated) solutions to the lower level problem rep-

resented by )(xEf . Let  0),(:)(  yxgYyxY .  

Thus,   ),()',( )(' no is there :)( yxfyxfxYyYyxEf   where   denotes 

the dominance relation, i.e.,  ),()',( yxfyxf   iff ),()',( yxfyxf jj   for all j=1,…,m, 

and ),()',( yxfyxf jj   for at least one j. 

Since there is not, in general, a single efficient solution to the lower level problem 

for each x, problem (1) is ambiguous. This is the reason for the quotation marks in the 

upper level objective function. Two main approaches have been suggested in the litera-

ture to address the problem – the optimistic and the pessimistic approaches – leading to 

two reformulations of (1). As in the single objective bilevel problem with non-unique 

optimal solutions to the lower level problem, the optimistic formulation of the SVBLP 

is much simpler to tackle and has therefore been the most investigated. 

The optimistic approach assumes that the leader is able to influence the choice of the 

follower. Thus, the upper level optimization can be taken with respect to x and y to 

determine the optimal optimistic solution. This means that, for a given upper level de-

cision x, the lower level decision y is the one that presents the minimum F(x,y) among 

the efficient solutions to the lower level problem for that x, which also satisfy upper 

level constraints (if there are upper level constraints coupled with lower level variables, 

i.e. 0),( yxG ). The optimal optimistic solution will be called just optimistic solution 

and is defined as follows: 

• The optimistic solution, (xo,yo), is given by  

   0),(),(:),(min
,
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In the pessimistic approach the leader prepares for the worst case. The leader chooses 

the x that leads to a feasible solution with minimum F in view of the follower’s deci-

sions y worst for the leader. The optimal pessimistic solution will be called just pessi-

mistic solution and is defined as follows: 

• the pessimistic solution, (xp,yp),  is given by  
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A failed optimistic approach leads to the deceiving solution. This means that the 

leader chooses x according to the optimistic approach but the follower does not react 

accordingly and takes the decision with worst value for the leader’s objective function. 

Thus, given the optimistic upper level decision xo, 



• the deceiving solution is (xd,yd) = (xo,yd) where yd is  given by 

 )(:),(max oo xyyxF Ef
Yy




. 

According to the above definition, the deceiving solution may be infeasible to the 

leader, i.e. infeasible for the SVBLP. Knowing whether the deceiving follower’s reac-

tion is feasible or infeasible to the upper level problem is also a useful information to 

the leader. 

A successful pessimistic approach leads to the rewarding solution. Thus, given the 

pessimistic upper level decision xp, the rewarding solution can be defined as the feasible 

(xr,yr) = (xp,yr) such that yr is  given by 

  0),(),(:),(min ppp 
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Bonnel [2] and Bonnel and Morgan [3] firstly addressed the SVBLP by providing 

necessary optimality conditions [2] and a penalty function method [3] for determining 

the optimistic solution. Other methods based on penalty functions to compute the opti-

mistic solution were developed by Ankhili and Mansouri [4], Zheng and Wan [5] and 

Ren and Wang [6] for the SVBLP with a MO linear problem in the lower level. Calvete 

and Galé [7] focused on the same problem and proposed an exact method and a genetic 

algorithm, considering the optimistic approach. Liu et al. [8] developed necessary op-

timality conditions for the pessimistic solution and Lv and Chen [9] proposed a dis-

cretization iterative algorithm to compute the pessimistic solution to a SVBLP without 

upper level variables in the lower level constraints. Alves et al. [1] firstly introduced 

the concept of deceiving solution and proposed an algorithm based on PSO to approx-

imate the optimistic, pessimistic and deceiving solutions to the SVBLP. The rewarding 

solution was introduced in [10], where illustrative examples of these four types of ex-

treme solutions were presented. In the present paper we propose a new algorithm based 

on DE to compute these four extreme solutions and extend the algorithm in [1] to com-

pute also the rewarding solution. 

3 Optimistic and Pessimistic Frontiers 

Let us now define two new concepts to be used in the algorithm proposed in the next 

section, which are the Optimistic and the Pessimistic frontiers. 

The Optimistic frontier (O) consists of the feasible solutions (x, y'), such that y' is the 

follower’s efficient solution )(' xy Ef , ,0)',( yxG  that provides the minimum 

(best) F  for that xX: 
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The optimistic solution (xo,yo) to the SVBLP is the solution (x, y') O with minimum 

F. 

The Pessimistic frontier (P) consists of the solutions (x, y") such that y" is the fol-

lower’s efficient solution )(" xy Ef  that provides the maximum (worst) F for that 

xX: 
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The pessimistic solution (xp,yp) to the SVBLP is the feasible solution (x, y")  P, 

0)",( yxG , with minimum F. 

The deceiving solution (xd,yd) is the solution in P with xd = xo. 

The rewarding solution (xr,yr) is the solution in O with xr = xp. 

 

 
Fig. 1. F values in the Optimistic and Pessimistic efficient frontiers of a SVBL linear problem 

with one upper level variable (x) and two objective functions at the lower level. 

 

In the example in Fig. 1, there is a significant difference between the optimistic and 

the deceiving solutions for the leader’s objective function. Therefore, if the leader opts 

for an optimistic approach he/she takes a high risk, since the deceiving solution is very 

bad. Conversely, there is a small difference between the pessimistic F and the rewarding 

one, being the F value in the rewarding solution close to the optimistic F. 

Since the deceiving solution is obtained from the Pessimistic frontier using an opti-

mistic approach and the rewarding solution is obtained from the Optimistic frontier 

using a pessimistic approach, both frontiers should be simultaneously explored by an 

algorithm aimed at computing these four extreme solutions. 

4 A Differential Evolution Algorithm for the SVBLP 

In the SVBLDE algorithm proposed below, the population Pop of individuals is di-
vided into two sub-populations 'Pop  and "Pop  which share the upper level x vectors. 

Let Nu be the number of upper level individuals. Pop = Pop'  Pop" where Pop' =

 )',(),...,',(),',( 2211 NuNu yxyxyx  and Pop"  )",(),...,",(),",( 2211 NuNu yxyxyx . The individ-

uals of Pop' aim at approximating the Optimistic frontier while the individuals of Pop" 
aim at approximating the Pessimistic frontier. DE operations are employed to evolve the 
population of the upper level problem and, for each upper level vector x, a lower level 

DE algorithm (DE_LOWERLEVEL_O_P) is used to determine (x,y') and (x,y"). Below,F
denotes the mutation scaling factor and CR the crossover rate in the DE operations. Let 



Tu be the number of upper level generations. The DE upper level search is described in 

Algorithm 1. We have used F =0.7 and CR=0.9. 

 

Algorithm 1: Upper Level Search 

1. t  1 

2. Create a random initial population of Nu upper level vectors: NuiXx ti ,...,1,,   

3. For i =1 to Nu do  

4.  DE_LOWERLEVEL_O_P( tix , , tiy ,' , tiy ," ) 

5.  Insert )',( ,, titi yx into Pop't  and )",( ,, titi yx  into Pop"t  

6. End For i 

 Initialize the incumbent solutions: 

7.  (xo,yo)  arg min {F(x,y): (x,y)  Pop't, G(x,y) ≤ 0}   //optimistic solution 

Let i1 be the index of (xo,yo) in Pop't such that (xo,yo) = )',( ,1,1 titi yx  

8.  (xp,yp)  arg min {F(x,y): (x,y)  Pop"t, G(x,y) ≤ 0}   //pessimistic solution 

Let i2 be the index of (xp,yp) in Pop"t such that (xp,yp) = )",( ,2,2 titi yx  

9.  (xd,yd)  )",( ,1,1 titi yx  Pop"t  //deceiving solution 

10.  (xr,yr)  )',( ,2,2 titi yx  Pop't   //rewarding solution 

11. For t =1 to Tu do  

12.  For i =1 to Nu do  

13.  Select r1 , r2  and r3 // selection dependent on the DE variant 

14.   jrand = randint(1,n1)     //n1 is the number of UL variables 

15.   For j =1 to n1 do 

16.   
otherwise

 =or  CR < rand(0,1) if)(
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17.   End For j 

18.   DE_LOWERLEVEL_O_P ( 1, tiu , 1,' tiw , 1," tiw ) 

   Update the incumbent solutions: 

19.   If  F( 1, tiu , 1,' tiw ) < F(xo,yo) and G( 1, tiu , 1,' tiw ) ≤ 0 then 

20.     (xo,yo)  ( 1, tiu , 1,' tiw )     //update the optimistic  

21.     (xd,yd)  ( 1, tiu , 1," tiw ) // and deceiving solutions 

22.   If  F( 1, tiu , 1," tiw ) < F(xp,yp) and  G( 1, tiu , 1," tiw ) ≤ 0 then 

23.     (xp,yp)  ( 1, tiu , 1," tiw ) //update the pessimistic  

24.     (xr,yr)  ( 1, tiu , 1,' tiw ) // and rewarding solutions 

25.  If  ACCEPT 1, tiu  then  // criterion dependent on the DE variant 

26.    1,1,   titi ux   

27.    Insert ( 1, tiu , 1,' tiw ) into Pop't+1 and )",( 1,1,  titi wu into Pop"t+1   

28.   Else  



29.    titi xx ,1,    

30.    Insert ( tix , , tiy ,' ) into Pop't+1  and )",( ,, titi yx into Pop"t+1   

31.  End For i 

32. End For t 

Output: (xo,yo), (xd,yd), (xp,yp), (xr,yr) 

 

In Step 16, if 1,, tjiu  does not satisfy the bounds defined by X, then it is projected 

into the closest bound. 

We consider two DE variants: DE/rand/1/bin (the original version, which obtained 

good results in the comparative study of DE variants for global optimization in [11]) and 

DE/best/1/bin (the variant with highest performance in the same study). The steps 

marked with  change from one variant to the other. In Step 13, DE/rand/1/bin randomly 

selects indexes r1  r2  r3 from {1,…,Nu}, while DE/best/1/bin randomly selects indexes 

r1  r2 for xr1 and xr2 but an xbest is used in Step 16 to replace xr3. The DE/best/1/bin variant 

divides the population into two equal parts: the first half is mainly oriented towards the 

optimistic solution, so xbest = xo, and the second half of the population is mainly oriented 

towards the pessimistic solution, so xbest = xp. In addition, r1 and r2 are randomly selected 

from {1,…,Nu/2} for i≤ Nu/2  and from {Nu/2+1,…,Nu} otherwise. 

 The criterion to decide whether 1, tiu  is accepted or not in Step 25 (ACCEPT) also 

depends on the DE variant. Steps 25-30 define the population for the next generation. In 

DE/rand/1/bin, if (a) the new individual obtained for approximating the Optimistic fron-

tier )',( 1,1,  titi wu  improves the current one in Pop't, i.e. )',()',( ,,1,1, titititi yxFwuF 

, or  (b)  the new individual obtained for approximating the Pessimistic frontier 

)",( 1,1,  titi wu  improves the current one in Pop"t, i.e. )",()",( ,,1,1, titititi yxFwuF  , 

then the new upper level individual 1, tiu  is accepted and Steps 26-27 are performed. 

Otherwise, the previous individual is kept and Steps 29-30 are performed. In 

DE/best/1/bin, the acceptance criterion in the first half of the population (oriented to the 

optimistic solution) only considers condition (a) to decide whether 1, tiu  is accepted or 

not, whereas in the second half of the population only condition (b) is considered. 

The DE_LOWERLEVEL_O_P algorithm aims at computing two extreme efficient solu-

tions to the lower level problem for a given x, one belonging to the Optimistic frontier 

and the other belonging to the Pessimistic frontier: Oyx )',( and Pyx )",( . 

Let Tl be the number of lower level generations and Nl (an even number) the size of 

the lower level population. The algorithm attempts to converge to a population Popy of 

efficient solutions to the lower level problem polarized to the extreme values of the upper 

level objective function F (the maximum and the minimum). The first Nl/2 individuals 

of Popy  are oriented to converge to 'y  while the remaining Nl/2 individuals are oriented 

to converge to "y . 

 



Algorithm 2: DE_LOWERLEVEL_O_P )",',(  yyx  

1. t  1 

2. Create a random initial population of Nl lower level vectors Popyt =

 NliYy ti ,...,1,,   and sort Popyt  by increasing order of F. 

3. Define Eff with the solutions in Popyt that satisfy g(x,yit) ≤ 0 and are not dominated 

by any other solution regarding the lower level objective functions f1, fm. 

4. Initialize y' and y": 

  0),(,:),(minarg'  yxGEffyyxFy
y

 //y': solution on the Optimistic frontier 

  EffyyxFy
y

 :),(maxarg"  // y": solution on the Pessimistic frontier 

5. For t =1 to Tl do  

6.   For i =1 to Nl do  

7.   If i ≤ Nl/2 then  

8.   Randomly select r1  r2{1,…,Nl/2} and select r3  //depends on the DE variant 

9.   Else  

10.  Randomly select r1  r2 {Nl/2+1,…,Nl} and select r3  

11.   jrand = randint(1,n2)   //n2 is the number of LL variables 

12.   For j =1 to n2 do 

13.      
otherwise

 =or  CR < rand(0,1) if)(
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14.   End For j 

15.  End For i 

16.  Insert in Eff the mutually nondominated (x, 1, tiv ), Nli ,...,1  that satisfy

0),( 1, tivxg  and are not dominated by any member of Eff. Delete solutions that 

become dominated in Eff 

17.  For i =1 to Nl do 

18.     If  ACCEPT_LL 1, tiv  then    //depends on x, vi,t+1,  yi,t , i , Eff 

19.     1, tiy   1, tiv  

20.   Else 

21.     1, tiy   tiy ,  

22.   Insert 1, tiy  into Popyt+1  

23.   Update the incumbent solutions y' and y" as in Step 4 

24. End For t 

Output: 'y  and "y  

 

In step 2, for each new Yy ti ,  randomly generated, the lower level constraints 

0),( , tiyxg  are checked; if the constraints are violated then another Yy ti ,  is drawn. 

If the first and the second trials are infeasible, the solution with smaller overall violation 



of constraints g is selected. In step 13, if 1,, tjiv  does not satisfy the bounds defined by 

Y, then it is projected into the closest bound. 

As in Algorithm 1, the steps marked with  change from one DE variant to the other. 

In Steps 8 and 10, DE/rand/1/bin randomly selects r3 {1,…,Nl/2} for i ≤ Nl/2 and r3 

{Nl/2+1,…,Nl} for i > Nl/2. The DE/best/1/bin variant defines ybest = y' for i ≤ Nl/2 and 

ybest = y" for i > Nl/2; ybest is used in Step 13 to replace yr3. 

The acceptance criterion in step 18 (ACCEPT_LL) determines whether the new indi-

vidual 1, tiv  is accepted or not to replace tiy ,  in the next population. The acceptance 

criterion firstly observes whether the solutions ),( 1, tivx  and ),( ,tiyx  satisfy the lower 

level constraints g(x,y) ≤ 0 (g-feasibility), privileging the feasible solution if one of them 

is infeasible. If both are g-feasible, then it is checked whether they are nondominated 

w.r.t. to the current set of solutions Eff. If one of the solutions 1, tiv  or tiy ,  is nondom-

inated (i.e., it belongs to Eff) and the other is dominated, the nondominated solution is 

selected. If both solutions have the same status, the selection is based upon the upper 

level objective function value: for i ≤ Nl/2 (sub-population oriented to the Optimistic 

frontier) the individual with lowest F is selected; for i > Nl/2 (sub-population oriented to 

the Pessimistic frontier) the individual with highest F is selected. It is worthwhile to note 

that, in an initial version of the algorithm, we did not use the set Eff in the acceptance 

criterion of 1, tiv . The algorithm only compared the two candidate solutions, 1, tiv  and

tiy , , checking whether one dominated the other or both were nondominated w.r.t. to 

each other. However, the algorithm revealed a very poor convergence of the population 

to nondominated solutions, which was overcome with the current strategy. 

5 Computational Experiment 

The SVBLDE algorithm has been compared with the PSO algorithm in [1], which 

was extended to compute also the rewarding solution as this algorithm had been origi-

nally designed to determine the other three extreme solutions. Below we shortly desig-

nate the optimistic, pessimistic, deceiving and rewarding solutions by sol.o, sol.p, sol.d 

and sol.r, respectively (with Fo, Fp, Fd and Fr being the respective upper level objective 

values). 

  To test and compare the algorithms we have considered two sets of problems. The first 

set includes 4 problems – Prob.1 to Prob.4 – whose formulations and sol.o, sol.p and 

sol.d are presented in [1]; these problems were adapted from the MOBL problems in 

[12] by considering only one upper level objective function. All the problems have one 

upper level variable and two lower level objective functions. Below we briefly describe 

these problems by indicating the number of lower level variables (n2) and showing the 

values of Fo, Fp, Fd and Fr. 

Prob.1 – n2 = 2; sol.o  sol.d  sol.p with Fo=0.5, Fd =1.25, Fp=1; sol.r = sol.p, so Fr=1.  

Prob.2 – generalization of Prob.1 with n2 =k. We consider k =14. The extreme solu-

tions have the same characteristics as in Prob.1 and the same upper/lower level objective 

values.  



Prob.3 and Prob.4 have n2 = 2 and differ from each other in the upper level objective 

function. They include an upper level constraint G depending on lower level variables, 

which increases their difficulty. Prob.3: sol.o = sol.r with F= –2 and sol.d = sol.p with 

F = –1. Prob.4: this problem admits alternative pessimistic solutions (all with Fp = 0) 

but with different outcomes for the corresponding rewarding solution (with F=,  

0 ≤  ≤ 1).  The best rewarding solution corresponds to sol.p = sol.d, Fp= Fd = 0, being 

the rewarding solution sol.r = sol.o with Fr= Fo = –1. 

The second group of test problems are the MOBL problems DS1 to DS5 in [13], 

originally proposed in [14]. We consider only F1 for the upper level objective function. 

This is a set of scalable problems with a variety of complex features to the algorithms. 

Problems DS1-DS3 have k upper level and k lower level variables – we consider k=5. 

Problems DS4 and DS5 have one upper level variable and k+l lower level variables – 

we consider k=3 and l=2. All the other parameters were set as in [13]. The correspond-

ing values of Fo, Fp, Fd and Fr are presented in Table 1. 

We have considered the following parameters for both algorithms, which were tuned 

through experimentation: Nu -Nl -Tu -Tl equal to 20-60-50-100 for the first set of prob-

lems except Prob.2; 20-100-50-100 for Prob.2, DS4 and DS5, which also have one 

upper level variable but more than 2 lower level variables; 100-100-100-100 for DS1 

to DS3, which have a higher number of upper level variables. Specific parameters of 

the PSO algorithm were set as in [1]. We performed 30 independent runs of each algo-

rithm in each problem. 

Concerning the DE variants of the SVBLDE algorithm, we observed that the results 

of DE/rand/1/bin were not statistically different from the results of DE/best/1/bin in 

about half of the cases; however, DE/rand/1/bin provided very poor results in a few 

other cases. Therefore, and due to space reasons, we omit herein the results of that 

variant. Table 1 presents the median and the interquartile range IQR of the F values 

obtained for the four extreme solutions over the 30 runs using the variant DE/best/1/bin 

of SVBLDE and the PSO algorithm. We also include the exact values of F (obtained 

analytically), which are very useful to assess the quality of the results obtained. The 

non-parametric Mann-Whitney test has been applied to assess whether the differences 

of the F values obtained with the two algorithms are statistically significant, consider-

ing a confidence level of 95%. The best result for each solution is highlighted in bold 

if the difference is statistically significant (‘+’ in the last column). 

Table 1. Median and interquartile range of F  in 30 independent runs for each algorithm. 

  SVBLDE PSO algorithm  M-W 
test   Median F IQR F Median F IQR F Exact F 

 Sol.o 0.497384 0.000708 0.496248 0.001489 0.5 + 

Prob.1 Sol.p 0.993762 7.04E-05 0.993742 9.36E-05 1 - 
 Sol.d 1.246284 0.01238 1.246038 0.016857 1.25 - 

 Sol.r 0.993713 0.004252 0.988769 0.021896 1 - 

 Sol.o 0.487397 0.002296 0.407539 0.026634 0.5 + 

Prob.2 Sol.p 0.999220 0.011627 0.991885 0.000691 1 + 
 Sol.d 1.250138 0.035337 1.202307 0.069874 1.25 + 

 Sol.r 0.908306 0.057767 0.98603 0.007036 1 + 

 Sol.o -2 0.006734 -1.99995 4.01E-05 -2 - 
Prob.3 Sol.p -0.99985 0.001206 -0.99984 0.000215 -1 - 

 Sol.d -1.00214 0.003443 -1.00296 0.001645 -2 - 

 Sol.r -1.95307 0.101921 -1.99036 0.002566 -1 + 



 Sol.o -0.99694 0.007655 -0.99995 5.12E-05 -1 - 

Prob.4 Sol.p -0.00356 0.001833 -0.00606 0.000695 0 + 
 Sol.d -0.00334 0.001618 -0.00391 0.001138 0 - 

 Sol.r -0.96020 0.092859 -0.89689 0.111896 -1 + 

 Sol.o 2,51E-05 3,1E-05 5,61E-05 3,11E-05 0 + 

DS1 Sol.p 0,07746 0,056167 0,099769 0,000128 0.1 + 
 Sol.d 0,092602 0,061951 0,099981 0,000168 0.1 + 

 Sol.r 3,23E-05 0,000107 0,000179 0,000193 0 + 

 Sol.o -0,25977 0,013058 -0,34826 0,035846 -0.238773 + 
DS2 Sol.p -0,23876 8,07E-06 -0,23877 2,68E-06 -0.238773 + 

 Sol.d -0,23873 0,000247 -0,23877 9,51E-07 -0.238773 + 

 Sol.r -0,23876 1,36E-05 -0,23878 0,091723 -0.238773 + 

 Sol.o 1.85E-07 2.64E-07 5.34E-05 9.29E-05 0 + 
DS3 Sol.p 1.84E-07 1.03E-07 0.200086 1.65E-05 0.2 + 

 Sol.d 1.86E-07 1.83E-07 0.200299 0.000192 0.2 + 

 Sol.r 1.99E-07 2.65E-07 0.001461 0.004658 0 + 

 Sol.o 0 0 0 0.845635 0 + 

DS4 Sol.p 102 0 102 0 102 - 

 Sol.d 204 0 204 100.5451 204 + 
 Sol.r 1.000245 0.000347 2.388914 0.519674 1 + 

 Sol.o 0.760132 0.000174 2.01667 0.021934 0.76 + 

DS5 Sol.p 102 0 102 0 102 - 

 Sol.d 188.9164 27.86941 102 0 167.3 + 
 Sol.r 1.000139 0.000134 2.268107 0.36943 1 + 

 

It is noteworthy that there are several difficulties in evaluating results to SVBLP. 

These difficulties can easily lead to pitfalls in the interpretation of results, which may 

be very difficult to avoid in general problems for which the exact solutions are not 

known. We draw attention to some of these pitfalls: 

• Only efficient (Pareto optimal) solutions to the lower level problem are feasible to 

the SVBLP. Therefore, an algorithm may yield apparently better solutions (for any 

of the four extreme solutions), i.e. with lower F values, but the solutions are invalid 

because they are not efficient to the lower level problem. 

•  Even if only efficient (Pareto optimal) solutions to the lower level problem are ob-

tained, other difficulties arise in assessing the pessimistic and deceiving solutions. 

Solutions with lower F values (i.e., which seem to be better) may be false because 

they are not in the Pessimistic frontier, i.e., they are not the worst for the leader for 

that setting of x. We can observe this situation in Table 1 for several sol.d and sol.p  

(e.g., Prob.2, Prob.4, DS1, DS3 or DS5). 

From Table 1, we observe that SVBLDE outperformed the PSO algorithm in 17 out 

of the 36 cases (4 extreme solutions to 9 problems) while the PSO algorithm outper-

formed SVBLDE in 9 cases (the differences in the other 10 cases were not statistically 

significant). Therefore, SVBLDE seems to perform slightly better than the PSO algo-

rithm. We can also observe that SVBLDE is very effective in approximating the opti-

mistic solution, being always better or equal to the PSO algorithm, but SVBLDE reveals 

more difficulty in attaining the real pessimistic and deceiving solutions in several cases. 



6 Conclusions 

We presented a new DE algorithm to compute the optimistic/deceiving and pessi-

mistic/rewarding solutions to the SVBLP. These four extreme solutions capture the op-

timistic vs. pessimistic leader’s attitude and possible follower’s reactions more or less 

favorable to the leader. The DE approach seems to perform slightly better than the PSO-

based approach, but the results do not evidence a clear performance advantage of the 

SVBLPDE algorithm with respect to PSO.  The experiments unveiled some pitfalls 

associated with the interpretation of results and assessment of the algorithm perfor-

mance in SVBLP. These pitfalls could be avoided because we were able to determine 

analytically the exact solutions to the problems tested. Research is underway on tech-

niques to mitigate these pitfalls in general problems, which are nevertheless intrinsic to 

this kind of problems and cannot be entirely avoided. 
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