66,682 research outputs found

    Loft+Cyclone

    Get PDF
    This paper reports on an experiment to add concurrency to the Cyclone programming language, in order to get a safe concurrent language. The basic model considered is that of FairThreads in which synchronous and asynchronous aspects are mixed. The language Loft implements the FairThreads model in C. In this paper, one uses Cyclone instead of C in the implementation of Loft. Using the multi-threaded version of Boehm's GC, one gets an extension of Cyclone to concurrency which is as safe as Cyclone for sequential code, with some additional safety verifications for concurrent code

    C++ : a concurrent object-oriented programming language

    Get PDF
    Developing concurrent object-oriented programming (COOP) languages becomes an attractive research area since COOP languages are more suitable for simulation of real world objects and their interactions. After reviewing fundamentals of COOP languages and analyzing existing COOP languages, we propose a concurrent object-oriented programming language: CC++-. CC++ is an extension to object-oriented programming (OOP) language C++. It is extended by introducing five keywords, and incorporating process concepts and communication and synchronization mechanisms into C++. Meanwhile it retains the syntax and semantics of C++. The language distinguishes class (or passive) objects from process (or active) objects. The class objects are the ordinary objects in C++. The process objects, however, are coarse-grain concurrent entities. Each process object has a sequential control thread and an optional public interface that can be accessed by other process objects. The communication and synchronization between interacting process objects are accomplished through remote function call (RFC), which is an extension of remote procedure call (RPC) [Han78]. Two types of RFCs, blocked RFC and unblocked RFC are distinguished in CC++. The blocked RFC, along with guarded function and forward mechanism performs synchronous message passing. The unblocked RFC, however, provides a way to express asynchronous message passing. The guarded function is based on guarded commands [Dij 75], and is introduced for expressing and controlling indeterminism. The language has been implemented as an experimental system running on UNIX. The important objectives of CC++ are ease of programming, simple syntax, clear semantics and strong expressive power

    Abstract Analysis of Universal Properties for tccp

    Get PDF
    [EN] The Timed Concurrent Constraint Language (tccp) is a time extension of the concurrent constraint paradigm of Saraswat. tccp was defined to model reactive systems, where infinite behaviors arise naturally. In previous works, a semantic framework and abstract diagnosis method for the language has been defined. On the basis of that semantic framework, this paper proposes an abstract semantics that, together with a widening operator, is suitable for the definition of different analyses for tccp programs. The abstract semantics is correct and can be represented as a finite graph where each node represents a hypothetical computational step of the program containing approximated information for the variables. The widening operator allows us to guarantee the convergence of the abstract fixpoint computation.This work has been supported by the Andalusian Excellence Project P11-TIC7659. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grant TIN 2013-45732-C4-1-P (DAMAS) and by Generalitat Valenciana PROMETEOII/2015/013Comini, M.; Gallardo Melgarejo, MDM.; Titolo, L.; Villanueva, A. (2015). Abstract Analysis of Universal Properties for tccp. Lecture Notes in Computer Science. 163-178. https://doi.org/10.1007/978-3-319-27436-2_10S163178Alpuente, M., Gallardo, M.M., Pimentel, E., Villanueva, A.: A semantic framework for the abstract model checking of tccp programs. Theor. Comput. Sci. 346(1), 58–95 (2005)Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for convex polyhedra. Sci Comput. Program. 58(1–2), 28–56 (2005)Comini, M., Titolo, L., Villanueva, A.: Abstract diagnosis for timed concurrent constraint programs. Theor. Pract. Log. Program. 11(4–5), 487–502 (2011)Comini, M., Titolo, L., Villanueva, A.: A condensed goal-independent bottom-up fixpoint modeling the behavior of tccp. Technical report, DSIC, Universitat Politècnica de València (2013). http://riunet.upv.es/handle/10251/34328Cousot, P., Cousot, R.: Abstract Interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Los Angeles, California, January 17–19, pp. 238–252. ACM Press, New York (1977)de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language. Inf. Comput. 161(1), 45–83 (2000)Falaschi, M. Gabbrielli, M., Marriott, K., Palamidessi, C.: Compositional analysis for concurrent constraint programming. In: Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science, pp. 210–221. IEEE Computer Society Press, Los Alamitos (1993)Falaschi, M., Olarte, C., Palamidessi, C.: Abstract interpretation of temporal concurrent constraint programs. Theor. Pract. Log. Program. (TPLP) 15(3), 312–357 (2015)Falaschi, M., Villanueva, A.: Automatic verification of timed concurrent constraint programs. Theor. Pract. Log. Program. 6(3), 265–300 (2006)Saraswat, V.A.: Concurrent Constraint Programming. The MIT Press, Cambridge (1993)Zaffanella, E., Giacobazzi, R., Levi, G.: Abstracting synchronization in concurrent constraint programming. J. Funct. Log. Program. 6, 1997 (1997

    Task Description Language

    Get PDF
    Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator

    Safe and scalable parallel programming with session types

    Get PDF
    Parallel programming is a technique that can coordinate and utilise multiple hardware resources simultaneously, to improve the overall computation performance. However, reasoning about the communication interactions between the resources is difficult. Moreover, scaling an application often leads to increased number and complexity of interactions, hence we need a systematic way to ensure the correctness of the communication aspects of parallel programs. In this thesis, we take an interaction-centric view of parallel programming, and investigate applying and adapting the theory of Session Types, a formal typing discipline for structured interaction-based communication, to guarantee the lack of communication mismatches and deadlocks in concurrent systems. We focus on scalable, distributed parallel systems that use message-passing for communication. We explore programming language primitives, tools and frameworks to simplify parallel programming. First, we present the design and implementation of Session C, a program ming toolchain for message-passing parallel programming. Session C can ensure deadlock freedom, communication safety and global progress through static type checking, and supports optimisations by refinements through session subtyping. Then we introduce Pabble, a protocol description language for designing parametric interaction protocols. The language can capture scalable interaction patterns found in parallel applications, and guarantees communication-safety and deadlock-freedom despite the undecidability of the underlying parameterised session type theory. Next, we demonstrate an application of Pabble in a workflow that combines Pabble protocols and computation kernel code describing the sequential computation behaviours, to generate a Message-Passing Interface (MPI) parallel application. The framework guarantees, by construction, that generated code are free from communication errors and deadlocks. Finally, we formalise an extension of binary session types and new language primitives for safe and efficient implementations of multiparty parallel applications in a binary server-client programming environment. Our exploration with session-based parallel programming shows that it is a feasible and practical approach to guaranteeing communication aspects of complex, interaction-based scalable parallel programming.Open Acces

    A program analysis framework for tccp based on abstract interpretation

    Get PDF
    [EN] The timed concurrent constraint language (tccp) is a timed extension of the concurrent constraint paradigm. tccp was defined to model reactive systems, where infinite behaviors arise naturally. In previous works, a semantic framework and abstract diagnosis method for the language have been defined. On the basis of that semantic framework, this paper proposes an abstract semantics that, together with a widening operator, is suitable for the definition of different analyses for tccp programs. The abstract semantics is correct and can be represented as a finite graph where each node represents a hypothetical (abstract) computational step of the program. The widening operator allows us to guarantee the convergence of the abstract fixpoint computation.This author has been supported by the Andalusian Excellence Project P11-TIC-7659. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2015-69175-C4-1-R and TIN 2013-45732-C4-1-P and by Generalitat Valenciana PROMETEOII/2015/013Comini, M.; Gallardo, M.; Titolo, L.; Villanueva, A. (2017). A program analysis framework for tccp based on abstract interpretation. Formal Aspects of Computing. 29(3):531-557. https://doi.org/10.1007/s00165-016-0409-8S531557293Alpuente M, Gallardo MM, Pimentel E, Villanueva A (2006) A semantic framework for the abstract model checking of tccp programs. Theor Comput Scie 346(1): 58–95Bagnara R, Hill PM., Ricci E, Zaffanella E (2005) Precise widening operators for convex polyhedra. Sci Comput Program 58(1–2):28–56Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on principles of programming languages, Los Angeles, California, January 17–19. ACM Press, New York, pp 238–252Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement. In: CAV, Lecture Notes in Computer Science, vol 1855. Springer, pp 154–169Comini M, Gallardo MM, Titolo L, Villanueva A (2015) Abstract Analysis of Universal Properties for tccp. In: Falaschi M (ed) Logic-based Program Synthesis and Transformation, 25th International Symposium, LOPSTR 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol 9527. Springer, pp 163–178Comini M, Titolo L, Villanueva A (2011) Abstract diagnosis for timed concurrent constraint programs. Theory Pract Logic Programm 11(4-5):487–502Comini M, Titolo L, Villanueva A (2013) A condensed goal-independent bottom-up fixpoint modeling the behavior of tccp. Technical report, DSIC, Universitat Politècnica de València. http://riunet.upv.es/handle/10251/34328de Boer FS, Gabbrielli M, Meo MC (2000) A timed concurrent constraint language. Inf Comput 161(1): 45–83Falaschi M, Gabbrielli M, Marriott K, Palamidessi C (1993) Compositional analysis for concurrent constraint programming. In: Proceedings of the eighth annual IEEE symposium on logic in computer science, Los Alamitos, CA, USA, IEEE Computer Society Press, pp 210–221Falaschi M, Olarte C, Palamidessi C (2015) Abstract interpretation of temporal concurrent constraint programs. Theory and Pract Logic Program (TPLP) 15(3): 312–357Falaschi M, Villanueva A (2006) Automatic verification of timed concurrent constraint programs. Theory Pract Logic Program 6(3): 265–300Gallardo MM, Merino P, Pimentel E (2002) Refinement of LTL formulas for abstract model checking. In: Static analysis, 9th international symposium, SAS 2002, Madrid, Spain, September 17–20, 2002, Proceedings, pp 395–410Saraswat VA (1993) Concurrent constraint programming. The MIT Press, CambridgeSaraswat VA, Rinard M, Panangaden P (1991) The semantic foundations of concurrent constraint programming. In: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM, New York, pp 333–352Zaffanella E, Giacobazzi R, Levi G (1997) Abstracting synchronization in concurrent constraint programming. J Funct Logic Program (6

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    On conservativity of concurrent Haskell

    Get PDF
    The calculus CHF models Concurrent Haskell extended by concurrent, implicit futures. It is a process calculus with concurrent threads, monadic concurrent evaluation, and includes a pure functional lambda-calculus which comprises data constructors, case-expressions, letrec-expressions, and Haskell’s seq. Futures can be implemented in Concurrent Haskell using the primitive unsafeInterleaveIO, which is available in most implementations of Haskell. Our main result is conservativity of CHF, that is, all equivalences of pure functional expressions are also valid in CHF. This implies that compiler optimizations and transformations from pure Haskell remain valid in Concurrent Haskell even if it is extended by futures. We also show that this is no longer valid if Concurrent Haskell is extended by the arbitrary use of unsafeInterleaveIO

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    corecore