
Abstract analysis of universal properties for tccp

Marco Comini1, Maŕıa del Mar Gallardo2, Laura Titolo2, and Alicia
Villanueva3

1 DIMI, Università degli Studi di Udine,
marco.comini@uniud.it

2 LCC, Universidad de Málaga⋆

{gallardo,laura.titolo}@lcc.uma.es
3 DSIC, Universitat Politècnica de València⋆⋆

villanue@dsic.upv.es

Abstract The Timed Concurrent Constraint Language (tccp) is a time
extension of the concurrent constraint paradigm of Saraswat. tccp was
defined to model reactive systems, where infinite behaviors arise natu-
rally. In previous works, a semantic framework and abstract diagnosis
method for the language has been defined.
On the basis of that semantic framework, this paper proposes an abstract
semantics that, together with a widening operator, is suitable for the def-
inition of different analyses for tccp programs. The abstract semantics is
correct and can be represented as a finite graph where each node repre-
sents a hypothetical computational step of the program containing ap-
proximated information for the variables. The widening operator allows
us to guarantee the convergence of the abstract fixpoint computation.

Key Words: concurrent constraint paradigm, abstract analysis.

1 Introduction

The Concurrent Constraint Paradigm (ccp, [10]) is a simple, logic model which
is different from other (concurrent) programming paradigms mainly due to the
notion of store-as-constraint that replaces the classical store-as-valuation model.
It is based on an underlying constraint system that handles constraints on vari-
ables and deals with partial information. Within this family, [6] introduced the
Timed Concurrent Constraint Language (tccp) by adding to the original ccp
model the notion of time and the ability to capture the absence of information.
With these features, one can specify behaviors typical of reactive systems such
as timeouts or preemption actions.

It is well-known that modeling and analyzing concurrent systems by hand can
be an extremely hard task. Thus, the development of automatic formal methods

⋆ This work has been supported by the Andalusian Excellence Project P11-TIC7659.
⋆⋆ This work has been partially supported by the EU (FEDER) and the Spanish

MINECO under grant TIN 2013-45732-C4-1-P (DAMAS) and by Generalitat Va-
lenciana PROMETEOII/2015/013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/84480726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is essential. The particular characteristics of ccp languages make such task even
harder, since we have to deal with technical issues due to the infinite computa-
tions (natural to reactive systems), use of negative information (particular for
ccp languages) and non-determinism.

One well established technique to develop semantic-based program analysis
is abstract interpretation [5], which relies on the definition of a specific approx-
imated abstract semantics that captures the information needed to perform the
analysis. Typically, one defines an over-approximation of the concrete semantics
that includes all possible traces of the system, possibly introducing inexistent
ones. This allows one to develop (correct) analysis of universal properties. It does
not allow to analyze existential properties, for instance to verify that there ex-
ists a suspension trace. In our proposal, we follow such approach starting from
the concrete semantics for tccp defined in [4]. This semantics addresses (with
the minimal amount of information) all thorniest difficulties of tccp (i.e., infinite
computations, use of negative information and non-determinism). To the best
of our knowledge, this is the only bottom-up and condensed semantics which is
fully abstract w.r.t. the full tccp language. Therefore, such semantics is partic-
ularly well-suited as the base to apply abstract interpretation techniques, which
take great advantage from a bottom-up and condensed definition. The fully-
abstract denotational semantics of [6] captures just finite computations and has
a top-down definition thus it is not well-suited for our purposes.

We define a framework of over-approximated abstract semantics parametric
w.r.t. an abstract constraint system. This allows us to recycle the work done for
developing abstract domains for logic programs (such as groundness analysis).
More interestingly, we can also make new analyses for reactive systems such as
non-suspension analysis and universal (safety and liveness) properties. Since we
need to preserve the notion of time—to be able to express properties of interest
like safety or time-depending properties—the abstract semantics domains are
not Noetherian (even if we use finite abstract constraint systems). Thus, in
order to have an effective approach we use the widening approach of [2,5] to
ensure finiteness of the analysis. Applicability of our approach is illustrated by
showing different analyses over our guiding example, a lift/passenger system.
More specifically, we show how properties such as the lift direction and floor are
consistently updated or the lift/passenger never suspends can be analyzed.

2 The tccp language

The tccp language [6] is particularly suitable to specify both reactive and time
critical systems. As the other languages of the ccp paradigm [10], it is parametric
w.r.t. a cylindric constraint system which handles the data information of the
program in terms of constraints. The computation progresses as the concurrent
and asynchronous activity of several agents that can accumulate information in a
store, or query information from it. A cylindric constraint system4 is an algebraic

4 See [6,10] for more details on cylindric constraint systems, where traditionally, the
glb ⊕ is not explicitly defined.

2

structure C = ⟨C,⪯,⊗,⊕, false, true,Var ,∃⟩ composed of a set of constraints C
such that (C, ⪯) is a complete algebraic lattice where ⊗ is the lub operator, ⊕ is
the glb operator and false and true are respectively the greatest and the least
element of C; Var is a denumerable set of variables and ∃ existentially quantifies
variables over constraints. The entailment ⊢ is the inverse of ⪯.

Given a cylindric constraint system C and a set of process symbols Π, the
syntax of agents is given by the grammar A ∶∶= skip ∣ tell (c) ∣ A ∥ A ∣ ∃xA ∣

∑
n
i=1 ask(ci)→ A ∣ now c then A else A ∣ p(x⃗) where c, c1, . . . , cn are finite con-

straints in C; p/m ∈ Π, and x⃗ denotes a generic tuple of m variables. A tccp
program is an object of the form D .A, where A is an agent, called initial agent,
and D is a set of process declarations of the form p(x⃗) ∶− A (for some agent A).
The notion of time is introduced by defining a discrete and global clock.

The operational semantics of tccp, defined in [6], is formally described by a
transition system T = (Conf ,Ð→). Informally, the tell (c) agent adds the con-
straint c to the store in the next time instant and then stops. The choice agent

∑
n
i=1 ask(ci) → Ai consults the store and non-deterministically executes (at the

following time instant) one of the agents Ai whose corresponding guard ci is
entailed by the current store; otherwise, if no guard is entailed by the store, the
agent suspends. The conditional agent now c then A else B behaves in the current
time instant like A (resp. B) if c is (resp. is not) entailed by the store. A ∥ B
models the parallel composition of A and B in terms of maximal parallelism.
The agent ∃xA makes variable x local to A. To this end, it uses the ∃ operator
of the constraint system. Finally, the agent p(x⃗) takes from D a declaration of
the form p(x⃗) ∶− A and then executes A at the following time instant.

Example 1. The following code shows a possible tccp implementation of a simple
lift/passenger system. We assume that the lift is located at a building with N +1
floors numbered as 0,1,⋯,N . The lift process uses variables CF and Dir to store
the current floor where the lift is placed and the movement direction (up/down),
respectively. At each time instant, the lift moves, if possible, to the following
floor, according to the current movement direction. When the lift reaches floors
0 or N , then it changes the movement direction. Process pssngr models the
behavior of a client that wants to take the lift to go from origin floor O to
destination floor D. This process makes use of variable St to store its state: wait ,
when it is waiting for the lift, in, when it is inside the lift and out , when the
passenger has arrived at the destination floor. We use a simple constraint system
composed of the atoms {up,down, in,out ,wait} and with arithmetic operations
over the numbers {0, . . . ,N}. Due to the monotonicity of the store, streams
(written in a list-fashion way) are used to model imperative-style variables [6].

main(N ,O ,D) ∶ − ∃CF ,Dir ,St (lift(N,CF ,Dir) ∥ pssngr(CF ,O,D,St) ∥

tell (CF = [0 ∣]) ∥ tell (Dir = [up ∣]) ∥ tell (St = [wait ∣]))

lift(N ,CF ,Dir) ∶ − ∃CF l,Dir l, F (now(Dir = [up ∣] ∧CF = [N ∣])

then (tell (Dir = [up ∣ Dir l]) ∥ tell (Dir l = [down ∣]) ∥ lift(N ,CF ,Dir l))

else now (Dir = [up ∣]) then (tell (CF = [F ∣ CF l]) ∥

3

ask(true)→ (tell (CF l = [F + 1 ∣]) ∥ lift(N ,CF l ,Dir)))

else now (Dir = [down ∣] ∧CF = [0 ∣])

then (tell (Dir = [down ∣ Dir l]) ∥ tell (Dir l = [up ∣]) ∥ lift(N ,CF ,Dir l))

else (tell (CF = [F ∣ CF l]) ∥

ask(true)→ (tell (CF l = [F − 1 ∣]) ∥ lift(N ,CF l ,Dir))))

pssngr(CF ,O ,D ,St) ∶ − ∃St ′ (

ask(CF = [D ∣] ∧ St = [in ∣])→ (tell (St = [in ∣ St′]) ∥ tell (St ′ = [out ∣]))

+ ask(CF = [O ∣] ∧ St = [wait ∣])→ (tell (St = [wait ∣St′]) ∥ tell (St ′ = [in ∣]) ∥

tell (CF = [∣ CF ′

]) ∥ pssngr(CF ′,O ,D ,St ′))

+ ask((CF ≠ [O ∣] ∧CF ≠ [D ∣]) ∨ (CF = [D ∣] ∧ St ≠ [in ∣])

∨ (CF = [O ∣] ∧ St ≠ [wait ∣]))→ (tell (CF = [∣ CF ′

]) ∥ pssngr(CF ′,O ,D ,St ′)))

2.1 The concrete denotational semantics

In this section, we briefly recall the concrete denotational domain and seman-
tics of [4], which is fully-abstract (correct and complete) w.r.t. the small-step
operational behavior of tccp. The denotational semantics of a tccp program [4]
consists of a set of conditional (timed) traces that represent, in a compact way,
all the possible behaviors that the program can manifest when fed with an input
(initial store). Conditional traces can be seen as hypothetical computations in
which, for each time instant, we have a condition representing the information
that the global store has to satisfy in order to proceed to the next time instant.

Briefly, a conditional trace is a (possibly infinite) sequence t1⋯tn⋯ of condi-
tional states, which can be of three forms:

conditional store: a pair η ↣ c, where η is a condition and c ∈ C a store;
stuttering: the construct stutt (C), with C ⊆ C ∖ {true};
end of a process: the construct ⊠.

Intuitively, the conditional store η ↣ c means that, provided condition η is
satisfied by the current store, the computation proceeds so that in the following
time instant, the store is c. A condition η is a pair η = (η+, η−) where η+ ∈
C and η− ∈ ℘(C) are called positive and negative condition, respectively. The
positive/negative condition represents information that a given store must/must
not entail, thus they have to be consistent in the sense that ∀c− ∈ η− η+ ⊬ c−.
The stuttering construct models the suspension of the computation when none
of the guards in a non-deterministic agent is satisfied. C is the set of guards in
the non-deterministic agent.

Conditional traces are monotone (i.e., for each ti = ηi ↣ ci and tj = ηj ↣ cj
such that j ≥ i, cj ⊢ ci) and consistent (i.e., each store in a trace does not entail
the negative conditions of the following conditional state). ⊺ is the set of all
maximal conditional traces, i.e., infinite traces or finite traces ending with ⊠.
With C G C ′ ⇐⇒ ∀c ∈ C.∃c′ ∈ C ′. c ⊢ c′ we order ⊺ as:

(η+1 , η
−
1)↣ c ⋅ r1 ⊑ (η+2 , η

−
2)↣ c ⋅ r2 ⇐⇒ η+1 ⊢ η

+
2 ∧ η

−
2 G η−1 ∧ r1 ⊑ r2

4

(Dir = [up ∣] ∧CF = [N ∣],∅)↣
⟨Dir = [up ∣ Dir

′] ∧Dir
′ = [down ∣]⟩

I(lift(CF,Dir′,N))

(Dir = [up ∣],{Dir = [up ∣]∧
CF = [N ∣]})↣ ⟨CF = [F ∣ CF ′]⟩

(Dir = [up ∣] ∧CF = [F ∣ CF ′],∅)↣
⟨CF = [F ∣ CF ′] ∧CF

′ = [F + 1 ∣]⟩

I(lift(CF ′,Dir,N))

(Dir = [down ∣] ∧CF = [0 ∣],
{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣]})↣
⟨Dir = [down ∣ Dir

′] ∧Dir
′ = [up ∣]⟩

I(lift(CF,Dir′,N))

(true,{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣],
Dir = [down ∣] ∧CF = [0 ∣]})↣ ⟨CF = [F ∣ CF

′]⟩

(true,∅)↣ ⟨CF = [F ∣ CF ′] ∧CF
′ = [F − 1 ∣]⟩

I(lift(CF ′,Dir,N))

Figure 1: Graph representation of the semantics of the lift process.

stutt (η−1) ⋅ r1 ⊑ stutt (η−2) ⋅ r2 ⇐⇒ η−2 G η−1 ∧ r1 ⊑ r2

Intuitively, a trace r is smaller than another trace r′ iff the conditions of r
are more (or equally) restrictive than those of r′. We denote the domain of
maximal conditional trace sets as C. (C, ⊑, ⊔, ⊓, ⊺, �) is a complete lattice,
where M1 ⊑M2 ⇔ ∀r1 ∈M1 ∃r2 ∈M2. r1 ⊑ r2.

The concrete denotational semantics is based on a semantics evaluation func-
tion AJAKI which, given an agent A and an interpretation I , builds the condi-
tional traces associated to A (defined in [4]). The interpretation I is a function
which associates to each process symbol a set of maximal conditional traces
“modulo variance”.

Definition 1 (Interpretations). Let PC ∶= {p(x⃗) ∣ x⃗ are distinct variables
and p is a process symbol}. An interpretation is a function I ∶PC → C modulo
variance5. The semantic domain I is the set of all interpretations ordered by the
pointwise extension of ⊑.

The semantics for a set of process declarations D is the fixpoint F JDK ∶=
lfp(DJDK) of the continuous operator DJDKI (p(x⃗)) ∶= ⊔p(x⃗)∶−A∈DAJAKI . Proof
of full abstraction w.r.t. the operational behavior of tccp is given in [4].

Example 2 (Semantics of our guiding example). Consider the lift process defined
in Example 1. We show in Figure 1 its concrete semantics. Each branch of the
tree corresponds to one of the branches of the nested now agents. The first branch
(left-to-right order) represents the case in which the direction of the lift is up
and the current floor is the last one (N). The second branch is taken when the
direction is up but the current floor is not N (see the negative condition). In
that case, the current floor changes from F to F +1. The third branch represents
the case when the direction of the lift is down and the current floor is 0, thus
the direction is changed to up by adding the constraint Dir ′ = [up ∣]. Finally,

5 Two functions I, J ∶PC → C are variants, denoted by I ≅ J , if for each π ∈ PC there
exists a variable renaming ρ such that (I(π))ρ = J(πρ).

5

the fourth branch is taken when all the guards are not entailed (see the negative
condition, composed by all the guards of the nested now agents). In that case, the
lift moves to the lower floor F −1. In all the aforementioned cases, a recursive call
is invoked appropriately. These calls are represented in Figure 1 by the triangles
labeled with the interpretation of the process lift .

3 The (finite) abstract semantics for tccp

In this section, we define our over-approximated abstract semantics for tccp.
Our abstract semantics is parametric w.r.t. an approximation of the underlying
constraint system.

The problem of abstracting constraint systems in the ccp paradigm was stud-
ied in [7,11], where abstraction meant loss of completeness but not of correct-
ness. However, for the tccp case, due to the strong synchronization of parallel
processes, over-approximation of stores could lead to lose correctness [1].

In our semantic domain, constraints are used in three components: in the
positive part of the condition, in the negative part and in the store. Since
these three components represent different information of a trace, we need to
approximate them differently. Similarly to [1,3], we use both an over- and an
under-approximation of the constraint system. The intuitive idea is that we
approximate positive information (positive condition and store) with the over-
approximation, whereas we approximate negative information with the under-
approximation. This allows us to guarantee that we do not loose concrete be-
haviors when we abstract the semantics, i.e., it is ensured completeness of the
abstract semantics. The over-approximating function τ+∶C → Ĉ abstracts the
constraint system C into an abstract one Ĉ = ⟨Ĉ, ⪯̂, ⊗̂, ⊕̂, ˆfalse, ˆtrue,Var , ∃̂⟩ where

ˆtrue and ˆfalse are the smallest and the greatest abstract constraint, respectively.
We often use the inverse relation ⊢̂ of ⪯̂. The under-approximating function
τ−∶ ℘(C) → Č abstracts the constraint system into another abstract constraint
system Č = ⟨Č, ⪯̌, ⊗̌, ⊕̌, ˇfalse, ˇtrue,Var , ∃̌⟩. We have two “external” operations
×̂∶C × Ĉ → Ĉ and ×̌∶C × Č → Č that update an abstract constraint with a concrete
constraint (coming from the program).

Over and under-abstract constraints must satisfy the following properties.

c ×̂ τ+ (a) = τ+ (c⊗ a) c ×̌ τ− (C) = τ− ({c} ∪C)

τ+ (a⊗ b) = τ+ (a) ⊗̂ τ+ (b) τ− (C ∪C′
) = τ− (C) ⊕̌ τ− (C′

)

a ⊢ bÔ⇒ τ+ (a) ⊢̂ τ+ (b) τ− ({a}) ⊢̌ τ− (C)Ô⇒ ∃c ∈ C.a ⊢ c

τ+ (∃x a) = ∃̂x τ
+

(a) τ− ({∃x c ∣ c ∈ C}) = ∃̌x τ
−

(C)

Moreover, they must be consistent, which means that the “bridge” relation ⊢̃ ∈
Ĉ × Č must hold: ∀c ∈ C. a /⊢ cÔ⇒ τ+ (a) /̃⊢ τ− (C).

Example 3 (Sign abstraction). Given the standard constraint system with in-
equalities over integer numbers, we abstract it to the abstract constraint system
that contains only information about the sign of the system variables. We define
the “positive” abstract constraint system as Ŝ ∶= ⟨S,⇐,∧,∨, false, true,Var ,∃⟩

6

where S is the set of finite conjunctions of {posx,negx, zerox ∣ x ∈ Var} ∪
{false, true}.

The abstract approximation τ+ is defined by cases as follows:

τ+ (true) = true τ+ (x ≤ a) =

⎧⎪⎪
⎨
⎪⎪⎩

negx if a ≤ 0

true if a > 0
τ+ (x ≥ a) =

⎧⎪⎪
⎨
⎪⎪⎩

posx if a ≥ 0

true if a < 0

τ+ (false) = false τ+ (x = a) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

posx if a > 0

negx if a < 0

zerox if a = 0

Dually, we define Š ∶= ⟨S,⇒,∨,∧, true, false,Var ,∃⟩, the “negative” abstract
constraint system. The τ− function is defined as τ− (C) ∶= ⋀c∈C τ

′(c), where

τ ′(true) = true τ ′(x ≤ a) =

⎧⎪⎪
⎨
⎪⎪⎩

negx if a ≤ 0

false if a > 0
τ ′(x ≥ a) =

⎧⎪⎪
⎨
⎪⎪⎩

posx if a ≥ 0

false if a < 0

τ ′(false) = false τ ′(x = a) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

posx if a > 0

negx if a < 0

zerox if a = 0

The abstract denotational model A is formed by abstract conditional traces,
which are conditional traces where conditions and stores are formed by approx-
imated constraints. An abstract conditional trace is said to be valid when all its
abstract conditions are consistent. An abstract condition (c+, c−) is not consis-
tent when τ+ (c+) ⊢̃ τ− (c−).

It is worth noting that (A, ⊑, ⊔, ⊓, A, �) is a complete lattice.

3.1 The abstract semantics

Now we are ready to define our abstraction approach which works in two steps:
the first one abstracts information, and the second one folds suspending traces.
Formally, concrete and abstract domains are related by the following functions:

(C, ⊑) −−−−−→Ð→←−−−−−−
αC

γC

(A, ⊑) −−−−−−−−→Ð→←−−−−−−−−−−
fold

unfold
(A, ⊑).

The abstraction function αC applies τ+ to each positive condition and store
and τ− to each negative condition occurring in the considered trace. αC is para-
metric to the abstraction of the constraint system. The adjoint of αC is the
concretization function γC that, given a set of abstract traces, produces all the
concrete traces that can be approximated with it. For example, given a trace
of the form r = stutt ({X > 5}) ⋅ (X > 6,{Y < 0}) ↣ X > 9 the sign abstraction
results in the abstract trace αC(r) = stutt ({posX}) ⋅ (posX ,{negY })↣ posX .

The second step of our abstract scheme, the fold abstraction, just collapses
together all the consecutive identical stutt (C) states. For example, consider r =

7

stutt ({posX})⋅stutt ({posX})⋅stutt ({posX}), then fold(r) = stutt ({posX}). The
adjoint of this abstraction function is the concretization unfold which expands
each state stutt (C) into a sequence of repetitions of stutt (C) of arbitrary length.
Note that this second step does not guarantee termination of analysis since in
tccp infinite behaviors are not only due to stuttering computations.

Lemma 1. (αC , γC), (fold ,unfold) and their composition α = αC ○ fold and γ =
unfold ○ γC are Galois Insertions.

Proof (Sketch.). It is easy to see that both α and γ are monotonic functions, for
all M ∈ C, (γ ○ α)(M) ⊒M , and α ○ γ is the identity for A. ⊓⊔

The Galois insertion defined before can be naturally lifted to the domain of
interpretations. We denote as IA ∶= [PC → A] the abstract counterpart of I.

The abstract semantics for a tccp program is based on the evaluation function
for tccp agents defined below. In order to improve readability, we have lighten
the definition by omitting some technical details. However, we still need some
auxiliary operators and properties, intuitively described below. Their formal def-
initions are similar to those in [4].

Given a trace r and a constraint c, r↓c denotes the propagation of c in the
positive conditions occurring in r. The hiding operator ∃̄∶Var × A → A hides
the information regarding a given variable in a trace. It uses ∃̂ and ∃̌ to hide
the information in the positive and in the negative conditions and stores. The
∥̄ operator composes two traces by consistently merging their conditions and
stores. A trace r is said to be self-sufficient if the first condition is (true,∅)
and each store satisfies the successive condition. Moreover, r is x-self-sufficient
if ∃̄Var∖{x} r is self-sufficient. In other words, for self-sufficient conditional traces,
no additional information (from other agents) is needed in order to complete the
computation.

Definition 2 (Abstract Semantics Evaluation Function for Agents).
Given a tccp agent A and an (abstract) interpretation Iα ∈ IA, we define the
semantics evaluation AαJAKIα ∈ A by structural induction as follows.

AαJskipKIα ∶= {⊠} (3.1)

AαJtell (c)KIα ∶= {(ˆtrue, ˇfalse)↣ τ+ (c) ⋅ ⊠} (3.2)

AαJA ∥ BKIα ∶=⊔{rA ∥̄ rB ∣ rA ∈ AαJAKIα , rB ∈ AαJBKIα} (3.3)

AαJ∃xAKIα ∶=⊔{ ∃̄x r ∣ r ∈ AαJAKIα , r is x-self-sufficient} (3.4)

AαJp(x⃗)KIα ∶= {(ˆtrue, ˇfalse)↣ ˆtrue ⋅ r ∣ r ∈ Iα(p(x⃗))} (3.5)

AαJ
n

∑
i=1

ask(ci)→ AiKIα ∶= M ⊔ {stutt (τ− ({c1, . . . , cn})) ⋅ r ∣ r ∈M} ⊔

{stutt (τ− ({c1, . . . , cn}))}

(3.6)

where M = ⊔{(τ+ (ci) , ˇfalse)↣ ˆtrue ⋅ (r↓τ+(ci)) ∣1 ≤ i ≤ n, r ∈ A
αJAiKIα}

AαJnow c then A else BKIα ∶=

{(τ+ (c) , ˇfalse)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJAKIα} ⊔ (3.7a)

8

⊔{(c ×̂ η̂, η̌)↣ d̂ ⋅ (r↓τ+(c)) ∣ (η̂, η̌)↣ d̂ ⋅ r ∈ AαJAKIα , c ×̂ η̂ ⊬̃ η̌} ⊔ (3.7b)

⊔{(τ+ (c) , η̌)↣ ˆtrue ⋅ r↓τ+(c)) ∣ stutt (η̌) ⋅ r ∈ AαJAKIα , c ⊬̃ η̌} ⊔ (3.7c)

⊔{(ˆtrue, τ− ({c}))↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJBKIα} ⊔ (3.7d)

⊔{(η̂,{c} ×̌ η̌)↣ d̂ ⋅ r ∣ (η̂, η̌)↣ d̂ ⋅ r ∈ AαJBKIα , η̂ ⊬̂ τ− ({c})} ⊔ (3.7e)

⊔{(ˆtrue,{c} ×̌ η̌)↣ ˆtrue ⋅ r ∣ stutt (η̌) ⋅ r ∈ AαJBKIα} (3.7f)

Note that all the operations regarding the positive part of conditions and the
stores are abstracted with the τ+ abstraction, whereas all the definitions for the
negative condition use the τ− abstraction.

We explain in more detail some significant cases. The semantics of the tell (c)
agent (3.1) has a trace with two conditional states: the first one with condition
(ˆtrue, ˇfalse), which is the less demanding condition since c must be added to
the store in any case (in the next time instant). Next, the computation termi-
nates with the end-of-process symbol ⊠. The parallel, hiding and process call
cases are defined like in the concrete semantics. The semantics for the non-
deterministic choice (3.6) collects, for each guard ci, a conditional trace of the
form (τ+ (ci) , ˇfalse) ↣ ˆtrue ⋅ (r↓τ+(ci)). This trace requires that τ+ (ci) has to
be satisfied by the current store. Then, the constraint τ+ (ci) is propagated to
the conditions in trace r (the continuation of the computation, which belongs
to the semantics of Ai). Furthermore, we collect the stuttering traces, which
correspond to the case when the computation suspends. These traces are of the
form stutt (τ− ({c1, . . . , cn})) ⋅ r where r is one of the traces above.

The semantics for a set of process declarations D is the fixpoint FαJDK ∶=
lfp(DαJDK) of the continuous operator DαJDKIα(p(x⃗)) ∶= ⊔p(x⃗)∶−A∈DA

αJAKIα .
It can be shown that Aα and Dα are, the optimal abstractions of A and D, i.e.,
AαJAK = α ○AJAK ○γ and DαJDK = α ○DJDK ○γ. Hence, abstract interpretation
theory ensures that FαJDK is the best correct approximation of F JDK.

3.2 From infinite to finite semantics

Since the domain of abstract conditional traces is not Noetherian (i.e., it admits
infinite increasing chains), the abstract least fixpoint does not necessarily con-
verge in finite time. Our solution is to use a widening operator [2,5] that ensures
the convergence of the abstract fixpoint in a finite number of steps.

In the following, we use a representation of sets of abstract conditional traces
in terms of conditional graphs. These graphs are enriched with the information
about the process calls, which is necessary to identify the part of the graph cor-
responding to each iteration of DαJDK at the moment of applying the widening
operator.

Definition 3. A conditional graph G is a triple (Init ,Nodes,Edges) where

– Init is the set of initial nodes, each one labeled with a (unique) process sym-
bol, denoted by init(G)

– Nodes is a set of nodes, each one containing a conditional step, and

9

– Edges is a set of edges between nodes that can be of two kinds: either simple

edges n → n′, or edges of the form n
ρ
Ô⇒
p
n′ representing a call to process p

with variable renaming ρ. Edges represent the passage of one time unit.

G denotes the set of all conditional graphs. Moreover, n /→ denotes a node n that
has no outgoing edges.

We define the function paths ∶G → A which, given a conditional graph, re-

turns the set of all paths of the graph. When an arc of the form
ρ
Ô⇒
p

is traversed,

a variant with fresh variables in the co-domain of the renaming ρ is applied to
the nodes that follow in the path and the information of the store is propagated
to the positive conditions, similarly to what happens when a call is done. The
order relation over graphs ≤ is defined as G1 ≤ G2 ⇐⇒ paths (G1) ⊑ paths (G2).
We denote as (G, ≤, ⋁, ⋀, G, �G) the complete lattice where ⋁ is the least up-
per bound operator that joins a set of graphs by combining all the sequences
that have a prefix in common in the same path, ⋀ is the greatest lower bound
operator that returns the common parts of a set of graphs and �G is the graph
composed only of an empty initial node.

The semantics of a tccp process p(x⃗) can be seen as a conditional graph G
with the initial node labeled with p and such that paths (G) = FαJDK(p(x⃗)).
The graph for the process p(x⃗) is built by linking the initial node of p to the
nodes corresponding to the first conditional states of the semantics of an agent A
such that p(x⃗) ∶ −A ∈D. The rest of the graph is built following the denotational
semantics of Definition 2: each conditional state becomes a node in the graph
and it is connected to the following one by a simple edge. When a call to a

process q(y⃗) is found and the declaration q(z⃗) ∶ −A′ is in D, an arrow
[z⃗/y⃗]
ÔÔ⇒
q

is

added, thus linking the current node to the graph labeled with q by using the
variable renaming [z⃗/y⃗].

Now we are ready to define our widening operator. Widening operators pro-
vide a simple solution to the convergence problem by over-approximating infinite
increasing chains in a finite number of steps. A widening operator [2,5] on the
lattice (L, ≤) is a partial function ▽∶L × L → L satisfying: (covering) for all
x, y ∈ L such that x ≤ y, x▽ y exists and y ≤ x▽ y; and (termination) for
each increasing chain x0 ≤ x1 ≤ . . . the increasing chain defined as y0 = x0 and
yi+1 = yi▽xi+1 is not strictly increasing.

We propose a widening operator6 ▽ that looks for repeated patterns in con-
secutive iterations of DαJDK and converges, in a finite number of steps, in a
conditional graph that represents an over-approximation of the abstract fixpoint

Fα. In the sequel, we abuse in notation and write t
ρ2
Ô⇒
p
t′1 → ⋅ ⋅ ⋅ → t′n to denote

the set of the edges occurring in this path, i.e., {t
ρ2
Ô⇒
p
t′1, t

′
1 → t′2 . . . , t

′
n−1 → t′n}.

Definition 4 (Graph widening). Let G1,G2 ∈ G such that G1 ≤ G2. The
graph widening of G1 w.r.t. G2 is defined as G1▽G2 ∶= G1 ∨ (I,N,E) where

6 In defining our widening operator, we follow the approach of [2] instead of [5].

10

I ∶= init(G2), N is the set of nodes that occur in the set of edges E, and

E ∶=⋃{t
ρ2
Ô⇒
p
t1 ∣ it exists a subpath in G2 of the form t

ρ2
Ô⇒
p
t′1 . . . t

′

n /→ s.t. an

edge Ô⇒ labeled with p does not occur in t′1 . . . t
′

n and it exists a

subpath in G1 of the form
ρ1
Ô⇒
p
t1 . . . tn

ρ′1
Ô⇒
p
, s.t. an edge Ô⇒ labeled

with p does not occur in t1 . . . tn and ∀1 ≤ i ≤ n ρ1(ti) = ρ2(t
′

i)}∪

⋃{t
ρ2
Ô⇒
p
t′1 → ⋅ ⋅ ⋅→ t′n ∣ it exists a subpath in G2 on the form t

ρ2
Ô⇒
p
t′1 . . . t

′

n /→

s.t. in t′1 . . . t
′

n it does not occur an edge Ô⇒ labeled with p and it does

not exist a a subpath in G1 of the form
ρ1
Ô⇒
p
t1 . . . tn

ρ′1
Ô⇒
p
, s.t. in t1 . . . tn it

does not occur an edge Ô⇒ labeled with p and ∀1 ≤ i ≤ n ρ1(ti) = ρ2(t
′

i)}

At each iteration, the widening checks if a suffix r of a path b in the graph of a
process p (which corresponds to the trace produced at the last iteration of p) has
already appeared in a previous iteration of p (modulo variables renaming). In
this case, it adds an edge, labeled with the necessary variable renaming ρ2, from
the node t precedent to the pattern r to the first node of the equivalent pattern
found in the previous widening iteration (first case of Definition 4). Otherwise, if
no equivalent (modulo variable renaming) pattern is found, the path b is added
to the graph (second case of Definition 4).

Lemma 2. If the underlying abstract Cylindric Constraint Systems are finite,
then the operator ▽ is a widening operator on G.

Proof (Sketch.). The covering property is a consequence of the fact that the
branches of G2 that are not included by the widening are already present in G1

modulo variable renaming; that is the reason why a direct edge is added from
the last node before the repetition to the equivalent branch detected in G1.

Termination of the widening is a consequence of the properties of the abstract
constraint systems and of the finiteness of the program syntax. By definition,
just a finite number of conditional steps can be computed, thus iteration’s length
is finite. Furthermore, when a repeated pattern is detected, that (possibly cyclic)
branch is not further expandable. ⊓⊔

Figure 2 shows a graphical representation of the graph widening behavior.
To improve readability, in the figure we assume that all process calls involve the
same process, thus we just include the renaming for variables in the edges.

Given a tccp set of declaration D, we can guarantee ([2]) that the chain

I0 = � Ii+1 =

⎧⎪⎪
⎨
⎪⎪⎩

Ii if DαJDKIi ⊑ Ii
Ii▽ (Ii ⊔D

αJDKIi) otherwise

converges to a graph which is a correct approximation of the abstract semantics
in a finite number of steps. That graph contains an initial node for each process
declaration such that the subgraph reachable from the initial node represents
the corresponding process and subgraphs are linked by edges with renamings.

11

t1

ρ1

t

tn
ρ′1

(a) G1

t1

ρ1

t

t′1

ρ2

tn

t′n

ρ′1

(b) G2

t1

ρ1

t

tn
ρ′1

ρ2

(c) G1▽G2

Figure 2: The graph widening behavior.

lift

(Dir = [up ∣] ∧CF = [N ∣],∅)↣
⟨Dir = [up ∣ Dir

′] ∧Dir
′ = [down ∣]⟩

(Dir = [up ∣],{Dir = [up ∣]∧
CF = [N ∣]})↣ ⟨CF = [F ∣ CF ′]⟩

(Dir = [up ∣] ∧CF = [F ∣ CF ′],∅)↣
⟨CF = [F ∣ CF ′] ∧CF

′ = [F + 1 ∣]⟩

(Dir = [down ∣] ∧CF = [0 ∣],
{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣]})↣
⟨Dir = [down ∣ Dir

′] ∧Dir
′ = [up ∣]⟩

(true,{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣],
Dir = [down ∣] ∧CF = [0 ∣]})↣ ⟨CF = [F ∣ CF

′]⟩

(true,∅)↣ ⟨CF = [F ∣ CF ′] ∧CF
′ = [F − 1 ∣]⟩

Dir/Dir′

Dir/Dir′

Dir/Dir′

Dir/Dir′

CF/CF ′

CF/CF ′
CF/CF ′

CF/CF ′

Figure 3: Graph representation of the abstract semantics of the lift process.

Example 4. Figure 3 shows the conditional graph corresponding to the abstract
semantics of the lift process. We abstract streams of the concrete Constraint
System by posing a depth limit for streams, i.e., we keep the first k values
of a stream, and then we have the top of the domain. All other constraints are
abstracted to themselves. The resulting abstract Constraint System is thus finite.

Due to the application of the widening operator it can be noted how the
recursive calls (represented as triangles in Figure 1) are replaced in Figure 3
with the (set of) arcs pointing to the possible continuations of the computation.

4 Abstract analysis with an over-approximation

The abstract semantics we have proposed so far is an over-approximation of
the concrete semantics. Thus, it allows us to check universal properties, i.e.,
properties that must be satisfied by all the possible behaviors of the system.
For instance, it is possible to analyze some temporal properties such as safety
(i.e., something bad never happens) or liveness (i.e., something good eventually
happens) or to check if a program never suspends.

In order to check whether some invariant property is satisfied by our pro-
gram, it is necessary to check if every node of the graph respects this property.
The properties that can be checked strongly depend on the abstraction of the
constraint system. If we want to guarantee that a given abstract constraint c

12

never holds in a computation, we need to check that for every node, either its
negative condition contains a store that satisfies c or the positive condition η̂ is
in contradiction with c (i.e., η̂ ⊗̂ c = ˆfalse). This assures that, for every possible
input, c is never produced in the computation.

Similarly, in order to check if an abstract constraint c is always entailed by
the current store it is sufficient to check if for each conditional step of the form
(η̂, η̌) ↣ d occurring in the graph, the positive condition merged with the store
entails c (i.e., η̂ ⊗̂d ⊢̂ c). This ensures that for every possible initial constraint d,
c is entailed by the store.

Example 5. We may be interested in proving several invariant properties on the
lift process in Example 1. For instance, we can try to verify that “the current
floor stream CF never gets a negative number”. To this end, we check all the
conditions in the graph in Figure 3, and since we find (at least) a node that
does not contradict that CF is negative (see the first node of the right branch),
we conclude that it cannot be assured that the lift process respects this safety
property. As a matter of fact, provided we start the computation with an initial
state where CF is initialized to a negative number, then the last else branch of
the program can be taken, and CF would keep negative in the subsequent trace.

Consider now the invariant property “each time the direction of the lift is
updated, also its floor is updated”. In this case, it can be noticed that all the
conditional steps in Figure 3 satisfy this property, since whenever the positive
condition in the step merged with the store entails that Dir has a value, then it
is also entailed that CF is instantiated.

Verifying liveness properties is harder since it involves analyzing unknown
length sequences of steps. For instance, given a process p(x⃗), assume that we
want to check that “every time an abstract constraint c holds, then it exists a
future state where another abstract constraint d holds”.

Given the conditional graph for p(x⃗), this property would hold if for each
node labeled with a conditional step whose positive condition and store entails c
then all paths starting from such node contain a conditional step whose positive
condition and store entails d.

Example 6. Observe that lift process in Example 1 satisfies the property “every
time the current floor is 0 and the direction is down, the direction will be up
eventually”. In fact, the first node of the third branch from the left in Figure 3
is the sole step that contains in its positive condition CF = [0 ∣] and Dir =
[down]. Furthermore, for each possible path from this node we find a conditional
step where Dir = [up ∣] appears in the positive condition or in the store.

Other interesting liveness property that can be analyzed on the lift process is
“whenever the current floor is 0 it exists a future state when this value changes”,
i.e., we do not stay indefinitely in floor 0.

Since the number of nodes in the graph is finite, the aforementioned analysis
terminates in a finite number of steps.

Let us now analyze non-suspension. Non-suspension analysis consists in as-
suring that no execution of a tccp program suspends. In conditional graphs, in

13

order to check whether p(x⃗) never suspends, it is sufficient to check that there is
no node N in G labeled with a stutt construct with an outgoing arc pointing to
N itself. Inversely, if the graph contains a stuttering node, we can not guarantee
suspension, due to over-approximation of the semantics.

Example 7. Consider the semantics of the lift process in Figure 3. It is worth
noting that the graph does not contain any node labeled with stutt . Therefore,
we can assure that the lift process never suspends.

5 Related work

To the best of our knowledge, this is the first attempt to propose an abstract
interpretation framework for a concurrent constraint language adhering to the
characteristics of tccp (negative information, non-determinism and infinite be-
haviors). In [9], a framework for dataflow analysis of tcc and utcc programs is
presented. The two main differences between these two languages and tccp are
the notion of time (tcc and utcc use dedicated timing constructs) and deter-
minism (vs. non-determinism of tccp). Moreover, in the case studies, [9] uses
a depth(k) abstraction to ensure convergence, which consists in a non-selective
cut at some point in time. In [8], it was defined a model checking algorithm
for tccp which allowed us to verify timed-depending properties. Their algorithm
was based on the exploration of a graph representation of the program behavior
which resembles the graph representation of the semantics defined in this paper.
Thus we could as well employ our graph representation to perform (an efficient)
model checking. Note however that the abstract semantics that we propose now
is not limited to the verification of temporal properties.

Finally, [1] proposes an abstract semantic framework for tccp that, differently
from our approach, was based on source-to-source transformations. The two
approaches are completely different: [1] aimed at using the concrete semantics
to execute the transformed (abstract) program. This could be done thanks to a
non-trivial transformation of the program (an analysis on the structure of the
program was necessary as a preprocess of the transformation). Our approach
aims at defining an abstract semantics that, thanks to the characteristics of the
concrete denotational semantics, is guaranteed to be correct and we argue that
is precise enough to allow the definition of interesting analyses.

6 Conclusions and future work

We have proposed an abstract semantics that, together with a widening operator,
is suitable for the definition of different analyses for full tccp programs. This is
a difficult task because of the presence of infinite computations, use of negative
information and non-determinism. However, it is essential since these are the
features that make tccp well-suited to model reactive systems.

The abstract semantics is an over-approximation, which makes possible to
define analysis tools for universal properties. To the best of our knowledge, this is

14

the first proposal that defines an analysis which adaptively ensures termination
depending on the program (by means of widening). This should give better
results than the non-selective approaches.

This is a first step towards our final goal of defining a rich abstract semantic
framework for the analysis of tccp programs. We plan to implement the abstract
semantics so that we can produce some experimental results. We will need also
to implement and develop suitable and useful abstractions for the constraint
system, corresponding to the analyses to be performed. We are also interested
in defining an under-approximated semantics for tccp. Under-approximations
produce correct semantics, which means that not all the behaviors are captured,
but no spurious behaviors are included. These kind of abstractions allow one to
analyze existential properties, for instance that there exists a suspension trace.

References

1. M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva. A Semantic Frame-
work for the Abstract Model Checking of tccp Programs. Theoretical Computer
Science, 346(1):58–95, 2005.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise Widening Operators
for Convex Polyhedra. Science of Computer Programming, 58(1-2):28–56, 2005.

3. M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed Concurrent
Constraint programs. Theory and Practice of Logic Programming, 11(4-5):487–502,
2011.

4. M. Comini, L. Titolo, and A. Villanueva. A Condensed Goal-Independent Bottom-
Up Fixpoint Modeling the Behavior of tccp. Tech. Rep., Universitat Politècnica
de València. Available at http://riunet.upv.es/handle/10251/34328, 2013.

5. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of the 4th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, pages 238–252, 1977. ACM Press.

6. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint
Language. Information and Computation, 161(1):45–83, 2000.

7. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Anal-
ysis for Concurrent Constraint Programming. In Proc. of the 8th Annual IEEE
Symposium on Logic in Computer Science, pages 210–221, 1993. IEEE CS Press.

8. M. Falaschi and A. Villanueva. Automatic verification of timed concurrent con-
straint programs. Theory and Practice of Logic Programming, 6(3):265–300, 2006.

9. Moreno Falaschi, Carlos Olarte, and Catuscia Palamidessi. Abstract Interpreta-
tion of Temporal Concurrent Constraint Programs. Theory and Practice of Logic
Programming, 15(3):312–357, 2015.

10. V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.
11. E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting Synchronization in Con-

current Constraint Programming. Journal of Functional and Logic Programming,
1997(6), 1997.

15

http://riunet.upv.es/handle/10251/34328

	Abstract analysis of universal properties for tccp

