
Imperial College London

Department of Computing

Safe and Scalable Parallel

Programming with Session Types

Chun Wang Nicholas Ng

April 2015

Supervised by Nobuko Yoshida

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

1



Declaration

I herewith certify that all material in this dissertation which is not my own

work has been properly acknowledged.

Chun Wang Nicholas Ng

2



Copyright Declaration

The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution Non-Commercial No Derivatives

licence. Researchers are free to copy, distribute or transmit the thesis on

the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any

reuse or redistribution, researchers must make clear to others the licence

terms of this work.

3



Abstract

Parallel programming is a technique that can coordinate and utilise multiple

hardware resources simultaneously, to improve the overall computation

performance. However, reasoning about the communication interactions

between the resources is difficult. Moreover, scaling an application often

leads to increased number and complexity of interactions, hence we need a

systematic way to ensure the correctness of the communication aspects of

parallel programs.

In this thesis, we take an interaction-centric view of parallel programming,

and investigate applying and adapting the theory of Session Types, a

formal typing discipline for structured interaction-based communication, to

guarantee the lack of communication mismatches and deadlocks in concurrent

systems. We focus on scalable, distributed parallel systems that use message-

passing for communication. We explore programming language primitives,

tools and frameworks to simplify parallel programming.

First, we present the design and implementation of Session C, a program-

ming toolchain for message-passing parallel programming. Session C can

ensure deadlock freedom, communication safety and global progress through

static type checking, and supports optimisations by refinements through

session subtyping. Then we introduce Pabble, a protocol description language

for designing parametric interaction protocols. The language can capture

scalable interaction patterns found in parallel applications, and guarantees

communication-safety and deadlock-freedom despite the undecidability of

the underlying parameterised session type theory. Next, we demonstrate

an application of Pabble in a workflow that combines Pabble protocols and

computation kernel code describing the sequential computation behaviours,

to generate a Message-Passing Interface (MPI) parallel application. The

framework guarantees, by construction, that generated code are free from
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communication errors and deadlocks. Finally, we formalise an extension

of binary session types and new language primitives for safe and efficient

implementations of multiparty parallel applications in a binary server-client

programming environment.

Our exploration with session-based parallel programming shows that it is

a feasible and practical approach to guaranteeing communication aspects of

complex, interaction-based scalable parallel programming.
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1 Introduction

Concurrency is the composition of independently executing processes;

Parallelism is the simultaneous execution of computations.

Concurrency is about dealing with lots of things at once; Parallelism is

about doing lots of things at once.

– Rob Pike, Concurrency is not Parallelism

1.1. Motivation and Objectives

Computer Science is the study of solving problems with computers. Program-

mers express their imagination to codify everyday repetitive and mundane

tasks into algorithmic recipes for computer hardware, which can execute

them efficiently and accurately. These algorithms, like the human thought

process, are structured, step-by-step, and inherently sequential.

For a very long period of development in computing, performance and

efficiency had relied on improvements on increasing speed and throughput

of sequential hardware. This was coupled with the fact that, the majority

of computer programs written for these hardware are sequential. While

parallelism has been exploited in micro scale as instruction-level parallelism

and hidden from users, mainstream parallel computing did not take off before

the turn of the century, when the growth of microprocessor performance

was slowed down due to a number of factors such as the power wall — the

reduction of performance due to overheating and high power consumption

of the microprocessor – and the physical limits of shrinking CPU die size

to reduce power consumption. This resulted in the rise of utilising parallel

hardware to further increase performance.

Parallel programming, or using multiple resources to work on a problem

simultaneously to find a solution, is not as simple as it sounds. Apart from

18



a class of embarrassingly parallel problems with completely independent sub-

problems, parallelisation involves splitting a problem into smaller, related

sub-components and synchronising between the sub-components to reach a

consensus on a single, complete solution. A real world analogy is organising

a party: some participants will bake a cake, some will prepare salad and

some will buy drinks and cups. Since everyone acts independently, if there is

no coordination between the participants, the party may end up with 3 cakes

and no drinks because everyone assumed someone else will be responsible for

the drinks. The process of coordination and synchronisation can be solved by

everyone having access to shared resources, e.g. a shared whiteboard, which

everyone can state what they plan to do for the party; or if the participants

have to organise the party without meeting physically, they can interact

explicitly, e.g. discuss over the phone. This closely resembles what happens

in computing: replace participants with processes and shared whiteboard

with shared memory, there is the shared memory paradigm for parallel

programming; and interpreting discussions over the phone as a form of

point-to-point message-passing between processes, gives a typical scenario

of the distributed memory programming paradigm.

This work focuses on the latter model — interaction-centric concurrency

by explicit message-passing. Interaction is a general and powerful concept,

in fact, most everyday objects are compositions of independent entities

interacting with each other. Because of the distributed nature of the model,

it can also emulate the shared resources model: just imagine having a

whiteboard at one of the party participant’s site to write down the complete

plan of the party.

Unfortunately, interaction-based concurrency is difficult to get right. As

interaction is just a means of coordination, there are no guarantees about

correctness or compatibility between each participant. If we revisit the

party example, two participants talking on the phone may have different

expectations from each other: both of them start the conversation by saying

what they are going to buy without listening to what their counterparts are

saying, so at the end of the conversation, both assumed they are baking a

cake – this is incompatible communication; if both ends of the phone wait

politely wait for the other side to speak first; both wait indefinitely with no

progress – this is a communication deadlock. These two communication-

related problems are the central issues this thesis tackles, with the help of

19



explicitly specified communication types, known in the literature as Session

Types (see Section 2.1), or communication protocols. Intuitively, the idea

is no different from having a shared social protocol between the individuals,

where both participants speak one after another, and follow a pre-agreed

order of speaking. Just as the concept of types for computations are modelled

with mathematics and logics, types for communication are modelled with

process calculi, and they are defined to govern the behaviours of interacting

systems as formal specifications. With a correct model of concurrency, the

difficulty of putting parallelism in practice is greatly reduced.

Another aspect of our interaction-centric approach to parallel programming

is scalability. In parallel programming terms, given a problem and a solution

for the problem, if we have N -times the resources to solve a problem, can

we solve it N -times faster? The increased number of components means

that there will be more coordination and synchronisation by interactions

between the components to collaboratively devise a solution. A concurrency

abstraction for a parallel application needs to cope with such scaling without

losing expressiveness.

Ultimately, understanding concurrency in Computer Science is not only

for the peace of mind, but for applying them on computers to solve problems.

Providing tools to help programmers understand and apply concurrency

correctly is just as important as coming up with the abstraction. A program-

ming primitives and language-based approach ensures that implementing the

correct interactions is not an afterthought but a part of the design thought

process.

The primary hypothesis of this thesis can be summarised in two questions:

Is it feasible to apply and adapt Session Types, as a high-level specification

and verification technique, for parallel programming? and How can we

apply our methodology practically to scalable parallel applications, for correct

interaction-based parallel programming? This thesis describes two approaches

to achieve the goals: static type checking on custom programming primitives

and code generation from communication protocols. We also describe a

formal extension of existing session typing discipline to support efficient and

safe parallel programming.

20



1.2. Thesis Summary

This thesis describes how the theory of Session Types can be applied to

parallel computing, to guarantee the correctness of communication within a

parallel application.

First, we introduce Session C, a programming framework for message-

passing parallel algorithms centering on explicit, formal description of global

protocols, and examines its effectiveness through an implementation of a

toolchain for C. The framework is based on the theory of Multiparty Session

Types, and uses a protocol description language Scribble for describing mul-

tiparty session types in a Java-like syntax. The programming environment

of Session C is made up of two main components, the runtime library and

the session type checker. The Session C runtime is a simple and lightweight

communication library, providing basic primitives for message-passing pro-

gramming. The session type checker is a static analyser for verifying the

source code given conforms to its corresponding protocol specification in

Scribble. Scribble, combined with the Session C runtime and the static

type checker supports a full guarantee of deadlock-freedom, type-safety,

communication-safety and global progress for all well-typed programs.

Next, we present an extension of Scribble with dependent types called

Parameterised Scribble (Pabble). In Pabble, multiple participants can be

grouped in the same role and indexed, where parameterised refers to the

number of participants in a role that can be changed by parameters. This

extension greatly enhances the expressive power and the modularity of

the protocols for describing scalable parallel applications, such as ones

that are written in Message-Passing Interface (MPI), the standard API for

developing message-passing based parallel applications. Both the indexed

dependent type theory in the λ-calculus and the parameterised session type

theory, which is the theoretical basis of Pabble, shows that the projection

and type checking with general indices are undecidable. Pabble’s approach

of extending Scribble with index notation overcame the tension between

termination and expressiveness to make the theory more practical. Our

compact notation is expressive enough to represent communication topologies

in parallel applications as well as distributed web services, and offers a

solution to cope with the undecidability of parameterised multiparty session

types.
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With Pabble, we present a protocol-driven parallel application code gener-

ation workflow. The workflow leverages the safety guarantees of valid Pabble

protocols to generate a communication-safe-by-construction MPI parallel

application backbone. Based upon the backbone, computation kernels are

developed in C to describe the sequential behaviour of the application, which

are then merged automatically and systematically by an aspect-oriented

framework to output a complete MPI parallel application. The MPI back-

bone can be source-transformed to perform asynchronous optimisations,

which allows effective overlapping of communication and computation with-

out compromising the safety guarantees of the MPI backbone. Through

a number of examples we show the performance and also the flexibility of

the approach by separating the communication and computation concerns.

This confirms that session-based code generation can be applied to scalable

parallel applications and simplify the parallel development process.

Finally, we describe Multi-channel Session Types and an implemen-

tation of the theory as multi-channel session primitives in the session-

typed programming language Session Java (SJ). This represents a com-

positional approach to parallel applications development, introducing new

language primitives for chained iteration and multi-channel communication.

SJ only guarantees progress for each session in isolation, but communication

errors and deadlocks can still arise from interleaving of multiple sessions

in a process. The combination of multi-channel session primitives for bi-

nary sessions, and a well-formed communication topology checker brings the

benefits of type-safe, structured communications to SJ. We formalise the

primitives as extensions of the session calculus and the correctness conditions

on the ‘shape’ of program communication topology. We then prove the

communication-safety and deadlock-freedom properties of our approach as a

compositional, lightweight alternative to Multiparty Session Types for global

type-safety.

Note on terminologies The terms protocol and types are used inter-

changeably throughout the thesis, depending on the context and perspective

when using the terms: Types refers to the theoretical underpinnings of

Session Types as a mathematical concept, whereas protocol refers to the

practical realisation of the types as a developer-friendly language (such as

Scribble and Pabble). We sometimes refer to local types in multiparty sessions
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as endpoint protocols for a similar reason.

1.3. Thesis Structure

� Chapter 2 presents the background materials on session types, parallel

architectures and models.

� Chapter 3 presents the Session C programming framework. Session C

is a session-based programming tool chain which consists of a runtime

API and a static type checker, which guarantees deadlock freedom,

type and communication safety at compile time.

� Chapter 4 presents a parametric protocol description language Pabble,

designed for expressing parallel interactions between processes.

� Chapter 5 presents case studies to show how session-based static type

checking and code generation can tackle the challenges of communication-

safe and deadlock-free parallel programming. The evaluation results

show that MPI is more suitable as a target runtime API for scalable

parallel applications.

� Chapter 6 presents a complete code generation approach to session

programming, combining Pabble, and aspect-oriented programming for

a top-down workflow for safely parallelising MPI applications.

� Chapter 7 presents the formalisation and implementation of a new pair

of session primitives to synchronise multiple sessions running in parallel.

The primitives allow session types to express parallel topologies as

multiple interleaved sessions such that each session can be defined

separately.

� Chapter 8 presents the conclusion and future work of the thesis.

Figure 1.1 shows how the chapters are related.

1.4. Publications and Software

The work presented in this thesis resulted in several publications and software.
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Figure 1.1.: Safe and Scalable Parallel Programming with Session Types.
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1.4.1. Workshops

� Nicholas Ng, Nobuko Yoshida, Xin Yu Niu, K.H. Tsoi and Wayne

Luk. Session Types: Towards safe and fast reconfigurable program-

ming [NYN+12]. In 3rd International Workshop on Highly-Efficient

Accelerators and Reconfigurable Technologies (HEART 2012), May

2012, published in ACM SIGARCH Computer Architecture News

(CAN) Volume 40 Issue 5.

This work presents a new approach to describing safe communication

topologies for heterogeneous computing with Scribble and a case study

to applying the Session C programming framework in conjunction with

high performance acceleration hardware in a heterogeneous parallel

computing environment. This work forms part of Chapter 5.

� Eduardo R. B. Marques, Francisco Martins, Vasco T. Vasconcelos,

Nicholas Ng and Nuno Martins. Towards deductive verification

of MPI programs agains session types [MMV+13]. In Programming

Language Approaches to Concurrency and Communication-cEntric

Software (PLACES’13), March 2013.

This work introduces an annotated MPI library to be used with A

Verifier for Concurrent C (VCC) to ensure communication safety

and deadlock free in MPI applications. Author was involved in the

discussion on common parallel programming patterns and challenges

of static type-checking.

� Nicholas Ng, Nobuko Yoshida and Wayne Luk. Scalable Session

Programming for Heterogeneous High-Performance Systems [NYL13].

In 2nd International Workshop on Behavioural Types, September 2013,

published in SEFM 2013 Collocated Workshops, LNCS 8368.

This work describes two approaches to apply session programming in

scalable heterogeneous computing. This work forms part of Chapter 5.

1.4.2. Conferences

� Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu and Yian-

nos Kryftis. Safe Parallel Programming with Session Java [NYP+11].

25



In 13th International Conference on Coordination Models and Lan-

guages (COORDINATION), June 2011.

This work introduces the multi-channel session calculus and the multi-

channel Session Java (SJ) which allows the chaining of binary sessions

in SJ for developing parallel applications. Chapter 7 is an expanded

version of this work.

� Nicholas Ng, Nobuko Yoshida and Kohei Honda. Multiparty Session

C: Safe Parallel Programming with Message Optimisation [NYH12].

In 50th International Conference on Objects, Models, Components,

Patterns (TOOLS Europe 2012), May 2012.

This work presents a efficient programming toolchain for message

passing-based parallel algorithms which can ensure, for any typable

programs and for any execution path, a full guarantee of deadlock-

freedom, communication safety and global progress through satatic

checking. The methodology is embodied as a multiparty session-based

programming environment for C and its runtime libraries which we

call Session C. The source code Session C programming framework is

available online at https://github.com/nickng/sessc. Chapter 3 is

an expanded version of this work.

� Kohei Honda, Eduardo R B Marques, Francisco Martins and Nicholas

Ng, Vasco T. Vasconcelos and Nobuko Yoshida. Verifications of MPI

Programs using Session Types [HMM+12]. In 19th European MPI

Users’ Group Meeting (EuroMPI 2012), September 2012.

This extended abstract with poster is a proposal for developing a session-

based protocol language similar to Scribble based on the Message-

Passing Interface (MPI) primitives.

� Nicholas Ng and Nobuko Yoshida. Pabble: Parameterised Scribble

for Parallel Programming [NY14b]. In 22nd Euromicro International

Conference on Parallel, Distributed and network-based Processing

(PDP 2014), February 2014.

This work presents a parameterised protocol description language,

Pabble, which can guarantee safety and progress in a large class of

practical, complex parameterised message-passing programs through
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static checking. The supporting tool is available online at https:

//github.com/sessionc. Chapter 4 is an expanded version of this

work.

� Nicholas Ng, Jose G.F. Coutinho and Nobuko Yoshida. Protocols by

Default: Safe MPI Code Generation based on Session Types [NCY15].

In 24th International Conference on Compiler Construction (CC 2015),

April 2015.

This work presents a code generation workflow from Pabble protocols.

The workflow systematically combines an MPI communication back-

bone generated from Pabble with user-defined computation kernels,

resulting in a safe-by-construction parallel application. This paper is a

extended version of Chapter 6 with additional benchmark results and

minor refinements on the annotation syntax.

1.4.3. Journals

� Nicholas Ng and Nobuko Yoshida. Pabble: parameterised Scrib-

ble [NY14a]. In Journal of Service Oriented Computing and Applica-

tions (SOCA), December 2014 (Special Issue).

This is an expanded version of [NY14b], which include more examples

use cases of the Pabble language in the context of web services, and

a more complete survey of related works. Chapter 4 is an expanded

version of this work.
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2 Background

Types are the leaven of computer programming; they make it digestible.

– Robin Milner

In the last chapter, we discussed briefly the importance of interactions

and having a formal model of concurrency in order to apply concurrency

to parallel hardware. This chapter presents the background materials for

understanding the contributions of this thesis.

First, we introduce the theory of Session Types (Section 2.1), which is the

formal foundation of this work. Session Types is a typing discipline that

guarantees type and communication safety between two interacting processes.

We present a major extension of Session Types, the Multiparty Session Types

(MPST), in Section 2.1.4, which can type more than two processes in a single

session, providing a global view of all interactions. We cover a parametric

variant, Parameterised Multiparty Session Types in Section 2.1.5 where

processes are indexed by integer indices to increase expressiveness. We also

present a theory extension for asynchronous communication in Section 2.1.6,

where the rules and conditions of correct asynchronous interaction in MPST

are discussed. The background of session types is concluded by introducing

the Scribble protocol description language. Scribble is a developer-friendly

language designed to be a practical counterpart of MPST, which this thesis

uses and extends for MPST-based programming.

Next, we present an overview of parallel architectures and programming

models relevant to this work (Section 2.2).
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2.1. Formal Models of Concurrency and Session

Types

Process calculi are a family of formal approaches for modelling interactions

in concurrent, communicating systems. They are the fundamentals for

reasoning about concurrency, similar to what λ-calculus is to reasoning

about computation. In particular, Tony Hoare’s Communicating Sequential

Processes (CSP) [Hoa78] and Robin Milner’s Calculus of Communicating

Systems (CCS) [Mil80] and π-calculus [MPW92] were the earliest and most

influential approaches.

Session Types was originally proposed by Honda, Vasconcelos and Kubo

as a type discipline for session language primitives in [HVK98] and is closely

related to process calculi. The proposed session language consists of basic

primitives for interactions, and structuring constructs such as conditionals

(if-then-else) and iterations (loops) for combining them, and can be easily

encoded into asynchronous π-calculus [HT91]. It proves to be a powerful

high-level abstraction as process calculi lack elements for describing program

control flows. A session is the sequence of structured interactions by message

exchanges, and the language is formalised as a session calculus, which is

the building block of session types, defining its operational semantics as

reduction rules of the calculus. The session calculus presented here is specific

to binary session types in [HVK98]. Most decendents and extensions of

session types, such as the ones we present later in Chapter 7, are based upon

or are similar to this minimal calculus.

2.1.1. Session Calculus

The syntax of session calculus is presented in Figure 2.1. The calculus is

defined recursively as prefixed actions and combine as processesP . Session

request and session acceptance are primitives for symmetric initialisation,

which setup a new shared channel k over an existing channel a for subsequent

interactions in their continuations P . In the syntax presented, a, b, . . . are

names ; k, k′, . . . are channels ; e, e′, . . . are expressions ; c, c′, . . . are constants ;

l, li∈N, . . . are labels; X, Y , . . . are processed variables; u, u′, . . . are names

and channels; and P , Q, . . . are processes. ˜̇represents a potentially empty

vector.
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P ::= request a(k) inP session request

| accept a(k) inP session acceptance

| k![ẽ];P data sending

| k?(x̃) inP data reception

| k C l;P label selection

| k B {li : Pi}i∈{1..n} label branching

| throw k[k′];P channel sending

| catch k(k′) inP channel reception

| if e thenP elseQ conditional branch

| P | Q parallel composition

| inact inaction

| (ν u)(P ) name/channel hiding

| defD inP recursion

| X[ẽk̃] process variables

D ::= {Xi(x̃ik̃i) = Pi}i∈{1..n} declaration for recursion

Figure 2.1.: Session Calculus: Syntax.

Basic Primitives Processes exchange messages by pairs of data sending

and data reception actions. Note that send ( k![e] ) uses sequential com-

position (;) to connect with its continuation P and the syntax of receive

( k?(x) inP ) includes direct continuation. Along with inaction, parallel

composition and name/channel hiding, these basic constructs can be directly

translated to asynchronous π-calculus.

Branching and Selection Label branching and label selection are fea-

tures in session calculus for structured external choice. The constructs

represent conditional statements for communication, such that depending

on the condition (usually runtime expressions), sessions can exhibit different

interaction behaviours, in addition to simple serial communication.

The choice of branch is communicated by sending and receiving of a label

l, which matches li on the receiver. Both the sender and the receiver will

continue the process with the chosen branch (Pi and P ). Label branching
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and selection differs from conditional branch which is internal to the process

and the choice of branch is not sent to another process.

Iterations Iteration in session calculus is supported by recursion. Re-

cursion in the calculus does not involve sending and receiving and thus

is internal to the process, unless the body of recursion contains external

interactions. This implies that either a process recurses forever (for example,

in a server application), or the decision of whether or not to exit a recursion

(possible by ending the process with inact) must be explicitly communicated

in the body.

Session Delegation The π-calculus is a mobile calculus – by passing

names as well as values in messages, π-calculus can pass a channel as a

name to another process and the process that receives the name can use

it as a channel. The session calculus accommodates the mobility property

of π-calculus by channel sending and channel reception, also called session

delegation. By offloading parts of responsibilities of the parent process to

subprocesses, processing can be distributed to lower level or smaller processes

hence increasing the flexibility of the processes. More importantly, the top-

level process does not need to be informed about the delegation which allows

a higher-order view when designing distributed processes.

Session Calculus Example

As an example of session calculus, Figure 2.2 is a definition of a simple sum

server system that adds and returns the sum of two numbers in SumServer

supplied by SumClient.

SumServer = accept a(k) in k?(x̃) in k?(ỹ) in k![x+ y]; inact

SumClient = (ν k)(request a(k) in k![42]; k![77]; k?(result) in inact)

SumSystem = (ν a)(SumClient | SumServer)

Figure 2.2.: Session Calculus: SumServer Example.
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2.1.2. Operational Semantics of the Session Calculus

Operational semantics of the calculus is defined by reduction rules. The

reduction rules define how processes, when composed together, can proceed

by inspecting the action prefixes of each process. A correct reduction is one

that all of the processes are reduced to the terminal state, i.e. inact.

Figure 2.4 details the structural congruence (for transforming processes in a

canonicalised structure) and the reduction rules of the Session Calculus.

Below we define the structural congruence relation≡, which is the smallest
congruence relation on processes. ≡α is the standard alpha equality, and
fn(P ), fc(P ), fv(P ), fpv(P ) stands for sets of free names, channels, variables
and process variables of process P respectively.

P ≡ Q if P ≡α Q α equality

P | inact ≡ P Inaction

P | Q ≡ Q | P Commutative

(P | Q) | R ≡ P | (Q | R) Associative

(ν u)(inact) ≡ inact Unused name

(ν u u)(P ) ≡ (ν u)(P ) Duplicated name

(ν u u′)(P ) ≡ (ν u′ u)(P ) Ordering

(ν u)(P ) | Q ≡ (ν u)(P | Q) Res. moved to outmost

if u /∈ fc(Q) ∪ fn(Q)

(ν u)(defD inP ) ≡ defD in (ν u)(P )

if u /∈ fc(D) ∪ fn(D)

(defD inP ) | Q ≡ defD in (P | Q) Combine recur. processes

if fpv(D) ∩ fpv(Q) = ∅
defD in (defD′ inP ) ≡ defD and D′ inP

if fpv(D) ∩ fpv(D′) = ∅

Figure 2.3.: Session Calculus: Structural Congruence.

2.1.3. Duality and Session Types

The session calculus defines a way to describe structured interactions. How-

ever, it does not guarantee if the interactions between two processes are

compatible or are free of deadlocks. Sessions are compatible if and only
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The operational semantics are given by the reduction (−→) relation, defined
by the following rules. ↓ is the standard evaluation relation.

accept a(k) inP1 | request a(k) inP2 −→ (ν k)(P1 | P2) [Link]

k![ẽ];P1 | k?(x̃) inP2 −→ P1 | P2[c̃/x̃] (ẽ ↓ c̃) [Com]

k C li;P | k B {li : Pi}i∈{1..n} −→ P | Pi (1 ≤ i ≤ n) [Lbl]

throw k[k′];P1 | catch k(k′) inP2 −→ P1 | P2 [Pass]

if e thenP1 elseP2 −→ P1 (e ↓ true) [If1]

if e thenP1 elseP2 −→ P2 (e ↓ false) [If2]

defD in (X[ẽk̃] | Q) −→ defD in (P [c̃/x̃] | Q) [Def]

ẽ ↓ c̃, X(x̃k̃) = P ∈ D
P −→ P ′ ⇒ (ν u)(P ) −→ (ν u)(P ′) [Scop]

P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ P ′ and P ′ −→ Q′ and Q′ ≡ Q⇒ P −→ Q [Str]

Figure 2.4.: Session Calculus: Reduction Rules.

if the same channel of the two interacting processes are “associated with

complementary behaviours” [HVK98, Definition 5.2]. This is an impor-

tant requirement that provides the theoretical basis for communication safe

processes.

Actions Dual Actions

accept a(k) inP request a(k) inP
k![e] ;P k?(x) inP

k B {li : Pi}i∈{1..n} k C l ;P

throw k[k′] ;P catch k(k′) inP
inact inact

Table 2.1.: Dual Actions in the Session Calculus.

In the syntax given in Figure 2.1, complementary (dual) actions are listed

in Figure 2.1; these pairs of actions, when composed together, will reduce

following the reduction rules. To determine if the actions are dual, we inspect

the types of the calculus to obtain a high-level type abstraction, viz. Session

Types.
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SortS ::= nat | bool

| 〈α, α〉 complement

Typeα ::= ↓ [S̃];α output

| ↑ [S̃];α input

| ⊕ {li : αi}i∈{1..n} selection

| & {li : αi}i∈{1..n} branching

| ↓ [α];β channel output

| ↑ [α];β channel input

| µ t.α | t recursion

| 1 inaction

| ⊥ bottom

Figure 2.5.: Session Type: Syntax.

The session type syntax is given in Figure 2.5, where t, t′, . . . are type

variables; S, S′, . . . are sorts; α, β, . . . are set of types.

〈α, α〉 is a sort that represents complementary interaction structures. ↓ [S̃]

;α represents output of sorts S̃ then does the action of type α; its dual

is ↑ [S̃] ;α which represents input of sorts S̃ followed by action of type α.

⊕{li : αi}i∈{1..n} represents selection, where one of li is selected out of n

choices, then perform the behaviour of the corresponding αi (external choice);

& {li : αi}i∈{1..n} represents branching behaviour where it waits for a label

li to be selected, then behaves as the corresponding αi (internal choice).

↓ [α] ;β represents channel output, a higher-order output that sends channel

instead of names, and its dual is ↑ [α] ;β , representing channel input. µ t.α

represents recursion, and when t is encountered recurs to the behaviour

of α. 1 represents inaction, and ⊥ represents no further interactions are

possible. Given the session types of interacting processes (i.e. one on each

side of the interaction for binary sessions), we use a type system to catch

potential communication errors in the interactions. The session type system

consists of typing rules that the sessions must conform to, and these rules

have a similar notion of duality in the types, where α is dual type of α, and

is defined in full in Table 2.2.

Based on the duality of types, a type discipline, namely, Session Types is
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Types = Dual Types

↓ [S̃];α = ↑ [S̃];α

& {li : αi}i∈{1..n} = ⊕{li : αi}i∈{1..n}
↓ [α];β = ↑ [α];β

1 = 1

⊥ = ⊥

Table 2.2.: Duality in Session Types.

presented in [HVK98, Section 5]. Processes that can be derived from the

axioms in the typing system without getting stuck following the typing rules

from top to bottom are typable. Typable processes in the typing system are

guaranteed communication correctness property, i.e. complementary inter-

action behaviours in the common channel, and deadlock freedom property,

i.e. absence of communication deadlocks in the interacting processes, the

typing system is also sound; A sound typing system will not cause stuck

errors if the implementation is correct. An extension of the type system

presented in [HVK98] is given in Chapter 7.

2.1.4. Multiparty Session Types

Session Types introduced in the last section describe an approach for safe

communication between two participants. When a communication involves

more than two participants, the correctness of interactions between any two

participants can be guaranteed by binary session types. However, binary

sessions cannot prevent interleaving of sessions in a communication with

multiple binary sessions. Interleaving sessions might introduce incorrect

communication logic or cause communication deadlocks between sessions and

does not eliminate deadlocks in communication in a more general setting.

This will especially be a problem when multiple binary sessions are imple-

mented by different parties, and the participants are not given any global

coordination. The end result may be correct interactions in each of the

local perspectives but incorrect in the global perspective. Recent works

from Deniélou and Yoshida [DY12, DY13] attempt to resolve this from the

bottom up – by constructing (or synthesising) a global session type using

communicating automata, where the ultimate aim is to infer a global view

from binary sessions. Chapter 7 describes a compositional approach with
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similar aims in mind. A major extension of session types called Multiparty

Session Types (MPST) [HYC08] is introduced by Honda, Yoshida and Car-

bone in 2008 to tackle these scenarios. MPST make no assumption on the

order of interactions between multiple participants, and introduces global

type as an explicit specification for the overall interactions between multiple

participants within a multiparty session. The global type is then converted

automatically into local types by a projection algorithm for each of the partic-

ipants. Local types, sometimes called endpoint types, are generalised session

types for each of the participants/endpoints, and are similar to ordinary

session types, but for more than one interaction opponent. The framework

of MPST is shown in Figure 2.6. Note that the implementations do not use

the global types directly, but follow the local types as specifications.

G

LAlice

PAlice

LBob

PBob

Implements

Endpoint
Projection

LCarol

PCarol Implementation

Local Types

Global Type

Figure 2.6.: Multiparty Session Types Framework.

Multiparty Session Calculus and Types

Multiparty Session Types are defined in terms of a multiparty session calculus

and reduction rules as their operational semantics. We show the multiparty

session calculus from [HYC08] describing global interactions in Figure 2.7.

The calculus and the reduction rules are very similar to the ones presented in

the previous section for session types (actions are prepended with interacting

participant): Multicast session request is the multiparty version of session

request. Value/session sending/receiving are prefixed with the session name

s. The rest of the multiparty session calculus syntax are same as the ones

given in Figure 2.1. Message queue are introduced for explicit asynchronous

communication. The global and local types syntax in Figure 2.8. The types
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are governed by typing rules ensuring typable programs are communication

safe.

P ::= a[2..n](s).P multicast session request

| a[p](s).P session acceptance

| s!〈e〉;P value sending

| s?(x);P value reception

| s!〈〈s̃〉〉;P session delegation

| s?((s̃));P session delegation

| sC l;P label selection

| sB {li : Pi}i∈I label branching

| if e thenP elseQ conditional branch

| P | Q parallel composition

| 0 inaction

| (ν n)(P ) hiding

| defD inP recursion

| X〈ẽs̃〉 process call

| s : h̃ message queue

e ::= v | e and e′ | not e . . . expressions

v ::= a | true | false values

h ::= l | ṽ | s̃ messages-in-transit

D ::= {Xi(x̃is̃i) = Pi}i∈I declaration for recursion

Figure 2.7.: Multiparty Session Calculus: Syntax.

2.1.5. Parameterised Multiparty Session Types

Many multiparty interactions, especially those based on parallel algorithms,

often contain a number of very similar substructures. The number of such

substructures are not known at design time, but are instantiated by pa-

rameters supplied at execution time. Examples are interactions between an

arbitrary number of buyers and sellers in a financial negotiation or parallel

algorithms that can be segmented to a variable number of nodes such as
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Value U ::= S̃ | T@p

Sort S ::= bool | nat | . . . | 〈G〉
Global G ::= p→ p′ : k〈U〉.G values

| p→ p′ : k{lj : Gj}j∈J branching

| G,G′ branching

| µ t.G recursive

| t variable

| end end

Local T ::= k!〈U〉;T output

| k?〈U〉;T input

| k ⊕ {li : Ti}i∈{1..n} selection

| k& {li : Ti}i∈{1..n} branching

| µ t.T | t recursion

| end inaction

Figure 2.8.: Multiparty Session Types: Type Syntax.

implementations of the Fast Fourier Transformation (FFT) algorithm. Pa-

rameterised Multiparty Session Types [DYBH12a, DYBH12b] is an extension

of standard MPST for this category of interactions.

Parameterised MPST adds integer indices to roles of a multiparty session,

and extends the global type with primitive recursion operator from Gödel’s

System T to iterate through the indices. The syntax of primitive recursion

is given by the global type

RGλi : I.λx.G′i

which takes three parameters, a global type G, a recursion body and an

index i. The recursion body has an index variable i with range I (restricted

set of natural numbers), a type variable for recursion x and a recursion body

G′.

Figure 2.9 shows the reduction rules for primitive recursion in the global

types when applied to an index i. The first rule is the base case where
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global type G is used when the value of index i reaches 0, and the second

rule corresponds to repeating the body G′ and reducing the index i by 1 in

each iteration, and the original value of i is n+1.

RGλi : I.λx.G′ 0 −→ G
RGλi : I.λx.G′ (n+1) −→ G′{n/i}{RGλi : I.λx.G′ n/x}

Figure 2.9.: Global Type Reduction of Parameterised MPST.

For example, suppose G is end, G′ is x and the index is 2. The reduction

of the primitive recursion is shown below:

R endλi : I.λx.x 2 −→ x {1/i}{R endλi : I.λx.x 1/x } Rule 2

−→ R endλi : I.λx.x 1 −→ x {0/i}{R endλi : I.λx.x 0/x } Rule 2

−→ R endλi : I.λx.x 0 −→ end Rule 1

2.1.6. Subtyping and Asynchronous Subtyping

A subtyping relation in a type discipline refers to the relation between type T

and subtype S, where all values representable by S are a subset of all values

representable by T . For example, in the context of ordinary datatypes, int

(natural numbers) is a subtype of real (real numbers), where int is a more

refined or specialised type than real, such that any operations applied to real

can be applied to int safely without violations.

There are two main branches of subtyping work in session types. The first

branch of session subtyping extends session types with datatype subtyping,

first studied by Gay and Hole [GH05] then by Gay [Gay08] and more recently

by Padovani [Pad13]. Session compatibility between two interacting processes

is no longer limited to identical message datatypes (e.g. send int and receive

int), but also their subtypes. Given the following session types (in the syntax

of [GH05]):

S =![int]; end T =?[real]; end

S and T are dual as long as int is a subtype of real (int 6 real), despite the

message types int and real are not strictly identical.

The other branch of session subtyping is structural, and is specific to session

types. Asynchronous subtyping [MYH09, Mos09] by Mostrous, Yoshida

and Honda characterises compatibility between classes of permutations of

interactions within asynchronous multiparty sessions. The work considers
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the conditions for a session to remain safe when changing the orders of non-

blocking sends and receives are incompatible if modelled in a synchronous

session.

There are many scenarios where asynchronous subtyping is applicable in

developing practical distributed applications, and the theory is particularly

useful in parallel programming. For instance, overlapping communication and

computation is amongst the fundamental optimisation techniques involving

communication in parallel programming. Implementations initiate non-

blocking communication early, so that computation can execute in the

foreground while the data being sent or received continue in the background,

reducing the stall time for data transmission.

Later in this thesis (Chapter 3) we present an implementation of a type

checker, incorporating asynchronous subtyping as a local refinement for safe

parallel programming. We will give a more detailed account on how the

theory is interpreted in practice.

2.1.7. Scribble Protocol Description Language

Global Protocol

global protocol P

(role A, role B, role C){

L1(int) from A to B;

L2(char) from B to C;

(string) from B to A;

}

Local Protocol (A)

local protocol P at A

(role B, role C) {

L1(int) to B;

(string) from B;

}

Local Protocol (B)

local protocol P at B

(role A, role C) {

L1(int) from A;

L2(char) to C;

(string) to A;

}

Local Protocol (C)

local protocol P at C

(role A, role B) {

L2(char) from B;

}

Endpoint
Projection

Figure 2.10.: The Scribble Protocol Description Language.

Scribble [HMB+11, Scr] is a protocol description language with its roots

in Multiparty Session Types. Scribble protocols describe application-level
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communication protocols, and it follows the framework of MPST. The user

specifies the global protocol and local protocols can be derived from the global

protocol through endpoint projection. An example is shown in Figure 2.10.

The current version of the Scribble language specification is developed

and maintained at Imperial College, with a number of industry stakeholders

including RedHat, Ocean Observatories Initiatives (OOI) and Cognizant.

Similar to the session calculus in Section 2.1.1, the core Scribble language

also consists of basic primitives for interactions and structuring constructs

for conditionals and iterations. We introduce the Scribble language later in

Section 3.2.1, which is part of the Session C programming framework we

present in Chapter 3.

2.2. Parallel Hardware Architectures and

Programming Models

Parallel computations are not just about modelling concurrency and paral-

lelism. In order to perform parallel computations, we need to first formulate

problems into algorithmic recipes that can be executed in parallel; Further-

more, we need the machinery that can execute the given recipes in parallel.

In this section, we explain different categories of parallel hardware with their

corresponding programming models. The aim of this section is to give a

general overview of the state of the art of parallel programming, and how

our language-based approach to communication safety can relate to these

models.

We first look at parallel hardware architectures, since most, if not all, tradi-

tional parallel programming models are designed to provide an abstraction of

its underlying hardware, rather than custom hardware designed specifically

to fit the models.

2.2.1. Superscalar Processors

We begin with parallel hardware architectures of microprocessors. Micro-

processors (or simply processors) are the main hardware components of a

computer architecture. A processor (or more specifically, the Central Process-

ing Unit) in the Von Neumann architecture takes input instructions stored

in memory and carries out the computations specified by the instructions
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sequentially. In order to get higher performance out of a single processor,

microinstructions are pipelined, and additional functional units added to a

processor. Multiple instructions can then be issued in a single CPU clock

cycle and executed simultaneously. This is called superscalar execution, and

it exploits instruction-level parallelism in the processor. Figure 2.11 shows

the performance improvement in perfect superscalar execution.

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Clock cycles

Base sequential execution

Superscalar execution

Figure 2.11.: Superscalar execution.

Programming Model: Implicit The parallelism in superscalar execu-

tion is implicit, meaning that no special programming models or techniques

are needed to convert a sequential program to parallel. Given a stream of

sequential instructions, the scheduler in the processor will detect and resolve

dependencies in the instructions, so that they can be executed in parallel

correctly. Since the sequential programs are not tailored to be executed in

parallel, it is hard to predict the performance and the overall improvements

are limited compared to parallel programs.

2.2.2. Multicore Processors

As the name suggests, a multi-core processor contains multiple processor

cores, or independent CPUs, on a single physical chip. In terms of archi-

tecture, multicore processors are very similar to multiprocessor systems,

where each of the cores can work independent of other cores, and the main

difference between the two hardware arrangements is the tighter coupling in
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a multicore processor. Typical designs of a multicore processor share a local

coherent cache memory between the cores, so that there are performance

gains if the cores are performing computations that can take advantage of

memory locality; whereas multiprocessor systems can only access memory

through the system bus, which is much lower level in the computer memory

hierarchy and orders of magnitude slower. Figure 2.12 shows the difference

in multicore processor and multi-processor architectures.

Core 1 Core 2

Cache

Bus

CPU

Cache

CPU

Cache

Bus

Figure 2.12.: Multicore Processor and Multi-processor Architecture.

Due to the power wall, i.e. the reduction of performance due to overheating

and high power power consumption, and the physical limits of shrinking

single-core processor die size to reduce power consumption, it has become

infeasible to further increase performance of single-core processors. Recent

trends see the industry has switched to developing processors in a mul-

ticore package in order to achieve higher performance with lower power

consumption. It is now commonplace to find multicore processors in low

power embedded systems such as mobile phones, which shows how necessary

multicore processors are.

Programming Model: Shared Memory Despite the advantages from

the hardware standpoint, developing software for parallel computer archi-

tectures with multicore processors proves to be a huge challenge. Unlike

superscalar processors, developing software that can fully utilise the parallel

hardware requires clever design. Shared memory is one of the main program-

ming models for multicore processors. In the model, each processor core runs

an independent lightweight process or thread and accesses a shared memory

for synchronisation and coordination. To prevent race conditions between

the threads, locks are used to give threads mutually exclusive access to the

shared memory. However, competing for a single lock between multiple
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threads means that it becomes a scalability bottleneck when the number

of threads increases. Moreover, lock-based concurrency is very prone to

deadlocks, where no progress in the threads are possible. As an alternative

to locks, lockless concurrency techniques such as Software Transactional

Memory (STM) or Hardware Transactional Memory (HTM) have been the

focus of intense research for the shared memory model.

Programming Model: Message-Passing In recent years, research such

as Intel’s 80-core microprocessor project [MVF08] attempts to investigate

multicore processors in a much bigger scale. The hardware design of the

80-core processor lacks the shared coherent cache memory common in con-

ventional multicore processors, and uses Network-on-Chip as the processor’s

inter-connect architecture. Because of the scalability issues of the shared

memory model, message-passing was chosen as the programming model for

the architecture. Message-passing is a model where messages are sent between

independent threads or processes for synchronisation and coordination.

2.2.3. Distributed and Cluster Computing

Distributed computing is not strictly a parallel hardware architecture, but

the distributed computing research lays the foundation for cluster computing.

A distributed system is composed of multiple networked complete systems.

The components of the distributed system interact with each other by

passing messages over the network, which could be Ethernet, or even the

Internet. We make a distinction between distributed computing and cluster

computing for their purposes, computer clusters are purpose-built, tightly-

coupled distributed systems for high-performance parallel computation, the

components of a cluster are similar or identical high-performance hardware

such that it is easier to distribute tasks in massively parallel applications.

All of the fastest supercomputers in the world are clusters. Figure 2.13 shows

two distributed systems, the switch-connected system has a more uniform

connection and is a more likely candidate architecture of a computer cluster.

Programming Model: Message-Passing Message-passing is the most

common model for programming most distributed and cluster computing

systems. However, novel languages and tools were invented to abstract the

underlying architecture further, including the Partitioned Global Address
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Figure 2.13.: Two examples of distributed systems.

Space (PGAS) parallel programming model, combining the advantages of

memory locality in shared memory model and the underlying distributed

memory message-passing based model between nodes. We will discuss PGAS

in more details in the next section (Section 2.3.3).

Summary Parallel architectures discussed above show that despite the

difference in properties and design, the programming models of the parallel

hardware are closely related to communication between the components for

synchronisation and coordination. It also emerges that message-passing is

almost universally applicable to all the architectures. In the next section

we look at the concrete state-of-the-art languages and tools for parallel

programming.

2.3. State-of-the-art Languages and Tools for

Parallel Programming

This section we present some languages and tools for parallel programming,

grouped by their programming model. The languages and tools presented

are representative of its respective programming model which we compare

against session-based programming.

2.3.1. Threads and Locks

The most common shared memory programming tools are threads. Threads

are lightweight processes that have a shared address space that can run in

parallel. POSIX threads (Pthreads) is a standard thread API on UNIX-like

systems for threads programming, which gives developers access to very
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low-level manipulation of threads.

Interleaving of parallel threads that access a same piece of memory can

easily lead to race conditions. To prevent race conditions, locks are introduced

to give processes exclusive access to a single piece of shared state or resource.

However, misuse of locks is a source of deadlocks, where a group of processes

block and wait for each other in a cyclic configuration.

On the other hand, higher level languages and tools exist to simplify

threads programming and avoid deadlocks. For example, Cilk [FLR98,

Ran98] is a research programming language originally developed in MIT

as a fork-join model for multi-threaded programming. Cilk also features

work-stealing for task scheduling. Cilk Plus is a commercial implementation

of Cilk maintained by Intel. It uses a combination of pragma-based program

transformation and libraries for extracting latent parallelism (shared memory

multithreading) from sequential code.

OpenMP is an API that supports multiprocessing programming in C/C++

and Fortran, by extracting latent parallelism in sequential code using compiler

directives (pragmas) and runtime libraries. The OpenMP runtime libraries

manage parallelisation and synchronisation by inspecting pragma annotations

in the source code of the sequential application.

These approaches simplify shared memory programming, but have limited

flexibility1 compared to direct thread manipulation.

2.3.2. Message-Passing

Message-passing is a technique for coordinating distributed processes by

explicitly sending or receiving messages between them. It is more scalable

than shared memory programming models because processes do not compete

for a single shared resource, but instead the parallelism is made explicit

with messages. Message-Passing Interface (MPI) [The93] is a parallel pro-

gramming API standard based on message-passing, developed jointly by

academia and industry over the past 20 years. It is the de facto standard for

parallel programming in scientific computing, and is available for most High

Performance Computing systems because of its scalability over large scale

parallel systems. MPI is designed to be language independent and portable,

and multiple implementations exist, most notably MPICH2 [Gro02] and the

1https://software.intel.com/en-us/articles/choosing-the-right-threading-framework
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open source Open MPI [GFB+04, GSB+06]. The language and hardware

independent property of MPI led to research such as [SnPM+10] to program

reconfigurable hardware.

However, it is agreed in the HPC community that MPI programming

is difficult. MPI encourages a Single Program, Multiple Data (SPMD)

programming model, where a single source code defines the behaviour of all

the parallel process that it spawns. For a novice MPI user, it is easy to design

a parallel application with communication mismatch, where messages are

sent but never received or vice versa; Moreover, mismatch of communication

may lead to communication deadlocks where a process blocks indefinitely

waiting for a message. These are the top MPI-related errors in parallel

applications identified in an Intel survey [DKdS+05], with “send/receive

inconsistency” ranked as the top MPI error by MPI users in the survey.

2.3.3. PGAS Languages

Recent research languages for HPC from DARPA’s High Performance Com-

puting Systems (HPCS) project, such as Chapel [Cha], X10 [CGS+05, LP10,

X10] and Fortress [For] share a parallel programming model called Parti-

tioned Global Address Space (PGAS) that share a notion of partitioned

globally accessible memory locations, with different access semantics for

local and remote partitions. The model applies both to non-uniform memory

hierarchies within a node, and to distributed memory locations on clusters.

These languages focus on reducing programming complexity for shared mem-

ory parallelism through a range of annotations and high-level constructs

for coordinating and synchronising thread behaviours. Even though PGAS

languages offer a convenient model and primitives for parallel programming,

communication deadlocks can still occur as in message-passing programming.

2.3.4. Heterogeneous Computing

Programming with combinations of different types of specialised acceleration

hardware such as GPU and FPGA require different programming models.

The previous section has covered the programming models for each of the

hardware types, i.e. GPU — OpenCL and CUDA, FPGA — VHDL or

data-flow programming languages. However, to combine the computation

power of the acceleration hardware requires coordination languages such

47



as MPI or session-based languages that can coordinate the PEs to work in

unison.

2.3.5. Session-based Languages

Session-based languages are a general category of programming languages

and tools that applies the formal typing system of session types as a com-

munication specification.

Session Java (SJ) was introduced in [HYH08] as the first general-purpose

session-typed distributed programming language. Another recent extension

of SJ added event-based programming primitives [HKP+10], for a different

target domain: scalable and type-safe event-driven implementation of appli-

cations that feature a large number of concurrent but independent threads

(e.g. Web servers). Preliminary experiments with parallel algorithms with

SJ were reported in a workshop paper [BHY10]. That early work considered

only simple iteration chaining without analysis of deadlock-freedom, and

without the general multi-channel primitives required for efficient represen-

tation of the complex topologies tackled by multi-channel SJ presented in

this thesis.

The Bica language [GVR+10] is an extension of Java implementing binary

sessions, which allowing session channels to be used as fields in classes.

Bica does not support multi-channel primitives and does not guarantee

deadlock-freedom across multiple sessions.

[SNZE10] extends SJ-like primitives with multiparty session types and

studies type-directed optimisations for the extended language. Their lan-

guage does not allow sessions to be interleaved within the same process,

which is less expressive than that of the formal model originally presented

in [HYC08]. Their design is targeted at more loosely-coupled distributed

applications than parallel algorithms, where processes are tightly-coupled

and typically communicate via high-bandwidth, low-latency media; their

optimisations, such as message batching, could increase latency and lower

performance.
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2.4. Summary

In this chapter we have covered the theoretical basis for communication safe

programming – Session Types, a type system for modelling and guaranteeing

correctness of communication.

We also explored current state of the art of parallel computing, where

we looked at programming tools, languages, and verification techniques for

parallel programing.
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3 The Session C Programming

Framework

Overview This chapter presents an efficient programming toolchain for

message-passing parallel algorithms which can fully ensure, for any typable

programs and for any execution path, deadlock freedom, communication-safety

and global progress through static checking. The methodology is embodied as

a multiparty session-based programming environment for C and its runtime

libraries, which we call Session C. Session C also supports optimisation by

asynchronous messaging through session subtyping, which preserves original

safety guarantees.

3.1. Introduction

Message-passing applications are difficult to implement correctly. Even if all

local calculations are correct, communication deadlocks and communication

mismatches may be introduced by the message-passing part of a program.

One of the root causes of communication errors is the lack of conformance to

an assumed protocol among endpoint programs. Typical examples (written

as MPI [MPI] commands) are circular waits such as:

Process 1: MPI_Recv(from=2); MPI_Send(to=3)

Process 2: MPI_Recv(from=3); MPI_Send(to=1)

Process 3: MPI_Recv(from=1); MPI_Send(to=2)

or communication mismatches such as:

50



Process 1: MPI_Send(to=2)

Process 2: MPI_Recv(from=3)

Process 3: MPI_Send(to=1)

To avoid such deadlocks, one might permute the order of messages using

asynchronous sending such as MPI_Isend followed by MPI_Recv, but it is

often forgotten to write a required synchronisation (MPI_Wait). These are

simple errors often illustrated in the textbooks [GLS99, GKKG03], which still

appear in many programs including large scale MPI applications, e.g [Par].

Such communication errors are often hard to detect except by runtime

analysis. Even if detected, the bugs are hard to locate and fix because

they come from distributed processes. Testing in general does not offer full

safety assurance as it relies on executing a particular sequence of events and

actions.

This chapter proposes a new programming framework for message-passing

parallel algorithms centring on explicit, formal description of global protocols,

and examines its effectiveness through an implementation of a toolchain

for C. All validations in the toolchain are done statically and are efficient,

with a polynomial-time bound with respect to the size of the program

and global protocol. The framework is based on the theory of Multiparty

Session Types [HYC08, BCD+08, DY12], and it supports a full guarantee

of deadlock-freedom, type-safety, communication-safety and global progress

for any statically well-typed programs. Global protocols serve as a guidance

for a programmer to write safe programs, representing a type abstraction of

expressive communication structures (such as sequencing, choice, broadcast,

synchronisation and recursion). The toolchain uses a language Scribble [Scr,

HMB+11] for describing the Multiparty Session Types in a Java-like syntax.

1 protocol Simple(role P1, role P2, role P3) {

2 int from P1 to P2;

3 char from P3 to P1;

4 float from P2 to P3;

5 }

Simple

A simple example of a protocol in Scribble which corrects the first erro-

neous MPI program (a wait cycle) is given on the left. For endpoint code

development, the programmer uses the endpoint protocol generated by the

projection algorithm in the toolchain. For example, the above global protocol
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is projected to P2 to obtain:

1 protocol Simple at P2(role P1, role P3) {

2 int from P1;

3 float to P3;

4 }

Simple @ P2

which gives a template for developing a safe code for P2 as well as a basis

of static verification. Since we start from a correct protocol, if endpoint

programs conform to the induced endpoint protocols, it automatically ensures

deadlock-free, well-matched interactions.

Protocol (G)

TAlice

T ′Alice

PAlice

TBob

T ′Bob

PBob

Conformance

Refinement

Projection

TCarol

T ′Carol

PCarol (iv) Session C Program

(iii) Refined Endpoint Protocol

(ii) Endpoint Scribble Protocol

(i) Global Scribble Protocol

Figure 3.1.: Session C Programming Framework.

Overview of the Toolchain A Session C program is developed in a

top-down approach. Figure 3.1 shows the relationships between the four

layers (i–iv) that make up a complete Session C program. A Session C

programmer first designs a global protocol (i) using Scribble (explained in

Section 3.2.1). A Session C program is a collection of individual programs

(iv) in which each of the programs implements a participant (called endpoint)

of the communication. We first extract the endpoint protocol from the global

protocol by projection (ii). The projection takes the global protocol G and

an endpoint (say Alice), and extracts only the interaction that involves Alice

(TAlice). Step (iii) describes a key element of our toolchain, the protocol

refinement. T ′Alice is an endpoint protocol refined from the original TAlice.
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This allows the programmer to write a more refined program PAlice (which

conforms to T ′Alice) than a program following the original TAlice. Session

C supports the asynchronous message optimisation [Mos09, MYH09], the

reordering of messages for minimising waiting time as a refinement, Session C

implements this optimisation in its subtyping checker (Section 3.3.2). Once

PAlice conforms to T ′Alice such that T ′Alice < TAlice (T ′Alice is more refined),

then PAlice automatically enjoys safety and progress in its interactions with

PBob and PCarol.

Endpoint Scribble
protocol

Session C
source code

clang compiler

Session type checker

Executable

Runtime library

Figure 3.2.: Session C workflow.

Programming environment The programming environment of Session

C is made up of two main components, the session type checker and the

runtime library (Section 3.2.2). Figure 3.2 shows the workflow. The session

type checker takes an endpoint protocol (TAlice) and a source code PAlice

as an input from the user. The endpoint protocol is generated from the

global protocol G through the projection algorithm. The session type checker

validates the source code against its endpoint protocol. When the program

is optimised, it generates T ′Alice from PAlice and checks if T ′Alice < TAlice

(Section 3.3.2). The API provides a simple but expressive interface for

session-based communications programming.

The contributions of this chapter includes the following:

� A toolchain for developing and executing message-passing parallel

algorithms based on a formal and explicit description of interaction

protocols (Section 3.2.1), with an automatic safety guarantee. All

algorithms used in the toolchain are polynomial-time bounded (Sec-

tion 3.3.2).

� The first multiparty session-based programming environment for a

low-level language, Session C, built from expressive session constructs
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supporting collective operations (Section 3.2), together with the asso-

ciated runtime library.

� A session type checker for Session C, which is the first to offer automatic,

formal assurance of communication deadlock-freedom (i.e. for any

possible static control path and interleaving except for limitations

outlined in Section 3.2.1) for a large class of message-passing parallel

programs (Section 3.3.1), supporting messaging optimisations through

the incorporation of the asynchronous subtyping [Mos09, MYH09]

(Section 3.3.2).

� The validation of our methodology through the implementations of

typical message-passing parallel algorithms, leading to concise and

clear programs (Section 3.4). The benchmark results show that repre-

sentative parallel algorithms in Session C are executed competitively

against their counterparts in MPI (the overhead is on average 1%)

(Section 3.5).

All source code is available on [Ses].

3.2. Protocols and Programming in Session C

3.2.1. The Scribble Protocol Description Language

Our toolchain uses Scribble [HMB+11, Scr], a developer-friendly notation for

specifying application-level communication protocols based on the theory of

multiparty session types [HYC08, BCD+08, DY12]. Scribble’s development

tool [Scr, HMB+11] supports parsing, well-formedness checking and endpoint

projection, with bindings to multiple programming languages. We briefly

introduce its syntax.

1 import int;

2 protocol MonteCarloPi(role Master, role Worker0, role Worker1) {

3 // number of simulations to do in each worker

4 int from Master to Others; // broadcast

5 rec LOOP {

6 from Others to Master { Yes: No: }; // gather

7 LOOP;

8 }

9 }

MonteCarloPi
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The above listing shows a simple Scribble global protocol for Monte Carlo

π estimation. The algorithm uses random sampling to estimate the value

of π. A Scribble protocol begins with the preamble, in Line 1, consisting of

a message type declaration after the keyword import. Then the protocol

definition is given starting from, in Line 2, the keywordprotocol, followed

by the protocol name, MonteCarloPi, and its parameters which are the roles

to be played by participants. In addition to the explicitly declared roles, the

protocol body can use two special roles – Others (for “all other roles”) and

All (for “every role”), both roles are used for collective operations which we

will explain below. After the declarations, the protocol body which describes

the conversation structure follows.

Line 4 says that the Master should send an integer (which specifies the

number of tries) to Others, i.e. to all other roles than Master, i.e. to the

workers. Line 5 declares a recursion named loop. In Line 6, (after each

worker locally generates a random point on a square and tests if the point

is in the quarter of a circle, i.e. the shaded area in the right figure above.

Master is informed by Others (workers) whether the test was a hit, by

choosing Yes or No. Regardless, Line 7 recurs.

The description of interaction in Lines 4-8 is generic, catering for any

number of workers. Here we use collective roles in Scribble, where a single

role can denote multiple participants. As explained above, we have two

collective roles Others and All which refer to “all other roles” and “every

role” respectively. Using them, we can accurately represent the protocols for

MPI collective operations as:

� MPI_Bcast (broadcast) from A: from A to Others.

� MPI_Reduce to A, a gather operation: from Others to A.

� MPI_Barrier with A as a gather point, for which we use consecutive

interactions: from Others to A; from A to Others.

� MPI_Alltoall, a scatter-gather operation: from All to Others.

These collective roles can be used as a source and/or a target as far as it

is not ambiguous (e.g. from Others to Others) and it does not induce a

self-circular communication (e.g. from All to All). Each All is macro-

expanded for each endpoint when projecting a global protocol, whereas
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Others is preserved after projection and is linked to programming constructs,

as we shall discuss later.

Global protocol Endpoint protocol

U from myrole to role1,..,rolen/Others U to role1,..,rolen/Others

U from role1,..,myrole,..,rolen/Others to role U to role

U from role1,..,rolen/Others to myrole U from role1,..,rolen/Others

U from role to role1,..,myrole,..,rolen/Others U from role

U from All to Others
U to Others;

U from Others;

from myrole to role { l1 : T1 · · · ln : Tn } to role { l1 : T ′1 · · · ln : T ′n }

from role to myrole { l1 : T1 · · · ln : Tn } from role { l1 : T ′1 · · · ln : T ′n }

from All to Others { l1 : T1 · · · ln : Tn }
to Others { l1 : T ′1 · · · ln : T ′n }

from Others { l1 : T ′1 · · · ln : T ′n }

repeat from myrole to role { T } repeat to role { T ′ }

repeat from role to myrole { T } repeat from role { T ′ }

rec X { T } rec X { T ′ }

Table 3.1.: Projection from global protocol to endpoint protocol of myrole.

We present a summary of the Scribble syntax for global and local protocols

in above table, which also shows how the former is projected to the latter.

In each line, the left-hand side gives a syntax of a global protocol, while the

right-hand side gives its projection onto participant myrole. U is a payload

type; T and T ′ are global and endpoint types; and l is a label for branching.

T and T ′ can be empty, denoting termination. Line 1 indicates two cases,

U from myrole to role1 ,.., rolen, which is a multicast from myrole

to n other roles; and U from myrole to Others, which is a multicast from

myrole to all others. Similarly for Lines 2-4. The right-hand side views

the left-hand global interaction from the viewpoint of myrole. In Line 5,

from All to Others means every role sends to the remaining roles. Hence,

for myrole, it means (1) it is sending to all others, i.e. broadcast; and then

(2) receiving from all others, i.e. reduce.

Limitation: loops

We highlight that Scribble protocols represent static communication patterns,

and they capture the structure of an interaction. Hence there are limitations

to what Scribble protocols can guarantee, as with the underlying MPST type

theory (but examples using primitive recursion is fine). In particular, if a user
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decides to use rec Label { ... } to represent a loop in the global protocol,

but supplies different loop conditions to each endpoint implementation

using the loop, then communication safety cannot be guaranteed since the

mismatched conditions will introduce a communication mismatch when

one of the loop bodies terminates. In order to leverage the full safety

guarantee offered by Session C, safe loops should be specified using the

repeat construct, which synchronises loop conditions between endpoints,

instead of rec. A legitimate use of rec is when a loop involves multiple

participants, where each participant is involved in a different number of

iterations, e.g.:

A: for (i=0; i<10; i++){} B: for (i=0; i<2; i++){}

C: for (i=0; i<8; i++){}

This is correct as long as the user ensures that the loop conditions are

compatible, since in the general case this information is only available at

runtime and cannot be embedded into static, Scribble protocols. Then the

user should ensure that the loop conditions are compatible, since in the

general case this information is only available at runtime and cannot be

embedded into static, Scribble protocols.

1 protocol MonteCarloPi at Master

2 (role Worker0, role Worker1){

3 int to Others;

4 rec LOOP {

5 from Worker0, Worker1 { Yes: No: }

6 LOOP;

7 }

8 }

1 protocol MonteCarloPi at Worker0

2 (role Master, role Worker1) {

3 int from Master;

4 rec LOOP {

5 to Master { Yes: No: }

6 LOOP;

7 }

8 }

As a concrete example of projection acting on the whole protocol, the end-

point protocols resulting from the projection of the Monte Carlo simulation

example onto Master and Worker0, respectively, are given above. Note

that this protocol uses the rec construct and the user must ensure the

compatibility of the loop conditions between the Master and the Workers.

Hence on Line 3 the Master sends to each Worker process the number of

tries (such that the number of iterations in Master equals the total number

of iterations in all Workers).
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3.2.2. Session C: Programming and Runtime

Session C offers a high-level interface for safe communications programming

based on a small collection of primitives from the session type theory. These

primitives are supported by a runtime whose implementation currently uses

the ØMQ (ZeroMQ) [ZMQ] socket library, which provides efficient messaging

over multiple transports including local in/inter-process communication,

TCP and PGM (Pragmatic General Multicast).

A Session C program is a C program that calls the session runtime library.

All communication runtime primitives must be called directly from the main

function as we do not perform inter-procedural analysis. Pointers are allowed

in the computation code as long as they do not involve communication or the

runtime library, which may introduce communication mismatches outside of

Session C runtime. The following code implements Master whose endpoint

protocol is given in the previous subsection.

1 /* Session C implementation for Master */

2 #include <libsess.h>

3 ...

4 int main(int argc, char *argv[])

5 { // variable declaration ...

6 session *s;

7 join_session(&argc, &argv, &s, "MCPi_Master.spr");

8 const role *Worker0 = s->get_role(s, "Worker0");

9 const role *Worker1 = s->get_role(s, "Worker1");

10

11 int count = 100;

12 msend_int(100, _Others(s));

13

14 while (count-- > 0) {

15 switch(inbranch(Worker0, &rcvd))

16 { case Yes: hits++; break; case No: break; }

17 switch(inbranch(Worker1, &rcvd))

18 { case Yes: hits++; break; case No: break; }

19 }

20 printf("Pi: %.5f\n", (4*hits)/(2*100.0));

21 end_session(s);

22 }

In the main function, join_session (Line 7) indicates the start of a

session, whose arguments (from the command line arguments argc and argv

) are a session handle of type session * and the location of the endpoint

Scribble file. join_session establishes connections to other participating

processes in the session, according to a connection configuration information
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such as the host/port for each participant, automatically generated from the

global protocol. Next, the lookup function get_role returns the participant

identifier of type role *. Then we have a series of session operations such

as send_type or recv_type (discussed below). Lines 15-18 expand the choice

from Others in the protocol into individual choices. Finally an end_session

cleans up the session. Any session operation before join_session or after

end_session is invalid because they do not belong to any session.

Scribble endpoint Session C runtime interface

int to Bob; send_int(role *r, int val);

string from Bob recv_int(role *r, char *str);

int to role1,..,rolen; msend_int(int val, int roles_count,...);

string from role1,..,rolen; mrecv_string(char *str, int roles_count,...);

int to Others; msend_int(int val, _Others(sess));

string from Others/role1,..,rolen; mrecv_string(char *str, _Others(sess));

repeat to Bob { ... }
while (outwhile(int cond,int roles_cnt,...))

{ ... }

repeat from Bob { ... }
while (inwhile(int roles_cnt, ...))

{ ... }

rec X { ... } Ordinary while-loop or for-loop

to Bob { LABEL0: ... } outbranch(role *r, const int label);

from Bob { LABEL0: ... } inbranch(role *r, int *label);

Table 3.2.: Session C primitives.

Programming Communications in Session C Table 3.2 lists these

primitives as well as control primitives we illustrate next, in correspondence

with the Scribble protocol construct introduced in the Section 3.2.1. The

first six lines are for message passing. Each function name mentions a type

explicitly, as in send_datatype, following MPI and to ensure type-safety

under the lack of strong typing in C. We support char, int, float, double,

string (C-string, contiguous NULL-terminated array of char), int_array

(contiguous array of int), float_array (contiguous array of float), and

double_array (contiguous array of double). These types are sufficient for

implementing most parallel algorithms; for composite types that are not

in the runtime library, the programmer can choose to combine existing

primitives, or augment the library with marshalling and unmarshalling of

the composite type, to allow type checking.

In Lines 3/4 of the table, msend and mrecv specify the number of roles
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(a roles count) of the targets/sources, respectively. Lines 5/6 show how the

programmer can specify Others in msend and mrecv: the roles count and

roles list are replaced by a macro _Others(s) with the session handle as the

argument.

Structuring Message Flows: Branching and Iteration Branching

(choice) in Session C is declared explicitly by the use of outbranch and

inbranch. Different branches may have different communication behaviours,

and the deciding participant needs to inform the other participant which

branch is chosen. The passive participant will then react accordingly.

1 // Alice

2 if (i>3) {

3 outbranch(Bob, BR_LABEL0);

4 send_int(Bob, 42);

5 } else {

6 outbranch(Bob, BR_LABEL1);

7 recv_int(Bob, &val);

8 }

// Bob

switch (inbranch(Alice, &rcvd_label)) {

case BR_LABEL0:

recv_int(Alice, &val);

break;

case BR_LABEL1:

send_int(Alice, 42);

break;

}

Above, the branching is initiated by a call to outbranch in the then-block

or else-block of an if-statement. On the receiving side of the branch, the

program first calls inbranch to receive the branch label. A switch-case

statement should then be used to run the segment of code which corresponds

to the branching label.

For iteration, two methods are provided: local and communicating itera-

tions. Local iteration is a standard statement such as while-statements, with

session operations occurring inside. Communicating iteration is a distributed

version of loop, where, at each iteration, the loop condition is computed

by the process calling outwhile and is communicated to processes calling

inwhile. This while loop is designed to support multicast, so that a single

outwhile can control multiple processes. This is useful in a number of itera-

tive parallel algorithms, in which the loop continues until certain conditions

(e.g. convergence) are reached and cannot be determined statically.

1 // Master process (Alice)

2 while (outwhile(i++<3, 1, Bob))

3 recv_int(Bob, &value);

1 // Slave process (Bob)

2 while (inwhile(1/*no. of roles*/,

Alice))

3 send_int(Alice, 42);

Above, Alice issues an outwhile with condition i++<3 which will be
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evaluated in each iteration. outwhile then sends the result of the evaluation

(i.e. 1 or 0) to Bob and also uses that as the local while loop condition.

Then Bob receives the result of the condition evaluation from Alice by the

inwhile call, and uses as the local while loop condition. Both processes

execute the body of the loop, where Bob sends an integer to Alice. This

repeats until i++<3 evaluates to 0, then both processes exit the while loop.

3.3. Type Checking and Message Optimisation

3.3.1. Session Type Checker

The session type checker for an endpoint program is implemented as a clang

C compiler plugin. The clang compiler is the full-featured C/C++/Objective-

C compiler frontend of the Low-Level Virtual Machine (LLVM) project [LA04].

LLVM is a collection of modular and reusable individual libraries for build-

ing compiler toolchains. The modular approach of the project allows easy

mix-and-match of individual components of a compiler to build source code

analysis and transformation tools. Our session type checker is built as such

a tool, utilising the parser and various AST-related frontend modules from

the clang compiler.

Endpoint Type Checking verifies that the source code conforms to the

corresponding endpoint protocol in Scribble. The type checker operates by

ensuring that the linear usage of the communication primitives conforms

to a given Scribble protocol, based on the correspondence between Scribble

and Session C constructs given in the table in Section 3.2.2. The following

example shows how Scribble statements are matched against Session C

communication primitives.

We quickly outline how the type checker works. First, the Scribble endpoint

protocol is parsed into an internal tree representation. For brevity, hereafter

we refer to it as session tree. Except for recursion (which itself is not

a communication), each node of a session tree consists of (1) the target

role, (2) the type of the node (e.g. send, receive, choice, etc.) and (3) the

datatype, if relevant (e.g. int, string, etc.). For example, a Scribble endpoint

type statement “int to Worker;” becomes a node {role: Worker, type:

send, datatype: int}.
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The type checking is done by inferring the session typing of each program

and matching the resulting session tree against the one from the endpoint

protocol. The type inference is efficiently done by extracting session com-

munication operations from the top-level source code. Body of function

calls are not inspected and function pointers are disallowed for role variables.

Since C allows unrestricted type conversion by casting, we use the datatype

explicitly mentioned in communication functions as the type of an argument

rather than the type of its expression. For example, send_int(Bob, 3.14)

says that sending 3.14 as int is the intention of the programmer, which

is safe if the receiver is intended to receive an integer. A session tree is

then constructed from this session typing. For example, a runtime func-

tion call, send_int(Worker, result) will be represented by a node {role:
Worker, type: send, datatype: int}.

We can now move to the final process of session type checking in Session

C. After their construction, the session trees from both Scribble endpoint

protocol and the program are normalised, removing unused dummy nodes,

branches without session operations and iteration nodes without children,

thus compacting the trees to a canonical form. We then compare these

two normalised session trees, and verify that they satisfy the asynchronous

subtyping relation (illustrated in Section 3.3.2) up to minimisation, if the

Session C implementation conforms to the given Scribble endpoint protocol

in the presence of asynchronous message optimisations.

3.3.2. Asynchronous Message Optimisation

This subsection illustrates one of the key contributions of our toolchain, the

type checking in the presence of asynchronous message optimisation. Parallel

programs often make use of parallel pipelines to overlap computation and

communication. The overlapping can reduce stall time due to blocking wait

in the asynchronous communication model, as far as the overlapping does

not interfere with data dependencies.

Stage I Stage II Stage III
send

recv

recv
send recv

send

Stage I Stage II Stage III

send
recv

send
recv

send
recv

Above (left) shows a native but immediately safe ring pipeline and (right)

an efficient parallel pipeline, which needs only two steps to complete instead
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of three, since Stage I does not need to wait for data from Stage III. However,

this parallel pipeline is hard to type check against a naturally specified global

type (which would be based on the left figure where interactions take place

one by one), because of the permuted communication operations – we cannot

match the send against the recv, because they criss-cross. But these two

figures are equivalent under the asynchronous communication model with

non-blocking send and blocking receive.

1 while (i++ < N) {

2 recv_int(StageI, &rcvd);

3 send_int(StageIII, result);

4 compute(result);

5 result = rcvd;

6 }

Naive Stage II
1 while (i++ < N) {

2 send_int(StageIII, result);

3 compute(result);

4 recv_int(StageI, &rcvd);

5 result = rcvd;

6 }

Optimised Stage II

To see this point concretely, the above listing juxtaposes an unoptimised and

optimised implementation of the Stage II. Both programs communicate values

correctly despite the different order of communication statements assuming

the lack of data dependencies in the computation and communication. Note

compute is positioned after a send, so that compute can be carried out while

the data is being sent in the background, taking advantage of non-blocking

sends.

The use of parallel pipelines is omnipresent in message-passing parallel

algorithms. To type-check them, we apply the asynchronous subtyping the-

ory [Mos09, MYH09], which allows the following deadlock-free permutations,

where send is non-blocking (asynchronous) and receive is blocking (here

channel refers to the connection between two endpoints):

1. Permuting Receive-Send to Send-Receive in the same or different

channels;

2. Permuting order of Send-Send if they are in different channels;

3. Permuting order of Receive-Receive if they are in different channels

Note that if we permute in the different direction from (1) (i.e. Send-Receive

to Receive-Send), it causes a deadlock. e.g. in the efficient pipeline described

above, if send-recv is permuted to recv-send in the Stage I, it causes a

deadlock between the Stage I and II. This is because in our asynchronous

communication semantics, send is non-blocking and receive is blocking.

Below is an example of permutation that will lead to a deadlock:
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Alice Bob
send
recv

recv

send

Original interaction

Alice Bob
send
recv

send
recv

Permuted Send-Recv

Alice Bob
recv

send

recv

send

Permuted Recv-Send (deadlock)

The left figure shows the original version of the interaction. Alice and Bob

are exchanging data in the same communication channel. If we permute the

order of message exchange in Bob to Send-Recv, as in the middle figure, both

Alice and Bob can receive after the non-blocking send is issued. However, if

we permute the order of message exchange of Alice to Recv-Send as shown

in the right figure, both Alice and Bob cannot progress past receive because

receive is blocking but neither Alice nor Bob has started sending, thus we

have a deadlock.

We give the subtyping rules against Scribble endpoint protocols below,

where T is an endpoint type. The type context C defined as:

−
T < T

bIdc

T1 < C[T2] U ′ from/to role /∈ C
U to role;T1 < C[U to role;T2]

bSendc

T1 < C[T2] U ′ to role /∈ C ∀role′. U ′ from role′ /∈ C
U from role;T1 < C[U from role;T2]

bRecvc

T1 < T2
rec X {T1} < rec X {T2}

bRecc

T1 < T2
repeat from/to role {T1} < repeat from/to role {T2}

bRepeatc

C ::= [] | U from role;C | U to role;C

The subtyping algorithm in Session C conforms to the rules listed above

(which come from [Mos09]) and is their practical refinement, which we

describe below:

1. (bIdc) An endpoint type is a permutation of itself.

2. (bRecvc) For each receive statement, search for a matching receive for
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the same channel in the source code until a receive statement is found

or search failed. Send and other statements in different channels can

be skipped over.

3. (bSendc) For each send statement, search for a matching send for the

same channel in the source code until a receive statement is found

or search failed. Sends can only be permuted between statements in

different channels, so overtaking a receive operation is disallowed.

4. (bRecc bRepeatc) We apply the permutation described above on con-

secutive statements within rec and repeat blocks so the search for

matching send/receive is bounded.

Finally, we check that all nodes in the source code and protocol session

type trees have been visited.

The algorithm for the subtype checking is outlined below, check_loop_node

is only executed on loop (rec and repeat) nodes:

1 def check_loop_node(protocol, implementation):

2 for c in protocol.children:

3 allMatching |= findMatching(c, implementation.children):

4 return allMatching # Type checking succeeds if matching pairs are found

5

6 def findMatching(protocolNode, implNodes):

7 found = False

8 for implNode in implNodes:

9 if implNode.visited: continue

10

11 # No permutation allowed for non send/recv nodes

12 if not implNode.isSend and not implNode.isRecv: return False

13

14 if matches(implNode, protocolNode): # Check if node matches specification

15 implNode.visited = True

16 return True # Node found, done

17

18 # If both nodes are the same ’channel’ (i.e. same receiver or same sender)

19 if protocolNode.role == implNode.role:

20

21 if protocolNode.isRecv and implNode.isSend:

22 continue # OK for Send node to overtake Receive node

23

24 if protocolNode.isSend and implNode.isRecv:

25 return False # Instant fail if Receive node overtakes Send node

26

27 return found # Gets to the end without finding a match (default: False)

Listing 3.1: Subtype checker algorithm
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We end this section by identifying the time-complexity of the present

toolchain. It uses well-formedness checking of a global protocol and its

projection, which are both polynomial-time bound with respect to the size of

the global type [DY10, DY12]. The asynchronous subtype-checker as given

above is polynomial against the size of a local type based on the arguments

from [MYH09, DY10, Mos09]. Type inference for session typed processes are

polynomial [HYC08, MYH09, DY12]. We conclude that the complexity of

the whole toolchain is polynomial time-bounded against the size of a global

type and a program.

The type inference process goes through the source code in one pass,

extracting the endpoint protocol of the implementation. The type checking

process compares the endpoint protocol of the implementation and the

specification, and performs linearly outside of loops. Within loops, where

asynchronous subtyping applies, the subtype checking process steps through

each line of the specification protocol, and looks for a matching line in the

inferred endpoint protocol in the body of the loop until either a matching

line is found or a line is found and does not satisfy the asynchronous

subtyping rules above. The subtyping check is bound by O(M2) where M is

proportional to the number of interaction statements in loop bodies. Hence

session type checking in Session C is polynomial time-bounded.

Thus the toolchain is in principle efficient. Furthermore, a careful exami-

nation of each algorithm suggests they tend to perform linearly with a small

factor in normal cases (e.g. unless deeply nested permutations are carried

out for optimisations). Our usage experience confirms this observation.

3.4. Parallel Algorithms in Session C

In this section we demonstrate the effectiveness of Session C for clear,

structured and safe message-passing parallel programming, through two algo-

rithms which exemplify complex optimisations and communication topologies.

Other representative parallel algorithms [AWW+09, GLS99, Lei91] can be

implemented in Session C.

66



3.4.1. N-body Simulation: Optimised Ring topology

The parallel N-body algorithm forms a circular pipeline. Such a ring topology

[N-b] is used in many parallel algorithms such as LU matrix decomposition

[CLR08]. The N-body problem involves finding the motion, according

to classical mechanics, of a system of particles given their masses, initial

positions and velocities. Parallelisation is achieved by partitioning the

particle set among a set of m worker processes. Each worker is responsible

for a partition of all particles.

Body

Head

particles

Tailparticles

particles

1 protocol Nbody (role Head, role Body, role Tail) {

2 rec NrOfSteps {

3 rec SubCompute {

4 particles from Head to Body;

5 particles from Body to Tail;

6 particles from Tail to Head;

7 SubCompute;

8 }

9 NrOfSteps;

10 }

11 }

Nbody

Figure 3.3.: Ring topology of the 3-role Nbody protocol.

Figure 3.3 shows the global protocol of N-body simulation with 3 workers,

Head, Body and Tail. The simulation is repeated for a number of steps

(rec NrOfSteps). In each step, the resultant forces of particles held by

a worker are computed against all particles held by others. We arrange

our workers in a ring pipeline and perform a series of sub-computations

(rec SubCompute) to propagate the particles to all workers, each involving

receiving particles from a neighbouring worker and sending particles received

in the previous sub-computation to the next worker.

1 protocol Nbody at Body(role Head, role Tail) {

2 rec NrOfIters {

3 rec SubCompute {

Nbody @ Body
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4 particles from Head;

5 particles to Tail;

6 SubCompute;

7 }

8 NrOfIters;

9 }

10 }

1 while (iterations++ < NR_OF_ITERATIONS) { /* Body implementation */

2 while (rounds++ < NR_OF_NODES) {

3 send_particles(Tail, tmp_parts);//permuted

4 // Update veclocities

5 compute_forces(particles, tmp_parts,...);

6 recv_particles(Head, &tmp_parts);

7 } // Update positions by reeceived velocities

8 compute_positions(particles, pvs, ... );

9 }

All of the endpoint protocols inherit the two nested rec blocks from the

global protocol. In the body block of rec SubCompute, the order of send

and receive are different in Head and Body. As discussed in Section 3.3.2,

Session C allows permuting the order of send and receive for optimisations

under the asynchronous subtyping, so that we can type-check this program.

Using the endpoint protocols as specification, we can implement the workers.

The code above implements the Body worker which is typable by our session

type checker, despite the difference in order of send and receive from its

endpoint Scribble.

3.4.2. Linear Equation Solver: Wraparound Mesh Topology

The aim of the linear equation algorithm is finding an x such that Ax = b,

where A is an n × n matrix and x and b are vectors of length n. We use

the parallel Jacobi algorithm [Jac], which decomposes A into a diagonal

component D and a remainder R, A = D + R. The algorithm iterates

until the normalised difference between successive iterations is less than a

predefined error.

1 protocol Solver (role Master, ...) {

2 rec Iter {

3 rec Pipe {

4 double_array from Master to Last;

5 double_array from Last to East;

6 double_array from East to Master;

Solver
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Master Last East

West Diagonal EastLast

SouthWest Worker EastDiagonal

Pipeline data (double array)

Propagation of vector X after iteration

7 // Other communication in pipeline

8 Pipe;

9 }

10 // Distribute X vector from diagonal

11 double_array from Master to SouthWest;

12 double_array from Master to West;

13 // Distribution of other columns

14 Iter;

15 }

16 }

Our parallel implementation of this algorithm uses p2 processors in a p×p
wraparound mesh topology to solve an n × n system matrix. The matrix

is partitioned into submatrix blocks of size n2/p2, assigned to each of the

processors.

Above shows the global protocol and the dataflow of the linear equation

solver implementation with 9 workers.

An endpoint protocol of the Diagonal role is listed below.

1 protocol Solver at Diagonal

2 (role West, role EastLast, role Last, role Worker) {

3 rec Iter {

4 rec Pipe {

5 double_array from West;

6

7 double_array to EastLast;

8 Pipe;

9 }

10 double_array to Last, Worker;

Solver @ Diagonal
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11 Iter;

12 }

13 }

The overall iteration of the algorithm is controlled by a rec Iter block.

In each iteration, the computed values are put into a horizontal pipeline to

compute the sums. The resultant X vector is then calculated by the diagonal

node to other workers in the mesh for the next iteration.

The corresponding Session C code is given below.

1 while (!iter_completed)) {

2 computeProducts(partsum, blkA, newXVec, ...);

3 computeSums(sum, partsum, ...);

4 pipe = 0;

5 while (pipe++ < columns) {

6 send_double_array(EastLast, partsum, blkDim);

7 computeSums(sum, partsum, blkDim);

8 recv_double_array(West, partsum, &length);

9 }

10 // calculate X vector

11 copyXVector(newXVec, oldXVec, ...);

12 computeDivisions(newXVector, sum, ...);

13 msend_double_array(newXVec, Last, Worker, ...);

14 }

The asynchronous message optimisation is again applied to the horizontal

pipeline (Line 6–8) in order to overlap communications and computations.

3.5. Performance Evaluation

This section presents performance results for the four algorithms which

feature different topologies and communication structures.

The purpose of the evaluation is to demonstrate the overhead of imple-

mentations using the session primitives, which are needed for session type

checking, in the Session C runtime when compared to standard MPI. For all

of the algorithms, the computation code is shared between Session C and

MPI implementations, so the differences are attributed to communication

and overhead of session primitives; Through the benchmarks, we aim to

establish that session programming with Session C, which has a smaller

and simpler runtime API and guarantees lack of communication errors, can

achieve performance comparable to MPI. The runtime differences between

the implementations are expected to be constant and represent the overhead

of using Session C runtime library.
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Additionally, we argue that despite asynchronous optimisation is not

suitable for all parallel algorithms (e.g. due to data-dependencies between

communication and computation), the optimisation is not just favourable

but essential to writing practical parallel programs that are guaranteed com-

munication correct. All four benchmarks are implemented with asynchronous

optimisation. In our final benchmark, which implements a Jacobi Solution

for Discrete Poisson Equation, we also present a result for an implementation

without the optimisation to show that there is a real impact of applying the

asynchronous optimisation for suitable algorithms.

The first three benchmarks were taken on workstations with Intel Core

i7-2600 processors with 8GB RAM running Ubuntu Linux 11.04; the Jacobi

solution benchmarks were taken on a high performance cluster with nodes

containing AMD PhenomX49650 processor with 8GB RAM running CentOS

5.6, connected by a dedicated Gigabit Ethernet switch. Each benchmark

was run 5 times and the reported runtime is the average of all 5 runs. For

the MPI versions, Open MPI 1.4.3 were used. Both use gcc 4.4.3 to compile

with the optimisation level -O3.
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N-body simulation Our results are compared against MPI. Both versions

use a ring pipeline to propagate the particles, and the two implementations

share the same computational component by linking the same compiled object

code for the compute functions. Our implementations were benchmarked

with 3 workers and 1000 iterations on a set of input particles in the two-

dimensional space. The results in Figure 3.4(a) show that Session C’s

execution time is within 3% of the MPI implementation.

Linear equation solver Figure 3.4(b) shows that the MPI linear equa-

tion solver is faster than Session C implementation by 1–3%, with the ratio

decreasing as the matrix size increases, suggesting the communication over-

head is low, if any. The MPI implementation uses MPI_Bcast to broadcast

the results of each iteration to all nodes in the column, while Session C

explicitly distributes the results.

Fast Fourier Transformation (FFT) in a Butterfly Exchange Topol-

ogy We use a 8 node FFT butterfly (Figure 3.5 shows a butterfly pattern,

and Figure 3.6 shows the overall interaction pattern). As seen from Fig-

ure 3.4(c), Session C demonstrates a competitive performance compared

to FFT implementation, again with the difference in ratio decreasing as

the array size gets larger. The algorithm takes advantage of asynchronous

optimisation for the butterfly message exchanges.
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= xk−N
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Xk−N
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= xk−N
2

+ xk ∗ wkN

Figure 3.5.: Butterfly Pattern.

Jacobi solution for the discrete Poisson equation Figure 3.4(d)

shows the benchmark results of the implementation of Jacobi solution. The

result of the benchmark is very close (within 1%) to that of our reference

implementation in MPI. Since the implementation uses a 2D mesh topol-

ogy, the asynchronous optimisation can be applied to 4 directions of data

exchanges between processes. Comparing the results with an unoptimised

implementation (i.e. implemented using synchronous communication without
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Figure 3.6.: FFT butterfly pattern with 8 processes.

communication-communication overlapping), the performance was improved

by up to 8%. In the worse case scenario where there are data dependencies

between communication, and it is not possible to use asynchronous optimi-

sation for an implementation, the parallel algorithm will be implemented

following the Scribble protocol exactly. Hence we argue that asynchronous

optimisation do not degrade the performance of an implementation in Session

C.

3.6. Summary and Discussion

We presented Session C, a programming workflow for communication-safe and

deadlock-free parallel programming in C. Session C follows the framework of

Multiparty Session Types (MPST), where we use Scribble protocol description

language to write a communication protocol that governs the global behaviour

of the distributed program (global type in MPST), which in turn generates

localised protocols called local protocols through a projection algorithm.

Session C ensures conformance between endpoint implementations, written

with a Session C communications runtime API, and its local protocols by

static type checking. Conformance of the local protocols ensures correct

communication patterns in the Session C program, and hence guarantees

communication safety and deadlock free by the underlying MPST theory.

Our type checker also supports asynchronous message optimisation, which

allows safe permutation of message send and receive ordering using the

asynchronous messaging model. Our results show that optimised parallel

applications perform significantly better than naive implementations of the
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local protocols, and our type checker guarantees correctness of communication

in the optimised applications.

A limitation of our static, type checking approach is when the communica-

tion pattern is not known statically. We are not able to give the same strong

guarantee in the presence of recursion (i.e. loops with loop conditions not

captured in Scribble), but in general can be avoided by using synchronised

looping primitive (e.g. repeat) in Session C.

However, we observed that in order to scale up or add more parallel

participants to a Session C program, we need to first write a new Scribble

protocol, since Scribble protocols only work for a fixed number of participants;

and for each projected local protocol, we need to implement a separate

endpoint code. This is cumbersome for large parallel programs where there

could be hundreds or thousands of endpoints. In the next chapter, we

introduce a new protocol language to address this issue.
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4 Pabble: Parameterised Scrib-

ble

Overview This chapter presents a parameterised protocol description lan-

guage, Pabble, which can guarantee safety and progress in a large class of

practical, complex parameterised interaction patterns. Pabble can describe an

overall interaction topology, using a concise and expressive notation, designed

for a variable number of participants arranged in multiple dimensions. These

parameterised protocols in turn automatically generate local protocols for type

checking parameterised MPI programs for communication safety and deadlock

freedom.

4.1. Introduction

In the previous chapter, we introduced Session C, a session-based program-

ming framework which uses a language Scribble [HMB+11, Scr] for describing

the multiparty session types in a Java-like syntax. A simple example of a

protocol in Scribble which represents a ring topology between four workers

is given below:

1 global protocol Ring(role Worker1, role Worker2, role Worker3, role Worker4){

2 rec LOOP {

3 Data(int) from Worker1 to Worker2;

4 Data(int) from Worker2 to Worker3;

5 Data(int) from Worker3 to Worker4;

6 Data(int) from Worker4 to Worker1;

7 continue LOOP;

8 }

9 }
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This Ring protocol describes a series of communications in which Worker1

passes a message of type Data(int) to Worker4 by forwarding through

Worker2 and Worker3 in that order, and receives a message from Worker4.

It is easy to notice that explicitly describing all interactions among distinct

roles is verbose and inflexible: for example, when extending the protocol

with an additional role Worker5, we must rewrite the whole protocol. On the

other hand, we observe that these worker roles have identical communication

patterns which can be logically grouped together: Workeri+1 receives a

message from Workeri and the last Worker sends a message to Worker1. In

order to capture these replicable patterns, we introduce an extension of

Scribble with dependent types called Parameterised Scribble (Pabble). In

Pabble, multiple participants can be grouped in the same role and indexed.

This greatly enhances the expressive power and modularity of the protocols.

Here ‘parameterised’ refers to the number of participants in a role that can

be changed by parameters.

The following shows our ring example in the syntax of Pabble.

1 global protocol Ring(role Worker[1..N]) {

2 rec LOOP {

3 Data(int) from Worker[i:1..N-1] to Worker[i+1];

4 Data(int) from Worker[N] to Worker[1];

5 continue LOOP;

6 }

7 }

role Worker[1..N] declares workers from 1 to an arbitrary integer N. The

Worker roles can be identified individually by their indices, for example,

Worker[1] refers to the first and Worker[N] refers to the last. In the body

of the protocol, the sender, Worker[i:1..N-1], declares multiple Workers,

bound by the bound variable i, and iterates from 1 to N-1. The receivers,

Worker[i+1], are calculated on their indices for each instance of the bound

variable i. The second line is a message sent back from Worker[N] to

Worker[1].

1 local protocol Ring at Worker[1..N](role Worker[1..N]) {

2 rec LOOP {

3 if Worker[i:2..N] Data(int) from Worker[i-1];

4 if Worker[i:1..N-1] Data(int) to Worker[i+1];

5 if Worker[1] Data(int) from Worker[N];

6 if Worker[N] Data(int) to Worker[1];

7 continue LOOP;

8 }

9 }
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The above code shows the local protocol of Ring, projected with respect to

the parameterised Worker role. The projection for a parameterised role, such

as Worker[1..N], will give a parameterised local protocol. It represents

multiple endpoints in the same logical grouping.

Challenges The main technical challenge for the design and implementa-

tion of parameterised session types is to develop a method to automatically

project a parameterised global protocol to a parameterised local protocol

ensuring termination and correctness of the algorithm.

Unfortunately, as in the indexed dependent type theory in theλ-calculus

[AH05, XP98], the underlying parameterised session type theory [DYBH12a]

has shown that the projection and type checking with general indices are

undecidable. Hence there is a tension between termination and expressiveness

to enable concise specifications for complex parameterised protocols.

Our main approach to overcome these challenges is to make the theory more

practical by extending Scribble with index notation originating from a widely

used text book for modelling concurrent Java [MK06]. For example, notations

Worker[i:1..N-1] and Worker[j+i] in the Ring protocol are from [MK06].

Interestingly, this compact notation is not only expressive enough to represent

representative topologies ranging from parallel algorithms to distributed

web services, but also offers a solution to cope with the undecidability of

parameterised multiparty session types.

(1)

Parameterised
global protocol

G

(2)

Parameterised
local protocol

L1 . . . LN

Pabble
Projection

(3)

Implementation
(e.g. MPI)

Type
checking

Figure 4.1.: Pabble programming workflow.

4.1.1. Overview

Figure 4.1 shows the relationships between the three layers: global protocols,

local protocols and implementations. (1) A programmer first designs a global

protocol using Pabble. (2) Then our Pabble tool automatically projects the

global protocol into its local protocols. (3) The programmer then either
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implement the parallel application using the local protocol as specification,

or type-check existing parallel applications against the local protocol. If the

communication interaction patterns in the implementations follow the local

protocols generated from the global protocol, this method automatically

ensures deadlock-free and type-safe communication in the implementation.

In this work we focus on the design and implementation of the language

for describing parallel message-passing based interaction as global and local

protocols in (1) and (2).

The contributions of this chapter include:

� The first design and implementation of Parameterised Multiparty

Session Types in a global protocol language (Pabble) (Section 4.3.1).

The protocols can represent complex topologies with arbitrary number

of participants, enhancing expressiveness and modularity for practical

message-passing parallel programs.

� The projection algorithm for Pabble to check the well-formedness of

parameterised global protocols (Section 4.3.2 and 4.3.3) and to generate

parameterised local protocols from well-formed parameterised global

protocols (Section 4.3.4). A correctness and termination proof of the

projection algorithm is also presented (Section 4.3.6).

� A number of Pabble use cases in parallel programming and web services

in Section 4.4.

Additional use cases of Pabble such as common interaction patterns for high

performance computing described in Dwarfs [AWW+09] can be found on

the project web page [Pab].

4.2. Design aims

There are two main aims of the Pabble design.

� To close the gap between industry-standard MPI and Scribble, which

covers most, if not all, use cases of parallel programming; and

� To be able to express scalable protocols in Scribble (number of partici-

pants unknown at design time)
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In short, we want a middle-ground between high-level protocol description

and practical implementation.

MPI uses integers to identify processes (process ids) within communicators,

which is a way to easily scale up – in the sense that process ids can be

calculated by arithmetic expressions. In parallel programming and MPI,

Worker processes are processes that share a very similar communication

structure that performs calculations. In Pabble, we take the idea of using

integer to index processes that are Workers having similar communication

structure to replace process names, e.g. Alice, Bob, etc., used in Scribble.

This makes the Worker processes easier to scale up to, say 100 processes,

where we could end up having different process names referring to a related

group of processes.

1 global protocol P(role Worker[1..10]) {

2 Data(int) from Worker[i:1..9] to Worker[i+1];

3 }

Which says “each Worker send to its next neighbour”. It is reasonable to

ask why we do not explicitly iterate through the list of processes, similar to

a for-loop in ordinary programming languages, e.g.

1 global protocol P(role Worker[1..10]){

2 foreach(i:1..9) {

3 Data(int) from Worker[i] to Worker[i+1];

4 }

5 }

This has the same semantic meaning as the previous example. However,

the difference is when implementing in a Single Program, Multiple Data

language/API such as MPI, the two examples are implemented differently,

as shown below,

1 // MPI convention

2 // if Worker[i:2..10] Data(int) from Worker[i-1];

3 // if Worker[i:1..9] Data(int) to Worker[i+1];

4

5 // (rank == i && 2 <= i && rank <= 10)

6 if (2 <= rank && rank <= 10)

7 MPI_Recv(buf, cnt, MPI_INT, rank-1, Data, MPI_COMM_WORLD, &status);

8 if (1 <= rank && rank <= 9)

9 MPI_Send(buf, cnt, MPI_INT, rank+1, Data, MPI_COMM_WORLD);

10

11 // foreach (i:1..9) {

12 // if Worker[i+1] Data(int) from Worker[i];

13 // if Worker[i] Data(int) to Worker[i+1];

14 // }
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15 for (int i=1; i<=9; i++) {

16 if (rank == i+1)

17 MPI_Recv(buf, cnt, MPI_INT, i, Data, MPI_COMM_WORLD, &status);

18 if (rank == i)

19 MPI_Send(buf, cnt, MPI_INT, i+1, Data, MPI_COMM_WORLD);

20 }

The former is the convention of MPI and is more efficient, where each

process only evaluates the two statements once, compared to evaluating the

statement multiple times for each process.

Above is the reason why a range is used in the condition of the endpoint.

Pabble’s approach to representing parallel processes come in two key points:

Grouping: related processes are grouped together as a single ”role” where

the differences between each individual participant of a conversation

are because they are processes at the beginning or end of the index

range

Indexing: each process inside a group of processes is identified by its indices

The example of sending from every odd-indexed process to even-indexed

process can be expressed as follows:

1 global protocol P(role Worker[1..10]) {

2 foreach(i:0..4) {

3 Data(int) from Worker[i*2+1] to Worker[i*2+2];

4 }

5 }

This Pabble protocol makes use of a foreach statement which calculates

the pairs of processes by explicitly identifying the sender (index =i*2+1)

and (index = i*2+2).

In MPI, the natural way of implementing the above may be:

1 if (rank%2 == 0)

2 MPI_Recv(buf, cnt, MPI_INT, rank-1, Data, MPI_COMM_WORLD, &status);

3 if (rank%2 == 1)

4 MPI_Send(buf, cnt, MPI_INT, rank+1, Data, MPI_COMM_WORLD);

Which splits the process into behaviour when process id (rank) is odd

and when rank is even. It is not possible to have a global protocol for this

because processes with consecutive indices alternate between sender and

receiver, but going back to the idea of “grouping” related processes, since the

odd processes and the even processes have different behaviour (one group
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only sends and another group only receives), the odd-even interaction can

be expressed as two groups of communicating indexed processes, i.e.

Worker[1] Worker[3] Worker[5] Worker[7]

Worker[2] Worker[4] Worker[6] Worker[8]

Odd

Even

Since we do not have strict mapping between process orders, we can

segment the group as Odd = 1, 3, 5, 7 and Even = 2, 4, 6, 8, so the protocol

may instead be written as:

1 global protocol P(role Odd[1..4], role Even[1..4]) {

2 Data(int) from Odd[i:1..4] to Even[i];

3 }

This is the preferred way of writing complex protocols with Pabble, because

it leverages the high-level understanding of an interaction pattern (grouping)

without taking away the advantage of using indices as process identifiers. The

correspondence with MPI is still simple because both groups are indexed.

4.3. Pabble: Parameterised Scribble

Scribble [HMB+11, Scr] is a developer friendly notation for specifying application-

level protocols based on the theory of multiparty session types [BCD+08,

HYC08]. This section introduces an evolution of Scribble with parameterised

multiparty session types (Pabble), defines its endpoint projection and proves

its correctness.

4.3.1. Syntax of Pabble

Global Protocols

Figure 4.2 lists the core syntax of Pabble, which consists of two protocol

declarations, global and local. A global protocol is declared with the protocol

name (str denotes a string) with role and group parameters followed by

the body G. Role R is a name with argument expressions. The argument

expressions are ranges or arithmetic expressions h, and the number of

arguments corresponds to the dimension of the array of roles: for example,
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Global Pabble
global protocol str(para) { G }

Parameter
para ::= role Rd, ..., Role declaration

group str = {Rd, ...}, ... Group declaration
Global protocol body
G ::= l(T) from R to R; Interaction

| choice at R { G1 } or ... or { GN } Choice
| foreach (b) { G } Foreach
| allreduce opc(T); Reduction
| rec l { G } Recursion
| continue l; Continue
| G G Sequential composition

Payload type
T ::= int | float | . . . Data types

Expression
e ::= e op e Binary expressions

| num Integers
| i, j, k, ... | N Variables, constants

op ::= opc | - | / | % | << | >> | log | . . . Binary operations
opc ::= + | * | . . . Commutative operations

Role
Rd ::= str Role declaration

| str[e..e]...[e..e] Param. role declaration
R ::= str Roles

| str[h]...[h] Param. roles
| All All group role

h ::= b | e Role parameter
b ::= i : e..e Binding range

Local Pabble
local protocol str at Rd(para) { L }

Local protocol body
L ::= [ if R] l(T) from R; (Conditional) Receive

| [ if R] l(T) to R; (Conditional) Send
| choice at R { L1 } or ... or { LN } Choice
| foreach (b) { L } Foreach
| allreduce opc(T); Reduction
| rec l { L } Recursion
| continue l; Continue
| L L Sequential composition

Figure 4.2.: Pabble syntax.
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Worker[1..4][1..2] denotes a 2-D array with size 4 and 2 in the two

dimensions respectively, forming a 4-by-2 array of roles.

Declared roles can be grouped by specifying a named group using the

keyword group, followed by the group name and the set of roles. For example,

group EvenWorker={Worker[2][2], Worker[4][2]}

creates a group which consists of two Workers. A special built-in group, All,

is defined as all processes in a session. We can encode collective operators

such as many-to-many and many-to-one communication with All, which

will be explained later.

Apart from specifying ranges by constants, ranges can also be specified

using expressions. Expression e consists of operators for numbers, logarithm,

left and right logical shifts (<<, >>), numbers, variables (i, j, k), and constants

(M, N). Constants are either bound outside the protocol declaration or are

left free (unbound) to represent an arbitrary number. As in [MK06], when

the constants are bound, they are declared by numbers outside the protocol,

e.g. const N = 100 or lower and upper bounds, e.g. const N = 1..1000.

We also allow leaving the declaration free (unbound), e.g. const N, as a

shorthand to represent an arbitrary constant with lower and upper bounds

0 and max respectively, i.e. const N = 0..max, where max is a special value

representing the maximum possible value or practically unbounded. Binding

range expression b takes the form of i : e1..en which means i is ranged from e1

to en. Binding variables always bind to a range expression and not individual

values. We shall explain the use of binding range expressions later in more

details.

In a global protocol G, l(T ) from R1 to R2 is called an interaction

statement, which represents passing a message with label l and type T from

one role R1 to another role R2. R1 is a sender role and R2 is a receiver role.

choice at R { G1 } or ... or { GN } means the role R will select one

of the global types G1,. . . ,GN . rec l { G } is recursion with the label l

which declares a label for continue l statement. foreach (b) {G} denotes

a for-loop whose iteration is specified by b. For example, foreach (i:1..n

){ G } represents the iteration from 1 to n of G where G is parameterised

by i.

Finally, allreduce opc(T) means all processes perform a distributed

reduction of value with type T with the operator opc (like MPI_Allreduce
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in MPI). It takes a mandatory predefined operator opc where opc must be a

commutative and associative arithmetic operation so they can correspond

to MPI reduction operations which have the same requirements. Pabble

currently supports sum and product.

We allow using simple expressions (e.g. Worker[i:0..2*N-1]) to parame-

terise ranges. In addition, indices can also be calculated by expressions on

bound variables (e.g. Worker[i+1]) to refer to relative positions of roles.

These restrictions on indices such as bound variables and relative indices

calculations ensure termination of the projection algorithm and type checking.

The binding conditions are discussed in the next subsection.

Local Protocols

Local protocol L consists of the same syntax of the global type except the

input from R (receive) and the output to R (send). The main declaration

local protocol str at Re (. . .) { L } means the protocol is located at

role Re. We call Re the endpoint role. In Pabble, multiple local protocol

instances can reside in the same parameterised local protocol. This is because

each local protocol is a local specification for a participant of the interaction.

Where there are multiple participants with a similar interaction structure

that fulfil the same role in the protocol, such as the Workers from our Ring

example from the introduction, the participants are grouped together as a

single parameterised role. The local protocol for a collection of participants

can be specified in a single parameterised local protocol, using conditional

statements on the role indices to capture corner cases. For example, in

a general case of a pipeline interaction, all participants receive from one

neighbour and send to another neighbour, except the first participant which

initiates the pipeline and is only a sender and the last participant which ends

the pipeline and does not send. In these cases we use conditional statements

to guard the input or output statements. To express conditional statements

in local protocols, if R may be prepended to an input or output statement.

if R input/output statement will be ignored if the local role does not match

R. More complicated matches can be performed with a parameterised role,

where the role parameter range of the condition is matched against the

parameter of the local role. For example, if Worker[1..3] will match

Worker[2] but not Worker[4]. It is also possible to bind a variable to the
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range in the condition, e.g. if Worker[i:1..3], and i can be used in the

same statement.

4.3.2. Well-formedness Conditions: Index Binding

As Pabble protocols include expressions in parameters, a valid Pabble protocol

is subject to a few well-formedness conditions. Below we show the conditions

which ensure indices used in roles are correctly bound. We use fv/bv to denote

the set of free/bound variables defined as fv(i) = {i}, fv(N) = fv(num) = ∅
and fv(i : e1 . . . en) = ∪fv(ej) and fv(foreach(b){G}) = (fv(b)∪fv(G))\bv(b)

and bv(i : e1 . . . en) = {i}. Others are inductively defined.

1. In a global protocol role declaration, global protocol, indices outside

of declared range are “invalid”, for example, a role Worker[0] is invalid

if the role is declared role Worker[1..3].

2. Let foreach(b1){ foreach(b2){ . . . foreach(bn){G}}} with n ≥ 0:

a) Suppose an interaction statement l(T ) from R1 to R2; appears

in G. Let R1 = Role1[h1] . . . [hn] and R2 = Role2[e
′
1] . . . [e

′
m] (we

assume n = 0 (resp. m = 0) if R1 (resp. R2) is either a single

participant or group).

(1) n = m (i.e. the dimensions of the parameters are the same)

(2) fv(hj) ⊆ ∪bv(bi) (i.e. the free variables in the sender roles are

bound by the for-loops).

(3) fv(e′j) ⊆ (∪bv(bi)) ∪ bv(hj) (i.e. the free variables in the

receiver roles are bound by either the for-loops or sender

roles);

b) Suppose a choice statement choice at R { G1 } or { G2 }

appears in G. Then R is a single participant, i.e. either Role or

Role[e] with fv(e) ⊆ (∪bv(bi)).

Condition 2(a)(1) ensures the number of sender parameters matches the

number of receiver parameters. For example, the following is invalid:

l(T ) from R[i:1..N-1][j:1..N] to R[i+1];

Condition 2(a)(2) ensures variables used by a sender are declared by the

enclosing for-loops.
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Condition 2(a)(3) makes sure the receiver parameter at the j-th position is

bound by the for-loops or the sender parameter at the j-th position (and not

binders at other positions). For example, the following is valid:

l(T ) from R[i:1..N-1][j:1..N] to R[i+1][j];

But with the index swapped, it becomes invalid:

l(T ) from R[i:1..N-1][j:1..N] to R[j][i+1];

Condition 2(b) is similar for the case of choice statements where R should

be a single participant to satisfy the unique sender condition in [CDCP12,

DY12].

4.3.3. Well-formedness Conditions: Constants

In Pabble protocols, constants can be defined by

(1) A single numeric value (const N=4); or

(2) Lower and upper bound constraints not involving the max keyword

(e.g. const N=1..1000).

Lower and upper bound constraints are designed for runtime constants,

e.g. the number of processes spawned in a scalable protocol, which is unknown

at design time and will be defined and immutable once the execution begins.

To ensure Pabble protocols are communication-safe in all possible values of

constants, we must ensure that all parametrised role indices stay within their

declared range. Such conditions prevent sending or receiving from an invalid

(non-existent) role which will lead to communication mismatch at runtime.

In case (1), the check is trivial. In case (2), we require a general algorithm

to check the validity between multiple constraints appear in the regions.

First, we formulate the constraints of the values of the constants as a series

of linear inequalities. We then combine the linear inequalities and determine

the feasible region using integer linear programming. The feasible region

represents the pool of possible values in any combination of the constraints.

The following explains how to determine whether the protocol will be valid

for all combinations of constants:

1 const M = 1..3;

2 const N = 2..5;
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3 global protocol P(role R[1.. N ]) {

4 T from R[i:1.. M ] to R[i+1];

5 }

The basic constraints from the constants are:

1 ≤ M, M ≤ 3, 2 ≤ N and N ≤ 5

We then calculate the range of R[i+1] as R[2..M+1]. Since the objective

is to ensure that the role parameters in the protocol body (i.e. 1..M and

2..M+1) stay within the bounds of 1..N, we define a constraint set to be:

1 ≤ 1 & M ≤ N and 1 ≤ 2 & M +1 ≤ N

which are lower and upper bound inequalities of the two ranges. From them,

we obtain this inequality as a result:

M +1 ≤ N

By comparing this against the basic constraints on the constants, we can

check that not all outcomes belong to the regions and thus this is not a

communication-safe protocol (an example of a unsafe case is M = 3 and N

= 2). On the other hand, if we alter Line 4 to T from R[i:1..N-1] to R[

i+1];, the constraints are unconditionally true and so we can guarantee all

combinations of constants M and N will not cause communication errors.

Arbitrary Constants In addition to constant values and lower and upper

bound constants, we also consider the use cases when the value of a constant

can be any arbitrary value in the set of natural numbers. This is an extension

of case (2) with the max keyword, where we write const N = 0..max to

represent a range without upper bound.

In order to check that role indices are valid with unbounded ranges, we

enforce two simple restrictions. First, only one constant can be defined with

max in one global protocol1. Secondly, when the index is unbounded, its

range calculation only uses addition or subtraction on integers (e.g. i+1).

A protocol with an invalid use of arbitrary constants is shown below:

1 const N = 1..max;

2 global protocol Invalid(role R[1..N]) {

3 T from R[i:1..N-1] to R[i+1];

4 T from R[j:1..N] to R[j+1];

5 }

1Or all arbitrary constants in the global protocol can be expressed in terms of a single
arbitrary constant
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If N is instantiated to 1, then the role is declared to be R[1..1]. In the

first interaction statement, R[i:1..1-1] is invalid, as R[0] is not in the

range of R[1..0]. In the second statement R[j+1] is also invalid, as it

evaluates to R[N+1] and is out of range R[1..N].

On the other hand, the following protocol is valid since the indices always

stay between 0 and N.

1 const N = 1..max;

2 global protocol Valid(role R[0..N]) {

3 T from R[i:0..N-1] to R[i+1];

4 T from R[j:1..N] to R[j-1];

5 }

Most representative topologies with an arbitrary number of participants

can be represented under these conditions, we show some examples in the

next chapter.

4.3.4. Endpoint Projection

In the next step, a Pabble protocol should be projected to a local protocol,

which is a simplified Pabble protocol as viewed from the perspective of a

given endpoint. The projection algorithm is described below. To begin with,

the header of the global protocol

global protocol name(param) { G }

is projected onto

local protocol name at Re(param) { L }

where the protocol name name and parameters param are preserved and

the endpoint role Re is declared.

Table 4.1 shows the projection of the body of global protocol G onto R at

endpoint role Re. The projection rules will be applied from top to bottom in

the table, if a global protocol matches multiple rules, then there will be more

than one line of projected protocol for a single global protocol. In Rules

1–4, we show the rule for the single argument as the same rule is applied to

n-arguments. Each rule is applied if R meets the condition in the second

column under the constraints given by the constant declarations. Rules 1

and 2 show the projection of the interaction statement when R appears

in the receiver and the sender position respectively. Since R is a single
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Condition Global Protocol Projected
Local Protocol

1 Receive R = Re U from R′ to R; U from R′;

2 Send R = Re U from R to R′; U to R′;

3 Param. Receive R ∈ Re U from R′ to R; if R U to R′;

4 Param. Send R ∈ Re U from R to R′; if R U from R′;

5 All to All U from All to All;
U to All;

U from All;

6 Group R ⊆ Re U from R′ to R; if R U from R′;

7 Group R ⊆ Re U from R to R′; if R U to R′;

8 Relative Role R[e]⊆ Re U from R′[b] to R[e];
if R[apply(b, e)]
U from R′[inv(e)];

9 Relative Role R[b]⊆ Re U from R[b] to R′[e]; if R[b] U to R′[e];

10 Choice Sender R = Re

or R ∈ Re

choice at R { G1 }

or ... or { GN }

choice at R { L1 }

or ... or { LN }

11 Choice Receiver choice at R′ { G1 }

or ... or { GN }

choice at R′ { L1 }

or ... or { LN }

12 Recursion rec l { G } rec l { L }

13 Continue continue l; continue l;

14 Foreach foreach (b) { G } foreach (b) { L }

15 All reduce allreduce opc(T); allreduce opc(T);

Table 4.1.: Projection of G onto R at the end-point role Re.
L and Li correspond to the projection of G and Gi onto R.

participant, it should satisfy R = Re (i.e. the role is the endpoint role).

The projection simply removes the reference to role R from the original

interaction statement.

Rules 3 and 4 show the projection of an interaction statement if role R is

a parameterised single participant where R is an element of the endpoint

role Re. For example, if Re = Worker[1..3], R can be either Worker[1],

Worker[2] or Worker[3]. In addition to removing the reference of role R in

the receive and send statements, we also prepend the conditions which the

role applies. The order of which the projection rules are applied ensure that

an interaction statement will be localised to receive then send. In general,

both receive-send or send-receive in the projected local protocol is correct,

as long as the projection algorithm is consistent and the well-formedness

conditions of the global protocol are satisfied. The global protocol will

ensure, by session typing, that a send will have a matching receive at the

same stage of the protocol.
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Rule 5 is for All-to-All communication. Any role R will send a message

with type U to all other participants and will receive some value with type

U from all other participants. Since all participants start by first sending a

message to all, no participant will block waiting to receive in the first phase,

so no deadlock occurs.

Rules 6 and 7 are the projection rules for the case that we project onto a

group. We need to check that a group is a subset of the endpoint role Re

with respect to the group declarations in the global protocol. Then the rules

can be understood as Rules 3 and 4.

Range (b) Expression (e) apply(b, e) inv(e)

i:1..N i+1 i:2..N+1 i-1

i:1..3 i*2 i:2,4,6 i/2

i:1..3 i i:1..3 i

i:0..3 1<<i i:1,2,4,8 log(i, 2)

i:1..3 i%2 i:1,0,1 Invalid

Table 4.2.: Examples of apply() and inv().

Rules 8 and 9 show the projection of interaction statements with pa-

rameterised roles using relative indexing (we show only one argument: the

algorithm can be extended easily to multiple arguments using the same

methods). Rule 8 uses two auxiliary transformations of expressions, apply

and inv. Table 4.2 lists their examples. apply takes two arguments, a range

with binding variable (b) and an expression using the binding variable (e).

The expression is applied to both ends of the range to transform the relative

expression into a well defined range. inv calculates the inverse of a given

expression, for example, the inverse of i+1 is i-1 and the inverse of i*2+1

is (i-1)/2. In cases when an inverse expression cannot be derived, such

as i%2, the expression will be calculated by expanding to all values in the

range and instantiating every value bound by its binding variable (e.g. i).

A concrete example is given as follows, to project the statement

U from W[i:1..3] to W[(i+1)%2];

the statement will be expanded to

U from W[1] to W[0];

U from W[2] to W[1];
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U from W[3] to W[0];

before applying the projection rules. In order to perform the range expansion

above, the beginning and the end of the range must be known at projection

time. For this reason, the projection algorithm returns failure if a statement

uses parameterised roles with such expressions and the range of the expres-

sions is defined with arbitrary constants (see Section 4.3.3). Otherwise, the

expressions might expand infinitely and not terminate. This is the only

situation where projection may fail, given a well-formed global protocol. The

condition R[b] ⊆ Re of Rule 9 means the range of b is within the range of

the endpoint role Re. For example, W[i:1..2] ⊆ W[1..3].

If a projection role matches the choice role (R in choice at R) (Rule 10),

then it means a selection statement, whose action is selecting a branching

by sending a label. The child or-blocks (L1. . .LN ) are recursively projected;

whereas if a projection role does not match the choice role (Rule 11), then

the choice statement represents a branch statement, which is the dual of the

selection. For recursion (Rule 12), continue (Rule 13) and foreach (Rule 14)

statements are just kept in the projected endpoint protocol.

4.3.5. Collective Operations

In addition to point-to-point message-passing, collective operations can also

be concisely represented by Pabble. Endpoint message-passing statements

are interpreted differently depending on the declarations (i.e. parameters) in

the global type. Figure 4.3–4.6 lists the four basic messaging patterns and

the interpretations of their projections: point-to-point, scatter (distribution),

gather (collection) and all-to-all (symmetric distribution and collection). As

shown in the Figures, the combination of projected local statements and the

type (i.e. single participant or group role) of the local role being projected are

unique and can identify the communication pattern in the global protocol.

4.3.6. Termination and Correctness of the Projection

The parameterised session theory which Pabble is based on [DYBH12a] has

shown that, in the general case, projection and type checking are undecidable.

Our first challenge for Pabble’s design is to ensure the termination of well-

formed checking and projection, without sacrificing the expressiveness. The

theorems and proofs can be found in this section.
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Point-to-Point
Pabble role declarations:

role A[1..M], role B[1..N]

A1

A2

A3

B1

B2

B3

Pabble statement Projection of A Projection of B

U from A to B; U to B; U from A;

U from A[i] to B[j]; if A[i] U to B[j]; if B[j] U from A[i];

U from A[i:1..N] to B[i+1]; if A[i:1..N] U to B[i+1]; if B[i:2..N+1] U from A[i-1];

Figure 4.3.: Point-to-point communication and Pabble representation.

Scatter pattern
Pabble role declarations:

role A, role B[1..N], group C

A

B[i]
C2

C1

C3

Pabble statement Projection of A/B Projection of C

U from A to C; U to C; if C U from A;

U from B[i] to C; if B[i] U to C; if C U from B[i];

Figure 4.4.: Scatter pattern and Pabble representation.

Gather pattern
Pabble role declarations:

group A, role B, role C[1..N]

B

C[i]
A2

A1

A3

Pabble statement Projection of A Projection of B/C

U from A to B; if A U to B; U from A;

U from A to C[i]; if A U to C[i]; if C[i] U from A;

Figure 4.5.: Gather pattern and Pabble representation.

Theorem 4.1 (Termination) Given global protocol G, the well-formed

checking terminates; and given a well-formed global type G and an endpoint

role Re, projection G on Re always terminates.

Pooof. Given a well-formed global typeG and an endpoint role Re, by case

analysis on each projection rule in Table 4.1:

Case 1. Receive. Trivial because R = Re checking terminates.
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All-to-all pattern
Pabble role declarations:

group A, group B

A1

A2

A3

B1

B2

B3

Pabble statement Projection of A Projection of B

U from A to B; if A U to B; if B U from A;

U from All to All; U to All; U from All; U to All; U from All;

Figure 4.6.: All-to-all pattern and Pabble representation.

Case 2. Send. Trivial because R = Re checking terminates.

Case 3. Param. Receive. Trivial because R ∈ Re checking terminates.

Case 4. Param. Send. Trivial because R ∈ Re checking terminates.

Case 5. All to All. Trivial.

Case 6. Group. There are two sub cases:

1. if Re is an unbounded role, and R is an unbounded role, Given a

well-formed global type, there can only be a single unbounded role, so

R ⊆ Re, otherwise R ( Re then terminate. If R is a bounded role,

R ⊆ Re terminates after iterating through all its members.

2. if Re is a bounded role, R ⊆ Re terminates after iterating through all

members.

Case 7. Group. Terminates as Case 6.

Case 8. Relative Role. There are two sub cases in the condition:

1. if Re is an unbounded role, and R[e] is an unbounded role, Given a

well-formed global type, there can only be a single unbounded role, so

R[e] ⊆ Re, otherwise R[e] ( Re then terminate. If R[e] is a bounded

role, R[e] ⊆ Re terminates after iterating through all its members.

2. if Re is a bounded role, R[e] ⊆ Re terminates after iterating through

all members.

93



The termination of this rule is then ensured by the termination of apply(b,

e) and inv(e). If inv(e) is not defined, we first check e has a finite range

and use Rule 3 and 4 by expanding the interaction statements to all values

in the range (as explained in Section 4.3.4).

Case 9. Relative Role. There are two sub cases in the condition:

1. if Re is an unbounded role, and R[b] is an unbounded role, Given a

well-formed global type, there can only be a single unbounded role, so

R[b] ⊆ Re, otherwise R[b] ( Re then terminate. If R[b] is a bounded

role, R[b] ⊆ Re terminates after iterating through all its members.

2. if Re is a bounded role, R[b] ⊆ Re terminates after iterating through

all members.

Case 10. Choice Sender. If Re is a single participant, R = Re checking

terminates. If Re is a parameterised role, R ∈ Re checking terminates. Given

a well-formed protocol, the projection of Gi∈{1..N} to Li∈{1..N} terminates,

hence this rule terminates.

Case 11. Choice Receiver. Given a well-formed protocol, the projection

of Gi∈{1..N} to Li∈{1..N} terminates, hence this rule terminates.

Case 12. Recursion. Given a well-formed protocol, the projection of G

to L terminates, hence this rule terminates.

Case 13. Continue. Trivial.

Case 14. Foreach. Given a well-formed protocol, the projection ofG to

L terminates, hence this rule terminates.

Case 15. Allreduce. Trivial.

By the definition of the well-formedness conditions in Section 4.3.3 and

4.3.2, if a free variable appears in the range position, it is bound by either

for-loops or the sender role in the interaction statement. In the case of the

for-loop, we can apply the same reduction rules of the for-loop of the global

types and apply the equality rules in [DYBH12a, Figure 15]. Hence one

94



can check, given Re and R, all of the conditions (in the second column) in

Table 4.1 are decidable. For the projection, the only non-trivial projection

rule is Rule 8. Hence the projection algorithm always terminates. �

Note that the above theorem implies the termination of type checking (see

Theorem 4.4 in [DYBH12a]).

Theorem 4.2 (Range) The indices of roles appearing in a local protocol

body do not exceed the lower and upper bounds stated in the global protocol

ProtocolName(para) in global protocol ProtocolName(para){ G } or

the constant declarations (const N = n..m;).

Pooof.

� If the range of indices of roles relies on case (1) of Section 4.3.3

(i.e. single numeric value), the constant will be within bounds in the

local protocol as it appears in the global protocol, ensured by each

condition in the projection algorithm in Table 4.1 which checks whether

the roles conform to the bounds in the global protocol.

� If the range of indices of roles relies on case (2) Section 4.3.3 (i.e. lower

and upper bounds not involving the max keyword), the correctness

is ensured by the constraints of integer linear programming from the

well-formedness conditions.

�

4.3.7. Correctness of projection

The theorems above states the termination of the projection algorithm and

the correctness of ranges. We discuss the correctness of the projection

algorithm below, by analysing each rule in Table 4.1. We either correspond

each of our rules with existing theory which is proven correct or give an

argument as to why the projection is correct.

Case 1. Receive. This corresponds to the standard receive in the MPST.

Case 2. Send. This corresponds to the standard send in the MPST.
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Case 3. Param. Receive. Parameterised participants are treated as

ordinary participants, so this corresponds to the standard receive in the

MPST.

Case 4. Param. Send. Parameterised participants are treated as ordi-

nary participants, so this corresponds to the standard send in the MPST.

Case 5. All to All. Suppose there is only 1 participant, i.e. All = {
P1 }. U from All to All; is equivalent to U from P1 to P1; This is

a special case of the first case of the first rule in [DYBH12a, Figure 10],

where the sender is also the receiver. Hence it is projected asU to P1; U

from P1;. Since all participants (i.e. P1 only) follow the above endpoint

type, it is equivalent to U to All; U from All;). Suppose there are more

than 1 participants, i.e. All = { P1, . . . , Pn }. U from All to All; is

equivalent to U from P1 to P1; U from P1 to P2; ... U from P1 to

Pn; . . .U from Pn to P1; U from Pn to P2; ... U from Pn to Pn

;. Following the projection rules above and project for the endpoint role

All (i.e. P1, ..., Pn), we obtain for each endpoint:

P1 U to P1; U from P1; U to P2; ... U to Pn; U from P2; ...

Pi . . .
Pn U from P1; U from P2; ... U to Pn; U from Pn;

We apply the asynchronous subtyping rules in [MYH09] to reorder the

interactions for each endpoint such that all endpoints interact with the same

participant. For example,

P1 U to P1; U to P2; ... U to Pn; U from P1; ... U from Pn;
Pi . . .
Pn U to P1; U to P2; ... U to Pn; U from P1; ... U from Pn;

Since the ordering of self-interaction (e.g. U to P1; U from P1;) cannot

be permuted, the only ordering we can obtain for all participants is U to P1;

U to P2; ... U to Pn; U from P1; U from P2; ... U from Pn;, which

is equivalent to U to All; U from All;. Similar reasoning extends to

protocols with unbounded roles, hence the projection rule is correct.

Case 6. Group. The correctness of projection is ensured by the projection

rule 5, 6 (projection of a quantified global type) of [DY11, Figure 5], but
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instead of applying on a single role, apply on all members of group R.

Case 7. Group. The correctness of projection is ensured by the projection

rule 5, 6 (projection of a quantified global type) of [DY11, Figure 5], but

instead of applying on a single role, apply on all members of group R.

Case 8. Relative Role. A relative role statement U from R′[b] to

R[e]; can be expanded to multiple interaction statements. Suppose b is

defined to be the range from i to j and e is defined to be a function f(). The

statement is expanded to U from R′[i] to R[f(i)]; U from R′[i+ 1]

to R[f(i+ 1)]; . . .U from R′[j] to R[f(j)];. By applying Rule 3, 4

with the definition of inv() (which defines the inverse of f)2, correctness is

ensured by Rule 3 and 4.

Case 9. Relative Role. Similar to Case 8, a relative role statement is ex-

panded and the correctness is ensured by Rule 3, 4, but more straightforward

since inv() is not involved in the projection.

Case 10. Choice Sender. The correctness of this projection rule is

ensured by rule 2, case 1 (projection of branching global type to selection

endpoint type) in [DYBH12a, Figure 10].

Case 11. Choice Receiver. The correctness of this projection rule is

ensured by rule 2, case 2 (projection of branching global type to branching

endpoint type) in [DYBH12a, Figure 10].

Case 12. Recursion. The correctness of this projection rule is ensured

by rule 4 (projection of recursion) in [DYBH12a, Figure 10].

Case 13. Continue. The correctness of this projection rule is ensured by

rule 5 (projection of type variable) in [DYBH12a, Figure 10].

Case 14. Foreach. To show the correctness of foreach we can apply

same reduction rules of the for-loop of the global types and apply the equality

rules in [DYBH12a, Figure 15].

2As explained in Section 4.3.4, projection will fail if the inverse cannot be derived.
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Case 15. All reduce. The allreduce primitive encapsulates the pattern

of simultaneous all to all and reduction. The collective reduction involves all

roles, but cannot be decomposed to individual send and receive as with Rule

5 (All to All) due to the reduction computation. Hence the local protocol

of allreduce is defined as the same as its global protocol as an atomic

operation. Its correctness is ensured by the definition.

4.4. Pabble Examples

In Section 4.3.4 we describe how to obtain a local Pabble protocol by projec-

tion from a Pabble protocol. The local protocol can then be used as a blueprint

to implement parallel programs. In this section we run through two examples

of local protocol projection, using a Ring protocol in Section 4.4.1 and a

ScatterGather protocol in Section 4.4.2, showing projection of protocols

involving point-to-point and multicast collective applications respectively.

Then we present Pabble use cases in Web services in Section 4.4.3 and

Remote Procedure Call (RPC) composition in Section 4.4.4, showing the

capabilities of Pabble as a general-purpose parameterised protocol description

language.

Finally we show an implementation of a parallel linear equation solver

(Section 4.4.5) in MPI following a wraparound mesh protocol designed in

Pabble, demonstrating how Pabble can be used in practical programming.

Additional Pabble examples from the Dwarfs [AWW+09] are presented in

the next chapter.

4.4.1. Projection Example: Ring Protocol

We now run through the projection of the Ring protocol in Section 4.1 as an

example. Local protocols are generated from the global protocols. From the

perspective of a projection tool, to write a protocol for an endpoint, we start

with local protocol followed by the name of the protocol and the endpoint

role it is projected for. Since the only role of the Ring protocol is Worker

which is a parameterised role, we use the full definition of the parameterised

role, Worker[1..N]. Then we list the roles used in the protocol inside a pair

of parentheses, similar to function arguments in a function definition in C.

Note that if the projection role is in the list, we exclude it because the local
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protocol itself is in the perspective of that role; however, since parameterised

roles can be used on multiple endpoint roles, we allow parameterised roles

to appear in the list of roles in the protocol. The first line of the projected

protocol is thus given as follows:

1 local protocol Ring at Worker[1..N](role Worker[1..N])

We then copy the recursion statement to the local protocol, which will be

present in all projected protocols.

2 rec LOOP {

Next, we take the first interaction statement from Ring protocol and

project it with respect to Worker, applying the rules listed in Table 4.1. As

the first statement involves a parameterised destination role, we apply Rule

7 to extract the receive portion of the interaction statement. The apply()

function is applied to i:1..N-1 and the relative expression i+1 to obtain

2..N for the role condition. The inv() of relative expression i+1 is i-1,

which will form the index of the sender role.

3 if Worker[i:2..N] Data(int) from Worker[i-1] ;

Since Worker also matches the source parameterised role, Rule 8 is applied

to get the send portion of the interaction statement.

4 if Worker[i:1..N-1] Data(int) to Worker[i+1];

Then we move on to the second statement of the global protocol, which is Data

(int)from Worker[N] to Worker[1];. Similar to the previous statement,

we apply Rule 3 and Rule 4 to obtain the respective receive and send

statements in the local protocol.

5 if Worker[1] Data(int) from Worker[N];

6 if Worker[N] Data(int) to Worker[1];

Finally we apply Rule 13 to trivially copy the continue statement to the

local protocol.

7 continue LOOP; }

The resulting local protocol is shown in Section 4.1.

4.4.2. Projection Example: ScatterGather Protocol

The following example shows another parameterised protocol, which repre-

sents the scatter-gather pattern of work distribution and reduction. This
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example uses a common parallel programming idiom, collective operations.

In contrast to the previous example, there is more than one declared role in

the protocol, and one of the roles is an ordinary non-parameterised role.

1 global protocol ScatterGather(role Master, role Worker[1..N], group Workers={

Worker[1..N]}){

2 Scatter(int) from Master to Workers;

3 Gather(int) from Workers to Master;

4 }

Listing 4.1: ScatterGather global protocol.

In this protocol, the statements involve two roles, one of which is an

ordinary role Master (in the sense that it is non-parameterised), and the

other is a parameterised role Worker[i:1..N]. The Worker parameterised

role represents a group of related roles, but does not expand to multiple

explicit message-passing statements. We further declare a group role Workers

which include all the Worker roles as members. The statement in Line 2

is a scatter operation by which the Master distributes a message of type

Scatter(int) to each of the named endpoints in Workers group, Worker[1]

to Worker[N]. The statement in Line 3 is a gather operation, the reverse of

the scatter, which the Master role collects messages of type Gather(int)

from the members of the Workers group. Figure 4.7 depicts the interactions

in the protocol.

Listing 4.2 shows the local protocol of ScatterGather at the Master role.

Since Master is a non-parametric participant, Rule 2 and 1 are applied

to get Line 2 and 3 respectively. This results in a protocol body without

conditional interactions.

1 local protocol ScatterGather at Master(role Master, role Worker[1..N], group

Workers={Worker[1..N]}) {

2 Scatter(int) to Workers;

3 Gather(int) from Workers;

4 }

Listing 4.2: Master endpoint from ScatterGather protocol.

The local protocol of Worker for ScatterGather is similarly derived by

applying the projection rules. Since Workers is a group role and a subset of

Worker[1..N], Rule 6 and 7 are applied to get Line 2 and 3.

1 local protocol ScatterGather at Worker[1..N](role Master, role Worker[1..N],

group Workers={Worker[1..N]}) {

2 if Workers Scatter(int) from Master;

3 if Workers Gather(int) to Master;
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4 }

Listing 4.3: Worker endpoint from ScatterGather protocol.

Worker[. . . ]

Worker[1]

Worker[N]

Workers

Master
Map

MasterReduce

Figure 4.7.: Topology of the ScatterGather protocol.

4.4.3. Use Case: Web Services

Pabble is inspired by applications in the domain of parallel programming, but

the parametric nature of Pabble as a protocol language allows us to express

interactions with more flexibility while keeping the protocols succinct.

Quote-Request protocol specification (C-UC-002) is the most complex

use case in [WSC] published by W3C Web Services Choreography Working

Group [CDL].

1 global protocol WebService (role Buyer, role Supplier[1..S], role Manufacturer

[1..M]) {

2 Quote() from Buyer to Supplier[1..S];

3 rec RENEGOTIATE_MANUFACTURER {

4 foreach (j:1..M) {

5 Item() from Supplier[i:1..S] to Manufacturer[j];

6 Quote() from Manufacturer[j] to Supplier[1..S];

7 }

8 // Gather

9 Quote() from Supplier[1..S] to Buyer;

10 foreach (i:1..S) { // (3)

11 rec RETRY_NEGOTIATION {

12 choice at Buyer {

13 // Buyer accepts quote and place orders (4a)

14 ok() from Buyer to Supplier[i];

15 } or {

16 // Buyer modifies quotes and send back to supplier (4b)

17 modify(Quote) from Buyer to Supplier[i];

18 choice at Supplier[i] {

19 // Supplier agrees
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20 // to modified quote (5a)

21 ok() from Supplier[i] to Buyer;

22 } or {

23 // Supplier modifies quote again (5b)

24 retry(Quote) from Supplier[i] to Buyer;

25 // Retry Supplier[i]-Buyer negotiation

26 continue RETRY_NEGOTIATION;

27 } or {

28 // Reject (5c)

29 reject() from Supplier[i] to Buyer;

30 } or {

31 // Supplier renegotiate with Manufacturers for quote (5d)

32 renegotiate() from Supplier[i] to Buyer;

33 continue RENEGOTIATE_MANUFACTURER;

34 }

35 }

36 } // Try NEXTSUPPLIER

37 }

38 } }

Listing 4.4: Pabble Example: Web Services Use Case

1 local protocol WebService at Buyer (role Supplier[1..S], role Manufacturer[1..M

]) {

2 Quote() to Supplier[1..S];

3 rec RENEGOTIATE_MANUFACTURER {

4 Quote() from Supplier[1..S];

5 foreach (i:1..S) {

6 rec RETRY_NEGOTIATION {

7 choice at Buyer {

8 ok() to Supplier[i];

9 } or {

10 modify(quoteType) to Supplier[i];

11 choice at Supplier[i] {

12 ok() from Supplier[i];

13 } or {

14 retry(quoteType) from Supplier[i];

15 continue RETRY_NEGOTIATION;

16 } or {

17 reject() from Supplier[i];

18 } or {

19 renegotiate() from Supplier[i];

20 continue RENEGOTIATE_MANUFACTURER;

21 }

22 } // choice at Buyer

23 }

24 }

25 } }

Listing 4.5: Pabble Example: Buyer Endpoint of Web Service Use Case.
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Buyer

Supplier[S]

.
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.

Supplier[2]

Supplier[1]

Manufacturer[M]

.

.

.

Manufacturer[2]

Manufacturer[1]

Figure 4.8.: Web Services Quote-Request interaction.

It describes the interaction between a buyer who interacts with multiple

suppliers who in turn interact with multiple manufacturers in order to get a

quote for some goods or services.

The basic steps of the interaction is as follows:

1. A buyer requests a quote from a set of suppliers

2. All suppliers forward the quote request of the items to their manufac-

turers

3. The suppliers interact with their manufacturers to build the quotes

for the buyer, which is then sent back to the buyer

4. a) Either the buyer agrees with the quotes and place the orders

b) Or the buyer modify the quote and send back to the suppliers

5. In the case the supplier received an updated quote request (4b)

a) Either the supplier responds to updated quote request by agreeing

to it and sending a confirmation message back to buyer

b) Or the supplier responds to the updated quote request by modi-

fying it and sending back to buyer and the buyer goes back to

step 4

c) Or the supplier responds to the updated quote request by rejecting

it

d) Or the supplier renegotiates with the manufacturers, in which

case we return to step 3

Figure 4.8 shows the interactions between different components in the

Quote-Request use case. We set the generic number S for Suppliers and M for
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Manufacturers. The interactions are described as a Pabble global protocol in

Listing 4.4.

In the protocol, we omitted the implicit requestIdType from the payload

type in all of the messages which keeps track of states of each role in

the stateless web transport. The Buyer initiates the quote request on

Line 2, when it broadcasts a Quote() message to all Suppliers. Then on

Line 4–7 each of the Supps forward the quote requests to their respective

Manufacturers, and get a reply from each of them by a series of gather and

scatter interactions. Next, the Suppliers reply to the Buyer on Line 9, and

the Buyer then decides between accepting the offer straight away (Line 14,

outcome 4a), or sending a modified quote request (Line 17, outcome 4b). If

a Supp received a modified quote, it decides between accepting the modified

quote (Line 21, outcome 5a), rejecting the modified quote straight away

(Line 29, outcome 5c) or modifying the quote and renegotiating with Buyer

(Line 24, outcome 5b). It is also possible that the Supplier renegotiates

with its Manufacturers again, so it notifies the Buyer and returns back to

the initial negotiation phase (Line 32, outcome 5d). The projected endpoint

protocol for Buyer is Listing 4.5.

4.4.4. Use Case: RPC Composition

We present a use case from the Ocean Observatories Initiative project

[OOI]. The use case describes a high-level Remote Procedure Call (RPC)

request/response protocol between layers of proxy services. An application

sends a request to a high-level service, and the service is expected to reply to

the application with a result. If the service does not provide the requested

service, then this high-level service will issue a request to a lower level service

which can process the request. This request-response protocol is chained

between services in each level until a low-level service is reached.

Figure 4.9 describes the chaining of RPC-style request/response protocol.

A request is routed to the most relevant service provider through multiple

proxy services, hidden from higher level services. The request routes through

a multi-hop path from the requester to the resources. The reply is routed in

reverse through the same participant proxy services back to the requester.

We represent this series of interactions using a Pabble protocol outlined

below. The set of participants, Service[1..N], represents a proxy service

104



Service 1
Proxy
Service 2

Proxy
Service i Service N

Figure 4.9.: RPC request/response chaining.

in each of the levels. Service[1] is the requester and Service[N] is the

actual service provider. A Request() message is sent from a Service to the

Service in the level directly below, until it reached Service[N] which will

process the request and reply to the higher level service with a Response().

Using a foreach loop with decrementing indices, the Response() is cascaded

to the originating service, Service[1]. The Pabble protocol is shown in

Listing 4.6.

1 global protocol RPCChaining(role Service[1..N]) {

2 foreach (i:1..N-1) {

3 Request() from Service[i] to Service[i+1];

4 }

5 // Request() processed by Service[N] to give Response()

6 foreach (i:N..2) {

7 Response() from Service[i] to Service[i-1];

8 }

9 }

Listing 4.6: Pabble Example: RPC request/response chaining

As the request and response phase are symmetric and involve the same

participants, we are able to compact the multi-layer protocol to only using

two foreach loops, each with one parameterised interaction statement. N can

be an arbitrary constant to allow maximum flexibility in the protocol. This

simple and concise representation of thep complex RPC chaining protocol is

possible because of the index notation in Pabble.

4.4.5. Implementation Example: Linear Equation Solver

Listing 4.9 shows an example implementation outline for a linear equation

solver using a wraparound mesh, which follows the Pabble protocol in List-

ing 4.7. The topology is illustrated in Figure 4.10, and is similar to the

non-parametric version presented in Section 3.4.2 The example is given
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in Message-Passing Interface (MPI), the standardised API for developing

message-passing applications in parallel computing.

1 global protocol Solver(role W[1..N][1..N], group Col={W[1..N][1]}) {

2 rec CONVERGE {

3 Ring(double) from W[i:1..N][j:1..N-1] to W[i][j+1];

4 Ring(double) from W[i:1..N][N] to W[i][1];

5

6 // Vertical propagation - Group-to-Group

7 (double) from Col to Col;

8 continue CONVERGE;

9 }

10 }

Listing 4.7: Pabble Example: Linear Equation Solver.

The protocol above describes a wraparound mesh that performs a ring

propagation between W (for worker) in the same row (Line 3–4), and the

result of each W row is distributed to all Ws in the first column (i.e. W[*][1])

using a group-to-group distribution on Line 7. The global protocol is then

automatically projected into its local protocol shown in Listing 4.8 below.

Developers can then implement the application using its local protocol as a

guide.

1 local protocol Solver at W(role W[1..N][1..N], group Col={ W[1..N][1] }) {

2 rec CONVERGE {

3 if W[i:1..N][j:2..N] Ring(double) from W[i][j-1];

4 if W[i:1..N][j:1..N-1] Ring(double) to W[i][j+1];

5 if W[i:1..N][1] Ring(double) from W[i][N];

6 if W[i:1..N][N] Ring(double) to W[i][1];

7

8 // Vertical propagation - Group-to-Group

9 if Col (double) from Col;

10 if Col (double) to Col;

11 continue CONVERGE;

12 }

13 }

Listing 4.8: Pabble Example: Linear Equation Solver local protocol.

Note the similarity of the local protocol and the structure of the MPI

implementation in Listing 4.9. In particular, the conditional send and receive

in MPI can directly correspond to the role conditions in the local protocol

which was derived from the global protocol by projection.

1 MPI_Init(&argc, &argv); // Start of protocol

2 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Process ID

3 MPI_Comm_size(MPI_COMM_WORLD, &size); // # of Process

4 MPI_Comm Col; int N = (int)sqrt(size);
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W[1][1] W[1][2] W[1][N]

W[2][1] W[2][2] W[2][N]

W[N][1] W[N][2] W[N][N]

Figure 4.10.: N2-node wraparound mesh topology.

5 ...

6 /* Calculate condition for W[i:1..N][j:2..N] */

7 if (2 <= rank%N+1 && rank%N+1 <= N)

8 MPI_Recv(buf, cnt, MPI_DOUBLE, rank-1/*W[i][j-1]*/, Ring, MPI_COMM_WORLD);

9 /* Calculate condition for W[i:1..N][j:1..N-1] */

10 if (1 <= rank%N+1 && rank%N+1 <= N-1)

11 MPI_Send(buf, cnt, MPI_DOUBLE, rank+1/*W[i][j+1]*/, Ring, MPI_COMM_WORLD);

12 /* Calculate condition for W[i:2..N][j:1..N] */

13 if (2 <= rank/N+1 && rank/N+1 <= N)

14 MPI_Send(buf, cnt, MPI_DOUBLE, rank-N*1/*W[i-1][j]*/, Ring, MPI_COMM_WORLD);

15 /* Calculate condition for W[i:1..N-1][j:1..N] */

16 if (1 <= rank/N+1 && rank/N+1 <= N-1)

17 MPI_Send(buf, cnt, MPI_DOUBLE, rank+N*1/*W[i+1][j]*/, Ring, MPI_COMM_WORLD);

18

19 /* Distribute vertically: Group-to-Group on ’Col’ group communicator */

20 if (rank%N+1 == 1)

21 MPI_Allgather(buf_col, cnt_col, MPI_DOUBLE,

22 buf_col, cnt_col, MPI_DOUBLE, Col);

23 ...

24 MPI_Finalize(); // End of protocol

Listing 4.9: MPI implementation for Solver protocol

4.5. Summary and Discussion

In this chapter we presented Pabble, a parameterised protocol description

language based on Scribble and parameterised MPST. We show that the

language is able to capture communication patterns that can scale over

the number of participants in a compact and concise syntax. Despite

the undecidability in its underlying parameterised MPST theory, Pabble

overcomes the shortcoming of the theory by using integer indices which

also add practicality to the language. We developed theory and a tool
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to ensure that Pabble protocols are safe even when they scale up to an

unbounded number of processes. We conclude the chapter by demonstrating

the expressiveness of Pabble through a number of examples which would

be difficult to recreate in Scribble, and that Pabble is a suitable protocol

abstraction for practical and scalable parallel applications.

As Pabble is derived from the static typing system of parameterised MPST,

there are certain limitations as to what Pabble protocols can express. As with

Scribble used in Session C, Pabble cannot express data-defined communication

structures – communication structures that are defined by data available

at runtime. Another pattern that Pabble cannot effectively express is data-

dependent structures. The most common example is loops written with

rec, where the loop conditions are dependent on input data, and do not

guarantee that loops across endpoints defined in the same rec in the global

protocol terminate together. However, rec can represent the structure of

communication (i.e. iteration), which is important for specifying structured

protocols.

Recall that in the previous chapter we mentioned in Session C, for each

endpoint protocol, a separate endpoint has to be implemented. With Pabble,

these endpoint protocols are grouped into a single parameterised endpoint,

and we need to associate these parameterised endpoints with implementation.

In the next chapter, we discuss how we can tackle this with case studies to

show how our proposed Pabble-based approaches work.
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5 Scalable High-performance Ses-

sion Programming

Overview This chapter presents a number of case studies of using Pabble

for describing scalable communication protocols for parallel programming. The

case studies show that Pabble protocols are sufficiently expressive to represent

core patterns of parallel programming described as Dwarfs [AWW+09]. We

compare implementations of the scalable Pabble protocols based on Session

C and MPI, results show that using MPI as a target runtime for scalable

application performs and scales better than the Session C runtime, and hence

motivates the use of MPI as standard session communication primitives for

parallel programming in the next chapter.

5.1. Introduction

This thesis focuses on applying the theory of Session Types, which can auto-

matically ensure deadlock-freedom and communication-safety, i.e. matching

communication pairs, for message-passing parallel programs. There are two

general approaches to applying Session Types to parallel programming: type

checking and code generation.

In Chapter 3 we have presented a session-based programming framework

Session C which uses the type checking approach. However, since Session

C uses Scribble to specify protocols, Session C applications are difficult to

scale. In Chapter 4 we presented a parametric extension of the Scribble

language, called Pabble, which addresses this limitation. We have a choice

of type checking parameterised parallel programs with Pabble, or generate

safe parallel programs from Pabble. In both cases, given Pabble, as a new
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way of modelling scalable parallel programs, we need a runtime or a set of

programming primitives that are more suitable to be use in conjunction with

Pabble.

In this chapter, we present a number of case studies representing core

patterns of parallel programming from Dwarfs [AWW+09]. We aim to demon-

strate how our protocols can help abstract core communication patterns of

parallel programming, and how they can be implemented. We also present

an analysis of runtime, comparing Session C runtime and MPI, and discuss

which is more suitable for scalable session-based parallel programming.

5.2. Case Studies

This section presents case studies of using Scribble protocols in parallel pro-

gramming. All of these examples are representative patterns from common

parallel patterns known as Dwarfs [AWW+09]. The Dwarf evaluation met-

ric was proposed as a collection of high-level, core parallel communication

patterns from important scientific and engineering methods. Each of these

patterns is called a Dwarf, which represents one category of patterns and

covers a broad range of concrete algorithm implementations. Dwarfs are

used to evaluate our session-based protocol language and our programming

methodology because they are not language or optimisation specific, being

able to express the Dwarfs confirms that our approach is general enough to

be extended to more practical use cases.

We have chosen N-body simulation, an example of particle methods dwarf,

dense matrix-vector multiplication, a dense linear algebra dwarf, and sparse

matrix-vector multiplication, a sparse linear algebra dwarf, to show how

Scribble and MPI can be used together for parallel programming from either

of our two session-based approaches.

5.2.1. N-body Simulation

We implemented a 2-dimension N-body simulation using a ring topology,

using the parameterised Ring protocol in Section 4.1.

Using the local Ring protocol projected with respect to Worker, we may

implement the parallel program in MPI as shown in Listing 5.1.

1 // Protocol defines Worker[1..N]

2 // MPI ranks are 0-based and maps to 0..N-1
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3 while (i++<n) {

4 if (1<=rank && rank<=N-1) MPI_Recv(rbuf, count, rank-1, MPI_INT, ..);

5 // (Sub-compute) Send received data to process ..

6 if (0<=rank && rank<=N-2) MPI_Send(sbuf, count, rank+1, MPI_INT, ..);

7 if (rank==0) MPI_Recv(rbuf, count, N-1, MPI_INT, ..);

8 // (Sub-compute) Send received data to process ..

9 if (rank==N-1) MPI_Send(sbuf, count, 0, MPI_INT, ..); }

10 // Perform global update after round

Listing 5.1: MPI implementation of Worker endpoint.

In MPI, all processes share the same source code and compiled program

file, and they are only distinguished at runtime by their assigned process id.

The process id is stored in the rank variable, and is available throughout

the program to calculate participants addresses. In the above MPI code,

MPI_Send and MPI_Recv are the primitives in the MPI library to send and

receive data, and all the lines are guarded by a rank check. The variables

sbuf and rbuf stand for send buffer and receive buffer respectively, and

count is the number of elements to send/receive (i.e. array size); MPI_INT is

an MPI defined macro to indicate the data being sent/received is of type

int.

The ring topology above is a simple yet powerful topology to distribute

data between multiple participants in small chunks. This allows more

sub-computation and will potentially allow more overlapping between com-

munication and computation.

A Scribble protocol contains the interaction patterns (i.e. the session typing)

for a set of participants. It contains sufficient information to generate the

MPI code shown above.

5.2.2. K-means clustering

K-means clustering is an algorithm for grouping a set of objects into k

clusters. Initially, k centres of clusters are chosen randomly. Each object will

be assigned to a cluster based on their proximity to the nearest centre. After

each iteration of the assignment, the centre of the clusters will be recalculated

by taking the mean of all objects belonging to that cluster. The whole process

will be repeated until the clusters stabilise or reach a pre-determined number

of iteration steps. In our implementation, the assignment is parallelised and

computed in parallel, and the resulting clusters are distributed between all

participants, so that the centres of the clusters can be calculated on each of
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the participants for the next iteration.

Below is the protocol specification of one of our participants, Master, of

our K-means clustering implementation.

1 protocol Kmeans at Master(role Worker[1..3], group Workers={Workers[1..3]}) {

2 rec STEP {

3 // Multicast to Worker[1], Worker[2], Worker[3]

4 distribute(int) to Workers;

5 // Multi-receive from Worker[1] Worker[2] Worker[3]

6 gather(int) from Workers;

7 continue STEP;

8 }

9 }

Listing 5.2: Protocol of the K-means clustering

The protocol above is a modified ScatterGather protocol in Section 4.4.2,

where N is 3 and Kmeans protocol has an extra outer loop.

The implementation of the algorithm in MPI and Session C is listed below:

1 // Master role.

2 for (int i=0; i<STEPS; i++) {

3 kmeans_compute(range_start, range_end);

4 // Multicast to Worker1 Worker2 Worker3

5 msend_int(centres_master, chunk_sz, 3, Worker1, Worker2, Worker3);

6

7 // ... Update centres with local results

8

9 // Multi-receive from Worker1, Worker2, Worker3

10 mrecv_int(centres_wkr, &sz, 3, Worker1, Worker2, Worker3);

11

12 // ... Update centres with remote results

13 }

Listing 5.3: Implementation of K-means clustering with Session C.

In the code above, msend_int and mrecv_int are the variadic primitives

for multicast send and multi-receive respectively from the Session C runtime

library. The first parameter is the pointer to the data to be sent, followed

by the size of the data and the total number of participants to be sent to

or received from. Worker1, Worker2, Worker3 are the participant identifiers

which this participant is communicating with. The variable chunk_sz holds

the size of the partition to be msend to each participant; and sz will contain

the total number of bytes received by mrecv.

The scatter-gather pattern utilised by the above distributes the local results

of partitioned computation to other Workers, then receives the results from
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them. At the end of the loop, all participants in the computation will have

the complete set of centres from all other participants.

1 #define MASTER 0 // Master has MPI rank 0

2 for (int i=0; i<STEPS; i++) {

3 kmeans_compute_fpga(range_start, range_end);

4 MPI_Scatter(centres_master, chunk_sz, MPI_INT, centres, chunk_sz, MASTER,

MPI_COMM_WORLD);

5 MPI_Gather(centres, chunk_sz, MPI_INT, centres_master, chunk_sz, MASTER,

MPI_COMM_WORLD);

6 }

Listing 5.4: Implementation of K-means clustering with MPI.

The MPI version of the code (Listing 5.4) makes use of the MPI collective

operation primitives MPI_Scatter and MPI_Gather which are for scatter

and gather operations respectively. On the other hand, the asynchronous

communication primitives of Session C allows a partial overlap of communi-

cations with the process of updating centres to reduce the execution time.

This fine grained control is backed by the session type checking process,

ensuring the communications with a partial overlap are deadlock-free.

5.2.3. Dense matrix-vector multiplication

Dense matrix-vector multiplication takes a M × N matrix and multiply

it by a N dimensional vector to get a N dimensional vector result. The

multiplication can be parallelised by partitioning the input matrix to N

segments by row-wise block striping shown in Figure 5.1 and distributed to

N processes. Each process gets a copy of the vector, and each element in

the vector can be calculated by the processes in parallel.

Listing 5.5 shows a protocol for our dense matrix-vector multiplication.

The Worker[0] is the coordinator which distributes the partitions to each

Worker. The primitive foreach (i:1..N){ } is a foreach-loop, which iter-

ates from 1 to N using the index variable i. Inside the foreach, Worker[0]

sends the offset and length of the partitions to each Worker (Line 4 and

5) respectively, followed by the actual matrix elements (Line 6). Vector B,

which is of size N , is broadcasted to all processes by the coordinator on

Line 9. Finally, the results of each Worker are gathered by the coordinator

and combined to get the result of the matrix multiplication (Line 14).

1 global protocol DenseMatVec(role Worker[0..N]){

2 // Scatter Matrix A
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A1 Worker[1]

A2 Worker[2]
...

AN−1 Worker[N-1]

AN Worker[N]

× B =

C1

C2

...

CN−1
CN

Figure 5.1.: Partitioning of input matrix.

3 foreach (i:1..N) {

4 LBound(int) from Worker[0] to Worker[i];

5 UBound(int) from Worker[0] to Worker[i];

6 Data(double) from Worker[0] to Worker[i];

7 }

8 // Scatter Vector B

9 (double) from Worker[0] to Worker[1..N];

10

11 // --- Perform calculation ---

12

13 // Gather data

14 (double) from Worker[1..N] to Worker[0];

15 }

Listing 5.5: Global protocol of dense matrix-vector multiplication.

An MPI implementation following the above protocol has the code struc-

ture shown below. In the initial phase of the calculation, the coordinator,

the process of rank 0 (Line 5–17), uses a for loop to iterate through the

worker process ids (processes with ranks above 0, up to the total number

of processes size) and calculates the lbound and ubound for each of the

participants, where lbound is the first row of the partition, and ubound is

the last. The partition is then sent to the correspondingWorker[i]. Other

Worker processes receive the values and store locally.

This is followed by a broadcast on Line 25 using an MPI_Bcast with root

Worker[0] for the workers to receive the input vector. A partial result, C, is

then calculated on each worker, and the result collected by the coordinator

using MPI_Gather. MPI_Gather collects the partial results, then combines

them in the Result N dimensional array.

The implementation shows how our session protocol descriptions can also

correspond to collective operations, such as (double) from Worker[0]

to Worker[1..N] and MPI_Bcast, or (double) from Worker[1..N] to

Worker[0] and MPI_Gather.
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1 double A[A_ROWS][A_COLS]; // Matrix A

2 double B[B_COLS]; // Vector B

3 double C[B_COLS]; // Partial result

4 ...

5 if (rank == 0) {

6 for (i = 1; i < size; i++) { // Calculate then send to each Worker

7 // Calculate LowerBound and UpperBound for each Worker

8 lbound = (i - 1) * partition_size;

9 ubound = lbound + partion_size;

10

11 MPI_Send(&lbound, 1, MPI_INT, Worker[i], LBound, ...);

12 MPI_Send(&ubound, 1, MPI_INT, Worker[i], UBound, ...);

13

14 // Send partition of matrix A

15 MPI_Send(&A[lbound][0], (ubound-lbound) * A_COLS, MPI_DOUBLE, Worker[i],

Data, ...);

16 }

17 } else if (rank > 0) { // Workers, receiving work

18 MPI_Recv(&lbound, 1, MPI_INT, Worker[0], LBound, ...);

19 MPI_Recv(&ubound, 1, MPI_INT, Worker[0], UBound, ...);

20

21 MPI_Recv(&A[lbound][0], (ubound-lbound) * A_COLS, MPI_DOUBLE, Worker[0], Data,

...);

22 }

23

24 // All Workers receive the vector B

25 MPI_Bcast(&B, B_ROWS, MPI_DOUBLE, Worker[0], ...);

26 ...

27 // Calculate matrix multiplication

28 mat_vec_mul(A, B, lbound, ubound, C);

29 ...

30 // ... Gather results to Worker[0] ...

31 MPI_Gather(C, 1, MPI_DOUBLE, Result, 1, MPI_DOUBLE, Worker[0], ...);

Listing 5.6: MPI implementation of dense matrix-vector multiplication.

5.2.4. Sparse matrix-vector multiplication

Finally we show an implementation of a direct sparse matrix-vector multi-

plication. Sparse matrices are often used for data representation that are

too large to fit in memory as an array, but the content is sparse and can

be efficiently compressed to a more compact format. Our implementation

uses a M ×N sparse matrix input stored in a compressed sparse row (CSR)

format, where the data are represented by three arrays.

� vals: a contiguous array containing all values of the sparse matrix

in a left-to-right, top-to-bottom order. This compact storage of the
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matrix skips all empty (or zero) cells in the matrix and only contains

cells with a value.

� row ptr: an array containing indices for the vals array, each element

contains the accumulated total of elements in each row. For example,

[1, 3, 4, 8]means that row 0 has 1 element, row 1 has 2 elements,

row 2 has 1 element and row 3 has 4 elements. This array has the

same size as the total number of rows.

� col ind: the column indices for each of the values in vals. This array

has the same size as vals.

The three arrays combined are sufficient to represent a sparse matrix, or

a partition of the sparse matrix.

The protocol to perform a sparse matrix-vector multiplication is shown in

Listing 5.7. In the protocol, the partitioned matrix rows in CSR format are

sent to each worker as separate row, col and values arrays (Line 3, 4 and

5). The N dimensional vector is then sent to all workers. The results of the

calculation by each Worker are sent back to Worker[0] (Line 8).

1 global protocol SparseMatVec(role PE[0..N]) {

2 /* Distribute data */

3 (int) from W[0] to W[1..N]; // row_ptr

4 (int) from W[0] to W[1..N]; // col_ind

5 (double) from W[0] to W[1..N]; // vals

6 (double) from W[0] to W[1..N]; // vector

7 /* Output vector */

8 (double) from W[1..N] to W[0];

9 }

Listing 5.7: Global protocol of sparse matrix-vector multiplication.

A corresponding implementation for the above protocol may look like the

MPI code below:

1 MPI_Comm_size(MPI_COMM_WORLD, &size);

2 int nr_of_rows = MATRIX_ROWS/size;

3 ...

4 MPI_Scatter(row_ptr, nr_of_rows, MPI_INT, ..);

5 ...

6 // calculate number of indices for each process

7 ...

8 MPI_Scatterv(col_ind, nr_of_elems, MPI_INT, ...);

9 MPI_Scatterv(vals, nr_of_elems, MPI_DOUBLE, ...);

10 ...

11 MPI_Bcast(vector, MATRIX_ROWS, MPI_DOUBLE, Worker[0], ...); // Distribute vector
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12 ...

13 // Calculate matrix multiplication

14 mat_vec_mul(row_ptr, col_ind, vals, vector, C);

15 ...

16 MPI_Gather(C, 1, MPI_DOUBLE, Result, 1, MPI_DOUBLE, Worker[0], ...);

Listing 5.8: MPI implementation of sparse matrix-vector multiplication.

Each process starts by calculating the expected number of rows it will be

owner of, and we assume that the number of rows for each process is the

same and the total number of rows can divide exactly by the total number of

processes. Next we use MPI_Scatter to distribute segments of the row_ptr

array to each worker process, which sends segments of a given input memory

to other processes based on their rank and the segment position in the

memory (Line 4).

nr_of_elems is an array containing the number of elements to be sent

to each worker. Since in a sparse matrix the number of elements in each

row is not fixed, the nr_of_elements array contains the number of matrix

elements each worker receives. The indices of the array correspond to the

MPI rank of the workers and the column index col_ind is distributed to each

worker process by MPI_Scatterv (Line 8), a variant of the MPI_Scatter,

where the v stands for variable size as opposed to fixed size in MPI_Scatter.

Similarly, the actual matrix element values are distributed to all workers by

a call to MPI_Scatterv on Line 9, using the same nr_of_elems to specify

the number of elements for each worker.

Once the workers have received the matrix partitions, the coordinator

distributes the N dimensional vector by MPI_Bcast to all workers to perform

the matrix-vector calculation for the rows of the sparse matrix each processor

has.

Finally, as in the dense matrix-vector multiplication example, the results

are collected by the root worker Worker[0] using a MPI_Gather. In this

implementation, we use exclusively collective operations to distribute and

collect results as it is more efficient with the CSR data format. Notice that

the protocol does not distinguish between different modes of MPI_Scatter,

in particular, the Scribble statement (int) Worker[0] to Worker[1..N

]; corresponds to both MPI_Scatter and MPI_Scatterv. Hence a single

protocol statement can map to multiple implementations, and without

external information about the implementation, a code generation tool
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cannot choose a suitable implementation, and this use case is more suitable

for our type checking approach.

5.3. Runtime Analysis

The following experiment compares the performance of Session C against

MPI, as we scale up the number of processes to determine which runtime is

more suitable to be used with Pabble for developing a parallel program. We

expect the result to be similar to those presented in Section 3.5 where we

evaluated the performance of the Session C runtime and MPI but in a fixed

topology.

As a contrast to the experiments presented in Section 3.5, we compare the

performance of Session C and MPI given scalable, parameterised Pabble pro-

tocols. Since the type checker in Session C does not work with parameterised

protocols, for this evaluation we use a modified type checker which parses

and accepts Pabble protocols as specifications. With this modification, the

same protocol can be use to type check Session C endpoint code for different

number of spawned processes, allowing a limited amount of parameterisation.

For the purpose of the experiment, the type checking in this experiment is

only needed for completeness; we are focusing on the runtime performance

rather than the safety guarantees, and we use the same protocol to ensure

that both implementations follow the same communication specification to

have a fair comparison.

Environment. The experiments were taken on a cluster with multiple

nodes with AMD PhenomX4 9650 Quad-Core @ 2.30GHz CPUs and 8GB

DDR2 RAM each, connected by a dedicated Gigabyte Ethernet switch. All

implementations were compiled with gcc 4.4.3 with the optimisation level

-O3. For the MPI versions, Open MPI 1.4.3 were used.

We evaluate the scalability of our implementations by the performance of

Session C and MPI with the N-body simulation and the K-means clustering

algorithm and the parallel which uses a ring and a scatter-gather topology

respectively, described in Section 5.2 earlier in this chapter. The reported

runtime for 1 node is the serial execution of the implementations which

is identical in both Session C and MPI version since they share the same

code for the main computation. The results in Figure 5.2 shows that the
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Figure 5.2.: Comparing Session C and MPI performance for different number
of spawned processes from the same protocol, testing how the
two runtimes scale .

implementations in MPI are marginally faster than the Session C imple-

mentations, which agrees with our previous evaluation of the Session C

runtime in Section 3.4. From this result we deduce that MPI is has a better

performance overall than Session C runtime.

Challenges A valid question to ask is, why is MPI not chosen as the

runtime library for Session C in Chapter 3? Session C’s type checker is

designed for Scribble, a non-parameterised protocol language, and the Session

C runtime is a simple session programming API. We showed that the type

checking approach is effective, and based on the approach we are able to

give strong guarantees about the properties of the program (communication

safety, deadlock freedom) because we have control over the usage of the API.

For example, outbranch and inbranch is reliant on using the primitives

in a specific pattern in a C program, which we cannot implement in MPI

without working around the well-defined primitives. We also have the

prospect of outperforming MPI in some cases if we built the Session C API
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on top of a different library, instead of building on MPI directly. However,

we face a number of challenges when building a type checker using the

same methodology for Pabble, which is a dependent protocol language and

MPI, which is a standard parameterised implementation API. The Pabble

language with its well-formedness checks reduces the undecidability issues in

the role representation by using integer instead of general indices. The type

checking process will compare the protocol against a simplified, canonical

local protocol extracted from the implementation, which still posts a challenge

in the process of protocol extraction. In particular, inferring source and

destination processes from parametric source code is non-trivial. MPI uses

process IDs (or ranks) to identify processes, and it is valid to perform numeric

operations on the ranks to efficiently calculate target processes. This allows

ways of exploiting the C language features while remaining a valid program.

For example, instead of using a conventional conditional statement, an MPI

function call of this form may be used:

MPI_Send(buf, cnt, MPI_INT, rank%2? rank+1: rank-1, ...)

where the process ID, rank, is being used as a boolean, thus a straightforward

analysis of rank usages would not be sufficient. In order to correctly calculate

target processes of the interactions, it will be necessary to simulate rank

calculations by techniques such as symbolic execution or combinations of

runtime techniques.

5.4. Summary and Discussion

In this chapter we reviewed a number of Pabble protocols and their possible

implementations following the protocol specifications. Furthermore, we

compared how the Session C runtime and MPI perform when the same

program is scaled up to multiple processes. The results show that MPI

is more suitable to be used with Pabble because of the structure of MPI

programs. We discussed why type checking MPI against Pabble is a difficult

task, and in the next chapter we introduce a code generation framework

which is an alternative method of applying Pabble on parallel programming

in form of a code generation framework to ensure communication safety and

deadlock freedom.
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6 Safe MPI Code Generation

with Pabble

Overview This chapter presents a code generation workflow for type-safe

and deadlock-free Message-Passing Interface (MPI) programs. The generation

starts from designing a global topology with a protocol specification language

based on Parameterised Multiparty Session Types (MPST). An MPI parallel

program with backbone is then automatically generated by projecting a global

specification. This MPI backbone is merged with sequential computations

written in C by aspect-oriented compilation, resulting in a complete MPI

program.

6.1. Introduction

Parallel programming with the MPI library is a well-documented difficult

task, and communication mismatches are the most common MPI errors

by users [DKdS+05]. Reasoning about interactions between distributed

processes is difficult at scale, and despite the advances in novel techniques

and models such as Partitioned Global Address Space (PGAS) for simplifying

parallel programming, MPI is still widely used by the scientific community

and will be here to stay in the foreseeable future. In this chapter we

follow up on previous chapter’s findings, and approach session-based parallel

programming using MPI code generation. We generate MPI applications,

combining Pabble, a language-independent interaction protocol and sequential

This is a collaboration work with José Gabriel de Figueiredo Coutinho, who implemented
the LARA AOP directives and Word Counter and AdPredictor benchmarks using the
workflow.
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code kernels. We target MPI because it is an efficient runtime, and is a

established standard, which is being used as a common interface for different

kinds of programming models, including FPGAs [SnPM+10] or stream

programming [MMP10].

We also observe that most parallel applications follow a certain structural

communication pattern. For example, to implement parallel solutions for

iterative numerical methods, a stencil pattern may be used. The stencil pat-

tern is a general underlying communication pattern which does not change in

regards to the numerical methods being applied, and from the perspective of

a parallel interaction designer, different numerical methods are simply sets of

parameters that change the behaviour of the computation between communi-

cation. Recent work by Wilkinson and Ferner et al. [WVF13, FWH13] uses

pattern programming as an approach to teach parallel programming, where

they introduced Paraguin, a set of pragmas to annotate C code and transform

the code into distributed parallel applications built on top of SUIF compiler

system. They also use the Seeds framework, which is an environment for

developing in a Java programming environment by extending given pattern

classes. The work evaluates the effectiveness of the pattern programming

approach for parallel programming by interviewing undergraduate students

and shows that pattern programming simplifies parallel programming for

novice developers. The approach is also known as algorithmic skeleton

frameworks, [GVL10] surveys a number of existing tools and frameworks

using the technique for high-level structured parallel programming.

Our work aims to tackle the task of pattern programming with added

flexibility, practicality and safety by combining the formally founded com-

munication safety guarantees with session types in Pabble, and MPI as the

target runtime library. A Pabble protocol can capture the parallel control

flow of an application, and guide the development of the application as a

structured template.

Overview This chapter presents a parallel programming workflow based

on Pabble. Pabble describes scalable interaction protocols, which captures

the overall generic interaction pattern of the parallel application, and is

used to generate an annotated MPI application backbone, specifying the

interactions between parallel processes. Based on the Pabble protocol, se-

quential computation kernels are written in C99, using queues to pass data
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Figure 6.1.: Pabble-based code generation workflow. Shaded boxes indicate
user inputs.

locally between kernels. The kernels are inserted into the MPI backbone

by LARA [CCC+12], an aspect-oriented compilation tool, which results in

a complete MPI application. As part of the merge, LARA also performs

pragma-directed optimisations on the source code to overlap communication

and computation, improving the runtime performance.

Figure 6.1 shows the overview of our approach. Our approach starts

from a Pabble protocol, as an abstract representation of the communication

topology, or parallel communication patterns of a parallel application. We

consider every application a coupling between sequential, computation code

that defines functional behaviours of processes in the application, and a

communication topology that connects the processes together as a coherent

application. Hence, to build a parallel application, we first define the

communication protocol, written in Pabble. A valid Pabble protocol is

guaranteed free of interactions and patterns that introduce communication

errors and deadlocks, moreover, Pabble protocol is designed such that it can

represent protocols that scale on the number of processes at runtime similar

to MPI.

Contributions Below we list the contributions of this chapter.

� A complete parallel programming workflow by capturing parallel de-

sign patterns, based on the Pabble protocol description language and

sequential computation kernels (Section 6.2.2) by generating scalable

MPI applications. The workflow guarantees communication safety and

deadlock freedom by the formal basis of the Pabble protocol language.

� The workflow includes communication-computation merging and op-

timisation techniques by an aspect-oriented compilation framework
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(Section 6.4.2). We show that the optimisation does not violate the

communication ordering in Pabble and preserves the safety guarantees

of the workflow.

� A number of case studies and performance evaluation of our framework

showing the flexibility and productivity improvements of our workflow.

6.2. Application Development Workflow

6.2.1. Interaction protocols with Pabble

Our framework uses Pabble introduced in Chapter 4 to describe communica-

tion patterns. Pabble protocols provide a guarantee of communication safety

and deadlock freedom between participants in the protocol; this guarantee

also extends to scalable protocols, where the number of participants are not

known statically, and well-formed conditions ensure that the indexing of par-

ticipants does not go beyond specified bounds. A Pabble protocol describes

(1) the structured message interaction patterns of the application, and (2)

the control-flow elements, excluding the logic related to actual computation,

so that a Pabble protocol defining a parallel design pattern can be reused for

different applications (see Section 6.5.1).

1 const N = 1..max;

2 global protocol Stencil(role P[1..N][1..N]) {

3 rec Steps {

4 LeftToRight(T) from P[r:1..N][c:1..N-1] to P[r][c+1];

5 RightToLeft(T) from P[r:1..N][c:2..N] to P[r][c-1];

6 UpToDown(T) from P[r:1..N-1][c:1..N] to P[r+1][c];

7 DownToUp(T) from P[r:2..N][c:1..N] to P[r-1][c];

8 continue Steps;

9 }

10 }

Listing 6.1: Pabble protocol for 5-point stencil.

Stencil Protocol

The full syntax of Pabble is explained in Section 4.3.1 Listing 6.1 presents

an example of a Pabble protocol which defines a 5-point stencil design

pattern, where N ×N processes are arranged in a 2-dimensional grid, and

each participant exchanges messages with its 4 neighbours (except for edge

participants). This will be our running example of Pabble-based safe MPI
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code generation.

LeftToRight

DownToUp

RightToLeft

UpToDown

Figure 6.2.: Messages received by a process in a stencil protocol.

Our protocol body starts with a rec block, which stands for recursion,

and is assigned with the label Steps. The recursion block does not specify

the loop condition because a Pabble protocol only describes the interaction

structure while implementation details are abstracted away. In the body of

the recursion, we have 4 lines of interaction statements (Line 4-7), one for

each direction. Interaction statements describe the sending of a message

from one participant to another. For example, in Line 4 a message with

label LeftToRight and with a generic payload type T is sent from P[r:1..

N][c:1..N-1] to P[r][c+1]. The index expression r:1..N means that r

is bound and iterated through the list of values in the range 1..N, so the

line encapsulates N × (N − 1) individual interaction statements. The other

interaction statements in Listing 6.1 can be similarly interpreted. Figure 6.2

shows the messages received from neighbours for participant P[2][2] in a

3× 3 grid, which is defined in the protocol as role P[1..3][1..3].

Protocol repository. To simplify application development in our frame-

work, we provide a repository of common Pabble protocols describing common

interaction patterns used by parallel applications. TheStencil protocol in

Listing 6.1 is one example, and the other patterns in the repository include

ring pipeline, scatter-gather, master-worker and all-to-all.

6.2.2. Computation kernels

Computation kernels are C functions that describe the algorithmic behaviour

of the application. Each message interaction defined in Pabble (e.g. Label

(T)from Sender to Receiver) can be associated to a kernel by its label

(e.g. Label).

Figure 6.3 shows how kernels are invoked in a message-passing statement
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Figure 6.3.: Global view of Label(T)from Sender to Receiver;.

between two processes named Sender and Receiver respectively. Since a

message interaction statement involves two participants (e.g. Sender and

Receiver), the kernel serves two purposes: (1) produce a message for sending

and (2) consume a message after it has been received. The two parts of the

kernel are defined in the same function, but runs on the sending process and

the receiving process respectively. The kernels are top-level functions and do

not send or receive messages directly through MPI calls. Instead, messages

are passed between kernels and the MPI backbone (derived from the Pabble

protocol) via a queue API: in order to send a message, the producer kernel

(e.g. (1)) of the sending process enqueues the message to its send queue; and

a received message can be accessed by a consumer kernel (e.g. (2)), dequeuing

from its receive queue. This allows the decoupling between computation

(as defined by the kernels) and communication (as described in the MPI

backbone).

Writing a kernel. We now explain how a user writes a kernel file, which

contains the set of kernel functions related to a Pabble protocol for an applica-

tion. A minimal kernel file must define a variable meta of meta_t type, which

contains the process id (i.e. meta.pid), total number of spawned processes

(i.e. meta.nprocs) and a callback function that takes one parameter (message

label) and returns the send/receive size of message payload (i.e. unsigned

int meta.bufsize(int label)). The meta.buflen function returns the

buffer size for the MPI primitives based on the label given, as a lookup

table to manage the buffer sizes centrally. Process id and total number of

spawned processes will be populated automatically by the backbone code

generated. The kernel file includes the definitions of the kernel functions,

annotated with pragmas, associating the kernels with message labels. The

kernels can use file (i.e. static) scope variables for local data storage. Our

stencil kernel file starts with the following declarations for local data and
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meta:

1 typedef struct {

2 double* values; int rows; int cols;

3 } local_data_t;

4 static local_data_t *local;

5

6 unsigned int buflen(int label) { return local->rows - 2; } // local rows - halo

rows/cols

7

8 meta_t meta = {/*pid*/0, /*nprocs*/1, MPI_COMM_NULL, &buflen};

Kernel header

Initialisation. Most parallel applications require explicit partitioning of

input data. In these cases, the programmer writes a kernel function for

partitioning, such that each participant has a subset of the input data.

Input data are usually partitioned with a layout similar to the layout of

the participants. In our stencil example where processes are organised in

a 2D grid, we partition the input data in a 2D-grid of sub-matrices. The

sub-matrices are calculated for each of the process using the meta.pid and

meta.nprocs which are known at runtime when the kernel functions are

called. Below is an example of the main part of the initialisation function.

6 #pragma pabble kernel Init

7 void init(int id, const char *filename)

8 { FILE *fp = fopen(filename, "r");

9 local = (local_data_t *)malloc(sizeof(local_data_t));

10 local->rows = 0; local->cols = 0; local->values = NULL;

11 ...

12 int proc_per_row = sqrt(meta.nprocs); // Participant per row

13 int proc_per_col = sqrt(meta.nprocs); // Participant per column

14 int row_offset = (meta.pid / proc_per_row) * row_size; // Start row of data

15 int col_offset = (meta.pid % proc_per_col) * col_size; // Start column of data

16 ...

17 if (within_range) { fscanf(fp, "%f", &local->values[i]); } // Copy data to

local

18 ...

19 fclose(fp); }

Kernel: Init

Computation and queues. The kernels are void functions with at least

one parameter, which is the label of the kernel. Inside the kernel, no MPI

primitive should be used to perform message passing. Data received from

another participant or data that need to be sent to another participant can
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be accessed using a receive queue and send queue. Consider the following

kernel for the label LeftToRight in the stencil example:

20 #pragma pabble kernel LeftToRight

21 void accumulate_LeftToRight(int id)

22 { // Sender sends right col of submatrix and Recver receives left col.

23 if (!pabble_recvq_isempty() && pabble_recvq_top_id() == id) {

24 tmp[HALO_LEFT] = (double *)pabble_recvq_dequeue(); // Get received value.

25 } else { tmp[HALO_RIGHT] = (double *)calloc(meta.buflen(id), sizeof(double));

26 /* populate tmp[HALO_RIGHT] */

27 pabble_sendq_enqueue(id, tmp[HALO_RIGHT]); // Put buffer to be sent

28 }

29 }

Kernel: LeftToRight

Each kernel has access to a send and receive queue local to the whole

process, which holds pointers to the buffer to be sent and the buffer containing

the received messages, respectively. The queues are the only mechanism

for kernels to interface the MPI backbone. The simplest kernel is one that

forwards incoming messages from the receive queue directly to the send

queue. In the above function, when the kernel function is called, it either

consumes a message from the receive queue if it is not empty (i.e. after a

receive), or produce a message for the send queue (i.e. before a send).

Kernels can have extra parameters. For example, in the init function

above, filename is a parameter that is not specified by the protocol (i.e. Init

()). When such functions are called, all extra parameters are supplied by

command-line arguments in the final generated MPI application.

In the next two sections we describe: (1) the compilation process to

generate the MPI backbone and (2) the merging process in which we combine

the MPI backbone and the kernels.

6.3. Compilation Step 1: Protocol to MPI

backbone

This section describes the MPI backbone code generation from Pabble pro-

tocols. First the generated MPI backbone code of the running example is

shown, then the translation rules from Pabble statements to MPI code are

explained along with details of how to map Pabble participants into MPI

processes.
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1 int main(int argc, char *argv[])

2 { MPI_Init(&argc, &argv);

3 MPI_Comm_rank(MPI_COMM_WORLD, &meta.pid);

4 MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs);

5 #pragma pabble type T

6 typedef void T; ⇒ typedef double T;

7 MPI_Datatype MPI_T; ⇒ MPI Datatype MPI T = MPI DOUBLE;

8

9 T *bufLeftToRight_r, *bufLeftToRight_s;

10 /** Other buffer declarations **/

11 /** Definitions of cond0, cond1, ... **/

12 #pragma pabble predicate Steps

13 while (1) { ⇒ while(iter())

14 if (cond0) { /*if P[i:0..(N-1)][j:1..(N-1)]*/

15 bufLeftToRight_r = (T *)calloc(meta.buflen(LeftToRight), sizeof(T));

16 MPI_Irecv(bufLeftToRight_r, meta.buflen(LeftToRight), MPI_T, /*P[i][(j-1)]

*/...);

17 MPI_Wait(&req[0], &stat[0]);

18 pabble_recvq_enqueue(LeftToRight, bufLeftToRight_r);

19 #pragma pabble kernel LeftToRight ⇒ accumulate LeftToRight(LeftToRight);

20 }

21 if (cond1) { /*if P[i:0..(N-1)][j:0..(N-2)]*/

22 #pragma pabble kernel LeftToRight ⇒ accumulate LeftToRight(LeftToRight);

23 bufLeftToRight = pabble_sendq_dequeue();

24 MPI_Isend(bufLeftToRight, meta.buflen(LeftToRight), MPI_T, /*P[i][(j+1)]*/

...);

25 MPI_Wait(&req[1], &stat[1]);

26 free(bufLeftToRight);

27 }

28 /** similarly for RightToLeft, UpToDown and DownToUp **/

29 MPI_Finalize();

30 }

31 return EXIT_SUCCESS; }

Listing 6.2: MPI backbone generated from the Stencil protocol.

Generated MPI Backbone

6.3.1. MPI backbone generation from Stencil protocol

Based on the Pabble protocol (e.g. Listing 6.1), our code generation framework

generates an MPI backbone code (e.g. Listing 6.2). First it automatically

generates endpoint protocols from a global protocol as an intermediate step

to make MPI code generation more straightforward.

An MPI backbone is a C99 program with boilerplate code for initialising

and finalising the MPI environment of a typical MPI application (Line 2-4 and

29 respectively), and MPI primitive calls for message passing (e.g. MPI_Isend

/MPI_Irecv). Therefore the MPI backbone realises the interaction between

participants as specified in the Pabble protocol, without supporting any

specific application functionality. The backbone has three kinds of #pragma

annotations as placeholders for kernel functions, types and program logic.
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The annotations are explained in Section 6.4. The boxed code in Listing 6.2

represents how the backbone are converted to code that calls the kernel

functions in the MPI program.

On Lines 5 and 6, generic type T and MPI_T are defined datatypes for C

and MPI respectively. T and MPI_T are refined later when an exact type

(e.g. int or composite struct type) is known with the kernels.

Following the type declarations, are other variable declarations including

the buffers (Line 9), and their allocation and deallocation are managed by the

backbone. They are generated as guarded blocks of code, which come directly

from the endpoint protocol. Line 14-20 shows a guarded receive that corre-

spond to if P[i:0..(N-1)][j:1..(N-1)] LeftToRight(T)from P[i][j-1]

in the protocol and Line 21-27 for if P[i:0..(N-1)][j:0..(N-2)] LeftToRight

(T)to P[i][j+1].

6.3.2. MPI backbone generation from Pabble

Below we explain how Pabble statements are translated into MPI blocks

through Table 6.1–6.4.

(1) Interaction. An interaction statement in a Pabble protocol is projected

in the endpoint protocol as two parts: receive and send.

The first line of the endpoint protocol shows a receive statement, written

in Pabble as if P[dstId] from P[srcId]. The statement is translated to

a block of MPI code in 3 parts. First, memory is dynamically allocated for

the receive buffer (Line 2), the buffer is of Type and its size fetched from the

function meta.bufsize(Label). The function is defined in the kernels and

returns the size of message for the given message label. Next, the program

calls MPI_Recv to receive a message (Line 3) from participant P[srcRole]

in Pabble. role_P(srcIdx) is a lookup macro from the generated backbone

to return the process id of the sender. Finally, the received message, stored

in the receive buffer buf, is enqueued into a global receive queue with

pabble_recvq_enqueue() (Line 4), followed by the pragma indicating a

kernel of label Label should be inserted. The block of receive code is guarded

by an if-condition, which executes the above block of MPI code only if the

current process id matches the receiver process id.

The next line in the endpoint protocol is a send statement, converse of
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(1) Interaction

Label(Type) from P[srcIdx] to P[dstIdx];

Global Protocol

if P[dstIdx] Label(Type) from P[srcIdx];
if P[srcIdx] Label(Type) to P[dstIdx];

Projected Endpoint Protocol

1 if (meta.pid == role_P(dstIdx)) {

2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));

3 MPI_Recv(buf, meta.bufsize(Label), MPI_Type, role_P(srcIdx), Label, ...);

4 pabble_recvq_enqueue(Label, buf);

5 #pragma pabble kernel Label
6 }

7 if (meta.pid == role_P(srcIdx)) {

8 #pragma pabble kernel Label
9 buf = pabble_recvq_dequeue();

10 MPI_Send(buf, meta.bufsize(Label), MPI_Type, dstIdx, Label, ...); free(buf);

11 }

Generated MPI Backbone

(2) Parallel interaction

Label(Type) from P[i:1..N-1] to P[i+1];

Global Protocol

if P[i:2..N] Label(Type) from P[i-1];

if P[i:1..N-1] Label(Type) to P[i+1];

Projected Endpoint Protocol

1 if (role_P(2)<=meta.pid&&meta.pid<=role_P(N)) {

2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));
3 MPI_Recv(..., prevRank = meta.pid-1, Label, ...);

4 pabble_recvq_enqueue(Label, buf);

5 #pragma pabble kernel Label
6 }

7

8 if (role_P(1)<=meta.pid&&meta.pid<=role_P(N-1)) {

9 #pragma pabble kernel Label
10 buf = pabble_sendq_dequeue();

11 MPI_Send(..., nextRank = meta.pid+1, Label, ...); free(buf);

12 }

Generated MPI Backbone

(3) Internal interaction

Internal() from __self to __self;
Global/Endpoint Protocol

1

2 #pragma pabble Internal

Generated MPI Backbone

Table 6.1.: Pabble interaction statements and their corresponding code.

the receive statement, written as if P[srcIdx] Label(Type)to P[dstIdx

]. The MPI code begins with the pragma annotation, then dequeuing the

global send queue with pabble_sendq_dequeue() and sends the dequeued
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buffer with MPI_Send. After this, the send buffer, which is no longer needed,

is deallocated. The block of send code is similarly guarded by an if-condition

to ensure it is only executed by the sender. By allocating memory before

receive and deallocating memory after send, the backbone manages memory

for the user systematically.

(2) Parallel interaction. A Pabble parallel interaction statement is writ-

ten as Label(Type)from P[i:1..N-1] to P[i+1], meaning all processes

with indices from 1 to N-1 send a message to its next neighbour. P[1]

initiates sending to P[2], and P[2] receives from P[1] then sends a message

to P[3], and so on. As shown in the endpoint protocol which encapsulates

the behaviour of all P[1..N] processes, the statement is realised in the

endpoint as conditional receive followed by a conditional send, similar to

ordinary interaction. The difference is the use of a range of process ids in the

condition, and relative indices in the sender/receiver indices. The generated

MPI code makes use of expression with meta.pid (current process id) to

calculate the relative index.

(3) Internal interaction. When role with name __self is used in a

protocol, it means that both the sending and receiving endpoints are internal

to the processes, and there is no interaction with external processes. This

statement applies to all processes, and is not to be confused with self-

messaging, e.g. Label()from P[1] to P[1], which would lead to deadlock.

The statement does not use any MPI primitives. The purpose of using this

special role is to create optional insertion point for the MPI backbone, which

may be used for optional kernels such as initialisation or finalisation, hence

it generates a pragma in the MPI backbone.

(4) Iteration and (5) For-loop. rec and foreach are iteration state-

ments. Specifically rec is recursion, where the iteration conditions are not

specified explicitly in the protocol, and translates to while-loops. The loop

condition is the same in all processes, otherwise be known as collective loops.

The loop generated by rec has a #pragma pabble predicate annotation,

so that the loop condition can be later replaced by a kernel (see Section 6.4).

The foreach construct, on the other hand, specifies a counting loop,

iterating over the integer values in the range specified in the protocol from
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(4) Iteration

rec LoopName { ... continue LoopName; }

Global/Endpoint Protocol

1

2 #pragma pabble predicate LoopName

3 while (1) {

4 ... }

Generated MPI Backbone

(5) For-loop

foreach (i:0..N-1) { ... }

Global/Endpoint Protocol

1

2 for (int i=0; i<=N-1; i++) {

3 ...

4 }

Generated MPI Backbone

Table 6.2.: Pabble control-flow statements and their corresponding code.

the lower bound (e.g. 0) to the upper bound value (e.g. N-1). This construct

can be naturally translated into a C for-loop.

(6) Choice

choice at P[master] {

Branch0(Type) from P[master]

to P[worker];

...

} or { ... }

Global Protocol

choice at P[master] {

if P[worker] Branch0(Type) from P[master];

if P[master] Branch0(Type) to P[worker];

...

} or { ... }

Projected Endpoint Protocol

1 if (rank==role_P(master)) { // Choice sender

2 #pragma pabble predicate Branch0

3 if (1) {

4 // Block of send.

5 MPI_Send(..., MPI_Type, role_P(worker), Branch0, ...);

6 } else

7 #pragma pabble predicate Branch1

8 if (1) { ... }

9 } else { // Choice receiver

10 MPI_Probe(role_P(master), MPI_ANY_TAG, comm, &status); switch (status.MPI_TAG)

{

11 case Branch0:

12 // Ordinary block of recv.

13 if (rank==role_P(worker)) {

14 MPI_Recv(..., MPI_Type, role_P(master), Branch0, ...);

15 pabble_recvq_enqueue(Branch0, buf); }

16 ... break;

17 #pragma pabble Branch1

18 case Branch1: ...

19 }

20 }

Generated MPI Backbone

Table 6.3.: Pabble choice and their corresponding code.
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(6) Choice. Conditional branching in Pabble is performed by label branch-

ing and selection. We use the example given in Table 6.3 to explain. The

deciding process, e.g. P[master], makes a choice and executes the state-

ments in the selected branch. Each branch starts by sending a unique

label, e.g. Branch0, to the decision receiver, e.g. P[worker]. Hence for a

well-formed Pabble protocol, the first line of each branch is from the deciding

process to the same process but using a different label.

Note that the decision is only known between the two processes in the first

statement, and other processes should be explicitly notified or use broadcast

to propagate the decision. The MPI backbone is generated with a different

structure as the endpoint protocol. First, the MPI backbone contains an

outer if-then-else, splitting the deciding process (Line 1–9) and the decision

receiver (Line 9–20). In the deciding process, a block of if-then-else-if code is

generated to perform a send with different label (called MPI tag), e.g. Line 5.

This statement is generated with all the queue and memory management

code as described above for ordinary interaction statements. Each of the

if-condition is annotated with #pragma pabble predicate BranchLabel,

so that the conditions can be replaced by predicate kernels (see Section 6.4).

For the decision receiver, MPI_Probe is used to peek the received label, then

the switch statement is used to perform the correct receive (for different

branches).

(7) Scatter, (8) Gather and (9) All-to-all. Collective operations are

written in Pabble as multicast or multi-receive message interactions. While

it is possible to convert these interactions into multiple blocks of MPI code

following the rules in Table 6.2 (e.g. loop through receivers for scatter),

we take advantage of the efficient and expressive collective primitives in

MPI. Table 6.4 shows the conversion of Pabble statements into MPI collec-

tive operations. We describe only the most generic collective operations,

i.e. MPI_Scatter, MPI_Gather and MPI_Alltoall.

Translating collective operations from Pabble to MPI considers both global

Pabble protocol statements and endpoint protocol. If a statement involves

the __All role as sender, receiver or both, it is a collective operation.

Table 6.4 shows that translated blocks of MPI code do not use if-statements

to distinguish between sending and receiving processes. This is because

collective primitives in MPI are executed by both the senders and the receivers,
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(7) Scatter

Label(Type) from P[rootRole] to __All;
Global Protocol

1 rbuf = (Type *)calloc(

2 meta.buflen(Label), sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();

5 MPI_Scatter(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);

7 pabble_recvq_enqueue(Label, rbuf);

8 #pragma pabble kernel Label
9 free(sbuf);

Generated MPI Backbone

(8) Gather

Label(Type) from __All to P[rootRole];
Global Protocol

1 rbuf = (Type *)calloc(

2 meta.buflen(Label)*meta.nprocs, sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();

5 MPI_Gather(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);

7 pabble_recvq_enqueue(Label, rbuf);

8 #pragma pabble kernel Label
9 free(sbuf);

Generated MPI Backbone

(9) All-to-All

Label(Type) from __All to __All;
Global Protocol

1 rbuf = (Type *)calloc(

2 meta.buflen(Label)*meta.nprocs, sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();

5 MPI_Alltoall(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, ...);

7 pabble_recvq_enqueue(Label, rbuf);

8 #pragma pabble kernel Label
9 free(sbuf);

Generated MPI Backbone

Table 6.4.: Pabble collective operations and their corresponding code.

and the runtime decides whether it is a sender or a receiver by inspecting

the rootRole parameter (which is a process rank) in the MPI_Scatter or

MPI_Gather call. Otherwise the conversion is similar to their point-to-point

counterparts in Table 6.1.
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Process scaling. In addition to the translation of Pabble statements into

MPI code, we also define the process mapping between a Pabble protocol and

a Pabble-generated MPI program. Typical usage of MPI programs can be

parameterised on the number of spawned processes at runtime via program

arguments. Hence, given a Pabble protocol with scalable roles, we describe

the rules below to map (parameterised) roles into MPI processes.

A Pabble protocol for MPI code generation can contain any number of

constant values (e.g. const M = 10), which are converted in the backbone

as C constants (e.g. #define M 10), but it can use at most one scalable

constant [NY14b], and will scale with the total number of spawned processes.

A scalable constant is defined as:

const N = 1..max;

The constant can then be used for defining parameterised roles, and used in

indices of parameterised message interaction statements. For example, to

declare an N ×N role P, we write in the protocol:

global protocol P (role P[1..N][1..N])

which results in a total of N2 participants in the protocol, but N is not

known until execution time. MPI backbone code generated based on this

Pabble protocol uses N throughout. Since the only parameter in a scalable

MPI program is its size (i.e. number of spawned processes), the following

code is generated in the backbone to calculate, from size, the value of C

local variable N:

MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs); // # of processes

int N = (int)pow(meta.nprocs, 1/2); // N = sqrt(meta.nprocs)

6.4. Compilation Step 2: Aspect-Oriented

Design-Flow

This section focuses on the final stage of our code generation framework,

which merges two input components to derive the complete MPI program:

(1) the communication safe MPI backbone derived automatically from a

Pabble protocol (Section 6.3.1), and (2) the user supplied kernels capturing

application functionality.

The MPI backbone is automatically annotated with pragma statements

referencing all the labels defined in the protocol; the programmer, on the
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other hand, must manually annotate each kernel with the corresponding

label. This way, our code generation framework can automatically merge

both components.

Our approach takes a similar path as OpenMP [DM98] and OpenACC [WSTaM12],

which parallelise sequential programs using non-invasive #pragma annota-

tions. The difference is that while OpenMP operates on a shared memory

architecture model and OpenACC operates via a host-directed execution

(co-processor) model, our approach allows applications to target customised

platform topologies defined by Pabble, since MPI works on both shared and

distributed memory platforms.

LARA language. To support an automated merging process, our pro-

gramming framework uses an aspect-oriented programming (AOP) language

called LARA [CCC+12]. As far as we know, LARA is the only aspect-

oriented approach that targets all stages of a development process allowing

static code analysis and manipulation (e.g. source-level translation and

code optimisation), toolchain execution (e.g. for design-space exploration)

and application deployment (e.g. to extract dynamic behaviour). These

various tasks, which are often performed manually and independently, can

be described in a unified way as LARA aspects. These aspects can then

drive LARA weavers to apply a particular strategy in a systematic and

automated way. In our code generation framework, we use LARA’s ability to

analyse and manipulate C code to automate the merging process between the

MPI backbone and the kernels sources (Section 6.4.1), and also to further

optimise the MPI code by overlapping communication and computation

(Section 6.4.2).

6.4.1. Merging process

To combine the MPI backbone with the kernels, our aspect-oriented design-

flow inserts kernel function calls into the MPI backbone code. The insertion

points are realised as #pragmas in the MPI backbone code, generated from

the input protocol as placeholders where functional code is inserted. There

are multiple types of annotations whose syntax is given as:

#pragma pabble [<entry point type>] <entry point id> [(param0, ...)]
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where entry point type is one of kernel, type or predicate, and entry point

id is an alphanumeric identifier.

Generated MPI backbone User supplied kernel Merged code
K

er
n
el

F
u
n
ct

io
n

#pragma pabble kernel Label

#pragma pabble kernel Label

void kernel_func(int label)

{ ... }

kernel_func(Label);

D
a
ta

ty
p

es

#pragma pabble type T

typedef void T;

MPI_Datatype MPI_T;

#pragma pabble type T

typedef double T;

typedef double T;

MPI_Datatype MPI_T

= MPI_DOUBLE;

C
on

d
it

io
n
al

s

#pragma pabble predicate Cond

while (1)

{ ... }

#pragma pabble predicate Cond

int condition()

{ ... return bool; }

while (condition())

{ ... }

Table 6.5.: Annotations in backbone and kernel.

Kernel function. #pragma pabble kernel Label defines the insertion

point of kernel functions in the MPI backbone code. Label is the label of

the interaction statement, e.g. Label(T)from Sender to Receiver, and

the annotation is replaced by the kernel function associated to the label

Label. Programmers must use the same pragma to manually annotate the

implementation of the kernel function. The first row in Table 6.5 shows an

example.

Datatypes. #pragma pabble type TypeName annotates a generic type

name in the backbone, and also annotates the concrete definition of the

datatype in the kernels. In the second row of Table 6.5, the C datatype T is

defined to be void since the protocol does not have any information to realise

the type. The kernel defines T to be a concrete type of double, and hence

our tool transforms the typedef in the backbone into double and infers

the corresponding MPI_Datatype (MPI derived datatypes) to the built-in

MPI integer primitive type, i.e. MPI_Datatype MPI_T = MPI_DOUBLE. Our

tool also supports generating MPI datatypes for structures of primitive

types, e.g. struct { int x, int y, double m } is transformed to its MPI-

equivalent datatype.
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Conditionals. #pragma pabble predicate Label is a pragma for anno-

tating predicates, e.g. loop conditions or if-conditions, in the backbone. Since

a Pabble communication protocol (and transitively, the MPI backbone) does

not specify a loop condition, the default loop condition is 1, i.e. always true.

This annotation introduces a way to insert a conditional expression defined

as a kernel function. It precedes the while-loop, as shown in the third row

of Table 6.5, to label the loop with the name Label. The kernel function

that defines expressions must use the same annotation as the backbone, e.g.

#pragma pabble predicate Label. After the merge, this kernel function

is called when the loop condition is evaluated.

6.4.2. Performance optimisation for overlapping

communication and computation by MPI immediate

operators

When designing a protocol with a session-based approach such as Pabble pro-

tocol, the resulting MPI backbone guarantees communication safety, i.e. the

structures of interactions between the processes are compatible. However,

that does not necessarily guarantee the most efficient communication pattern.

For example the pipeline Pabble statement T() from P[i:0..N-1] to P[i+1]

results in a communication safe pattern of Receive-Send for P[1] to P[N].

The protocol implies there is a dependency between the received message

and the send message, hence each process in the pipeline must wait for the

messages sent by processes up the pipeline, before they can start sending

a message to processes down the pipeline. This is not optimal because the

stall time between the beginning of the pipeline and when the first message

is received is a waste of CPU resources. Often parallel applications can be

modified such that the dependencies within the same iteration are removed,

so the message passing can start sending straight away and overlap with

receive using asynchronous messaging mode.

The use of asynchronous communication is dependent on the kernel func-

tionality and how message dependencies must be handled. For this reason,

programmers can use the async directive when annotating their kernels,

e.g. #pragma pabble async kernel LABEL, in order to trigger this optimi-

sation.

The LARA aspect-oriented weaver transforms the generated code without
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changing the ordering of the MPI message passing primitives, and hence

preserves the communication safety guarantees of the MPI backbone.

This optimisation relies on the placement of MPI’s immediate commu-

nication primitives, which is made up of two parts: (1) a primitive call

(MPI_Isend or MPI_Irecv) to initiate the message transfer which returns

immediately and after which the buffer should not be accessed, and a

(2) second primitive call (MPI_Wait) to block and wait for the transfer

to complete. Between the initial call and the wait, the application can

perform computation in parallel with the message transfer to realise the

communication-computation overlap.

The optimisation overlaps the computation which generates results to be

sent in the following iteration and the communication of sending and receiving

results of previous iteration to and from a neighbouring process. Since all

computations are executed in parallel, and the communication overlaps with

the computation, we achieve a speed-up for the parallel application over the

sequential version of the same application.

Below we show an example before the optimisation (left) and after the

optimisation (right) where the MPI_Wait is issued as late as possible:

1 if (cond) {

2 #pragma pabble Label

3 buffer = pabble_sendq_dequeue();

4 MPI_Send(buffer, ...);

5 free(buffer);

6 }

Original
1 if (cond) {

2 buffer = pabble_sendq_dequeue();

3 MPI_Isend(buffer, ..., request); }

4 ...

5 if (cond) {

6 #pragma pabble Label

7 MPI_Wait(request); free(buffer); }

Optimised

Note that our transformation preserves the ordering of communication

defined in the unoptimised backbone. The following presents an example

that splits an ordinary MPI receive/send as in the Stencil example into a

set of statements that interleave asynchronous receive/send.

1 MPI_Recv(...);

2 MPI_Send(...);

Original
1 MPI_Irecv(..., request1);

2 MPI_Isend(..., request2);

3 /* Interleave with computation */

4 MPI_Wait(request1, ...);

5 MPI_Wait(request2, ...);

Optimised

Since MPI_Wait is an operation that blocks until the send and receive

buffers can be accessed, we can ensure that MPI_Isend(..., request1) is
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completed before MPI_Irecv(..., request2) even if the transmission of

data for the latter primitive is finished before the former.

6.5. Evaluation

We evaluate our approach on two areas: productivity and performance.

Productivity. Our main aim of the code generation workflow is to sim-

plify parallel programming by offering a programming methodology, with

which the programmer focuses on the computation code and write high-level

communication topologies in Pabble. We believe that using Pabble to develop

an MPI parallel application, which generates an MPI backbone automati-

cally, increases productivity of the programmer as the MPI backbone code

contains mostly tedious and mechanical details that do not offer any extra

advantage over manually written code by a pragmatic programmer. We

therefore compare the relative effort of writing the same parallel application

manually and by code generation by measuring their lines of code to quantify

productivity. It is not an absolute measure but can be used as a general

guide to compare the relative effort needed to write the parallel application.

Performance. The performance evaluations are conducted to show that

our framework is sufficiently general to generate the different classes of

algorithms in our chosen set of benchmarks (from different Dwarf [AWW+09]

categories), and that the generated code is ordinary MPI applications that

has reasonable performance. Finally, we show the impact and limitations of

the asynchronous optimisation in N-body simulation and Linear Equation

Solver.

6.5.1. Productivity and Reusability

The table below presents a comparison of different parallel algorithms de-

veloped using our approach. The second and third columns show the input

Pabble protocol and whether it is available in our protocol repository. The

Dwarf column denotes the categorisations of parallel computational and

structural patterns defined in [AWW+09]; SG stands for ‘Structured Grid’,

PM is ‘Particle Methods’; DM is ‘Dense Matrix’; and S is ‘Spectral (FFT)’.

The next three columns show lines of code in the input Pabble protocol, the
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generated backbone, and the input user kernel file. The final column shows

the effort ratio of user written code against the total ( Kernels
Backbone+Kernels for

protocols in repository or Kernels+Pabble
Backbone+Kernels ). The higher the ratio, relatively

more effort is needed to write an equivalent program from scratch.

Protocol Repo. Dwarf

heateq [BDHT] stencil X SG
nbody ring X PM
wordcount scatter-gather X
adpredictor [GCBH10] scatter-gather X
montecarlo scatter-gather X
montecarlo-mw master-worker X
LEsovler [NY14b] wrapround mesh SG
matvec custom [NYL13] DM
fft64 6-step butterfly S

heateq is an implementation of the heat equation based on [BDHT], and

uses the stencil protocol in our running example. nbody is a 2D N-body

simulation implemented with a ring topology; it is optimised with the asyn-

chronous messaging mode described in Section 6.4.2. wordcount is a simple

application that counts the number of occurrences of each word in a given

text, implemented using the scatter-gather pattern. adpredictor is an imple-

mentation of Microsoft’s AdPredictor [GCBH10] algorithm for calculated

click-through rate, also implemented in the same scatter-gather pattern,

but with a different set of kernel functions. LEsolver is a linear equation

solver parallelised with a custom wraparound mesh topology outlined in

[NY14b]. montecarlo is Monte-Carlo π simulation, implemented with two

different patterns, scatter-gather and master-worker. A remarkable differ-

ence between the two patterns is that the former uses collective operations

and all processes are involved in the main calculation, whereas with the

master-worker pattern workers are coordinated by a central master process

by P2P communication that does not perform the main calculation. Note

that the kernels used for both implementations are the same (except with

different kernel labels). matvec is matrix-vector multiplication parallelised

using the MatVec protocol outlined in [NYL13]. fft64 is an implementation

of the Cooley-Tukey FFT between 64 processes using 6 steps of butterfly

exchange between pairs of processes.
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Pabble Backbone Kernels Effort

heateq [BDHT] 15 154 335 0.69
nbody 15 93 228 0.71
wordcount 8 76 176 0.70
adpredictor [GCBH10] 8 76 182 0.71
montecarlo 8 76 70 0.48
montecarlo-mw 10 82 70 0.46
LEsovler [NY14b] 15 132 208 0.66
matvec 15 130 117 0.41
fft64 11 64 134 0.68

Reusability Both our implementations of wordcount and adpredictor use

the scatter-gather pattern. They exemplify the advantages of pattern pro-

gramming – common parallel patterns are collected and stored in our protocol

repository, and they are maintained separately from the user kernels so new

parallel applications can be constructed by writing new kernels only. In

addition to reusable protocols, some kernels can also be reused with different

protocols. The scenarios for kernels to be reused are less common since

partitioning of input data are usually dependent on the protocol, and the

kernels are designed to be parallelised with a single protocol. For example, we

show two montecarlo implementations, one with scatter-gather and another

with master-worker pattern. Since the algorithm is embarrassingly parallel

and does not depend on input data, both implementations can share the

same kernel.

With our results we argue that our workflow saves development and de-

bugging efforts for MPI parallel applications, especially for novice parallel

programmers. The user can focus on developing and maintaining the func-

tional behaviour of their application, knowing that the merging of updated

kernels and the respective MPI backbones are correct. While our metric is

not an absolute measurement of the difficulty of developing an MPI applica-

tion, and that we ignore that a more complex program may have less lines

of code, we believe the presence of a high-level protocol helps, rather than

hinders, the understanding of the application. As a session-based framework,

we can ensure that the communication aspects of the generated application

are correct – which narrows down deadlocks to computation, hence reducing

debugging efforts.
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6.5.2. Performance

We evaluate our approach on cx1, a general purpose multi-core cluster [Imp].

All implementations are compiled with icc 13.0.0 with -O3 option, and

tested using Intel MPI library version 31.0.38.
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Figure 6.4.: N-body simulation (nbody).

In Figure 6.4 we compare the performance of nbody with and without

asynchronous optimisation described in Section 6.4.2. The optimisation

overlaps the main calculation with the communication, and the results show

significant improvements over the unoptimised version.

Figure 6.5 presents the runtime performance of LEsolver which uses a

custom wraparound mesh protocol with asynchronous optimisation. In

comparison with nbody, the optimisation effect on LEsolver has less impact.

This is partly because the asynchronous kernel implemented by nbody is

more complex than the kernel implemented by LEsolver, so the time spent

on communication is dominant. The asynchronous kernel in LEsolver also

represents a smaller proportion of the total computations, hence it has the

less effect on the overall runtime.

Figure 6.6 shows that the two implementations – wordcount and adpredictor

– both of which use the scatter-gather pattern and a different set of kernels

follow a similar trend in scalability, which is dependent on the size of the

input data.
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Figure 6.5.: Linear Equation Solver (LEsolver).
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Figure 6.7 compares implementations in our framework running in 64 pro-

cesses against sequential C versions. Results show speedup for all algorithms

except fft64 due to communication overhead of the more complex butterfly

topology.
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Figure 6.7.: Parallelisation speedup.

6.5.3. Limitations

Despite the flexibility we show in the overlapping of kernels, there are limita-

tions to this optimisation approach. Take the stencil protocol for example, we

are able to overlap the computation kernels associated to the communication,

i.e. LeftToRight, RightToLeft, UpToDown and DownToUp, but the main cal-

culation cannot be started after all the data have been received due to the

data dependencies between the data. Since the computation associated to

the communication is relative simple, only saving the received data to local

and copying the data to send from local to send buffer, the performance

improvement by the optimisation is not expected to be huge. This is a

consequence of the parallel algorithm itself, where better performance will

require unrolling of the loop three or more times to allow overlapping of the

main calculation with communication.

In contrast, algorithms such as N-body simulation which can be imple-

mented with little or no dependencies between each iteration, can take full

advantage of the overlapping by asynchronous message-passing. Hence, a

relatively larger impact is possible with the optimisations outlined above.

The evaluation results shown above confirms our observation.
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6.6. Summary and Discussion

In this chapter we presented a session-based workflow for constructing safe

and efficient parallel applications. The framework consists of two parts,

a safe-by-construction parallel interaction backbone, generated from the

Pabble protocol description language, and an aspect-oriented compilation

framework to mechanically insert computation code into the backbone and

asynchronous optimisation. We argue that our approach simplifies parallel

programming by making use of parallel communication patterns, described

with our Pabble protocol description language, and building independent

kernel code around the patterns as sequential C code. We also show the

flexibility of the framework where multiple sets of kernels can share a common

parallel communication pattern, where the kernels are maintained separately.

This code generation framework is an approach for parallel programming

based on the theoretical framework of MPST through Pabble. Even with

parameterised MPST, it is required that the (parameterised) roles involved

in a communication is known at design time. In the next chapter we present

an alternative to MPST for designing parallel programs by composition of

binary sessions. The approach, called multi-channel session types, makes use

of a pair of global session synchronisation primitives inwhile and outwhile,

to allow inter-session synchronisations. Communication safety and deadlock

freedom are guaranteed by analysing the topologies of the synchronisation,

and provide the same guarantee as MPST with additional flexibility.
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7 Multi-channel Session Types

Overview This chapter investigates the use of Session Java (SJ) for session-

typed parallel programming, and introduces new language primitives for chained

iteration and multi-channel communication. These primitives allow the efficient

coordination of parallel computation across multiple processes, thus enabling

SJ to express the complex communication topologies often used by parallel

algorithms. We demonstrate that the new primitives yield clearer and safer code

for pipeline, ring and mesh topologies through implementations of representative

parallel algorithms. We then present a semantics and session typing system

including the new primitives, and prove type soundness and deadlock-freedom

for our implementations.

7.1. Introduction

In the previous chapters we have explored using the general framework of

Multiparty Session Types (MPST) to guarantee type safety, communication

correctness and deadlock freedom for interactions. However, using MPST

entails the presence of a global type or protocol to express the global view

of interactions, which requires all the participants of an interaction to be

known at design time. In parallel applications that scale at runtime, the

number of participants is not known at design time, and hence cannot

be expressed directly in global types. Approaches such as Parameterised

MPST [DYBH12a] or the Pabble protocol language introduced in Chapter 4

overcomes this requirement by embedding the information about the number

of participants into the type through role indices.

The implementation of the inwhile and outwhile primitives are contributed by SJ authors
Raymond Hu and Olivier Pernet, co-authors of [NYP+11]
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This chapter presents an alternative approach to express the global view

of interactions by composition of binary Session Types. We extend binary

Session Types with multi-channel primitives, which allow us to represent

complex, high-level communication patterns as globally synchronised chains

of iterations. We implement the new multi-channel primitives in the Session

Java (SJ) programming language [HYH08], and investigate the use the

primitives in SJ.

The SJ compiler offers two strong static guarantees for session execution:

(1) communication safety, meaning a session-typed process can never cause

or encounter a communication error by sending or receiving unexpected

messages; and (2) deadlock-freedom — a session-typed process will never

block indefinitely on a message receive. However, SJ as presented in [HYH08]

only guarantees progress for each session in isolation: deadlocks can still

arise from the interleaving of multiple sessions in a process.

The combination of new primitives and a well-formed topology check

extension to SJ compilation [HYH08] bring the benefits of type-safe, struc-

tured communications programming to HPC. The primitives can be chained,

yielding a simple mechanism for structuring global control flow. We for-

malise these primitives as novel extensions of the session calculus, and the

correctness condition on the shape of programs enforced by a simple exten-

sion of SJ compilation. This allows us to prove communication safety and

deadlock-freedom, and offers a new, lightweight alternative to multiparty

session types for global type-safety.

The following are the technical contributions of this chapter:

� We introduce SJ as a programming language for type-safe, efficient

parallel programming, including our implementation of multi-channel

session primitives, and the extended SJ tool chain for parallel program-

ming in Section 7.2. We show that the new primitives enable clearer,

more readable code.

� We discuss SJ implementations of parallel algorithms in Section 7.3

using n-body simulation (Section 7.3.1) and an Jacobi solution to the

discrete Poisson equation (Section 7.3.2) as examples. Both examples

use communication topology representative of a large class of parallel

algorithms, and demonstrates the practical use of our multi-channel

primitives.
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� We define the multi-channel session calculus, its operational semantics,

and typing system in Section 7.4. We prove that processes conform-

ing to a well-formed communication topology (Definition 7.1) satisfy

the subject reduction theorem (Theorem 7.1), which implies type and

communication-safety (Theorem 7.2) and deadlock-freedom across mul-

tiple, interleaved sessions (Theorem 7.3).

� Finally, we present performance evaluation of the n-body simulation

and the Jacobi solution we implemented in Section 7.5, , demon-

strating the benefits of the new primitives. The SJ implementations

using the new primitives show competitive performance against MPJ

Express [BC00].

Detailed definitions, proofs, benchmark results and source code can be

found in the Appendix (Section A.1).

7.2. Session-Typed Programming in SJ

This section firstly reviews the key concepts of binary session-typed pro-

gramming using Session Java (SJ) [HYH08, Hu10]. In (1), we outline the

basic methodology; in (2), the protocol structures supported by SJ. We then

introduce the new session programming features developed in this chapter

to provide greater expressiveness and performance gains for session-typed

parallel programming. In (3), we explain session iteration chaining ; and

in (4), the generalisation of this concept to the multi-channel primitives.

Finally, (5) describes the topology verification for parallel programs.

(1) Basic SJ programming SJ is an extension of Java for type-safe

concurrent and distributed session programming. Session programming

in SJ, as detailed in [HYH08], starts with the declaration of the intended

communication protocols as session types; we shall often use the terms session

type and protocol interchangeably. A session is the interaction between two

communicating parties, and its session type is written from the viewpoint of

one side of the session. The following declares a protocol named P:

1 protocol P !<int>.?(Data)

Protocol P specifies that, at this side of the session, we first send (!) a

message of Java type int, then receive (?) another message, an instance of

150



the Java class Data, which finishes the session. After defining the protocol,

the programmer implements the processes that will perform the specified

communication actions using the SJ session primitives. The first line in the

following code implements an Alice process conforming to the P protocol:

1 // !<int>.?(Data)

2 alice.send(42);

3 Data d = (Data)alice.receive();

Alice
1 // ?(int).!<Data>

2 int i = bob.receiveInt();

3 bob.send(new Data());

Bob

The alice variable refers to an object of class SJSocket, called a session

socket, which represents one endpoint of an active session. The session-

typed primitives for session-typed communication behaviour, such as send

and receive, are performed on the session socket like method invocations.

SJSocket declarations associate a protocol to the socket variable, and the

SJ compiler statically checks that the socket is indeed used according to the

protocol, ensuring the correct communication behaviour of the process.

This simple session application also requires a counterpart Bob process to

interact with Alice. For safe session execution, the Alice and Bob processes

need to perform matching communication operations: when Alice sends an

int, Bob receives an int, and so on. Two processes performing matching

operations have session types that are dual to each other. The dual protocol

to P is protocol PDual ?(int).!<Data>, and a dual Bob process can be

implemented as in the second line of the above listing.

(2) More complex protocol structures Session types are not limited to

sequences of basic message passing. Programmers can specify more complex

protocols featuring branching, iteration and recursion.

The protocols and processes in Figure 7.1 demonstrate session iteration

and branching. Process P1 communicates with P2 according to protocol

IntAndBoolStream; P2 and P3 communicate following protocol IntStream.

Like basic message passing, iteration and branching are coordinated by

active and passive actions at each side of the session. Process P1 actively

decides whether to continue the session iteration using outwhile(condition

), and if so, selects a branch using outbranch(label). The former action

implements the ![τ]* type given by IntAndBoolStream, where τ is the !{

Label1: τ1, Label2: τ2, . . . } type implemented by the latter. Processes

P2 and P3 passively follow the selected branch and the iteration decisions

(received as internal control messages) using inbranch and inwhile, and
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P1 P2 P3

1 protocol IntAndBoolStream ![!{Label1: !<int>, Label2: !<boolean>}]*

2 protocol IntAndBoolDual ?[?{Label1: ?<int>, Label2: ?(boolean)}]*

3 protocol IntStream ![!<int>]*

4 protocol IntStreamDual ?[?(int)]*

1 // s: IntAndBoolStream

2 s.outwhile(x < 10) {

3 s.outbranch(Label1) {

4 s.send(42);

5 }}

P1
1 // s: IntStreamDual

2 s.inwhile {

3 int i = s.receiveInt();

4 }

P3

1 // s1: IntAndBoolDual

2 // s2: IntStream

3 s2.outwhile(s1.inwhile()) {

4 s1.inbranch() {

5 case Label1: int i = s1.receiveInt(); s2.send(i);

6 case Label2: boolean b = s1.receiveBool(); s2.send(42);

7 }}

P3

Session socket s in P1 follows IntAndBoolStream; s1 and s2 in P2 follows
IntAndBoolDual and IntStream; s in P3 follows IntStreamDual.

Figure 7.1.: Simple chaining of session iterations across multiple pipeline
process.

proceed accordingly; the two dual protocols show the passive versions of

the above iteration and branching types, denoted by ? in place of !. So

far, we have reviewed basic SJ programming features [HYH08] derived from

standard session type theory [HVK98, YV07]; the following paragraphs

discuss new features motivated by the application of session types to parallel

programming in practice.

(3) Expressiveness gains from iteration chaining The three pro-

cesses in Figure 7.1 additionally illustrate session iteration chaining, forming

a linear pipeline as depicted at the top of Figure 7.1. The net effect is that

P1 controls the iteration of both its session with P2 and transitively the

session between P2 and P3. This is achieved through the chaining construct

s2.outwhile(s1.inwhile()) at P2, which receives the iteration decision

from P1 and forwards it to P3. The flow of both sessions is thus controlled

by the same master decision from P1.
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Iteration chaining offers greater expressiveness than the individual iteration

primitives supported in standard session types. Normally, session typing for

ordinary inwhile or outwhile loops must forbid operations on any session

other than the session channel that of loop, to preserve linear usage of

session channels. This means that e.g. s1.inwhile(){ s1.send(v); } is

allowed, whereas s1.inwhile(){ s2.send(v); } is not. With the iteration

chaining construct, we can now construct a process containing two interleaved

inwhile or outwhile loops on separate sessions. In fact, session iteration

chaining can be further generalised as we explain below.

(4) Multi-channel iteration primitives Simple iteration chaining al-

lows SJ programmers to combine multiple sessions into linear pipeline struc-

tures, a common pattern in parallel processing. In particular, type-safe

session iteration (and branching) along a pipeline is a powerful benefit over

traditional stream-based data flow [SPGV07]. More complex topologies,

however, such as rings and meshes, require iteration signals to be directly

forwarded from a given process to more than one other, and for multiple

signals to be directed into a common sink; in SJ, this means we require the

ability to send and receive multiple iteration signals over a set of session

sockets. For this purpose, SJ introduces the generalised multi-channel prim-

itives; the following focuses on multi-channel iteration, which extends the

chaining constructs from above.

Master

Forwarder 1

Forwarder 2

End

<s1,s2>.outwhile(i < 42) {...}
Master

s3.outwhile(s1.inwhile()) {...}
Forwarder 1

s4.outwhile(s2.inwhile()) {...}
Forwarder 2

<s3,s4>.inwhile() {...}
End

Figure 7.2.: Multi-channel Iteration in a simple grid topology.

Figure 7.2 demonstrates multi-channel iteration for a simple grid topology.
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Figure 7.3.: The SJ tool chain.

Process Master controls the iteration on both the s1 and s2 session sockets

under a single iteration condition. Processes Forwarder1 and Forwarder2

iterate following the signal from Master and forward the signal to End; thus,

all four processes iterate in lockstep. Multi-channel inwhile, as performed

by End, is intended for situations where multiple sessions are combined for

iteration, but all are coordinated by an iteration signal from a common

source; this means all the signals received from each socket of the inwhile

will always agree — either to continue iterating, or to stop. In case this is

not respected at run-time, the inwhile will throw an exception, resulting in

session termination.

Together, multi-channel primitives enable the type-safe implementation of

parallel programming patterns like scatter-gather, producer-consumer, and

more complex chained topologies. The basic session primitives express only

disjoint behaviour within individual sessions, whereas the multi-channel prim-

itives implement interaction across multiple sessions as a single, integrated

structure.
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(5) The SJ tool chain with topology verification In previous work,

the safety guarantees offered by the SJ compiler were limited to the scope of

each independent binary (two-party) session. This means that, while any

one session was guaranteed to be internally deadlock-free, this property may

not hold in the presence of interleaved sessions in a process as a whole. The

nodes in a parallel program typically make use of many interleaved sessions –

with each of their neighbours in the chosen network topology. Furthermore,

inwhile and outwhile in iteration chains must be correctly composed.

As a solution to this issue, we add a topology verification step to the SJ

tool chain for parallel programs. Figure 7.3 summarises the SJ tool chain for

developing type-safe SJ parallel program on a distributed computing cluster.

An SJ parallel program is written as a collection of SJ source files, where

each file corresponds to a role in the topology.

Topology verification (A) takes as input the source files and a deployment

configuration file, listing the hosts where each process will be deployed and

describing how to connect the processes. The sources and configuration files

are then analysed statically to ensure the overall session topology of the

parallel program conforms to a well-formed topology defined in Definition 7.1

in Section 7.4, and in conjunction with session duality checks in SJ, precludes

global deadlocks in parallel SJ programs (see Theorem 7.3). The source files

are then compiled (B) to bytecode, and (C) deployed on the target cluster

using details on the configuration file to instantiate and establish sessions

with their assigned neighbours, ensuring the runtime topology is constructed

according to the verified configuration file, and therefore safe execution of

the parallel program.

7.3. Parallel Algorithms in SJ

This section presents the SJ implementation of an n-body simulation imple-

mented in a ring topology (Section 7.3.1), a Jacobi method for solving the

Discrete Poisson Equation implemented in a mesh topology (Section 7.3.2)

and a linear equation solver implemented in a wraparound mesh topology

(Section 7.3.3). They are examples of complex communication topologies,

and we use them to explain the benefits and usage of the new multi-channel

primitives.
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7.3.1. N-body simulation: Ring Topology

The following session type describes the communication protocol of our

implementation of N-body simulation. This is the session type for a Worker

’s interaction with its left neighbour.

1 protocol WorkerToLeft

2 sbegin. // Accept session request from left neighbour

3 !<int>. // Forward init counter to determine number of processes

4 ?[ // Main loop (loop controlled by left neighbour)

5 ?[ // Pipeline stages within each simulation step

6 !<Particle[]>// Pass current particle state along the ring

7 ]*

8 ]*

Listing 7.1: The session type for Worker role of the n-body simulation.

The interaction with the right neighbour follows the dual protocol. The

WorkerLast and Master nodes follow slightly different protocols, in order

to close the ring structure and bootstrap the pipeline interaction.

In the SJ implementation, each node establishes two sessions with the left

and right neighbours, and the iteration of every session in the pipeline is

centrally controlled by the Master node. Without the multi-channel iteration

primitives, there is no adequate way of closing the ring (sending data from

the WorkerLast node to the Master); the only option is to open and close a

temporary session with each iteration (Figure 7.5) [BHY10], an inefficient

and counter-intuitive solution, as depicted on the left in Figure 7.4 (the

loosely dashed line indicates the temporary connection).

By contrast, Figure 7.6 gives the implementation of the ring topology using

a multi-outwhile at the Master node, and a multi-inwhile at WorkerLast.

Data is still passed left-to-right, but the final iteration control link (the

dashed arrow in Figure 7.4) is reversed. This allows the Master to create

the final link just once (at the start of the algorithm) like the other links,

and gives the Master full control over the whole pipeline.

The full process definition of the n-body simulation can be found in the

Appendix (Section A.1.5).
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Figure 7.4.: Communication patterns in n-body implementations.

1 right.outwhile(cond) {

2 left = chanLast.request();

3 right.send(data);

4 processData();

5 newData = left.receive();

6 }

Master

1 right.outwhile(left.inwhile) {

2 right.send(data);

3 processData();

4 newData = left.receive();

5 }

Worker

1 left.inwhile {

2 right = chanFirst.accept();

3 right.send(data);

4 processData();

5 newData = left.receive();

6 }

WorkerLast

Figure 7.5.: Implementation of the
ring topology, single-
channel primitives only.

1 <left,right>.outwhile(cond) {

2

3 right.send(data);

4 processData();

5 newData = left.receive();

6 }

Master

1 right.outwhile(left.inwhile) {

2 right.send(data);

3 processData();

4 newData = left.receive();

5 }

Worker

1 <left,right>.inwhile {

2

3 right.send(data);

4 processData();

5 newData = left.receive();

6 }

WorkerLast

Figure 7.6.: Improved implementation
of the ring topology using
multi-channel primitives.
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7.3.2. Jacobi solution of the discrete Poisson equation:

Mesh Topology

Poisson’s equation is a partial differential equation widely used in physics and

the natural sciences. Jacobi’s algorithm can be implemented using various

partitioning strategies. An early session-typed implementation [BHY10]

used a one-dimensional decomposition of the source matrix, resulting in a

linear communication topology. The following demonstrates how the new

multi-channel primitives are required to increase parallelism using a two-

dimensional decomposition, i.e. using a 2D mesh communication topology.

The mesh topology is used in a range of other parallel algorithms [CLR08].

The discrete two-dimensional Poisson equation (∇2u)ij for a m× n grid

reads:

uij =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − dx2gi,j)

where 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1, and dx = 1/(n+ 1). Jacobi’s algorithm

converges on a solution by repeatedly replacing each element of the matrix

u by an adjusted average of its four neighbouring values and dx2gi,j . For

this example, we set each gi,j to 0. Then, from the k-th approximation of u,

the next iteration calculates:

uk+1
ij =

1

4
(uki+1,j + uki−1,j + uki,j+1 + uki,j−1)

Termination may be on reaching a target convergence threshold or on

completing a certain number of iterations. Parallelisation of this algorithm

exploits the fact that each element can be independently updated within

each iteration. The decomposition divides the grid into subgrids, and each

process will execute the algorithm for its assigned subgrid. To update the

points along the boundaries of each subgrid, neighbouring processes need to

exchange their boundary values at the beginning of each iteration.

1 protocol MasterToWorker

2 cbegin. // Open a session with the Worker

3 !<int>.!<int>. // Send matrix dimensions

4 ![ // Main loop: checking convergence condition

5 !<double[]>. // Send our boundary values...

6 ?(double[]). // ..and receive our neighbour’s

7 ?(ConvergenceValues) // Convergence data for neighbouring subgrid

8 ]* // (end of main loop)

Listing 7.2: The session type for the Master role of the Jacobi algorithm.
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Figure 7.7.: Communication patterns in Jacobi method implementations.

A 2D mesh implementation is shown in Figure 7.7. The Master node

controls iteration from the top-left corner. Nodes in the centre of the mesh

receive iteration control signals from their top and left neighbours, and

propagate them to the bottom and right. Nodes at the edges only propagate

iteration signals to the bottom or the right, and the final node at the bottom

right only receives signals and does not propagate them further.

The session type for communication from the Master to either of the

Workers under it or at its right is given in Listing 7.2. The Worker’s

protocol for interacting with the Master is the dual of MasterToWorker; the

same protocol is used for interaction with other Workers at their right and

bottom (except for Workers at the edges of the mesh).

As listed in Figure 7.8, it is possible to express the complex 2D mesh using

single-channel primitives only. However, this implementation suffers from a

problem: without the multi-channel primitives, there is no way of sending

iteration control signals both horizontally and vertically; the only option is

to open and close a temporary session in every iteration (Figure 7.7), an

inefficient and counter-intuitive solution. Moreover, the continuous nature

of the vertical iteration sessions cannot be expressed naturally.

Having noted this weakness, Figure 7.9 lists a revised implementation, tak-

ing advantage of multi-channel inwhile and outwhile. The multi-channel
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1 // right: WorkerNorth

2 // under: WorkerWest

3 right.outwhile(!converged()) {

4 below = chanBelow.request();

5 sndBounds(right,below);

6 rcvBounds(right,below);

7 compute(rcvRight,rcvBelow);

8 rcvConvergenceVal(right,below);

9 }

Master

1 // above: WorkerNorth

2 // right: WorkerEast

3 // below: WorkerSouth

4 // left: WorkerWest

5 right.outwhile(left.inwhile) {

6 above = chanAbove.accept();

7 below = chanBelow.request();

8 sndBounds(left,right,above,below);

9 rcvBounds(left,right,above,below);

10 compute(rcvLeft,rcvRight,rcvAbove,

rcvBelow);

11 sndConvergenceVal(left,above);

12 }

Worker

1 // left: WorkerSouth

2 // above: WorkerEast

3 left.inwhile {

4 above = chanAbove.request();

5 sndBounds(left,above);

6 rcvBounds(left,above);

7 compute(rcvLeft,rcvAbove);

8 sndConvergenceVal(left,above);

9 }

WorkerSE

Figure 7.8.: Jacobi method implementa-
tion in a 2D mesh topology
with single-channel primi-
tives.

1 // right: WorkerNorth

2 // under: WorkerWest

3 <below,right>.outwhile(!converged()){

4

5 sndBounds(right,below);

6 rcvBounds(right,below);

7 compute(rcvRight,rcvBelow);

8 rcvConvergenceVal(right,below);

9 }

new Master

1 // above: WorkerNorth

2 // right: WorkerEast

3 // below: WorkerSouth

4 // left: WorkerWest

5 <below,right>.outwhile(

6 <above,left>.inwhile) {

7

8 sndBounds(left,right,above,below);

9 rcvBounds(left,right,above,below);

10 compute(rcvLeft,rcvRight,rcvAbove,

rcvBelow);

11 sndConvergenceVal(left, above;

12 }

new Worker

1 // left: WorkerSouth

2 // above: WorkerEast

3 <above,left>.inwhile {

4

5 sndBounds(left, above);

6 rcvBounds(left, above);

7 compute(rcvLeft,rcvAbove);

8 sndConvergenceVal(left, above);

9 }

new WorkerSE

Figure 7.9.: Jacobi method implemen-
tation in a 2D mesh topol-
ogy with multi-channel
primitives.
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inwhile allows each Worker to receive iteration signals from the two pro-

cesses at its top and left. Multi-channel outwhile lets a process control both

processes at the right and bottom. Together, these two primitives completely

eliminate the need for repeated opening and closing of intermediary sessions

in the single-channel version. The resulting implementation is clearer and

also much faster. See Section 7.5 for the benchmark results.

7.3.3. Linear Equation Solver: Wraparound Mesh Topology

We implement a parallel linear equation solver using the Jacobi method.

The algorithm is introduced in Section 3.4.2. Our implementation uses p2

processors in a p× p wrap-around mesh topology to solve an n× n system

matrix. The matrix is partitioned into submatrix blocks of size n
p ×

n
p ,

assigned to each of the processors (see Figure 7.10).

Each iteration of the algorithm requires multiplications (in the term αijxj)

and summation. Multiplications dominate execution time here, hence the

parallelisation concentrates on them. The horizontal part of the mesh acts

as a collection of circular pipelines for multiplications. Their results are

collected by the diagonal nodes, which perform the summation and the

division by αii.

This gives the updated solution values for the iteration. These need to

be communicated to other nodes for the next iteration. The vertical mesh

connections are used for this purpose: the solution values are sent down

by the diagonal node, and each worker node picks up the locally required

solution values, and passes on the rest. The transmission wraps around

at the bottom of the mesh, and stops at the node immediately above the

diagonal, hence the lack of connectivity between the two in Figure 7.10.

Note that contrary to the non-wraparound 2D-mesh of Section 7.3.2, the

sink of this well-formed topology (Section 7.4.3) is not the last node on the

diagonal, but instead the node just above, called WorkerEastLast. This

is because the diagonal nodes transmit updated values as explained above,

and this transmission stops just before a complete wraparound. Figure A.2

shows node ranks for the wraparound mesh topology, along with the other

topologies presented in this chapter.
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1 // Source node

2 // Initiates computation

3 <below,right>.outwhile(!converged()){

4 prod = computeProducts();

5 // horizontal ring

6 ringData = prod;

7 <left,right>.outwhile(count<

nodesOnRow) {

8 right.send(ringData);

9 ringData = left.receive();

10 computeSums(ringData);

11 count++;

12 }

13 // pass results to diagonal node

14 newX = computeDivision();

15 below.send(newX);

16 }

Master

1 // Workers

2 // Calculate in ring

3 // then forward from above to below

4 <below,right>.outwhile(

5 <left,above>.inwhile) {

6 prod = computeProducts();

7 ringData = prod;

8 right.outwhile(left.inwhile) {

9 right.send(ringData);

10 ringData = left.receive();

11 }

12 newX = above.receive();

13 below.send(newX);

14 }

Worker

1 // Diagonal Workers

2 // Receive result, compute,

3 // then propagate to next row

4 <below,right>.outwhile(

5 left.inwhile) {

6 prod = computeProducts();

7 ringData = prod;

8 right.outwhile(left.inwhile) {

9 right.send(ringData);

10 ringData = left.receive();

11 computeSums(ringData);

12 }

13 newX = computeDivision();

14 below.send(newX);

15 }

WorkerDiagonal

1 // Sink node

2 // Receives from above, left and right

3 <right,left,above>.inwhile {

4 prod = computeProducts();

5 ringData = prod;

6 <left,right>.inwhile {

7 right.send(ringData);

8 ringData = left.receive();

9 }

10 newX = above.receive();

11 }

WorkerEastLast

Master
Worker
Last

Worker
East

Worker
West

Worker
Diagonal

Worker
EastLast

Worker
SouthWest

Worker
Worker East
Diagonal

Figure 7.10.: Linear Equation Solver: Wraparound Mesh Topology.

7.4. Multi-channel Session Calculus

This section formalises the new nested iterations and multi-channel commu-

nication primitives and proves correctness of our implementation. Our proof
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method consists of:

1. We first define programs (i.e. starting processes) including the new

primitives, and then define operational semantics with running pro-

cesses modelling intermediate session communications.

2. We define a typing system for programs and running processes.

3. We prove that if a group of running processes conforms to a well-

formed topology, then they satisfy the subject reduction theorem (The-

orem 7.1) which implies type and communication-safety (Theorem 7.2)

and deadlock-freedom (Theorem 7.3).

4. Since programs for our chosen parallel algorithms conform to a well-

formed topology, we conclude that they satisfy the above three proper-

ties.

7.4.1. Syntax

The session calculus we treat extends the one presented in [HVK98].

Figure 7.11 defines its syntax. Channels (u, u′, ...) can be either of two

sorts: shared channels (a, b, x, y) or session channels (k, k′, ...). Shared

channels are used to open a new session. In accepting and requesting

processes, the name a represents the public interaction point over which

a session may commence. The bound variable k represents the actual

channel over which the session communications will take place. Constants

(c, c′, ...) and expressions (e, e′, ...) of ground types (booleans and integers)

are also added to model data. Selection chooses an available branch, and

branching offers alternative interaction patterns; channel send and channel

receive enable session delegation [HVK98]. The sequencing, written P ; Q

, meaning that P is executed before Q. This syntax allows for complex

forms of synchronisation, joining, and forking since P can include any

parallel composition of arbitrary processes. The second addition is that of

multicast inwhile and outwhile, following SJ syntax. Note that the definition

of expressions includes multicast inwhile 〈k1 . . . kn〉.inwhile, in order to allow

inwhile as an outwhile loop condition. The control message k † [b] created

by outwhile appears only at runtime.
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The precedence of the process-building operators is (from the strongest)

“/, ., {}”, “.”, “;” and “|”. Moreover we define that “.” associates to the right.

The binders for channels and variables are standard.

The process definition is modified to include an Err process which repre-

sents a while condition mismatch in multicast inwhile and outwhile. while

condition mismatch is further explained in the operational semantics in the

next section (Section 7.4.2).

7.4.2. Operational Semantics

The operational semantics are based on the reduction relation →, and the

reduction rules are given in Figure 7.12.

Structural Congruence The session calculus is π-calculus extended with

session primitives [HVK98], so definition of structural congruence ≡ is similar

to π-calculus. Below lists the structural congruence rules in session calculus:

P ≡ Q if P ≡α Q P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(ν u)(P ) | Q ≡ (ν u)((P | Q)) if u 6∈ fn(Q)

(ν u)(0) ≡ 0 defD in 0 ≡ 0 0; P ≡ P

(ν u)(defD inP ) ≡ defD in (ν u)(P ) if u 6∈ fn(D)

(defD inP ) | Q ≡ defD in (P | Q) if fpv(D) ∩ fpv(Q) = ∅

defD in defD′ inP ) ≡ defD andD′ inP if fpv(D) ∩ fpv(D′) = ∅.

Evaluation Context To keep session reasoning simple, we introduce

evaluation contexts. Evaluation contexts isolate subprocesses and allow

subprocesses to reduce independent of influences external to the context.

Our evaluation contexts are defined below:
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(Processes)

P ::= 0 inaction

| T prefixed

| P ; Q sequence

| P | Q parallel

| (ν u)(P ) hiding

(Prefixed processes)

T ::= a(k).P request

| a(k).P accept

| k〈e〉 sending

| k(x).P reception

| k〈k′〉 sending

| k(k′).P reception

| X[ek] variables

| defD inP recursion

| k C l; selection

| k B {li : Pi}i∈{1..n} branch

| if e thenP elseQ conditional

| 〈k1 . . . kn〉.inwhile{Q} inwhile

| 〈k1 . . . kn〉.outwhile(e){P} outwhile

| k † [b] message

(Declaration)

D ::= {Xi(xiki) = Pi}i∈{1..n} declaration

(Values)

v ::= a, b, x, y shared names

| true, false boolean

| n integer

(Expressions)

e ::= v | value

| e+ e′ sum

| not(e) not

| 〈k1 . . . kn〉.inwhile inwhile

| . . .

Figure 7.11.: Multi-channel Session Calculus: Syntax.
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a(k).P1 | a(k).P2 → (ν k)(P1 | P2) [Link]

k〈c〉 | k(x).P2 → P2{c/x} [Com]

k B {li : Pi}i∈{1..n} | k C li → Pi (1 ≤ i ≤ n) [Lbl]

k〈k′〉 | k(k′).P2 → P2 [Pass]

if true thenP elseQ→ P if false thenP elseQ→ Q [If]

{Xi(xiki) = Pi}i∈{1..n} in X[ck]→ {Xi(xiki) = Pi}i∈{1..n} in P{c/x}
[Def]

〈k1 . . . kn〉.inwhile{P} | Πi∈{1..n}(ki † [true])→ P ; 〈k1 . . . kn〉.inwhile{P} [Iw1]

〈k1 . . . kn〉.inwhile{P} | Πi∈{1..n}(ki † [false])→ 0 [Iw2]

E[〈k1 . . . kn〉.inwhile] | Πi∈{1..n}ki † [true]→ E[true] [IwE1]

E[〈k1 . . . kn〉.inwhile] | Πi∈{1..n}ki † [false]→ E[false] [IwE2]

E [e]→∗E ′[true]⇒ [Ow1]

E[〈k1 . . . kn〉.outwhile(e){P}]→ E′[P ; 〈k1 . . . kn〉.outwhile(e){P}]
| Πi∈{1..n}ki † [true]

E [e]→∗E ′[false] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}]→ E′[0] | Πi∈{1..n}ki † [false] [Ow2]

P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q⇒ P → Q [Str]

e → e ′ ⇒ E[e] → E[e′] P → P ′ ⇒ E[P ] → E[P ′]

P | Q → P ′ | Q ′ ⇒ E[P ] | Q→ E[P ′] | Q′ [Eval]

In [Ow1] and [Ow2], we assume E = E′ | Πi∈{1..n}ki † [bi]

Figure 7.12.: Multi-channel Session Calculus: Reduction rules.

Evaluation context E ::= []

| E; P sequential composition

| E | P parallel composition

| (ν u)(E) hiding

| defD inE recursion

| ifE thenP elseQ conditional

| 〈k〉.outwhile(E){P} outwhile

| E + e | . . . expressions
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Reduction Rules We use the shorthand notation Πi∈{1..n}Pi to denote

the parallel composition of ( P1 | · · · | Pn ).

Rule [Link] is a session initiation rule where a fresh channel k is created, then

restricted because the leading parts now share the channel k to start private

interactions. Rule [Com] sends data. Rule [Lbl] selects the i-th branch, and

rule [Pass] passes a session channel k for delegation. The standard conditional

and recursive agent rules [If1], [If2] and [Def] originate in [HVK98].

Rule [Iw1] synchronises with n asynchronous messages if they all carry true.

In this case, it repeats again.

Rule [Iw2] is its dual and synchronises with n false messages. In this case,

it moves to the next command. On the other hand, if the results are mixed

(i.e. bi is true, while bj is false), then it is stuck. In SJ, it will raise the

exception, cf. § 7.2 (4). The rules for expressions are defined similarly. The

rules for outwhile generate appropriate messages. Note that the assumption

E[e] → E′[true] or E[e] → E′[false] is needed to handle the case where e is

an inwhile expression.

In order for our reduction rules to reflect SJ’s actual behaviour, inwhile

rules should have precedence over outwhile rules. Note that our algorithms

do not cause an infinite generation of k † [b] by outwhile: this is ensured by

the well-formed topology criteria described later, together with this priority

rule.

7.4.3. Types, Typing System and Well-Formed Topologies

This subsection presents types and typing systems. The key point is an

introduction of types and typing systems for asynchronous runtime messages.

We then define the notation of a well-formed topology.

Types The type system in this section is designed to guarantee communi-

cation correctness and liveness property with the new syntax and operational

semantics. The full type syntax is given below:

Sorts contain the standard types and the pair of dual sessions 〈α, α〉.

Partial Session Types are session types that does not include the end type.

Partial session types are distinguished from completed session types

so that they can be sequentially composed.
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Completed Session Types are types that end with end or are equal to ⊥.

Sort S ::= nat | bool | 〈α, α〉

Partial session τ ::= ε empty

| τ ; τ sequential composition

| ![S] send

| ?[S] receive

| ⊕ {li : τi}i∈{1..n} selection

| & {li : τi}i∈{1..n} branching

| ![α] session delegation

| ?[α] session receive

| ![τ ]∗ outwhile

| ?[τ ]∗ inwhile

| µ t.τ | t recursion

Completed session α ::= τ.end inaction

| ⊥ bottom

Runtime session β ::= α completed session

| α† unconsumed message

| † message

In above syntax, ![α] and ?[α] are session delegation and session receive re-

spectively. This makes use of the name-passing property from π-calculus that

allows sending and receiving of channels (or sessions in the session calculus).

The same typing syntax is used for ordinary type sending and receiving (![S],

?[S]). Iteration types (?[τ ]∗ and ![τ ]∗) are introduced for 〈a〉.inwhile{n} d

〈r〉.outwhile(e){s} pectively. With iteration types, the partial type definition

τ can be repeated for a number of times until the 〈c〉.outwhile(o){n} dition

is no longer true.

In the syntax given, &{τi : .i}i∈{1..n}end ≡ &{l1 : : τ1.end, . . . , ln : τn.end}.
This equivalence ensures all partial types τ1 . . . τn of label selection choices
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ends and are compatible with each other in the completed session type (and

vice versa).

ε is an empty type, and it is defined so that ε; τ ≡ τ and τ ; ε ≡ τ . The two

equivalences allows us to continue reducing when one of the two processes

P ;Q reduces to empty.

Runtime session syntax represents partial composed runtime message

types. α† represents the situation inwhile or outwhile are composed with

messages; and † is a type of messages. The meaning will be clearer when we

define the parallel composition.

Judgements and Environments The typing judgements for expressions

and processes are of the shape:

Γ; ∆ ` e . S and Γ ` P .∆

where we define the environments as Γ ::= ∅ | Γ · x : S | Γ · X : Sα

and ∆ ::= ∅ | ∆ · k : β. Γ is the standard environment which associates

a name to a sort and a process variable to a sort and a session type. ∆ is

the session environment which associates session channels to running session

types, which represents the open communication protocols. We often omit

∆ or Γ from the judgement if it is empty.

Sequential and parallel compositions of environments are defined as:

∆; ∆′ = ∆\dom(∆′)

∪∆′\dom(∆)

∪{k : ∆(k) \ end; ∆′(k) | k ∈ dom(∆) ∩ dom(∆′)}
∆ ◦∆′ = ∆\dom(∆′)

∪∆′\dom(∆)

∪{k : ∆(k) ◦∆′(k) | k ∈ dom(∆) ∩ dom(∆′)}

where ∆(k) \ end means we delete end from the tail of the types (e.g. τ.end \
end = τ). Then the resulting sequential composition is always well-defined.

The parallel composition of the environments must be extended with new

running message types. Hence β ◦ β′ is defined as either (1) α ◦ α =⊥; (2)

α ◦ † = α† or (3) α ◦ α† =⊥†. Otherwise the composition is undefined. Here

α denotes a dual of α (defined by exchanging ! to ? and & to ⊕; and vice

versa). (1) is the standard rule from session type algebra, which means once
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a pair of dual types are composed, then we cannot compose any processes

with the same channel further. (2) means a composition of an iteration

of type α and n-messages of type † becomes α†. This is further composed

with the dual α by (3) to complete a composition. Note that ⊥† is different

from ⊥ since ⊥† represents a situation that messages are not consumed with

inwhile yet.

7.4.4. Typing Rules

We explain the key typing rules for the new primitives below. The full list

of rules can be found in Figure A.1 in Section A.1.1 in the Appendix.

∆ = k1 : ?[τ1]
∗.end, ..., kn : ?[τn]∗.end

Γ; ∆ ` 〈k1 . . . kn〉.inwhile . bool

Γ ` b . bool

Γ ` k † [b] . k : †
[EInwhile],[Message]

Γ; ∆ ` e . bool Γ ` P .∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.outwhile(e){P} .∆ · k1 : ![τ1]
∗.end, ..., kn : ![τn]∗.end

[Outwhile]

Γ ` Q .∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.inwhile{P} .∆ · k1 : ?[τ1]
∗.end, ..., kn : ?[τn]∗end

[Inwhile]

Γ ` P .∆ Γ ` Q .∆′

Γ ` P ; Q .∆; ∆′
Γ ` P .∆ Γ ` Q .∆′

Γ ` P | Q .∆ ◦∆′
[Seq],[Conc]

[EInwhile] is a rule for inwhile-expression. The iteration session type of ki

is recorded in ∆. This information is used to type the nested iteration with

outwhile in rule [Outwhile]. Rule [Inwhile] is dual to [Outwhile]. Rule [Message]

types runtime messages as †. Sequential and parallel compositions use the

above algebras to ensure the linearity of channels.

7.4.5. Well-formed Topologies

We now define the well-formed topologies. Since our multi-channel primitives

offer an effective, structured message passing synchronisation mechanism,

the following simple definition is sufficient to capture deadlock-freedom in

representative topologies for parallel algorithms. Common topologies in

parallel algorithms such as circular pipeline (ring), mesh and wraparound

mesh all conform to our well-formed topology definition below. The defi-

nition of well-formed ring (Definition A.1) and well-formed mesh topology

(Definition A.2) is defined in the Appendix (Section A.1.2), and we show
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that they both conform to our definition of well-formed topology (Defini-

tion 7.1). Below we call P is a base if P is either 0, k〈e〉, k(x).0, k C l or

k B {li : 0i}i∈{1..n}.

Definition 7.1 (Well-formed topology.) Suppose a group of n parallel

composed processes P = P1 | . . . | Pn such that Γ ` P .∆ with ∆(k) = ⊥
for all k ∈ dom(∆); and k(i,j) denotes a free session channel from Pi to Pj

1.

We say P conforms to a well-formed topology if P inductively satisfies one of

the following conditions:

1. (inwhile and outwhile)

P1 = 〈k̃〉.outwhile(e){Q1}
Pi = 〈k̃i〉.outwhile(〈k̃i〉.inwhile){Qi} (2 ≤ i < n)

Pn = 〈k̃′n〉.inwhile{Qn}
k̃i ⊂ k(i,i+1) · · · k(i,n), k̃′i ⊂ k(1,i) · · · k(i−1,i)

and (Q1 | · · · | Qn) conforms to a well-formed topology.

2. (sequencing)

Pi = Q1i; ...;Qmi

where (Qj1 | Qj2 | · · · | Qjn) conforms to a well-formed topology for

each 1 ≤ j ≤ m.

3. (base) (1) session actions in Pi follow the order of the index (e.g. the

session actions at k(i,j) happen before k(h,g) if (i, j) < (h, g)), then the

rest is a base process P ′i ; and (2) Pi includes neither shared session

channels, inwhile nor outwhile.

Intuition The core idea behind the well-formed topology is to ensure at

any iteration of the parallel program, all processes are synchronised by the

same iteration condition. For example, when one of the processes in an

iterative algorithm decides that the results has converged, all other processes

in the parallel program should all terminate in the next iteration so there is

no communication mismatch between the processes.

1Pi is a process which uses outwhile and Pj is a process which uses inwhile on the session
k(i,j).
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In order to capture this core idea in a group of parallel processes, each

process is treated as a node in a directed acyclic graph (DAG) of connected

processes. The directed edges between nodes represent the flow of control

messages between processes, where edges out of a node are sessions with

outwhile (sending a control message out) and edges into a node are sessions

with inwhile (receive a control message and use as loop condition).

For this graph to follow a well-formed topology, i.e. all nodes synchronised

by a single flow of control messages, the graph must be a DAG which has

a single source node (only outwhile) and a single sink node (only inwhile).

This ensures, at each iteration, there is only one node that can send out a

control message (source node) and a only one node to consume the control

message and end the global iteration (sink node). To express this condition,

our definition of a well-formed topology gives all processes a partial ordering

(i.e. Figure 7.13), where all processes in a well-formed topology must fit into,

and the control messages flow from one end to another.

P1 Ph Pi−1 Pi Pi+1 Pm Pn. . . . . .. . . . . .

k(i,m) i � m

k(h,i) h � i

Figure 7.13.: Multi-channel ordering.

Figure 7.13 explains condition (1) of the above definition, ensuring consis-

tency of control flows within iterations. Subprocesses Pi are ordered by their

process index i. A process Pi can only send outwhile control messages to

processes with a higher index via ~ki (denoted by k(i,m)), while it can receive

messages from those with a lower index via ~k′i (denoted by k(h,i)). This

ordering guarantees absence of cycles of communications.

There is only one source P1 (only sends outwhile control messages) and one

sink Pn (only receives those messages). (2) says that a sequential composition

of well-formed topologies is again well-formed. (3) defines base cases which

are commonly found in the algorithms: (3-1) means that since the order of

session actions in Pi follow the order of the indices, ΠiPi reduces to ΠiP
′
i

without deadlock; then since ΠiP
′
i is a parallel composition of base processes

where each channel k has type ⊥, ΠiP
′
i reduces to 0 without deadlock. (3-2)
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ensures a single global topology.

7.4.6. Subject Reduction, Communication Safety and

Deadlock Freedom

We state here that process groups conforming to a well-formed topology

satisfy the main theorems. The full proofs can be found in Section A.1.3 in

the Appendix.

Theorem 7.1 (Subject Reduction) Assume P forms a well-formed topol-

ogy and Γ ` P .∆. Suppose P→∗P ′. Then we have Γ ` P ′ .∆′ with ∀k

(1) ∆(k) = α implies ∆′(k) = α†; or

(2) ∆(k) = α† implies ∆′(k) = α; or

(3) ∆(k) = β implies ∆′(k) = β.

(1) and (2) state an intermediate stage where messages are floating; or (3) the

type is unchanged during the reduction. The proof requires to formulate the

intermediate processes with messages which are started from a well-formed

topology, and prove they satisfy the above theorem.

Proof idea Given a group of parallel processes that follow the well-formed

topology (i.e. control messages are consistent between iterations), we need to

show that the reduction of the processes following the reduction rules does

not get stuck. Our proof focuses on the interaction between multi-channel

inwhile and outwhile, where we analyse the reduction of a generic well-formed

topology, which is a parallel composition between a process with outwhile

only (source), processes with both outwhile and inwhile, and processes with

inwhile only (sink). We consider two cases: (1) when the iteration condition

is true and (2) when the iteration condition is false. In both cases, the source

creates a runtime construct representing the control message (k † true or

k † false) and passes the control message to all other processes. After its

successful multi-step reduction to 0, all control messages are consumed by

the sink so they do not interfere with subsequent iterations. Theorem 7.1

holds at every step of the reduction, and the properties below simply follow

from the results of the subject reduction proof.

173



We say a process has a type error if expressions in P contain either a type

error of values or constants in the standard sense (e.g. if 100 thenP elseQ ).

To formalise communication safety, we need the following notions. Write

inwhile (Q) for either inwhile expression or inwhile{Q}. We say that a process

P is a head subprocess of a process Q if Q ≡ E[P ] for some evaluation context

E. Then k-process is a head process prefixed by subject k (such as k〈e〉).
Next, a k-redex is the parallel composition of a pair of k-processes. i.e. either

in form of a pair such that (k〈e〉, k(x).Q), (k C l, k B {li : Qi}i∈{1..n}),
(k〈k′〉; , k(k′).P ), (〈k1 . . . kn〉.outwhile(e){P}, 〈k1 . . . kn〉.inwhile{Q}) with k ∈
{k1, .., kn}∩{k′1, .., k′m} or (k†[b] | 〈k′1 . . . k′m〉.inwhile(Q)) with k ∈ {k1, .., kn}.
Then P is a communication error if P ≡ (ν ũ)(defP inQ | R) where Q is,

for some k, the parallel composition of two or more k-processes that do not

form a k-redex. The following theorem is direct from the subject reduction

theorem [YV07, Theorem 2.11].

Theorem 7.2 (Type and Communication Safety) A typable process which

forms a well-formed topology never reduces to a type nor communication

error.

Below we say P is deadlock-free if for all P ′ such that P →∗ P ′, P ′ → or

P ′ ≡ 0. The following theorem shows that a group of typable multiparty

processes which form a well-formed topology can always move or become

the null process.

Theorem 7.3 (Deadlock Freedom) Assume P forms a well-formed topol-

ogy and Γ ` P .∆. Then P is deadlock-free.

7.5. Performance Evaluation

This section presents performance results for implementations of the n-

Body simulation and Jacobi solution presented in Section 7.3.1 and 7.3.2

respectively. We evaluated our implementations on a 9-node cluster for our

benchmark, and each of the points is an average of 4 runs of the benchmark.

All of them comprise an AMD PhenomX4 9650 2.30GHz CPU with 8GB

RAM. The main objectives of these benchmarks is (1) to investigate the

benefits of the new multi-channel primitives, comparing Old SJ (without

the new primitives) and Multi-channel SJ (with the new primitives); and (2)
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Figure 7.14.: Benchmark results: 3 nodes n-body simulation.

compare those with MPJ Express [BC00] for reference. Figure 7.15 shows

a clear improvement when using the new multi-channel primitives in SJ.

Multi-channel SJ also performs competitively against MPJ Express in both

benchmarks. Hence SJ can be a viable alternative to MPI programming in

Java, with the additional assurances of communication-safety and deadlock-

free.

7.6. Summary and Discussion

This chapter introduced multi-channel session primitives and its formalisation.

Combining with an additional communication topology verification, the

approach offers an alternative to programming with a global view offered by

MPST. It represents a new way of parallel programming, by chaining binary

sessions to construct a global topology for parallel applications.

Our approach gives a clear definition of a class of communication-safe

and deadlock-free programs as proved in Theorems 7.2 and 7.3, which have

been statically checked without exploring all execution states for all possible

thread interleavings. Our formalisation of the primitives enabled us to define
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correctness conditions on the topology of interleaved sessions commonly used

in session-typed parallel algorithm implementations. We have implemented

a topology verifier to enforce these conditions statically on a configuration

file. Finally, benchmark results in Section 7.5 demonstrate how the new

primitives, implemented in the session-typed object-oriented programming

language SJ, can deliver the above benefits and perform competitively against

a Java-based MPI [BC00].
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8 Conclusion and Future Work

This chapter begins by discussing selected related work in the light of the

contributions of the thesis, before reviewing the conclusions of the thesis as

a whole, and identifying directions for future research.

8.1. Related Work

This section we discuss research related to the contributions of this thesis. We

focus on formally-based languages for guaranteeing correctness properties in

distributed or parallel programming, and formal analysis on existing parallel

programming methodologies.

8.1.1. Formally-founded Communications Programming

Languages

Pilot [CGG10] is a parallel programming layer on top of standard MPI, aim-

ing to simplify complex MPI primitives based on CSP. The communication

is synchronous and channels are untyped to allow a reuse for different types.

The implementation includes an analyser to detect communication deadlock

at runtime. Our proposed framework Session C is static and is able to detect

and prevent deadlocks before execution.

Occam-pi [Occ] is a system-level efficient concurrent language with channel-

based communication based on CSP and the π-calculus. It offers various

locking and barrier abstractions, but do not support deadlock analysis.

Heap-Hop [VJ11] is a verification tool for C based on dual contracts and

Separation Logic. It can detect a deadlock based on contract specifications,

but treats only binary (two parties) communications. Our work differs

in that we centre on multiparty session-based abstractions for structured

communications programming combined with a full formal assurance for
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communication safety. The authors suggested the possibility of uncovering

potential deadlocks without running the program by extracting and checking

the underlying CSP model from the program code.

Interprocedural Control Flow Graph (ICFG) [SKH06] and parallel Control

Flow Graph (pCFG) [Bro09] are techniques to analyse MPI parallel programs

for potential message leak (i.e. communication mismatch) errors. Their

approach extends a traditional data-flow analysis by connecting control

flow graphs of concurrent processes to their communication edges in order

to derive the communication pattern and topology of a parallel program.

They take a bottom-up engineering based approach, in contrast to our

formally based, top-down global protocol approach, which can give a high-

level understanding of the overall communication by design, in addition to

the communication safety assurance by Multiparty Session Types.

8.1.2. Parameterised Multiparty Session Types

Pabble’s theoretical basis is developed in [DYBH12a] where parameterised

MPSTs are formalised using the dependent type theory of Gödel’s System T .

The main aim in [DYBH12a] is to investigate the decidability and expressive-

ness of parameterisations of participants. Type checking in [DYBH12a] is

undecidable when the indices are not limited to decidable arithmetic subsets

or the number of the loop in the parameterised types is infinite. The design

of Pabble is inspired by the LTSA tool from a concurrency modelling text

book used at our university over two decades [MK06]. The notations for

parameterisations from the LTSA tool offer not only practical restrictions to

cope with the undecidability of parameterised MPSTs [DYBH12a], but also

concise representations for parameterised parallel languages. Our Pabble

work is the first to apply parameterised MPST in a practical environment

and one foremost aim of our framework with Pabble and parameterised

notation is to be developer friendly [HMB+11, Scr] without compromising

the strong formal basis of session types.

8.1.3. Formal Analysis of Parallel Applications

Formal verification for message-passing parallel programming has been

actively studied in the area of MPI parallel applications. A recent survey

[GKS+11] summarises a wide range of model checking-based verification
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methods for MPI.

Among them, ISP [VVD+08] is a dynamic verifier which applies model-

checking techniques to identify potential communication deadlocks in MPI.

Their tool uses a fixed test harness and in order to reduce the state space of

possible thread interleavings of an execution, the tool exploits an indepen-

dence between thread actions. Later in [VAG+10], the authors improved its

scheduling policy to gain efficiency of the verification.

MSPOE [SGB12] improves on ISP’s partial ordering algorithm to overcome

the defect and detect orphaning deadlocks. All above tools are test-based and

verify correctness with a fixed harness suite. In contrast, our session type-

based approach does not depend on external testing, and a valid, compiled

program is guaranteed communication-safe and deadlock-free in a matter of

seconds.

MUST [HPS+12] is another scalable, MPI dynamic verification tool,

which combines two MPI verification tools, Marmot [KBMR03] and Um-

pire [VdS00], and overcomes scalability challenges in previous tools by

comprehensive analysis of the semantics of the primitives.

TASS [SZ11] is a tool that combines symbolic execution [SMAC08] and

model checking techniques to verify safety properties of MPI programs.

The tool takes a C/MPI application and an input n ≥ 1 which restricts

the input space, then constructs an abstract model with n processes and

checks its functional equivalence and deadlocks by executing the model of

the application. TASS does not verify properties for an unbounded number

of communication participants nor treat parameterisation, whereas we can

work with message-passing programs where the number of participants is

unknown at compile time, if they are written in well-formed, projectable

Pabble.

Above approaches are test-based or model-checking based and may not

be able to cover all possible states of the model, whereas the session type-

based approach does not depend on external testing or extraction of models

from program code to check for safety properties. Most implementations of

session types integrate tightly with the underlying programming language,

and hence encourage designing communication-correct programs from the

start, especially given the high-level communication structure which session

types capture.

Our recent collaboration work [HMM+12, MMV+13] aims to use session
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types for deductive verification of MPI programs. This bottom-up approach

focuses on accurate representing MPI primitives and datatypes, and the

resulting language MPITypes is verified against A Verifier for Concurrent

C (VCC), a concurrent C verifier tool to verify the correctness of the MPI

application. While the Pabble language introduced in chapter 4 is similarly

designed with influences from MPI, it is designed to be an independent

high-level abstraction over distributed interactions. As a result, Pabble

makes no assumption about the execution environment (e.g. collective loops

in MPI and MPITypes), and allows Pabble to represent general protocols

with separate roles in distributed systems.

8.1.4. MPI code generation

The general approach of describing parallel patterns and reusing them with

different computation modules can date back to [DFH+93] by Darlington et

al., where parallel patterns are described as higher order skeleton functions,

written in a functional language. Parallel applications are implemented as

functions that combine with the skeletons and transformed. Their system

targets specialised parallel machines, and our approach targets MPI, a

standard for parallel programming in a range of hardware configurations.

The approach, also known as algorithmic skeleton frameworks for parallel

programming, is surveyed in [GVL10]. Some of these tools also target

MPI for high-level structured parallel programming, and only works with

a limited set of parallel patterns. Our code generation workflow based

on Pabble in Chapter 6 supports generic patterns written in Pabble and

guarantees communication safety in the generated MPI code.

8.1.5. Communication Optimisations in MPI

Techniques for improving performance of MPI include building libraries

for efficient transmission of data, e.g. [DPS+09] or MPI-aware optimising

compilers, e.g. [FL11], which convert all MPI communication into one-sided

communication for performance. Most computation and communication

overlap to reduce the negative impact of the communication overhead. Our

asynchronous message optimisation presented in Chapter 3 is one such

instance to facilitate communication-computation overlap. Unlike Session

C, existing works do not offer a similar framework, where a type-theoretic
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basis gives a formal safety assurance for optimised code.

8.1.6. Dependent Typing Systems

Liquid Type [RKJK08] is a dependent typing system to automatically infer

memory safety properties from program source code without using verbose

annotations. The work [RKJ10] introduced an analyser for the C language in

the low-level imperative environment based on Liquid Types and refinement

types. The recent work on Liquid Types [KRBJ12] applied the tool with

SMT solvers to assist parallelisation of code regions by determining statically

whether parallel threads will run on disjoint shared memory without races.

Our work applies dependent session types to guarantee different kinds of

safety, communication safety and deadlock freedom, in explicit message-

passing based distributed and parallel programming rather than shared

memory concurrency. It is an interesting future topic to integrate with

model-checking tools to handle projectability with more complex indices in

addition to functional correctness of session programs.

8.2. Conclusion

In the beginning of this thesis we discussed why interaction-based parallel

programming is difficult to get right, and that with a formal typing discipline

for concurrency, we will be able to not just model, but also ensure the

lack of communication-related bad behaviours in the model. We asked

the questions, is it feasible to apply and adapt Session Types for parallel

programming?, and how can we apply our methodology practically to scalable

parallel applications? The contributions of the thesis show that answers to

both questions are affirmative. Below we present the summary and conclude

our findings.

8.2.1. Session C

The Session C programming framework is our answer to the first question.

With Session C, we built a programming workflow following the Multiparty

Session Types theory [HYC08], where a global type describes the overall

interaction of an application, and through a endpoint projection algorithm,

we get local types, which are specifications for implementations. Conformance
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of the specifications are ensured by a static type checking process against a

set of runtime communication primitives provided by Session C. The type

checking process also considers asynchronous message passing in optimised

implementations, through the support of asynchronous message passing

theory [Mos09, MY09], commonly found in practices of parallel programming.

8.2.2. Pabble

Our most significant results come from the Pabble protocol description

language [NY14b]. In Chapter 4 we presented the Pabble language which

is parametric and designed especially for modelling interactions between

distributed parallel processes that can scale. Despite the undecidability in

its underlying dependent typing theory [DYBH12b], Pabble overcomes it by

using only integer indices which also adds practicality to the language. We

developed theory and tool to ensure that Pabble protocols are safe even when

they scale up to an unbounded number of processes.

This leads us to another of our contributions in Chapter 6, a framework

for parallel code generation. Pabble protocol generates an MPI application

without computation code, and the application is combined with computation

kernels developed by programmers as sequential source code, using an aspect-

oriented compilation tool. The end results are parallel applications that are

guaranteed lack of communication errors by construction.

8.2.3. Multi-channel Primitives

The multi-channel primitives introduced in Chapter 7 are a departure from

the Multiparty Session Types framework that Session C and Pabble are based

on. However, it represents a different approach to parallel programming,

where the multi-channel primitives connect pairs of interacting processes, and

a parallel application is simply a connected set of binary interacting processes.

The overall topology, which is similar to a global protocol specification,

is verified separately by a topology verifier, but the binary sessions are

guaranteed to be correct by the Session Java language which we use to

implement the multi-channel primitives.
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8.2.4. Challenges

All three approaches have their advantages and disadvantages. Session C is

a framework that can strongly guarantee safety through static checking, but

is limited by its small set of runtime primitives that a user can use; Static

type checking also means that with a dependent specification, e.g. Pabble,

checking will likely require model checking tools to explore all possibility

expansion of expressions when checking for equivalence against protocol.

Pabble code generation is simple and powerful, since it uses the standard

MPI as target runtime, but the users do not need to program the complex

MPI directly. While the framework is designed with performance in mind,

experienced users of MPI might find our framework too conservative as we

disallow most potentially unsafe operations because of our safety guarantees.

The biggest advantage of multi-channel primitives is that it does not only

allow parallel programming with binary sessions, but that the primitives are

useful also for expressing interleaving (multiparty) sessions. It provides a

way to express synchronisation of multiple sessions in the same processes.

However, the current multi-channel primitive approach may seem cumber-

some when an alternative multiparty approach, such as Session C, is possible

and feasible.

8.3. Future work

There are a lot of interesting future directions in this line of research, and

below we list the ones that are most relevant to this thesis that can be

followed up immediately.

8.3.1. Session C and Type Checking

Type checking with Session C is limited by the small set of runtime primitives

that Session C provides, and that the current runtime primitives does not

scale as well as MPI (Chapter 5). In order to fulfil the full potential of Session

C as a session-based programming framework, we plan to extend its type

checking support with Pabble for scalable applications, and adding primitives

to support multirole Multiparty Session Types [DY11], which allows dynamic

adding processes to and removing processes from a running session. Both of

these extensions require extra verification to complement static checking: for
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Pabble support, undecidability in type checking will require techniques such

as symbolic execution to expand expressions in the source code if they are

needed for Pabble role index calculation; for multirole session types support,

dynamic checks will be employed to ensure the application remain safe after

adding or removing a process from the session.

Moreover, the runtime primitives will have to be updated to match the

expressiveness of Pabble and multirole session types. Since MPI is a stan-

dardised interface, and it has sufficient features to support, it would be one

of the leading candidates to replace the current runtime primitives.

The development workflow will be simplified if global protocols can be

synthesised as described in a recent work [DY13], so application developers

can ensure correctness of existing code by global protocol synthesis.

8.3.2. Pabble and Code Generation

A number of enhancements are planned for Pabble including support for

annotations which can complement the protocol description to specify asser-

tions. The type checking process can use the extra constraints or conditions

provided to combine with model checkers to also assure functional correct-

ness of the overall application. Annotations will also enable integration

with runtime monitoring described in [HNY+13] for a combined static and

dynamic approach to communication correct application using Pabble.

Further extensions of Pabble may include adding theory and tooling support

for modelling process creation and destroy in the protocol level with the

multirole work described for runtime and checking changes.

We also plan to introduce the existential operator to capture nondetermin-

istic message passing (such as MPI receive-any) operations. For example, to

model dynamic load balancing between multiple clients:

µx.∃w : worker1..N{c→ master〈request〉; master→ w〈reply〉};x

This describes the pattern where a number of workers, in unspecified order,

exchange messages with the master coordinator process. It is difficult

to perform static session type checking on parallel programs with such a

nondeterministic interaction pattern not known in the protocol. Our early

unpublished results show that such structured pattern can be modelled safely

under certain conditions.
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Error recovery is also a topic of interest, as large scale high performance

parallel applications often need to gracefully handle unexpected errors such

as hardware failures. Type-based approach to error handling and recovery

will be explored as part of ongoing research on Scribble (the language which

Pabble extends from).

Finally, our long term goal for Pabble is to extend the language for it

to become an ubiquitous language for describing protocols used in parallel

programming. We envisage it to be used for both type checking (e.g. Session

C) and code generation approaches to ensuring communication correctness.

Developing ways of integrating Pabble in different parallel programming envi-

ronment, such as FPGA heterogeneous computing, will be a step towards our

goal. For example, our kernel-based code generation framework with Pabble

shares a lot of common features with the data-flow programming model,

which rising in popularity for designing reconfigurable hardware/FPGAs.

8.3.3. Multi-channel Primitives

In the conclusion we hinted that the multi-channel primitives can be adapted

as a general synchronisation mechanism for interleaving multiparty sessions.

It is a future topic to explore how they can be implemented in other session

programming approaches and what impact they can bring about. This thesis

showed that multi-channel primitives can help breaking down development

of larger parallel applications to modules of smaller binary sessions. There

is potential that the primitives can simplify application development of

large scale applications, which individual components can be developed

separately with independent sessions. The components and session can then

be connected when needed, using the multi-channel primitives.
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A Appendix

A.1. Appendix for Chapter 7

A.1.1. Multi-channel Session Typing Rules

This section lists the omitted full typing rules from Section 7.4, listed in

Figure A.1. In this context, fn(Q) denotes a set of free shared and session

channels, and fpv(D) stands for a set of free process variables. In the

typing system, ∆ is complete means that ∆ includes only end or ⊥. Further

explanations can be found in [Ng10].

A.1.2. Well-Formed Ring and Mesh Topologies

We define well-formed ring (Definition A.1) and mesh topologies (Defini-

tion A.2). We can check that they conform to the general definition of

well-formed topology (Definition 7.1). Figure A.2 shows the rank of each

process for each topology, indicating how both rings and meshes map to the

general definition.

Definition A.1 (Well-formed Ring Topology) A process group

P1 | Pi | PN
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Γ ` 1 . nat Γ ` true, false . bool

Γ ` ei . nat

Γ ` e1 + e2 . nat
[Nat],[Bool],[Sum]

Γ · a : S ` a . S
Γ; ∆ ` e . S

Γ; ∆,∆′ ` e . S
[Name],[Eval]

∆ = k1 : ?[τ1]
∗
end, . . . , kn : ?[τn]∗end

Γ; ∆ ` 〈k1 . . . kn〉.inwhile . bool
[EInwhile]

Γ ` P .∆ · k : ε.end

Γ ` P. ⊥
∆ complete

Γ ` 0 .∆
[Bot],[Inact]

Γ ` a . 〈α, α〉 Γ ` P .∆ · k : α

Γ ` a(k).P .∆
[Req]

Γ ` a . 〈α, α〉 Γ ` P .∆ · k : α

Γ ` a(k).P .∆
[Acc]

Γ ` e . S
Γ ` k〈e〉 .∆ · k : ![S]; end

Γ · x : S ` P .∆ · k : α

Γ ` k(x).P .∆ · k : ?[S];α
[Send],[Rcv]

Γ ` P1 .∆ · k : τ1.end · · · Γ ` Pn .∆ · k : τn.end

Γ ` k B {li : Pi}i∈{1..n} .∆ · k : & {li : τi}i∈{1..n}.end
[Br]

Γ ` P .∆ · k : τj .end 1 ≤ j ≤ n
Γ ` k C l;P .∆ · k : ⊕ {li : τi}i∈{1..n}.end

[Sel]

Γ ` k〈k′〉; .∆ · k : ![α]; end · k′ : α
Γ ` P .∆ · k : β · k′ : α

Γ ` k(k′).P .∆ · k : ?[α];β
[Thr],[Cat]

Γ ` e . bool Γ ` P .∆ Γ ` Q .∆

Γ ` if e thenP elseQ .∆
[If]

Γ∆ ` e . bool Γ ` P .∆ · k1 : τ1.end · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.outwhile(e){P} .∆ · k1 : ![τi.end]∗
[Outwhile]

Γ ` Q .∆ · k1 : τ1.end · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.inwhile{Q} .∆ · k1 : ?[τi.end]∗
[Inwhile]

Γ ` bi . bool

Γ ` Πi∈{1..n}ki † [bi] . k1 : †, ..., kn : †
[Message]

Γ · a : S ` P .∆

Γ ` (ν a)(P ) .∆

Γ ` P .∆ · k : ⊥
Γ ` (ν k)(P ) .∆

[NRes],[CRes]

Γ; ∅ ` e . S
Γ ·X : Sα ` X[ek] .∆ · k : α

[Var]

Γ ·X : Sα · x : S ` P . k : α Γ ·X : Sτ ` Q .∆

Γ ` {Xi(xiki) = Pi}i∈{1..n} in Q .∆
[Def]

Γ ` P .∆ Γ ` Q .∆′

Γ ` P ;Q .∆; ∆′
Γ ` P .∆ Γ ` Q .∆′

Γ ` P | Q .∆ ◦∆′
[Seq],[Conc]

Figure A.1.: Multi-channel Session Types: Typing rules.
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conforms to a well-formed ring topology if:

P1 = 〈k1,2, k1,n〉.outwhile(e){Q1[k12, k1n]}

Pi = 〈ki,i+1〉.outwhile(〈ki−1,i〉.inwhile){Qi[ki,i+1, ki−1,i]}

PN = 〈k1,n, kn−1,n〉.inwhile{QN [k1,n, kn−1,n]}

where 1 ≤ i ≤ n

Γ ` P1 . {k1,2 : T1,2, k1,n : T1,n}

Γ ` Pi . {ki,i+1 : Ti,i+1, ki−1,i : T
′
i−1,i}

Γ ` PN . {k1,n : T ′1,n, kn−1,n : T ′n−1,n}

with Ti,j = T ′i,j

Definition A.2 (Well-formed Mesh Topology) A process group

PNW | PNE | PSW | PSE | PN1 . . . | PNm | PS1 . . . | PSm

| PE1 . . . | PEn | PW1 . . . | PWn | PC22 . . . | PCn−1m−1
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conforms to a well-formed mesh topology if:

PNW = 〈t1, l1〉.outwhile(e){QNW [t1, l1]}

PNj = 〈tj+1, vc1j〉.outwhile(〈tj〉.inwhile){QNj [tj+1, vc1j , tj ]}

PNE = 〈r1〉.outwhile(〈tm〉.inwhile){QNE [r1, tm]}

PWi = 〈hci1, li+1〉.outwhile(〈li〉.inwhile){QW [hci1, li+1, li]}

PCij = 〈vci+1 j , hci j+1〉.outwhile(〈hcij , vcij〉.inwhile){

QCij [vci+1 j , hci j+1, hcij , vcij ]}

PEi = 〈ri+1〉.outwhile(〈hcim, ri〉.inwhile){

QEi [ri+1, hcim, ri]}

PSW = 〈b1〉.outwhile(〈ln〉.inwhile){QSW [b1, ln]}

PSj = 〈bj+1〉.outwhile(〈bj , vcnj〉.inwhile){

QSj [bj+1, bj , vcnj ]}

PSE = 〈bm, rn〉.inwhile{QSE [bm, rn]}

where 1 ≤ i ≤ n, 1 ≤ j ≤ m

Γ ` QNW . {t1 : Tt1 , l1 : Tl1}

Γ ` QNj . {tj+1 : Ttj+1 , vc1j : Tvc1j , tj : T ′tj}

Γ ` QNE . {r1 : Tr1 , tm : T ′tm}

Γ ` QW . {hci1 : Thci1 , li+1 : Tli+1
, li : T

′
li
}

Γ ` QCij . {vci+1 j : Tvci+1 j , hci j+1 : Thci j+1
, hcij : T ′hcij , vcij : T ′vcij}

Γ ` QEi . {ri+1 : Tri+1 , hcim : Thcim , ri : T
′
ri}

Γ ` QSW . {b1 : Tb1 , ln : T ′ln}

Γ ` QSj . {bj+1 : Tbj+1
, bj : T ′bj , vcnj : T ′vcnj

}

Γ ` QSE . {bm : T ′bm , rn : T ′rn}

with Ti = T ′i
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Figure A.2.: Ring, mesh, and wraparound mesh topologies, with rank anno-
tations.

A.1.3. Proofs for Multi-channel Session Calculus Subject

Reduction, and Deadlock Freedom

This subsection presents the proofs for the theorems associated to the Multi-

channel session types omitted from Chapter 7.
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We first present a definition for sequential composition (Definition A.3),

parallel composition (Definition A.4), both involving runtime session types

and completed session types. Then we present the Subject Congruence

theorem (Theorem A.1) and the Subject Reduction theorem (Theorem 7.1),

and finally Deadlock Freedom theorem (Theorem 7.3).

Sequential Composition

Definition A.3 Sequential composition of session type are defined as [DCdLY08]:

τ ; α =

{
τ.α if τ is a partial session type and α is a completed session type

⊥ otherwise

∆; ∆′ = ∆ \ dom(∆′) ∪

∆′ \ dom(∆) ∪

{k : ∆(k) \ end; ∆′(k) | k ∈ dom(∆) ∩ dom(∆′)}

The first rule concatenates a partial session type τ with a completed

session type α to form a new (completed) session type. The second rule can

be decomposed to three parts:

1. ∆ \ dom(∆′) extracts session types with sessions unique in ∆

2. ∆′ \ dom(∆) extracts session types with sessions unique in ∆′

3. {k : ∆(k) \ end; ∆′(k) | k ∈ dom(∆)∩dom(∆′)} modifies session types

with a common session k in ∆ and ∆′ by removing end type from ∆(k)

and concatenates the modified ∆(k) (which is now a partial session

type) with ∆′(k) as described in the first rule.

Example A.1 Suppose ∆ = {k1 : ε.end, k2 : ![nat]; end}
and ∆′ = {k2 : ?[bool]; .end, k3 : ![bool]; end} . Since k1 is unique in ∆ and

k3 is unique in ∆′, we have

∆\dom(∆′) = {k1 : ε.end} and ∆′\dom(∆) = {k3 : ![bool]; end}

A new session type is constructed by removing end in ∆(k2), so the composed
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set of mappings is

∆; ∆′ = {k1 : ε.end, k2 : ![nat]; ?[bool]; endType, k3 : ![bool]; end}

Parallel Composition

Definition A.4 Parallel composition of session and runtime type is defined

as:

∆ ◦∆′ =∆ \ dom(∆′) ∪∆′ \ dom(∆) ∪ {k : β ◦ β′ | ∆(k) = β and ∆′(k) = β′}

where β ◦ β′ :


α ◦ † = α†

α ◦ α = ⊥
α ◦ α† = ⊥†

The parallel composition relation ◦ is commutative as the order of composition

do not impact the end result.

Subject Congruence

Theorem A.1 Subject congruence is defined by

Γ ` P .∆ and P ≡ P ′ implies Γ ` P ′ .∆

Pooof. Case P | 0 ≡ P . We show that if Γ ` P | 0 .∆, then Γ ` P .∆.

Suppose

Γ ` P .∆1 and Γ ` 0 .∆2.

with ∆1 ◦∆2 = ∆. Note that ∆2 only contains ε.end or ⊥, hence we can set:

∆1 = ∆′1 ◦ {k : ε.end} and ∆2 = ∆′2 · {k : ε.end} with ∆′1 ◦∆′2 = ∆′1 ·∆′2 and

∆ = ∆′1 ·∆′2 · {k : ⊥}. Then by the [Bot]-rule, we have:

Γ ` P .∆′1 · {k : ⊥}

Notice that, given the form of ∆ above, we know that dom(∆′2) ∩ dom(∆′1) ·
{k : ⊥}) = ∅. Hence by applying Weakening, we have:

Γ ` P .∆′1 ·∆′2 · {k : ⊥}

as required.
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For the other direction, we set ∆ = ∅ in [Inact].

Case P | Q ≡ Q | P .◦ relation is commutative by the definition of ◦
(Definition A.4)

Case (P | Q) | R ≡ P | (Q | R). To show (P | Q) | R ≡ P | (Q | R), where

Γ ` P .∆1 Γ ` Q .∆2 Γ ` R .∆3

We assume (∆1 ◦∆2) ◦∆3 is defined

Suppose k : β1 ∈ ∆1 and k : β2 ∈ ∆2, then we have


β1 = α β2 = †
β1 = α β2 = α

β1 = α β2 = α†

β1 = † β2 =⊥

Now suppose k : β3 ∈ ∆3,

if β1 = α β2 = †, then β3 = α

(β1 ◦ β2) ◦ β3 = ({k : α} ◦ {k : †}) ◦ {k : α} = {k : ⊥†}

≡β1 ◦ (β2 ◦ β3) = {k : α} ◦ ({k : †} ◦ {k : α}) = {k : ⊥†}

if β1 = α β2 = α, then β3 = †

(β1 ◦ β2) ◦ β3 = ({k : α} ◦ {k : α}) ◦ {k : †} = {k : ⊥†}

≡β1 ◦ (β2 ◦ β3) = {k : α} ◦ ({k : α} ◦ {k : †}) = {k : ⊥†}

in all other cases, k /∈ dom(∆3) and therefore no parallel composition is

possible.

Case (ν u)(P ) | Q ≡ (ν u)(P | Q) if u 6∈ fn(Q). The case when u is a name

is standard. Suppose u is channel k and assume Γ ` (ν k)(()P | Q) .∆. We

have
Γ ` P .∆′1 Γ ` Q .∆′2

Γ ` P | Q .∆′ · k : ⊥

with ∆′ · k : ⊥= ∆′1 ◦∆′2 and ∆′ ≺ ∆ by [Bot]. First notice that k can be in

either ∆′i or in both. The interesting case is when it occurs in both; from

Lemma A.3(1) and the fact that k 6∈ fn(Q) we know that ∆′1 = ∆1 · k : ε.end
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and ∆′2 = ∆2 · k : ε.end. Then, by applying the [Bot]-rule to k in P , we have

Γ ` P .∆1 · k : ⊥, and by applying [CRes] we obtain Γ ` (ν k)(P ) .∆1. On

the other hand, by Strengthening, we have Γ ` Q.∆2. Then, the application

of [Conc] yields Γ ` (ν k)(P | Q) . ∆′. Then by applying the [Bot]-rule, we

obtain Γ ` (ν k)(P | Q) .∆, as required. The other direction is easy.

Case (ν u)(0) ≡ 0. Standard by Weakening and Strengthening.

Case def D in 0 ≡ 0. Similar to the first case using Weakening and Strength-

ening.

Case (ν u)(def D in P ) ≡ def D in (ν u)(P ) if u 6∈ fn(D). Similar to the

scope opening case using Weakening and Strengthening.

Case (def D in P ) | Q ≡ def D in (P | Q) if fpv(D) ∩ fpv(Q) = ∅. Similar

with the scope opening case using Weakening and Strengthening.

Case 0;P ≡ P . We show that if Γ ` 0;P .∆, then Γ ` P .∆. Suppose

Γ ` 0 .∆1 and Γ ` P .∆2.

with ∆1; ∆2 = ∆. ∆2 only contains ε.end or ⊥, by definition of sequential

composition (Definition A.3), ∆(k) = ∆1(k).∆2(k) = ε.∆2(k) = ∆2(k) as

required. �

Subject Reduction

We now present some auxiliary results for subject reduction, the following

proofs are modified from [YV07], and adapted to our updated typing system.

Lemma A.1 (Weakening Lemma) Let Γ ` P .∆.

1. If X 6∈ dom(Γ), then Γ ·X : Sα ` P .∆.

2. If a 6∈ dom(Γ), then Γ · a : S ` P .∆.

3. If k 6∈ dom(∆) and α =⊥ or α = ε.end, then Γ ` P .∆ · k : α.

Pooof. A simple induction on the derivation tree of each sequent. For 3, we

note that in [Inact] and [Var], ∆ contains only ε.end. �

Lemma A.2 (Strengthening Lemma) Let Γ ` P .∆.
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1. If X 6∈ fpv(P ), then Γ \X ` P .∆.

2. If a 6∈ fn(P ), then Γ \ a ` P .∆.

3. If k 6∈ fn(P ), then Γ ` P .∆ \ k.

Pooof. Standard. �

Lemma A.3 (Channel Lemma) 1. If Γ ` P .∆ · k : α and k 6∈ fn(P ),

then α =⊥, ε.end.

2. If Γ ` P .∆ and k ∈ fn(P ), then k ∈ dom(∆)

Pooof. A simple induction on the derivation tree of each sequent.

We omit the standard renaming properties of variables and channels, but

present the Substitution Lemma (Lemma A.4) for names. Note that we do

not require a Substitution Lemma for channels or process variables, for they

are not communicated. �

Lemma A.4 (Substitution Lemma) If Γ ` P .∆ · k and Γ ` c : S, then

Γ ` P{c/x} .∆

Pooof. Standard.

We write ∆ ≺ ∆′ if we obtain ∆′ from ∆ by replacing k1 : ε.end, . . . , kn : ε.end

(n ≥ 0) in ∆ by k1 : ⊥, . . . , kn : ⊥. If ∆ ≺ ∆′, we can obtain ∆′ from ∆ by

applying the [Bot]-rule zero or more times. �

Definition A.5 A process is under a well-formed intermediate topology if:
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1. (inwhile and outwhile)

P1 = 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

Pi = 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile{)}{

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]}

| k(i,i+1) † [b] | k(1,i) † [b] | . . . | k(i−1,i) † [b]

when i ∈ {2..M − 1}, b ∈ {true, false}

Pj = 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}

| k(1,j) † [b] | . . . | k(j−1,j) † [b]

when j ∈ {M..N}∀b ∈ {true} or ∀b ∈ {false}

and

Γ ` Q1 . {k(1,2) : T(1,2), · · · , k(1,N) : T(1,N)}

Γ ` Qi . {k(i,i+1) : T(i,i+1), · · · , k(i,N) : T(i,N),

k(1,i) : T ′(1,i)
†, · · · , k(i−1,i) : T ′i−1i

†}

Γ ` Qj . {k(1,j) : T ′(1,j)
†, k(j−1,j) : T ′(j−1,j)

†}

and

Γ ` Q1 | Q2 | · · · | Qn . {k̃ : ⊥̃†}

with T(i,j) = T ′(i,j)

2. (sequencing) Pi = Q1i; ...;Qmi where (Qj1 | Qj2 | · · · | Qjn) conforms

a well-formed intermediate topology for each 1 ≤ j ≤ m.

3. (base) (1) session actions in Pi follows the order of the index (e.g. the

session actions at k(i,j) happens before k(h,g) if (i, j) < (h, g)), then the

rest is a base process P ′i ; and (2) Pi includes neither shared session

channels, inwhile nor outwhile.

Theorem 7.1 (Subject reduction) The following subject reduction

rules hold for a well-formed topology (Definition 7.1). Γ ` P . ∆ and

P → P ′ implies Γ ` P ′ .∆′ such that

∆(k) = α⇒

{
∆′(k) = α

∆′(k) = α†
∆(k) = α† ⇒

{
∆′(k) = α

∆′(k) = α†
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Under a well-formed intermediate topology (Definition A.5)

Γ ` P .∆ and P →∗ P ′ implies Γ ` P ′ .∆′ such that

∆(k) = α⇒

{
∆′(k) = α

∆′(k) = α†
∆(k) = α† ⇒

{
∆′(k) = α

∆′(k) = α†

Pooof. We assume that

Γ ` e . S and e ↓ c implies Γ ` c . S (A.1)

and prove the result by induction on the last rule applied. For simplicity,

assume all nodes are fully connected.

Case inwhile/outwhile for N processes (ν k̃)(P1 | . . . | PN ). Assume well-

formed topology (Definition 7.1)

Case E[e]→ E[true]

By [Ow1],

νk̃ (〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ ( Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e′){Q1[k(1,2), . . . , k(1,N)]}

| k(1,2) † [true] | . . . | k(1,N) † [true]

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | k(1,2) † [true] | . . . | k(1,N) † [true] | Pi∈2..M−1 | Pj∈M..N )

.{k(1,2) : T(1,2); ![T(1,2)]
∗◦?[T ′(1,2)]

∗†, . . . , k(1,N) : T(1,N); ![T(1,N)]
∗◦?[T ′(1,N)]

∗†,

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗
, . . . , k(i,N) : ![T(i,N)]

∗◦?[T ′(i,N)]
∗}
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By [IwE1],

νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(1,2) † [true] | . . . | k(1,N) † [true]

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(1,3) † [true] | . . . | k(1,N) † [true]

| 〈k(2,3), . . . , k(2,N)〉.outwhile( true ){ Q2[k(2,3), . . . , k(2,N), k(1,2)] }

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Pi∈2..M−1 | Pj∈M..N | k(1,3) † [true] | . . . | k(1,N) † [true])

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦ T ′(1,2); ?[T ′(1,2)]

∗
,

k(1,3) : T(1,3); ![T(1,3)]
∗ ◦ T ′(1,3); ?[T ′(1,3)]

∗†,

. . . , k(1,N) : T(1,N); ![T(1,N)]
∗ ◦ T ′(1,N); ?[T ′(1,N)]

∗†,

k(2,3) : ![T(2,3)]
∗◦?[T ′(2,3)]

∗
, . . . , k(N−1,N) : ![T(N−1,N)]

∗◦?[T ′(N−1,N)]
∗
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By [Ow1],

νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(1,3) † [true] | . . . | k(1,N) † [true]

| 〈k(2,3), . . . , k(2,N)〉.outwhile(true){ Q2[k(2,3), . . . , k(2,N), k(1,2)] }

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(2,3) † [true] | . . . | k(2,N) † [true] | k(1,3) † [true] | . . . | k(1,N)

| Q2[k(2,3), . . . , k(2,N), k(1,2)]; 〈k(2,3), . . . , k(2,N)〉.outwhile(〈k(1,2)〉.inwhile){

Q2[k(2,3), . . . , k(2,N), k(1,2)] }

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Q2;P2 | Pi∈2..M−1 | Pj∈M..N | k(2,3) † [true] |

. . . | k(2,N) † [true] | k(1,3) † [true] | . . . | k(N−1,N) † [true])

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦ T ′(1,2); ?[T ′(1,2)]

∗
,

k(2,3) : T(2,3); ![T(2,3)]
∗ ◦ T ′(2,3); ?[T ′(2,3)]

∗†,

. . . , k(2,N) : T(2,N); ![T(2,N)]
∗ ◦ T ′(2,N); ?[T ′(2,N)]

∗†

k(1,3) : T(1,3); ![T(1,3)]
∗ ◦ T ′(1,3); ?[T ′(1,3)]

∗†,

. . . , k(1,N) : T(1,N); ![T(1,N)]
∗ ◦ T ′(1,N); ?[T ′(1,N)]

∗†,

k(3,4) : ![T(3,4)]
∗◦?[T ′(3,4)]

∗
, . . . , k(N−1,N) : ![T(N−1,N)]

∗◦?[T ′(N−1,N)]
∗
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By repeatedly apply [Ow1] and [IwE1] as above on processes P3..PM−1

νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(2,3) † [true] | . . . | k(2,N) † [true] | k(1,3) † [true] | . . . | k(N−1,N)

| Q2[k(2,3), . . . , k(2,N), k(1,2)]; 〈k(2,3), . . . , k(2,N)〉.outwhile(〈k(1,2)〉.inwhile){

Q2[k(2,3), . . . , k(2,N), k(1,2)] }

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qi[k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗→∗ νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(1,j) † [true] | . . . | k(j−1,j) † [true]

| Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)];

〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)] } when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Qi;Pi∈2..M−1 | Pj∈M..N | k(1,j) † [true] | . . . | k(j−1,j) † [true])

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦ T ′(1,2); ?[T ′(1,2)]

∗
,

. . . , k(1,N) : T(1,N); ![T(1,N)]
∗ ◦ T ′(1,N); ?[T ′(1,N)]

∗
,

k(i,i+1) : T(i,i+1); ![T(i,i+1)]
∗ ◦ T ′(i,i+1); ?[T ′(i,i+1)]

∗
,

. . . , k(i,M−1) : T(i,M−1); ![T(i,M−1)]
∗ ◦ T ′(i,M−1); ?[T ′i,M−1]

∗
,

k(1,j) : ![T(1,j)]
∗◦?[T ′(1,j)]

∗†, . . . , k(j−1,j) : ![T(j−1,j)]
∗◦?[T ′(j−1,j)]

∗†}
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Finally apply [Iw1],

νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| k(1,j) † [true] | . . . | k(j−1,j) † [true]

| Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)];

〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)] } when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ (Q1[k(1,2), . . . , k(1,N)]; 〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)];

〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| Qj [k(1,j), . . . , k(j−1,j)];

〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (Q1;P1 | Qi;Pi∈2..M−1 | Qj ;Pj∈M..N )

.{k(1,2) : T(1,2); ![T(1,2)]
∗ ◦ T ′(1,2); ?[T ′(1,2)]

∗
,

. . . , k(1,N) : T(1,N); ![T(1,N)]
∗ ◦ T(1,N); ?[T(1,N)]

∗,

k(i,i+1) : T(i,i+1); ![T(i,i+1)]
∗ ◦ T ′(i,i+1); ?[T ′(i,i+1)]

∗
,

. . . , k(i,N) : T(i,N); ![T(i,N)]
∗ ◦ T ′(i,N); ?[T ′(i,N)]

∗}

Γ ` (Q1;P1 | Qi;Pi∈2..M−1 | Qj ;Pj∈M..N )

.{k(1,2) : ⊥, . . . , k(1,N) : ⊥, k(i,i+1) : ⊥, . . . , k(i,N) : ⊥}

Case E[e]→ E[false]
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By [Ow2],

νk̃ (〈k(1,2), . . . , k(1,N)〉.outwhile(e){Q1[k(1,2), . . . , k(1,N)]}

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qi[k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ ( 0 | k(1,2) † [false] | . . . | k(1,N) † [false]

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qi[k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (0 | Pi∈2..M−1 | Pj∈M..N | k(1,2) † [false] | . . . | k(1,N) † [false])

.{k(1,2) : τ.end◦?[T(1,2)]
∗†, . . . , k(1,N) : τ.end◦?[T(1,N)]

∗†,

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗
, . . . , k(i,N) : ![T(i,N)]

∗◦?[T ′(i,N)]
∗}

By [IwE2],

νk̃ (0 | k(1,2) † [false] | . . . | k(1,N) † [false]

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {2..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qi[k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗→ k̃ (0 | k(1,3) † [false] | . . . | k(1,N) † [false]

| 〈k(2,3), . . . , k(2,N)〉.outwhile( false ){

Qi[k(2,3), . . . , k(2,N), k(1,2)]}

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}
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Γ ` (0 | Pi∈2..M−1 | Pj∈M..N )

.{k(1,2) : τ.end ◦ τ.end, k(1,3) : τ.end◦?[T ′(1,3)]
∗† . . . , k(1,N) : τ.end◦?[T ′(1,N)]

∗†

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗
, . . . , k(i,N) : ![T(i,N)]

∗◦?[T ′(i,N)]
∗}

By [Ow2],

νk̃ (0 | k(1,3) † [false] | . . . | k(1,N) † [false]

| 〈k(2,3), . . . , k(2,N)〉.outwhile( false ){

Qi[k(2,3), . . . , k(2,N), k(1,2)]}

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ (0 | k(2,3) † [false] | . . . | k(2,N) † [false] | k(1,3) † [false] | . . . | k(1,N) † [false]

| 0

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

Γ ` (0 | k(2,3) † [false] | . . . | k(2,N) † [false] | k(1,3) † [false] | . . . | k(1,N) † [false]

|0 | Pi when i ∈ {3..M − 1} | Pj when j ∈ {M..N})

.{k(1,2) : τ.end, k(1,3) : τ.end◦?[T ′(1,3)]
∗† . . . , k(1,N) : τ.end◦?[T ′(1,N)]

∗†

k(2,3) : τ.end◦?[T ′(2,3)]
∗†, . . . , k(2,N) : τ.end◦?[T ′(2,N)]

∗†,

k(i,i+1) : ![T(i,i+1)]
∗◦?[T ′(i,i+1)]

∗
, . . . , k(i,N) : ![T(i,N)]

∗◦?[T ′(i,N)]
∗}
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By repeatedly apply [Ow2] and [IwE2] as above on processes P3..PM−1

νk̃ (0 | k(2,3) † [false] | . . . | k(2,N) † [false] | k(1,3) † [false] | . . . | k(1,N) † [false]

| 0

| 〈k(i,i+1), . . . , k(i,N)〉.outwhile(〈k(1,i), . . . , k(i−1,i)〉.inwhile){

Qi[k(i,i+1), . . . , k(i,N), k(1,i), . . . , k(i−1,i)]} when i ∈ {3..M − 1}

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗→∗ νk̃ (0 | 0 when i ∈ {2..M − 1} | k(1,j) † [false] | . . . | k(j−1,j) † [false]

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]} when j ∈ {M..N})

Γ ` (0 | 0 when i ∈ {2..M − 1} | k(1,j) † [false] | . . . | k(j−1,j) † [false] | Pj∈M..N )

.{k(1,2) : τ.end, . . . , k(1,N) : τ.end, k(i,i+1) : τ.end, . . . , k(i,M−1) : τ.end◦?[T ′(i,M−1)]
∗
,

k(1,j) : τ.end◦?[T ′(1,j)]
∗†, . . . , k(j−1,j) : τ.end◦?[T ′j−1,j ]

∗†}

Finally apply [Iw2],

νk̃ (0 | 0 when i ∈ {2..M − 1} | k(1,j) † [false] | . . . | k(j−1,j) † [false]

| 〈k(1,j), . . . , k(j−1,j)〉.inwhile{Qj [k(1,j), . . . , k(j−1,j)]}) when j ∈ {M..N}

→∗ νk̃ (0 | 0 when i ∈ {2..M − 1} | 0 when j ∈ {M..N} )

Γ ` (0 | 0 when i ∈ {2..M − 1} | 0 when j ∈ {M..N})

.{k(1,2) : τ.end, . . . , k(1,N) : τ.end, k(i,i+1) : τ.end, . . . , k(i,N) : τ.end}

Finally, apply [Bot].

For other cases, the proof is similar to [Ng10, P. 56-60] �

Theorem 7.3 (Deadlock Freedom) Assume P forms a well-formed

topology and Γ ` P .∆. Then P is deadlock-free.

Pooof.
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Assume Γ ` ΠiPi . ~k : ~⊥ for all cases below. Suppose group of n parallel

composed processes ΠiPi = P1 | . . . | Pn conforms to a well-formed topology

(Definition 7.1).

Case 1.1 inwhile and outwhile, condition true.

P1 =〈~k1〉.outwhile(true){Q1} Pi = 〈~ki〉.outwhile(〈~k′i〉.inwhile){Qi} (2 ≤ i < n)

Pn =〈~k′n〉.inwhile{Qn} ~ki ⊂ k(i,i+1) · · · k(i,n),~k′i ⊂ k(1,i) · · · k(i−1,i)

If the outwhile condition is true, the iteration chain passes the true condition

from the Master process, P1 to all other processes, at the end of the iteration

chain, all processes reduce to Qi;Pi where Qi is the loop body and Pi is the

next iteration of the outwhile/inwhile loop. We will show inductively that Qi

is deadlock free in other cases listed below. The session channel interaction

sequence is shown below.

P1 =
k(1,2)−−−→

∗ k(1,i)−−−→
∗ k(1,n)−−−→

∗
Q1;P1

Pi =
k(1,i)−−−→

∗
k(i−1,i)−−−−→

∗
k(i,i+1)−−−−→

∗ k(i,n)−−−→
∗
Qi;Pi

Pn =
k(1,n)−−−→

∗
k(i,n)−−−→

∗

Qn;Pn

The Master process P1 initiates the interactions in each outwhile/inwhile

iteration chain. All session interactions in each process happen after all

interactions on the left is completed. From above interaction sequence, there

are no processes that can only proceed depending on an interaction step not

readily available. Therefore a correct process Pi will always reduce to Qi;Pi

for a true condition.

Case 1.2 inwhile and outwhile, condition false.

P1 =〈~k1〉.outwhile(false){Q1} Pi = 〈~ki〉.outwhile(〈~k′i〉.inwhile){Qi} (2 ≤ i < n)

Pn =〈~k′n〉.inwhile{Qn} ~ki ⊂ k(i,i+1) · · · k(i,n),~k′i ⊂ k(1,i) · · · k(i−1,i)

Suppose group of parallel composed processes ΠiPi = P1 | . . . | Pn
conforms to a well-formed topology (Definition 7.1). If the 〈c〉.outwhile(o){n}
dition is false, the iteration chain passes the false condition from the Master
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process, P1 to all other processes, at the end of the iteration chain, all

processes reduces to 0 to exit from the outwhile/inwhile loop. The session

channel interaction sequence is shown below:

P1 =
k(1,2)−−−→

∗ k(1,i)−−−→
∗ k(1,n)−−−→

∗
0

Pi =
k(1,i)−−−→

∗
k(i−1,i)−−−−→

∗
k(i,i+1)−−−−→

∗ k(i,n)−−−→
∗
0

Pn =
k(1,n)−−−→

∗
k(i,n)−−−→

∗

0

The interaction sequence is same as the first case, therefore all processesPi

can reduce to 0 with similar reasoning.

Case 2. sequencing. Suppose for a simple case Pi = Q1i;Q2i, and both ΠiQ1i

and ΠiQ2i are deadlock free. By Definition A.3, sequential composition will

not permute the order of communication of each of the processes. Therefore

ΠiPi is deadlock free.

We can show that ΠiPi with Pi = Qi1;Qi2; ...;Qin is deadlock free if all

the subprocesses are deadlock free by induction.

Case 3. base. This case considers a group of processes Pi which do not

include shared session channels, inwhile nor outwhile. The session actions in

each of Pi follows the order of the index, similar to Case 1.1 and Case 1.2.

The session channel interaction sequence is shown below:

P1 =
k(1,2)−−−→

∗ k(1,i)−−−→
∗ k(1,n)−−−→

∗
P ′1

Pi =
k(1,i)−−−→

∗
k(i−1,i)−−−−→

∗
k(i,i+1)−−−−→

∗ k(i,n)−−−→
∗
P ′i

Pn =
k(1,n)−−−→

∗
k(i,n)−−−→

∗

P ′n

The body of the process is deadlock free with same reasoning in Case

1.1, which then reduces to a base process P ′i , and ΠiP
′
i reduces to 0 by the

reason described in Section 7.4.3. �
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A.1.4. Full Process Definitions

This subsection presents the full process definitions and session typing

of example parallel algorithms (N-body simulation and Jacobi solution)

implemented in multi-channel session calculus omitted from Chapter 7. By

showing the full process definition and typing, we show that they conform

to well-formed ring and mesh topologies respectively, and hence are type

and communication safe, which are both subset of our general definition of

well-formed topology (Definition 7.1).

A.1.5. 3-node n-body simulation

P1 ≡ 〈k(1,2), k(1,3)〉.outwhile(e){k(1,2)〈Particle[]〉; k(1,3)(x).0}

P2 ≡ 〈k(2,3)〉.outwhile(〈k(1,2)〉.inwhile){k(2,3)〈Particle[]〉; k(1,2)(x).0}

P3 ≡ 〈k(1,3), k(2,3)〉.inwhile{k(1,3)〈Particle[]〉; k(2,3)(x).0}

where the typing of the processes are:

Γ ` P1 . {k(1,2) : ![![U ]; end]∗, k(1,3) : ![?[U ]; end]∗}

Γ ` P2 . {k(1,2) : ?[?[U ]; end]∗, k(2,3) : ![![U ]; end]∗}

Γ ` P3 . {k(1,3) : ?[![U ]; end]∗, k(2,3) : ?[?[U ]; end]∗}
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A.1.6. Jacobi solution

Below is the full process definition and typing for the Jacobi solution.

P1 = PNW =〈k(1,2), k(1,4)〉.outwhile(e){

k(1,2)〈double[]〉; k(1,2)(x).k(1,4)〈double[]〉;

k(1,4)(y).0}

P2 = PN =〈k(2,4), k(2,5)〉.outwhile(〈k(1,2)〉.inwhile){

k(1,2)(x).k(1,2)〈double[]〉; k(2,4)〈double[]〉;

k(2,4)(y).k(2,5)〈double[]〉; k(2,5)(z).0}

P4 = PNE =〈k(4,7)〉.outwhile(〈k(2,4)〉.inwhile){

k(2,4)(x).k(2,4)〈double[]〉; k(4,7)〈double[]〉;

k(4,7)(y).0}

P3 = PW =〈k(3,5), k(3,6)〉.outwhile(〈k(1,3)〉.inwhile){

k(1,3)(x).k(1,3)〈double[]〉; k(3,5)〈double[]〉;

k(3,5)(y).k(3,6)〈double[]〉; k(3,6)(z).0}

P5 = PC =〈k(5,7), k(5,8)〉.outwhile(〈k(2,5), k(3,5)〉.inwhile){

k(2,5)(w).k(2,5)〈double[]〉; k(3,5)(x).

k(3,5)〈double[]〉; k(5,7)〈double[]〉; k(5,7)(y).k(5,8)〈double[]〉;

k(5,8)(z).0}

P7 = PE =〈k(7,9)〉.outwhile(〈k(4,7), k(5,7)〉.inwhile){

k(4,7)(x).k(4,7)〈double[]〉; k(5,7)(y).k(5,7)〈double[]〉;

k(7,9)〈double[]〉; k(7,9)(z).0}

P6 = PSW =〈k(6,8)〉.outwhile(〈k(3,6)〉.inwhile){

k(3,6)(x).k(3,6)〈double[]〉;

k(6,8)〈double[]〉; k(6,8)(y).0}

P8 = PS =〈k(8,9)〉.outwhile(〈k(5,8), k(6,8)〉.inwhile){

k(5,8)(x).k(5,8)〈double[]〉; k(6,8)(y).k(6,8)〈double[]〉;

k(6,8)〈double[]〉; k(6,8)(z).0}

P9 = PSE =〈k(7,9), k(8,9)〉.inwhile{

k(7,9)(x).k(7,9)〈double[]〉;

k(8,9)(x).k(8,9)〈double[]〉; 0}
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where the typing of the processes are:

Γ ` P1 . {k(1,2) : ![![double[]]; ?[double[]]; end]∗,

k(1,3) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P2 . {k(1,2) : ?[?[double[]]; ![double[]]; end]∗,

k(2,4) : ![![double[]]; ?[double[]]; end]∗,

k(2,5) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P4 . {k(2,4) : ?[?[double[]]; ![double[]]; end]∗,

k(4,7) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P3 . {k(1,3) : ?[?[double[]]; ![double[]]; end]∗,

k(3,5) : ![![double[]]; ?[double[]]; end]∗,

k(3,6) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P5 . {k(2,5) : ?[?[double[]]; ![double[]]; end]∗,

k(3,5) : ?[?[double[]]; ![double[]]; end]∗,

k(5,7) : ![![double[]]; ?[double[]]; end]∗,

k(5,8) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P7 . {k(4,7) : ?[?[double[]]; ![double[]]; end]∗,

k(5,7) : ?[?[double[]]; ![double[]]; end]∗,

k(7,9) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P6 . {k(3,6) : ?[?[double[]]; ![double[]]; end]∗,

k(6,8) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P8 . {k(5,8) : ?[?[double[]]; ![double[]]; end]∗,

k(6,8) : ?[?[double[]]; ![double[]]; end]∗,

k(8,9) : ![![double[]]; ?[double[]]; end]∗}

Γ ` P9 . {k(7,9) : ?[?[double[]]; ![double[]]; end]∗,

k(8,9) : ?[?[double[]]; ![double[]]; end]∗}

Now we reason Jacobi algorithm in Figure 7.9. We only show the master

P1 and the worker in the middle P5 (the indices follow the right picture of

Figure 7.7).
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P1 = 〈k(1,2), k(1,4)〉.outwhile(e){k(1,2)〈d[]〉; k(1,2)(x).k(1,4)〈d[]〉; k(1,4)(y).0}
P5 = 〈k(5,7), k(5,8)〉.outwhile(e){〈k(2,5), k(3,5)〉.inwhile{

k(2,5)(x).k(2,5)〈d[]〉; k(5,7)〈d[]〉; k(5,7)(y).k(5,8)〈d[]〉; k(5,8)(z).0}}

Given the process definition and its types, we can easily prove that they are

typable and conforms to the definition of well-formed topology, satisfying the

conditions (1) and (3) in Definition 7.1. Hence it is type and communication-

safe (Theorem 7.2) and deadlock-free (Theorem 7.3).
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