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Abstract. The calculus CHF models Concurrent Haskell extended by
concurrent, implicit futures. It is a process calculus with concurrent
threads, monadic concurrent evaluation, and includes a pure functional
lambda-calculus which comprises data constructors, case-expressions,
letrec-expressions, and Haskell’s seq. Futures can be implemented in Con-
current Haskell using the primitive unsafeInterleaveIO, which is avail-
able in most implementations of Haskell. Our main result is conservativ-
ity of CHF, that is, all equivalences of pure functional expressions are
also valid in CHF. This implies that compiler optimizations and trans-
formations from pure Haskell remain valid in Concurrent Haskell even if
it is extended by futures. We also show that this is no longer valid if Con-
current Haskell is extended by the arbitrary use of unsafeInterleaveIO.

1 Introduction

Pure nonstrict functional programming is semantically well understood, permits
mathematical reasoning and is referentially transparent (see [29]). A witness is
the core language of the functional part of Haskell [16] consisting only of super-
combinator definitions, abstractions, applications, data constructors and case-
expressions. However, useful programming languages require much more expres-
sive power for controlling interaction with the operating system, the user, the
file system and further computing devices. Haskell’s expressiveness currently em-
ploys monadic programming [30, 20] as an interface between the imperative world
and pure nonstrict functional programming. Sometimes the sequentialization of
IO-operations enforced by Haskell’s IO-monad is too strong a requirement to
allow declarative programming. Implementations of Haskell often provide primi-
tives which break the sequentialization to enable lazy IO [20, 17]. One such primi-
tive is unsafePerformIO :: IO a→ a which switches off any restrictions enforced
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by the IO-monad. Another one is unsafeInterleaveIO :: IO a→ IO a which
delays a monadic action inside the IO-monad: Given the program do {x1 ←
act1; x2 ← act2; . . .} Haskell’s IO-monad ensures that the actions act1, act2, . . .
are strictly executed in sequence where the results are bound to the variables
x1, x2, . . .. Wrapping unsafeInterleaveIO around action acti breaks the strict
sequencing, i.e. action acti is performed at the time the value of xi is needed and
thus not necessarily before acti+1.

Another extension is Concurrent Haskell [19, 17, 18]. It extends Haskell by
the primitive forkIO which takes a monadic computation (of type IO ()) and
immediately spawns a new thread to concurrently perform the computation. As
synchronization primitives Concurrent Haskell provides synchronizing variables,
called MVars. An MVar is either empty or filled. The operation newEmptyMVar
creates an empty MVar, the operation takeMVar reads the value of a filled MVar
and empties it. Similarly, putMVar v e fills the empty MVar v with content e.
takeMVar blocks on an empty MVar and putMVar blocks on a filled MVar.

For all these extensions of Haskell it is either obvious that they are unsafe
(e.g. unsafePerformIO) or the situation is not well understood. For instance,
Kiselyov [9] provides an example showing that the extension of pure Haskell by
unsafeInterleaveIO is non-conservative, since side effects can be observed in
the pure functional world. He exhibits two pure functions f, g that are semanti-
cally equal under pure functional semantics, but can be distinguished if they get
their input through lazy file reading (implemented using unsafeInterleaveIO).
This is awkward from a practical point of view, since it appears to indicate that
soundness of a compiler for pure Haskell does not necessarily transfer to exten-
sions, in particular certain optimizations and transformations performed by a
Haskell-compiler on pure functional expressions may be wrong in extensions.

One possible way out of this dilemma is to use a precise semantics that
models nondeterminism, sharing and laziness (see for example [23]) which could
be extended to model impure and non-deterministic computations correctly, and
then adapt the compiler accordingly.

We follow a different approach for laying the foundation of correct reasoning
that exploits the separation between pure functional and impure computations
by monadic programming. In [24] we introduced the process calculus CHF , a
pure nonstrict functional language. CHF can be seen as a core language of Con-
current Haskell extended by implicit concurrent futures: Futures are variables
whose value is initially not known, but becomes available in the future when
the corresponding (concurrent) computation is finished (see e.g. [2, 5]). Implicit
futures do not require explicit forces when their value is demanded, and thus
they permit a declarative programming style using implicit synchronization by
data dependency. Implicit futures can be implemented in Concurrent Haskell
using the extension by the unsafeInterleaveIO-primitive:

future :: IO a → IO a

future act = do ack ← newEmptyMVar

thread ← forkIO (act >>= putMVar ack)

unsafeInterleaveIO (takeMVar ack)
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First an empty MVar is created, which is used to store the result of the concur-
rent computation. This computation is performed in a new concurrent thread
spawned by using forkIO. The last part consists of taking the result of the MVar,
which is delayed using unsafeInterleaveIO.

In CHF the above future-operation is built-in as a primitive. Unlike the
π-calculus [12, 25] (which is a message passing model), the calculus CHF com-
prises shared memory modelled by MVars, threads (i.e. futures) and heap bind-
ings. On the expression level CHF provides an extended lambda-calculus where
the extensions are closely related to Haskell’s core language: Expressions com-
prise data constructors, case-expressions, letrec to express recursive bindings,
Haskell’s seq-operator for sequential evaluation, and monadic operators for ac-
cessing MVars, creating futures, and the bind-operator >>= for monadic se-
quencing. CHF is equipped with a monomorphic type system allowing recur-
sive types. In [24] two (semantically equivalent) small-step reduction strategies
are introduced as operational semantics for CHF : A call-by-need strategy which
avoids duplication by sharing and a call-by-name strategy which copies arbitrary
subexpressions. The operational semantics of CHF is related to the operational
semantics for Concurrent Haskell introduced in [11, 17] where also exceptions are
considered. CHF also borrows some ideas from the impure call-by-value lambda
calculus with futures [14, 15].

In [24] there are strong results about CHF , e.g. the monad laws have been
proved to be correct (where the type of seq was restricted to functional types),
but we had to leave open the important question whether the extension of Haskell
by concurrency and futures is a safe extension. In this paper we address this
question and obtain a positive result: CHF is a conservative extension of its
pure sublanguage, i.e. the equality (following Abramsky [1]) of pure functional
expressions transfers into the full calculus, where the semantics is defined as a
contextual equality for a conjunction of may- and should-convergence. This result
enables equational reasoning, pure functional transformations and optimizations
also in the full concurrent calculus, CHF . Haskell’s type system is polymorphic
with type classes whereas CHF has a monomorphic type system. Nevertheless
we believe that our main result can be transferred to the polymorphic case. Our
results also imply that Kiselyov’s [9] counterexample is not possible for CHF .

We also analyze the boundaries of our conservativity result and show that
if so-called lazy futures (see also [14]) are added to CHF then conservativity
breaks. Intuitively, the reason is that lazy futures may remove some nondeter-
minism compared to usual futures: While usual futures allow any interleaving of
the concurrent evaluation, lazy futures forbid some of them, since their compu-
tation cannot start before their value is demanded by some other thread. Since
lazy futures can also be implemented in the unsafeInterleaveIO-extension of
Concurrent Haskell our counterexample implies that Concurrent Haskell with an
unrestricted use of unsafeInterleaveIO is not safe. Our counterexample does
not rely on particulars of the implementation like [9].

As program equivalence for CHF we use contextual equivalence: two pro-
grams are equal iff their observable behavior is indistinguishable even if the
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programs are plugged as a subprogram into any arbitrary context. Besides ob-
serving whether a program can terminate (called may-convergence) our notion of
contextual equivalence also observes whether a program never loses the ability to
terminate after some reductions (called should-convergence or sometimes must-
convergence, see e.g. [3, 15, 22, 23]). The latter notion slightly differs from the
classic notion of must-convergence (e.g. [4]), which additionally requires that all
possible computation paths are finite. Some advantages of should-convergence
(compared to classical must-convergence) are that restricting the evaluator to
fair scheduling does not modify the convergence predicates nor contextual equiv-
alence; that equivalence based on may- and should-convergence is invariant under
a whole class of test-predicates (see [26]), and inductive reasoning is available as
a tool to prove should-convergence.

Results. The lessons learned are that there are declarative and also very ex-
pressive pure nonstrict functional languages with a safe extension by IO-monads
and concurrency, with valid monad laws, provided seq’s first argument is re-
stricted to functional types. Since CHF also includes the core parts of Concur-
rent Haskell our results also imply that Concurrent Haskell conservatively em-
beds pure Haskell. This also justifies to use well-understood (also denotational)
semantics for the pure subcalculus, for example the free theorems in the presence
of seq [8], or results from call-by-need lambda calculi (e.g. [13, 27]) for reasoning
on pure expressions inside Concurrent Haskell. The proof of the main results
appears to be impossible by a direct attack. We use the correspondence (see
[24]) of the calculus CHF with a calculus CHFI that unravels recursive bindings
into infinite trees and uses call-by-name reduction. In the pure (deterministic)
sublanguage PFI of CHFI , an applicative bisimulation can be shown to be a
congruence, using the method of Howe [6, 7, 21], however extended to infinite ex-
pressions. This result enables us to prove the main result on infinite expressions,
i.e. CHFI conservatively extends PFI . The final proof step is then to translate
the result back to the calculus CHF and its pure deterministic sublanguage PF .

The structure of the paper is as follows. In Section 2 we recall the calculus
CHF and introduce its pure fragment PF . In Section 3 we introduce the two
(sub-)calculi PFI and PFMI with infinite expressions and define applicative
bisimulation. In Section 4 we show that bisimulation of PFI and PFMI coincide
and also that contextual equivalence is equivalent to bisimulation in PFI . In
Section 5 we briefly introduce the process calculus with infinite expressions CHFI
and show that contextual equivalent expressions of PFI are also equivalent in
CHFI . In Section 6 we go back to the calculi CHF and PF and prove our
Main Theorem 6.4 showing that CHF is a conservative extension of PF . We
show that extending CHF by lazy futures breaks conservativity. Finally, we
conclude in Section 7. To keep track of the different calculi we summarize some
distinguishing properties in the following table:



On Conservativity of Concurrent Haskell 5

language processes expressions monadic expressions sublanguage of

CHF yes finite yes –
CHFI yes infinite yes –
PF no finite no CHF
PFI no infinite no CHFI ,PFMI

PFMI no infinite yes CHFI

2 The CHF-Calculus and its Pure Fragment

We recall the calculus CHF modelling Concurrent Haskell with futures [24].
The syntax of CHF consists of processes which have expressions as sub-

terms. Let Var be a countably infinite set of variables. We denote variables with
x, xi, y, yi. Processes ProcCHF are generated by the following grammar where
e ∈ ExprCHF is an arbitrary expression (defined below):

P, Pi ∈ ProcCHF ::= P1 |P2 | νx.P | x⇐ e | x = e | xm e | xm−

Parallel composition P1 |P2 constructs concurrently running threads (or other
components), name restriction νx.P restricts the scope of variable x to process
P . A concurrent thread x⇐ e evaluates the expression e and binds the result of
the evaluation to the variable x. The variable x is called the future x. In a process
there is usually one distinguished thread – the main thread – which is labeled
with “main” (as notation we use x

main⇐== e). MVars behave like one place buffers,
i.e. if a thread wants to fill an already filled MVar xm e, the thread blocks, and
a thread also blocks if it tries to take something from an empty MVar xm−. In
xm e or xm− we call x the name of the MVar. Bindings x = e model the global
heap of shared expressions, where we say x is a binding variable. For a process
P we say a variable x is an introduced variable if x is a future, a name of an
MVar, or a binding variable. A process is well-formed, if all introduced variables
are pairwise distinct, and there exists at most one main thread x

main⇐== e.
We assume a set of data constructors c which is partitioned into sets, such

that each family represents a type T . The constructors of a type T are ordered,
i.e. we write cT,1, . . . , cT,|T |, where |T | is the number of constructors belonging
to type T . We omit the index T, i in cT,i if it is clear from the context. Each data
constructor cT,i has a fixed arity ar(cT,i) ≥ 0. For instance the type Bool has
constructors True and False (both of arity 0) and the type List has constructors
Nil (of arity 0) and Cons (of arity 2). We assume that there is a unit type ()
with a single constant () as constructor.

Expressions ExprCHF and the subset of monadic expressions MExprCHF are
generated by the following grammar:

e, ei ∈ ExprCHF ::= x | me | λx.e | (e1 e2) | c e1 . . . ear(c) | seq e1 e2

| caseT e of (cT,1 x1 . . . xar(cT,1) → e1) . . . (cT,|T | x1 . . . xar(cT,|T |) → e|T |)
| letrec x1 = e1 . . . xn = en in e

me ∈ MExprCHF ::= return e | e1 >>= e2 | future e | takeMVar e
| newMVar e | putMVar e1 e2
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Γ (x) = τ

Γ ` x :: τ

Γ (x) = τ, Γ ` e :: IO τ

Γ ` x⇐ e :: wt

Γ (x) = τ, Γ ` e :: τ

Γ ` x = e :: wt

Γ ` P1 :: wt, Γ ` P2 :: wt

Γ ` P1 |P2 :: wt

Γ (x) = MVar τ, Γ ` e :: τ

Γ ` xm e :: wt

Γ (x) = MVar τ

Γ ` xm− :: wt

Γ ` P :: wt

Γ ` νx.P :: wt

Γ ` e :: τ

Γ ` return e :: IO τ

Γ ` e :: MVar τ

Γ ` takeMVar e :: IO τ

Γ ` e1 :: MVar τ, Γ ` e2 :: τ

Γ ` putMVar e1 e2 :: IO ()

Γ ` e :: τ

Γ ` newMVar e :: IO (MVar τ)

∀i : Γ ` ei :: τi, τ1 → . . .→ τn → τn+1 ∈ types(c)

Γ ` (c e1 . . . ear(c)) :: τn+1

Γ ` e1 :: τ1 → τ2, Γ ` e2 :: τ1

Γ ` (e1 e2) :: τ2

Γ ` e1 :: IO τ1, Γ ` e2 :: τ1 → IO τ2

Γ ` e1 >>= e2 :: IO τ2

∀i : Γ (xi) = τi, ∀i : Γ ` ei :: τi, Γ ` e :: τ

Γ ` (letrec x1 = e1, . . . xn = en in e) :: τ

Γ (x) = τ1, Γ ` e :: τ2

Γ ` (λx.e) :: τ1 → τ2

Γ ` e :: IO τ

Γ ` future e :: IO τ

Γ ` e1 :: τ1, Γ ` e2 :: τ2,
where τ1 = τ3 → τ4 or τ1 = (T . . .)

Γ ` (seq e1 e2) :: τ2

Γ ` e :: τ1 and τ1 = (T . . .), ∀i : Γ ` (cT,i xi,1 . . . xi,ni) :: τ1, ∀i : Γ ` ei :: τ2

Γ ` (caseT e of(cT,1 x1,1 . . . x1,n1 → e1) . . . (cT,|T | x|T |,1 . . . x|T |,n|T | → e|T |)) :: τ2

Fig. 1. Typing rules

Besides the usual constructs of the lambda calculus (variables, abstractions,
applications) expressions comprise constructor applications (c e1 . . . ear(c)),
case-expressions for deconstruction, seq-expressions for sequential evaluation,
letrec-expressions to express recursive shared bindings and monadic expres-
sions which allow to form monadic actions.

For case-expressions there is a caseT -construct for every type T and there
is a case-alternative for every constructor of type T . The variables in a case-
pattern (c x1 . . . xar(c)) and also the bound variables in a letrec-expression
must be pairwise distinct. We sometimes abbreviate the case-alternatives as
alts, caseT e of alts. The expression return e is the monadic action which
returns e as result, the operator >>= allows one to combine monadic actions,
the expression future e will create a concurrent thread evaluating the action
e, the operation newMVar e will create an MVar filled with e, takeMVar x will
return the content of MVar x, and putMVar x e will fill MVar x with content e.

Variable binders are introduced by abstractions, letrec-expressions, case-
alternatives, and for processes by the restriction νx.P . For the induced no-
tion of of free and bound variables we use FV (P ) (FV (e), resp) to denote
the free variables of process P (expression e, resp.) and =α to denote α-
equivalence. We use distinct variable convention, i.e. all free variables are dis-
tinct from bound variables, all bound variables are pairwise distinct, and re-
ductions implicitly perform α-renaming to obey this convention. For processes
structural congruence ≡ is defined as the least congruence satisfying the equa-
tions: P1 |P2 ≡ P2 |P1; νx1.νx2.P ≡ νx2.νx1.P ; (P1 |P2) |P3 ≡ P1 | (P2 |P3);
P1 ≡ P2, if P1 =α P2; and (νx.P1) |P2 ≡ νx.(P1 |P2), if x 6∈ FV (P2).
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Monadic Computations

(lunit) y⇐M[return e1 >>= e2]
CHF−−−→ y⇐M[e2 e1]

(tmvar) y⇐M[takeMVar x] |xm e
CHF−−−→ y⇐M[return e] |xm−

(pmvar) y⇐M[putMVar x e] |xm− CHF−−−→ y⇐M[return ()] |xm e

(nmvar) y⇐M[newMVar e]
CHF−−−→ νx.(y⇐M[return x] |xm e)

(fork) y⇐M[future e]
CHF−−−→ νz.(y⇐M[return z] | z⇐ e)

where z is fresh and the created thread is not a main thread

(unIO) y⇐ return e
CHF−−−→ y = e if the thread is not the main-thread

Functional Evaluation

(cpce) y⇐M[F[x]] |x = e
CHF−−−→ y⇐M[F[e]] |x = e

(mkbinds) y⇐M[F[letrec x1 = e1, . . . , xn = en in e]]
CHF−−−→ νx1, . . . , xn.(y⇐M[F[e]] |x1 = e1 | . . . |xn = en)

(beta) y⇐M[F[((λx.e1) e2)]]
CHF−−−→ y⇐M[F[e1[e2/x]]]

(case) y⇐M[F[caseT (c e1 . . . en) of . . . ((c y1 . . . yn)→ e) . . .]]
CHF−−−→ y⇐M[F[e[e1/y1, . . . , en/yn]]]

(seq) y⇐M[F[(seq v e)]]
CHF−−−→ y⇐M[F[e]] if v is a functional value

Fig. 2. Call-by-name reduction rules of CHF

We use a monomorphic type system where data constructors and monadic
operators are treated like “overloaded” polymorphic constants. The syntax of
types TypCHF is τ, τi ∈ TypCHF ::= IO τ | (T τ1 . . . τn) | MVar τ | τ1 → τ2.
Here IO τ means that an expression of type τ is the result of a monadic action,
MVar τ stands for an MVar-reference with content type τ , and τ1 → τ2 is a function
type. With types(c) we denote the set of monomorphic types of constructor c.
To fix the types during reduction, we assume that every variable has a fixed
(built-in) type: Let Γ be the global typing function for variables, i.e. Γ (x) is
the type of variable x. We use the notation Γ ` e :: τ to express that τ can
be derived for expression e using the global typing function Γ . For processes
Γ ` P :: wt means that the process P can be well-typed using the global typing
function Γ . The typing rules are given in Fig. 1. Note that the first argument of
seq must not be an IO- or MVar-type, since otherwise the monad laws would not
hold in CHF (and even not in Haskell, see [24]). A process P is well-typed iff P
is well-formed and Γ ` P :: wt holds. An expression e is well-typed with type τ
(written as e :: τ) iff Γ ` e :: τ holds.

2.1 Operational Semantics and Program Equivalence

In [24] a call-by-need as well as a call-by-name small step reduction for CHF
were introduced and it has been proved that both reduction strategies induce
the same notion of program equivalence. Here we will only recall the call-by-name
reduction. As a first step we introduce some classes of contexts.

On the process level the process contexts PCtxt are defined as follows, where
P ∈ ProcCHF : D, Di ∈ PCtxt ::= [·] | D |P | P |D | νx.D.
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On expressions usual (call-by-name) expression evaluation contexts ECtxt are
defined by: E, Ei ∈ ECtxt ::= [·] | (E e) | (case E of alts) | (seq E e).

To enforce the evaluation of the (first) argument of the monadic operators
takeMVar and putMVar the class of forcing contexts FCtxt are required, which
are defined as follows: F, Fi ∈ FCtxt ::= E | (takeMVar E) | (putMVar E e).

A functional value is an abstraction or a constructor application, a value is
a functional value or a monadic expression of MExpr.

Definition 2.1 (Call-by-name Standard Reduction). The call-by-name
standard reduction CHF−−−→ is defined by the rules in Fig. 2 where we addition-
ally assume that CHF−−−→ is closed w.r.t. PCtxt-contexts and structural congruence,
i.e. if P ≡ D[P ′], Q ≡ D[Q′] and P ′ CHF−−−→ Q′ then also P

CHF−−−→ Q. We also
assume that only well-formed processes are reducible.

The rules for functional evaluation include classical call-by-name β-reduction
(rule (beta)), a rule for copying shared bindings into a needed position (rule
(cpce)), rules to evaluate case- and seq-expressions (rules (case) and (seq)),
and the rule (mkbinds) to move letrec-bindings into the global set of shared
bindings. We now explain the rules for monadic computation: The rule (lunit)
is the direct implementation of the monad and applies the first monad law to
proceed a sequence of monadic actions. The rules (nmvar), (tmvar), and (pmvar)
handle the MVar creation and access. Note that a takeMVar-operation can only
be performed on a filled MVar, and a putMVar-operation needs an empty MVar
for being executed. The rule (fork) spawns a new concurrent thread, where the
calling thread receives the name of the thread (the future) as result. If a con-
current thread finished its computation, then the result is shared as a global
binding and the thread is removed (rule (unIO)). Note that if the calling thread
needs the result of the future, it gets blocked until the result becomes available.

Contextual equivalence equates two processes P1, P2 if their observable be-
havior is indistinguishable if P1 and P2 are plugged into any process context.
Thereby the usual observation is whether the evaluation of the process success-
fully terminates or not. In nondeterministic (and also concurrent) calculi this
observation is called may-convergence, and it does not suffice to distinguish
obviously different processes: It is also necessary to analyze the possibility of in-
troducing errors or non-termination. Thus we will observe may-convergence and
a variant of must-convergence which is called should-convergence (see [22–24]).

Definition 2.2. A process P is successful iff it is well-formed and contains a
main thread of the form x

main⇐== return e.
A process P may-converges (written as P↓CHF ), iff it is well-formed and

reduces to a successful process, i.e. ∃P ′ : P
CHF ,∗−−−−→ P ′ ∧ P ′ is successful. If

P↓CHF does not hold, then P must-diverges written as P⇑CHF .
A process P should-converges (written as P⇓CHF ), iff it is well-formed and

remains may-convergent under reduction, i.e. ∀P ′ : P
CHF ,∗−−−−→ P ′ =⇒ P ′↓CHF .

If P is not should-convergent then we say P may-diverges written as P↑CHF .
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Note that a process P is may-divergent if there is a finite reduction sequence
P

CHF ,∗−−−−→ P ′ such that P ′⇑CHF . We sometimes write P↓CHFP ′ (or P↑CHFP ′,

resp.) if P
CHF ,∗−−−−→ P ′ and P ′ is a successful (or must-divergent, resp.) process.

Definition 2.3. Contextual approximation ≤c,CHF and contextual equiv-
alence ∼c,CHF on processes are defined as ≤c,CHF :=≤↓CHF

∩ ≤⇓CHF
and

∼c,CHF :=≤c,CHF ∩ ≥c,CHF where for χ ∈ {↓CHF ,⇓CHF}:

P1 ≤χ P2 iff ∀D ∈ PCtxt : D[P1]χ =⇒ D[P2]χ

Let C ∈ Ctxt be contexts that are constructed by replacing a subexpression in a
process by a (typed) context hole. Contextual approximation ≤c,CHF and contex-
tual equivalence ∼c,CHF on equally typed expressions are defined as ≤c,CHF :=
≤↓CHF

∩ ≤⇓CHF
and ∼c,CHF := ≤c,CHF ∩ ≥c,CHF , where for expressions e1, e2 of

type τ and χ ∈ {↓CHF ,⇓CHF}: e1 ≤χ e2 iff ∀C[·τ ] ∈ Ctxt : C[e1]χ =⇒ C[e2]χ.

2.2 The Pure Fragment PF of CHF

The calculus PF comprises the pure (i.e. non-monadic) expressions and types of
CHF , i.e. expressions ExprPF are built according to the grammar:

e, ei ∈ ExprPF ::= x | λx.e | (e1 e2) | c e1 . . . ear(c) | seq e1 e2

| caseT e of (cT,1 x1 . . . xar(cT,1) → e1) . . . (cT,|T | x1 . . . xar(cT,|T |) → e|T |)
| letrec x1 = e1 . . . xn = en in e

The calculus PF only has pure types TypP ⊂ TypCHF according to the following
grammar where T is a type-constructor: τ, τi ∈ TypP ::= (T τ1 . . . τn) | τ1 → τ2.

An expression e ∈ ExprPF is well-typed with type τ ∈ TypP iff Γ ` e :: τ can
be derived by the typing rules of Fig. 1.

Instead of providing an operational semantics inside the expressions of PF ,
we define convergence of ExprPF by using the (larger) calculus CHF as follows: A
PF -expression e converges (denoted by e↓PF ) iff y

main⇐== seq e (return ())↓CHF

for some y /∈ FV (e). The results in [24] show that convergence does not change if
we would have used call-by-need evaluation in CHF (defined in [24]). This allows
one to show that PF is semantically equivalent (w.r.t. contextual equivalence)
to a usual extended call-by-need letrec-calculus as e.g. the calculi in [28, 27].

PF -contexts CtxtPF are ExprPF -expressions where a subterm is replaced by
the context hole. For e1, e2 ∈ ExprPF of type τ , the relation e1 ≤c,PF e2 holds,
if for all C[·τ ] ∈ CtxtPF , C[e1]↓PF =⇒ C[e2]↓PF . Note that it is not necessary
to observe should-convergence, since the calculus PF is deterministic.

Our main goal of this paper is to show that for any e1, e2 :: τ ∈ ExprPF

the following holds: e1 ∼c,PF e2 =⇒ e1 ∼c,CHF e2. This implies that two equal
pure expressions cannot be distinguished in the concurrent calculus with futures.
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3 Simulation in the Calculi of Infinite Expressions

We will now consider a simulation relation in two variants of PF which use infi-
nite expressions. We will first introduce two calculi PFI and PFMI with infinite
expressions and then define similarity for both calculi. Using Howe’s method it
is possible to show that both similarities are precongruences, for space reasons
the congruence proof can be found in the appendix. To distinguish infinite ex-
pressions from finite expressions (on the meta-level) we always use e, ei for finite
expressions and r, s, t for infinite expressions. Nevertheless, in abuse of notation
we will use the same meta symbols for finite as well as infinite contexts.

Definition 3.1. The language of PFMI is defined as follows: PFMI uses the
same types TypCHF as the calculus CHF. Infinite expressions IExprPFMI of
the calculus PFMI are defined like expressions ExprCHF omitting the letrec-
component, adding a constant Bot and constants for names of MVars, and inter-
preting the grammar coinductively, i.e. the grammar is as follows

r, s, t ∈ IExprPFMI ::= x | a | ms | Bot | λx.s | (s1 s2)
| (c s1 · · · sar(c)) | seq s1 s2

| caseT s of (cT,1 x1 · · ·xar(cT,1) → s1) . . . (cT,|T | x1 · · ·xar(cT,|T |) → s|T |)

ms ∈ IMExprPFMI ::= return s | s1 >>= s2 | future s | takeMVar s
| newMVar s | putMVar s1 s2

where c are data constructors and a are from an infinite set of 0-ary constants
of type MVar τ for every τ . An infinite expression s ∈ IExprPFMI is well-typed
(with type τ) iff Γ ` s :: τ by the typing rules in Fig. 1 where only the rules for
expressions are used and the rules are applied coinductively over the expression
syntax. Additionally the typing rules include the axioms

Γ ` a :: MVar τ if constant a is of type MVar τ Γ ` Bot :: τ

Note that types are still defined inductively. Hence, infinite types are not allowed
and well-typed infinite expressions must be typeable by a finite type.

Definition 3.2. The language of PFI is a sublanguage of PFMI by omitting
IO- and MVar-types and monadic operators: PFI uses pure types TypP as types
and infinite expressions IExprPFI of the calculus PFI are defined like expres-
sions ExprPFMI by omitting several possibilities, and interpreting the grammar
coinductively, i.e. the grammar is as follows

r, s, t ∈ IExprPFI ::= x | Bot | λx.s | (s1 s2) | (c s1 . . . sar(c)) | seq s1 s2

| caseT s of (cT,1 x1 . . . xar(cT,1) → s1) . . . (cT,|T | x1 . . . xar(cT,|T |) → s|T |)

An infinite expression s ∈ ExprPFI is well-typed with type τ ∈ TypP iff Γ `
s :: τ can be derived by coinductively applying the typing rules for expressions of
Fig. 1 and the axiom Γ ` Bot :: τ .
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(beta) E[((λx.s1) s2)]→ E[s1[s2/x]]
(case) E[caseT (c s1 . . . sn) of . . . ((c y1 . . . yn)→ s) . . .]→ E[s[s1/y1, . . . , sn/yn]]
(seq) E[(seq v s)]→ E[s] if v is a functional value

Fig. 3. Call-by-name reduction rules on infinite expressions

In both calculi a functional value is an abstraction or a constructor applica-
tion (except for the constant Bot), and a value is a functional value or a monadic
expression of IMExprPFMI in the case of the calculus PFMI . With IExprc

PFMI

(IExprc
PFI , resp.) we denote the set of closed infinite expressions.

We now define the operational semantics for both calculi. In abuse of nota-
tion we sometimes use a single meta-symbol which is implicitly parametrized by
PFMI or PFI . The (infinite) call-by-name evaluation contexts IECtxt are defined
by the following (inductively interpreted) grammar, where s ∈ IExprPFMI (or s ∈
IExprPFI resp.): E, Ei ∈ IECtxt ::= [·] | (E s) | (case E of alts) | (seq E s).
The (call-by-name) reduction rules on infinite expressions are defined in Fig. 3.
Note that the substitutions used in (beta) and (case) may substitute infinitely
many occurrences of variables. For PFMI reduction cannot extract subexpres-
sions from monadic expressions, hence they behave similarly to constants.

The (normal-order) call-by-name reduction is written s
PFMI−−−−→ t (s PFI−−−→ t,

resp.), and s↓PFMI t (s↓PFI t, resp.) means that there is a value t, such that

s
PFMI ,∗−−−−−→ t (s

PFI ,∗−−−−→ t). If we are not interested in the specific value t we also
write s↓PFMI (or s↓PFI , resp.).

We define similarity for both calculi PFMI and PFI . For simplicity, we some-
times use as e.g. in [6] the higher-order abstract syntax and write ξ(..) for an
expression with top operator ξ, which may be all possible term constructors, like
case, application, a constructor, seq, or λ, and θ for an operator that may be
the head of a value, i.e. a constructor or monadic operator or λ. Note that ξ and
θ may represent also the binding λ using λ(x.s) as representing λx.s. In order
to stick to terms, and be consistent with other papers like [6], we assume that
removing the top constructor λx. in relations is done after a renaming. For ex-
ample, λx.s µ λy.t is renamed before further treatment to λz.s[z/x] µ λz.t[z/y]
for a fresh variable z. Hence λx.s µ λx.t means s µo t for open expressions s, t, if
µ is a relation on closed expressions. Similarly for case, where the first argument
is without scope, and the case alternative like (c x1 . . . xn → s) is seen as s with
a scoping of x1, . . . xn. We assume that binary relations η relate expressions of
equal type. A substitution σ that replaces all free variables by closed infinite
expressions is called a closing substitution.

Definition 3.3. Let η be a binary relation on closed infinite expressions. Then
the open extension ηo on all infinite expressions is defined as s ηo t for any ex-
pressions s, t iff for all closing substitutions σ: σ(s) η σ(t). Conversely, for binary
relations µ on open expressions, (µ)c is the restriction to closed expressions.

Lemma 3.4. For a relation η on closed expressions, the equation ((η)o)c = η
holds, and s ηo t implies σ(s) ηo σ(t) for any substitution σ. For a relation
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µ on open expressions the inclusion µ ⊆ ((µ)c)o is equivalent to s µ t =⇒
σ(s) (µ)c σ(t) for all closing substitutions σ.

Definition 3.5. Let ≤b,PFMI (called similarity) be the greatest fixpoint, on the
set of binary relations over closed (infinite) expressions, of the following operator
FPFMI on binary relations η over closed expressions IExprc

PFMI :
For s, t ∈ IExprc

PFMI the relation s FPFMI (η) t holds iff s↓PFMI θ(s1, . . . , sn)
implies that there exist t1, . . . , tn such that t↓PFMI θ(t1, . . . , tn) and si ηo ti for
i = 1, . . . , n.

The operator FPFMI is monotone, hence the greatest fixpoint ≤b,PFMI exists.

Proposition 3.6 (Coinduction). The principle of coinduction for the greatest
fixpoint of FPFMI shows that for every relation η on closed expressions with
η ⊆ FPFMI (η), we derive η ⊆ ≤b,PFMI . This also implies (η)o ⊆ (≤b,PFMI )o.

Similarly, Definition 3.5 and Proposition 3.6 can be transferred to PFI , where
we use ≤b,PFI and FPFI as notation. Determinism of PFMI−−−−→ implies:

Lemma 3.7. If s
PFMI−−−−→ s′, then s′≤o

b,PFMI s and s≤o
b,PFMI s′.

In the appendix (Theorem A.16) we show that ≤o
b,PFMI and ≤o

b,PFI are pre-
congruences by adapting Howe’s method [6, 7] to the infinite syntax of the calculi.

Theorem 3.8. ≤o
b,PFMI is a precongruence on infinite expressions IExprPFMI .

If σ is a substitution, then s ≤o
b,PFMI t implies σ(s) ≤o

b,PFMI σ(t).
≤o

b,PFI is a precongruence on infinite expressions IExprPFI . If σ is a substi-
tution, then s ≤o

b,PFI t implies σ(s) ≤o
b,PFI σ(t).

4 Behavioral and Contextual Preorder in PFI and PFMI

In this section we investigate the relationships between the behavioral and con-
textual preorders in the two calculi PFI and PFMI of infinite expressions.

We know that ≤o
b,PFI as well as ≤o

b,PFMI are precongruences. We will show
below that ≤o

b,PFMI is a conservative extension of ≤o
b,PFI , which is not obvious,

since the ≤b,PFMI -test for abstractions has to take into account more arguments
than the ≤b,PFI -test. First we will show that in PFI , the contextual and be-
havioral preorder coincide. Note that this is wrong for PFMI , because there are
expressions like return True and return False that cannot be contextually
distinguished since PFMI cannot look into the components of these terms.

4.1 Behavioral and Contextual Preorder in PFI

In this subsection we treat the properties of the pure functional language PFI
with infinite expressions. Let ICtxtPFI be the set of all contexts in PFI .
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Definition 4.1. The contextual equivalence w.r.t. PFI is defined as
∼c,PFI :=≤c,PFI ∩ ≥c,PFI where for equally typed expressions s, t :: τ
s ≤c,PFI t iff ∀C[· :: τ ] ∈ ICtxtPFI : C[s]↓PFI =⇒ C[t]↓PFI .

Lemma 4.2. ≤o
b,PFI ⊆ ≤c,PFI .

Proof. Let s, t be expressions with s ≤o
b,PFI t such that C[s]↓PFI . Let σ be a sub-

stitution that replaces all free variables of C[s], C[t] by Bot. The properties of the
call-by-name reduction show that also σ(C[s])↓PFI . Since σ(C[s]) = σ(C)[σ(s)],
σ(C[t]) = σ(C)[σ(t)] and since σ(s) ≤o

b,PFI σ(t), we obtain from the precongru-
ence property of ≤o

b,PFI that also σ(C[s]) ≤b,PFI σ(C[t]). Hence σ(C[t])↓PFI .
This is equivalent to C[t]↓PFI , since free variables are replaced by Bot, and thus
they cannot overlap with redexes. Hence ≤o

b,PFI ⊆ ≤c,PFI .

Lemma 4.3. In PFI , the contextual preorder on expressions is contained in the
behavioral preorder on open expressions, i.e. ≤c,PFI ⊆ ≤o

b,PFI .

Proof. We show that ≤c
c,PFI satisfies the fixpoint condition, i.e. ≤c

c,PFI ⊆
FPFI (≤c

c,PFI ): Let s, t be closed and s ≤c,PFI t. If s↓PFI θ(s1, . . . , sn), then also
t↓PFI . Using the appropriate case-expressions as contexts, it is easy to see that
t↓PFI θ(t1, . . . , tn). Now we have to show that si ≤o

c,PFI ti. This could be done

using an appropriate context Ci that selects the components, i.e. Ci[s]
PFI ,∗−−−−→ si

and Ci[t]
PFI ,∗−−−−→ ti Since reduction preserves similarity and Lemma 4.2 show

that r
PFI−−−→ r′ implies r ≤c,PFI r′ holds. Moreover, since ≤o

c,PFI is obviously a
precongruence, we obtain that si ≤o

c,PFI ti. Thus the proof is finished.

Concluding, Lemmas 4.2 and 4.3 imply:

Theorem 4.4. In PFI the behavioral preorder is the same as the contextual
preorder on expressions, i.e. ≤o

b,PFI = ≤c,PFI .

In the proofs in Section 5 for the language PFMI the notion of recursive
replacement and a technical lemma on ≤o

b,PFI are required.

Definition 4.5. Let x be a variable and s be a PFMI -expression (there may
be free occurrences of x in s) of the same type. Then s // x is a substitution
that replaces recursively x by s. In case s is the variable x, then s // x is the
substitution x 7→ Bot.

For example, (a x) // x replaces x by the infinite expression (a (a (a . . .))).
In the appendix (Lemma A.18) we prove the following lemma:

Lemma 4.6. Let x be a variable and s1, s2, t1, t2 be PFMI -expressions with
si ≤o

b,PFMI ti for i = 1, 2. Then s2[s1 // x] ≤o
b,PFMI t2[t1 // x].
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4.2 Behavioral Preorder in PFMI

The goal is to show that for PFI -expressions s, t, the behavioral preorders w.r.t.
PFMI and PFI are equivalent, i.e., that ≤b,PFMI is a conservative extension
of ≤b,PFI when extending the language PFI to PFMI . This is not immediate,
since the behavioral preorders w.r.t. PFMI requires to test abstractions on more
closed expressions than PFI . Put differently, the open extension of relations is
w.r.t. a larger set of closing substitutions.

Definition 4.7. Let φ : PFMI → PFI be the mapping with φ(x) := x, if x is a
variable; φ(c s1 . . . sn) := (), if c is a monadic operator; φ(a) := (), if a is a name
of an MVar; and φ(ξ(s1, . . . , sn)) := ξ(φ(s1), . . . , φ(sn)) for any other operator
ξ. Also the types are translated by replacing all (IO τ) and (MVar τ)-types by type
() and retaining the other types.

This translation is compositional, i.e., it translates along the structure:
φ(C[s]) = φ(C)[φ(s)] if φ(C) is again a context, or φ(C[s]) = φ(C) if the hole of
the context is removed by the translation. In the following we write φ(C)[φ(s)]
also in the case that the hole is removed, in which case we let φ(C) be a constant
function. Now the following lemma is easy to verify:

Lemma 4.8. For all closed PFMI -expressions s it holds: s↓PFMI iff φ(s)↓PFI ,
and if s↓PFMI θ(s1, . . . , sn) then φ(s)↓PFI φ(θ(s1, . . . , sn)). Conversely, if
φ(s)↓PFI θ(s1, . . . , sn), then s↓PFMI θ(s′1, . . . , s

′
n) such that φ(s′i) = si for all i.

Now we show that ≤b,PFI is the same as ≤b,PFMI restricted to PFI -
expressions using coinduction:

Lemma 4.9. ≤b,PFI ⊆ ≤b,PFMI .

Proof. Let ρ be the relation {(s, t) | φ(s) ≤b,PFI φ(t)} on closed PFMI -
expressions, i.e., s ρ t holds iff φ(s) ≤b,PFI φ(t). We show that ρ ⊆ FPFMI (ρ). As-
sume s ρ t for s, t ∈ IExprPFMI . Then φ(s) ≤b,PFI φ(t). If φ(s)↓PFI θ(s1, . . . , sn),
then also φ(t)↓PFI θ(t1, . . . , tn) and si ≤o

b,PFI ti. Now let σ be a PFMI -
substitution such that σ(si), σ(ti) are closed. Then φ(σ) is a PFI -substitution,
hence φ(σ)(si) ≤b,PFI φ(σ)(ti). We also have φ(σ(si)) = φ(σ)(si), φ(σ(ti)) =
φ(σ)(ti), since si, ti are PFI -expressions and since φ is compositional. The re-
lation si ρo ti w.r.t. PFMI is equivalent to σ(si) ρ σ(ti) for all closing PFMI -
substitutions σ, which in turn is equivalent φ(σ(si)) ≤b,PFI φ(σ(si)). Hence
si ρo ti for all i where the open extension is w.r.t. PFMI . Thus ρ ⊆ FPFMI (ρ)
and hence ρ ⊆ ≤b,PFMI . Since ≤b,PFI ⊆ ρ, this implies ≤b,PFI ⊆ ≤b,PFMI .

Proposition 4.10. Let s, t ∈ IExprPFI . Then s ≤b,PFI t iff s ≤b,PFMI t.

Proof. The relation s ≤b,PFMI t implies s ≤b,PFI t, since the fixpoint w.r.t.
FPFMI is a subset of the fixpoint of FPFI . The other direction is Lemma 4.9.

Proposition 4.11. Let x be a variable of type (MVar τ) for some τ , and let s
be a PFMI -expression of the same type such that x ≤o

b,PFMI s. Then s↓PFMI x.
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Proof. Let σ be a substitution such that σ(x) = a where a is a name of an MVar,
a does not occur in s, σ(s) is closed and such that σ(x) ≤b,PFMI σ(s). We can
choose σ in such a way that σ(y) does not contain a for any variable y 6= x. By
the properties of ≤b,PFMI , we obtain σ(s)↓PFMI a. Since the reduction rules of
PFMI cannot distinguish between a or x, and since σ(y) does not contain a, the
only possibility is that s reduces to x.

5 Contextual Equivalence in the Process Calculus CHFI

The calculus CHFI is the variant of the calculus CHF on infinite expressions (see
[24]). CHFI is similar to CHF where instead of finite expressions ExprCHF infi-
nite expressions IExprPFMI are used, and shared bindings are omitted: Infinite
processes IProcCHFI are defined by the (inductively interpreted) grammar:

S, Si,∈ IProcCHFI ::= S1 |S2 | x⇐ s | νx.S | | xm s | xm− | 0

where s ∈ IExprPFMI is an infinite expression. 0 is the 0-process which does
nothing. Functional values and values are defined as in the calculus PFMI . Typ-
ing is according to Fig. 1 where the derivation rules are applied coinductively to
infinite expressions. We also use structural congruence≡ for IProcCHFI -processes
which is defined in the obvious way where S |0 ≡ S is an additional rule.

The standard reduction CHFI−−−−→ of the calculus CHFI uses the call-by-name
reduction of PFMI for expressions (where the monadic operators are executed).
For space reasons we do not list all the reduction rules again, they are analogous
to rules for CHF (see Fig. 2), but work on infinite expressions (and adapted
contexts) with the following modifications: For the functional evaluation only
the rules (case), (beta), and (seq) are used (since there are no bindings in
CHFI ). The monadic reductions are as in CHF except for the (unIO) rule
which is replaced by the following variant, where // means the infinite recursive
replacement of s for y:

(unIOTr) D[y⇐ return y] CHFI−−−−→ (D[0])[Bot/y]
(unIOTr) D[y⇐ return s] CHFI−−−−→ (D[0])[s // y]

if s 6= y; and the thread is not the main-thread and where D means the whole
process that is in scope of y.

We assume reduction to be closed w.r.t. structural congruence ≡ and process
contexts, i.e. iff S1 ≡ D[S′1], S2 ≡ D[S′2] and S′1

CHFI−−−−→ S′2 then also S1
CHFI−−−−→ S2.

An infinite process S is successful if it is well-formed (i.e. all introduced vari-
ables are distinct) and if it is of the form S ≡ νx1, . . . , xn.(x main⇐== return s |S′).
An infinite process S may-converges (denoted as S↓CHFI ) if there exists a suc-

cessful process S′ such that S
CHFI ,∗−−−−−→ S′. Process S should-converges if any

successor w.r.t. CHFI−−−−→ may-converges, i.e. S⇓CHFI iff ∀S′ : S
CHFI ,∗−−−−−→ S′ =⇒

S′↓CHFI . We write S⇑CHFI if S↓CHFI does not hold (S must-diverges), and we
write S↑CHFI if S⇓CHFI does not hold (S may-diverges).
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We will now show that s ≤o
b,PFMI t implies s ≤c,CHFI t. More technically, we

show that s ≤o
b,PFMI t implies C[s]↓CHFI =⇒ C[t]↓CHFI and C[s]↑CHFI =⇒

C[t]↑CHFI for all infinite process contexts C with an expression hole.
In the following, we drop the distinction between MVar-constants and vari-

ables. Note that this change does not make a difference in convergence behavior.
Let GCtxt be process-contexts with several holes, where the holes appear only

in subcontexts x⇐ [·] or xm [·]. We assume that G ∈ GCtxt is in prenex normal
form (i.e. all ν-binders are on the top), that we can rearrange the concurrent
processes as in a multiset exploiting that the parallel composition is associative
and commutative, and we write νX .G′ where νX represents the whole ν-prefix.

Lemma 5.1. If si ≤o
b,PFMI ti for i = 1, . . . , n implies G[s1, . . . , sn]↓CHFI =⇒

G[t1, . . . , tn]↓CHFI and G[t1, . . . , tn]↑CHFI =⇒ G[s1, . . . , sn]↑CHFI for all G ∈
GCtxt, then s ≤o

b,PFMI t implies s ≤c,CHFI t.

Proof. Let s ≤o
b,PFMI t and C[·] be a process context with expression hole. Let

C = C1[C2], such that C2 is a maximal expression context. Then C2[s] ≤o
b,PFMI

C2[t], since ≤o
b,PFMI is a precongruence. The precondition on the GCtxt-contexts

now shows that C1[C2[s]]↓CHFI =⇒ C1[C2[t]]↓CHFI and C1[C2[t]]↑CHFI =⇒
C1[C2[s]]↑CHFI , hence s ≤c,CHFI t.

Proposition 5.2. Let si, ti be pure expressions with si ≤o
b,PFMI ti, and let G ∈

GCtxt. Then G[s1, . . . , sn]↓CHFI =⇒ G[t1, . . . , tn]↓CHFI .

Proof. Let G[s1, . . . , sn]↓CHFI . We use induction on the number of reductions of
G[s1, . . . , sn] to a successful process. In the base case G[s1, . . . , sn] is successful.
Then either G[t1, . . . , tn] is also successful, or G = νX .x

main⇐== [·] |G′, and w.l.o.g.
this is the hole with index 1, and s1 = return s′1. Since s1 ≤o

b,PFMI t1, there

is a reduction t1
PFMI ,∗−−−−−→ return t′1. This reduction is also a CHFI -standard

reduction of G[t1, . . . , tn] to a successful process.
Now let G[s1, . . . , sn] CHFI−−−−→ S1 be the first step of a reduction to a successful

process. We analyze the different reduction possibilities:
If the reduction is within some si, i.e. si → s′i by (beta), (case) or (seq), then

we can use induction, since the standard-reduction is deterministic within the
expression, and a standard reduction of G[s1, . . . , sn]; and since si ∼o

b,PFMI s′i.
If the reduction is (lunit), i.e. G = νX .x⇐ [·] |G′, where s1 =

M1[return r1 >>= r2], and the reduction result of G[s1, . . . , sn] is G =
νX .x⇐M1[r2 r1] |G′[s2, . . . , sn]. We have s1 ≤o

b,PFMI t1. Let M1 =
M1,1 . . . M1,k, where M1,j = [·] >>= s′j . By induction on the depth, there is

a reduction sequence t1
CHFI ,∗−−−−−→ M2,1 . . . M2,k[(t′1 >>= t′2)], where M2,j =

[·] >>= r′j , s′j ≤o
b,PFMI r′j , and return r1 ≤o

b,PFMI t′1. Let M2 := M2,1 . . . M2,k.

This implies t′1
CHFI−−−−→ return t′′1 with r1 ≤o

b,PFMI t′′1 . This reduction is
also a standard reduction of the whole process. The corresponding results
are r2 r1 and t′2 t′′1 . Thus there is a reduction sequence G[t1, . . . , tn]

CHFI ,∗−−−−−→
νX .x⇐M2[t′2 t′′1 ] |G′[s2, . . . , sn]. Since ≤o

b,PFMI is a precongruence we have that
M1[r2 r1] ≤o

b,PFMI M2[t′2 t′′1 ] satisfy the induction hypothesis.
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For the reductions (tmvar), (pmvar), (nmvar), or (fork) the same arguments
as for (lunit) show that the first reduction steps permit to apply the induction
hypothesis with the following differences: For the reductions (tmvar) and (pmvar)
Proposition 4.11 is used to show that the reduction of G[t1, . . . , tn] also leads
to an MVar-variable in the case x ≤o

b,PFMI t. Also the G-hole is transported
between the thread and the data-component of the MVar. In case of (fork), the
number of holes of the successor G′ of G may have one more hole.

For (unIOTr) as argued above, G[t1, . . . , tn] can be reduced such that also a
(unIOTr) reduction for G[t1, . . . , tn] is possible. Assume that the substitutions
are σs = s′ // x and σt = t′ // x for G[s1, . . . , sn] and the reduction-successor of
G[t1, . . . , tn]. Lemma 4.6 shows that σs(s′′) ≤o

b,PFMI σt(t′′) whenever s′′ ≤o
b,PFMI

t′′, and thus the induction hypothesis can be applied. In this step, the number
of holes of G may increase, such that also expression components of MVars may
be holes, since the replaced variable x may occur in several places. ut

Example 5.3. Let G[·] := z
main⇐== takeMVar x | y⇐ [·] |xm e, and let s := Bot,

t := takeMVar x. Then s ≤o
b,PFMI t, G[s]⇓CHFI , but G[t]↑CHFI . Hence s ≤o

b,PFMI

t and G[s]⇓CHFI do not imply G[t]⇓CHFI .

Proposition 5.4. Let si, ti be PFMI -expressions with si ∼o
b,PFMI ti, and let

G ∈ GCtxt. Then G[s1, . . . , sn]⇓CHFI =⇒ G[t1, . . . , tn]⇓CHFI .

Proof. We prove the converse implication: G[t1, . . . , tn]↑CHFI =⇒
G[s1, . . . , sn]↑CHFI . Let G[t1, . . . , tn]↑CHFI . We use induction on the number
of reductions of G[t1, . . . , tn] to a must-divergent process. In the base case
G[t1, . . . , tn]⇑CHFI . Proposition 5.2 shows G[s1, . . . , sn]⇑CHFI .

Now let G[t1, . . . , tn] CHFI−−−−→ S1 be the first reduction of a reduction sequence
R to a must-divergent process. We analyze the different reduction possibilities:

If the reduction is within some ti, i.e. ti → t′i and hence ti ∼o
b,PFMI t′i, then

we use induction, since the reduction is a standard-reduction of G[t1, . . . , tn].
Now assume that the first reduction step of R is (lunit). I.e., G =

νX .x⇐ [·] |G′, where t1 = M[return r1 >>= r2], and the reduction result of
G[t1, . . . , tn] is G = νX .x⇐M[r2 r1] |G′[t2, . . . , tn]. We have s1 ∼o

b,PFMI t1.
By induction on the reductions and the length of the path to the hole of

M[·], we see that s1
∗−→M1[return r′1 >>= r′2]. Then we can perform the (lunit)-

reduction and obtain M1[r′2 r′1]. Since r′2 r′1 ∼o
b,PFMI r2 r1, we obtain a reduction

result that satisfies the induction hypothesis.
The other reductions can be proved similarly, using techniques as in the

previous case and the proof of Proposition 5.2. For (unIOTr), Lemma 4.6 shows
that for the substitutions σ := s // x and σ′ := s′ // x with s ∼o

b,PFMI s′, we have
σ(r) ∼o

b,PFMI σ(r′) for expressions r, r′ with r ∼o
b,PFMI r′, hence the induction

can also be used in this case. ut

Propositions 5.2 and 5.4 and Lemma 5.1 imply:

Theorem 5.5. Let s, t ∈ IExprPFMI with s ∼o
b,PFMI t. Then s ∼c,CHFI t.
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6 Conservativity of PF in CHF

In this section we will prove that contextual equality in PF implies contextual
equality in CHF , i.e. CHF is a conservative extension of PF w.r.t. contextual
equivalence. In a second part we show that this result does not hold, if we add
so-called lazy futures to CHF . We will now use a translation from [24] which
translates CHF -processes into CHFI -process by removing letrec- and shared
bindings. This will enable us to show that contextual equality in the pure calculus
PF implies contextual equality in CHF .

Definition 6.1 ([24]). Let P be a process. The translation IT :: Proc→ IProc
translates a process P into its infinite tree process IT (P ). It recursively un-
folds all bindings of letrec- and top-level bindings where cyclic variable chains
x1 = x2, . . . , xn = x1 are removed and all occurrences of xi on other positions
are replaced by the new constant Bot. Top-level bindings are replaced by a 0-
component. Free variables, futures, and names of MVars are kept in the tree
(are not replaced). Equivalence of infinite processes is syntactic, where α-equal
trees are assumed to be equivalent. Similarly, IT is also defined for expressions
to translate PFI -expressions into PF-expressions.

Theorem 6.2 ([24]). For all processes P ∈ ProcCHF it holds: P↓CHF ⇐⇒
IT (P )↓CHFI and P⇓CHF ⇐⇒ IT (P )⇓CHFI .

We first consider PF - and PFI -expressions:

Proposition 6.3. Let e1, e1 be PF-expressions. Then e1 ≤c,PF e2 iff
IT (e1) ≤c,PFI IT (e2).

Proof. From Theorem 6.2 it easily follows that IT (e1) ≤c,PFI IT (e2) implies
e1 ≤c,PF e2. For the other direction, we have to note that there are infinite
expressions that are not IT ()-images of PF -expressions. We give a sketch of
the proof: Let e1, e2 be PF -expressions with e1 ≤c,PF e2. Let C be a PFI -
context such that C[IT (e1)]↓PFI . We have to show that also C[IT (e2)]↓PFI .
Since C[IT (e1)]↓PFI by a finite reduction, there is a finite context C′ such that C′
can be derived from C by replacing subexpressions by Bot, with C′[IT (e1)]↓PFI .
Since equivalence of convergence holds and since C′ is invariant under IT , this
shows C′[e1]↓PF . The assumption shows C′[e2]↓PF . This implies C′[IT (e2)]↓PFI .
Standard reasoning shows that also C[IT (e2)]↓PFI .

Main Theorem 6.4 Let e1, e2 ∈ ExprPF . Then e1 ∼c,PF e2 iff e1 ∼c,CHF e2.

Proof. One direction is trivial. For the other direction the reasoning is as follows:
Let e1, e2 be PF -expressions. Then Proposition 6.3 shows that e1 ∼c,PF e2 is
equivalent to IT (e1) ∼c,PFI IT (e2). Now Theorem 4.4 and Proposition 4.10 show
that IT (e1) ∼b,PFMI IT (e2). Then Theorem 5.5 shows that IT (e1) ∼c,CHFI

IT (e2). Finally, from Theorem 6.2 it easily follows that e1 ∼c,CHF e2. ut
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6.1 Lazy Futures Break Conservativity

Having proved our main result, we now show that there are innocent looking
extensions of CHF that break the conservativity result. One of those are so-called
lazy futures. The equivalence seq e1 e2 and seq e2 (seq e1 e2) used by Kiselyov’s
counter example [9], holds in the pure calculus and in CHF (see Appendix B).
This implies that Kiselyov’s counter example cannot be transferred to CHF.

Let the calculus CHFL be an extension of CHF by a lazy future construct,
which implements the idea of implementing futures that can be generated as non-
evaluating, and which have to be activated by an (implicit) call from another
future. We show that this construct would destroy conservativity.

We add a process component x
lazy⇐== e which is a lazy future, i.e. a thread

which can not be reduced unless its evaluation is forced by another thread. On
the expression level we add a construct lfuture of type IO τ → IO τ . The
operational semantics is extended by two additional reduction rules:

(lfork) y⇐M[lfuture e]→ y⇐M[return x] |x
lazy⇐== e

(force) y⇐M[F[x]] |x
lazy⇐== e→ y⇐M[F[x]] |x⇐ e

The rule (lfork) creates a lazy future. Evaluation can turn a lazy future into a
concurrent future if its value is demanded (rule (force)).

In CHF the equation (seq e2 (seq e1 e2)) ∼Bool (seq e1 e2) for e1, e2 :: Bool
holds (see above) The equation does not hold in CHFL. Consider the context
that uses lazy futures and distinguishes the two expressions:

C = z
main⇐== caseBool [·] of (True→ ⊥) (False→ return True) | v m True

|x
lazy⇐== takeMVar v >>=λw.(putMVar v False >>=λ → return w)

| y
lazy⇐== takeMVar v >>=λw.(putMVar v False >>=λ → return w)

Then C[seq y (seq x y)] must-diverges, since its evaluation (deter-
ministically) results in z

main⇐== ⊥ |x = False | y = True | v m False.
On the other hand C[seq x y]⇓CHFL, since it evaluates to z

main⇐==
True |x⇐ True | y⇐ False | v m False where again the evaluation is determin-
istic. Thus context C distinguishes seq x y and seq y (seq x y) w.r.t. ∼c.

Hence adding an unsafeInterleaveIO-operator to CHF results in the loss
of conservativity, since lazy futures can be implemented in CHF (or even in
Concurrent Haskell) using unsafeInterleaveIO to delay the thread creation:

lfuture act = unsafeInterleaveIO (do ack ← newEmptyMVar

thread ← forkIO (act >>= putMVar ack)

takeMVar ack)

7 Conclusion

We have shown that the calculus CHF modelling most features of Concurrent
Haskell with unsafeInterleaveIO is a conservative extension of the pure lan-
guage, and exhibited a counterexample showing that adding the unrestricted use
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of unsafeInterleaveIO is not. This complements our results in [24] where cor-
rectness of monad laws was shown, provided that the type of the first argument
of seq is restricted to functional types. Future work is to also analyze further
extensions like killing threads, and synchronous and asynchronous exceptions (as
in [11, 17]), where our working hypothesis is that killing threads and (at least)
synchronous exceptions retain the our conservativity result.
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A The Congruence Proof

The goal of this section is to show that ≤b,PFMI and ≤b,PFI are precongruences.
We omit the proof for the calculus PFI and only consider PFMI , since the
proofs for PFI are completely analogous. The proof method used below for
showing that similarity is a precongruence is derived from Howe [6], though
extended to infinite expressions. For a developed proof for may-convergence in
a non-deterministic setting with finite expressions, see [10].
The fixpoint property of ≤b,PFMI implies:

Lemma A.1. For closed values θ(s1 . . . sn), θ(t1 . . . tn), we have
θ(s1 . . . sn) ≤b,PFMI θ(t1 . . . tn) iff si ≤o

b,PFMI ti.
In the concrete syntax, if θ is a constructor or a monadic operator, then
θ(s1 . . . sn) ≤b,PFMI θ(t1 . . . tn) iff si ≤b,PFMI ti, and λx.s ≤b,PFMI λx.t iff
s ≤o

b,PFMI t.

Lemma A.2. The relations ≤b,PFMI and ≤o
b,PFMI are reflexive and transitive.

Proof. Reflexivity is obvious. Transitivity follows by showing that η := ≤b,PFMI

∪ (≤b,PFMI ◦ ≤b,PFMI ) satisfies η ⊆ FPFMI (η) and then using the coinduction
principle.

The goal in the following is to show that ≤b,PFMI is a precongruence.
A relation µ is operator-respecting, iff si µ ti for i = 1, . . . , n implies
ξ(s1, . . . , sn) µ ξ(t1, . . . , tn). This proof proceeds by defining a congruence can-
didate ≤cand as a closure of ≤b,PFMI within contexts, which obviously is oper-
ator respecting: This relation is not known to be transitive. Then we show that
≤b,PFMI and ≤cand coincide.

Definition A.3. The precongruence candidate ≤cand is a binary relation on
open expressions and is defined as the greatest fixpoint of the operator Fcand on
relations on all expressions:

1. x Fcand(η) s iff x ≤o
b,PFMI s.

2. ξ(s1, . . . , sn) Fcand(η) s iff there is some expression ξ(s′1, . . . , s
′
n) ≤o

b,PFMI s
with si η s′i for i = 1, . . . , n.

The operator Fcand is monotone, hence the definition makes sense. Presumably
it is not continuous, hence usual induction over an IN-indexed intersection does
not work and we have to stick to coinduction for the proofs:

Lemma A.4. If some relation η satisfies η ⊆ Fcand(η), then η ⊆ ≤cand .

Since ≤cand is a fixpoint of Fcand , we have:

Lemma A.5.

1. x ≤cand s iff x ≤o
b,PFMI s.

2. ξ(s1, . . . , sn) ≤cand s iff there is some expression ξ(s′1, . . . , s
′
n) ≤o

b,PFMI s
with si ≤cand s′i for i = 1, . . . , n.
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Some technical facts about the precongruence candidate are now proved:

Lemma A.6.

1. ≤cand is reflexive.
2. ≤cand and (≤cand)c are operator-respecting.
3. ≤o

b,PFMI ⊆ ≤cand and ≤b,PFMI ⊆ (≤cand)c.
4. ≤cand ◦ ≤o

b,PFMI ⊆ ≤cand .
5. (s ≤cand s′ ∧ t ≤cand t′) =⇒ t[s/x] ≤cand t′[s′/x].
6. s ≤cand t implies that σ(s) ≤cand σ(t) for every substitution σ.
7. ≤cand ⊆ ((≤cand)c)o

Proof. 1. This follows from Lemma A.5, since ≤o
b is reflexive, using coinduction:

Show that η := ≤cand ∪ {(s, s) | s ∈ IExprPFMI } satisfies η ⊆ Fcand(η).
2. Let η be the operator-respecting closure of ≤cand . I.e., the least fix-

point of adding relations ξ(s1, . . . , sn) η ξ(t1, . . . , tn) if si η ti for all i,
starting with ≤cand . We will show that η ⊆ Fcand(η). So assume that
ξ(s1, . . . , sn) η ξ(t1, . . . , tn) holds. If ξ(s1, . . . , sn) ≤cand ξ(t1, . . . , tn), then
ξ(s1, . . . , sn) Fcand(η) ξ(t1, . . . , tn), since ≤cand ⊆ η, and ≤cand is the
greatest fixpoint of Fcand . Otherwise ξ(s1, . . . , sn) η ξ(t1, . . . , tn) since si η ti
for all i. Then ξ(s1, . . . , sn) Fcand(η) ξ(t1, . . . , tn) since ≤o

b,PFMI is reflexive.
By coinduction we obtain η ⊆ ≤cand . Since also ≤cand ⊆ η, we have
η = ≤cand .

3. This follows from Lemma A.5, since ≤cand is reflexive.
4. This follows from the definition, Lemma A.5 and transitivity of ≤o

b,PFMI .
5. Let η := ≤cand ∪ {(r[s/x], r′[s′/x]) | r ≤cand r′}. We show that η ⊆

Fcand(η): In the case x ≤cand r′, we obtain x ≤o
b,PFMI r′ from the

definition, and s′ ≤o
b,PFMI r′[s′/x] and thus x[s/x] ≤cand r′[s′/x]. In

the case y ≤cand r, we obtain y ≤o
b,PFMI r′ from the definition, and

y[s/x] = y ≤o
b,PFMI r′[s′/x] and thus y = y[s/x] ≤cand r′[s′/x]. If r =

ξ(r1, . . . , rn) and r ≤cand r′ and r[s/x] η r′[s′/x]. Then there is some
ξ(r′1, . . . , r

′
n) ≤o

b,PFMI r′ with ri ≤cand r′i. W.l.o.g. bound variables have fresh
names. We have ri[s/x] η r′i[s

′/x] and ξ(r′1, . . . , r
′
n)[s′/x] ≤o

b,PFMI r′[s′/x].
Thus r[s/x] Fcand(η) r′[s′/x]. By coinduction we see that ≤cand = η.

6. This follows from item 5.
7. This follows from item 6 and Lemma 3.4. ut

Lemma A.7. The middle expression in the definition of ≤cand can be chosen
as closed, if s, t are closed: Let s = ξ(s1, . . . , sar(ξ)), such that s ≤cand t holds.
Then there are operands s′i, such that ξ(s′1, . . . , s

′
ar(ξ)) is closed, ∀i : si ≤cand s′i

and ξ(s′1, . . . , s
′
ar(ξ)) ≤

o
b,PFMI s.

Proof. The definition of ≤cand implies that there is an expression
ξ(s′′1 , . . . , s′′ar(ξ)) such that si ≤cand s′′i for all i and ξ(s′′1 , . . . , s′′ar(ξ)) ≤

o
b,PFMI t.

Let σ be the substitution with σ(x) := vx for all x ∈ FV (ξ(s′′1 , . . . , s′′ar(ξ))), where
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vx is any closed expression. Note that for every type τ there exists a closed ex-
pression, namely Bot :: τ . Lemma A.6 now shows that si = σ(si) ≤cand σ(s′′i )
holds for all i. The relation σ(ξ(s′′1 , . . . , s′′ar(ξ))) ≤

o
b,PFMI t holds, since t is closed

and due to the definition of an open extension. The requested expression is
ξ(σ(s′′1), . . . , σ(s′′ar(ξ))).

Lemmas 3.7 and A.6 imply that ≤cand is right-stable w.r.t. reduction:

Lemma A.8. If s ≤cand t and t
PFMI−−−−→ t′, then s ≤cand t′.

We show that ≤cand is left-stable w.r.t. reduction:

Lemma A.9. Let s, t be closed expressions such that s = θ(s1, . . . , sn) is a value

and s ≤cand t. Then there is some closed value t′ = θ(t1, . . . , tn) with t
PFMI ,∗−−−−−→ t′

and for all i : si ≤cand ti.

Proof. The definition of ≤cand implies that there is a closed expression
θ(t′1, . . . , t

′
n) with si ≤cand t′i for all i and θ(t′1, . . . , t

′
n) ≤b,PFMI t. Consider the

case s = λx.s′. Then there is some closed λx.t′ ≤b,PFMI t with s′ ≤cand t′. The

relation λx.t′ ≤b,PFMI t implies that t
PFMI ,∗−−−−−→ λx.t′′. Lemma 3.7 now implies

λx.s′ ≤cand λx.t′′. Definition of ≤cand and Lemma A.7 now show that there
is some closed λx.t(3) with s′ ≤cand t(3) and λx.t(3) ≤b,PFMI λx.t′′. The latter
relation implies t(3)≤o

b,PFMI t′′, which shows s′ ≤cand t′′ by Lemma A.6 (4).
If θ is a constructor, then there is a closed expression θ(t′1, . . . , t

′
n) with

si ≤cand t′i for all i and θ(t′1, . . . , t
′
n) ≤b,PFMI t. The definition of ≤b,PFMI im-

plies that t
PFMI ,∗−−−−−→ θ(t′′1 , . . . , t′′n) with t′i ≤b,PFMI t′′i for all i. By definition of

≤cand , we obtain si ≤cand t′′i for all i.

Proposition A.10. Let s, t be closed expressions, s ≤cand t and s
PFMI−−−−→ s′

where s is the redex. Then s′ ≤cand t.

Proof. The relation s ≤cand t implies that s = ξ(s1, . . . , sn) and that there is
some closed t′ = ξ(t′1, . . . , t

′
n) with si ≤cand t′i for all i and t′ ≤o

b,PFMI t.

– For the (beta)-reduction, s = s1 s2, where s1 = (λx.s′1), s2 is a closed term,

and t′ = t′1 t′2. Lemma A.9 and s1 ≤cand t′1 show that t′1
PFMI ,∗−−−−−→ λx.t′′1

with λx.s′1 ≤cand λx.t′′1 and also s′1 ≤cand t′′1 . From t′
PFMI ,∗−−−−−→ t′′1 [t′2/x] we

obtain t′′1 [t′2/x] ≤b,PFMI t. Lemma A.6 now shows s′1[s2/x] ≤cand t′′1 [t′2/x].
Hence s′1[s2/x] ≤cand t, again using Lemma A.6.

– Similar arguments apply to the case-reduction.
– Suppose, the reduction is a seq-reduction. Then s ≤cand t and s =

(seq s1 s2). Lemma A.7 implies that there is some closed (seq t′1 t′2) ≤o
b,PFMI

t with si ≤cand t′i. Since s1 is a value, Lemma A.9 shows that there is

a reduction t′1
PFMI ,∗−−−−−→ t′′1 , where t′′1 is a value. There are the reduc-

tions s
PFMI−−−−→ s2 and (seq t′1 t′2)

PFMI ,∗−−−−−→ (seq t′′1 t′2)
PFMI−−−−→ t′2. Since

t′2 ≤o
b,PFMI (seq t′1 t′2) ≤o

b,PFMI t, and s2 ≤cand t′2, we obtain s2 ≤cand t. ut
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Proposition A.11. Let s, t be closed expressions, s ≤cand t and s
PFMI−−−−→ s′.

Then s′ ≤cand t.

Proof. We use induction on the length of the path to the hole. The base
case is proved in Proposition A.10. Let E[s], t be closed, E[s] ≤cand t and
E[s] PFMI−−−−→ E[s′], where we assume that the redex s is not at the top
level and that E is an IECtxt-context. The relation E[s] ≤cand t implies that
E[s] = ξ(s1, . . . , sn) and that there is some closed t′ = ξ(t′1, . . . , t

′
n) ≤o

b,PFMI t

with si ≤cand t′i for all i. If sj
PFMI−−−−→ s′j , then by induction hypothe-

sis, s′j ≤cand t′j . Since ≤cand is operator-respecting, we obtain also E[s′] =
ξ(s1, . . . , sj−1, s

′
j , sj+1, . . . , sn) ≤cand ξ(t′1, . . . , t

′
j−1, t

′
j , t

′
j+1, . . . , t

′
n), and from

ξ(t′1, . . . , t
′
n) ≤o

b,PFMI t, also E[s′] = ξ(s1, . . . , sj−1, s
′
j , sj+1, . . . , sn) ≤cand t.

Now we are ready to prove that the precongruence candidate and similarity
coincide. First we prove this for the relations on closed expressions and then
consider (possibly) open expressions.

Theorem A.12. (≤cand)c = ≤b,PFMI .

Proof. Since ≤b,PFMI ⊆ (≤cand)c by Lemma A.6, we have to show that
(≤cand)c ⊆ ≤b,PFMI . Therefore it is sufficient to show that (≤cand)c

satisfies the fixpoint equation for ≤b,PFMI . We show that (≤cand)c ⊆
FPFMI ((≤cand)c). Let s (≤cand)c t for closed terms s, t. We show that
s FPFMI ((≤cand)c) t: If ¬(s↓PFMI ), then s FPFMI ((≤cand)c) t holds by Lemma
A.6. If s↓PFMI θ(s1, . . . , sn), then θ(s1, . . . , sn) (≤cand)c t by Lemma A.11.

Lemma A.9 shows that t
PFMI ,∗−−−−−→ θ(t1, . . . , tn) and for all i : si ≤cand ti. This

implies s FPFMI ((≤cand)c) t, since θ(t1, . . . , tn) ≤o
b,PFMI t. We have proved the

fixpoint property of (≤cand)c w.r.t. FPFMI , and hence (≤cand)c = ≤b,PFMI .

Theorem A.13. ≤cand = ≤o
b,PFMI .

Proof. Theorem A.12 shows (≤cand)c ⊆ ≤b,PFMI . Hence
((≤cand)c)o ⊆ ≤o

b,PFMI by monotonicity. Lemma A.6 (7) implies
≤cand ⊆ ((≤cand)c)o ⊆ ≤o

b,PFMI .

This immediately implies:

Corollary A.14. ≤o
b,PFMI is a precongruence on infinite expressions

IExprPFMI . If σ is a substitution, then s ≤o
b,PFMI t implies σ(s) ≤o

b,PFMI σ(t).

The same reasoning can also be performed for ≤b,PFI :

Corollary A.15. ≤o
b,PFI is a precongruence on infinite expressions IExprPFI .

If σ is a substitution, then s ≤o
b,PFI t implies σ(s) ≤o

b,PFI σ(t).

The last two corollaries show

Theorem A.16. ≤o
b,PFMI is a precongruence on infinite expressions

IExprPFMI . If σ is a substitution, then s ≤o
b,PFMI t implies σ(s) ≤o

b,PFMI σ(t).
≤o

b,PFI is a precongruence on infinite expressions IExprPFI . If σ is a substi-
tution, then s ≤o

b,PFI t implies σ(s) ≤o
b,PFI σ(t).
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A.1 Recursive Replacements

Lemma A.17. Let x, y be a variables and t1, t2 be PFMI -expressions with
x ≤o

b,PFMI t2 and y ≤o
b,PFMI t1. Then x[y // x] ≤o

b,PFMI t2[t1 // x].

Proof. The relation y ≤o
b,PFMI t1 implies y ≤o

b,PFMI σ(t1) for all substitutions
with σ(y) = y, hence y ≤o

b,PFMI t1[t2 // x].

Lemma A.18. Let x be a variable and s1, s2, t1, t2 be PFMI -expressions with
si ≤o

b,PFMI ti for i = 1, 2. Then s2[s1 // x] ≤o
b,PFMI t2[t1 // x].

Proof. In the proof we use Theorem A.13 and also the knowledge about ≤o
b,PFMI

and Fcand . If s1 is the variable x, then the substitution [s1 // x] is x 7→ Bot,
and the claim follows easily. Otherwise, we have s1 6= x. Let ρ be the relation
defined by all pairs s2[s1 // x] ρ t2[t1 // x] for all s1, s2, t1, t2 with si ≤o

b,PFMI ti
for i = 1, 2. In order to use coinduction, we show that ρ ⊆ Fcand(ρ):
Note that ≤o

b,PFMI ⊆ ρ. Assume s2[s1 // x] ρ t2[t1 // x].

– s2[s1 // x] is a variable. Then it cannot be x. If s2 = x, and s1 = y, then
s2[s1 // x] = y and then Lemma A.17 shows s2[s1 // x] ≤o

b,PFMI t2[t1 // x].
If s2 = y 6= x, then s2[s1 // x] = y = s2[t1 // x]. Since ≤o

b,PFMI is invariant
under substitutions, we also obtain s2[s1 // x] ≤o

b,PFMI t2[t1 // x].
– s2[s1 // x] is not a variable. If s2 = x, then s2[s1 // x] = s1 ≤o

b,PFMI

s2[t1 // x] ≤o
b,PFMI t2[t1 // x]. If s2 = ξ(s′1, . . . , s

′
n), then there is some expres-

sion ξ(t′1, . . . , t
′
n) ≤o

b,PFMI t2 with s′i ≤o
b,PFMI t′i. Hence s′i[s1 // x] ρ t′i[t1 // x]

by the definition of ρ. This means s2[s1 // x] Fcand(ρ) t2[t1 // x].

Hence coinduction allows us to conclude ρ ⊆ ≤o
b,PFMI . Obviously, the other

direction also holds, hence ρ = ≤o
b,PFMI .

B An Equivalence for seq-Expressions

Before proving Proposition B.2 we show a helpful proposition:

Proposition B.1. Let s, t be closed infinite PFI -expressions such that s↓v =⇒
t↓v where v is a closed value. Then s ≤b,PFI t.

Proof. It easy to verify that the relation Rv := {(s, t) | s, t ∈ IExprc, s↓v =⇒
t↓v} ∪ {(s, s) | s ∈ IExprc} satisfies Rv ⊆ FPFI (Rv). Hence Proposition 3.6
shows Rv ⊆ ≤b.

Now we prove Proposition B.2. The claim is:

Proposition B.2. For any (also open) expressions e1, e2 ∈ ExprPF the equal-
ity seq e1 e2 ∼c,PF seq e2 (seq e1 e2) as well as seq e1 e2 ∼c,CHF

seq e2 (seq e1 e2) holds.
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Proof. First we show seq s t ≤b,PFI seq t (seq s t) and seq s t ≥b,PFI

seq t (seq s t) for infinite expressions s, t ∈ ExprPFI , where it is sufficient to
consider closed terms s, t. If seq s t↓PFI w, then clearly there exists a value v such

that seq s t
PFI ,∗−−−−→ seq v t

PFI ,seq−−−−−→ t
PFI ,∗−−−−→ w. Thus we can construct the reduc-

tion sequence seq t (seq s t)
PFI ,∗−−−−→ seq w (seq s t)

PFI ,seq−−−−−→ seq s t
PFI ,∗−−−−→ w.

If seq t (seq s t)↓PFI w, then obviously also seq s t
PFI ,∗−−−−→ w. This shows

seq s t↓PFI w if, and only if seq t (seq s t)↓PFI w. Now Proposition B.1 shows
that seq s t ∼b,PFI seq t (seq s t). Proposition 6.3 implies that seq e1 e2 ∼c,PF

seq e2 (seq e1 e2), which is the first claim. Theorem 5.5 shows seq e1 e2 ∼c,CHF

seq e2 (seq e1 e2).


