62 research outputs found

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana

    An Ontology-Based Interpretable Fuzzy Decision Support System for Diabetes Diagnosis

    Get PDF
    Diabetes is a serious chronic disease. The importance of clinical decision support systems (CDSSs) to diagnose diabetes has led to extensive research efforts to improve the accuracy, applicability, interpretability, and interoperability of these systems. However, this problem continues to require optimization. Fuzzy rule-based systems are suitable for the medical domain, where interpretability is a main concern. The medical domain is data-intensive, and using electronic health record data to build the FRBS knowledge base and fuzzy sets is critical. Multiple variables are frequently required to determine a correct and personalized diagnosis, which usually makes it difficult to arrive at accurate and timely decisions. In this paper, we propose and implement a new semantically interpretable FRBS framework for diabetes diagnosis. The framework uses multiple aspects of knowledge-fuzzy inference, ontology reasoning, and a fuzzy analytical hierarchy process (FAHP) to provide a more intuitive and accurate design. First, we build a two-layered hierarchical and interpretable FRBS; then, we improve this by integrating an ontology reasoning process based on SNOMED CT standard ontology. We incorporate FAHP to determine the relative medical importance of each sub-FRBS. The proposed system offers numerous unique and critical improvements regarding the implementation of an accurate, dynamic, semantically intelligent, and interpretable CDSS. The designed system considers the ontology semantic similarity of diabetes complications and symptoms concepts in the fuzzy rules' evaluation process. The framework was tested using a real data set, and the results indicate how the proposed system helps physicians and patients to accurately diagnose diabetes mellitusThis work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science, ICT and Future Planning)-NRF-2017R1A2B2012337)S

    An online belief rule-based group clinical decision support system

    Get PDF
    Around ten percent of patients admitted to National Health Service (NHS) hospitals have experienced a patient safety incident, and an important reason for the high rate of patient safety incidents is medical errors. Research shows that appropriate increase in the use of clinical decision support systems (CDSSs) could help to reduce medical errors and result in substantial improvement in patient safety. However several barriers continue to impede the effective implementation of CDSSs in clinical settings, among which representation of and reasoning about medical knowledge particularly under uncertainty are areas that require refined methodologies and techniques. Particularly, the knowledge base in a CDSS needs to be updated automatically based on accumulated clinical cases to provide evidence-based clinical decision support. In the research, we employed the recently developed belief Rule-base Inference Methodology using the Evidential Reasoning approach (RIMER) for design and development of an online belief rule-based group CDSS prototype. In the system, belief rule base (BRB) was used to model uncertain clinical domain knowledge, the evidential reasoning (ER) approach was employed to build inference engine, a BRB training module was developed for learning the BRB through accumulated clinical cases, and an online discussion forum together with an ER-based group preferences aggregation tool were developed for providing online clinical group decision support.We used a set of simulated patients in cardiac chest pain provided by our research collaborators in Manchester Royal Infirmary to validate the developed online belief rule-based CDSS prototype. The results show that the prototype can provide reliable diagnosis recommendations and the diagnostic performance of the system can be improved significantly after training BRB using accumulated clinical cases.EThOS - Electronic Theses Online ServiceManchester Business SchoolGBUnited Kingdo

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped upon decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    National freight transport planning: towards a Strategic Planning Extranet Decision Support System (SPEDSS)

    Get PDF
    This thesis provides a `proof-of-concept' prototype and a design architecture for a Object Oriented (00) database towards the development of a Decision Support System (DSS) for the national freight transport planning problem. Both governments and industry require a Strategic Planning Extranet Decision Support System (SPEDSS) for their effective management of the national Freight Transport Networks (FTN). This thesis addresses the three key problems for the development of a SPEDSS to facilitate national strategic freight planning: 1) scope and scale of data available and required; 2) scope and scale of existing models; and 3) construction of the software. The research approach taken embodies systems thinking and includes the use of: Object Oriented Analysis and Design (OOA/D) for problem encapsulation and database design; artificial neural network (and proposed rule extraction) for knowledge acquisition of the United States FTN data set; and an iterative Object Oriented (00) software design for the development of a `proof-of-concept' prototype. The research findings demonstrate that an 00 approach along with the use of 00 methodologies and technologies coupled with artificial neural networks (ANNs) offers a robust and flexible methodology for the analysis of the FTN problem domain and the design architecture of an Extranet based SPEDSS. The objectives of this research were to: 1) identify and analyse current problems and proposed solutions facing industry and governments in strategic transportation planning; 2) determine the functional requirements of an FTN SPEDSS; 3) perform a feasibility analysis for building a FTN SPEDSS `proof-of-concept' prototype and (00) database design; 4) develop a methodology for a national `internet-enabled' SPEDSS model and database; 5) construct a `proof-of-concept' prototype for a SPEDSS encapsulating identified user requirements; 6) develop a methodology to resolve the issue of the scale of data and data knowledge acquisition which would act as the `intelligence' within a SPDSS; 7) implement the data methodology using Artificial Neural Networks (ANNs) towards the validation of it; and 8) make recommendations for national freight transportation strategic planning and further research required to fulfil the needs of governments and industry. This thesis includes: an 00 database design for encapsulation of the FTN; an `internet-enabled' Dynamic Modelling Methodology (DMM) for the virtual modelling of the FTNs; a Unified Modelling Language (UML) `proof-of-concept' prototype; and conclusions and recommendations for further collaborative research are identified

    Open Data

    Get PDF
    Open data is freely usable, reusable, or redistributable by anybody, provided there are safeguards in place that protect the data’s integrity and transparency. This book describes how data retrieved from public open data repositories can improve the learning qualities of digital networking, particularly performance and reliability. Chapters address such topics as knowledge extraction, Open Government Data (OGD), public dashboards, intrusion detection, and artificial intelligence in healthcare
    corecore