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ABSTRACT 

The University of Manchester 
Guilan Kong 

PhD in Business Administration 
Thesis title: “An online belief rule-based group clinical decision support system” 

April 2011 
 

Around ten percent of patients admitted to National Health Service (NHS) hospitals 
have experienced a patient safety incident, and an important reason for the high rate of 
patient safety incidents is medical errors. Research shows that appropriate increase in 
the use of clinical decision support systems (CDSSs) could help to reduce medical 
errors and result in substantial improvement in patient safety. However several 
barriers continue to impede the effective implementation of CDSSs in clinical settings, 
among which representation of and reasoning about medical knowledge particularly 
under uncertainty are areas that require refined methodologies and techniques. 
Particularly, the knowledge base in a CDSS needs to be updated automatically based 
on accumulated clinical cases to provide evidence-based clinical decision support. 

In the research, we employed the recently developed belief Rule-base Inference 
Methodology using the Evidential Reasoning approach (RIMER) for design and 
development of an online belief rule-based group CDSS prototype. In the system, 
belief rule base (BRB) was used to model uncertain clinical domain knowledge, the 
evidential reasoning (ER) approach was employed to build inference engine, a BRB 
training module was developed for learning the BRB through accumulated clinical 
cases, and an online discussion forum together with an ER-based group preferences 
aggregation tool were developed for providing online clinical group decision support.  

We used a set of simulated patients in cardiac chest pain provided by our research 
collaborators in Manchester Royal Infirmary to validate the developed online belief 
rule-based CDSS prototype. The results show that the prototype can provide reliable 
diagnosis recommendations and the diagnostic performance of the system can be 
improved significantly after training BRB using accumulated clinical cases. 
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Chapter 1 

Introduction 

 
1.1. Background 

Patient safety incidents or adverse events, which are unintended or unexpected 

incidents that could have or did lead to harm for one or more patients receiving 

National Health Service (NHS)-funded health care, represent a serious public health 

problem and pose a threat to patient safety (Thomas and Brennan, 2001). Research 

shows that around 10% of patients admitted to NHS hospitals have experienced a 

patient safety incident, and that up to half of these incidents could have been 

prevented (Department of Health, 2004). Patient safety incidents cause great harm to 

not only patients and their families, but also involved clinicians and host hospitals. 

For example, it is estimated that patient safety incidents cost NHS £2 billion a year in 

addition to hospital stays, without taking account of human or wider economic costs 

(Department of Health, 2004).  

In clinical governance (Department of Health, 1998), which is a framework through 

which NHS organizations are accountable for continuously improving the quality of 

their services and safeguarding high standards of care by creating an environment 

favourable for the excellence in clinical care to flourish, the reduction of medical 

errors and the improvement of patient safety have become major priorities since 2000 

(Department of Health Expert Group, 2000). 

Research shows that an important reason for high rate of patient safety incidents is 

medical errors that are mostly caused by human factors (Reason, 2001). Take 
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Emergency Department (ED) for example, causes of medical errors that can happen in 

ED include clinicians’ inexperience or lack of training, interrupted clinical 

management of patients due to clinicians’ shift schedule, clinicians’ languished 

vigilance and alertness of patients’ abnormalities, and clinicians’ stress which may be 

caused by patients’ various conditions or the working environment in ED (Driscoll et 

al., 2001). In clinical governance, a very important action is to examine the potential 

of information technology (IT) to reduce the risks to patients and improve the quality 

of health care (Department of Health, 2001).  

Appropriate increase in the use of IT in health care has proved to help bring 

substantial improvement in patient safety (Bates et al., 2001). Particularly the 

introduction of clinical decision support, and appropriate communications between 

clinical decision support system (CDSS) and the deployed computerised clinical 

systems have simplified the health care process and substantially facilitated clinical 

practice and reduced medical errors (Sim et al., 2001, Kawamoto et al., 2005). There 

are numerous examples of CDSSs in health care which, have successfully improved 

the quality of health care (de Dombal et al., 1972, Jonsbu et al., 1993, Lin et al., 2006).  

Significant research progresses, both theoretical and practical, have been achieved 

since the idea of computer-based CDSSs emerged. Nonetheless few CDSSs in the 

literature have been widely applied in practice. The causes for the low popularity of 

CDSSs include, among others, uncertainties in clinical signs, clinical symptoms and 

clinical domain knowledge, the complexity of involved inference mechanism, 

difficulties with domain selection and knowledge base construction and maintenance, 

and problems with system validation and evaluation (Miller and Geissbuhler, 1999). 
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A recent survey conducted by Sittig and colleagues (2008) identifies several top 

challenges in clinical decision support, among which ‘prioritised and filtered 

recommendations to the user’ is the one for researchers in decision science area to 

overcome. This challenge is closely related to inference methodologies used in 

CDSSs. It requires that the inference mechanism in a CDSS should have the 

capability of handling different clinical uncertainties and generating possible 

recommendations with corresponding priorities attached to them and can filter 

irrational recommendations. 

Another challenge in CDSSs identified by researchers is to provide ‘evidence-

adaptive’ CDSSs to better facilitate evidence-based medicine (Sim et al., 2001). A 

CDSS is evidence-based rather than evidence-adaptive if its clinical knowledge base 

is derived from scientific evidence, but no mechanisms are in place to incorporate 

new clinical evidence. On the contrary, a CDSS is evidence-adaptive if its knowledge 

base is based on current evidence and its recommendations are routinely updated to 

incorporate new clinical evidence (Sim et al., 2001). As a result, an evidence-adaptive 

CDSS requires its knowledge base to be adaptive to up-to-date clinical evidence 

which usually can be obtained from clinical literature and clinical practice. However it 

is difficult for a CDSS to keep up with clinical literature since the contents of clinical 

literature are textual and thus not machine-interpretable by present-day CDSSs. 

Nonetheless, it is not insurmountable for a CDSS to adapt itself to accumulated 

clinical cases in local clinical practice. The knowledge base, which is usually derived 

from the best clinical literature or expert domain knowledge, can be updated 

automatically and routinely based on evidence accumulated in clinical practice in an 

evidence-adaptive CDSS. This requires that the knowledge representation scheme 

employed in the evidence-adaptive CDSS should have a corresponding mechanism 
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which can help the clinical rules embedded in the knowledge base to learn from 

accumulated clinical cases routinely. 

In short, CDSSs is promising in helping facilitate evidence-based medicine and 

reducing patient safety incidents. But there are some challenges in CDSSs research 

area that need to be tackled, and these challenges are closely related to knowledge 

representation scheme and inference methodology. Therefore representation of and 

reasoning with uncertain medical knowledge are areas that require refined 

methodologies and techniques (Musen et al., 2006, Lin et al., 2006). Moreover, 

although some researchers have proposed the idea of developing a CDSS which can 

provide group decision support (Hatcher, 1990, Rao et al., 1996), few CDSSs in the 

literature have the capability of providing group clinical decision support. 

1.2. Research Questions 

To surmount the challenges in CDSSs research as identified from the literature, a 

recently developed new Rule-base Inference Methodology using the Evidential 

Reasoning approach (RIMER) (Yang et al., 2006) is employed for developing a 

CDSS in the research. In the CDSS, belief rule base (BRB) is employed to model 

specific clinical domain knowledge such as clinical rules for risk assessment of 

cardiac chest pain (CCP); the evidential reasoning (ER) approach is used as a 

mechanism to do clinical inference and group clinical decisions aggregation; and an 

optimization model is used to train or fine-tune BRB through clinical cases 

accumulated in clinical practice.  The research is aimed at answering three main 

questions:  

(1) Is it feasible to employ RIMER for developing a CDSS?  
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(1-1) What are the system features of the existing CDSSs? 

A very important motivation of the research is the lack of a CDSS in the literature 

which can firstly, handle uncertainties properly in both clinical signs and symptoms 

and clinical domain knowledge; secondly, provide group or collaborative clinical 

decision support; and thirdly, have learning capability to automatically update the 

knowledge base so that the system can be adaptive to clinical practice. To bridge the 

gap identified in CDSSs literature, ‘what are the system features of the existing 

CDSSs’ is the first and most important question we need to answer in the research. 

System features include domain knowledge representation schemes, clinical inference 

mechanism, and group clinical decision supporting capability implemented in one 

CDSS. 

(1-2) Is it feasible to employ BRB to model clinical domain knowledge for 

developing a CDSS?  

In the research, we proposed to apply the RIMER methodology for developing a 

CDSS. It is original to use BRB to model domain knowledge in clinical areas, 

although BRB has been successfully employed in modelling domain knowledge in 

areas such as pipeline leak detection (Xu et al., 2007). The feasibility of employing 

BRB to model clinical domain knowledge should be studied prior to the design and 

development of a belief rule-based CDSS. 

(1-3) Is it reliable to apply the ER approach to build inference engine in the 

belief rule-based CDSS?  

The ER approach has been successfully applied in inference with the BRB model 

(Yang et al., 2006, Xu et al., 2007). However, it is novel to use the ER approach to do 
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clinical diagnosis or inference. The reliability of using ER to do clinical inference in a 

belief rule-based CDSS should be investigated in the research.  

(2) How to facilitate online group clinical decision making and arrive at a group 

combined clinical recommendation in a belief rule-based CDSS?  

Groups are often perceived as better equipped than individuals to make difficult 

decisions (Rangel, 2009). In CDSSs research, the idea of providing group or 

collaborative decision support for doctors in practice is not new, but few CDSSs in 

the literature have the capability of supporting group clinical decision making. In the 

research, we should try to investigate how to facilitate online group clinical decision 

making and arrive at a group combined clinical recommendation in a belief rule-based 

CDSS. 

(3) How to train belief rule-based CDSS and make its knowledge base to be 

adaptive to clinical practice?  

It is essential for an evidence-adaptive CDSS to have intelligent learning ability so 

that its knowledge base can be adaptive to clinical practice. In the RIMER 

methodology, some optimization models can be built to train BRB in belief rule-based 

systems (Yang et al., 2007). ‘How to train belief rule-based CDSS and make its 

knowledge base to be adaptive to clinical practice’ is a necessary research question we 

need to investigate in the research.  

1.3. Research Objectives  

Based on the research questions above, the measurable objectives of the research are 

as follows.  

(1) To investigate the existent CDSSs, and to identify system features of the 
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existing CDSSs. 

(2) To acquire target clinical domain knowledge.  

Although clinical domain knowledge can be found in medical textbooks, medical 

journals, clinical practice guidelines, and so on, it is impossible for a non-medicine 

relevant researcher to fully acquire or understand the knowledge all by himself or 

herself. Thus it is crucial to acquire and elicit domain knowledge from proper expert 

clinicians and get in-depth understanding of the domain knowledge through field 

study.   

(3) To investigate the feasibility of employing BRB to model clinical domain 

knowledge and using the ER approach to do clinical inference in a CDSS. 

Concerns would inevitably arise over whether it is feasible to use BRB for modelling 

clinical domain knowledge and use the ER approach to build inference engine in a 

CDSS, since employing the RIMER methodology for developing a CDSS is relatively 

novel. The knowledge modelling methodology most commonly used in the existent 

CDSSs since the early CDSS MYCIN is traditional ‘IF-THEN’ rules because of their 

naturalness and transparency (Spooner, 1999, Spooner, 2007). In the feasibility 

investigation of this research, inference with BRB using the ER approach is compared 

to traditional ‘IF-THEN’ rule-based inference by examining real or simulated cases in 

selected clinical area.  

(4) To design and develop an online belief rule-based group CDSS prototype.  

A belief rule-based CDSS should be designed and developed after the preliminary 

feasibility study for the target clinical areas. In system design, the system architecture 

can be designed as a web-based three-layer architecture, where system users from the 
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client layer can access the CDSS through internet, and core system components reside 

in the server layer, and most of data used in the system can be stored in the back-end 

data layer. Knowledge base should be constructed using the BRB model, while the 

kernel algorithm of inference engine and group decision supporting module should be 

the ER approach, and the knowledge training module can train BRB via learning from 

accumulated clinical cases. 

In system development, Microsoft .NET technology is considered.  

(5) To validate the online intelligent CDSS prototype using clinical cases in 

target clinical areas. 

Ideally, after system design and development, the CDSS prototype should be 

validated by real patients’ data collected in clinical practice. If the real data of patients 

can not be obtained, simulated patients’ data can be used for the purpose. A necessary 

requirement for the simulated data is that it should be close to real patients’ data.    

1.4. Research Approach  

A research methodology consists of the combination of the process, methods, and 

tools which are used in conducting research in a research domain (Nunamaker and 

Chen, 1990). A research domain is the subject matter under study in a research project. 

This research focuses on design, development and validation of an online belief rule-

based CDSS prototype. A multi-methodology approach (Nunamaker and Chen, 1990) 

is employed in the study in that one methodology only is far from sufficient for the 

current complex research. 
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Firstly, modelling (Turban and Aronson, 2001) is a key method used in the research. 

Similar to general DSS, a CDSS should include several models which represent 

different parts of the clinical decision making problem, and these models are 

knowledge-based model, inference model, and knowledge base optimization model.  

Secondly, field study is employed for study of clinical work flow in NHS hospitals 

and domain knowledge acquisition in knowledge modelling. By doing field study, 

manual methods including interviewing and observing (Turban and Aronson, 2001) 

are conducted in the research for knowledge elicitation. 

Thirdly, a system development methodology - prototyping (Turban and Aronson, 

2001) is used for CDSS prototype development,  

Fourthly, statistical techniques including the receiver operating characteristics (ROC) 

curve analysis (Metz, 1978) and comparison of the area under the ROC curve (AUC) 

(Vergara et al., 2008) are used for analyzing the prototype’s diagnostic performance 

in validating the CDSS prototype. Brief introduction to the statistical analysis used in 

the research will be discussed in Chapter 6. 

To sum up, four main research methods including modelling, prototyping, field study, 

and statistical analysis are used complementarily in the research. Detailed description 

of the research methods used can be found in Chapter 3.  

1.5. Significance 

The following research gaps regarding CDSSs have been identified by reviewing the 

related literature. 
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(1) There is a gap in knowledge modelling methodologies used in existent CDSSs 

(Lin et al., 2006, Musen et al., 2006).  

It is observed that not only clinical signs and clinical symptoms, but also clinical 

domain knowledge described by individuals is inherent with uncertainties in nature 

(Szolovits, 1995). To handle clinical uncertainties, various domain knowledge 

modelling methodologies such as artificial neural networks (ANNs), Bayesian belief 

networks (BBNs), cases have been applied in existent CDSSs. However, the existent 

knowledge modelling methodologies have their own inherent drawbacks in 

representing uncertainties in a transparent and easily understandable way (Lin et al., 

2006, Musen et al., 2006).. 

(2) There is insufficient capability of handling uncertainties in inference 

mechanisms used in existent CDSSs (Lin et al., 2006, Musen et al., 2006).  

Inference mechanisms used in CDSSs are closely related to their corresponding 

knowledge representation schemes. Through decades of development, researchers 

have proposed various reasoning methods for handling uncertainties in clinical 

decision making. Those methods include combining fuzzy logic or certainty factors or 

Bayesian probabilities with traditional ‘IF-THEN’ rules, ANNs, etc. However, most 

inference mechanisms used in the existent CDSSs can not handle clinical uncertainties 

in a satisfactory way. For example, reasoning in ANN-based CDSS is hard for system 

users to understand, and the knowledge base is restricted to its learnt zones. Another 

example is Bayesian rule-based reasoning, which takes advantages of conditional 

independence, but all conditional probabilities for modelling domain knowledge in a 

Bayesian rule-based CDSS are hard to acquire or estimate. Therefore an inference 

mechanism which can well handle clinical uncertainties and process clinical inference 
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in a transparent way is needed in CDSSs research area (Lin et al., 2006, Musen et al., 

2006). 

(3) There is insufficient intellectual capability of updating knowledge base in the 

existent CDSSs to make them to be adaptive to clinical practice to support 

evidence-based medicine (Sim et al., 2001).  

In the literature, some non-knowledge-based CDSSs have learning ability to 

automatically update their knowledge bases. For example, an ANN-based CDSS can 

train all parameters of its network using a large historical dataset before the system 

can be put into real use. However, non-knowledge-based CDSSs have drawbacks in 

clinical reasoning because their knowledge base is restricted to the training data. 

Knowledge learning functionality is rarely considered in system design and 

development in knowledge-based CDSSs, which acquire domain knowledge manually 

to construct knowledge bases. Therefore the intelligence of automatically updating 

knowledge base according to daily clinical practice in existent CDSSs is not sufficient 

(Sim et al., 2001). 

(4) There is a lack of a CDSS which can provide group clinical decision support 

together with individual clinical decision support (Rao et al., 1994, Rao et al., 

1996).  

Although the idea of embedding group decision making with individual CDSSs has 

been proposed by researchers (Hatcher, 1990, Hatcher, 1994, Rao et al., 1994), few 

CDSSs in the literature have the capability of providing group or collaborative clinical 

decision support. 

The research is, therefore, of significance as it addresses the above gaps effectively. 
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1.6. Contribution 

In trying to fill the research gaps outlined above, the current research contributes to 

both CDSS research and practical domain application. Major contributions of the 

research are listed as follows: 

(1) From a CDSS research perspective: 

 The research develops a new CDSS framework which integrates knowledge-

based CDSS with automatic knowledge learning functionality and online 

group decision supporting functionality. 

 The research proposes and uses relational database to uniquely store and 

manage BRB model, and this makes physical knowledge base construction 

flexible and portable, and it makes it possible to share the knowledge between 

different clinical systems free of technology barriers thanks to mature 

relational database technologies.  

(2) From a practical domain application perspective: 

 The research develops a target clinical domain BRB for modelling domain 

specific knowledge under uncertainty. The BRB can be used not only for 

generating automatic diagnosis recommendations but also for clinicians’ future 

domain knowledge reference in practice. 

  The research develops an ER based inference engine to do inference with 

input uncertain clinical data and back-end uncertain domain knowledge in the 

BRB. The inference engine does inference with different clinical uncertainties 

in a rational way, and can generate prioritised and informative diagnosis 



 32

recommendations. 

 The research develops an ER based group clinical decision support module. 

The module provides not only a group diagnosis preferences aggregation 

mechanism but also a discussion forum for a group of consultants to hold 

online meetings and discussions or consultations. 

 The research develops a BRB training module that can help to update the 

embedded clinical rules automatically and routinely and help to keep the 

knowledge base to be adaptive to clinical practice. 

 The research implements guideline-based user interfaces which not only 

facilitates clinicians complying with the practice guidelines, but also makes the 

integration of CDSS into clinical work flow easily implemented. 

1.7. Outline of Contents of the Thesis 

The thesis comprises 7 chapters as shown in Figure 1-1. 
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Figure 1-1: Structure of the Thesis 

Chapter 1 presents an overview of the research. 

Chapter 2 reviews the state of the art of CDSSs. 

Chapter 3 discusses methodologies employed in the research and the research design.  

Chapter 4 presents a preliminary feasibility study of employing RIMER for 

development of a CDSS, in which a comparison between a traditional rule-based 

system and a belief rule-based system in drawing clinical conclusions is conducted. 

Chapter 5 describes the design and development of an online intelligent group CDSS 

prototype which provides individual clinical decision support, group consultation 

Research questions & objectives
(Chapter 1) 

Literature review 
(Chapter 2) 

Research methodology & design 
(Chapter 3) 

Design & development of an online belief rule-based group CDSS prototype
(Chapter 5) 

Validation of the online intelligent CDSS prototype 
(Chapter 6) 

Conclusions & future research
(Chapter 7) 

A preliminary feasibility study 
(Chapter 4) 
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support, and automatic knowledge updating based on daily clinical cases accumulated 

in clinical practice. 

Chapter 6 discusses the validation of the developed prototype system using simulated 

clinical cases in target clinical areas.  

Chapter 7 summarises the whole thesis and discusses possible future research.
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Chapter 2  

Literature Review 

 
2.1. Introduction 

CDSSs are computer systems designed to impact clinical decision making about 

individual patients at the point of time that these decisions are made (Berner and La 

Lande, 2007). With the increased focus on the prevention of medical errors, CDSSs 

have been proposed as a key element of systems’ approaches to improve patient safety 

(Bates et al., 1998, Kohn et al., 2000). If designed, developed, and implemented 

properly, CDSSs have potential to improve the quality of health care service and 

change the way medicine has been practiced (Sim et al., 2001, Kawamoto et al., 2005). 

From early generation of CDSSs such as AAPhelp - the Leeds abdominal pain 

diagnosis system (de Dombal et al., 1972), MYCIN (Shortliffe, 1976), and Quick 

Medical Reference (QMR) (Miller and Masarie, 1989), to the evolution of modern 

clinical decision support tools such as EON (Tu and Musen, 1999), PROforma (Fox et 

al., 1998), and GLIF (Peleg et al., 2000) based on evidence-based clinical guidelines, 

CDSSs have a history of almost 40 years. Significant research progresses, both 

theoretical and practical, have been made since the idea of computer-based CDSSs 

emerged. However, CDSSs are not yet common in patient care settings, and several 

challenges such as representation of and reasoning about medical knowledge under 

uncertainty, and integration of CDSSs into clinical workflow continue to impede the 

effective implementation of CDSSs in clinical settings (Musen et al., 2006). 
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This chapter provides a review of the literature which is essential in order to ascertain 

the research work that has been carried out in CDSSs and reveal the topics in which 

further research can be fruitfully made to advance both the literature and the practice 

of CDSSs. The chapter is organised as follows. Section 2.2 outlines typical definitions 

of CDSSs. Section 2.3 presents a review of state-of-the-art of CDSSs, where Section 

2.3.1 provides a discussion of different types of CDSSs, Section 2.3.2 discusses 

sources of different types of clinical uncertainties, Section 2.3.3 and Section 2.3.4 

present a review of knowledge-based and non-knowledge-based CDSSs respectively, 

group CDSSs are discussed in Section 2.3.5, and review of CDSSs validation study is 

presented in Section 2.3.6. Finally, Section 2.4 concludes the review and identifies the 

research gaps that this research aims to bridge. 

2.2. Definition of CDSSs 

There are different types of computerised systems in health care that can provide 

potential clinical decision support. While traditional CDSSs are defined as systems 

providing intelligent and automatic diagnostic inference or reasoning to generate 

patient specific assessment or recommendations to aid clinicians, some medical 

systems having no reasoning capability can also provide clinical decision support. For 

example, BestBETs (http://www.bestbets.org/) is a web-based medical system 

developed and maintained in Manchester Royal Infirmary (MRI) to provide evidence-

based clinical decision support, and the web-based system has a large volume of best 

evidence topics provided by clinicians all over the world, but the system possesses no 

reasoning capability. This review is based on CDSSs that have intelligent diagnosis or 

assessment capability. Typical definitions of CDSSs in the literature are given below.  
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Musen (1997) defines a CDSS as any piece of software that takes information about a 

clinical situation as inputs and that produces inferences as outputs that can assist 

practitioners in their decision making and that would be judged as intelligent by the 

program’s users.  

Miller and Geissbuhler (1999) defines a CDSS providing diagnostic decision support 

as a computer-based algorithm that assists a clinician with one or more component 

steps of the diagnostic process.  

Sim et al. (2001) defines CDSSs as ‘software that is designed to be a direct aid to 

clinical decision-making, in which the characteristics of an individual patient are 

matched to a computerised clinical knowledge base and patient specific assessments 

or recommendations are then presented to the clinician or the patient for a decision’. 

All above cited definitions of CDSSs given by masters in CDSSs research specify 

three similar key elements of a CDSS, namely (a) information about a clinical 

situation or an individual patient that acts as the system’s inputs, (b) an intelligent 

diagnosis or assessment mechanism which may contain one or more components, and 

(c) patient specific assessments or recommendations that are the system’s outputs.  

2.3. State-of-the-Art of CDSSs 

2.3.1. Types of CDSSs 

CDSSs can be classified into different types according to different criterion. 

Berlin and his colleagues (2006) propose to classify CDSSs according to their 

technical, workflow, and contextual characteristics.  
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 Based on internet technology, CDSSs can be classified as stand-alone and web-

based systems.   

If we classify CDSSs based on their technical characteristics, e.g. internet technology, 

some early CDSSs such as AAPhelp - Leeds abdominal pain diagnosis system (de 

Dombal et al., 1972) and MYCIN (Shortliffe, 1976) are stand-alone systems, some 

recently developed CDSSs such as (Huang and Chen, 2007, Fearn et al., 2007) are 

web-based or online systems.  

 Based on the working environment, CDSSs can be classified as ED CDSS, ICU 

CDSS, laboratory CDSS, and bed-ward CDSS, etc.  

If we classify CDSSs based on the roles that they play in the process of clinical work 

flow or their clinical working environment, some CDSSs target ED (Roukema et al., 

2008, Graham et al., 2008), some CDSSs target intensive care unit (ICU) (Gago et al., 

2007, Mack et al., 2009, Kumar et al., 2009), some CDSSs target laboratories (Grams, 

1993), some CDSSs target bed-ward (Thilo et al., 2009), and some target medicine 

prescription (Lin et al., 2009).  

 Based on target clinical domain, CDSS can be classified as in different clinical 

areas. 

If we classify CDSSs based on different clinical domains that they have impact on, 

some CDSSs are for cancer pain management (Thilo et al., 2009), some CDSSs are 

for acute abdominal pain (de Dombal et al., 1972), some CDSSs are for gynecological 

diseases (Mangalampalli et al., 2006), and some CDSSs are for heart disease (Yan et 

al., 2006), and so on. 
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Metzger and her colleagues (2002) describe CDSS using different dimensions. 

According to their research, CDSS differ among themselves in the timing at which 

they provide support (before, during, or after the clinical decision is made) and how 

active or passive the support is, i.e. whether the CDSS actively provides alerts or 

passively responds to physician input or patient-specific information. 

More generally, researchers classify CDSSs based on the way their knowledge bases 

are constructed. Some are knowledge-based CDSSs in which domain knowledge is 

acquired from domain experts or medical literature, and the others are non-

knowledge-based CDSSs which learn domain knowledge through large historical data 

(Berner and La Lande, 2007, Spooner, 2007).  

 Knowledge-based CDSSs 

Before elaborating on the framework of knowledge-based CDSSs, here we provide a 

brief discussion of general knowledge-based decision support systems (DSSs) first. 

Klein and Methlie (1995) defined that a knowledge-based system is a computer 

program that employs knowledge and reasoning to solve problems, and an expert 

system (ES) is such a knowledge-based system, where knowledge and inference 

procedures are modelled after human experts. For a traditional DSS, its aim is to 

provide information in a given application domain by means of analytical decision 

models in order to support a decision maker in making decisions. The framework of 

knowledge-based DSSs is resulting from integrating DSSs technologies and ESs 

technologies. It is based on the paradigm of decision support, but also enables us to 

incorporate specialized knowledge and expertise into the system, and it can take 

advantages of numeric computations in traditional DSSs and reasoning functions in 
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ESs, and the system architecture consists of components from DSSs and ESs (Klein 

and Methlie, 1995).  

In CDSSs research area, many of today’s knowledge-based CDSSs arose out of 

earlier ESs research. What we usually mean by a CDSS is a program that supports a 

reasoning task carried out behind the scenes and based on clinical data. For example, 

a program that accepts clinical information about a patient with some clinical signs 

and symptoms and generates a list of possible diagnoses is what we usually recognize 

as a diagnostic decision support system which is a particular type of CDSS. The intent 

of these CDSSs is no longer to simulate an expert’s decision making, but to assist a 

clinician in his or her own decision making. The system was expected to provide 

information for the user, rather than to come up with “the answer” as was the goal of 

earlier ESs. The knowledge-based systems cannot simply “learn” how to do the 

reasoning task from modelling human experts, and the human expert must put the 

knowledge into the system explicitly and directly (Berner and La Lande, 2007, 

Spooner, 2007).  

Based on the idea of knowledge-based CDSSs as proposed in the literature, a general 

model of knowledge-based CDSSs in the literature can be depicted as in Figure 2-1. 

We adopt the general knowledge-based CDSS model in our review. 

 

Figure 2-1: A General Model of Knowledge-Based CDSSs (Spooner, 2007) 

CDSS

Input  Output
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From the general system structure as depicted in Figure 2-1, there are generally three 

essential system components in a knowledge-based CDSS. The first component is a 

knowledge base which includes clinical domain knowledge that is often, but not 

always, represented in the form of traditional ‘IF-THEN’ rules. The second one is an 

inference engine which contains algorithms or formulas for combining or matching 

clinical rules in the knowledge base to input clinical data. The third part is a user 

interface which is a communication mechanism between the system users and the 

system allowing the system users to input the data of patients into the system and get 

the automatically generated recommendations from the system to help to make final 

clinical decision.  

 Non-knowledge-based CDSSs 

Unlike knowledge-based CDSSs that get clinical domain knowledge from expert 

clinicians or medical literature, non-knowledge-based CDSSs use a form of artificial 

intelligence called machine learning that allows the system to learn from past 

experience and/or to recognise patterns in clinical data (Marakas, 2003).  

CDSSs are classified as knowledge-based systems and non-knowledge-based systems 

in the following review. Sources of different types of uncertainties in medical decision 

making are reviewed first, since uncertainties in both clinical domain knowledge and 

clinical situation are inevitable, and CDSSs are entangled with uncertainties since the 

very early CDSSs such as MYCIN. 

2.3.2. Sources of Uncertainties in Medical Decision Making 

Uncertainty exists in almost every stage of a clinical decision making process 

(Szolovits, 1995). Uncertainties may arise from the following circumstances.  
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 Patients can not describe exactly what has happened to them or how they feel.  

 Doctors and nurses can not tell exactly what they observe.  

 Laboratories report results may be with some degrees of error.  

 Physiologists do not precisely understand how the human body works.  

 Medical researchers can not precisely characterise how diseases alter the normal 

functioning of the body.  

 Pharmacologists do not fully understand the mechanisms accounting for the 

effectiveness of drugs.  

 No one can precisely determine one's prognosis.  

The above sources of uncertainties in both medical domain knowledge and clinical 

symptoms during the process of medical decision making can be summarised as in 

Table 2-1, where all roles involved in medical decision making are listed, and the 

resultant uncertainties in medical domain knowledge or clinical symptoms related to 

each role along with their causes are described as well.  
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Table 2-1: Sources of Uncertainties in Medical Decision Making (Szolovits, 1995) 
Roles Involved in
Medical Decision
Making 

Causes of Uncertainties Resultant 
Uncertainties 

Patients Can not describe exactly what has happened 
to them or how they feel. 

Uncertainties in 
clinical symptoms 

Doctors Can not tell exactly what they observe and 
may produce laboratory results with some 
degrees of error. 

Uncertainties in 
clinical symptoms 

Nurses Can not tell exactly what they observe. Uncertainties in 
clinical symptoms 

Physiologists Do not precisely understand how the 
human body works. 

Uncertainties in 
medical domain 
knowledge 

Medical Researchers Can not precisely characterise how diseases 
alter the normal functioning of the body. 

Uncertainties in 
medical domain 
knowledge 

Pharmacologists Do not fully understand the mechanisms 
accounting for the effectiveness of drugs. 

Uncertainties in 
medical domain 
knowledge 

As shown in Table 2-1, all those listed roles including patients, doctors, nurses, 

physiologists, medical researchers, and pharmacologists can have uncertain judgments 

or observations. In consequence, uncertainties in medical domain knowledge, clinical 

symptoms’ description, and phased diagnosis judgments provided by clinicians are 

indeed unavoidable. 

2.3.3. Knowledge-Based CDSSs 

In the general structure of knowledge-based CDSSs as shown in Figure 2-1, core 

components of knowledge-based CDSSs include user interfaces, knowledge base, 

inference engine, decision models, and database. The user interfaces are used for 

acquiring system’s inputs and displaying system’s outputs. The knowledge base is a 

structured collection of expert medical knowledge used by the system. The inference 

engine is a set of computerised algorithms used to match clinical inputs with 

knowledge base to generate clinical recommendations. The decision models are to 
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provide decision support for clinicians. The database is for storing system inputs and 

outputs.  

In a review study of what makes a CDSS successful in improving clinical practice 

(Kawamoto et al., 2005), researchers found that a knowledge-based CDSS is as 

effective as its underlying knowledge base only. In fact, the effectiveness of the 

knowledge base is dependent on its knowledge representation scheme. Moreover, the 

inference method used in the inference engine is also closely related to the 

representation schemes used in a CDSS. The following subsections will shift to 

review of the knowledge representation schemes and inference mechanisms used in 

existent knowledge-based CDSSs.  

2.3.3.1. Knowledge Representation Schemes  

The goal of knowledge representation is to provide intelligent systems with 

information about a specific domain in a form that can be processed efficiently, and 

basically, knowledge representation schemes can be classified into four categories: 

logic, procedural, graph/network, and structured (Carter, 1999). This section reviews 

knowledge representation schemes according to these four categories. 

 Logic 

Firstly, logic seems to be the most common representation format used by researchers 

in the field of general artificial intelligence in the literature. In general, medical 

knowledge can be divided into two types, namely declarative knowledge and 

procedural knowledge. Declarative knowledge includes propositions and sentences. 

Propositions are statements about the world that are either ‘true’ or ‘false’. These 

statements may be connected by Boolean operators such as ‘and’, ‘or’, and ‘and not’ 
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to form sentences. Procedural knowledge provides more explicit information about 

what action can be taken or what conclusion can be drawn from declarative 

knowledge. For example, “‘ElectroCardioGram (ECG) shows ≥2mm ST elevation in 

two contiguous chest leads’ or ‘ECG shows ≥1mm ST elevation in two contiguous 

limb leads’” is declarative knowledge, and “IF ‘ECG shows ≥1mm ST elevation in 

two contiguous limb leads’, THEN ‘treat the patient as with ST-Segment Elevation 

Myocardial Infarction (STEMI)’” is procedural knowledge. The logic-based 

representations are declarative in nature, in that they consist of ‘true’ or ‘false’ 

statements and all questions are resolved through standard logic inference mechanism 

which is simply a ‘look up’ of known facts (Carter, 1999). 

 Procedural knowledge representation 

Secondly, procedural knowledge representation, on the other hand, is not simply a 

‘look up’ of known facts. It offers a ‘process’ to aid diagnostic and therapeutic 

decision-making (Carter, 1999). Procedural knowledge in medicine is usually 

provided in the form of rules in existent CDSSs. Many implemented CDSSs, from the 

very early CDSSs such as MYCIN, PUFF (Aikins et al., 1983), and IMM/Serve 

(Miller et al., 1996), to recently developed CDSSs such as Unified Medical Language 

System (UMLS)-based CDSS (Achour et al., 2001), and Chinese medical diagnostic 

system (Huang and Chen, 2007) are all rule-based. Actually, rules have been the 

dominant knowledge representation scheme for medical expert systems since the days 

of MYCIN (Carter, 1999). 

In practice, because of the existence of uncertainty in clinical domain knowledge, 

clinical signs and symptoms as discussed in Section 2.3.2, some CDSSs embed fuzzy 
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logic, certainty factors or probabilities into traditional ‘IF-THEN’ rules to represent 

knowledge with uncertainties. 

Fuzzy logic has been widely applied in CDSSs (Shiomi et al., 1995, Suryanarayanan 

et al., 1995, Palma et al., 2006). Certainty factors together with rules are employed in 

chest pain diagnosis support system (Hudson and Cohen, 1987, Hudson and Cohen, 

1988, Hudson and Cohen, 2002), and Bayes’ rule are used in Lliad (Warner, 1989). 

However, it is hard to get Bayes’ probabilities (Spooner, 1999, Spooner, 2007). 

 Network-based knowledge representation 

Thirdly, in terms of the network-based knowledge representation schemes used in 

knowledge-based CDSSs, Bayesian belief network (BBN) is a commonly used 

representation scheme, many CDSSs in the literature such as  (Burnside et al., 2006, 

Nicholson et al., 2008) are based on BBN. A Bayesian network is a way to put Bayes’ 

rule to work by laying out graphically which events influence the likelihood of 

occurrence of other events. In CDSS design, the choice of adopting a Bayesian 

network as representation scheme allows one to explicitly take advantage of 

conditional independencies from the modelling viewpoint, and to rely on several 

powerful algorithms for probabilistic inference. But it is really very difficult for 

researchers to derive all necessary parameter values or probabilities among the 

network (Stefania Montani, 2006). Decision trees are another network-based 

knowledge representation schemes used in knowledge-based CDSSs, and they are 

frequently used in guideline-based CDSSs such as EsPeR system (Colombet et al., 

2005) and breast cancer treatment CDSS (Skevofilakas et al., 2005). The advantage of 

decision trees is that they are simple to understand and interpret, and it is possible that 
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uncertainties can be incorporated into the decision trees. But it is always hard for 

CDSSs developers to extract an exact decision tree from domain experts.  

 Structural representation 

Fourthly, structural representations emphasise the ‘packaging’ of knowledge into well 

defined pieces with higher levels of organizations (Carter, 1999, Carter, 2007). 

‘Frame’ was the first widely accepted structural knowledge representation format 

created in 1970s (Minsky and Haugeland, 1975), and it is an application of the object-

oriented approach to knowledge-based systems, and a frame is a data structure 

containing typical knowledge about a concept or object. Some CDSSs such as earlier 

CENTAUR (Aikins, 1980) and Arden Syntax (Clayton et al., 1989, Starren et al., 

1994), and GASTON (de Clercq et al., 2001) and GLARE  (Terenziani et al., 2003) 

all use frame as one of their representation formats. Since each frame has its own 

name and a set of attributes or slots which contain values; for instance, the frame for 

patient might contain an age slot, sex slot, smoking status slot, etc. frames can be used 

to construct semantic network model. An important part of every frame is the pointer 

to a more general frame. The slots are filled with fillers which can be either atomic 

values or names of other frames. The slots of the generic frames can have procedures 

attached to them. The reasoning in frame-based system starts by identifying of a given 

object as an instance of a generic frame. After that all slot fillers which have not been 

set explicitly but can be inherited, are inherited. Where available, the procedures for 

frame can be invoked. Disadvantages of a frame-based system include: it can not 

process objects which characteristics are not known in advance; it can not process non 

typical situations; the procedural knowledge is not represented by a frame but by the 

procedures attached to frames (Grigorova and Nikolov, 2007). 
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In recent CDSS studies, Data-Base Management Systems (DBMS) offer another 

structured format for knowledge representation, and there are two types of databases 

which are frequently found in clinical settings—relational and object-oriented (Carter, 

2007). Relational DBMS uses a relational record to store and manage data, and each 

record has a number of fields. Records are then collected together into tables, while 

each row in the table represents a unique rerecord and each column represents a 

feature of the record. However, a column in   the   relational   DBMS can not hold 

more complex data structures, for example, another record, or a list of numbers. 

Differing from relational database object-oriented DBMS incorporates object-oriented 

technology into DBMS, where the data is seen as an object, and it permits greater 

expressiveness by permitting the storage of data types that can not be handled by 

relational DBMS (Pinciroli et al., 1992). Therefore some CDSSs use object-oriented 

DBMS to store complex medical datasets which are limited by data types in relational 

databases. A major drawback of DBMS is that although its Structured Query 

Language (SQL) can manipulate ‘query’, ‘add’, ‘update’ and ‘delete’ to its stored 

objects, it lacks a specific knowledge inference mechanism to reason and draw logic 

conclusions from the data (Carter, 2007). 

As discussed above, most knowledge representation schemes have their own 

advantages and drawbacks. Especially in dealing with uncertainties, knowledge 

representation schemes in existent CDSSs lack a mechanism that can 

comprehensively incorporate or represent different clinical uncertainties in a 

satisfactory way.  

The choice of an appropriate knowledge representation scheme in the construction of 

a knowledge base depends on the domain knowledge it represents and the inference 
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mechanism it uses. Inference mechanisms used in existent CDSSs are reviewed as 

follows. 

2.3.3.2. Inference Mechanisms 

An inference mechanism used in a CDSS is closely related to the corresponding 

knowledge representation scheme employed in the system. From the literature, 

inference mechanisms commonly used in knowledge-based CDSSs include rule-based, 

Bayesian based, and frame-based. 

In rule-based CDSSs, a set of ‘IF-THEN’ rules are processed. The forward and 

backward chaining can be used to conclude a diagnosis and provide diagnostic 

explanations for clinical users (Shortliffe and Perreault, 1990). Take forward chaining 

for example, forward chaining is a top-down method taking facts as they become 

available and attempts to draw conclusions from satisfied conditions in rules. The 

process of inference using forward chaining involves assigning values to attributes, 

evaluating conditions, and checking to see if all of the conditions in a rule are satisfied 

so as to fire satisfied rules. If fuzzy logic is incorporated in rule-based systems for 

handling uncertainties, compositional rule of inference (Zadeh, 1973) is commonly 

used for fuzzy rule-based inference. If certainty factor as used in MYCIN (Shortliffe, 

1976) is incorporated in rules for representing uncertainties, a threshold value need to 

be set for assessing whether a rule in the rule chain is fired or not. 

Bayesian systems predict the posterior probability of diagnoses based on the prior 

disease probabilities, and the sensitivity and specificity of confirmed clinical signs 

and symptoms (Warner, 1979). BBNs are often created as reformulations of 

traditional Bayesian representations and can provide many of the same browsing and 
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explanation capabilities of traditional systems (Li et al., 1994). Although Bayesian 

rules are preferred by researchers in statistics, it is very hard to derive all necessary 

probabilities and sensitivity and specificity of clinical signs and symptoms in target 

clinical area.  

As to reasoning in frame-based systems, it can not process objects which 

characteristics are not known in advance. Since most medical knowledge is ill-

structured and involves uncertainties, it is difficult to use frames to make clinical 

inference under uncertainties in CDSSs (Grigorova and Nikolov, 2007).  

It is important to note that medical experts will turn to concrete examples to express 

their knowledge when medical knowledge is difficult to be modelled in the format of 

logical representation. In such situation, the case-based reasoning (CBR) approach 

(Althoff et al., 1998, Kumar et al., 2009) is used in CDSSs. The advantage of CBR is 

that concrete similar empirical clinical cases are more convincing than some other 

implicit medical knowledge. The disadvantages of CBR include that it is difficult to 

measure the similarity between cases, especially under different types and degrees of 

uncertainties, the retrieval process is hard to be accurate and efficient, and the input 

scheme required by the CDSS based on CBR may not be easily accepted by clinicians. 

An important aspect of inference engines implemented in CDSSs is their 

independence from their knowledge base. Since CDSSs take a great deal of time to 

design and develop, reusability has been a focus of research (Tu et al., 1995). 

2.3.3.3. Challenges of Knowledge-Based CDSSs 

As reviewed from the literature, clinical uncertainties are inevitable not only in the 

process of shaping domain knowledge in one formal format but also in each clinical 
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role’s clinical judgments or observations. Thus one important aspect of knowledge 

representation scheme and inference mechanism is their capability of representing and 

reasoning under clinical uncertainties.  

For knowledge-based CDSSs, dominant knowledge representation schemes used in 

the literature that can somehow represent uncertainties include fuzzy rules, traditional 

Bayesian rules, and BBN. Traditional ‘IF-THEN’ rules can be used together with 

some certainty factors or fuzzy logic to represent uncertain clinical rules in target 

clinical domain. Both traditional Bayesian rules and BBN use conditional 

probabilities to represent clinical uncertainties to some degree. 

However, there are drawbacks in reasoning with rules together with certainty factors, 

or fuzzy logic, or Bayesian probabilities. Firstly, in rule-based CDSSs that 

incorporates certainty factor model, the certainty factor in the conclusion of one rule 

is based on the assumption that the premise is known with a certainty factor of 1, and 

uncertainties are propagated through the rules of an inference chain. However, it is 

unlikely that a premise is always perfectly known, and the premise of one rule can be 

uncertain due to uncertain facts. Usually, in the system, a threshold value for premise 

certainty factors is defined to prevent rules with too low premise certainty factors 

from firing. For example, the premise threshold certainty factor is set to be 0.2 in 

MYCIN, and the system will stop triggering one rule if calculated certainty factor of 

its premise is 0.2 or less. This causes more or less information loss in the inference 

process. Moreover, Clancy and Cooper (1984) observed that perturbations in certainty 

factors led to an incorrect diagnosis in certain cases, and this observation suggests that 

the certainty factor model may be inadequate for diagnostic systems (Heckerman and 

Shortliffe, 1992). Secondly, in a fuzzy rule-based system, essential inference steps 
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include: fuzzification and fuzzy rule inferencing, where fuzzification is for 

interpreting a crisp numerical input as a fuzzy set with the membership function and 

fuzzy rule inferencing is the process of reasoning with fuzzy rules. In cases when 

linguistic result expressed by inferred fuzzy set contains required information, there is 

no need for any defuzzification. In other cases, when a crisp value is needed for the 

output variable, defuzzification is required. However, fuzzy rule inference is 

controversial partly because of its fuzzification and defuzzification processes. Thirdly, 

for Bayesian rule-based CDSSs, it seems that uncertainties in both clinical domain 

knowledge and clinical signs and symptoms can be considered in both knowledge 

representation and inference processes, but since this kind of CDSSs take advantages 

of conditional probability and all necessary probabilities in the Bayesian rules or BBN 

are difficult to derive, it is difficult for CDSSs researchers to elicit domain knowledge 

from domain experts and to develop such CDSSs. 

To conclude, although some existent knowledge-based CDSSs such as early MYCIN 

have taken clinical uncertainties into consideration in system implementation, 

methods used in existent CDSSs have their limitations in knowledge representation or 

knowledge inference under uncertainties. For example, it is hard for experts to 

estimate all parameters in Bayesian model based systems, and certainty factor model 

may be inadequate for diagnostic systems in other clinical areas where the system 

performance is sensitive to perturbations in certainty factors. Therefore, representation 

of and reasoning about medical knowledge particularly under uncertainties are areas 

that require refined methodologies and techniques (Lin et al., 2006, Musen et al., 

2006).  
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2.3.4. Non-Knowledge-Based CDSSs 

2.3.4.1. Machine Learning Technologies 

In non-knowledge-based CDSSs, clinical domain knowledge is not extracted from 

domain expert clinicians or medical literature, instead, it is automatically learned from 

past experience or past clinical data by the system through some machine learning 

technologies. Commonly used machine learning technologies used in non-knowledge-

based CDSSs include artificial neural networks (ANNs) used by Mangalampalli et al. 

(2006), Yan et al. (2006), and Tan et al. (2008); genetic algorithms (GAs) used by 

Grzymala-Busse and Woolery (1994) and Levin (1995); and decision tree learning 

used by Gerald et al. (2002). 

 ANNs 

ANNs are frequently used by researchers as inference mechanism in CDSSs because 

developers are not required to understand the relationship between input clinical data 

and output clinical diagnosis recommendations during the development of this kind of 

systems. ANNs are a black box technique that models relationships by learning from 

historical data, while developers of CDSSs based on Bayesian networks need to have 

sufficient domain knowledge including related probabilities. Li et al. (2000) compare 

ANNs with other mathematical models for building a traumatic brain injury medical 

decision support system in their study, and the results suggest that ANNs may be a 

better solution for complex, non-linear CDSS than conventional statistical techniques. 

The major advantage of ANNs is that they have the ability to learn from the observed 

data. The disadvantage is that they are unable to provide reliable and logical 



 54

representation of knowledge beyond their learnt zones, and the rules that the network 

uses do not follow a particular logic and are not explicitly understandable. 

 Genetic algorithms (GAs) 

GAs provide an approach to learning that is based on simulated evolution (Mitchell, 

1997). The problem addressed by GAs is to search a space of candidate hypotheses to 

identify the best hypothesis. Here hypotheses are often described by bit strings whose 

interpretation depends on the application. Instead of searching from general-to-

specific or simple-to-complex hypotheses, GAs generate successor hypotheses by 

repeatedly mutating and recombining parts of the best currently known hypotheses, 

and the search for an appropriate hypothesis begins with a collection of initial 

hypotheses. At each step, a collection of hypotheses is updated by replacing some 

fraction by offspring of the fittest current hypotheses. In GAs the ‘fittest hypothesis’ 

is defined as the one that optimizes a predefined numerical measure for the problem at 

hand. For example, if the learning task is to approximate an unknown function based 

on a set of training examples with inputs and outputs, the hypothesis fitness can be 

defined as the accuracy of the hypothesis over this training data. GAs have an 

advantage that by iteratively extracting the best solutions, an optimal solution which 

fits best can be reached, but how to define the fitness is a challenge in GA based 

CDSSs (Spooner, 1999, Spooner, 2007). 

 Decision tree learning 

In knowledge-based CDSSs, decision trees are used to represent domain knowledge if 

they can be explicitly acquired from domain experts. While in non-knowledge-based 

CDSSs, decision tree learning is used as a method to automatically acquire knowledge 

from previous concrete cases that were already solved by domain experts (Hardin and 
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Chhieng, 2007, Sam et al., 2008). In the process of learning a decision tree from 

sample data, there is no need to make prior assumptions of data, and decision trees are 

easily understandable. However, decision tree learning algorithms are unstable since 

they can produce drastically different hypothesis from training examples that differ 

just slightly, and there are limitations about the number and data type of output 

variable (Mitchell, 1997).  

2.3.4.2. Challenges of Non-Knowledge-Based CDSSs 

On the one hand, as domain knowledge is learned from clinical data for non-

knowledge-based CDSSs, system users do not really know what happens in the 

learning process and how the system handle those uncertainties in the learnt clinical 

data, and it is this black-box learning process that hinders the use of non-knowledge-

based CDSSs. Take ANN-based CDSSs as an example, because clinicians can not 

really understand the knowledge represented in ANNs, most clinicians would refuse 

this type of CDSSs in clinical practice (Spooner, 2007). 

On the other hand, in contrast to knowledge-based CDSSs, non-knowledge-based 

CDSSs have an advantage of providing knowledge learning capabilities. This 

advantage helps this type of CDSSs to be adapted to past clinical experience or 

clinical data, while being adaptive to clinical practice is an important characteristic of 

CDSSs to support evidence-based medicine (Sim et al., 2001).    

To conclude, non-knowledge-based CDSSs have learning capabilities which help this 

type of systems being adaptive to clinical practice, but their knowledge learnt from 

past clinical experience or data are not easily understandable. This more or less 

hinders clinicians using the systems. A potential research direction is to combine an 
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easily understandable knowledge representation scheme with the learning capabilities 

as used in non-knowledge-based CDSSs so that a knowledge-based CDSS can also 

own learning capability and can be adaptive to clinical practice to provide evidence-

based clinical decision support. 

2.3.5. Group CDSSs  

Group or collaborative clinical decision making is another important research area of 

CDSSs, and in the early 1990s, Hatcher (1990, Hatcher, 1994) did research on the 

uniqueness of group CDSSs and proposed to use analytic hierarchy process (AHP) to 

arrive at a clinical decision consensus in group CDSSs. In the mean time, Rao and his 

colleagues (Rao et al., 1994, Rao and Suresh, 1995) found that although group 

decision making is wide spread in medicine, limitations in technology and other 

factors limited the growth of group CDSSs for medical decision making (MDM). Rao 

et al. (1996) did an analysis on the classification of MDM from a group CDSS 

perspective, and then Rao and Turoff (2000) proposed and developed a hypermedia-

based group CDSS to support collaborative MDM. MEDICALWARETM (Rao and 

Turoff, 2000), which is integrated with the group CDSS, is designed to provide 

problem-solving support, access to clinical algorithms and procedures, expert 

inference support and several MDM support tools with hypermedia functionality. In 

the integrated group CDSS, Delphi method (Linstone and Turoff, 1975) was used for 

supporting group decision making and achieving a group consensus. 

However in the literature, there are currently not many publications on group CDSSs 

yet apart from the above mentioned studies. But group or collaborative clinical 

decision making is becoming popular in today’s health care (Rao et al., 1996, 

Christensen and Larson, 1993, Rangel, 2009).    



 57

2.3.6. Validation of CDSSs 

Validation is a crucial component in the development of any CDSS (Berner, 1999). In 

the literature, appropriate validation design is considered as an important perspective 

in formal validation of CDSSs (Miller, 1996). Keith and Greene (1994) studied 

validation of CDSSs from the following perspectives: (1) validation of the expert 

knowledge; (2) validation of the integrated system; (3) external validation of the 

system; (4) in-house online trial; (5) multicenter randomised trial in validation of their 

system. Thomas et al. (1999) used case scenarios to validate their guideline-based 

CDSS. Becker and colleagues (1997) validated their CDSS by validating not only the 

knowledge base, but also the inference mechanism. 

As discussed in the literature, a sound CDSS validation study contains the following 

fundamental components: enough clinical cases for validation; an appropriate 

validation design; knowledge base validation; and inference engine validation. 

2.4. A New Belief Rule-base Inference Methodology Using the 

Evidential Reasoning Approach 

Above review helps to give audience a rough holistic picture of existent CDSSs, and 

through the review we know that representation of and reasoning about medical 

knowledge particularly under uncertainties are areas that require refined 

methodologies and techniques. Motivated by this, we looked into the possibility of 

using a recently developed new belief Rule-base Inference Methodology using the 

Evidential Reasoning approach (RIMER) (Yang et al., 2006) to implement a CDSS 

that can represent uncertain clinical domain knowledge and provide informative 

clinical diagnosis recommendations.  
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Next we provide a brief discussion of RIMER and its advantages compared to other 

knowledge representation and reasoning methods used in existent CDSSs. 

2.4.1. What is RIMER? 

RIMER contains three main parts, one part is a model for representing uncertain 

knowledge, one part is the method to do inference with knowledge and observed facts, 

and one more part is an optimization model for fine-tuning knowledge model. In 

RIMER, the belief rule base (BRB) is used for modelling target clinical domain 

knowledge and the evidential reasoning (ER) approach is used to do clinical inference, 

and a BRB optimization model is designed and used to train the belief rule-based 

CDSS. BRB is extended from traditional rule base by adding a belief structure to it, in 

which knowledge representation parameters including rule weights, antecedent 

attribute weights and belief degrees in consequents are considered. The ER approach 

(Yang and Sen, 1994, Yang and Singh, 1994, Yang and Xu, 2002) was originally 

proposed to deal with multiple attribute decision analysis (MADA) problem having 

both qualitative and quantitative attributes under uncertainty. In the situation of 

reasoning with BRB, ER is employed to combine all belief rules triggered by 

observed facts in the inference process, where the uncertainties in both observed facts 

and belief rules can be rationally preserved and their effects can be represented in the 

final reasoning results. 

Details of BRB, inference with BRB using the ER approach, and the BRB 

optimization model can be found in Section 3.2 of Chapter 3.      
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2.4.2. Advantages of RIMER  

Compared with alternative knowledge representation and reasoning methods used in 

existent CDSSs, advantages of using BRB for uncertain domain knowledge modelling 

and using the ER approach for reasoning with uncertain knowledge are discussed as 

follows. 

2.4.2.1. Advantages of Modelling Clinical Domain Knowledge 

with BRB 

When choosing a modelling methodology to model domain knowledge, several 

factors including naturalness, uniformity, and understandability; degree to which 

knowledge is explicit (declarative); modularity and flexibility of the knowledge base; 

efficiency of knowledge retrieval; and capability of uncertainty representation should 

be taken into account (Turban and Aronson, 2001). For a knowledge-based CDSS, 

transparency and explanation ability of the system affect user acceptance. The more 

transparent the system is, the easier will it be for users to accept it (Tsymbal et al., 

2009). 

Compared to alternative methodologies used to model clinical domain knowledge in 

existent CDSSs, BRB has following advantages: 

 Transparent representation of domain knowledge 

Not like ANNs representing domain knowledge in black boxes, belief rules can 

represent domain knowledge in a transparent way. Take a belief rule ‘IF there is new 

left bundle branch block (LBBB) with possibility of 80%, AND the history and 

examination are strongly suggestive of STEMI, THEN the patient is diagnosed as 
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with STEMI with 90% belief degree’ for example, the relationship between the 

antecedent ‘new LBBB with possibility of 80%, AND the history and examination are 

strongly suggestive of STEMI’ and the consequent ‘diagnosed as with STEMI’ is 

transparent. While in ANNs, there is no transparent knowledge about the conclusion 

‘diagnosed as with STEMI’. A non-expert has no idea about what happens between 

the input and output, and even those parameters used in ANNs need to be pre-trained 

by historical data. 

 Naturalness of representation  

Same as traditional rules, belief rules is a very natural knowledge representation 

method with a high level of comprehensibility, and they look like a natural language 

expression. For example, even a non-expert in clinical area who has no knowledge of 

‘LBBB’ and ‘STEMI’ can understand the logic behind the example belief rule 

discussed above. 

 Handling different types of uncertainties in clinical decision making  

BRB provides a flexible framework to capture different types of uncertainties in 

clinical signs, symptoms and clinical domain knowledge. Take the belief rule 

discussed above for example, it represents the uncertainties in domain knowledge for 

diagnosing one patient as with ‘STEMI’ when a clinician can not be 100% sure of the 

patient’s Electrocardiograph (ECG) signs and the patient’s history and examination. 

At the same time, the rule captures uncertainties in clinical symptoms such as ‘new 

LBBB with possibility of 80%’ and ‘the history and examination are strongly 

suggestive of STEMI’. 

 Provision of explanations  
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Given that explanations in CDSSs are necessary, BRB has the ability to provide 

explanations for the derived conclusions in a straightforward manner. If a patient is 

diagnosed as with ‘STEMI’ to a belief degree of 0.9 by a belief rule-based CDSS, the 

system can provide an explanation of the diagnosis recommendation by presenting 

users the inputs about the patient’s clinical signs and symptoms and all activated 

clinical rules in the inference process, which are very straightforward. 

2.4.2.2. Advantages of Using the ER Approach for Clinical 

Inference 

As to clinical inference, the ER approach has many advantages compared to 

alternative reasoning methods used in existent CDSSs. 

 Preserving uncertainties in the inference process  

The ER approach initially aims to provide assessment to MADA problems which 

have both quantitative and qualitative attributes with uncertainties. In the application 

of reasoning with clinical BRB model, it is used to combine all belief rules triggered 

by input facts with different belief degrees. Uncertainties in the inference process may 

be caused either by uncertain domain knowledge or uncertain clinical data. Firstly, 

uncertainties in domain knowledge such as incompleteness, and nonlinear causal 

relationships can be represented in belief rules by belief degrees. Secondly, an input 

with uncertainties to an antecedent clinical symptom can be transformed into a belief 

distribution on all referential values of the antecedent with different matching degrees, 

and the distribution describes the degree of each antecedent being activated. 

Subsequently, inference using the ER approach takes into consideration of both the 

rule activation weight and belief degrees in possible consequents, and thus both 
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uncertainties in domain knowledge and input data can be rationally preserved and 

their affects can be represented in the final reasoned results.  

 Providing informative and prioritised clinical recommendations 

The ER approach can generate a distributed consequent associated with belief degrees 

after aggregating all activated rules in the inference process, and the inferred results 

with belief degrees attached to possible consequents can provide an informative 

clinical recommendation compared to those recommendations with single result. For 

example, if a patient is diagnosed as with {(STEMI, 0.9878), (LBBB without STEMI, 

0.0122), (neither STEMI nor LBBB, 0)} after matching the patient’s clinical data with 

clinical rules in the BRB by the ER approach, we can see that all possible consequents 

including ‘STEMI’, ‘LBBB without STEMI’, and ‘neither STEMI nor LBBB’ have 

been associated with belief degrees in the inferred result, and the belief degrees 

demonstrate different confidence in corresponding consequents, and such a type of 

recommendation is more informative than inferred result with only one consequent 

without belief degree such as {STEMI} or {LBBB without STEMI} or {neither 

STEMI nor LBBB}. 

 Ranking the severity of patients’ illness 

ER-based inferred results can provide a severity ranking of patients’ illness, based on 

the concept of utility and utility interval as proposed by Yang and Xu (2002) for the 

combined assessment result generated by the ER approach. Let us examine the same 

example again which is discussed above. Similar to the concept of expected utility 

value, in the context of clinical diagnosis, we can use a severity score ranged from 0 

to 1 to represent the seriousness of patient illness, where 1 represents that the patient 

is in a most serious status and 0 represents that the patient has no clinical risk at all. 
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For example, we can assign a severity score of 1 to patients with ‘STEMI’, a severity 

score of 0.5 to patients with ‘LBBB without STEMI’, and a severity score of 0.25 to 

patients with ‘neither STEMI nor LBBB’, where ‘STEMI’ is severer than ‘LBBB 

without STEMI’ and ‘LBBB without STEMI ’is severer than‘ neither STEMI nor 

LBBB’. Thus we can get an overall severity score for a patient with distributed 

diagnosis recommendation, and the overall severity score is calculated by the 

following equation: (overall severity score) = (severity score of ‘STEMI’) * (belief 

degree in ‘STEMI’) + (severity score of ‘LBBB without STEMI’) * (belief degree in 

‘LBBB without STEMI’) + (severity score of ‘neither STEMI nor LBBB’) * (belief 

degree in ‘neither STEMI nor LBBB’). As to the patient with the distributed diagnosis 

result {(STEMI, 0.9878), (LBBB without STEMI, 0.0122), (neither STEMI nor 

LBBB, 0)} as discussed above, the overall severity score of the patient can be 

calculated by (1*0.9878+0.5*0.0122+0.25*0) = 0.9939. It is this overall severity 

score that can be used as a measure to rank the severity of patients’ illness.  

 Learning capability 

Most existent knowledge-based CDSSs such as traditional ‘IF-THEN’ rule-based 

systems and frame-based systems lack knowledge learning capability. While domain 

knowledge used in existent non-knowledge-based CDSSs such as ANN-based 

systems can only be learned from historical clinical data.  

In belief rule-based CDSSs, domain knowledge can be explicitly modelled using BRB. 

However, it is difficult to accurately determine the parameters of a BRB entirely 

subjectively, and a change in rule weight or attribute weight may lead to changes in 

the performance of a BRB. As such, the ER algorithm used for inference with BRB 

model can be used to form optimization models to train BRB using accumulated past 
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clinical data. Therefore, inference with BRB model using the ER approach can 

possess system features of both knowledge-based and non-knowledge-based systems. 

However, RIMER has its limitations. For example, just like knowledge representation 

schemes used in existent knowledge-based CDSSs such as traditional rule-based 

systems, it is hard to extract belief rules from experts. Though knowledge 

representation parameters of BRB models can be fine-tuned by historical data, the 

accuracy of the initial BRB in a belief rule-based CDSS is very important to the 

system performance.  

2.5. Conclusions   

After a critical review of the literature on CDSSs, a conclusion can be drawn that a 

number of CDSSs have been developed in the past 40 years, many of which show 

potential for making significant impacts on patient care. However, after decades of the 

development of these programs, no CDSS is widely used by clinicians (Carter, 1999, 

Carter, 2007). 

Miller and Geissbuhler (1999) identified that there are a number of problems that have 

limited the ultimate success of CDSSs, and these include difficulties with domain 

selection and knowledge base construction and maintenance, problems with the 

diagnostic algorithms and user interfaces, and problems with system validation or 

evaluation. 

In more recent studies, Kawamoto et al. (2005) identified four features of CDSSs as 

independent predictors of a good CDSS:  

(1) Automatic provision of decision support as part of clinical work flow. 
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(2) Provision of recommendations rather than just assessments. 

(3) Provision of decision support at the time and location of decision making. 

(4) Computer based decision support. 

To achieve those four features as identified by Kawamoto and his colleagues, a CDSS 

should have (a) a friendly user interface that help the clinicians easily play their roles 

in part of the clinical work flow; (b) a knowledge base which contains comprehensive 

clinical domain knowledge including uncertainties; (c) an intelligent diagnostic 

inference mechanism that can handle medical uncertainties; (d) linkage to the whole 

clinical work flow; and (e) reliable, informative and prioritised clinical decision 

recommendations. These requirements are consistent with Miller and Geissbuhler’s 

findings about what accounts for the lack of CDSS application in clinical practice. 

The problem of developing an adequate database which can store both patients’ 

clinical data and declarative and procedural knowledge may not be difficult to 

overcome with the rapid development of networking and database technologies. 

However, representation of and reasoning about clinical domain knowledge under 

uncertainty, and keeping the knowledge base be adaptive to clinical practice are still 

the main challenges in CDSSs.  

Based on the review results, the following four issues are identified as research gaps 

in CDSSs literature. 

(1) Current CDSSs need a more informative knowledge representation scheme 

which can represent uncertain clinical domain knowledge comprehensively and 

accurately (Musen et al., 2006, Lin et al., 2006). 

(2) Current CDSSs need a refined inference mechanism which can reason with 
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information which has different uncertainties (Musen et al., 2006, Lin et al., 

2006). 

(3) Current CDSSs need an intelligent learning capability to automatically update 

reasoning rules by learning from past experience or clinical data to make the 

system be adaptive to clinical practice (Sim et al., 2001); 

(4) Few CDSSs in the literature support both individual and group clinical decision 

making although group MDM attracted attention for CDSSs researchers (Hatcher, 

1990, Hatcher, 1994, Rao et al., 1994, Rao et al., 1996, Rao and Turoff, 2000). 

There is a need for a CDSS that can also support group or collaborative clinical 

decision making. 

To address the gaps as described above, the recently developed RIMER was 

investigated and employed in this research for clinical knowledge representation and 

inference under uncertainties (Kong et al., 2008a, Kong et al., 2008b, Kong et al., 

2009). In RIMER, a rule base is designed with belief degrees embedded in all possible 

consequents of a rule. Such a rule base is capable of capturing vagueness, 

incompleteness, and nonlinear causal relationships, while traditional ‘IF-THEN’ rules 

can be represented as a special case. Inference in such a rule base is implemented 

using the ER approach. 
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Chapter 3 

Research Methodology and Design 

 
3.1. Introduction 

Research is defined as a systematic investigation to establish facts or principles or 

collect information on a subject (Collins English Electronic Dictionary, 2008). Usually, 

a study is conducted in sequential research process stages from deciding research topic, 

defining research objectives, and choosing appropriate research methodologies to 

collecting data, analyzing data, developing conclusions, and finalizing findings. 

Choosing appropriate research methodologies and making a good research design 

before conducting core research is important for a study to produce fruitful research 

results. This chapter discusses the research methodologies and research design of the 

study. A multi-methodology approach (Nunamaker and Chen, 1990) is employed in 

the study to investigate how to design, develop, and validate a belief rule-based CDSS 

that can provide online, intelligent, group and informative clinical decision support 

under uncertainties. In the research, modelling and prototyping are main research 

methods for design and development of the target CDSS. Field study is used to acquire 

more specific clinical domain knowledge and to get better understanding of clinical 

work flow. Statistical techniques are used to analyze the generated results in validating 

the developed prototype system. 

This chapter is organised as follows. The modelling methodology is discussed in 

Section 3.2, where three models used in the research for design and development of an 

intelligent evidence-based CDSS are discussed together with their advantages 
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compared to available alternative models used in existent CDSSs. The system 

development methodology-prototyping (Turban and Aronson, 2001) and its advantages 

compared to other system development methodology are presented in Section 3.3. 

Field study and statistical techniques are discussed in Section 3.4 and Section 3.5 

respectively. A research design is also discussed in Section 3.6. Finally, the chapter is 

summarised in Section 3.7. 

3.2. Modelling 

CDSSs are large systems consisting of interrelated components working together in a 

coordinated manner. Generally, a knowledge-based CDSS should consist of five 

essential components if we use a Data-Base Management System (DBMS) to store 

both inputs and outputs of the system, as shown by the general system structure in 

Figure 2-1 of Chapter 2. The first component is user interfaces, which facilitate 

communication between system users and the systems. The second one is a knowledge 

base, which contains the clinical rules necessary for the completion of its task. The 

third one is a database, in which data and conclusions can be stored. The fourth 

component is an inference engine, which matches clinical rules to input data to derive 

its conclusions. The fifth one is decision models employed in the system to provide 

different types of decision support. Considering machine learning through past clinical 

experience and group clinical decision support, we can integrate a machine learning 

functionality and an online group decision supporting functionality into the 

knowledge-based CDSS. The system should then contain two more components - 

knowledge training module and group decision supporting module. 

It is found from the literature, as discussed in Chapter 2, that a good CDSS should 

follow the three principles. Firstly, building appropriate knowledge base and inference 
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engine to provide intelligent and accurate clinical decision support under uncertainties 

is important for a CDSS to be successful in practice. Secondly, providing online group 

clinical decision support is necessary for a CDSS to meet the needs of inevitable group 

clinical decision making in clinical practice. Thirdly, building a knowledge training or 

learning module to automatically update knowledge base according to accumulated 

clinical practice is necessary for a CDSS to support today’s evidence-based medicine. 

Different reasoning methods one could use in arriving at a diagnosis in the literature 

could be using rules, statistics, neural networks, comparison with past cases and so on. 

The knowledge representation scheme and the knowledge training model chosen are 

closely related to the reasoning method. The group decision achieving methods used in 

existent group CDSSs include Delphi method (Rao and Turoff, 2000) and AHP 

(Hatcher, 1994). 

In the research, a new belief rule-based inference methodology called RIMER (Yang et 

al., 2006) is investigated and employed for the design and development of an online 

intelligent group CDSS, and the target CDSS can help bridge the research gaps as 

identified in Chapter 2. 

In the clinical BRB model, domain knowledge is represented by a new knowledge 

representation scheme, i.e. belief rules. They are different from conventional rules in 

that they are designed with belief degrees embedded in all possible consequents of a 

rule, and other knowledge representation parameters such as the weights of rules and 

antecedent attributes are also considered in this scheme. Such a BRB is capable of 

capturing the vagueness, incompleteness, and nonlinear causal relationships in 

knowledge (Yang et al., 2006). 
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In a belief rule-based system, an input to an antecedent attribute is transformed into a 

belief distribution on referential values of the attribute, and subsequently inference 

with the BRB is implemented using the ER approach. As a result of the ER-based 

aggregation of all activated rules in the BRB, all possible consequents in the inferred 

result are associated with belief degrees. 

The ER approach, which is used for aggregating all activated belief rules in RIMER 

methodology, is also employed to aggregate all group clinicians’ diagnosis preferences 

in the system thanks to its advantages of combining both quantitative and qualitative 

judgments under various uncertainties.  

As for knowledge training in a belief rule-based system, several online and offline 

BRB training models have been proposed by researchers (Zhou et al., 2009, Zhou et al., 

2010, Yang et al., 2007). Some models target both BRB structure and knowledge 

representation parameters training (Zhou et al., 2010), while some other models target 

only knowledge representation parameters training (Yang et al., 2007, Zhou et al., 

2009). Based on previous research on BRB training in the literature, an optimization 

model for training the belief rule-based CDSS was implemented in the research.  

The following subsections briefly introduce BRB, ER, and the optimization model 

used for BRB training.. 

3.2.1. BRB 

BRB is extended from traditional rule base by adding a belief structure, in which 

knowledge representation parameters including rule weights, antecedent attribute 

weights and belief degrees in consequents are considered. 
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Conventionally, in a rule base, the kth rule in an ‘IF-THEN’ format can be described as 

:kR  If k
T

kk
k

AAA ∧∧∧ L21 , then kD       (3-1) 

where ( )k
k
i TiA ,,1K=  is a referential value of the ith antecedent attribute in the kth 

rule, and kT  is the number of the antecedent attributes used in the kth rule. Dk is the 

consequent of the kth rule. 

If rule weights, antecedent attribute weights, and belief degrees associated with all 

possible consequents are taken into account, rule described in (3-1) can be extended to 

a packet rule using a belief structure, which is referred to as a belief rule and can be 

described as :kR  

( ) ( ) ( ){ }
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(3-2) 

where ( )LkNiik ,,1;,,1 LL ==β  is the belief degree originally given by experts to 

which iD  is believed to be the consequent if in the kth belief rule the input satisfies the 

packet antecedents ( )k
T

kkk
k

AAAA ,,, 21 K= , the attribute weight 

( )LkTi kki ,,1; , ,1 KK ==δ  represents the relative importance of the ith antecedent 

attribute in the kth rule, and the rule weight kθ  represents the relative importance of the 

kth rule in the rule base. L  is the number of all belief rules in the rule base. kT  is the 

number of all antecedent attributes used in the kth belief rule. N is the number of all 

possible consequents in the rule base. 
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BRB is a collection of belief rules as described by (3-2). Inference with BRB is 

implemented using the ER approach, and knowledge representation parameters 

including rule weights ( )Lkk ,,1K=θ , antecedent attribute weights 

( )LkTi kki ,,1; , ,1 KK ==δ  and consequent belief degrees { }( )Niik ,,1K∈β  can be 

learned from past experience or data.  

3.2.2. The ER Approach 

The ER approach (Yang and Sen, 1994, Yang and Singh, 1994, Yang and Xu, 2002) 

originally aims to deal with multiple attribute decision analysis (MADA) problem 

having both qualitative and quantitative attributes under uncertainty. The kernel of the 

ER approach is an ER algorithm which is developed for aggregating multiple attributes 

based on a belief decision matrix and the evidence combination rule of the Dempster-

Shafer (D-S) theory (Shafer, 1976). Different from traditional MADA approaches that 

describe a MADA problem using a decision matrix, the ER approach uses the belief 

decision matrix, in which each attribute of an alternative is described by a distribution 

assessment using a belief structure. How to use the ER approach to do inference with 

BRB and how to use the ER approach to aggregate group preferences are briefly 

discussed as follows.  

3.2.2.1. Inference with BRB Using the ER Approach 

Assume a BRB has L belief rules { }LRRR ,,, 21 L , and the kth rule can be described as 

kR : If U  is kA , then D  is with belief degree kβ , where  U  represents the 

antecedent attribute vector, kA  represents the packet antecedents in kth rule, D  

represents the consequent vector ( )NDDD ,,, 21 L  of the rule base, and kβ  represents 
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the vector of belief degrees ( )Nkkk βββ ,,, 21 L  in the rule base. N is the number of 

consequents in the BRB and { }Lk ,,1L∈ . In inference with the BRB using the ER 

approach, a belief rule expression matrix can be described as Table 3-1. 

Table 3-1: A Belief Rule Expression Matrix for the BRB (Yang et al., 2006) 
Input  

Output ( )1
1 ωA ( )2

2 ωA  
K  

( )k
kA ω  

K  
( )L

LA ω  

1D  11β  12β   
K  k1β   

K  L1β  

2D  21β  22β   
K  k2β   

K  L2β  

M  M  M  K  M  K  M  

iD  1iβ  2iβ   
K  ikβ   

K  iLβ  

M  M  M  K  M  K  M  

ND  1Nβ  2Nβ   
K  Nkβ   

K  NLβ  

In the belief rule expression matrix, Di { }( )Ni  , ,1 K∈  is the consequent vector D  which 

represents possible consequent in the rule base, and ikβ { } { }( )LkNi  ,   , KK ,1,,1 ∈∈  

represents belief degree associated to the ith consequent in the kth belief rule in the 

BRB. kω  is the activation weight of the kth rule, which measures the degree to which 

the kth rule is weighted and activated in the inference process.  

The ER algorithm has recursive and analytical formats (Wang et al., 2006), the 

following brief discussion of inference with BRB is based on the recursive ER 

algorithm as introduced in the original paper for proposing RIMER (Yang et al., 2006), 

and the inference process can be described by the following five steps.  

 Step 1: Transform input clinical data to a distribution on referential values of 

relevant antecedent symptoms using belief degrees. 
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Given an input U = (Ui, i=1, …, T) together with its corresponding belief degree 

),,1,( Tii L== εε , where T is the total number of antecedent attributes in the rule 

base, Ui (i=1, …, T) is the input value of the ith antecedent attribute, and 

),,1( Tii L=ε  represents the degree of belief assigned to the input value Ui of the ith 

antecedent attribute, which reflects the uncertainty of the input data. How should the 

BRB be used to infer and generate output? Before an inference process starts, all input 

data need to be transformed to a distribution on referential values of each antecedent 

attribute using belief degrees and this transformation process can be implemented by 

the rule or utility-based equivalence transformation techniques (Yang, 2001). For 

example, the input value Ui for the ith antecedent attribute along with its belief degree 

iε  can be transformed as 

( ) ( ){ } TiJjAUS iijijii ,,1,,,1;,, KK === αε      (3-3) 

where ijA  is the jth referential value of the ith antecedent attribute, ijα  the degree to 

which the input Ui with belief degree iε  belongs to the referential value ijA  with 

0≥ijα  and ( )TiiJ

j ij ,,2,11
1

K=≤∑ =
α , and Ji is the number of all referential values of 

the ith antecedent attribute. 

 Step 2: Calculate the activation weight of each rule in the BRB. 

After the input transformation, the activation weight ( )Lkk  , ,1 K=ω  which measures 

the degree to which the packet antecedent Ak in the kth rule is activated, can be 

calculated with  
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δ
K=

= ( 10 ≤≤ kiδ ) is transformed from antecedent weight 

( )LkTi kki ,,1; , ,1 KK ==δ  representing the relative importance of the ith antecedent 

attribute in the kth rule. ),,1( Lkk L=θ  is the relative weight of the kth rule. 

( )k
k
i Ti  , ,1 K=α  is the individual matching degree to which the input Ui (i=1,…,Tk) 

belongs to ),,1;,,1( LkTiA k
k
i LL ==  that is the referential value of the ith 

antecedent attribute used in the kth rule, and it is generated from the input 

transformation as described by equation (3-3), with 0≥k
iα  and 1

1
≤∑ =

kT

i
k
iα . 

( )
kikT

i

k
ik

δ

αα ∏
=

=
1

 ( )Lk  , K,1=  is called the combined matching degree to which the 

input vector U matches the packet antecedent kA  in the kth rule. Tk is the total number 

of antecedents in the kth belief rule. L is the total number of all belief rules in the BRB. 

It can be easily found from equation (3-4) that in the calculation of the combined 

matching degree ( )Lkk  , ,1 K=α  of input to packet antecedent, all individual 

matching degrees ( )LkTi k
k
i ,,1; , ,1 LK ==α  and all antecedent weights 

( )LkTi kki ,,1; , ,1 KK ==δ  have been taken into account, and then the calculation of 

the activation weight ),,1( Lkk L=ω  takes into consideration both rule weights 

),,1( Lkk L=θ  and the calculated combined matching degrees of input to packet 

antecedent. This means that all knowledge representation parameters play their roles 

in calculating a rule’s activation weight. 
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 Step 3: Update belief degrees to possible consequents in the BRB based on 

the input information. 

As for the belief degree ikβ  ( 10
1

≤≤∑ =

N

i ikβ ; i=1,…, N; k=1,…, L) which is originally 

given by experts when a BRB having a collection of rules as described by equation (3-

2) is established, if 1
1

=∑ =

N

i ikβ , the kth belief rule is said to be complete; otherwise, it 

is incomplete. If 0
1

=∑ =

N

i ikβ , it means the output of the kth belief rule is completely 

unknown. In such situation, the incompleteness of the consequent in a rule is caused by 

a lack of domain knowledge or expert experience, and the inferred result from this 

incomplete rule should be incomplete according to the properties of the ER approach 

(Yang and Xu, 2002). In other situation, when the input data is incomplete, for 

example, the sum of matching degrees of an input to all referential values of an 

antecedent attribute is smaller than 1, the inferred result from this incomplete input 

data should be incomplete as well (Yang et al., 2006).  For instance, if the input for the 

antecedent attributes of a rule is completely unknown, a completely unknown 

consequent will be generated. If the input of antecedent attributes is partially known, 

the inferred result will also be partially known or incomplete. In the inference process, 

the incompleteness in input data should be taken into consideration, because an 

incomplete input for an antecedent attribute will cause an incomplete output after 

inference with the rule where the attribute plays its antecedent role. Considering the 

incompleteness of input data, belief degrees in consequents of a rule need to be 

updated based on the real input. More specifically, the original belief degree 

( )∑ =
≤≤≤

N

i ikikik β
1

1;10  ββ  given to the ith possible consequent ( )NiDi ,...,1=  in the 

kth rule which is extracted from experts should be updated on the basis of the actual 

input information in the inference process by  
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where ikβ  is the belief degree in consequent iD  when the kth rule is activated by the 

actual input and it is determined by original belief degree ikβ  together with the 

incompleteness of real input data, in which     

( ) ( )
,

.otherwise 0,
. , 1, definingin  used is attribute antecedent   theif,1

,
th
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and tjα is the degree to which the input Uk belongs to the referential value 

),,1;,,1( tktj JjTtA LL == with 0≥tjα  and ( )t
J

j tj Jjt ,,11
1

L=≤∑ =
α . The 

transformation from input Uk to tjA  is described as equation (3-3), where tjA  is the jth 

referential value of the tth antecedent attribute, and Rk is the kth rule in the BRB. N is 

the number of consequents in the kth rule. Tk is the number of all antecedents in the 

kth rule, and Jt is the number of referential values of the tth antecedent attribute in the 

kth rule. 

 Step 4: Aggregate all activated rules using the ER approach to generate a 

combined belief degrees in possible consequents. 

Once the activation weight of each rule and belief degrees in the possible consequents 

of each rule in a BRB have been determined by the input clinical data, the ER 

algorithm (Yang and Xu, 2002) can be applied directly to aggregate all activated rules 

in a BRB to generate the combined degrees of belief in the consequents of a BRB as 

follows 
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( ) ( ){ }NjDUO jj ,,1,, K== β        (3-6) 

This equation reads as that given an input to a belief rule-based system in the vector 

form of { }TiUU i  , ,1 , K== , the outcome is consequent jD  with a belief degree of 

( )Njj  , ,1 K=β . 

 Step 5 (optional): If necessary, calculate expected severity and severity 

interval of different diagnostic consequents to rank the severity of patients’ illness 

caused by the same disease.  

For example, if the severity score of  ‘H’ clinical risk is set to be 1, ‘M’ clinical risk set 

to be 0.5, and ‘L’ clinical risk set to be 0, a patient’s overall severity score would be 

0.8 if he/she is assessed as ‘H’ clinical risk with 60% probability and ‘M’ clinical risk 

with 40% probability. The details of the concept and calculation of the expected utility 

and utility interval of the ER approach can be found in Yang and Xu (2002). 

For better understanding, a flowchart illustrated by Figure 3-1 can be used to describe 

the whole inference process using the ER approach in a belief rule-based CDSS. 
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Figure 3-1: Inference with BRB Using the ER Approach in Recursive Format 
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3.2.2.2. Group Preferences Aggregation Using the ER 

Approach 

Assume there are H consultants ( { }( )HhCh  , ,1 K∈ ) participating in a group consultation 

for one patient, and there are R possible diagnosis results ( { }( )RrDr  , ,1 K∈ ) about the 

patient. When we use the ER approach for group reference aggregation, the group 

decision making problem can be expressed in matrix format as follows: 

[ ]     ,
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where hC  denotes the hth consultant, rD denotes the rth possible diagnosis result about 

the patient, { } { }( )HhRrrh  , ,1 , , ,1 KK ∈∈β  represents belief degree provided by the 

hth group consultant hC  to the rth diagnosis result rD  about the patient, and 

{ }( )Hhh ,,1L∈ω  is the weight assigned to hC   representing the importance of the hth 

group consultant in the group preference aggregation process. The detailed steps of 

using the ER approach to aggregate group consultant preferences can be described as 

follows. 

 Step 1: Invite a group of clinicians to participate a group consultation for 

one patient. 

Assume we have a patient, who is with CCP, and the clinician on duty is not sure about 

what should be taken in the next step based on current status of the patient, then we 

need to carry out a group consultation for assessing clinical risk of the patient. If there 
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are H experts in CCP field who are available for the group consultation, the clinician 

on duty can act as a group facilitator role for the group consultation and invite these H 

experts to participate it. 

 Step 2: Acquire group consultant diagnosis preferences expressed as a 

distributed assessment of possible diagnoses. 

If possible diagnosis results for one patient is { }( )RrDr  , ,1 K∈  and there are H 

consultants are in the group consultation, the group facilitator can request the hth 

consultant input his/her risk assessment as ( ) ( ) ( ){ }RhRhh D, , DD βββ ,, ,, 2211 K . Take 

above mentioned patient with CCP for example, possible risk status of the patient may 

include: ‘very high’ (D1), ‘high’ (D2), ‘low’ (D3), and ‘no’ (D4), and group facilitator 

can request the hth participated clinician express his/her risk assessment as {( Dh, h1β  ), 

(Dh, h2β ), (Dh, h3β ), (Dh, h4β )}, for example, {(‘very high’, 0.8), (‘high’, 0.2), (‘low’, 

0), (‘no’, 0)}. 

 Step 3: Assign weight to each group consultant based on his/her expertise 

and reputation. 

The weight { }( )Hhh ,,1L∈ω  of each participated clinician represents the importance 

of each individual clinician based on his/her expertise or reputation in the group 

consultation. Using the ER approach to aggregate all group preferences can take into 

consideration of the importance of each group member. For example, there are two 

experts in CCP who are invited to participate a group consultation, one is an 

experienced clinician and is in a senior position while the other is less experienced and 

in a junior position, the group facilitator may assign a weight of 1 to the former and a 

weight of 0.7 to the latter in the group consultation. 
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 Step 4: Aggregate all group consultant diagnosis preferences using the ER 

approach to generate a combined belief degrees in possible diagnoses. 

As soon as we get all the parameters such as weight { }( )Hhh ,,1L∈ω  of individual 

consultant and the distributed diagnosis preference ( ) ( ) ( ){ }RhRhh D, , DD βββ ,, ,, 2211 K  

provided by each consultant, we can use the analytic ER algorithm to aggregate the 

group diagnosis preference and get a combined belief degrees in all possible diagnoses. 

The analytic ER algorithm is as follows. 

( ) ( )[ ]
( )[ ] RrH

h h
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h
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where ( )Rrr ,,1L=β  is the final belief degree attached to the rth possible diagnosis 

rD  after combining all group consultant diagnosis preferences in the group 

consultation, ( )HhRrrh ,,1;,,1 LL ==β  is the belief degree assigned to the rth 

possible diagnosis rD  by the hth consultant, and hω  is the weight of  hth group 

consultant.  

In the existent group CDSSs, methods used to achieve a group consensus in the group 

decision making situation include Delphi method and AHP. The Delphi method seeks 

to achieve a consensus among group members through a series of questionnaires 

which requires several rounds for group members to fill in the questionnaires, yet it is 

actually time consuming and needs carefully designed questionnaires to acquire 

participants’ opinions in each round (Linstone and Turoff, 1975). If we use AHP in 

the group decision making context, just as using AHP for supporting individual 
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decision making, we need to acquire comparison information with regard to each pair 

of objects be determined. Traditionally, there are two approaches that can be used to 

get the comparison information as to each pair of objects. Firstly, the entire group 

provides a single numeric value for each pair of objects, for example, object “i” 

compared to object “j”, and we can take the group provided comparison information 

as a “consensus” of each pair objects. Secondly, we can request each group member 

provide a numeric value that reflected her/his view of the relative importance of 

object “i” compared to object “j”, and then we use geometric mean of all group 

member input numeric values to get a “consensus” of comparison information of each 

pair of objects. After we get comparison information for each pair of objects, we can 

use AHP method to aggregate the comparison information and get a final preference 

order of the objects. However, using AHP in group decision making context to 

achieve an aggregated preference order of objects has its limitations.  The first option 

of acquiring a group consensus on comparison information as to each pair of objects  

suffers from the negative effects of status influence (or power differential problem) 

which could prevent the realization of real consensus, and a major disadvantage of the 

second option is that wide disparities in the comparison information could result in 

the computed ‘consensus’ matrix being an inaccurate representation of the given 

situation at human level (Bryson, 1996).  

Compared to the above mentioned group decision support methods in the existent 

group CDSSs, using ER in group clinical decision making context to achieve a group 

consensus has the following advantages. Firstly, rather than seeking individual group 

member’s diagnosis preference through several rounds of questionnaires as in Delphi 

method, using the ER approach for group preference aggregation only needs each 

individual group member’s belief degrees on all possible diagnosis results for one 



 84

patient. It helps speed up the group decision making process. Secondly, uncertainties 

in the judgement of all possible diagnosis alternatives can be reflected by the 

distributed assessment, where the individual group member can provide both 

complete and incomplete judgements. Note here complete judgement means belief 

degrees of all possible alternatives add up to 1, while incomplete judgement means 

the sum of belief degrees of all possible alternatives is smaller than 1. Thirdly, 

influence of different individual group member on the final group consensus is 

reflected by weight assigned to individuals in the preferences aggregation process. 

Fourthly, based on the utility and utility interval of the group aggregated judgement 

for a patient, the severity of the patient’s illness can be calculated. 

3.2.3. An Optimization Model for BRB Training 

As described in Section 3.2.1, the initial belief rules and knowledge representation 

parameters including rule weights, attribute weights and consequent belief degrees are 

originally given by domain experts or randomly generated, and they can not be 100% 

accurate. To make the BRB to represent clinical domain knowledge more accurately, 

we need to train or fine-tune the BRB using historical data.  

Generally, machine learning comes in two categories: supervised learning and 

unsupervised learning (Hardin and Chhieng, 2007) as shown in Figure 3-2. In 

supervised learning the goal of learning is to adjust the knowledge representation 

model through minimizing the discrepancy between the system results and observed 

results of the training sample as shown in Figure 3-2 (A). As for unsupervised 

learning, we know nothing about the knowledge representation model ahead and just 

let the system learn meaningful structure from a set of historical data as shown in 

Figure 3-2 (B). 
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Figure 3-2 (A): Supervised Learning; (B): Unsupervised Learning. (Hardin and 

Chhieng, 2007) 

In terms of BRB training, several online and offline models have been proposed in the 

literature, where online training models target real-time BRB training by newly input 

data and offline training models target BRB training by accumulated historical data. 

All these BRB training methods fall into supervised learning category which requires 

an initial BRB acquired from domain experts and uses a historical clinical dataset 

with real clinical outcome to train the BRB.  

In the research, target domain BRB is originally constructed based on expert 

clinicians’ experience and knowledge and those clinical rules have been verified by 

clinical research. Although domain knowledge in medicine keeps changing, it changes 

at a comparatively low speed, and we do not have to update the domain BRB hourly 

or daily. Thus, we choose the offline BRB training methods to train the developed 

belief rule-based CDSS prototype by available accumulated clinical data. 

As for the offline BRB training methods, Yang et al. (2007) proposed several optimal 

learning models for training BRB.  Depending on the type of input and output of 

sample data, the optimal learning model can be constructed in different ways (Yang et 
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al., 2007). For example, if the output of the training sample is of numerical type, a 

single objective nonlinear optimization model can be constructed by minimizing the 

total mean squared error between the simulated output and the observed output of the 

sample data. 

The following is a brief discussion of the BRB training model. The training 

parameters of the optimization training model may consist of different sets of 

knowledge representation parameters including rule weights, attribute weights and 

belief degrees. If necessary, utilities or scores associated with different consequents 

can be used for training as well. The objective of the optimization model is to 

minimise the discrepancy between system generated diagnosis results and the 

observed clinical status of the real or simulated patients, and the discrepancy is 

calculated by total mean squared error between system and observed results. The 

constraints of the optimization model are constructed based on the characteristics of 

those knowledge representation parameters and the utility values. Details of the 

optimization model are as follows. 

The aim of BRB training is to find a set of parameters 

( )( )NjNiLkjkik ,,1;,,1;,,1,, LLL ===βδθ  of a BRB that can help the BRB to 

represent domain specific knowledge correctly. The training process is implemented 

through minimizing the discrepancy between the system generated results and 

observed results of the training sample. Assume there are M cases in the training 

sample, and the input-output pairs of those M cases are ( )( )Mmyx mm ,,1ˆ,ˆ L= . The 

process of learning from these M datasets can be depicted in Figure 3-3, where the 

system generated output ( )my  is produced by the system via the inference engine. The 

real output ( )mŷ  is observed by experts or acquired by instruments, and ( )Pξ  
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represents the difference between the real output and the system generated output. The 

objective function of the BRB optimization model is to minimise ( )Pξ , and the 

constraint function can be defined based on the conditions that the training parameters 

must satisfy. As a result of the training process, there will be a new set of ( )jkik βδθ ,,  

for the BRB.  

 
Figure 3-3: Training Process 

Regarding the objective function of the training model, we used the total mean 

squared error ( ) ( )
2

1
ˆ1 ∑ =

−
M

m mm yyM to represent ( )Pξ . As an explicit ER aggregation 

function is required in BRB training, the analytical ER algorithm (Wang et al., 2006) 

was used to construct the objective function in the training model. When the 

analytical ER algorithm is applied to inference with BRB, final belief degrees 

( )Njj ,,1L=β  attached to all possible consequents ( )NjD j ,,1L=  are inferred 

using the following equation: 
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where ( )LkNjjk ,,1;,,1 LL ==β  is the original belief degree assigned to the jth 

consequent in the kth belief rule, 
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the kth rule’s activation weight which is calculated using equation (3-4). Here the 

diagnosis result generated by ER based inference engine for a patient is a set of belief 

degrees attached to all possible consequents as ( )( )NjD jj ,,1, L=β  other than a 

single numerical output. We need to transform the inferred result of the mth case to a 

single numerical value ( )my  based on the concept of utility and utility interval 

proposed by Yang and Xu (2002), and  the transformation is implemented using 

( ) ( )MmDy j
N

j jm ,,1
1

L== ∑ =
βµ , where ( )( )MmNjmj ,,1;,,1 LL ==β  is 

generated by the inference engine, and ( )( )NjD j ,,1L=µ  is the utility value or score 

we set for the jth consequent jD . As for the constraints’ setting for the BRB training 

model, it depends on specific domain knowledge and domain experts’ judgements. 

3.3. Prototyping  

Once the methodology of RIMER has proven feasible to model the clinical domain 

knowledge and to do clinical inference in target clinical areas, a computerised CDSS 

prototype can be developed to test whether such a CDSS is really reliable and useful 

in a real clinical decision making scenario. Prototyping is employed as the system 

development methodology in the research. 

3.3.1. Brief Introduction to Prototyping 

Prototyping is an adaptation of the traditional system development life cycle (SDLC). 

A traditional SDLC starts from some kind of need and results in a completed system, 

and it consists of four fundamental phases-planning, analysis, design, and 

implementation which lead to a deployed system (Turban and Aronson, 2001). In a 
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traditional SDLC, an ideal progression is to follow each phase in order, yet it is 

possible to return to any phase from any other. While in prototyping methodology, a 

system is developed sequentially in modules, and it is deployed to users and gains 

feedback from users for further refinement when each module is completed, so that a 

prototype system can be quickly developed and demonstrated to users. Figure 3-4 

shows a typical prototyping development process. 

 

Figure 3-4: Prototyping Development Process (Turban and Aronson, 2001) 

Following the development process as shown in Figure 3-4, the analysis, design, and 

prototype implementation phases are iteratively performed until a small prototype is 

sufficiently developed.  

3.3.2. Alternative System Development Methodologies 

Planning

Analysis

Design

Implementation

Implementation 

Need 

Prototype 

System 

Prototype Not OK

Prototype OK 
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There are several alternative system development methodologies which include the 

traditional SDLC, parallel development which resembles the SDLC, and phased 

development. 

In parallel development, the design and implementation phases are split into multiple 

sub-ones after the analysis phase, and each of the sub-ones involves development of a 

separate subsystem. All the sub-ones come together in a single implementation phase, 

in which a system integrator puts the subsystems together in a cohesive system. 

In the phased development methodology, a system is developed sequentially by a 

series of versions. Each version has more functionality than its previous version, and 

they evolve into a final system. 

3.3.3. Advantages of Prototyping  

Compared to alternative development methodologies, prototyping has the following 

advantages in developing a CDSS: 

 Users are involved in every phase and iteration.  

Unlike in the traditional SDLC, users only play roles in the planning phase when 

system developers seek information from them. The iterative nature of prototyping 

allows users to be involved in system design and development, which is important for 

a CDSS. Getting system users involved in system design and development process 

enables us to learn from them gradually about the ill-structured clinical domain 

knowledge and system users’ real requirements of a CDSS in clinical practice.  

 Prototype can be developed quickly.  

Unlike a traditional SDLC, prototyping essentially bypasses the formal steps of 
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requirements acquisition and analysis, since prototyping attempts to clarify users’ 

needs by actively involving them in a fast-feedback development process, and this 

helps a prototype system to be developed quickly in the prototyping system 

development methodology.   

In the research, we need to design and develop a CDSS first and then use clinical 

cases to test whether the developed CDSS is really reliable and useful. Due to limited 

time and human resources, alternative system development methodologies discussed 

above are not suitable, and prototyping methodology is the appropriate method to 

develop a CDSS prototype for the study.     

3.4. Field Study 

In the research, practice guidelines in target areas are important resources for 

knowledge elicitation in construction of knowledge base. But the domain knowledge 

in target clinical areas keeps changing, and all the practice guidelines that we obtained 

at the beginning of the study can be outdated soon. In such situation, we need to hold 

regular interviews and meetings with expert clinicians for acquiring advanced clinical 

domain knowledge. Moreover, field study is necessary for us to investigate the daily 

clinical work flow in NHS hospitals and to acquire real user requirements for a CDSS 

in clinical practice. 

3.5. Statistical Techniques 

After system design and development, real or simulated clinical cases are used to 

validate the developed prototype system. For example, for inference engine validation, 

real or simulated patients’ data can be used as inputs to the prototype system, and then 

the automatic diagnostic recommendations generated by the prototype system can be 
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used to compare with real clinicians’ conclusions, and finally a conclusion about the 

prototype system’s reliability can be drawn based on the diagnostic performance 

provided by the system.  

Statistical techniques are used to analyze the diagnosis results generated in the 

prototype validation process. The receiver operating characteristics (ROC) curve 

(Metz, 1978, Park et al., 2004) is employed to analyze the diagnostic performance of 

the different diagnosis tests taken in the validation, and the area under the ROC curve 

(AUC) (DeLong et al., 1988, Mei-Ling Ting and Bernard, 2001) is used to compare 

diagnostic performance of the different diagnosis tests. Brief introduction of the 

statistical techniques used in the research can be found in Chapter 6. .  

3.6. Research Design 

Once research questions and objectives of a study are formulated concretely, a 

researcher develops a research design as a strategic plan to conduct the study. 

Research design is a format for detailed steps in a study to tackle previously identified 

research questions and to achieve already set research objectives. 

The research design comprises data collection, prototype CDSS design, development 

and validation. The research is conducted based on a multiple-methodologies research 

approach. The research consists of five research stages, the details of which are 

outlined in Table 3-2. 
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Table 3-2: Research Design 

Stages Actions Objectives Questions to Answer Research 
Methodologies 

Stage 1 1. Literature review 
2. Theoretical investigation   

1. To identify research gaps 
2. To formulate research questions 

Research question (1-1) Literature review 

Stage 2 A feasibility study 
 Domain knowledge acquisition 
 Compare a traditional rule-based 

CDSS with a belief rule-based 
CDSS 

1. To acquire target clinical domain 
knowledge 

2. To analyze the feasibility of 
applying RIMER for 
development of a CDSS 

Research questions (1-2)& 
(1-3)     

1. Literature review 
2. Field study 
3. Modelling 

Stage 3 1. Design of a belief rule-based 
online intelligent group CDSS 

2. Development of the belief rule-
based online intelligent group 
CDSS prototype 

To design and develop an online 
belief rule-based group CDSS with 
learning capability 

Research questions (1-2) & 
(1-3) & 
Research questions (2) & (3)  

1. Modelling 
2. Prototyping 

Stage 4 Validation of the developed CDSS 
prototype  

 Domain knowledge acquisition & 
Data simulation 

 Validation of inference engine: 
compare system’s diagnostic 
performance with one doctor’s 

 Validation of training module: 
compare the system’s diagnostic 
performance before and after 
BRB training 

To test the reliability of the prototype Research question (1-2) &  
(1-3)& 
Research questions (3)    
 

1. Field study 
2. Statistical analysis 

Stage 5 1. Finalizing main results  
2. Presenting the prototype 
system and system manual 

1. To draw conclusions about 
the feasibility of employing RIMER 
for developing a CDSS 
2. To present the final prototype 
system and the user manual 
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(1) Identifying Research Problem  

At research stage 1, a research topic on CDSSs is chosen, and information with 

respect to the topic and its problems is initially extracted from the literature. Existing 

CDSSs are reviewed for its further requirements and research questions are 

formulated based on the identified research gaps. The potential of employing 

advanced methods and technologies in decision making areas such as RIMER to 

address the research problems is investigated. The research during this stage includes 

the following activities: 

 Review and analyze existent CDSSs; 

 Provide a key feature analysis in uncertainty handling for the existent CDSSs; 

i. Identify challenges of knowledge representation schemes and inference 

mechanisms in existent knowledge-based CDSSs; 

ii. Identify challenges of knowledge learning and representation mechanisms in 

existent non-knowledge-based CDSSs; 

iii. Identify challenges of group decision support in existent CDSSs; 

iv. Explore the possibility and creativeness of using advanced methods and 

technologies from decision making area to design and develop an intelligent 

group CDSS that can handle different uncertainties well; 

v. Formulate research questions; 

 Set detailed measurable research objectives for the research. 

(2) A Preliminary Feasibility Study 

At research stage 2, a clinical domain is chosen as a target clinical area for a 

preliminary feasibility study, and specific domain knowledge need to be extracted 

from domain medical literature or/and acquired from expert clinicians through field 
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study. Subsequently, the feasibility of using RIMER for the design and development 

of a belief rule-based CDSS is investigated. The research at this stage includes the 

following activities: 

 Acquire target clinical domain knowledge through literature review and field 

study; 

 Construct BRB models based on the domain knowledge; 

 Construct an inference model using the ER approach; 

 Compare the belief rule-based system with traditional rule-based system in 

drawing clinical conclusions about simulated cases in target clinical areas. 

(3) Design and Development of a Belief Rule-based Online Intelligent Group 

CDSS Prototype 

At research stage 3, we design and develop a belief rule-based online intelligent group 

CDSS. The system design and development need to consider the details of system 

architecture, back-end database, user interfaces, knowledge base, inference 

mechanism, group decision supporting module, and training module. The basic 

prototyping system development process as shown in Figure 3-4 is applied in the 

prototype development. The research at this stage includes the following activities: 

 Identify the prototype’s characteristics in varying aspects: web-based architecture, 

programming languages, software environment, and key components or 

functionalities of the system; 

 Design and develop the back-end database schema to store clinical data and  to 

physically construct BRB models; 

 Design and develop web-based user interfaces based on the clinical work flow 

depicted in target clinical practice guidelines; 
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 Design and develop ER-based inference engine; 

 Design and develop ER-based group decision supporting module; 

 Design and develop a BRB training module; 

 Integrate all key components together and present the online belief rule-based 

group CDSS prototype to target system users; 

 Improve the prototype based on users’ feedback.  

(4) Validation of the Online Intelligent CDSS prototype 

At research stage 4, clinical data in target clinical areas is used for validating the 

developed online intelligent CDSS prototype. In the validation, two core components: 

inference engine and training module are validated respectively. The activities at this 

stage include: 

 Acquire target clinical domain knowledge through field study; 

 Collect second-hand real patients’ data or invite expert clinicians to simulate 

clinical data; 

 Test the system’s diagnostic performance using the acquired dataset; 

 Split the dataset into training and test sets based on some criteria; 

 Train BRB model in the system using the training dataset; 

 Test the trained system using the test dataset; 

 Analyze the system’s diagnostic performance before and after BRB training. 

(5) Present the Final Prototype CDSS and User Manual 

This final research stage summarises the results, draws conclusion about the 

feasibility and viability of applying RIMER in development of a CDSS and presents 

the final prototype system and system manual. 
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3.7. Summary 

As identified in Literature Review chapter, representing and reasoning with clinical 

domain knowledge under uncertainties are areas that require refined technologies, and 

there are strong needs for a CDSS to provide group clinical decision support and 

automatic knowledge base updating in addition to individual clinical decision support. 

Thus we propose to employ RIMER methodology to implement a belief rule-based 

CDSS, while group clinical decision support and automatic clinical knowledge base 

updating are also taken into account. In this chapter, the main models we used for 

domain knowledge representation, clinical inference, and clinical knowledge base 

training are briefly discussed first, and followed by a brief description of the system 

development method - prototyping, and then we provide a brief discussion on field 

study which we used for domain knowledge acquisition and clinical practice 

observation, and the statistical method – ROC analysis which we employed to analyse 

the system validation results, and finally, a concrete research design is provided based 

on proposed methods. The advantages of using BRB for modelling or representing 

domain knowledge, using ER for individual clinical diagnosis and group clinical 

preferences aggregation, and using an offline BRB training model for automatic 

knowledge base updating include: (1) BRB can help transparently represent domain 

knowledge under uncertainties in an natural ‘IF-THEN’ rule format with a belief 

structure, which can be provided as explanation if required; (2) inference with BRB 

using ER can help preserve uncertainties rationally in the inference process and 

represent their effects in the finally conclusion, while aggregating group preferences 

using ER can help speed up the group decision making process compared to Delphi 

method. In the following chapter, we will provide a preliminary study on feasibility of 

employing RIMER for implementation of a CDSS. 
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Chapter 4  

A Preliminary Feasibility Study 

 
4.1. Introduction 

Prior to the design and development of an online intelligent CDSS based on the newly 

developed belief rule-base inference methodology-RIMER, a preliminary study on 

feasibility of employing RIMER for developing a CDSS was conducted. 

This chapter discusses a detailed investigation for the feasibility of using RIMER in 

developing a CDSS. In the feasibility study, clinical risk assessment of acute upper 

Gastrointestinal (GI) bleed was chosen as target clinical area, and a patient with acute 

upper GI bleed was simulated by an expert clinician in MRI for the investigation. In 

the study, knowledge-based systems including traditional rule-based system and belief 

rule-base system are constructed for investigation. 

In a traditional rule-based CDSS, forward chaining or backward chaining is used as 

the inference method, while in a belief rule-based CDSS, the evidential reasoning (ER) 

approach is employed as the inference method. Equipped by an intelligent decision 

system (IDS) (Xu and Yang, 2005), which is a Windows-based multiple criteria 

assessment system that implements the ER approach, we obtained a diagnostic 

recommendation through inference with the belief rule base (BRB) using ER in a 

belief rule-based CDSS. Through comparison of diagnosis recommendation generated 

by belief rule-based system and traditional rule-based system, we find that the 

diagnosis recommendation generated by a belief rule-based CDSS is more 
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informative than the diagnosis conclusion drawn from a traditional rule-based system 

when there is uncertainty in clinical data.  

The chapter is organised as follows. Section 4.2 discusses target clinical domain 

knowledge acquisition for the feasibility study. Section 4.3 presents the domain 

knowledge modelling, where the modelling of the domain knowledge using traditional 

‘IF-THEN’ rule base and BRB are discussed in Section 4.3.1 and Section 4.3.2, 

respectively. A description of a simulated patient in target clinical area will follow in 

Section 4.4. Inference with the constructed knowledge base and the clinical data is 

discussed in Section 4.5, where inference with the traditional rule base using forward 

chaining method is discussed in Section 4.5.1, and inference with the BRB using the 

ER approach is discussed in Section 4.5.2. Then conclusions about the feasibility of 

using RIMER for developing a CDSS are provided in Section 4.6, where the 

advantages of a belief rule-based system compared with a traditional rule-based 

system is discussed as well. Finally, Section 4.7 summarises the chapter. 

4.2. Domain Knowledge Acquisition 

Knowledge acquisition is a very important starting procedure for the construction of 

knowledge bases in CDSSs. The first step of knowledge acquisition is to select the 

target clinical area and select expert clinicians to gain domain specific knowledge, and 

then transfer the domain knowledge into computer interpretable knowledge based on 

the designed knowledge representation scheme. 

Target clinical domain selection and domain specific knowledge elicitation for the 

feasibility study are described as follows in Section 4.2.1 and Section 4.2.2 

respectively. 
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4.2.1. Clinical Domain Selection 

Upper GI bleeding is a significant and potentially life-threatening worldwide problem. 

Despite advances in diagnosis and treatment, mortality and morbidity have remained 

constant (Marc et al., 2000). In the UK, acute upper GI bleed is a common medical 

emergency with an incidence of approximately 100 per 100,000 adults per year and a 

mortality among unselected cases of 14% (Rockall et al., 1995). 

Patients with upper GI bleeding vary in severity from those with exsanguinating 

haemorrhage from oesophageal varices to those with simple streaking due to Mallory-

Weiss tear caused by retching after too much alcohol the night before. Thus to provide 

proper management of patient with acute upper GI bleed, it is important for ED 

doctors to make evidence-based decisions about the clinical risks involved to ensure 

that appropriate, timely treatment is provided and that investigation is carried out in 

an appropriate time-frame. Patients at high risk should be resuscitated and undergo 

emergency endoscopy immediately. Patients at moderate risk should have Intravenous 

(IV) access established, have their blood grouped and serum saved and should have 

endoscopy performed rapidly (Central Manchester and Manchester Children's 

University Hospitals NHS Trust, 2003b). 

Motivated by the above facts, we chose clinical risk assessment of acute upper GI 

bleed as target clinical domain for investigation in the feasibility study. 

4.2.2. Target Domain Knowledge Elicitation 

Generally, for acquiring medical domain specific knowledge, many computerised 

knowledge acquisition tools have been developed by CDSSs researchers. Among 

them, some tools such as a Unified Medical Language System (UMLS)-based 
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knowledge acquisition tool developed by Achour et al. (2001) is designed for 

acquiring domain specific medical rules, and other tools such as a guideline 

acquisition module in a guideline-based CDSS developed by Terenziani et al. (2001) 

is designed specially for the acquisition of clinical guidelines which can be used as the 

best and standardised clinical procedures.  

During this study we have expert clinicians in MRI as research collaborators who 

have already published a clinical practice guideline for diagnosis of acute upper GI 

bleed in ED. Therefore we do not have to use any computerised knowledge 

acquisition tool which require our research collaborator to input their domain 

knowledge as clinical rules or clinical guideline. Instead, we elicited rules for 

assessing clinical risk of acute upper GI bleed first from the published practice 

guideline, and then we invited our collaborators in MRI to verify those clinical rules 

before applying them to construct knowledge base for target CDSS. 

The clinical decision support guideline (CDSG) 2003-05 for acute upper GI bleed 

(Central Manchester and Manchester Children's University Hospitals NHS Trust, 

2003b), which we used for eliciting clinical rules for risk assessment of upper GI 

bleed, was developed by clinicians in MRI, and were originally published on central 

Manchester and Manchester children's university hospitals NHS trust intranet in 2003. 

Their content was reviewed by Clinical Effectiveness Committee of the British 

Association for Emergency Medicine in 2005. As presented in the practice guideline, 

rules for assessing clinical risk of acute upper GI bleed are as follows in Table 4-1, 

where SBP stands for ‘systolic blood pressure’, and NSAIs represents ‘non-steroidal 

anti-inflammatory drugs’.  
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Table 4-1: Rules for Clinical Risk Assessment of Upper GI Bleed 
Clinical Risk Clinical signs and symptoms, laboratory 

tests, and medical history High
(H) 

Moderate  
(M) 

Low 
(L) 

Known or suspected oesophageal varices √   
Pulse > 130 bpm √   
SBP < 90 mm Hg √   
Postural SBP drop > 20 mm Hg √   
On NSAIs or anticoagulants  √  
Major co-morbidity (eg cardiac or renal  √  
Stigmata of liver disease  √  
Witnessed acute fresh red blood in vomit  √  
Over 75 years old  √  
Urea > 8  √  
None of the above   √ 

Apart from acquiring domain knowledge from the CDSG as mentioned above, we did 

field study in MRI to observe one expert clinician’s clinical practice and held regular 

meegtings and discussions with expert clinicians to get correct and deep 

understanding of these clincial rules.  

Tradtitional rule base and BRB are constructed, in the following section for 

developing a CDSS, based on the clinical rules as described in Table 4-1. 

4.3. Domain Knowledge Modelling 

4.3.1. Modelling with Traditional ‘IF-THEN’ Rule Base 

Traditional ‘IF-THEN’ rule base is the dominant knowledge modelling methodology 

in CDSSs (Carter, 1999). If we use traditional rules to represent the rules for assessing 

clinical risk of upper GI bleed as described in Table 4-1, the rule base as shown in 

Table 4-2 can be constructed. 
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Table 4-2: Traditional Rule Base for Risk Assessment of Acute Upper GI Bleed 
Number Antecedent Consequent
1 (F1 is Y) R is H 
2 (F2 is Y) R is H 
3 (F3 is Y) R is H 
4 (F4 is Y) R is H 
5 (F1 is N ^ F2 is N ^ F3 is N ^ F4is N ^ F5 is Y) R is M 
6 (F1 is N ^ F2 is N ^ F3 is N ^ F4 is N ^ F6 is Y) R is M 
7 (F1 is N ^ F2is N ^ F3 is N ^ F4 is N ^ F7 is Y) R is M 
8 (F1 is N ^ F2 is N ^ F3 is N ^ F4 is N ^ F8 is Y) R is M 
9 (F1 is N ^ F2 is N ^ F3 is N ^ F4 is N ^ F9 is Y) R is M 
10 (F1 is N ^ F2 is N ^ F3 is N ^ F4 is N ^ F10 is Y) R is M 
11 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F5

 is N ^ F6
 

is N ^ F7
 is N ^ F8

 is N ^ F9
 is N ^ F10

 is N)  
R is L 

In above table, Y stands for ‘yes’, N stands for ‘no’, ‘^’ is a logical connective to 

represent the ‘AND’ relationship, and the meaning of other symbols are as follows.  

R represents ‘the clinical risk of acute upper GI bleed’. 

F1
 represents ‘known or suspected oesophageal varices’. 

F2
 represents ‘pulse > 130 bpm’. 

F3
 represents ‘SBP < 90 mm Hg’.  

F4
 represents ‘postural SBP drop > 20 mm Hg’.  

F5
 represents ‘on NSAIs or anticoagulants’.  

F6
 represents ‘major co-morbidity (eg cardiac or renal impaiment)’.  

F7
 represents ‘stigmata of liver disease’.  

F8
 represents ‘witnessed acute fresh red blood in vomit’.  

F9
 represents ‘over 75 years old’.  

F10 represents ‘urea > 8’. 

Note that the same set of symbols will be used in the following sections to describe 

BRB which is constructed by extending the traditional rule base using the belief 

structure. 
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4.3.2. Modelling with BRB 

In the traditional rule base as described in Table 4-2, there is no uncertainty in the 

rules’ antecedent or consequent. However, there are indeed at least three 

circumstances in which uncertainties may arise. Firstly in a real clinical environment, 

conditions in a rule may not always be met with 100% accuracy by patients’ clinical 

data because there are uncertainties in doctors’ subjective judgements about one 

patient’s specific clinical symptoms. Secondly, diagnosis conclusions drawn from 

different clinicians about one patient may not be the same due to the fact that different 

clinician in the same clinical area may own different domain knowledge and different 

practice experiences. Finally even two patients are diagnosed as having the same 

disease, the severity of the two patients may be different, and accordingly, the two 

patients may need to be treated in a different time order. To deal with the uncertainties, 

belief rules may provide an alternative solution to accommodate different types of 

uncertainties in representing both clinical data and clinical domain knowledge. 

If those traditional rules described in Table 4-2 are extended using the belief structure 

for more precisely imitating human reasoning knowledge in rule-based CDSSs, the 

corresponding BRB representing clinical rules for risk assessment of upper GI bleed 

can be described as in Table 4-3. For details of the belief structure in BRB, readers 

can refer to Section 3.2.1 in Chapter 3. 
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Table 4-3: BRB for Clinical Risk Assessment of Acute Upper GI Bleed 
Number W Antecedent Consequent
1 1 (F1

 is Y) R is {(H, 1)}
2 1 (F2

  is Y) R is {(H, 1)}
3 1 (F3

  is Y) R is {(H, 1)}
4 1 (F4

  is Y) R is {(H, 1)}
5 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F5

 is Y) R is {(M, 1)}
6 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F6

 is Y) R is {(M, 1)}
7 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F7

 is Y) R is {(M, 1)}
8 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F8

 is Y) R is {(M, 1)}
9 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F9

 is Y) R is {(M, 1)}
10 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F10

 is Y) R is {(M, 1)}
11 1 (F1

 is N ^ F2
 is N ^ F3

 is N ^ F4
 is N ^ F5

 is N ^ F6
 is N  

^ F7
 is N ^ F8

 is N ^ F9
 is N ^ F10

 is N) 
R is {(L, 1)}

In the BRB as shown in Table 4-3, the weight of each rule (represented by W in the 

second column) and the weight of each antecedent attribute are assumed to be 1, 

which means all rules possess the same importance and all antecedent attribute play 

similar roles in assessing one patient’s clinical risk. Besides, each rule has a 

consequent only with a belief degree of exactly one, which means if one patient’s 

clinical data meets one rule’s antecedent condition, the patient will be 100% with a 

clinical risk at the level as the rule’s consequent describes.  

Although based on experts’ experience, we have not obtained rules like ‘IF (F1
 is 80% 

Y) THEN R is {(H, 0.8)’, which can explicitly represent uncertainties in clinical 

domain knowledge and clinical data. The rules as described in Table 4-3, which 

represent certain clinical rules in assessing risk of upper GI bleed, are special cases of 

belief rules, and they can be used to inference with uncertain clinical data.   

4.4. Description of Clinical Data 

Due to the strict data protection regulations in the UK, we used simulated patient data 

to demonstrate the risk assessment process in both the traditional rule-based and belief 



 106

rule-based CDSSs. The made-up patient’s data have been verified by an expert 

clinician. 

The detailed information about a simulated patient with acute upper GI bleed is given 

in Table 4-4, where only ‘esophageal varices’ are judged as ‘strongly suspected’, and 

all other clinical signs or symptoms are with certain judgments or exact numerical 

values. 

Table 4-4: One Simulated Patient with Acute Upper GI Bleed 
Disease Clinical signs and symptoms 

strongly suspected oesophageal varices; 
pulse is 131 bpm; 
SBP is 90 mm Hg; 
postural SBP drop is 20 mm Hg; 
currently is on anticoagulants; 
no major co-morbidity; 
no stigmata of liver disease; 
no fresh red blood in vomit; 
76 years old; 

upper GI 
bleed 

urea is 8. 

Note that the same patient’s data has been used in the published paper of Kong et al. 

(2009) for illustration of inference with BRB. 

Inference with the simulated patient’s data and constructed knowledge base is 

described in the following Section. 

4.5. Inference with Knowledge Base 

4.5.1. Inference with Traditional Rule Base 

There are two methods of inference often used in traditional rule-based CDSSs, 

namely forward and backward chaining (Shortliffe and Perreault, 1990). In the study, 

forward chaining is used for reasoning with the traditional rule base as described in 

Table 4-2. Forward chaining is a top-down method which takes facts as they become 
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available and attempts to draw conclusions (from satisfied conditions in rules) which 

lead to actions being executed. 

Inference with the traditional rule-based system using forward chaining involves 

assigning values to attributes, evaluating conditions, and checking to see if all of the 

conditions in a rule are satisfied. A general algorithm for forward chaining method 

can be described as in Figure 4-1. 

 

Figure 4-1: A General Algorithm for Forward Chaining in Rule-Based System 

In the traditional rule-based system as investigated in the study, all rules are chained 

according to the real work flow shown in the practice guideline. To acquire inputs, the 

system would provide a chain of enquiries regarding clinical signs and symptoms 

which are necessary for specific diagnosis. For example, enquiries for clinical risk 

assessment in diagnosis of acute upper GI bleed may include: 

1) Are there known or suspected oesophageal varices? 

2) Is pulse > 130 bpm? 

3) Is SBP < 90 mm Hg? 

4) Is postural SBP drop > 20 mm Hg? 

5) On NSAIs/anticoagulants or not? 

6) Is there major co-morbidity (eg cardiac or renal impairment)? 

7) Is there a stigmata of liver disease? 

Input value 

Assign value to 
attribute 

Evaluate conditions 
in rules 

Fire satisfied  
rules 

Generate output
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8) Is there witnessed acute fresh red blood in vomit? 

9) Is the patient over 75 years old? 

10)  Is the patient’s urea > 8? 

Only answers Y and N are provided as options for system users to choose for all 

enquiries like those listed above in traditional rule-based system. 

If we need to assess the simulated patient’s clinical risk using the traditional rule base 

as described in Table 4-2, our work will be based on the general algorithm as 

described in Figure 4-1. Firstly, the matching between the clinical data and antecedent 

attributes of the traditional rule base can be described as (F1
 is Y)^(F2 is Y)^(F3 is 

N)^(F4 is N)^(F5 is Y)^(F6 is N)^(F7 is N)^(F8 is N)^(F9 is Y)^(F10 is N). Secondly 

only condition of Rule 1 and Rule 2 in Table 4-2 are satisfied by the data. As a result, 

the inferred clinical risk of the patient generated by the traditional rule-based CDSS is 

H. 

4.5.2. Inference with BRB 

Inference with BRB using the ER approach also involves assigning values to 

attributes, evaluating conditions and checking to see if all of the conditions in a rule 

are satisfied. However, inference with BRB using the ER approach is different from 

inference with traditional rule base using forward chaining in many aspects. Firstly, 

value assignments in the ER approach are different from forward chaining due to an 

input transformation process. In a rule base, each antecedent attribute has a set of 

referential values, and individual referential value is used in different rule as an 

element of antecedent (Yang et al., 2006). Specifically, the kth rule in a traditional 

‘IF-THEN’ rule base can be described as k
k
T

kk
k DAAAR

k
  THEN IF ,^^^: 21 L , where 
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( )k
k
i TiA ,,1L=  is a referential value of the ith antecedent attribute iA  in the kth rule, 

kT  is the number of the antecedent attributes used in the kth rule, and kD  is the 

consequent in the kth rule. In traditional rule-based systems, input data is usually with 

certainty, and it can be matched directly with antecedents of rules in the system. 

While in belief rule-based systems, input clinical data can be with uncertainty, and the 

relationship between an input and each referential value in the antecedents of a rule 

needs to be determined before an inference process can start (Yang et al., 2006). This 

process is to transform an input into a distribution on referential values of one 

antecedent attribute using belief degrees. Secondly, the condition evaluation process 

is different. In the ER approach, since inputs can be transformed to distributed 

referential values as described above, conditions of more than one rule may be 

satisfied by one input patient’s data in parallel to different degrees. While in forward 

chaining, there is only an activated rule or a chain of rules activated in sequence by an 

input patient’s data. Thirdly, conclusions are derived by an aggregation process. 

Using the ER approach, the conclusions generated by all the activated rules need to be 

aggregated to generate an overall conclusion. While in forward chaining, there is no 

rule aggregation or combination process.  

Section 4.5.2.1 to 4.5.2.4 will provide a detailed description of the inference process 

carried out by the belief rule-based CDSS for the simulated patient. 

4.5.2.1. Input Transformation 

In the BRB outlined in Table 4-3, {Y, N} is used as a set of referential values for all 

clinical symptoms. The distributed values transformed from original clinical data of 

the simulated patient described in Table 4-4 in Section 4.4 are as follows: F1: {(Y, 



 110

0.8), (N, 0.2)}, F2: {(Y, 0.67), (N, 0.33)}, F3: {(Y, 0.5), (N, 0.5)}, F4: {(Y, 0.5), (N, 

0.5)}, F5: {(Y, 1), (N, 0)},F6: {(Y, 0), (N, 1)}, F7: {(Y, 0), (N, 1)}, F8: {(Y, 0), (N, 

1)}, F9: {(Y, 0.6), (N, 0.4)}, and F10: {(Y, 0.5), (N, 0.5)}. In the clinical data 

transformation process, a rule based transformation method (Yang, 2001) is adopted 

for transforming both qualitative and quantitative input data. Here are the details of 

the transformation. 

 Qualitative Input Transformation 

As for the qualitative input information regarding F1, F5, F6, F7 and F8, ‘Y’ and ‘N’ 

are the set of referential values for all these clinical symptoms. For F1, {known, 

strongly suspected, maybe, suspected with a low degree, no} are used as its input 

options, and transformation rules should be set between the input options and the 

referential values of {Y, N}. According to an expert clinician’s advice, the following 

transformation rules are used for F1 related inputs transformation: ‘known’ means 

100% ‘Y’, ‘strongly suspected’ means 80% ‘Y’ and 20% ‘N’, ‘maybe’ means 50% 

‘Y’ and 50% ‘N’, ‘suspected with a low degree’ means 20% ‘Y’ and 80% ‘N’, and 

‘no’ means 100% ‘N’. In real life application, the options set for acquiring original 

information about qualitative clinical symptoms should be set depending on the 

domain experts’ knowledge and experiences. There is no need to establish 

transformation rules for clinical symptoms of F5, F6, F7 and F8, because the referential 

values ‘Y’ and ‘N’ are options for acquiring original input. Based on the clinical data 

as described in Table 4-4, the transformed values for F1, F5, F6, F7 and F8
 are F1: {(Y, 

0.8), (N, 0.2)}, F5: {(Y, 1), (N, 0)},F6: {(Y, 0), (N, 1)}, F7: {(Y, 0), (N, 1)}, and F8: 

{(Y, 0), (N, 1)}. 

 Quantitative Input Transformation  
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As for quantitative input data regarding F2, F3, F4, F9 and F10, their inputs are 

numerical values, and ‘Y’ and ‘N’ are also used as referential values for these 

symptoms. Moreover, each quantitative clinical symptom is associated with two types 

of threshold values defined by domain experts including an upper limit value and a 

lower limit value. Transformation rules for these quantitative clinical symptoms 

should include that (a) if the input is larger than the upper range value, the input can 

be transformed to 100% ‘Y’ or ‘N’; (b) if the input is lower than the lower range value, 

the input can be transformed to 100% ‘N’ or ‘Y’; and (c) if the input falls into the 

range between the lower and the upper limit values, the input can be transformed to 

{(Y, =Yα  %valueinput 100*
 valuerangelower  valuerangeupper 

 valuerangelower  
−

− ), (N, =Nα  1- Yα )} or  {(N, =Nα  

%valueinput 100*
 valuerangelower  valuerangeupper 

 valuerangelower  
−

− ), (Y, =Yα  1- Nα )}, where αY stands for the 

belief degree to which the input value can be transformed to ‘Y’ and αN  stands for the 

belief degree to which the input value can be transformed to ‘N’. 

The reason for us to adopt a saturated linear utility change process as discussed above 

rather than a step utility change process in transforming original input numerical value 

of each quantitative clinical symptom is that the transformed inputs can make the 

inference in the system better imitate human decision making in a real scenario. Take 

F2 for example, if the input value of F2 is larger than (>) 130 bpm, then the patient 

will be at high risk according to the original rules as shown in Table 4-1. However, it 

is unknown what will be the judgment if the input value is exactly 130 bpm. In a real 

clinical risk assessment of patients with upper GI bleed, a clinician would make his 

assessment about a patient with pulse of 130 bpm based on his experience and other 

observations instead of using 130 as the only standard to make a judgment. To solve 

this problem in the belief rule-based CDSS, a value area of (127, 133) is used as an 
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interval to define a gradual change area in risk assessment for patient’s pulse. 

Therefore, the input value for enquiry about F2 equal to or higher than (≥) 133 bpm 

will be transformed to F2: {(Y, 1), (N, 0)} and the input value for enquiry about F2 

equal to or lower than (≤) 127 bpm will be transformed to F2: {(Y, 0), (N, 1)}. If the 

input value lies in the range of (127, 133), it will be transformed to F2: {(Y, 

αY= ( )
( ) ( ) %valueinput 100*

 valuerangelower 127 valuerangeupper 133
 valuerangelower 127 

−
− ), (N, αN = 1-αY)}. Similar 

transformation will be implemented in input information for enquiries about F3
, F4

, F9
 

and F10
  and the linear change area is (85, 95) for F3

, (15, 25) for F4
, (70, 80) for F9 and 

(5, 11) for F10. 

Based on the clinical data described in Table 4-4, the transformed values for F2, F3, F4, 

F9
 and F10

 are F2: {(Y, αY= )67.0100*
 value)]rangelower (127 value)range [133(upper

 value)]rangelower (127) (131[
=

−
− %valueinput , 

(N, αN=1-αY=0.33)}, Fu
3: {(N, αN =(90-85)/(95-85)*100%=0.5), (Y, αY=1-αY =0.5)}, 

Fu
4: {(Y, αY=(20-15)/(25-15)*100%=0.5), (N, αN=1-αY=0.5)}, Fu

9: {(Y, αY=(76-

70)/(80-70)*100%=0.6), (N, αN=1-αY=0.4)}, and Fu
10: {(Y, αY=(8-5)/(11-

5)*100%=0.5), (N, αN=1-αY =0.5)}. 

4.5.2.2. Rules’ Activation Weights Calculation  

After the value assignment for antecedent symptoms, the next step should be to 

calculate the activation weight for each packet antecedent in the rule base. Using 

( ) ( )Lk
kikT

i

k
ik  , ,1

1

K==∏
=

δ

αα  as described in equation (3-4), the combined matching 

degrees of the input patient’s data to each rule’s packet antecedent are calculated as 

follows: α1=0.8, α2=0.67, α3=0.5, α4=0.5, α5=0.0165, α6=0, α7=0, α8=0, α9=0.0099, 
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α10=0.0083, and α11=0, and the activation weights ( )11,,1K=kkω  for all rules are 

generated using ),,1(

1

LkL

j
jj

kk
k L==

∑
=

αθ

αθ
ω as described in equation (3-4) as follows: 

ω1=0.3194, ω2=0.2675, ω3=0.1996, ω4=0.1996, ω5=0.0066, ω6=0, ω7=0, ω8=0, 

ω9=0.004, ω10=0.0031 and ω11=0.  

4.5.2.3. Belief Degrees Update  

What follows rules’ activation weights calculation is to update belief degrees in the 

possible consequents of the activated rules in the BRB as shown in Table 4-3. 

According to the activation weights ( )11,,1K=kkω  for each rule in the BRB as 

calculated in above Section, Rules 1, 2, 3, 4, 5, 9 and 10 are activated to different 

degrees by the simulated patient’s data. After updating of belief degrees in 

consequents using equation (3-5) based on the transformed input values described in 

Section 4.5.2.1, it can be found that the updated belief degrees in possible consequents 

of the rules in the BRB remain original values because all the transformed inputs are 

complete. Here, a complete input means that if the input Uk is transformed to the 

original distributed referential values with belief degrees as described in equation (3-

3), ( )ik
J

j ij JjTii ,,1;,,1
1

LL ==∑ =
α  should be 1. Take F1 for example, the sum of αY 

(0.8) and αN (0.2) of F1 transformed from the simulated input is 1, which means that 

the input to the antecedent symptom F1 is complete. If inputs related to all antecedent 

attributes are completes, the packet input will be a complete one and the belief 

degrees in the consequents of the BRB will not be affected by the inputs and remain 

as the original values given by domain experts. 

4.5.2.4. Rules Aggregation via ER 
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Finally, IDS (Xu and Yang, 2005), a Microsoft Windows-based multiple criteria 

assessment system which implements the ER approach, is used as a tool to aggregate 

all the activated rules. First, we need to model the belief rule-based clinical risk 

assessment in the ER framework by taking each patient’s illness as an alternative to 

be assessed, taking clinical risk as the top attribute for the assessment of the patient’s 

illness, and taking each activated rule’s packet antecedent as a basic attribute for the 

assessment of the top attribute. In this model, each rule’s activation weight acts like a 

basic attribute’s weight, and each possible consequent of the BRB acts like each 

individual evaluation grade set for the basic attribute. Accordingly, belief degrees in 

possible consequents in the activated rules act like belief degrees to possible 

evaluation grades. The model framed in IDS together with the inputs of the activated 

rules’ activation weights are shown in Figure 4-2, in which the clinical risk 

assessment model of the simulated patient is shown in the upper left side and the 

dialog box in IDS for acquiring each activated rule’s weight is shown in the lower 

right side where each activated rule is treated as a basic attribute in the model. A 

dialog box in IDS for acquiring belief degrees in the possible consequents of each 

activated rule for the clinical risk assessment model is shown in Figure 4-3. 
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Figure 4-2: Clinical Risk Assessment Model in IDS 

 

Figure 4-3: IDS Dialog for Acquiring Belief Degrees in Consequents 

After the modelling work, we can run IDS to generate assessments, and a final clinical 

risk assessment for the simulated patient with upper GI bleed can be visually shown in 

Figure 4-4, which shows that the patient’s clinical risk is assessed to be {(H, 0.9935), 

(M, 0.0065), (L, 0)}. If the severity score of H risk is set to 1, the severity score of M 

risk to 0.5, and the severity score of L risk to 0, the overall severity score of the 

simulated patient generated by the ER approach is 0.9968, and this score can be used 

to tell the severity difference between the patient’s illness and other patients’ which 

are also caused by upper GI bleed. 
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Figure 4-4: Clinical Risk Assessment for Simulated Patient with Upper GI Bleed 

4.6. Feasibility Analysis 

4.6.1. Advantages of Belief Rule-Based CDSS Compared To 

Traditional Rule-Based CDSS 

After detailed presentation of inference with traditional rule base using forward 

chaining and inference with BRB using the ER approach for clinical risk assessment 

of the simulated patient with acute upper GI bleed, a comparison of assessment results 

for the simulated patient can be made between traditional rule-based and belief rule-

based systems, and it is shown in Table 4-5. 

Table 4-5: A Comparison between Traditional Rule-based and Belief Rule-based 
Clinical Risk Assessment  

Clinical Risk Assessment Result 
Traditional Rule-based System Belief Rule-based System 

H {(H, 0.9935), (M, 0.0065), (L, 0)} 

It can be seen from the comparison that the conclusion reasoned from belief rule-

based system are consistent with though not exactly the same as what is inferred from 

traditional rule-based system. For the simulated patient, his/her clinical risk 
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assessment result generated by the traditional rule-based system is ‘H’, while {(H, 

0.9935), (M, 0.0065), (L, 0)} is the result reasoned from the belief rule-based system. 

The reason is that although there is no uncertainty represented in the belief rules as 

described in Table 4-3 in Section 4.3.2, a belief rule-based system can capture 

uncertainties in clinical signs and symptoms for the simulated patient, but traditional 

rule-based systems which have not taken uncertainties into consideration in system 

design and implementation can only reason with clinical signs and clinical symptoms 

with 100% certainty.  

Based on the above observation, we can draw a conclusion that if there are uncertain 

or incomplete input data regarding patients’ clinical signs and symptoms, the result 

generated by belief rule-based system with distributed belief degrees attached to 

different diagnoses is more informative than the one inferred from traditional rule-

based system with one certain diagnosis. Meanwhile, if all clinical signs and 

symptoms can be described with 100% certainty, and there is no uncertainty in 

clinical rules as well, the diagnosis conclusion derived from these clinical symptoms 

should also be without any uncertainty. In such situations, belief rules reduce to 

traditional rules.  

Note that clinical domain knowledge for the diagnosis of different diseases may 

contain different types and degrees of uncertainties, and real life clinical data are 

actually more complicated than the simulated patient’s since information about a 

patient’s clinical signs and symptoms may include ignorance of some symptoms, 

vagueness or incomplete linguistic description, inexperienced judgements and so on. 

In such situations, we prefer to using BRB to model uncertain clinical domain 
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knowledge, and using the ER approach for inference to cope with uncertainties in 

both clinical rules and clinical data. 

Moreover, if two patients are with the same diseases and both are assessed to be at H 

risk, a very important question in ED would arise as to who should be treated first, 

which is an important issue in emergency triage system (Mackway-Jones et al., 2005). 

In the belief rule-based system, a recommendation can be made based on the 

calculated overall severity scores or severity intervals of the inferred assessments for 

different patients. For example, if patients P1 and P2 are diagnosed by the system 

simultaneously, and P1 is assessed to be at {(H, 0.8), (M, 0.2), (L, 0)} risk and P2 is 

assessed to be at definitely H risk. If the severity score of H risk is set to 1, the 

severity score of M risk 0.5, and the severity score of L 0.25, as a result, the overall 

severity score of patients P1 is 0.9 and P2’s is 1. If the order of treatment in ED is 

based on patients’ severity ranking, P2 should be recommended to be treated earlier 

than P1 by the belief rule-based system. However, for the traditional rule-based 

system, it is difficult to give such a recommendation based on the inferred result. 

In consequence, compared to traditional rules in developing a CDSS, RIMER has the 

following advantages for developing a CDSS. Firstly, belief rules can provide a 

flexible framework to capture uncertainties in both clinical sings and symptoms and 

clinical domain knowledge. Secondly, inference with belief rules using ER can 

generate a more informative conclusion which is a combined one. Thirdly, if 

necessary, the distributed diagnosis recommendations can be used to rank patients’ 

severity. Actually, a traditional rule-based system is a special case of a belief rule 

based system. 
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4.6.2. Further Discussions of the Feasibility 

From the comparison study conducted above between a belief rule-based CDSS and a 

traditional rule-based CDSS, we can draw a conclusion that it is logically feasible to 

model clinical domain knowledge using BRB and to employ the ER approach for 

clinical inference. Further analysis of the technical feasibility of employing RIMER 

for developing a computerised intelligent CDSS is discussed as follows. 

From a technical perspective, developing a computerised system requires that there 

should be appropriate computing technologies that can help to implement the system 

design. As for a computerised belief rule-based CDSS, it needs to consist of at least 

four fundamental components, namely user interfaces, database, knowledge base, and 

inference engine. Interfaces are used to acquire inputs, present intermediate or final 

conclusions and provide necessary explanations. Database is used to store and manage 

input information, transformed input values and kinds of reasoned results. Knowledge 

base consists of belief rules extracted from domain knowledge. Inference engine is 

built with the ER aggregation algorithm.  

In the study, the integrated development environment (IDE) available for developing 

the CDSS is Microsoft Visual Studio .NET 2003 (Beres, 2003). With the aid of IDE, 

we can not only design web-based system architecture, but also design and develop 

each system component easily with its visual designers and a range of programming 

languages. Firstly, friendly web-based interfaces can be easily designed and 

developed by ASP.NET technology. Secondly, a database built by different types of 

Data-Base Management Systems (DBMSs) such as Microsoft Access, Microsoft SQL 

Server, Oracle and so on can be easily connected to the core programs developed in 

the IDE through ADO.NET technology. Thirdly in terms of the knowledge base, we 
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can use a unique method to store and manipulate the BRB in a relational database, and 

it can help reduce the complexity of developing a rule compiler. Fourthly the 

inference engine can be implemented by programming with languages such as Visual 

Basic .NET, Visual C++ .NET, Visual C# .NET and so on that are seamlessly 

integrated in the IDE. 

To conclude, it is feasible to employ the RIMER methodology to develop a 

computerised intelligent CDSS. 

4.7. Summary 

This chapter describes how to employ the new belief rule inference methodology -

RIMER for developing a CDSS, together with a comparison study of belief rules and 

traditional rules in reasoning out the clinical risk result of a simulated patient with 

upper GI bleeding. From the comparison study, the following conclusions can be 

drawn. Firstly, a belief rule-based CDSS can handle different uncertainties in both 

clinical domain knowledge and clinical data. Secondly, a belief rule-based CDSS can 

provide a distributed diagnostic recommendation which is more informative than a 

traditional rule-based CDSS that do not take uncertainties into consideration. Thirdly, 

if necessary, a severity score or severity interval can be calculated to rank the 

seriousness of patients’ illness in a belief rule-based CDSS.  In conclusion, it is 

feasible to employ RIMER for developing a computerised intelligent CDSS. The 

design and development of an online intelligent belief rule-based group CDSS is 

presented in the next chapter. 
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Chapter 5  

Design and Development of  

An Online Belief Rule-based Group CDSS Prototype 

 
5.1. Introduction 

The preliminary feasibility study presented in Chapter 4 proves that it is feasible to 

develop a computerised intelligent belief rule-based CDSS. What follows the 

feasibility study is an implementation of an intelligent belief rule-based CDSS. This 

chapter describes the design and development of the belief rule-based CDSS 

prototype.  

A new CDSS framework which integrates automatic knowledge learning functionality 

and online group decision supporting functionality into knowledge-based CDSS has 

been proposed and employed in the prototype design and development. The 

developed CDSS prototype helps to bridge the research gaps in the CDSSs literature 

as described in Chapter 2. Main system features of the prototype CDSS are discussed 

as follows. Firstly, the prototype has two special functions, namely representation of 

uncertain clinical domain knowledge using belief rules, and inference with belief rule 

base (BRB) using the evidential reasoning (ER) approach. The functions enable the 

prototype to handle uncertainties existing in both clinical signs and symptoms, and 

clinical domain knowledge. Secondly, apart from providing individual diagnosis 

support, a group discussion platform and an ER-based group preferences aggregation 

mechanism are developed for supporting group clinical decision making. Thirdly, a 

BRB training module is developed and integrated into the prototype, and it enables 
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the system to automatically update clinical rules in the BRB by learning through 

clinical cases accumulated in clinical practice. Fourthly, the user interfaces 

implemented in the prototype are based on clinical guidelines, and the guideline-based 

information flow can help the system to be integrated in clinical work flow easily, 

while it can also facilitate system users adhering to clinical guidelines. Fifthly, the 

BRB is uniquely structured and stored in a relational database in the prototype. 

Manipulating BRB through a relational database facilitates not only the interaction 

between knowledge base and other core system components, but also the sharing of 

clinical domain knowledge between the prototype CDSS and other clinical application 

systems. 

The methodology used for developing the CDSS prototype is prototyping as discussed 

in Chapter 3. Accordingly, we developed the system in an iterative way. Initially, we 

developed and presented a preliminary prototype CDSS to experts in MRI based on 

our system analysis elicited from first several meetings with expert clinicians in MRI. 

Then we improved the prototype iteratively based on the system users – expert 

clinicians’ feedback of the prototype.  

The system development environment is Visual Studio 2003 .NET (Beres, 2003) on 

platform Windows XP Professional. The programming languages include C#, 

ASP.NET (Liberty and Hurwitz, 2002), and MATLAB 

(http://www.mathworks.com/products/matlab/). The Data-Base Management System 

(DBMS) used for design and development of back-end relational database is SQL 

Server 2000 (Waymire and Sawtell, 2000).  

The chapter is organised as follows. Section 5.2 introduces the system structure, 

where system architecture design and system component design are discussed 
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respectively in Section 5.2.1 and Section 5.2.2. Section 5.3 presents detailed design 

and development of core system components, where inference engine is discussed in 

Section 5.3.1, group decision supporting module in Section 5.3.2, training module in 

Section 5.3.3, web-based user interfaces in Section 5.3.4, database in Section 5.3.5, 

and knowledge base is discussed in Section 5.3.6. Conclusions about the prototype 

system are provided in Section 5.4. Finally Section 5.5 summarises the chapter. 

5.2. System Structure 

5.2.1. Architecture Design 

World Wide Web (WWW) technologies (Berners-Lee et al., 1994) have transformed 

the design, development, implementation and deployment of decision support systems 

(DSSs), and great progress has been made in web-based DSSs in the past decade 

(Bhargava et al., 2007). Taking advantages of web technologies, a web-based DSS 

can link multiple decision makers who might be separated in space or time for online 

group discussion or meeting, and can deliver the suggestions or recommendations 

generated from the system to a much broader audience of decision makers who is 

geographically separated (Bhargava et al., 2007). As to web-based DSSs in clinical 

area, web-based CDSSs have advantages in providing easy accessibility for clinicians 

in geographically different places and easy dissemination of clinical domain 

knowledge and patients’ clinical data among different clinical application systems. In 

the research, through regular meetings with expert clinicians in MRI, we know that 

frontier clinicians have a strong need of an online intelligent CDSS which can help 

them to act in accordance with practice guidelines in their daily clinical work flow. 

Motivated by the above facts, we adopt a web-based three-layer client-server 

architecture (Sommerville, 2007) in the prototype design. 
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In a client-server architecture, an application is modelled as a set of services that are 

provided by servers and used by a set of clients (Orfali and Harkey, 1998). In this 

architecture, clients need to be aware of the servers that are available but usually do 

not know the existence of other clients, and clients and servers are separate processes. 

In design of client-server systems, logical structure of the application that is being 

developed should be reflected in the system architecture (Sommerville, 2007).  

Usually, an application can be structured into three layers: the presentation layer 

which is concerned with presenting information to the user and with all user 

interaction; the application processing layer which is concerned with implementing 

the logic of the application; and the data management layer which is concerned with 

all database operations. Figure 5.1 illustrates these three layers. 

 

Figure 5.1: Application Layers (Sommerville, 2007) 

In the three-layer client-server architecture, the presentation layer, the application 

processing layer and the data management layer are logically separate processes that 

execute on different processors (Sommerville, 2007). Generally, the three-layer client-

server architecture is composed of three logical parts: system user’s own computer 

with a web browser that can display system’s user interfaces is the presentation layer; 

a web server for providing all services related to the application being developed is 

the application processing layer; and a back-end database for providing data 

Presentation Layer

Application Processing Layer

Data Management Layer
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management services is the data layer (Sommerville, 2007). The three-layer 

architecture can be illustrated in Figure 5-2. 

 

Figure 5-2: Three-Layer Architecture 

The prototype CDSS is designed on the basis of the three-layer architecture. In the 

prototype, system users can access the system through web-based user interfaces, 

application logic of the system reside in the middle layer which is usually 

implemented in a web server, and data access technologies such as ADO.NET 

(Hamilton and MacDonald, 2003) can be used by system components located in the 

web server layer to communicate with the data management layer, which is usually 

implemented by a back-end database server directly.  

5.2.2. Component Design 

As for the system components implemented in the three-layer architecture, there 

should be generally at least four system components in a web-based CDSS based on 

the general structure of knowledge-based CDSSs as shown in Figure 2-1 of Chapter 2. 
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They include friendly web-based user interfaces, inference engine, knowledge base, 

and database. Both inputs and outputs of the system can be stored in the database.  

To address the research gaps identified from the CDSS literature discussed in Chapter 

2, the target belief rule-based CDSS should possess at least three capabilities. The first 

one is the capability of representing and reasoning with uncertain clinical domain 

knowledge and clinical data. The second one is the capability of providing group 

decision support. The third one is training or fine-tuning BRB by learning through 

accumulated clinical cases.  

Thus, a new CDSS framework which integrates automatic knowledge learning 

functionality and online group decision supporting functionality into knowledge-

based CDSS is proposed and employed for the prototype design and development. In 

the new knowledge-based CDSS framework, core components of the prototype 

system should include inference engine, group decision supporting module, 

knowledge base training module, database, knowledge base, and web-based user 

interfaces.  

 Inference engine is for matching the system users’ clinical inputs with clinical 

rules in the knowledge base to generate automatic diagnostic recommendations.  

 Group decision supporting module provides two important system functionalities. 

The first one is providing a discussion forum for group clinicians from 

geographically different places to hold online clinical group discussions and offer 

individual diagnosis preferences. The second one is providing an ER based 

diagnosis preferences aggregation mechanism to combine group diagnosis 

preferences.  
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 Knowledge base training module is for training BRB by optimizing the knowledge 

representing parameters of the BRB through accumulated clinical cases.  

 Database is used for storage and retrieval of system’s input data, some 

intermediate data, and system output data.  

 Knowledge base is for maintaining all clinical rules used in the system, and it is 

modelled as BRB in the prototype. Specifically, BRB is uniquely designed to be 

stored and manipulated in the back-end relational database in the prototype.  

 Finally, friendly web-based user interfaces are for acquiring system users’ inputs 

and displaying the system’s outputs. 

The following Figure 5-3 illustrates the actual implementation of the above mentioned 

core system components in the prototype. 
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Figure 5-3: Core System Components Implemented in Three-Layer Web 

Architecture 

The system structure as shown in Figure 5-3 has three characteristics. Firstly, thanks 

to advanced computing technologies, both inference engine and training module can 

be developed independently of system environment or application domain, so that 

they can be portable and adaptable to various application areas and different system 

development or running environments. Secondly, domain specific knowledge 

modelled as BRB is structured and stored in back-end relational database, which is the 

same as or separate from the database used for various system data and patients’ data 

storage. Thanks to mature technologies of today’s relational DBMS in data analysis 

and communication with main systems developed with different programming 

languages, structuring clinical domain BRB in a relational database can facilitate the 

sharing of domain knowledge, and the interactions between the knowledge base and 
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other system components including inference engine, training module, and group 

decision supporting module. Thirdly, the core algorithm of inference engine and 

group decision supporting module is the evidential reasoning (ER) approach, therefore 

the computerised ER model which is implemented in inference engine can be reused 

by the group decision supporting module for group diagnosis preferences aggregation.  

The design and development of above discussed core system components in the 

prototype are presented in the following Section. 

5.3. System Components 

In this Section, we discuss components implemented in web server layer one by one 

first, and then we discuss components implemented in the client layer and back-end 

layer. 

5.3.1. Inference Engine 

The purpose of inference engine in a knowledge-based CDSS is trying to generate a 

reasonable clinical decision or recommendation by matching system’s input data with 

domain specific knowledge modelled in the knowledge base. As such, an inference 

process is an interaction between system’s inputs and the knowledge base, and the 

interaction way is determined by the employed inference algorithm. 

The inference engine in the belief rule-based CDSS prototype is implemented using 

the recursive ER algorithm as described in the RIMER methodology (Yang et al., 

2006). The ER based inference engine is actually a non-linear function between a set 

of parameters and another set of parameters. The former set of parameters include all 

belief rules’ activation weights and consequent belief degrees in one BRB, where rule 
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activation weights are determined by rule weights, antecedent attribute weights, and 

matching degrees between system’s inputs and rules’ antecedents. The latter set of 

parameters are generated by the non-linear function provided by the ER algorithm, 

and they represent final belief degrees associated to all possible consequents in the 

BRB after combining all belief rules activated by the system inputs. The recursive ER 

algorithm implemented in the inference engine can be described by the flowchart in 

Figure 5-4. 

 

Figure 5-4: The Recursive ER Algorithm (Yang et al., 2006) 
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There are two other fundamental sub-components that were developed in parallel in 

the implementation of the inference engine, apart from the core computerised ER 

algorithm as described in Figure 5-4. The first sub-component of the inference engine 

is input transformation sub-component, and the second one is rule matching sub-

component.  

 Input transformation sub-component 

As for the input transformation sub-component, the BRB uses sets of referential 

values to describe antecedent clinical signs and symptoms in its clinical rules, and the 

input clinical data about one clinical sign or symptom is a value in qualitative or 

quantitative or a mixed nature. So there is a demand for transforming the input clinical 

data to sets of referential values with belief degrees so that the transformed data can 

be used by the inference engine to do matching with clinical rules in the BRB. 

Accordingly, the purpose of the input transformation sub-component is to transform 

qualitative or quantitative or mixed clinical inputs to a set of data that can well 

represent uncertainties and can be used by the inference engine to do inference with 

the BRB. The techniques used for the input clinical data transformation are rule-based 

and can be found in Yang (2001). The details of input transformation have been 

described in Section 4.5.2.1 of Chapter 4. 

 Rule matching sub-component 

In terms of the rule matching sub-component, its purpose is to tell the inference 

engine which rules in the BRB are activated and to what degrees by doing matching 

between transformed input clinical data and belief rules in the BRB. As can be seen 

from the ER algorithm outlined in Figure 5-4, if we want to make the core inference 

algorithm portable and sharable for different kinds of domain application with 
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different input data and different BRB, we will need to separate it from calculating 

rules’ activation weights and updated consequent belief degrees, so that it can be 

freely called by the inference engine independent of clinical domain BRB and input 

clinical data. For this purpose, the rule matching sub-component is designed and 

developed to complete the following tasks. Firstly, do matching recognition between 

the transformed system inputs and clinical rules in the BRB. Secondly, calculate 

activation weights for all rules using equation (3-4) and updated consequent belief 

degrees using equation (3-5) as described in Chapter 3 based on system inputs. Finally, 

feed the rule activation weights and updated consequent belief degrees into the core 

inference algorithm. When the computerised inference algorithm get the data from the 

rule matching sub-component, all activated rules will be aggregated by the ER 

algorithm and a combined belief degree set assigned to the consequent set can be 

automatically generated. 

The sub-component structure of the inference engine implemented in the prototype is 

sketched in Figure 5-5, where the core ER algorithm is implemented as dynamic link 

library (DLL) by programming with Visual Basic .NET, and the other two sub-

components are implemented by programming with C#. The input to the inference 

engine is clinical data about a patient, and the output of the inference engine is an 

inferred diagnosis recommendation for the patient based on the input clinical data and 

the embedded BRB in the system. 

 

Figure 5-5: Sub-Component Structure of Inference Engine 
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5.3.2. Group Decision Supporting Module 

The group decision supporting module in the prototype is designed to serve two aims.  

 One is for providing an online discussion forum for group clinicians or 

consultants to offer different diagnosis opinions and shape individual diagnosis 

preferences.  

 The other one is for aggregating all group consultants’ diagnosis preferences via 

ER to arrive at a group combined diagnosis recommendation for target patient.  

Moreover, to facilitate online group consultants’ discussion, both the domain 

knowledge stored inside the system and those Internet-based domain knowledge 

resources are designed to be integrated seamlessly with the group module. Thus the 

group consultation participators can have access to the domain specific clinical rules 

stored in the system together with the Internet-based resources such as 

(http://www.bestbets.org/) which can aid the consultation. Details of the implemented 

group module are presented as follows. 

The way that the group decision supporting module works is similar to the real life 

group consultation in clinical practice. In real life clinical group consultation, there is 

usually a group facilitator who helps to invite other consultants to participate in the 

group consultation and facilitates the whole group discussion process, while the group 

facilitator should have knowledge about all participated group consultants’ expertise 

in advance.  

Therefore we designed two types of system user roles in the prototype system, namely 

group facilitator and consultant, which can login to the group decision supporting 



 134

module and use the functionalities that the module provides. What follows are 

discussion about the above mentioned two system user roles.  

 Group facilitator role 

The group facilitator role is for initializing and facilitating an online group 

consultation. The system user acting as a group facilitator should inform participated 

consultants of key information about target patient before the group consultation, so 

that a participated consultant can use the key information to identify target 

consultation group. The main user rights assigned to the group facilitator role include:  

(a) inviting group consultants to participate in the group consultation;  

(b) having access to target patient’s data and various domain knowledge resources;  

(c) facilitating the group consultation;  

(d) assigning weights to participated consultants based on their expertise;   

(e) calling the ER-based aggregation mechanism to combine all consultants’ 

diagnosis  preferences.  

 Consultant role 

The consultant role is for participating in a specific group consultation and providing 

individual diagnosis preference for target patient. The main user rights assigned to the 

consultant role include:  

(a) joining the online group consultation about one specific patient;  

(b) having access to target patient’s data and various domain knowledge resources;   
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(c) providing individual diagnosis preference.  

The working flow of each user role acting in an online group consultation supported 

by the group module is illustrated in Figure 5-6.  

 

Figure 5-6: Working Flow in Online Group Clinical Consultation 
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The discussion platform implemented in the group module is implemented by 

programming with ASP.NET and C#. The web-based user interfaces of the group 

module can guide system users, who act as different user roles, to different work 

flows in the process of holding an online group consultation and arriving at a final 

aggregated diagnosis recommendation. 

5.3.3. Training Module  

Assuming there is a BRB containing L belief rules, T antecedent attributes, and N 

possible consequents, the parameters of the BRB including rule weights 

( )Lkk ,,1L=θ , antecedent attribute weights ( )Tii ,,1L=δ , and consequent belief 

degrees ( )LkNjjk ,,1;,,1 LL ==β  can be originally given by domain experts or 

generated randomly by systems. However, it is difficult to accurately determine rule 

weights, antecedent attribute weights, and consequent belief degrees entirely 

subjectively or randomly (Yang et al., 2007). As such, there is a need to fine-tune or 

train belief rules originally constructed in a belief rule-based system by accumulated 

historical data. The training module implemented in the prototype CDSS serves the 

purpose of training the BRB by learning through accumulated clinical cases. 

The core of the training module is a BRB optimization model. We used MATLAB to 

develop and implement the BRB training model. Assume there are M set of training 

samples, the mechanism of the training model can be described by Figure 5-7. 
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Figure 5-7: Mechanism of BRB Training Model 
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The implemented sub-component structure of the training module is described in 

Figure 5-8, where the BRB training model is developed and implemented in 

MATLAB and packaged as component object model (COM) that can be integrated 

with the parameter transferring sub-component developed in Visual Studio 2003 .NET 

seamlessly. 

 

Figure 5-8: Sub-Component Structure of Training Module 
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5.3.4. User Interfaces 

The component implemented in the prototype which concerns the interaction between 

users and the system is web-based user interfaces.  

As identified by CDSSs researchers Sittig et al. (2008), the human-computer interface 

is one of top challenges in computerised clinical decision support. Human/computer 

interface is the main point of contact between the user and the computer system, 

therefore the interface should unobtrusively, but effectively, remind clinicians of 

things they have truly overlooked and put key pieces of data and knowledge 

seamlessly into the context of the work flow or clinical decision making process, so 

that the right clinical decisions can be made in the first place (Berner and Moss, 2005).  

Clinical guidelines, as a format of clinical domain knowledge, are increasingly used to 

improve the quality of care by supporting clinical decision making in recent years. 

Guideline-based CDSSs have the potential to provide recommendations aimed at each 

specific patient (Peleg et al., 2003), while conventional text-based guideline can only 

present population-based recommendations which are aimed at a population with a 

specific disease. Studies (Grimshaw and Russell, 1993, Johnston et al., 1994, Lobach 

and Hammond, 1994, Tierney et al., 1995) have shown that computer-based CDSSs 

can improve clinicians’ compliance with clinical guidelines and patient outcomes  

when developed to provide patient-specific assistances in decision making and 

integrated with clinical work flow. Development of guideline-based CDSSs has thus 

been proposed as a strategy to promote the implementation of guidelines (Field and 

Lohr, 1992, McDonald and Overhage, 1994). 
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Thus, in the design of user interfaces for the prototype CDSS, we consider two factors. 

Firstly, in terms of interfaces for individual diagnosis, the information flow embedded 

in the user interfaces should be the same as the related clinical guideline that 

clinicians use daily in their practice, so that the CDSS can help clinicians to adhere to 

the guideline. Secondly, the prototype CDSS should have the capability of being 

integrated into the clinical work flow seamlessly, so that a right clinical decision can 

be made in the right place at the right time. By using the prototyping methodology to 

develop the CDSS prototype, we developed and improved the user interfaces 

iteratively based on frontier clinicians’ feedback about the prototype.  

In the following, the information flow of all the user interfaces implemented in the 

system will be discussed, and for illustration, the user interfaces for individual 

diagnosis will be described using diagnosis of upper Gastrointestinal (GI) bleed as an 

example. 

 Information flow of user interfaces 

The information flow of the implemented user interfaces can be sketched in Figure 5-

9 based on the system’s main functionalities, which include individual diagnosis, 

group consultation, and automatic knowledge updating. 
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Figure 5-9: User Interface Information Flow Diagram 

Note that there are different flows in the user interfaces as shown in Figure 5-9 due to 

different functionalities that the system can provide. The system users should specify 

their roles when they login to the system so as to navigate through different 

information flow. The system user roles include: (1) clinician for individual diagnosis; 

(2) clinicians for group consultation including group facilitator and consultant; and (3) 

clinician for updating clinical rules in the BRB. For illustration, user interfaces for 

individual diagnosis are described as follows.  

 User interfaces for individual diagnosis 

Login

Individual 
diagnosis 

Group 
consultation

Knowledge 
updating 

Diagnosis of 
a disease 

Inputting 
patient’s data 

Inferred diagnosis 
suggestion 

Group 
facilitator 

Group 
consultant 

Searching for target 
patient & constructing

consultation group 

Searching for target 
group  

Inviting group 
consultants 

Participating in consultancy 
& providing preference 

Initializing & facilitating consultation 

Weighting consultants

Selecting target BRB 
for training 

Trained BRB

Combined group diagnosis recommendation 

Calling the group preferences 
aggregation tool 



 142

Interfaces for individual diagnosis of one disease were designed based on the 

guideline to facilitate system users to adhere to clinical guidelines. Take diagnosis of 

upper GI bleed as an example, main user interfaces for diagnosis and treatment of 

upper GI bleed can be illustrated as in Figure 5-10. 

As can be seen from the interfaces in Figure 5-10, a clinical work flow for diagnosis 

and management of patients with upper GI bleed in ED is provided in the main 

diagnosis interface as shown in Figure 5-10(B) after a clinician logs into the system 

through the login interface as shown in Figure 5-10(A). There are several links in the 

main diagnosis interface linking to different web forms for acquiring different types 

of patients’ data. For example, ‘Please input patient’s personal information here’ in 

the main diagnosis interface is linked to the web form as shown by Figure 5-10(C) for 

acquiring a patient’s personal data. Moreover, the interface can guide the clinician to 

go back to the main diagnosis interface when necessary data has been input. Then the 

clinician can proceed to the next diagnosis or treatment step as indicated by the 

clinical work flow in the main interface. The interface in Figure 5-10(D) is for 

acquiring a patient’s necessary clinical data for risk assessment, and from the interface, 

the inference engine can be triggered automatically to do inference with the input 

clinical data, and then another interface as shown by Figure 5-10(E) for showing the 

inferred result of the patient can be displayed automatically. Note that all these 

interfaces designed for acquiring patients’ data or displaying inferred results have 

‘Back’ links which can guide clinicians back to the main diagnosis interface and to 

proceed to the next step. 



 143

                        
(A)        (B)        (C) 
 

                                 
(D)          (E) 

Figure 5-10: Main User Interfaces for Individual Diagnosis of Upper GI Bleed 
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About the user interfaces designed for group consultation and knowledge updating in 

the system, readers can refer to a brief user manual in Appendix A. 

Thus far we have presented all core system components implemented in the web 

server layer and client layer. All these components can not work independently from 

data layer, which is used to store and manage patients’ clinical data, system data, and 

clinical domain knowledge used in the prototype CDSS. What follows is a discussion 

about the database and the knowledge base implemented in the back-end relational 

Data-Base Management System (DBMS). 

5.3.5. Database 

Generally, there are three phases to the database development process, namely logical 

design, physical implementation, and application development (Hernandez, 2003).  

Logical design involves determining and defining the structure of the database, which 

includes tables and their fields, primary and foreign keys of tables, table relationships, 

and so on. Physical implementation involves using proper DBMS software to 

implement the database structure we created in logical design phase. Application 

development involves creating an application that allows system users to interact with 

the data stored in the database. 

As the main application programs developed in the prototype CDSS have been 

discussed from Section 5.3.1 to Section 5.3.4, we will briefly describe logical design 

and physical implementation of the database in this Section. 

 Logical design 
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In designing the database, we used the database design method introduced by 

Hernandez (2003). Using the design method, there are seven steps involved in 

designing the database, namely (1) identify purpose of the database; (2) analyze the 

data used in clinical environment, and identify Subjects that the database needs to 

keep track of for supporting clinical decision making and Characteristics of those 

subjects; (3) create the data structures, and this step involves establishing tables based 

on identified subjects and associating each table with fields that represent 

characteristics of the table’s subject; (4) determine table relationships; (5) define rules 

to set constraints to the data stored in the database; (6) establish views to facilitate 

manipulation of data stored in the database; and (7) review data integrity of the 

designed database structure.  

For clarification, here we give a brief discussion of terms used in this Section, and the 

term definition is based on Hernandez (2003). Subjects represent objects such as 

persons, places, or events that occur at a given point in time. Characteristics represent 

details of one subject. Take the subject of patient as an example, the patient’s first 

name, last name, age, gender and so on are characteristics of one patient. Tables are 

the chief structures in a relational database, and each table represents a single, specific 

subject. Fields are the structures that actually store data in the database and a field 

represents a characteristic of the subject represented by the table to which it belongs. 

A relationship exists between two tables if we can in some way associate the records 

of the first table with those of the second. Here a record represents a unique instance 

of the subject of a table. A view is a virtual table composed of fields from one or more 

tables in the database. 
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In the following discussion, we will not show details of the whole logical design 

process, we will however briefly discuss first the purpose of the database, and then the 

subjects together with their characteristics that we identified by analyzing data 

requirement for the prototype CDSS, and finally the tables we created for the database 

according to those identified subjects and characteristics. 

(1) Purpose of the database 

The purpose of back-end database in a CDSS is for the maintenance of various data 

used by or generated from system components reside in the server layer or client layer 

as shown in Figure 5-3. For example, inference engine needs patients’ clinical data 

and clinical rules in the BRB for reasoning about a patient’s clinical risk level or 

disease status, while group decision supporting module needs not only patients’ data, 

but also group consultants’ data to help a group facilitator organise a group 

consultation.    

(2) Identified subjects and characteristics 

To identify subjects and their characteristics that the database need to keep track of, 

we need to analyze the data requirement for the prototype CDSS first.  

As for knowledge modelled as BRB in the system, logical design and physical 

implementation of BRB in a relational database will be discussed in Section 5.3.6. In 

this Section, we focus on discussion about other data used by or generated from the 

system. 

Besides domain knowledge modelled as BRB, other necessary data used by or 

generated from the prototype can be classified into three categories: (a) patients’ data, 

(b) doctors’ data, and (c) data generated from group consultation which includes 
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group discussion content, group consultants’ individual diagnosis preferences, and 

group combined diagnosis suggestion for one patient. 

(i) Subjects and characteristics in patients’ data 

As for a patient’s data stored in the prototype, it should contain (a) the patient’s key 

personal data, (b) the patient’s clinical data including his/her clinical signs or 

symptoms, (c) the clinical guideline used by doctors for his/her diagnosis, and (d) 

system generated diagnosis recommendation about the patient’s disease.  

We first identified “Patient” as one subject, and its characteristics include (1) key 

personal information; (2) clinical data; (3) clinical guideline used for his/her diagnosis; 

and (4) diagnosis recommendation generated by the system or the doctor. We then 

further identified subjects from these characteristics which have their own 

characteristics. Thus we treat characteristics of the subject “Patient” including 

“Clinical sign or symptom”, “Clinical guideline”, and “Diagnosis recommendation” 

as subjects. Furthermore, we take “Severity level” which is a characteristic of 

“Clinical sign or symptom” and “Diagnosis recommendation” as a separated subject. 

Identified subjects and characteristics from patients’ data can be listed as in Table 5-1.   

Table 5-1: Identified Subjects and Characteristics from Patients’ Data  
Subjects  Characteristics  
Patient (1) Key personal information including Medical Record No. 

(MRN), last name, first name, gender, age, etc. 
(2) Clinical data including his/her clinical signs or symptoms
(3) Clinical guideline used for his/her diagnosis 
(4) Diagnosis recommendation generated by the system 

Clinical sign or symptom Name, severity level 
Clinical guideline Name  
Diagnosis 
recommendation 

Name, severity level 

Severity level Name, associated clinical sign/symptom or diagnosis 
recommendation 
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(ii) Subjects and characteristics in doctors’ data 

In terms of one doctor’s data stored in the system, firstly, the doctor should be a 

system user of the system with username and password; secondly, the doctor should 

have his/her user role for each login; and thirdly, the doctor should have his/her 

expertise domain stored in the system.  

We first identified “System user” as one subject, and its characteristics include (1) 

user name; (2) password; (3) first name; (4) last name; (5) associated user roles; and 

(6) expertise domains. Since characteristics of “Associated user roles” and “Expertise 

domains” have their own attributes, we then take these two characteristics as separate 

subjects. 

Identified subjects and characteristics from doctors’ data can be listed as in Table 5-2. 

Table 5-2: Identified Subjects and Characteristics from Doctors’ Data 
Subjects  Characteristics 
System user (1) User name 

(2) Password 
(3) First name 
(4) Last name 
(5) Expertise domains 
(6) Associated user roles 

User role  Name, user right 
Doctor expertise (1) Associated doctor 

(2) Expertise name 
(3) Rank order compared to the doctor’s other expertises  

(iii) Subjects and characteristics in data generated from group consultation 

As for data generated from a group consultation, it is mainly include (a) discussion 

content and individual diagnosis preferences provided by group consultants; and (b) 

group combined diagnosis suggestion for the target patient.  
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Identified subjects and characteristics from group consultation data can be listed as in 

Table 5-3, where the subjects of “Group consultant”, “Group discussion content”, 

“Individual diagnosis preference”, and “Combined diagnosis preference” are 

characteristics of subject “Facilitated consultation group”. The characteristic of 

“Belief degree provided by the consultant” associated to the subject “Individual 

diagnosis preference” represents the belief degree assigned by one consultant to 

his/her diagnosis preference. For the role of this belief degree played in the group 

preferences aggregation process, readers can refer to Section 3.2.2 for how to use the 

evidential reasoning (ER) approach to aggregate group diagnosis preferences with 

belief degrees. The characteristic of “Aggregated belief degree” associated to the 

subject “Combined diagnosis preference” represents the belief degree assigned to the 

final diagnosis preference after aggregating all group consultants’ diagnosis 

preferences.   

Table 5-3: Identified Subjects and Characteristics from Group Consultation 
Data 

Subjects  Characteristics 

Facilitated consultation 
group 

(1) Group facilitator 
(2) Group consultants 
(3) Consulted patient 
(4) Group discussion content 
(5) Individual diagnosis preferences provided by group 

consultants 
(6) Aggregated diagnosis preference  

Group consultant Name, weight 
Group discussion content (1) Associated consultation group  

(2) Associated consultant 
(3) Discussion content 

Individual diagnosis 
preference 

(1) Associated consultation group 
(2) Associated consultant 
(3) Diagnosis preference 
(4) Belief degree provided by the associated consultant 

Combined diagnosis 
preference 

(1) Associated consultation group 
(2) Aggregated diagnosis preference 
(3) Aggregated belief degree 

(3) Created tables 



 150

After identifying subjects and characteristics from data used by or generated form the 

system, we designed tables to represent those identified subjects.  

(i) Tables for patients’ data 

In designing tables to represent subjects in patients’ data, we used table PATIENTS to 

represent subject “Patient” with key personal information, table DIAGNOSISITEMS to 

represent subjects of “Clinical sign or symptom” and “Diagnosis recommendation”, 

table DISEASEDIAGNOSISGUIDELINES to represent subject “Clinical guideline”. To 

make distinction among records of “Clinical sign or symptom” and “Diagnosis 

recommendation” or other types of clinical data, we used table 

DIAGNOSISITEMCATEGORIES to represent categories of clinical data.  

To represent severity level related to one patient’s clinical sign or symptom or 

diagnosis recommendation, we used table DIAGNOSISITEMEVALUATIONGRADES to 

represent severity level which is used to describe clinical signs or symptoms, clinical 

risk or disease. For table linkage, we used table 

PATIENTDISEASEDIAGNOSISGUIDELINES to link tables of PATIENTS and 

DISEASEDIAGNOSISGUIDELINES, and we used table PATIENTDIAGNOSISITEMS to 

link tables of PATIENTS and DIAGNOSISITEMS.  

In a BRB, different severity levels associated to one antecedent clinical sign or 

symptom may be used as a set of referential values for it. Thus to capture matching 

degree of a doctor’s judgement about one patient’s clinical sign or symptom to 

different severity levels associated to the clinical sign or symptom, we used field 

DIAGNOSISITEMBELIEFDEGREE associated to table PATIENTDIAGNOSISITEMS to capture 

these matching degrees. If severity levels are not applicable to one clinical sign or 
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symptom, the field of DIAGNOSISITEMBELIEFDEGREE in table PATIENTDIAGNOSISITEMS 

can be used to capture one doctor’s belief degree in his/her judgement about the 

clinical sign or symptom. 

To represent belief degrees in the system’s recommended clinical diagnosis as 

described in equation (3-6) of Chapter 3, the field of DIAGNOSISITEMBELIEFDEGREE in table 

PATIENTDIAGNOSISITEMS can also be used to capture these belief degrees. 

The created tables together with their fields for representing patients’ data can be 

listed as in Table 5-4.  

Note that due to space restrictions, in the following discussion, we can not show all of 

the fields for a created table, we will however show the fields that are most 

representative of characteristics belonging to the subject that the table represents.   

Table 5-4: Tables for Representing Patients’ Data 
Tables  Fields 
Patients PatientID, PatientFirstName, PatientMiddleName, 

PatientLastName, PatientGender, PatientAge 
DiagnosisItemCategories  DiagnosisItemCategoryName, 

DiagnosisItemCategoryID, 
DiagnosisItemCategoryDescription 

DiagnosisItems DiagnosisItemCategoryID, DiagnosisItemName, 
DiagnosisItemID, DiagnosisItemDescription  

DiagnosisItemEvaluationGrades DiagnosisItemID, 
DiagnosisItemEvaluationGradeName, 
DiagnosisItemEvaluationGradeID, 
DiagnosisItemEvaluationGradeDescription 

DiseaseDiagnosisGuidelines DiseaseDiagnosisGuidelineName, 
DiseaseDiagnosisGuidelineID, 
DiseaseDiagnosisGuidelineDescription 

PatientDiagnosisItems PatientID, DiagnosisItemID, 
PatientDiagnosisItemID, 
DiagnosisItemEvaluationGradeID, 
DiagnosisItemBeliefDegree 

PatientDiseaseDiagnosisGuidelines PatientID, DiseaseDiagnosisGuidelineID, 
PatientDiseaseDiagnosisGuidelineID 

(ii) Tables for doctors’ and group consultation data 
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Based on the identified subjects from doctors’ and group consultation data, we used 

table USERS to represent subject “System users” and “Group consultant”, table ROLES 

to represent subject “User role”, table DOCTOREXPERTISES to represent subject 

“Doctor expertise”, table  FACILITATEDGROUPS to represent subject “Facilitated 

consultation group”, table GROUPDISCUSSIONS to represent subject “Group 

discussion content”, table  GROUPCONSULTANTDIAGNOSES to represent subject 

“Individual diagnosis preference”, and table GROUPFINALDIAGNOSES to represent 

subject “Combined diagnosis preference”. 

Since the characteristic “Weight” of subject “Group consultant” is assigned by a 

group facilitator before he/she calls the group preferences aggregation tool to combine 

all group consultants’ diagnosis preferences, we can not design table USERS with the 

field WEIGHT. However, we used table GROUPCONSULTANTWEIGHTS to represent the 

weights of group consultants in one consultation group, and this table has 

relationships with tables of USERS and FACILITATEDGROUPS.  

For table linkage, we used table USERROLES to link table USERS and ROLES.  

The created tables together with their fields for representing system users’ and group 

consultation data can be listed as in Table 5-5. The field of BELIEFDEGREE associated to 

table GROUPCONSULTANTDIAGNOSES is for representing belief degree in one 

consultant’s judgement about one patient’s clinical status, and the field 

DIAGNOSISITEMBELIEFDEGREE associated to table GROUPFINALDIAGNOSES is for 

representing belief degree in one diagnosis preference after aggregating all group 

consultants’ diagnosis preferences.  
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Table 5-5: Table for Representing Data about System Users and Group 
Consultation 
Tables  Fields 
Users UserID, FirstName, LastName, UserName, 

UserPassword 
Roles  RoleID, RoleDescription  
UserRoles UserID, RoleID 
DoctorExpertises DoctorID(UserID), DiagnosisItemID, ExpertiseOrder 
FacilitatedGroups GroupID, GroupDesc, FacilitatorID(UserID), 

PatientID 
GroupDiscussions GroupDiscussionID, GroupID, 

ConsulatntID(UserID), DiscussionContent 
GroupConsultantDiagnoses GroupID, ConsultantID(UserID), 

DiagnosisItemEvaluationGradeID, BeliefDegree 
GroupFinalDiagnoses GroupID, DiagnosisItemEvaluationGradeID, 

DiagnosisItemBeliefDegree 
GroupConsultantWeights GroupID, ConsultantID(UserID), ConsultantWeight 

 Note that we used different field names for the field of USERID in different tables. For 

example, in table DOCTOREXPERTISES, we used field DOCTORID to represent the 

characteristic of “Associated doctor”, while DOCTORID is actually the field USERID used 

in table USERS for identifying different user records stored in the database. We added 

USERID in parentheses to the field which functions the same but with different name in 

different table as shown in Table 5-5. 

 Physical implementation 

For physical implementation of the designed tables as described above, we choose 

Microsoft SQL Server 2000 as the DBMS software. For illustration, the diagrams 

drawn by SQL Server 2000 for those implemented tables can be shown in Figure 5-11 

and Figure 5-12. 
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Figure 5-11: Diagram of Tables Representing Patients’ Data 



 155

 

Figure 5-12: Diagram of Tables Representing System Users and Group 

Consultation Data 

Now the logical design and physical implementation of relational models for various 

data except BRB used in the prototype have been discussed. The following Section 

5.3.6 will present brief logical design and physical implementation of BRB in a 

relational database. 
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5.3.6. Knowledge Base 

The knowledge base constructed in the prototype CDSS is based on belief rules. 

Traditionally, a knowledge base in a rule-based system is constructed separately from 

the back-end database which is used for storing system inputs and outputs. For 

example, some logic programming language such as Prolog (Ivan, 2001) can be 

applied specifically for rule representation and processing in a rule-based system, and 

in such a system, knowledge base is implemented as a part of the main program of the 

system and is separated from the fact data. EXtensible Markup Language (XML) has 

been recently proposed as a carrier for business rule representation, interchange, and 

reasoning in Web-based applications because of its easy readability and platform 

independent attributes (HTTP://RULEML.ORG/). 

However, none of the above existent rule base implementation methods is ideal for 

belief rule-based systems. As to using a specific logic programming language, it will 

add complexity to system development if we use a specific logic programming 

language to represent and manipulate belief rules, because the existent logic 

programming languages can neither well represent belief rules nor provide ER based 

inference for those rules. As to XML technology,  it has advantages in representing 

business rules because XML can provide a declarative format of rules which can be 

read by both rule users and computers, but XML is not a widely used technology for 

rule representation and inference though it has been recommended as a standard for 

data storage for more than one decade. Compared to relational database, firstly, XML 

syntax is too verbose for rule owners to design, and different rule owner may have 

different XML design; secondly, XML-based rules will add complexity to system 

developers to develop an inference engine to process XML-based rules since there is 
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no existent standard XML processor to do XML documents processing for 

applications. Readers can refer to (http://www.w3.org/XML/) for details of XML.   

In the research, we propose to store and manage BRB by relational database. We will 

discuss the knowledge base from perspectives of logical design and physical 

implementation. 

 Logical design  

To design a relational model for a BRB containing L belief rules as described by 

equation (3-2) in Chapter 3, as usual, we analyzed BRB first to identify necessary 

subjects and characteristics that the knowledge base needs to keep track of, and then 

based on the identified subjects and characteristics, we designed table structures. 

(i) Subjects and characteristics identified from BRB 

Based on the description of a belief rule Rk as described by equation (3-2) in Chapter 

3, the relationship between BRB, belief rule, rule antecedent, and rule consequent can 

be illustrated with Figure 5-13. For details of the symbols used in the figure, readers 

can refer to Section 3.2.1 of Chapter 3. 

 
Figure 5-13: Relationship between BRB, Belief Rule, Rule Antecedent, and Rule 

Consequent 

Contains Contains

Contains
Belief rules (with rule weight ( )Lkk ,,1L=θ )

Rule antecedent  
(with antecedent attribute referential value

& weight ( )LkTi kki ,,1; , ,1 KK ==δ ) 

Rule consequent  
(with consequent attribute referential value 
& belief degree ( )LkNjjk ,,1; , ,1 KK ==β )

BRB (with domain name)
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Usually the knowledge representation parameters in a BRB would change after 

training. The trained set of knowledge representation parameters should be stored in 

the system for domain experts’ check and approval. Furthermore, to keep track of the 

training history, we need to store the trained knowledge representation parameters 

after each training round in the database.  

The subjects and characteristics that can be identified from a BRB and its training are 

shown in Table 5-6, where subjects of “Belief rule” and “Training rounds” are 

characteristics of subject “BRB”, subjects of “Rule antecedent” and “Rule 

consequent” are characteristics of subject “Belief rule”, and subjects of “Trained rule 

weights”, “Trained antecedent weights”, and “Trained belief degrees” are seen as 

characteristics of subject “Training round”.  
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Table 5-6: Identified Subjects and Characteristics from a BRB and Training 
Subjects Characteristics 
BRB (1) Domain name 

(2) Order in the inference process 
(3) Belief rules 
(4) Training rounds 

Belief rule (1) Associated BRB  
(2) Rule number 
(3) Rule weight 
(4) Rule antecedents 
(5) Rule consequents 

Rule antecedent (1) Associated belief rule  
(2) Antecedent attribute referential value 
(3) Attribute weight 

Rule consequent (1) Associated belief rule  
(2) Consequent attribute referential value 
(3) Belief degree 

Training round (1) Associated BRB  
(2) Trained rule weights  
(3) Trained antecedent weights 
(4) Trained consequent belief degrees 

Trained rule weights (1) Associated training round 
(2) Associated rule 
(3) Trained rule weight 

Trained antecedent 
weights 

(1) Associated training round 
(2) Associated BRB 
(3) Associated antecedent 
(4) Trained antecedent weight 

Trained belief degrees (1) Associated training round 
(2) Associated rule 
(3) Associated consequent 
(4) Trained belief degree 

(ii) Created tables 

Based on the identified subjects and characteristics shown in Table 5-6, we designed 

tables as shown in Table 5-7. As the antecedent attribute in one clinical rule is one 

clinical sign or symptom and the consequent attribute in the clinical rule is a disease 

or clinical risk, tables RULEANTECEDENTS and RULECONSEQUENTS are designed to 

have relationships to tables of RULES and DIAGNOSISITEMEVALUATIONGRADES, 

where the table DIAGNOSISITEMEVALUATIONGRADES is for representing severity 

level of one clinical sign or symptom or one disease as discussed in above database 
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design. For the table of RULEBASEANTECEDENTS, it is designed to have relationship 

to tables of RULEBASES and DIAGNOSISITEMS, where table DIAGNOSISITEMS is for 

representing clinical sign or symptom or disease status.  

Table 5-7: Tables for Representing BRB 
Tables Fields 
Rulebases DiseaseDiagnosisGuidelineID, RulebaseID, 

RulebaseDesc, OrderID  
Rules RulebaseID, RuleID, RuleWeight 
RuleAntecedents RuleID, DiagnosisItemEvaluationGradeID  
RuleConsequents RuleID, DiagnosisItemEvaluationGradeID, 

ConsequentBeliefDegree 
RulebaseAntecedents RulebaseID, DiagnosisItemID, 

AntecedentAttributeWeight 
TrainingRounds TrainingRoundID, RulebaseID, TrainingRoundDesc 
TrainedRuleWeights TrainingRoundID, RuleID, TrainedRuleWeight 
TrainedAntecedentWeights TrainingRoundID, RulebaseID, DiagnosisItemID; 

TrainedAntecedentWeight 
TrainedBeliefDegrees TrainingRoundID, RuleID, 

DiagnosisItemEvaluationGradeID, TrainedBeliefDegree

  Physical implementation  

We use diagram drawn by Microsoft SQL Server 2000 about designed tables for 

representing BRB and its training to illustrate physical implementation, and the 

diagram is shown in Figure 5-14. 
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Figure 5-14: Diagram of Tables for Representing BRB 

Structuring and storing BRB in relational database can meet the needs of a belief rule-

based system. Firstly, it supports dynamics of BRB. The BRB structure is a dynamic 

one which may change after training with accumulated data. By storing BRB and its 

training results in relational database as discussed above, changes of BRB can be 

recorded in the database as well. As a result, the prototype can have a dynamic BRB 

which can change with different training sample. Secondly, based on the mature 

relational database technology, the domain specific knowledge, which is modelled by 
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BRB and stored in relational database, can be freely retrieved, updated, and shared by 

various computerised clinical systems independent of their platform. Thirdly but not 

the least importantly, storing BRB in relational database ease the interaction between 

knowledge base and other core system components thanks to mature database 

technology. 

5.4. Discussions 

The system development is really a time-consuming and demanding process.  During 

prototype development, we have demonstrated developed system regularly to expert 

clinicians in MRI. Based on experts’ prompt feedback, we improved the prototype 

until we obtained the current one which is introduced in this chapter. Experts in MRI 

gave positive judgements about the system, and they have strong interests in applying 

a mature system in their clinical practice. The prototype seems to possess six main 

system features. 

(1) Web-based system architecture enables the system to be accessed online from 

geographically different places, which makes the system have convenient 

accessibility. 

(2) Guideline-based user interface information flow design enables the system to be 

integrated into clinical work flow relatively easily, and the system can help to 

improve clinicians’ compliance with clinical guidelines.  

(3) Modelling domain specific knowledge with BRB and inference with BRB using 

the ER approach enables the system to represent and reason with clinical domain 

knowledge under uncertainties in an informative and accurate way. 
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(4) Group clinical decision supporting module helps the system to provide not only a 

group discussion platform for experts to hold group meetings, discussions or 

consultations, but also a ER-based group aggregation mechanism via which a 

consultant group can arrive at a combined group diagnosis recommendation. 

(5) Updating BRB automatically by learning through accumulated clinical cases 

enables the system to be adaptive to clinical practice, and this functionality helps 

the system to provide evidence-based clinical decision support. 

(6) Structuring and storing BRB in relational database helps to keep the dynamic 

nature of BRB, facilitates the interactions between knowledge base and other 

system components, and makes the sharing of domain knowledge between 

different clinical systems free of technology barriers. 

To conclude, the developed prototype CDSS proves that it is feasible and viable to 

develop a CDSS based on the RIMER methodology, and it helps to bridge the 

research gaps in the CDSS literature as identified in Chapter 2.  

5.5. Summary 

Detailed design, development, and implementation of the belief rule-based CDSS is 

described in this chapter. In the system development, three-layer system architecture 

is employed in system design, and core system components implemented in the 

system include: inference engine, group decision supporting module, knowledge base 

training module, web-based user interfaces, database, and knowledge base, where 

web-based user interfaces reside in the client layer, inference engine, group decision 

supporting module, and knowledge base training module reside in web server layer, 

database and knowledge base are implemented in the back-end layer. We 



 164

implemented web-based user interfaces using ASP.NET, implemented inference 

engine and group decision supporting module using C#, implemented knowledge base 

training module using MATLAB, and implemented knowledge base and database 

using Microsoft SQL Server 2000. The developed CDSS has the following three main 

system functionalities: (1) representing and reasoning with uncertain clinical domain 

knowledge, (2) offering group clinical decision support, and (3) providing automatic 

clinical belief rules updating. In addition, it has the following system features: firstly, 

its three layer system architecture makes it can be accessed easily through Internet or 

Intranet; secondly, the clinical guideline-based user interfaces can help clinicians 

comply with clinical guidelines; and thirdly, the knowledge base implemented using 

relational database can help dissemination and sharing of clinical domain knowledge 

free of barrier due to mature database technologies. Validation of the developed 

prototype system is discussed in the following chapter. 
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Chapter 6  

Validation of the Online Intelligent CDSS Prototype 

 
6.1. Introduction 

Following the chapter of system design and development, validation of the prototype 

CDSS is discussed in this chapter. The purpose of system validation is to validate two 

key features of the system. One is the capability of handling clinical uncertainties and 

providing reliable diagnosis recommendations. The other one is the system can 

provide better diagnostic performance via learning from accumulated clinical data. 

Thus two core components of the system form the focus of the system validation. One 

is the inference engine, which is responsible for generating diagnosis 

recommendations by matching input clinical data with clinical rules in the knowledge 

base. The other is the training module, which is responsible for training or fine-tuning 

the knowledge base by learning from accumulated clinical data.  

For the validation design, we choose CCP as the target clinical area, and the main 

purpose of the system is set as to aid doctors in ED to assess clinical risks of patients 

with CCP. Ideally, in the CDSS validation, we should use real patients’ clinical data 

to train BRB and to test the system’s diagnostic performance. However, we failed to 

get the ethical approval of using such data due to the strict data protection regulations 

in the UK, although our research collaborators in MRI have indeed managed to collect 

two sets of patients’ data in CCP. Instead, we used a simulated dataset of 1000 

patients with CCP to validate the developed prototype. The made-up dataset is 

provided by Dr Richard Body in MRI. All the variables in the dataset including 
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clinical signs and symptoms and clinical risk status have similar positive response 

rates to reality.  

Initial ‘IF-THEN’ clinical rules for risk assessment of CCP are provided by our 

research collaborators in MRI, and the rules are their recent research outcome (Body, 

2009). Based on the initial rules, we constructed belief rule base (BRB) for system 

validation. In inference engine validation, we compared the diagnostic performance of 

the system with a doctor’s in assessing clinical risks of those 1000 patients. In training 

module validation, we split the simulated data into two sets: one set for training the 

system, and the other set for testing the trained system’s diagnostic performance, and 

to avoid a trained system to overfit the training data, we tried five rounds of BRB 

training with different sets of training parameters to seek a set of training parameters 

that is most suitable for the clinical data.  

Three conclusions can be drawn from the system validation study. Firstly, the system 

built with belief rule-based inference methodology can well handle clinical 

uncertainties and can provide reliable diagnosis recommendations. Secondly, the 

system’s diagnostic performance can be improved after BRB training, and the most 

suitable training parameters for the BRB training model contains antecedent attribute 

weights and belief degrees. 

We used receiver operating characteristics (ROC) curve (Metz, 1978, Park et al., 2004) 

which will be discussed in Section 6.4 to analyze the diagnostic performance of the 

system before and after each BRB training in the validation, and all ROC curves were 

plotted by SPSS v 17.0 software (http://www.spss.com/). We used StAR (Vergara et 

al., 2008, http://protein.bio.puc.cl/cardex/servers/roc/home.php), which is a specific 

software developed for statistical analysis of ROC curves, to compare the area under 
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the curve (AUC) of different ROC curves. For details of using AUC to compare ROC 

curves, readers can refer to (DeLong et al., 1988, Mei-Ling Ting and Bernard, 2001). 

For application of ROC curve analysis in diagnostic tests, readers can refer to (Body, 

2009). 

This chapter is structured as follows. Domain BRB employed for the validation is 

described in Section 6.2. Simulated dataset used in the validation is discussed in 

Section 6.3. A brief introduction to the ROC curve analysis is provided in Section 6.4. 

Inference engine validation and training module validation are presented in Section 

6.5 and Section 6.6 respectively. Finally, conclusions of the chapter are summarised 

in Section 6.7.   

6.2. Domain Knowledge Base 

CCP is probably the most frequent serious presentation to ED in the UK. At MRI, 

some 3% of new attendances are covered by the label of CCP (Central Manchester 

and Manchester Children's University Hospitals NHS Trust, 2003a). Possible CCP 

can be viewed as a continuum, ranging from total global acute myocardial infarction 

(AMI) to simple short lived angina. Within this spectrum lie the acute coronary 

syndromes with critical cardiac ischaemia and minimal myocardial damage 

(Mackway-Jones, 2001). 

In all these disorders, the risk of death is highest before admission to hospital, with 

mortality rates of up to 20% (Junghans and Timmis, 2006). Risk remains high after 

admission to hospital, and although mortality rates have fallen greatly in recent years, 

up to 7% of patients die before discharge, and risk continues to be high for six months 

after the ischaemic event (Carruthers et al., 2005).  
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To minimise the risk of patients with CCP, it is crucial for clinicians in ED to identify 

patients at high risk early on and treating them with appropriate level of care and 

medical therapy (Junghans and Timmis, 2006).  

Motivated by the above consideration, we chose CCP as target clinical area for system 

validation, and the purpose of the system was set to provide support for assessing 

clinical risks of patients with CCP. One of our collaborators, Dr. Richard Body in 

MRI, has spent years in investigating more accurate and advanced rules for 

identifying clinical risk of CCP. A set of advanced clinical risk assessment rules as 

shown in Figure 6-1 are taken from his research (Body, 2009), and the knowledge 

base constructed for system validation is based on these rules.  In Figure 6-1, STEMI 

stands for ‘ST segment Elevation Myocardial Infarction’, ECG stands for 

‘electrocardiography’, and EVaMACS represents ‘Early Vascular Markers of Acute 

Coronary Syndromes’ and its score can be calculated from results of different clinical 

tests including Heart type Fatty Acid Binding Protein (H-FABP), Troponin I (TnI), 

and ECG as displayed at the left bottom of Figure 6-1. 

If we use traditional ‘IF-THEN’ format to represent those rules shown in Figure 6-1, 

seven ‘IF-THEN’ rules shown in Table 6-1 can be transformed from Figure 6-1.   
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Figure 6-1: Rules for Assessing Clinical Risk of CCP  (Body, 2009) 

Table 6-1: Traditional ‘IF-THEN’ Rules Transformed from Figure 6-1 
No. Antecedent Consequent 
1 IF ECG shows STEMI THEN Very High Risk 
2 IF ECG shows no STEMI, AND EVaMACS Score is >2THEN Very High Risk 
3 IF ECG shows no STEMI, AND EVaMACS Score is 

between 1 and 2 
THEN  High Risk 

4 IF ECG shows no STEMI, AND EVaMACS Score 
equals 0, AND the patient has Worsening angina or 
diabetes 

THEN High Risk 

5 IF ECG shows no STEMI, AND EVaMACS Score 
equals 0, AND the patient has no Worsening angina or 
diabetes, AND the patient is smoking 

THEN Low Risk 

6 IF ECG shows no STEMI, AND EVaMACS Score 
equals 0, AND the patient has no Worsening angina or 
diabetes, AND the patient is not smoking, AND the 
patient’s sex is Male and the patient ages >=40 years 

THEN Low Risk 

7 IF ECG shows no STEMI, AND EVaMACS Score 
equals 0, AND the patient has no Worsening angina or 
diabetes, AND the patient is not smoking, AND the 
patient’s sex is Female or the patient ages <40 years 

THEN No Risk 

1-2 

>2 

No STEMI 

STEMI 

No

ECG 

EVaMACS 
Score 

0 Worsening angina
OR diabetes? No 

Smoker? 

No 

Male sex 
AND age>=40 

years? 

Very High Risk High Risk Low Risk No Risk

Yes

Yes

Yes

The EVaMACS score: 
H-FABP>58ng/ml  =2 
TnI>0.055ng/ml  =1 
Acute ischaemic ECG features =2 
 
Score>2 – Very high risk 
Score 1-2 – High risk 
Score 0 – Proceed to next question 
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From rules as shown in Figure 6-1 and Table 6-1, we can find that ECG status, 

EVaMACS score, having worsening angina/diabetes or not, smoking status, sex and 

age all are factors that can affect clinical risk level of a patient with CCP. According 

to these rules, doctors would stop asking further questions or prescribing more tests 

for a patient if they think they have obtained enough clinical evidence and can make a 

final decision about the patient’s risk status. For example, doctors in ED would judge 

a CCP patient to be at ‘Very High’ clinical risk if the patient’s ECG shows STEMI, 

and the doctor would not consider other factors such as EVaMACS score, smoking 

status, or diabetes status. However, in clinical practice, a careful doctor usually would 

like to seek all possible clinical data to make conclusion about a patient’s risk status 

due to inescapable uncertainties in clinical decision making.  

Specifically, uncertainties occurring in the process of risk assessment of CCP may 

arise from the following sources. Firstly, doctors may have incomplete or vague 

knowledge in shaping clinical rules for risk assessment. For example, based on 

clinical experience, some doctors may provide such a rule as “IF a patient’s ECG is 

strongly suggestive of STEMI, THEN the patient has a high probability of ‘Very High’ 

risk”. Here, ‘strongly suggestive’ is not a clear cut description of doctors’ judgements 

about one patient’s ECG. Secondly, doctors may not be 100% sure of their 

judgements about patients’ clinical symptoms or clinical tests. For example, doctors 

sometimes can not be 100% sure if a patient’s ECG is consistent with STEMI, and 

they may use “maybe” to describe their judgement about the patient’s ECG status. 

Taking these clinical uncertainties into consideration, we choose to use BRB to model 

clinical domain knowledge.  
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In our research, doctors did not provide us rules with uncertainties. Traditional rules 

as described in Table 6-1 for assessing clinical risk of CCP without uncertainty are 

what we have for system validation. We then extended the initial seven traditional 

‘IF-THEN’ rules using a belief structure, and accordingly, a set of 48 belief rules can 

be created as in Table 6-2, where A1, A2, A3, A4 and A5 represent ‘ECG status’, 

‘EvaMACS Score’, ‘worsening angina or diabetes’, ‘smoking’, and ‘male sex and age 

larger than 40’ respectively. Validation of inference engine and training module of 

the system is based on this BRB. 
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Table 6-2: BRB for Assessing Clinical Risk of CCP 
Antecedent Consequent No. 

A1 A2 A3 A4 A5 Clinical Risk 

1 STEMI >2 Yes Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
2 STEMI >2 Yes Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
3 STEMI >2 Yes No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
4 STEMI >2 Yes No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
5 STEMI >2 No Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
6 STEMI >2 No Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
7 STEMI >2 No No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
8 STEMI >2 No No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
9 STEMI [1 2] Yes Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
10 STEMI [1 2] Yes Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
11 STEMI [1 2] Yes No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
12 STEMI [1 2] Yes No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
13 STEMI [1 2] No Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
14 STEMI [1 2] No Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
15 STEMI [1 2] No No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
16 STEMI [1 2] No No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
17 STEMI 0 Yes Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
18 STEMI 0 Yes Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
19 STEMI 0 Yes No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
20 STEMI 0 Yes No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
21 STEMI 0 No Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
22 STEMI 0 No Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
23 STEMI 0 No No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
24 STEMI 0 No No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
25 No >2 Yes Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
26 No >2 Yes Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
27 No >2 Yes No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
28 No >2 Yes No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
29 No >2 No Yes Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
30 No >2 No Yes No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
31 No >2 No No Yes {(Very High, 1),(High 0),(Low, 0),(No, 0)}
32 No >2 No No No {(Very High, 1),(High 0),(Low, 0),(No, 0)}
33 No [1 2] Yes Yes Yes {(Very High, 0),(High 1),(Low, 0),(No, 0)}
34 No [1 2] Yes Yes No {(Very High, 0),(High 1),(Low, 0),(No, 0)}
35 No [1 2] Yes No Yes {(Very High, 0),(High 1),(Low, 0),(No, 0)}
36 No [1 2] Yes No No {(Very High, 0),(High 1),(Low, 0),(No, 0)}
37 No [1 2] No Yes Yes {(Very High, 0),(High 1),(Low, 0),(No, 0)}
38 No [1 2] No Yes No {(Very High, 0),(High 1),(Low, 0),(No, 0)}
39 No [1 2] No No Yes {(Very High, 0),(High 1),(Low, 0),(No, 0)}
40 No [1 2] No No No {(Very High, 0),(High 1),(Low, 0),(No, 0)}
41 No 0 Yes Yes Yes {(Very High, 0),(High 1),(Low, 0),(No, 0)}
42 No 0 Yes Yes No {(Very High, 0),(High 1),(Low, 0),(No, 0)}
43 No 0 Yes No Yes {(Very High, 0),(High 1),(Low, 0),(No, 0)}
44 No 0 Yes No No {(Very High, 0),(High 1),(Low, 0),(No, 0)}
45 No 0 No Yes Yes {(Very High, 0),(High 0),(Low, 1),(No, 0)}
46 No 0 No Yes No {(Very High, 0),(High 0),(Low, 1),(No, 0)}
47 No 0 No No Yes {(Very High, 0),(High 0),(Low, 1),(No, 0)}
48 No 0 No No No {(Very High, 0),(High 0),(Low, 0),(No, 1)}
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6.3. Simulated Dataset 

The simulated dataset used for system validation is provided by our research 

collaborator, Dr Richard Body, working in MRI. In the dataset, independent variables, 

which contribute to clinical risk status of patients with CCP, include clinical signs or 

symptoms, demographics, and clinical test results of simulated patients, namely 

‘ECG’, ‘Worsening_Angina’, ‘Diabetes’, ‘Smoking’, ‘Sex’, ‘Age’, and 

‘EvaMACS_Score’. Dependent variable in the dataset is ‘Outcome’ which is used for 

recording the outcome of the simulated patients. Here, the outcome was the composite 

of AMI or the occurrence of adverse events within six months, where adverse events 

were defined as death (all-cause), AMI or the need for urgent coronary 

revascularisation (Body, 2009). 

In the dataset, two numerical values including 1 and 0 are used to record outcome of 

simulated patients, where 1 represents that the patient had AMI or he/she died, had 

AMI or needed urgent coronary revascularisation within six months, and 0 represents 

that the patient had no real clinical risk. As for the values used to record ‘ECG’, 

subjective judgements including ‘definitely yes’, ‘strongly suggestive’, ‘maybe’, ‘a 

little like’, and ‘absolutely no’ are used to simulate patients’ ECG status which is 

diagnosed as with STEMI under uncertainties, and in the dataset, Dr Richard Body 

has transformed these subjective judgements into degrees of belief in STEMI. 

Specifically, for variable ‘ECG’, 1 represents ‘definitely yes with STEMI’, 0.8 

represents ‘strongly suggestive of STEMI’, 0.5 represents ‘maybe STEMI’, 0.2 

represents ‘a little like STEMI’, and 0 represents ‘absolutely no STEMI’. For other 

variables including ‘Worsening_Angina’, ‘Diabetes’, and ‘Smoking’, value of 1 

represents ‘yes’ while value of 0 represents ‘no’. For variable ‘Sex’, 1 represents male 
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and 0 represents female. Table 6-3 displays five example patients’ data extracted from 

the simulated dataset. 

Table 6-3: Example Patients’ Data in the Simulated Dataset 

No. Outcome ECG 
Worsening 

Angina 
Diabetes Smoking Sex Age 

EVaMACS
_Score 

1 0 0.2 0 0 0 0 87 0 

2 1 1.0 0 0 0 0 81 1 

3 1 0.8 0 0 1 0 80 1 

4 0 0.0 0 0 0 0 39 0 

5 1 0.5 1 0 0 1 61 1 

The dataset has two features that are important for the research. Firstly, the dataset is 

close to reality. All of the variables including clinical signs or symptoms, 

demographics, clinical test results and outcome in the dataset have similar positive 

response rates to reality. For example, in clinical practice, around 20% of patients 

with CCP attended in ED are with STEMI, and among them, some are definitely with 

STEMI, some are strongly suggestive of STEMI, while some others show a little sign 

of STEMI. The probabilities of the various STEMI situations are reflected in the 

simulated data. Secondly, the dataset reflects uncertainties in clinical decision making. 

In the simulated dataset, doctors’ judgement of a patient’s ECG can be ‘definitely yes 

with STEMI’, ‘strongly suggestive of STEMI’, ‘maybe STEMI’, ‘a little like STEMI’, 

and ‘absolutely no STEMI’.  

Note that there are some conflicting cases in the dataset.  For example, for the Rule 13 

in the BRB as described in Table 6-2, if one patient’s clinical data match this rule’s 

conditions, the patient should be at ‘Very High’ clinical risk. While in the simulated 

dataset, there are 35 cases that are consistent with the rule, however there are two 

other cases having no real clinical risk in spite that their ECGs show ‘strongly 
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suggestive’ of STEMI and their other clinical data exactly match other conditions of 

the rule. The latter 2 cases conflict with the former 35 cases. 

To enforce our confidence of using the simulated dataset for the system validation, we 

presented all conflicting data to two more sophisticated expert clinicians in CCP in 

MRI to seek their advice for handling these conflicting cases in the system validation. 

Based on their knowledge and clinical experience, the two experts believed that this 

type of medical errors could happen everyday due to uncertainties, and they suggested 

us including all conflicting data in the validation. Thus we tried to include all 

conflicted cases in the simulated dataset for both the inference engine and the training 

module validation. 

6.4. Brief Introduction to Receiver Operating Characteristic 

(ROC) Curve Analysis  

In the prototype validation, a necessary procedure is to compare the diagnostic 

performance of the system with a doctor’s. Moreover, to validate the implemented 

training module as described in Section 5.3.3 of Chapter 5, we need to compare the 

diagnostic performance of the system before and after BRB training. As such, a 

question would arise as how to evaluate the diagnostic performance of different tests.  

Usually, in diagnostic research, there are several ways for evaluating performance or 

accuracy of a diagnostic test such as overall diagnostic accuracy, diagnostic odds 

ratios, and ROC curve (Body, 2009), where the overall diagnostic accuracy and 

diagnostic odds have their drawbacks and will be briefly discussed together with ROC 

curve in Section 6.4.1. As identified by Body (2009), the ROC curve has its advantage 

in demonstrating diagnostic performances as it can be used to summarise the accuracy 
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of an investigation with a single number by calculating the area under the curve 

(AUC). In the literature, the ROC curve has been widely used in evaluating the 

performance of diagnostic tests or some other classifiers, and the AUC has also been 

widely used for comparing performance of different diagnostic tests and machine 

learning algorithms (Metz, 1978) (Body, 2009) (Bradley, 1997, Jin and Ling, 2005). 

Taking the above into consideration, we opted to use the ROC curve to measure 

diagnostic performance of all tests in the validation.  

In this Section, a brief introduction to the ROC curve and the AUC is presented in 

Section 6.4.1 and Section 6.4.2 respectively, followed by a brief discussion about 

comparison of the AUC for different ROC curves in Section 6.4.3.  

6.4.1. ROC Curve 

Before introducing the ROC curve, we will briefly discuss some other measures for 

evaluating diagnostic performance of a test first. In measuring a diagnostic test, a 

decision matrix as described in Table 6-4 can be created to evaluate the diagnostic 

performance of the test, where Positive means having a specific disease while 

Negative means having no the disease.  

Table 6-4: Decision Matrix for a Diagnostic Test (Body, 2009) 
True Condition Status  

Test Result Positive (+) number Negative (-) number 
 

Total 

Positive (+) 
True Positive 

(TP) a False Positive 
(FP) b a + b 

Negative (-) False Negative 
(FN) c True Negative 

(TN) d c + d 

Total a + c b + d  

The overall diagnostic accuracy of the diagnostic test is determined as the proportion 

of cases in which the results of the diagnostic test and the reality are the same: 
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The diagnostic odds ratio is defined as the odds of a positive test result in patients 

with disease, relative to the odds of a positive test result in patients without disease: 
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Both of above described measures have their disadvantages in evaluating diagnostic 

performance of a test. For example, if the prevalence of disease in the test population 

is very low, any investigation that returns predominantly negative results will tend to 

have a high overall diagnostic accuracy. For details, readers can refer to (Body, 2009). 

A better way to assess the diagnostic test performance is to use sensitivity or True 

Positive Rate (TPR), and specificity or True Negative Rate (TNR) (Body, 2009). 

Sensitivity is determined by the proportions of patients with the disease who were 

correctly identified by the diagnostic test. Specificity is determined by the proportion 

of negatives which are correctly identified. These statistics can be calculated as 

follows: 
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The sensitivity and specificity of a diagnostic test can tell us about the ability of the 

test to discriminate between healthy and diseased patients.  Moreover, these values are 

independent of the disease prevalence.  

When the results of a diagnostic test fall into two obviously defined categories, such 

as either the presence or absence of a disease, then the test has only a pair of 



 178

sensitivity and specificity values using the sensitivity and specificity calculations as 

discussed above. However, in many diagnostic situations, making a decision in a 

binary mode is both difficult and impractical. For example, Some diagnostic test 

results may be ordinal (for example a risk score with possible values being whole 

numbers ranging from 0 to 5) or continuous (for example a blood test, where possible 

values can be anything within the detectable range of the instruments, including 

decimals).  In order to calculate sensitivity and specificity for ordinal and continuous 

data, the values must first be dichotomised.  To do this we must select an appropriate 

threshold value as a diagnostic cut-off.  Values above this cut-off would be considered 

‘positive’ and values below it considered ‘negative’.  As a result, a single pair of 

sensitivity and specificity values is insufficient to describe the full range of diagnostic 

performance of a test  (Metz, 1978). In such situations, the ROC curve can be used for 

evaluation of the diagnostic performance of an investigation (Body, 2009). Details of 

the ROC curve are briefly discussed as follows. 

The ROC curve, which is defined as a plot of test sensitivity or TPR as the y 

coordinate versus its 1-specificity or false positive rate (FPR), which is determined by 

the proportion of negatives which are wrongly identified, as the x coordinate, is an 

effective method of evaluating the performance of diagnostic tests which have ordinal 

or continuous results (Body, 2009). Each point on the graph represents a pair of 

sensitivity and 1-specificity based on a different diagnostic cut-off value.  

Take a fictional diagnostic test for example, there are 20 patients involved in the test. 

These patients have different clinical risk status in reality and they have been judged 

by doctors with different risk scores ranging from 1 to 5. The detailed data are 

presented in Table 6-5, where value 1 in Real Status column means that the patient is 
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at high clinical risk, while 0 means no clinical risk. To measure the performance of 

the fictional diagnostic test, a ROC curve as represented by blue line in Figure 6-2 can 

be generated by SPSS, and all cut-off values used to shape the curve by SPSS is 

shown in Table 6-6 which is cut from SPSS, where pairs of specificity and 1-

specificity values which correspond to each cut-off value are displayed as well. Take 

the cut-off value of 2.5 for example, based on this cut-off, the calculated sensitivity of 

the fictional diagnostic test is 0.9167, and 1-specificity of the test is 0.1250.  

Table 6-5: A Fictional Diagnostic Test Data  
No. Risk Score Real Status No. Risk Score Real Status 

1 1 0 11 1 0 
2 2 0 12 2 0 
3 3 1 13 3 0 
4 4 1 14 4 1 
5 5 1 15 5 1 
6 1 0 16 1 0 
7 2 1 17 2 0 
8 3 1 18 3 1 
9 4 1 19 4 1 
10 5 1 20 5 1 
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Figure 6-2: ROC Curve Demonstrating the Performance of a Fictional 

Diagnostic Test 

Table 6-6:  Coordinates of the Curve (Cut from SPSS)  
Diagnostic Cut-off Sensitivity 1-Specificity 

0.0000 1.0000 1.0000 
1.5000 1.0000 0.5000 
2.5000 0.9167 0.1250 
3.5000 0.6667 0.0000 
4.5000 0.3333 0.0000 
6.0000 0.0000 0.0000 

A perfect diagnostic test would have 100% sensitivity and specificity and the ROC 

curve would therefore intersect the top left hand corner of the graph.  If a diagnostic 

test has no ability to differentiate between healthy and diseased patients, the ROC 

curve will take the form of a straight line intersecting the bottom left and top right 

diagonals  which is called ‘chance diagonal’, and it is represented by the green line in 

Figure 6-2. 
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6.4.2. Area under the Curve (AUC): a Measure of Overall 

Diagnostic Performance 

An advantage of the ROC curve is that it can be used to summarise the accuracy of a 

diagnostic test with a single number by calculating the size of the area under the curve 

(AUC) (Body, 2009). The AUC can take any value between 0 and 1, since both the x 

and y axes have values ranging from 0 to 1 and size of the square between (0, 0) and 

(1, 1) is 1. The closer AUC is to 1, the better the overall diagnostic performance of the 

test. A test with an AUC value of 1 is one that is perfectly accurate, while a test with 

an AUC value of 0 is one that is perfectly inaccurate. The practical lower limit for the 

AUC of a diagnostic test is 0.5. Because if we were to rely on pure chance to 

distinguish those subjects with a particular disease against those without a particular 

disease, the resulting ROC curve would fall along this diagonal line, which is referred 

to as the chance diagonal as shown in Figure 6-2, and the line segment from (0, 0) to 

(1, 1) has an area with size of 0.5. 

In the fictional example of clinical risk assessment as discussed in Section 6.4.1, the 

AUC is estimated to be 0.9583 by SPSS, which suggests that the diagnostic 

performance of the fictional test is very good as the AUC is very close to 1.   

Note that a ROC curve and its AUC can be generated by different methods, namely 

parametric and non-parametric approaches. If we use parametric to estimate a ROC 

curve or the AUC, we need to make assumption about the distribution of the 

diagnostic test’s results, and very often bi-normal distribution is assumed (Skalska 

and Freylich, 2006). While we do not have to do any assumption about the test results 

if we use non-parametric approach to plot ROC curve or estimate the AUC. In the 

research, we chose non-parametric approach to do ROC analysis, and the ROC 
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analysis conducted in this thesis is also based on non-parametric approach. For details 

of parametric and non-parametric approaches for conducting ROC analysis, readers 

can refer to (Metz, 1978, Hanley, 1988, Zou et al., 1997, DeLong et al., 1988, Mei-

Ling Ting and Bernard, 2001). 

6.4.3. Comparing the AUC: Comparing Overall Diagnostic 

Performance 

The overall diagnostic performance of different tests can be compared by comparing 

AUC of different ROC curves, as AUC is a measure of the overall performance of a 

diagnostic test. The bigger its AUC is, the better the overall performance of the 

diagnostic test will have. For example, we can easily find that diagnostic test B0 has 

better performance than A0 from Figure 6-3, as the AUC in test A0 is 0.9583 and the 

AUC in test B0 is 0.9844. 

 
Figure 6-3: Two ROC Curves with Different Values of the AUC (A0-0.9583; B0-

0.9844) 
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Furthermore, to test the statistical significance of the difference between the areas 

under different ROC curves, some specific software have been developed by 

researchers for AUC comparison. Frequently mentioned software for AUC 

comparison in the literature include MedCalc (http://www.medcalc.be/), ROCKIT 

(http://www-radiology.uchicago.edu/krl/KRL_ROC/software_index6.htm), and StAR 

(http://protein.bio.puc.cl/cardex/servers/roc/home.php). In the research, we chose 

StAR to do AUC comparison as StAR is online software which can be accessed freely 

and can meet our requirements for comparison of paired data. StAR is designed for 

the ROC analysis of paired data and the core of the software is a non-parametric test 

for the difference of the AUC that accounts for the correlation of the ROC curves. 

Here, paired data are data generated from those diagnostic tests in which each case in 

the studied sample has been tested (Metz et al., 1998). 

Generally, we call the difference between the diagnostic performances of two tests 

that are summarized by AUC statistically significant if there is enough evidence 

showing that the difference does not occur by chance. When we use statistical 

software to compare two groups of paired data, we can get a p-value from the 

comparison, where p-value is a measure of probability that a difference between two 

groups of data happened by chance. In statistics, the highest acceptable p-value, at 

which we can still say that a difference between two groups does not happen by 

chance, is called significance level or α level (Aczel and Sounderpandian, 2005, 

Wright, 1997). The difference between two groups of data can be described as 

statistically significant when a p-value is less than the set significance level, and as 

non-significant when a p-value is above the significance level. Conventionally, 

significance level is set to be 0.05 (Wright, 1997). The lower the p-value, the more 

likely it is that the difference between groups of data does not occur by chance. 
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In the following discussion, we will use p-values generated by StAR in comparing 

AUC of ROC curves to measure the statistical significance of differences between 

different diagnostic performances. 

6.5. Inference Engine Validation 

6.5.1. Method 

Validation of the inference engine was basically composed of three main steps. The 

first one was to produce a doctor’s assessment for risks of the simulated 1000 patients 

and to calculate the doctor’s overall diagnostic performance. To facilitate the process 

of acquiring the doctor’s assessment for those 1000 patients’ clinical risk status, we 

produced risk assessment results for the 1000 patients first based on the initial rules as 

shown in Figure 6-1, and then we invited one of our collaborators in MRI to verify the 

judgements. The second step included using the simulated patients’ clinical data as 

inputs to the system and triggering the system to assess clinical risk of the patients, 

and then calculating the system’s overall diagnostic performance. The third step was 

to compare the system’s diagnostic performance with the doctor’s and draw 

conclusions about the reliability of the prototype system. The ROC analysis as 

discussed in Section 6.4 was used to analyze the diagnostic performances of the 

system and the doctor. 

As noted in Section 6.4.1, the ROC curve analysis can effectively measure 

performances of diagnostic tests having ordinal or continuous results. While in our 

research, according to the evidential reasoning (ER) approach and the BRB described 

in Table 6-2, the system’s inferred result for each patient should be a belief 

distribution among four risk levels, namely ‘Very High’, ‘High’, ‘Low’, and ‘No’. 
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Thus we need to transform the inferred diagnosis result, which is distributed in 

different risk levels, into a value that suits the ROC analysis.  

As proposed by Yang and Xu (2002), if necessary, an overall utility value can be 

estimated from an assessment of both qualitative and quantitative characteristics. 

Similar to transforming assessments of alternatives under decision into overall utility 

values, the diagnosis recommendations about patients’ risk status provided by the 

system or the doctor can be transformed into overall severity scores, as mentioned in 

Section 4.6.1 of Chapter 4. As the overall severity score is numerical and continuous 

in the range from 0 to 1, ROC curves can be constructed from overall severity scores 

to demonstrate diagnostic performances of different tests. Therefore in our research, 

we used the overall severity scores estimated from risk assessment results that are 

either generated from the system or provided by the doctor to compare diagnostic 

performances.  

To estimate the overall severity score from risk assessment result of each patient, we 

need to estimate severity scores of those four different risk levels as described in 

Figure 6-1 first.  

With advices from an expert clinician, we assigned a severity score of 1 to ‘Very 

High’, 0.67 to ‘High’, 0.33 to ‘Low’, and 0 to ‘No’. For example, we can estimate a 

patient’s overall severity score as 0.9668 if the risk result generated by the system for 

the patient is {(Very High, 0.94), (High, 0.04), (Low, 0), (No, 0)}. Therefore, every 

patient in the simulated dataset can be given an overall severity score automatically by 

the system or manually based on the risk assessment result produced by one doctor, 

and we can then use the overall severity scores of those 1000 simulated patients 

generated in different situations to do the ROC analysis.  
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6.5.2. Results 

In inference engine validation, we obtained two sets of overall severity scores of the 

simulated 1000 patients. One set was automatically generated by the system and the 

other set was manually produced based on a doctor’s judgements. 

In using the ROC curve to analyze diagnostic performances of the system and the 

doctor, we used the recorded outcome of those 1000 patients as benchmark, and we 

obtained the following two ROC curves as shown in Figure 6-4, which represent the 

diagnostic performances of the system and the doctor’s. The ROC curve as 

represented by the blue line in Figure 6-4 is plotted from the severity score set 

generated by the system, and the AUC is 0.7921 (95% confidence intervals 0.7586 – 

0.8257). The ROC curve as represented by the green line in Figure 6-4 is plotted from 

the severity score set manually produced based on the doctor’s judgements, and its 

AUC is 0.7525 (95% confidence intervals 0.7177 – 0.7873). Here we required SPSS 

to give a 95% confidence interval estimate together with a single AUC value estimate, 

where the 95% confidence interval can tell us that the value of the parameter in 

estimation can lie within the estimated interval with 95% certainty (Aczel and 

Sounderpandian, 2005).  
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Figure 6-4: ROC Curves Demonstrating the Diagnostic Performances of the 

System and One Doctor 

From the two ROC curves as displayed in Figure 6-4, we can see that the AUC 

representing diagnostic performance of the system is larger than the AUC 

representing performance of the doctor. To test whether the difference of 

performances between the system’s and the doctor’s is caused by chance or not, we 

then used StAR to compare the AUC of these two ROC curves and got a p-value less 

than 0.0001.  

The results show that under clinical uncertainties, the diagnostic performance of the 

CDSS prototype implemented using the RIMER methodology is better than manual 

judgement produced by a doctor, and the performance difference is statistically 

significant with a perfect p-value less than 0.0001.  
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6.6. Training Module Validation 

6.6.1. Method 

The kernel model of the training module integrated in the system is the BRB 

optimization model as described in Section 3.2.3 of Chapter 3 and Section 5.3.3 of 

Chapter 5. In the validation, we need to validate that the diagnostic performance of 

the system can be improved after BRB training with accumulated clinical cases. Thus 

we should test performance of the system after BRB training using a dataset which is 

independent and not included in the training dataset. 

There is no a general rule on how to choose the training examples and the test 

examples size (Hastie et al., 2001). Conventionally, in machine learning applications, 

to measure performance of the training system, we can split all available data in half, 

while one half goes to the training set for system training and the other half goes to 

the test set for performance measurement after training (Seufert and O'Brien, 2007, 

Liu et al., 2005, Agarwal et al., 2010, Yang et al., 2007). About the method we used 

to draw training data and test data in the training module validation, we will discuss it 

in next Section 6.6.1.1. 

As described in Section 5.3.3 of Chapter 5, knowledge representation parameters 

including rule weights ( )Lkk ,,1L=θ , antecedent attribute weights ( )Tii ,,1L=δ , 

and consequent belief degrees ( )NjLkkj ,,1;,,1 LL ==β are main training 

parameters for the training module. In our training module design and development as 

described in Section 5.3.3 of Chapter 5, we employed the training model proposed by 

Yang et al. (2007) which is based on numerical system outputs, .thus we need to 

transform the distributed inferred results ( )( )NjD jj ,,1, L=β  generated from the 
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prototype for one patient into a numerical value that can denote the patient’s severity 

status. Here, based on the utility concept ( )( )NjD j ,,1L=µ  proposed by Yang and 

Xu (2002), as described in Section 6.5.1, different severity scores can be assigned to 

the four consequent risk levels of the BRB in Table 6-2, and thus an overall severity 

score can be generated by the system based on the inferred distributed result for one 

patient. In such situations, the severity scores of the four consequent risk levels in the 

BRB can also be trained by the training data. Here, ( )NjD j ,,1L=  is the 

consequents of the BRB, and ( )Njj ,,1L=β  is the inferred belief degree from the 

prototype associated to the jth consequent. L is the number of rules in the BRB, and it 

equals 48 in our system; T is the number of antecedent attributes used in the BRB, and 

it equals 5; N is the number of consequents in the BRB, and it equals 4 in the 

prototype. For details of the BRB, readers can refer to Table 6-2 in Section 6.2.     

However, in machine learning, a common issue is overfitting. A trained model is 

thought to overfit training data if there is some alternative trained model, such that the 

former model fits the training data better than the alternative one, but the alternative 

one performs better than the former over a test dataset which is independent of the 

training data (Mitchell, 1997). Overfitting is especially likely to happen when we give 

the training algorithm a very rich searching space for the parameters of the model 

being trained and thus enable the model being trained to overfit the training data 

(Mitchell, 1997).  

In the context of BRB training, we may get a trained BRB which can overfit the 

training data if we give the training model too many parameters that can vary during 

the training process.  
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To avoid overfitting in BRB training, we tried five different sets of training 

parameters for the training module. In the following discussion, we will use R1, R2, R3, 

R4, and R5 to represent the BRB training with different parameters, where  

R1: training with rule weights ( )48,,1L=kkθ , antecedent attribute weights 

( )5,,1L=iiδ , consequent belief degrees ( )4,,1;48,,1 LL == jkkjβ , and severity 

scores of the four different risk levels ( )( )4,,1L=jD jµ ;  

R2: training with rule weights ( )48,,1L=kkθ , antecedent attribute weights 

( )5,,1L=iiδ , and consequent belief degrees ( )4,,1;48,,1 LL == jkkjβ ;  

R3: training with antecedent attribute weights ( )5,,1L=iiδ  and consequent belief 

degrees ( )4,,1;48,,1 LL == jkkjβ ;  

R4: training with rule weights ( )48,,1L=kkθ  and consequent belief degrees 

( )4,,1;48,,1 LL == jkkjβ ;  

R5: training with belief degrees ( )4,,1;48,,1 LL == jkkjβ .  

There are actually some other combinations of the parameters for BRB training, the 

reasons for us to try above five combinations are as follows. The main purpose for the 

training is to find a BRB model that can better represent domain knowledge in 

assessing clinical risk of CCP, though we set all knowledge representation parameters 

of the BRB and severity scores of consequent risk levels as training parameters in the 

first training round R1, we took severity scores of the four risk levels out of training in 

round R2 as too many training parameters may cause the trained system overfit the 

training data. As it is really hard for domain clinicians to give exact belief degrees to 
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different consequent severity levels in those 48 rules as shown in Table 6-2, we took 

consequent belief degrees as core parameters that need to be fine-tuned by training 

data. Thus after training round R2 where all knowledge representation parameters 

were taken as training parameters, we tried to combine consequent belief degrees with 

antecedent attribute weights and rule weights respectively as training parameters in 

training rounds R3 and R4, and finally in training round R5, we tried to put only 

consequent belied degrees as training parameters to avoid overfitting. 

Taking above mentioned into consideration, we designed the training module 

validation as follows.  

Firstly, we drew representative training examples and test examples from the 

simulated 1000 cases.  

Secondly, we trained the system by simulated cases in the training set with above 

mentioned five different set of training parameters, and we set the same initial values 

for the training parameters of each training round.  

Thirdly, we test the performance of the system before and after different BRB training 

over simulated cases in the test set. 

Fourthly, we analyzed the system’s diagnostic performance using ROC curves as 

described in Section 6.4.  

Finally, based on the system performance analysis results, we drew conclusions about 

the training module. 

Further details regarding how to split the simulated cases into training set and test set 

and how to set initial values and constraints for training parameters will be discussed 
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in the following Sections 6.6.1.1 and 6.6.1.2. 

6.6.1.1. Training Set and Test Set 

First and foremost, we need to draw training examples and test examples from those 

simulated 1000 clinical cases. Usually, in supervised machine learning as described in 

Section 3.2.3 of Chapter 3, training set can be drawn from available data randomly 

(Dale et al., 2010, Tong and Koller, 2001). In choose training examples, an important 

attribute of training examples is how well it represents the distribution of test 

examples over which performance of the trained system be measured, and generally, 

learning is most reliable when the training examples follow a similar distribution to 

that of the future test examples (Mitchell, 1997, Freund et al., 1997).  

In the context of BRB model training and validation, to ensure the reliability of BRB 

training, we need to draw similar data into both training set and test set. As in BRB 

training, it is not uncommon that the following two situations about the training would 

happen. Firstly, in some cases, parameters related to some clinical rules can be trained 

from the training data, but there are no cases in the test set that can activate the trained 

rules in testing performance of the trained system, and then it would affect the 

performance evaluation of the training module since not all trained rules have made 

contributions in the test of system performance after training. Secondly, in some other 

cases, parameters related to some clinical rules can not be trained by the training data 

due to lack of training examples in these regions where BRB was designed to operate, 

but there are cases in the test set that can activate the untrained rules in system 

performance testing after training, and then it would also affect performance 

evaluation of the training module as untrained rules would lead to irrational 

conclusions if they were initially assigned randomly or without care (Yang et al., 
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2007). Take Rule 1 in Table 6-2 for example, if knowledge representation parameters 

related to Rule 1 can be trained from the training data, then in the test set, there should 

be some patients’ data fall in the region that Rule 1 was designed to operate so that the 

trained Rule 1 can play its role in system performance test after BRB training, and 

thus the performance of the training module can be rationally evaluated. 

To draw representative data into training set and test set for training and validating all 

rules in the BRB model, we analyzed the matching status between all simulated cases 

and clinical rules in the BRB first, and then we randomly split matched cases of each 

rule probably into half (if there are enough cases for both training and test), while 

probably one half goes to training set and the other half for test set. The details are as 

follows. 

 Analyzing matching status between simulated cases and clinical rules in the 

BRB 

In analyzing the matching status between simulated patients and clinical rules, we 

checked the matching status between each simulated patient’s clinical data except 

recorded outcome and one specific rule’s antecedents. Here, the degree of matching 

between one simulated patient’s data and one clinical rule need not be with 100% 

certainty, because inference with BRB as described in Section 4.5.2 of Chapter 4 and 

Section 5.3.1 of Chapter 5 can consider different matching degrees between input data 

and one rule’s packet antecedent.  

In the simulated dataset as described in Section 6.3, we have uncertain judgements 

about patients’ ECG status: ‘definitely yes with STEMI’, ‘strongly suggestive of 

STEMI’, ‘maybe STEMI’, ‘a little like STEMI’, and ‘absolutely no STEMI’. Thus for 

some clinical cases, they may be consistent with two different clinical rules’ 
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antecedents to different degrees because of the uncertain ECG judgements. In 

calculating the number of matched cases to one clinical rule in the BRB, we 

considered all cases whose matching degrees to the rule are larger than 0. The number 

of all matched clinical cases to each clinical rule in the BRB as described in Table 6-2 

is reported in Table 6-7.  

Table 6-7: Number of Matched Clinical Cases to Each Clinical Rule in the BRB 
Rule No. Number of Matched Cases Rule No. Number of Matched 

C1 2 25 0 
2 1 26 0 
3 2 27 1 
4 2 28 2 
5 0 29 2 
6 1 30 0 
7 1 31 0 
8 1 32 1 
9 42 33 34 
10 16 34 18 
11 58 35 64 
12 37 36 45 
13 35 37 49 
14 13 38 39 
15 36 39 87 
16 40 40 97 
17 4 41 16 
18 3 42 14 
19 15 43 38 
20 10 44 31 
21 8 45 59 
22 8 46 59 
23 13 47 132 
24 18 48 128 

 Splitting simulated cases into training set and test set 

From Table 6-7, we can find that the number of matched cases to rules numbering 

from 1 to 8 and from 25 to 32 is 0 or 1 or 2, which means there are no enough cases 

falling in the regions where these rules were designed to operate for both training and 

testing these rules. Specifically, for Rule 5, Rule 25, Rule 26, Rule 30, and Rule 31, 

there is no matched case in the dataset, and thus it is impossible to use the dataset to 
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train these rules. For Rule 2, Rule 6, Rule 7, Rule 8, Rule 27 and Rule 32, there is 

only one clinical case matched to each of these rule’s antecedents, and this means if 

we put the matched case in the training set, there would be no case in the test set to 

activate the rule after training. For Rule 1, Rule 3, Rule 4, Rule 28, and Rule 29, there 

are two cases in the dataset that match each rule’s antecedents, and the only option for 

us to do both training and testing for these rules is to put one case in the training set 

and put the other case in the test set. However, if two clinical cases matched to one 

clinical rule have extremely different recorded outcomes, it will negatively affect the 

reliability of the training module if we put one case in the training set and put the 

other case in the test set.  

Taking above into consideration, we put aside the 12 cases in the simulated dataset 

that are matched to rules numbering from 1 to 4, from 6 to 8, from 27 to 29, and Rule 

32 as shown in Table 6-7, and randomly split the remaining 988 cases, with one half 

for training and the other half for test. During the data splitting, we tried to make that 

probably half of matched cases to each rule goes for training and the other half goes 

for test. We did so to ensure that each rule that has been trained in the training process 

can make contribution to system performance test after training. 

As a result, rules numbering from 1 to 8 and rules numbering from 25 to 32 have not 

be trained in the training process or tested in the test process, and the final diagnostic 

performance analyses were based on clinical cases that match rules numbering from 9 

to 24 and rules numbering from 33 to 48 in the BRB as illustrated in Table 6-7.  

6.6.1.2. Initialization of the Training Model 

 Initial values of the training parameters 
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For BRB training, a necessary task is to set initial values and constraints for the 

training parameters. We set the initial values of the training parameters for each BRB 

training round of R1, R2, R3, R4, and R5 as follows. 

(1) Severity scores of four risk levels ( )( )4,,1L=jD jµ : ( )Very High) (1Dµ  = 1, 

( ) High)(2Dµ  = 0.67, ( )Low) (3Dµ  = 0.33, and ( ) No) (4Dµ = 0; 

(2) Rule weights ( )48,,1L=kkθ : ( )48,,1L=kkθ  = 1; 

(3) Antecedent attribute weights ( )5,,1L=iiδ : ( )5,,1L=iiδ  = 1;  

(4) Consequent belief degrees ( )4,,1;48,,1 LL == jkkjβ : we set the initial 

values of the consequent belief degrees in the BRB based on the statistical calculation 

of the training dataset. For example, for Rule 11 in the BRB in Table 6-2, there are 9 

cases in the training dataset that match the rule’s antecedents with 100% certainty, 

and the recorded outcome of those 9 cases show that 8 of them were at ‘Very High’ 

clinical risk while 1 case had ‘No’ clinical risk. Thus we set the initial values of 

consequent belief degrees in Rule 11 as {(Very High, 8/9=0.8889), (High 0), (Low, 0), 

(No, 0.1111)}. Here, with advice from experts, we assigned ‘Very High’ clinical risk 

to patients with outcome of 1 and ‘No’ clinical risk to patients with outcome of 0 in 

the simulated dataset.  

The initial values of severity scores of four risk levels, antecedent attribute weights, 

rule weights, and consequent belief degrees will be displayed together with 

corresponding trained values after different BRB training rounds in Table 6-8, Table 

6-9, Table 6-10, and Table 6-11 respectively in Section 6.6.2.1. Readers can refer to 
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the beginning part of Section 6.6.1 for details about the training parameters used in 

training rounds R1, R2, R3, R4, and R5.   

 Constraints of the training parameters 

In terms of the constraints for training parameters, we set constraints for training 

parameters as follows.  

(1) Severity scores of four risk levels ( )( )4,,1L=jD jµ : ( )( ) 04,,11 ≥=≥ LjD jµ , 

and ( )Very High) (1Dµ  ≥ ( ) High)(2Dµ  ≥ ( )Low) (3Dµ  ≥ ( )No) (4Dµ ; 

(2) Rule weights ( )48,,1L=kkθ : ( ) 01.048,,11 ≥=≥ Lkkθ , here we set the 

lower bound of rule weight to be 0.01, because we want to keep each rule’s weight to 

be larger than 0 after training to ensure that each simulated patient in the test set could 

be diagnosed with trained rules in the BRB. For example, if there is a patient in the 

test set whose data is 100% matched to one clinical rule, the patient would not be 

diagnosed by the system in the performance test process if the clinical rule’s weight is 

trained to be 0, which means the rule is of no importance in diagnosis. To avoid such 

situations, we set 0.01 as a lower bound to rule weight, and 0.01 can represent low 

importance of the rule while the rule with trained weight 0.01 can still be activated in 

the performance test process. We have tried other similar values as low bounds of rule 

weight, and it actually makes no difference to the system’s performance after training 

if it is set to be other similar small values. 

(3) Antecedent attribute weights ( )5,,1L=iiδ : 1 ≥ 1δ (ECG status) ≥ 0.5, and 

1≥ ( )5,4,3,2=iiδ ≥  0, here we set the weight of the ECG status between 0.5 and 1, 

because we know the ECG status is a very important risk factor in daily clinical risk 
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assessment of CCP, and this constraint can help to make the importance of ECG 

status not be less than half of other antecedent attributes’ importance in diagnosis 

process. 

(4) Consequent belief degrees ( )4,,1;48,,1 LL == jkkjβ : 

1≥ ( )4,,1;48,,1 LL == jkkjβ ≥  0, and ( ) 048,,11 4

1
≥=≥ ∑ =

Lk
j kjβ .  

What follows is discussion about the results generated from the training module 

validation.  

6.6.2. Results 

In this Section, the comparison of BRB model in the system before and after training 

is discussed in Section 6.6.2.1. Comparison of the system’s performance on test set 

before and after BRB training with different training parameters is discussed in 

Section 6.6.2.2.  

6.6.2.1. Comparison of the BRB before and after Training 

In the BRB training process, with the same training data set, different training 

parameters brought different changes to the BRB model in the system. As described 

in Section 6.6.1, R1, R2, R3, R4, and R5 are used to represent BRB training with 

different parameters, and we will use these five symbols in the following discussion. 

 The severity scores of the four consequent risk levels were trained once in training R1, 

and the comparison of the severity scores before and after training R1 is shown in 

Table 6-8.  
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For the BRB model, values of the antecedent attribute weights, rule weights, and 

consequent belief degrees before and after each training round are shown in Table 6-9, 

Table 6-10 and Table 6-11 respectively. In Table 6-8, Table 6-9, Table 6-10 and Table 

6-11, values in column ‘Initial’ represent the initial values of associated parameters 

before training. Values in columns ‘R1’, ‘R2’, ‘R3’, ‘R4’ and ‘R5’ represent the trained 

values of associated parameters after training R1, R2, R3, R4 and R5 respectively.  

Table 6-8: Severity Scores of Consequent Risk Levels Before and After Training 
R1  

Severity Score  Risk Level 

Initial  R1 

Very High 1.0000 1.0000 
High 0.6700 0.5977 

Low 0.3300 0.4006 

No 0.0000 0.0038 

Table 6-9: Antecedent Attribute Weights Before and After Training R1, R2, and 
R3 

Attribute Weight Antecedent Attribute 

Initial R1 R2 R3 

A1 1 0.5 0.5 0.5
A2 1 1 1 1
A3 1 1 1 1
A4 1 1 1 1
A5 1 1 1 1
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Table 6-10: Rule Weights Before and After Training R1, R2, and R4 
Rule Weight Rule Weight 

No. 
Initial R1 R2 R4 

No.
Initial R1 R2 R4 

1 1 1.0000 1.0000 1.0000 25 1 1.0000 1.0000 1.0000
2 1 1.0000 1.0000 1.0000 26 1 1.0000 1.0000 1.0000
3 1 1.0000 1.0000 1.0000 27 1 1.0000 1.0000 1.0000
4 1 1.0000 1.0000 1.0000 28 1 1.0000 1.0000 1.0000
5 1 1.0000 1.0000 1.0000 29 1 1.0000 1.0000 1.0000
6 1 1.0000 1.0000 1.0000 30 1 1.0000 1.0000 1.0000
7 1 1.0000 1.0000 1.0000 31 1 1.0000 1.0000 1.0000
8 1 1.0000 1.0000 1.0000 32 1 1.0000 1.0000 1.0000
9 1 1.0000 1.0000 1.0000 33 1 0.5829 0.6754 0.7614
10 1 1.0000 1.0000 1.0000 34 1 0.8170 0.8258 0.6635
11 1 0.4153 0.4097 0.2498 35 1 0.9472 0.9396 0.9886
12 1 0.0100 0.0100 0.0100 36 1 1.0000 1.0000 0.9997
13 1 0.9986 0.9973 0.9992 37 1 0.0386 0.0119 0.0175
14 1 0.7337 0.7586 0.5464 38 1 1.0000 1.0000 0.9999
15 1 0.0100 0.0100 0.0100 39 1 0.9998 0.9995 0.9988
16 1 0.7860 0.8113 0.9173 40 1 0.9765 0.9981 0.6959
17 1 1.0000 1.0000 1.0000 41 1 0.8759 0.8887 0.8321
18 1 1.0000 1.0000 1.0000 42 1 0.0343 0.0778 0.0100
19 1 0.8134 0.7930 1.0000 43 1 1.0000 0.9999 0.9514
20 1 0.8789 0.8662 1.0000 44 1 0.9999 0.9982 0.9031
21 1 0.7496 0.7264 0.9666 45 1 1.0000 1.0000 1.0000
22 1 0.7571 0.7316 1.0000 46 1 1.0000 1.0000 0.9893
23 1 0.6853 0.6488 0.9857 47 1 1.0000 0.9994 0.9994
24 1 0.6206 0.5783 0.9969 48 1 0.9983 0.9893 0.9567
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Table 6-11: Consequent Belief Degrees Before and After Training R1, R2, R3, R4, and R5  
Consequent Belief Degree 

Very High Clinical Risk High Clinical Risk Low Clinical Risk No Clinical Risk No. 

Initial R1 R2 R3 R4 R5 Initial R1 R2 R3 R4 R5 Initial R1 R2 R3 R4 R5 Initial R1 R2 R3 R4 R5 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
9 1.0000 0.9496 0.9566 0.9771 0.9367 0.9444 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0034 0.0000 0.0000 0.0504 0.0405 0.0229 0.0599 0.0556 
10 1.0000 0.8402 0.8393 0.8637 0.7488 0.7603 0.0000 0.0107 0.0091 0.0055 0.0516 0.0121 0.0000 0.0000 0.0012 0.0000 0.0137 0.0314 0.0000 0.1491 0.1504 0.1309 0.1859 0.1961 
11 0.8889 0.8732 0.8745 0.7762 0.8731 0.7566 0.0000 0.0010 0.0149 0.0000 0.0178 0.0000 0.0000 0.0266 0.0396 0.0000 0.0127 0.0000 0.1111 0.0991 0.0709 0.2238 0.0964 0.2434 
12 1.0000 0.9550 0.8969 0.5010 0.9092 0.4126 0.0000 0.0450 0.1031 0.0000 0.0696 0.0001 0.0000 0.0000 0.0000 0.0000 0.0013 0.0000 0.0000 0.0000 0.0000 0.4990 0.0200 0.5873 
13 1.0000 0.8242 0.8322 0.9765 0.8161 0.9183 0.0000 0.0059 0.0076 0.0000 0.0022 0.0000 0.0000 0.0280 0.0092 0.0117 0.0471 0.0002 0.0000 0.1419 0.1511 0.0117 0.1345 0.0815 
14 1.0000 0.9945 0.9891 0.9238 0.9945 0.8731 0.0000 0.0055 0.0069 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0762 0.0048 0.1269 
15 1.0000 0.9879 0.9850 0.6819 0.9985 0.6274 0.0000 0.0029 0.0073 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0092 0.0077 0.3181 0.0000 0.3726 
16 1.0000 0.8258 0.8282 0.7665 0.6706 0.7095 0.0000 0.0011 0.0008 0.0000 0.0224 0.0000 0.0000 0.0000 0.0000 0.0000 0.0070 0.0000 0.0000 0.1731 0.1710 0.2335 0.3000 0.2905 
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
19 1.0000 0.8877 0.8742 0.7538 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.1123 0.1257 0.2462 0.0000 0.0000 
20 1.0000 0.9218 0.9133 0.8344 1.0000 1.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0782 0.0866 0.1656 0.0000 0.0000 
21 1.0000 0.8488 0.8328 0.6815 0.9799 0.9826 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.1512 0.1672 0.3185 0.0201 0.0173 
22 1.0000 0.8744 0.8578 0.7144 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1256 0.1422 0.2856 0.0000 0.0000 
23 1.0000 0.8470 0.8192 0.6224 0.9927 0.9928 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.1530 0.1806 0.3776 0.0071 0.0071 
24 1.0000 0.8417 0.8139 0.5564 0.9985 1.0000 0.0000 0.0002 0.0018 0.0000 0.0015 0.0000 0.0000 0.0004 0.0000 0.0020 0.0000 0.0000 0.0000 0.1577 0.1843 0.4417 0.0000 0.0000 
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Table 6-11 (Cont. ): Consequent Belief Degrees Before and After Training R1, R2, R3, R4, and R5  
Consequent Belief Degree 

Very High Clinical Risk High Clinical Risk Low Clinical Risk No Clinical Risk No. 

Initial R1 R2 R3 R4 R5 Initial R1 R2 R3 R4 R5 Initial R1 R2 R3 R4 R5 Initial R1 R2 R3 R4 R5 

25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
29 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
31 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
33 0.2857 0.3250 0.3465 0.3877 0.4252 0.4453 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0020 0.0036 0.0000 0.0166 0.0012 0.7143 0.6730 0.6499 0.6123 0.5583 0.5534 
34 0.0000 0.1221 0.1287 0.1680 0.1735 0.2659 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0030 0.0003 0.0000 0.0259 0.0012 1.0000 0.8749 0.8710 0.8320 0.8001 0.7328 
35 0.3077 0.1150 0.0968 0.0000 0.1042 0.0000 0.0000 0.2191 0.2280 0.3237 0.2215 0.3487 0.0000 0.0367 0.0259 0.0061 0.0743 0.0044 0.6923 0.6292 0.6492 0.6702 0.6000 0.6469 
36 0.1667 0.0676 0.0819 0.0000 0.0674 0.1133 0.0000 0.1196 0.1132 0.1907 0.1195 0.1126 0.0000 0.0813 0.0773 0.0331 0.1142 0.0007 0.8333 0.7314 0.7276 0.7762 0.6989 0.7735 
37 0.2143 0.1899 0.1844 0.3329 0.1955 0.3911 0.0000 0.0200 0.0229 0.0000 0.0184 0.0000 0.0000 0.0169 0.0553 0.0000 0.0281 0.0000 0.7857 0.7732 0.7374 0.6671 0.7580 0.6089 
38 0.3333 0.1307 0.1454 0.1021 0.1594 0.1281 0.0000 0.0307 0.0072 0.0523 0.0171 0.0458 0.0000 0.0276 0.0420 0.0446 0.0339 0.0287 0.6667 0.8110 0.8054 0.8010 0.7896 0.7974 
39 0.1667 0.0538 0.0555 0.0000 0.0727 0.0314 0.0000 0.1897 0.1795 0.2134 0.1494 0.1810 0.0000 0.0358 0.0161 0.0031 0.0286 0.0131 0.8333 0.7206 0.7488 0.7836 0.7493 0.7744 
40 0.0323 0.0358 0.0290 0.0000 0.0323 0.0520 0.0000 0.0000 0.0114 0.0369 0.0039 0.0000 0.0000 0.0000 0.0021 0.0209 0.0083 0.0001 0.9677 0.9642 0.9575 0.9422 0.9555 0.9479 
41 0.4000 0.3983 0.4188 0.4277 0.4531 0.4676 0.0000 0.0385 0.0015 0.0000 0.0012 0.0000 0.0000 0.0001 0.0006 0.0000 0.0041 0.0018 0.6000 0.5631 0.5790 0.5723 0.5416 0.5306 
42 0.1667 0.1438 0.1499 0.3153 0.1774 0.3581 0.0000 0.0162 0.0100 0.0000 0.0001 0.0000 0.0000 0.0014 0.0057 0.0000 0.0179 0.0000 0.8333 0.8385 0.8344 0.6847 0.8046 0.6419 
43 0.1818 0.1123 0.1127 0.0663 0.1893 0.1915 0.0000 0.0857 0.0877 0.1478 0.0000 0.0000 0.0000 0.0136 0.0169 0.0335 0.0000 0.0000 0.8182 0.7884 0.7827 0.7524 0.8107 0.8085 
44 0.2000 0.1552 0.1468 0.1254 0.2150 0.2197 0.0000 0.0440 0.0658 0.0976 0.0008 0.0000 0.0000 0.0173 0.0109 0.0231 0.0000 0.0000 0.8000 0.7835 0.7765 0.7539 0.7843 0.7803 
45 0.1923 0.1178 0.1139 0.0565 0.1773 0.1759 0.0000 0.0981 0.0970 0.1705 0.0206 0.0173 0.0000 0.0237 0.0239 0.0381 0.0045 0.0047 0.8077 0.7604 0.7652 0.7349 0.7977 0.8021 
46 0.1200 0.0480 0.0381 0.0000 0.1201 0.1211 0.0000 0.0988 0.1049 0.1707 0.0001 0.0000 0.0000 0.0227 0.0244 0.0346 0.0005 0.0000 0.8800 0.8305 0.8327 0.7946 0.8793 0.8789 
47 0.1017 0.0445 0.0021 0.0010 0.0771 0.0917 0.0000 0.0456 0.1351 0.1348 0.0336 0.0091 0.0000 0.0623 0.0318 0.0260 0.0094 0.0051 0.8983 0.8476 0.8309 0.8382 0.8799 0.8941 
48 0.0364 0.0161 0.0064 0.0014 0.0110 0.0352 0.0000 0.0130 0.0225 0.0482 0.0021 0.0011 0.0000 0.0251 0.0499 0.0027 0.0712 0.0013 0.9636 0.9457 0.9212 0.9477 0.9156 0.9623 
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From Table 6-10 and Table 6-11, we can see that the rule weights and belief degrees 

attached to rules numbering from 1 to 8 and numbering from 25 to 32 kept untouched 

in the training process. The reason is that as described in Section 6.6.1.1, there are no 

enough clinical cases in the simulated dataset fall in the regions that above rules were 

designed to operate, and then we put those scarce cases aside before drawing data into 

training set and test set. 

Therefore, in the following system performance test over both the test set, above rules 

that kept untouched in the training process will not make contribution, and changes of 

the system’s performance before and after BRB training over the test set are made by 

the other rules, which were trained by the training data.   

6.6.2.2. System Diagnostic Performance over Test Set 

This Section discusses changes of the system’s diagnostic performance before and 

after BRB training over simulated patients in test set. Here, BRB training was 

conducted with R1, R2, R3, R4, and R5. Based on the system generated overall severity 

scores (as discussed in Section 6.5.1) for patients in the test set before and after each 

BRB training, we employed SPSS to plot six different ROC curves as in Figure 6-5 to 

illustrate the system’s performance before and after each BRB training. In Figure 6-5, 

the source of each curve is annotated, where ScoreWithPreTrainedBRB represents 

severity scores of patients generated by the system running with a BRB model before 

any training; ScoreAfterR1 represents severity scores generated by the system running 

with a BRB model after training R1;  ScoreAfterR2 represents severity scores 

generated by the system running with a BRB model after training R2; ScoreAfterR3 

represents severity scores generated by the system running with a BRB model after 

training R3; ScoreAfterR4 represents severity scores generated by the system running 
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with a BRB model after training R4; ScoreAfterR5 represents severity scores generated 

by the system running with a BRB model after training R5. Take the blue curve in 

Figure 6-5 for example, from the annotated source of the curve in the figure, we know 

that the blue curve is based on patients’ severity scores generated by the system 

before BRB training, and the curve can be used to illustrate the system’s performance 

over the test set before BRB training. 

 

Figure 6-5: Six ROC Curves Demonstrating the Diagnostic Performance of the 

System before and after BRB Training over Test Set 

We then required SPSS to estimate corresponding AUC values together with their 

95% confidence intervals for the six ROC curves. The AUC values and their 95% 

confidence intervals estimated by SPSS are shown in Table 6-12, where each ROC 

curve is denoted by its source severity scores. 
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Table 6-12: AUC Values and 95% Confidence Intervals of the Six ROC Curves 
in Figure 6-5 

95% Confidence Interval ROC Curves 
(denoted by source scores) 

AUC 
Lower Bound Upper Bound 

ScoreWithPreTrainedBRB 0.7956 0.7464 0.8449 
ScoreAfterR1 0.8280 0.7830 0.8729 
ScoreAfterR2 0.8299 0.7860 0.8739 
ScoreAfterR3 0.8290 0.7851 0.8729 
ScoreAfterR4 0.8245 0.7791 0.8699 
ScoreAfterR5 0.8208 0.7752 0.8664 

As seen from Table 6-12, AUC of the ROC curves representing system’s diagnostic 

performance after BRB training are all larger than the AUC of the ROC curve 

representing system’s diagnostic performance before BRB training.  

Based on results as shown in Table 6-12, we can draw a conclusion that the training 

module implemented with different sets of training parameters can invariably help the 

system to improve the diagnostic performance, and training rounds R1, R2, and R3 

helped to bring better system performance than training rounds of R4 and R5 .  

However, since the difference between the AUC of ROC curves after BRB training R1, 

R2, R3, R4 and R5 is slight, we cannot tell which training has brought most significant 

performance improvement to the system. To test which BRB training can help the 

system to achieve most significant performance improvement among all conducted 

BRB training, we need to statistically analyze the statistical significance of the 

performance improvement after each BRB training round.   

Thereafter, to measure the statistical significance of the system’s diagnostic 

performance improvement, we used StAR to compare the AUC values of RUC curves 

representing system’s performance before BRB training and after each BRB training 

with different training parameters, and the AUC comparison results are shown in 

Table 6-13. 
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Table 6-13: p-values for AUC Comparison between ROC Curves before and 
after BRB Training 

 ScoreAfterR1 ScoreAfterR2 ScoreAfterR3 ScoreAfterR4 ScoreAfterR5

ScoreAfterR2 0.4530     
ScoreAfterR3 0.8863 0.8881    
ScoreAfterR4 0.4984 0.2038 0.5639   
ScoreAfterR5 0.3890 0.2326 0.0984 0.5596  

ScorePre 
TrainedBRB 

0.0323 0.0198 0.0076 0.0764 0.0836 

Based on the comparison results as shown in Table 6-13, we know that training R3 

(with p-value 0.0076) brought the most statistically significant performance 

improvement for the system though there is no significant difference between system 

performances after training rounds of R1, R2, R3, R4, and R5 . Thus we considered the 

parameter set that was used in training R3 as the most suitable training parameter set 

for the training module, and it is composed of antecedent attribute weights 

( )5,,1L=iiδ  and consequent belief degrees ( )4,,1;48,,1 LL == jkkjβ . 

6.7. Summary 

This chapter presents a validation study of the developed CDSS prototype. The 

system validation was conducted using a set of 1000 simulated patients in CCP.  The 

BRB constructed in the system for validation is based on rules for assessing clinical 

risk of CCP provided by one of our research collaborators – Dr. Richard Body at MRI, 

and the statistical method we used for diagnostic performance evaluation is ROC 

analysis.  There are two main conclusions that can be drawn from the validation study. 

 Firstly, based on the RIMER methodology, the developed prototype CDSS can 

handle different uncertainties in both clinical domain knowledge and clinical data, 

and the system can provide reliable diagnosis recommendations. 
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 Secondly, based on the BRB optimization model implemented in the system, the 

system’s performance can be statistically significantly improved after training 

BRB with available accumulated cases. While the most suitable training 

parameters for the training module contain antecedent attribute weights and belief 

degrees. 

Based on the developed CDSS prototype and the system validation study presented in 

this chapter, we can conclude that it is feasible, viable, and reliable to use RIMER for 

implementing a CDSS.   
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Chapter 7  

Conclusions and Potential Future Research 

 
7.1. Introduction 

This chapter first summarises the whole study, pointing out what has been done in the 

study in Section 7.2. Then Section 7.3 recapitulate the whole thesis and highlights 

main findings and contributions of the research, where the main findings from 

previous chapters are discussed in Section 7.3.1 and main contributions of the 

research are discussed in Section 7.3.2. Finally, limitations of the research and 

possible future research are discussed in Section 7.4  

7.2. Summary of the Study 

Motivated by the strong need in CDSSs research for a competent CDSS, which can (a) 

represent and reason with clinical domain knowledge under uncertainties; (b) update 

knowledge base automatically based on accumulated clinical cases; and (c) provide 

online group clinical decision support, the study aimed to use a newly developed 

belief rule-base inference methodology – RIMER (Yang et al., 2006) for the design 

and development of an online intelligent group CDSS. Main research questions that 

the study tries to answer include: (a) is it feasible to employ RIMER for developing a 

CDSS? (b) how to facilitate online group clinical decision making and arrive at a 

group combined clinical recommendation for target patient in a belief rule-based 

CDSS? and (c) how to train belief rule-based CDSS and make its knowledge base be 

adaptive to clinical practice? Based on theses research questions, the measurable 

objectives of the research include: (a) investigate existent CDSSs, and identify system 
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features of existing CDSSs; (b) acquire target clinical domain knowledge; (c) 

investigate the feasibility of employing belief rule base (BRB) to model clinical 

domain knowledge and using the evidential reasoning (ER) approach to do clinical 

inference in a CDSS; (d) design and develop an online belief rule-based group CDSS 

prototype; and (e) validate the online intelligent CDSS prototype using clinical cases 

in target clinical areas. Clinical areas being investigated in the study includes upper 

Gastrointestinal (GI) bleed and CCP. Finally, a belief rule-based online group CDSS, 

which provides guideline-based individual diagnosis support, group consultation 

support, and automatic knowledge base updating via learning through accumulated 

clinical cases, was developed in the research. The prototype CDSS has been validated 

using a set of simulated clinical cases in CCP.  

The research methodology used in the study is a multiple-methodology approach. 

Modelling and prototyping are the two main research methods used for prototype 

design and development. Field study is used in the study for gaining deep 

understanding of domain knowledge and daily clinical work flow in NHS hospitals, 

and acquisition of users’ requirements of a CDSS. Statistical techniques including the 

receiver operating characteristic (ROC) curve analysis and the area under the ROC 

curve (AUC) comparison are used in the prototype validation for system performance 

analysis. 

In the research, various research gaps in the CDSSs literature that impedes 

successfully application of existent CDSSs in clinical practice were identified first. 

Then a preliminary study on the feasibility of using RIMER for developing a CDSS 

was conducted. It is followed by the design and development of a belief rule-based 

online group CDSS which can help address the identified research gaps, and finally 
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the validation of the developed prototype was conducted using a set of simulated 

patients’ data. 

The research developed an online belief rule-based group CDSS and proved that (a) it 

is feasible and viable to use RIMER for developing a CDSS; (b) the developed CDSS 

can handle uncertainties in both clinical domain knowledge and clinical data, and the 

system can provide reliable diagnosis recommendations; and (c) the BRB in the 

system can be updated automatically by learning through available cases accumulated 

in clinical practice, and the BRB training can help to improve the system’s diagnostic 

performance statistically significantly. 

In a word, all the research questions presented in Section 1.2 of Chapter 1 have been 

addressed comprehensively by the study. 

7.3. Major Conclusions 

7.3.1. Findings 

This thesis has proposed using RIMER for developing an intelligent CDSS that can 

make use of the uncertainty-handling capability of RIMER for representing and 

reasoning with clinical domain knowledge under uncertainties. A preliminary 

feasibility study proved that it is logically feasible to employ RIMER for developing a 

CDSS. In order to demonstrate the technical feasibility of the proposed belief rule-

based CDSS, an online CDSS prototype was developed using Visual Studio 

2003 .NET and MATLAB. A set of patients in CCP was simulated by an expert 

clinician in MRI for validating the developed prototype. The major findings 

addressing the research questions are outlines as follows. 
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 The developed prototype CDSS shows the feasibility and viability of using 

RIMER for developing an online intelligent CDSS. 

 Representing clinical domain knowledge with belief rules and inference with 

BRB using the ER approach enables the system to handle uncertainties in both 

clinical domain knowledge and clinical data. 

 The group decision supporting module implemented in the prototype enables 

clinicians to hold online group meetings, discussions or consultations via the 

system. The ER-based group preferences aggregation mechanism in the module 

can help to arrive at a group combined diagnosis recommendation. 

 The BRB training module implemented in the system helps the system to update 

the knowledge base automatically by learning through available accumulated 

cases, and it helps to improve the system’s performance after learning from 

accumulated cases. Therefore, the training module enables the system to be 

adaptive to clinical practice and provide an evidence-based clinical decision 

support.  

 Structuring and storing BRB in relational database facilitates the interactions 

between knowledge base and other system components. It also facilitates the 

sharing of domain specific knowledge due to the mature database technology and 

networking technology. 

 The system validation offers encouraging outcomes for the system. Firstly the 

system can provide reliable diagnosis recommendations under clinical 

uncertainties. Secondly automatic BRB training using accumulated clinical cases 

can help the system improve diagnostic performance statistically significantly.  
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7.3.2. Contributions 

The research questions pursued in this study are new, creative, and important in 

CDSSs research fields. The research is quite complex and demanding, as it is 

interdisciplinary and mainly involves (a) investigation of the existent CDSSs; (b) 

investigation of clinical domain knowledge; (c) investigation of advanced models for 

representing and reasoning with clinical domain knowledge under uncertainties, group 

preferences aggregation, and knowledge base training; (d) system design and 

development; and (e) system validation. The research deals with theoretical 

investigation, field study, software development, and system validation. It bridges the 

gaps in the CDSS literature. Major contributions of the research are listed as follows.  

(1) From the CDSS research perspective: 

 The research develops a new CDSS framework which integrates automatic 

knowledge learning functionality and online group decision supporting 

functionality into a knowledge-based CDSS. 

 The research proposes and uses relational database to uniquely store and 

manage BRB model, and this makes physical knowledge base construction 

flexible and portable. It also makes the knowledge sharing between different 

clinical systems free of technology barriers thanks to mature relational 

database technologies. 

(2) From a practical domain application perspective: 

 The research develops a target clinical domain BRB for modelling domain 

specific knowledge under uncertainty. The BRB can be used not only for 
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generating automatic diagnosis recommendations but also for clinicians’ future 

domain knowledge reference in practice. 

  The research develops an ER based inference engine to infer with input 

uncertain clinical data and back-end uncertain domain knowledge in the BRB. 

The inference engine infers with different clinical uncertainties in a rational 

way, and can generate prioritised and informative diagnosis recommendations. 

 The research develops an ER based group clinical decision supporting module. 

The group decision support module provides not only a group diagnosis 

preferences aggregation mechanism but also a discussion forum for group 

consultants to hold online group discussions or consultations. 

 The research develops a BRB training module that can help update the 

embedded clinical rules automatically and routinely and keep the knowledge 

base being adaptive to clinical practice. 

 The research implements guideline-based user interfaces which not only 

facilitates clinicians complying with the practice guidelines, but also makes the 

integration of CDSS with clinical work flow implemented easily. 

7.4. Potential Future Research 

Although the research shows positive and encouraging results about employing 

RIMER methodology for developing a CDSS, there are limitations in the research. 

Firstly, from technical perspective, the system developed in the research is a prototype 

with preliminary functionalities, and the system has not been tested with real clinical 

scenarios. Secondly, from system validation perspective, only inference engine and 
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BRB training module were validated in the research with simulated data, the group 

decision supporting module was not validated due to lack of data. Thirdly, about the 

simulated data used in system validation, though the data is close to reality, the 

recorded outcome of patients in the dataset is a composite one, and the dataset can not 

tell exactly at which level that one patient’s clinical risk is. Fourthly, in clinical 

environment, one patient’s clinical data that are necessary for clinical risk assessment 

may not be available at the point of risk assessment, and the risk status of one patient 

may keep changing, but these two situations in clinical risk assessment have not been 

considered in the research. Finally, through the ROC curve analysis in system 

validation, we know that the system can provide reliable diagnosis recommendations 

and the system’s performance can be statistically significantly improved after BRB 

training, but it is difficult for doctors to accept the system and use it in clinical 

practice just based on current research outcomes. Then we need further research to 

convince the clinicians to accept the system in their clinical practice. 

We know that more work needs to be done to deploy the system in a real clinical 

environment. Future research on the belief rule-based online group CDSS could be 

promising in many areas. Some of them are listed as follows. 

 Apart from the uncertainty in domain knowledge and clinical data, which are 

represented as incomplete clinical rules in the system’s BRB and uncertain 

subjective judgements about patients’ clinical symptoms, there are other various 

types of uncertainties in clinical domain specific knowledge and patients’ data. 

For example, belief degrees assigned to possible consequents of one clinical rule 

may be an interval other than a numerical value. Thus the BRB model in the 

system can be further developed to embed other possible types and degrees of 
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uncertainties in domain knowledge, and the ER based inference engine can be 

extended to accommodate these uncertainties in the inference process.  

 A dynamic belief rule-based clinical inference model can be developed and 

integrated into the system for providing continuous and dynamic clinical decision 

support, considering the fact that availability of patients’ clinical data is unstable 

and the clinical status of a specific patient may keep changing in the diagnosis 

process. 

 The prototype can be tested by various real clinical scenarios, and real patients’ 

clinical data in target clinical areas can be used to train and to validate the system 

to get more convincible results about the system. 

 As for knowledge base training with accumulated clinical cases, study about more 

advanced BRB training techniques can be conducted for learning situations where 

there are no preliminary clinical rules but a large set of patients’ data is available 

in one clinical area. 

 The system can be deployed in a real clinical environment after various technical 

tests, and then the study about real clinical benefits that the system can bring to 

hospitals, doctors and patients can be conducted.  

 Research about user acceptance of the system can be conducted after the system 

is deployed in real clinical environment, considering the fact that doctors may 

still have doubts about the adoption of a CDSS in their clinical practice even if 

the system is proven to technically facilitate clinical decision making and help 

reduce medical errors. 

Many fruitful research can be conducted by using and enhancing the belief rule-based 
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online group CDSS although many challenges remain ahead. 
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Appendix A  Brief User Manual 

A1. Introduction 

This user manual briefly describes guidance on the use of the system for various 

specific purposes: support of individual diagnosis of one patient; support of group 

consultation about one patient; and support of automatic knowledge base updating. 

This brief user manual uses screenshots to guide system users to main features of the 

system.  

A2. Individual Diagnosis Support 

(1) Login as a clinician for the purpose of individual diagnosis. 

 

(2) Click on the main symptom of the patient. Note that we use upper 
gastrointestinal (GI) bleed as an example diagnosis for illustration in this 
manual. 
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(3) Click on ‘Please input patient’s personal information here’. 

 

(4) Input the patient’s personal information. 
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(5) Click ‘OK’ to go back to the main interface for diagnosis of upper GI 
bleed. 

 

(6) Click on ‘Complete PDI/050 overleaf’. 
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(7) Input your judgment about the patient. 

 

(8) Clinical decision support terminates here if the patient is not suitable for 
the guideline-driven investigation. 
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(9) Or, clinical decision support continues if the patient is suitable for the 
guideline-driven investigation. Click on ‘Complete CDU/051 overleaf’. 

 

(10) Input the patient’s clinical information for risk assessment. 
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(11) Click on ‘OK’ to check the risk assessment result for the patient. 

 

(12) Click on ‘Check it!’ to get the patient’s severity score. Input your 
judgment about the patient’s severity score. Click on ‘Link to all activated 
rules in the inference process!’ to check all rules activated in the process of 
assessing the patient’s risk. 
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(13) All activated rules are displayed.  

 

(14) Go back to the main diagnosis interface. Click on ‘Investigate IP/052 
overleaf’. Here we use clinical management of patient in ‘High risk’ for 
illustration in this manual. 
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(15) Select the clinical decision about the patient. 

 

(16) What to do next is to follow the ‘High risk’ branch in the guideline and 
manage the patient as the guideline indicated step by step. 
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A3. Group Consultation Support 

(1)  For group facilitator 

a. Login as a clinician for the purpose of group consultation. 

 

b. Click on ‘For Group Facilitator’. 
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c. Input necessary information about the patient who is the target of the 
group consultation.  

 

d. Select the purpose of the group consultation from the listbox. 
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e. Select available consultants whose expertise is in target area.  

 

f. Wait online for group consultants’ discussion and diagnosis preferences. 
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g. Facilitate the group consultation by inputting your judgment in the 
textbox. 

 

h. Click on ‘Ask the system to aggregate member consultants’ diagnoses’ 
after you have terminated the group consultation. 
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i. Assign weight to group consultants in the group consultation. 

 

j. Check the aggregated risk result for the patient. Click on ‘Edit’ to input 
final judgment for record purpose.  
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(2)  For consultant 

a. Login as a clinician to do group consultation. 

 

b. Click on ‘For Consultant’. 
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c. Input necessary information about the target patient.   

 

d. Check the recorded information about the patient.  
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e. Select your preference from the listbox about the patient’s risk level. 
Enter your judgment about the patient’s in the textbox. Click on ‘Link to 
the final group diagnosis of the patient!’ after receiving the message 
from the group facilitator for terminating the group consultation. 

 

f. Check the final aggregated risk result for the patient. 
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A4. BRB Updating Support 

(1)  Login as a clinician for the purpose of updating medical rules. 

 

(2)  Click on ‘Display All Rules Used in The System’ for displaying all medical 
rules stored in the system. Click on ‘Train Medical Rules based on Diagnosed 
Cases’ for automatically training medical rules using accumulated cases in the 
system. 
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(3)  For displaying medical rules 

a. Select the target rule base for displaying. 

 

b. Check all rules stored in the rule base. 
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(4)  For automatically updating medical rules 

a. Select target rule base for training. 

 

b. Click on ‘OK’ to train selected rule base using accumulated clinical 
cases. 
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c. Select the training parameters you want to check after the training. We 
use rule weights as an example for illustration in this manual. 

 

d. Trained rule weights are displayed. 
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Appendix B  BRB Inference Using the ER Approach in 

Recursive Format (Yang et al., 2006) 

Suppose we have a BRB that has L belief rules with N possible consequents, and rule 

activation weights ( )Lkk ,,1L=ω  and belief degrees in consequents 

( )LkNjjk ,,1;,,1 LL ==β  of the BRB have been calculated based on observed facts. 

The ER approach in recursive format can be directly applied to inference with the 

BRB as follows. 

First, transform the degrees of belief jkβ  for all Nj ,,1L= , Lk ,,1 L=  into basic 

probability masses using the following ER algorithm: 

Njm jkkkj ,,1,, L== βω  
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j jω . The 

probability mass assigned to the consequent set D, which is unassigned to any 

individual consequent, is split into two parts: one caused by the relative importance of 

the kth packet antecedent Ak (or kDm , ) and the other by the incompleteness of the kth 

packet antecedent Ak (or kDm ,
~ ). 

Then, aggregate all the packet antecedents of the L rules to generate the combined 
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degree of belief in each possible consequent jD  in D. Suppose )(, kIjm  is the 

combined degree of belief in jD  by aggregating the first k packet antecedents 

( )kAA ,,1 L , and )(, kIDm  is the remaining degree of belief unassigned to any 

consequent. Let 1,)1(, jIj mm =  and 1,)1(, DID mm = . Then, the overall combined degree 

of belief jβ  in  jD  is generated as: 
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Dβ  represents the remaining belief degrees unassigned to any jD . It has been proven 

that 1
1

=+∑ = D
N

j j ββ . The final conclusion generated by aggregating the L rules, 

which are activated by the actual input vector { }LkAA k ,,1,* L== , can be 

represented as 

( ) ( ){ }NjDAS jj ,,1;,* L== β . 
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