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ABSTRACT
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Around ten percent of patients admitted to National Health Service (NHS) hospitals
have experienced a patient safety incident, and an important reason for the high rate of
patient safety incidents is medical errors. Research shows that appropriate increase in
the use of clinical decision support systems (CDSSs) could help to reduce medical
errors and result in substantial improvement in patient safety. However several
barriers continue to impede the effective implementation of CDSSs in clinical settings,
among which representation of and reasoning about medical knowledge particularly
under uncertainty are areas that require refined methodologies and techniques.
Particularly, the knowledge base in a CDSS needs to be updated automatically based
on accumulated clinical cases to provide evidence-based clinical decision support.

In the research, we employed the recently developed belief Rule-base Inference
Methodology using the Evidential Reasoning approach (RIMER) for design and
development of an online belief rule-based group CDSS prototype. In the system,
belief rule base (BRB) was used to model uncertain clinical domain knowledge, the
evidential reasoning (ER) approach was employed to build inference engine, a BRB
training module was developed for learning the BRB through accumulated clinical
cases, and an online discussion forum together with an ER-based group preferences
aggregation tool were developed for providing online clinical group decision support.

We used a set of simulated patients in cardiac chest pain provided by our research
collaborators in Manchester Royal Infirmary to validate the developed online belief
rule-based CDSS prototype. The results show that the prototype can provide reliable
diagnosis recommendations and the diagnostic performance of the system can be
improved significantly after training BRB using accumulated clinical cases.
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Chapter 1

Introduction

1.1. Background

Patient safety incidents or adverse events, which are unintended or unexpected
incidents that could have or did lead to harm for one or more patients receiving
National Health Service (NHS)-funded health care, represent a serious public health
problem and pose a threat to patient safety (Thomas and Brennan, 2001). Research
shows that around 10% of patients admitted to NHS hospitals have experienced a
patient safety incident, and that up to half of these incidents could have been
prevented (Department of Health, 2004). Patient safety incidents cause great harm to
not only patients and their families, but also involved clinicians and host hospitals.
For example, it is estimated that patient safety incidents cost NHS £2 billion a year in
addition to hospital stays, without taking account of human or wider economic costs

(Department of Health, 2004).

In clinical governance (Department of Health, 1998), which is a framework through
which NHS organizations are accountable for continuously improving the quality of
their services and safeguarding high standards of care by creating an environment
favourable for the excellence in clinical care to flourish, the reduction of medical
errors and the improvement of patient safety have become major priorities since 2000

(Department of Health Expert Group, 2000).

Research shows that an important reason for high rate of patient safety incidents is

medical errors that are mostly caused by human factors (Reason, 2001). Take
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Emergency Department (ED) for example, causes of medical errors that can happen in
ED include clinicians’ inexperience or lack of training, interrupted clinical
management of patients due to clinicians’ shift schedule, clinicians’ languished
vigilance and alertness of patients’ abnormalities, and clinicians’ stress which may be
caused by patients’ various conditions or the working environment in ED (Driscoll et
al., 2001). In clinical governance, a very important action is to examine the potential
of information technology (IT) to reduce the risks to patients and improve the quality

of health care (Department of Health, 2001).

Appropriate increase in the use of IT in health care has proved to help bring
substantial improvement in patient safety (Bates et al., 2001). Particularly the
introduction of clinical decision support, and appropriate communications between
clinical decision support system (CDSS) and the deployed computerised clinical
systems have simplified the health care process and substantially facilitated clinical
practice and reduced medical errors (Sim et al., 2001, Kawamoto et al., 2005). There
are numerous examples of CDSSs in health care which, have successfully improved

the quality of health care (de Dombal et al., 1972, Jonsbu et al., 1993, Lin et al., 2006).

Significant research progresses, both theoretical and practical, have been achieved
since the idea of computer-based CDSSs emerged. Nonetheless few CDSSs in the
literature have been widely applied in practice. The causes for the low popularity of
CDSSs include, among others, uncertainties in clinical signs, clinical symptoms and
clinical domain knowledge, the complexity of involved inference mechanism,
difficulties with domain selection and knowledge base construction and maintenance,

and problems with system validation and evaluation (Miller and Geissbuhler, 1999).
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A recent survey conducted by Sittig and colleagues (2008) identifies several top
challenges in clinical decision support, among which ‘prioritised and filtered
recommendations to the user’ is the one for researchers in decision science area to
overcome. This challenge is closely related to inference methodologies used in
CDSSs. It requires that the inference mechanism in a CDSS should have the
capability of handling different clinical uncertainties and generating possible
recommendations with corresponding priorities attached to them and can filter

irrational recommendations.

Another challenge in CDSSs identified by researchers is to provide ‘evidence-
adaptive’ CDSSs to better facilitate evidence-based medicine (Sim et al., 2001). A
CDSS is evidence-based rather than evidence-adaptive if its clinical knowledge base
is derived from scientific evidence, but no mechanisms are in place to incorporate
new clinical evidence. On the contrary, a CDSS is evidence-adaptive if its knowledge
base is based on current evidence and its recommendations are routinely updated to
incorporate new clinical evidence (Sim et al., 2001). As a result, an evidence-adaptive
CDSS requires its knowledge base to be adaptive to up-to-date clinical evidence
which usually can be obtained from clinical literature and clinical practice. However it
is difficult for a CDSS to keep up with clinical literature since the contents of clinical
literature are textual and thus not machine-interpretable by present-day CDSSs.
Nonetheless, it is not insurmountable for a CDSS to adapt itself to accumulated
clinical cases in local clinical practice. The knowledge base, which is usually derived
from the best clinical literature or expert domain knowledge, can be updated
automatically and routinely based on evidence accumulated in clinical practice in an
evidence-adaptive CDSS. This requires that the knowledge representation scheme

employed in the evidence-adaptive CDSS should have a corresponding mechanism
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which can help the clinical rules embedded in the knowledge base to learn from

accumulated clinical cases routinely.

In short, CDSSs is promising in helping facilitate evidence-based medicine and
reducing patient safety incidents. But there are some challenges in CDSSs research
area that need to be tackled, and these challenges are closely related to knowledge
representation scheme and inference methodology. Therefore representation of and
reasoning with uncertain medical knowledge are areas that require refined
methodologies and techniques (Musen et al., 2006, Lin et al., 2006). Moreover,
although some researchers have proposed the idea of developing a CDSS which can
provide group decision support (Hatcher, 1990, Rao et al., 1996), few CDSSs in the

literature have the capability of providing group clinical decision support.

1.2. Research Questions

To surmount the challenges in CDSSs research as identified from the literature, a
recently developed new Rule-base Inference Methodology using the Evidential
Reasoning approach (RIMER) (Yang et al., 2006) is employed for developing a
CDSS in the research. In the CDSS, belief rule base (BRB) is employed to model
specific clinical domain knowledge such as clinical rules for risk assessment of
cardiac chest pain (CCP); the evidential reasoning (ER) approach is used as a
mechanism to do clinical inference and group clinical decisions aggregation; and an
optimization model is used to train or fine-tune BRB through clinical cases
accumulated in clinical practice. The research is aimed at answering three main

questions:

(1) Is it feasible to employ RIMER for developing a CDSS?
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(1-1) What are the system features of the existing CDSSs?

A very important motivation of the research is the lack of a CDSS in the literature
which can firstly, handle uncertainties properly in both clinical signs and symptoms
and clinical domain knowledge; secondly, provide group or collaborative clinical
decision support; and thirdly, have learning capability to automatically update the
knowledge base so that the system can be adaptive to clinical practice. To bridge the
gap identified in CDSSs literature, ‘what are the system features of the existing
CDSSs’ is the first and most important question we need to answer in the research.
System features include domain knowledge representation schemes, clinical inference
mechanism, and group clinical decision supporting capability implemented in one

CDSS.

(1-2) Is it feasible to employ BRB to model clinical domain knowledge for

developing a CDSS?

In the research, we proposed to apply the RIMER methodology for developing a
CDSS. It is original to use BRB to model domain knowledge in clinical areas,
although BRB has been successfully employed in modelling domain knowledge in
areas such as pipeline leak detection (Xu et al., 2007). The feasibility of employing
BRB to model clinical domain knowledge should be studied prior to the design and

development of a belief rule-based CDSS.

(1-3) Is it reliable to apply the ER approach to build inference engine in the

belief rule-based CDSS?

The ER approach has been successfully applied in inference with the BRB model

(Yang et al., 2006, Xu et al., 2007). However, it is novel to use the ER approach to do
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clinical diagnosis or inference. The reliability of using ER to do clinical inference in a

belief rule-based CDSS should be investigated in the research.

(2) How to facilitate online group clinical decision making and arrive at a group

combined clinical recommendation in a belief rule-based CDSS?

Groups are often perceived as better equipped than individuals to make difficult
decisions (Rangel, 2009). In CDSSs research, the idea of providing group or
collaborative decision support for doctors in practice is not new, but few CDSSs in
the literature have the capability of supporting group clinical decision making. In the
research, we should try to investigate how to facilitate online group clinical decision
making and arrive at a group combined clinical recommendation in a belief rule-based

CDSS.

(3) How to train belief rule-based CDSS and make its knowledge base to be

adaptive to clinical practice?

It is essential for an evidence-adaptive CDSS to have intelligent learning ability so
that its knowledge base can be adaptive to clinical practice. In the RIMER
methodology, some optimization models can be built to train BRB in belief rule-based
systems (Yang et al., 2007). ‘How to train belief rule-based CDSS and make its
knowledge base to be adaptive to clinical practice’ is a necessary research question we

need to investigate in the research.

1.3. Research Objectives

Based on the research questions above, the measurable objectives of the research are

as follows.

(1) To investigate the existent CDSSs, and to identify system features of the
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existing CDSSs.

(2) To acquire target clinical domain knowledge.

Although clinical domain knowledge can be found in medical textbooks, medical
journals, clinical practice guidelines, and so on, it is impossible for a non-medicine
relevant researcher to fully acquire or understand the knowledge all by himself or
herself. Thus it is crucial to acquire and elicit domain knowledge from proper expert
clinicians and get in-depth understanding of the domain knowledge through field

study.

(3) To investigate the feasibility of employing BRB to model clinical domain

knowledge and using the ER approach to do clinical inference in a CDSS.

Concerns would inevitably arise over whether it is feasible to use BRB for modelling
clinical domain knowledge and use the ER approach to build inference engine in a
CDSS, since employing the RIMER methodology for developing a CDSS is relatively
novel. The knowledge modelling methodology most commonly used in the existent
CDSSs since the early CDSS MYCIN is traditional ‘IF-THEN’ rules because of their
naturalness and transparency (Spooner, 1999, Spooner, 2007). In the feasibility
investigation of this research, inference with BRB using the ER approach is compared
to traditional ‘IF-THEN’ rule-based inference by examining real or simulated cases in

selected clinical area.

(4) To design and develop an online belief rule-based group CDSS prototype.

A belief rule-based CDSS should be designed and developed after the preliminary
feasibility study for the target clinical areas. In system design, the system architecture
can be designed as a web-based three-layer architecture, where system users from the
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client layer can access the CDSS through internet, and core system components reside
in the server layer, and most of data used in the system can be stored in the back-end
data layer. Knowledge base should be constructed using the BRB model, while the
kernel algorithm of inference engine and group decision supporting module should be
the ER approach, and the knowledge training module can train BRB via learning from

accumulated clinical cases.
In system development, Microsoft .NET technology is considered.

(5) To validate the online intelligent CDSS prototype using clinical cases in

target clinical areas.

Ideally, after system design and development, the CDSS prototype should be
validated by real patients’ data collected in clinical practice. If the real data of patients
can not be obtained, simulated patients’ data can be used for the purpose. A necessary

requirement for the simulated data is that it should be close to real patients’ data.

1.4. Research Approach

A research methodology consists of the combination of the process, methods, and
tools which are used in conducting research in a research domain (Nunamaker and
Chen, 1990). A research domain is the subject matter under study in a research project.
This research focuses on design, development and validation of an online belief rule-
based CDSS prototype. A multi-methodology approach (Nunamaker and Chen, 1990)
is employed in the study in that one methodology only is far from sufficient for the

current complex research.
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Firstly, modelling (Turban and Aronson, 2001) is a key method used in the research.
Similar to general DSS, a CDSS should include several models which represent
different parts of the clinical decision making problem, and these models are

knowledge-based model, inference model, and knowledge base optimization model.

Secondly, field study is employed for study of clinical work flow in NHS hospitals
and domain knowledge acquisition in knowledge modelling. By doing field study,
manual methods including interviewing and observing (Turban and Aronson, 2001)

are conducted in the research for knowledge elicitation.

Thirdly, a system development methodology - prototyping (Turban and Aronson,

2001) is used for CDSS prototype development,

Fourthly, statistical techniques including the receiver operating characteristics (ROC)
curve analysis (Metz, 1978) and comparison of the area under the ROC curve (AUC)
(Vergara et al., 2008) are used for analyzing the prototype’s diagnostic performance
in validating the CDSS prototype. Brief introduction to the statistical analysis used in

the research will be discussed in Chapter 6.

To sum up, four main research methods including modelling, prototyping, field study,
and statistical analysis are used complementarily in the research. Detailed description

of the research methods used can be found in Chapter 3.

1.5. Significance

The following research gaps regarding CDSSs have been identified by reviewing the

related literature.
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(1) There is a gap in knowledge modelling methodologies used in existent CDSSs

(Lin et al., 2006, Musen et al., 2006).

It is observed that not only clinical signs and clinical symptoms, but also clinical
domain knowledge described by individuals is inherent with uncertainties in nature
(Szolovits, 1995). To handle clinical uncertainties, various domain knowledge
modelling methodologies such as artificial neural networks (ANNs), Bayesian belief
networks (BBNs), cases have been applied in existent CDSSs. However, the existent
knowledge modelling methodologies have their own inherent drawbacks in
representing uncertainties in a transparent and easily understandable way (Lin et al.,

2006, Musen et al., 20006)..

(2) There is insufficient capability of handling uncertainties in inference

mechanisms used in existent CDSSs (Lin et al., 2006, Musen et al., 2006).

Inference mechanisms used in CDSSs are closely related to their corresponding
knowledge representation schemes. Through decades of development, researchers
have proposed various reasoning methods for handling uncertainties in clinical
decision making. Those methods include combining fuzzy logic or certainty factors or
Bayesian probabilities with traditional ‘IF-THEN’ rules, ANNs, etc. However, most
inference mechanisms used in the existent CDSSs can not handle clinical uncertainties
in a satisfactory way. For example, reasoning in ANN-based CDSS is hard for system
users to understand, and the knowledge base is restricted to its learnt zones. Another
example is Bayesian rule-based reasoning, which takes advantages of conditional
independence, but all conditional probabilities for modelling domain knowledge in a
Bayesian rule-based CDSS are hard to acquire or estimate. Therefore an inference

mechanism which can well handle clinical uncertainties and process clinical inference
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in a transparent way is needed in CDSSs research area (Lin et al., 2006, Musen et al.,

2006).

(3) There is insufficient intellectual capability of updating knowledge base in the
existent CDSSs to make them to be adaptive to clinical practice to support

evidence-based medicine (Sim et al., 2001).

In the literature, some non-knowledge-based CDSSs have learning ability to
automatically update their knowledge bases. For example, an ANN-based CDSS can
train all parameters of its network using a large historical dataset before the system
can be put into real use. However, non-knowledge-based CDSSs have drawbacks in
clinical reasoning because their knowledge base is restricted to the training data.
Knowledge learning functionality is rarely considered in system design and
development in knowledge-based CDSSs, which acquire domain knowledge manually
to construct knowledge bases. Therefore the intelligence of automatically updating
knowledge base according to daily clinical practice in existent CDSSs is not sufficient

(Sim et al., 2001).

(4) There is a lack of a CDSS which can provide group clinical decision support
together with individual clinical decision support (Rao et al., 1994, Rao et al.,

1996).

Although the idea of embedding group decision making with individual CDSSs has
been proposed by researchers (Hatcher, 1990, Hatcher, 1994, Rao et al., 1994), few
CDSSs in the literature have the capability of providing group or collaborative clinical

decision support.

The research is, therefore, of significance as it addresses the above gaps effectively.
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1.6. Contribution

In trying to fill the research gaps outlined above, the current research contributes to
both CDSS research and practical domain application. Major contributions of the

research are listed as follows:

(1) From a CDSS research perspective:

® The research develops a new CDSS framework which integrates knowledge-
based CDSS with automatic knowledge learning functionality and online

group decision supporting functionality.

® The research proposes and uses relational database to uniquely store and
manage BRB model, and this makes physical knowledge base construction
flexible and portable, and it makes it possible to share the knowledge between
different clinical systems free of technology barriers thanks to mature

relational database technologies.

(2) From a practical domain application perspective:

® The research develops a target clinical domain BRB for modelling domain
specific knowledge under uncertainty. The BRB can be used not only for
generating automatic diagnosis recommendations but also for clinicians’ future

domain knowledge reference in practice.

® The research develops an ER based inference engine to do inference with
input uncertain clinical data and back-end uncertain domain knowledge in the
BRB. The inference engine does inference with different clinical uncertainties

in a rational way, and can generate prioritised and informative diagnosis
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recommendations.

® The research develops an ER based group clinical decision support module.
The module provides not only a group diagnosis preferences aggregation
mechanism but also a discussion forum for a group of consultants to hold

online meetings and discussions or consultations.

® The research develops a BRB training module that can help to update the
embedded clinical rules automatically and routinely and help to keep the

knowledge base to be adaptive to clinical practice.

® The research implements guideline-based user interfaces which not only
facilitates clinicians complying with the practice guidelines, but also makes the

integration of CDSS into clinical work flow easily implemented.

1.7. Outline of Contents of the Thesis

The thesis comprises 7 chapters as shown in Figure 1-1.
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Research questions & objectives

(Chapter 1)

A 4

Literature review
(Chapter 2)

A 4

Research methodology & design
(Chapter 3)

A 4

A preliminary feasibility study
(Chapter 4)

A 4

Design & development of an online belief rule-based group CDSS prototype
(Chapter 5)

A 4

Validation of the online intelligent CDSS prototype
(Chapter 6)

A 4

Conclusions & future research
(Chapter 7)

Figure 1-1: Structure of the Thesis

Chapter 1 presents an overview of the research.

Chapter 2 reviews the state of the art of CDSSs.

Chapter 3 discusses methodologies employed in the research and the research design.

Chapter 4 presents a preliminary feasibility study of employing RIMER for
development of a CDSS, in which a comparison between a traditional rule-based

system and a belief rule-based system in drawing clinical conclusions is conducted.

Chapter 5 describes the design and development of an online intelligent group CDSS

prototype which provides individual clinical decision support, group consultation
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support, and automatic knowledge updating based on daily clinical cases accumulated

in clinical practice.

Chapter 6 discusses the validation of the developed prototype system using simulated

clinical cases in target clinical areas.

Chapter 7 summarises the whole thesis and discusses possible future research.
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Chapter 2

Literature Review

2.1. Introduction

CDSSs are computer systems designed to impact clinical decision making about
individual patients at the point of time that these decisions are made (Berner and La
Lande, 2007). With the increased focus on the prevention of medical errors, CDSSs
have been proposed as a key element of systems’ approaches to improve patient safety
(Bates et al., 1998, Kohn et al., 2000). If designed, developed, and implemented
properly, CDSSs have potential to improve the quality of health care service and

change the way medicine has been practiced (Sim et al., 2001, Kawamoto et al., 2005).

From early generation of CDSSs such as AAPhelp - the Leeds abdominal pain
diagnosis system (de Dombal et al., 1972), MYCIN (Shortliffe, 1976), and Quick
Medical Reference (QMR) (Miller and Masarie, 1989), to the evolution of modern
clinical decision support tools such as EON (Tu and Musen, 1999), PROforma (Fox et
al., 1998), and GLIF (Peleg et al., 2000) based on evidence-based clinical guidelines,
CDSSs have a history of almost 40 years. Significant research progresses, both
theoretical and practical, have been made since the idea of computer-based CDSSs
emerged. However, CDSSs are not yet common in patient care settings, and several
challenges such as representation of and reasoning about medical knowledge under
uncertainty, and integration of CDSSs into clinical workflow continue to impede the

effective implementation of CDSSs in clinical settings (Musen et al., 2006).
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This chapter provides a review of the literature which is essential in order to ascertain
the research work that has been carried out in CDSSs and reveal the topics in which
further research can be fruitfully made to advance both the literature and the practice
of CDSSs. The chapter is organised as follows. Section 2.2 outlines typical definitions
of CDSSs. Section 2.3 presents a review of state-of-the-art of CDSSs, where Section
2.3.1 provides a discussion of different types of CDSSs, Section 2.3.2 discusses
sources of different types of clinical uncertainties, Section 2.3.3 and Section 2.3.4
present a review of knowledge-based and non-knowledge-based CDSSs respectively,
group CDSSs are discussed in Section 2.3.5, and review of CDSSs validation study is
presented in Section 2.3.6. Finally, Section 2.4 concludes the review and identifies the

research gaps that this research aims to bridge.

2.2. Definition of CDSSs

There are different types of computerised systems in health care that can provide
potential clinical decision support. While traditional CDSSs are defined as systems
providing intelligent and automatic diagnostic inference or reasoning to generate
patient specific assessment or recommendations to aid clinicians, some medical
systems having no reasoning capability can also provide clinical decision support. For
example, BestBETs (http://www.bestbets.org/) is a web-based medical system
developed and maintained in Manchester Royal Infirmary (MRI) to provide evidence-
based clinical decision support, and the web-based system has a large volume of best
evidence topics provided by clinicians all over the world, but the system possesses no
reasoning capability. This review is based on CDSSs that have intelligent diagnosis or

assessment capability. Typical definitions of CDSSs in the literature are given below.
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Musen (1997) defines a CDSS as any piece of software that takes information about a
clinical situation as inputs and that produces inferences as outputs that can assist
practitioners in their decision making and that would be judged as intelligent by the

program’s users.

Miller and Geissbuhler (1999) defines a CDSS providing diagnostic decision support
as a computer-based algorithm that assists a clinician with one or more component

steps of the diagnostic process.

Sim et al. (2001) defines CDSSs as ‘software that is designed to be a direct aid to
clinical decision-making, in which the characteristics of an individual patient are
matched to a computerised clinical knowledge base and patient specific assessments

or recommendations are then presented to the clinician or the patient for a decision’.

All above cited definitions of CDSSs given by masters in CDSSs research specify
three similar key elements of a CDSS, namely (a) information about a clinical
situation or an individual patient that acts as the system’s inputs, (b) an intelligent
diagnosis or assessment mechanism which may contain one or more components, and

(c) patient specific assessments or recommendations that are the system’s outputs.

2.3. State-of-the-Art of CDSSs

2.3.1. Types of CDSSs

CDSSs can be classified into different types according to different criterion.

Berlin and his colleagues (2006) propose to classify CDSSs according to their

technical, workflow, and contextual characteristics.
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® Based on internet technology, CDSSs can be classified as stand-alone and web-

based systems.

If we classify CDSSs based on their technical characteristics, e.g. internet technology,
some early CDSSs such as AAPhelp - Leeds abdominal pain diagnosis system (de
Dombal et al., 1972) and MYCIN (Shortliffe, 1976) are stand-alone systems, some
recently developed CDSSs such as (Huang and Chen, 2007, Fearn et al., 2007) are

web-based or online systems.

® Based on the working environment, CDSSs can be classified as ED CDSS, ICU

CDSS, laboratory CDSS, and bed-ward CDSS, etc.

If we classify CDSSs based on the roles that they play in the process of clinical work
flow or their clinical working environment, some CDSSs target ED (Roukema et al.,
2008, Graham et al., 2008), some CDSSs target intensive care unit (ICU) (Gago et al.,
2007, Mack et al., 2009, Kumar et al., 2009), some CDSSs target laboratories (Grams,
1993), some CDSSs target bed-ward (Thilo et al., 2009), and some target medicine

prescription (Lin et al., 2009).

® Based on target clinical domain, CDSS can be classified as in different clinical

arcas.

If we classify CDSSs based on different clinical domains that they have impact on,
some CDSSs are for cancer pain management (Thilo et al., 2009), some CDSSs are
for acute abdominal pain (de Dombal et al., 1972), some CDSSs are for gynecological
diseases (Mangalampalli et al., 2006), and some CDSSs are for heart disease (Yan et

al., 2006), and so on.
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Metzger and her colleagues (2002) describe CDSS using different dimensions.
According to their research, CDSS differ among themselves in the timing at which
they provide support (before, during, or after the clinical decision is made) and how
active or passive the support is, i.e. whether the CDSS actively provides alerts or

passively responds to physician input or patient-specific information.

More generally, researchers classify CDSSs based on the way their knowledge bases
are constructed. Some are knowledge-based CDSSs in which domain knowledge is
acquired from domain experts or medical literature, and the others are non-
knowledge-based CDSSs which learn domain knowledge through large historical data

(Berner and La Lande, 2007, Spooner, 2007).

® Knowledge-based CDSSs

Before elaborating on the framework of knowledge-based CDSSs, here we provide a
brief discussion of general knowledge-based decision support systems (DSSs) first.
Klein and Methlie (1995) defined that a knowledge-based system is a computer
program that employs knowledge and reasoning to solve problems, and an expert
system (ES) is such a knowledge-based system, where knowledge and inference
procedures are modelled after human experts. For a traditional DSS, its aim is to
provide information in a given application domain by means of analytical decision
models in order to support a decision maker in making decisions. The framework of
knowledge-based DSSs is resulting from integrating DSSs technologies and ESs
technologies. It is based on the paradigm of decision support, but also enables us to
incorporate specialized knowledge and expertise into the system, and it can take

advantages of numeric computations in traditional DSSs and reasoning functions in
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ESs, and the system architecture consists of components from DSSs and ESs (Klein

and Methlie, 1995).

In CDSSs research area, many of today’s knowledge-based CDSSs arose out of
earlier ESs research. What we usually mean by a CDSS is a program that supports a
reasoning task carried out behind the scenes and based on clinical data. For example,
a program that accepts clinical information about a patient with some clinical signs
and symptoms and generates a list of possible diagnoses is what we usually recognize
as a diagnostic decision support system which is a particular type of CDSS. The intent
of these CDSSs is no longer to simulate an expert’s decision making, but to assist a
clinician in his or her own decision making. The system was expected to provide
information for the user, rather than to come up with “the answer” as was the goal of
earlier ESs. The knowledge-based systems cannot simply “learn” how to do the
reasoning task from modelling human experts, and the human expert must put the
knowledge into the system explicitly and directly (Berner and La Lande, 2007,

Spooner, 2007).

Based on the idea of knowledge-based CDSSs as proposed in the literature, a general
model of knowledge-based CDSSs in the literature can be depicted as in Figure 2-1.

We adopt the general knowledge-based CDSS model in our review.

Figure 2-1: A General Model of Knowledge-Based CDSSs (Spooner, 2007)
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From the general system structure as depicted in Figure 2-1, there are generally three
essential system components in a knowledge-based CDSS. The first component is a
knowledge base which includes clinical domain knowledge that is often, but not
always, represented in the form of traditional ‘IF-THEN’ rules. The second one is an
inference engine which contains algorithms or formulas for combining or matching
clinical rules in the knowledge base to input clinical data. The third part is a user
interface which is a communication mechanism between the system users and the
system allowing the system users to input the data of patients into the system and get
the automatically generated recommendations from the system to help to make final

clinical decision.
® Non-knowledge-based CDSSs

Unlike knowledge-based CDSSs that get clinical domain knowledge from expert
clinicians or medical literature, non-knowledge-based CDSSs use a form of artificial
intelligence called machine learning that allows the system to learn from past

experience and/or to recognise patterns in clinical data (Marakas, 2003).

CDSSs are classified as knowledge-based systems and non-knowledge-based systems
in the following review. Sources of different types of uncertainties in medical decision
making are reviewed first, since uncertainties in both clinical domain knowledge and
clinical situation are inevitable, and CDSSs are entangled with uncertainties since the

very early CDSSs such as MYCIN.

2.3.2. Sources of Uncertainties in Medical Decision Making

Uncertainty exists in almost every stage of a clinical decision making process

(Szolovits, 1995). Uncertainties may arise from the following circumstances.
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® Patients can not describe exactly what has happened to them or how they feel.

® Doctors and nurses can not tell exactly what they observe.

® Laboratories report results may be with some degrees of error.

® Physiologists do not precisely understand how the human body works.

® Medical researchers can not precisely characterise how diseases alter the normal

functioning of the body.

® Pharmacologists do not fully understand the mechanisms accounting for the

effectiveness of drugs.

® No one can precisely determine one's prognosis.

The above sources of uncertainties in both medical domain knowledge and clinical
symptoms during the process of medical decision making can be summarised as in
Table 2-1, where all roles involved in medical decision making are listed, and the
resultant uncertainties in medical domain knowledge or clinical symptoms related to

each role along with their causes are described as well.
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Table 2-1: Sources of Uncertainties in Medical Decision Making (Szolovits, 1995)
Roles Involved in Causes of Uncertainties Resultant
Medical Decision Uncertainties
Making
Patients Can not describe exactly what has happenedUncertainties in

to them or how they feel. clinical symptoms
Doctors Can not tell exactly what they observe and Uncertainties in
may produce laboratory results with some  clinical symptoms
degrees of error.
Nurses Can not tell exactly what they observe. Uncertainties in
clinical symptoms

Physiologists Do not precisely understand how the Uncertainties in
human body works. medical domain
knowledge

Medical Researchers Can not precisely characterise how diseases Uncertainties in
alter the normal functioning of the body.  medical domain

knowledge
Pharmacologists ~ Do not fully understand the mechanisms ~ Uncertainties in
accounting for the effectiveness of drugs. medical domain

knowledge

As shown in Table 2-1, all those listed roles including patients, doctors, nurses,
physiologists, medical researchers, and pharmacologists can have uncertain judgments
or observations. In consequence, uncertainties in medical domain knowledge, clinical
symptoms’ description, and phased diagnosis judgments provided by clinicians are

indeed unavoidable.

2.3.3. Knowledge-Based CDSSs

In the general structure of knowledge-based CDSSs as shown in Figure 2-1, core
components of knowledge-based CDSSs include user interfaces, knowledge base,
inference engine, decision models, and database. The user interfaces are used for
acquiring system’s inputs and displaying system’s outputs. The knowledge base is a
structured collection of expert medical knowledge used by the system. The inference
engine is a set of computerised algorithms used to match clinical inputs with

knowledge base to generate clinical recommendations. The decision models are to
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provide decision support for clinicians. The database is for storing system inputs and

outputs.

In a review study of what makes a CDSS successful in improving clinical practice
(Kawamoto et al., 2005), researchers found that a knowledge-based CDSS is as
effective as its underlying knowledge base only. In fact, the effectiveness of the
knowledge base is dependent on its knowledge representation scheme. Moreover, the
inference method used in the inference engine is also closely related to the
representation schemes used in a CDSS. The following subsections will shift to
review of the knowledge representation schemes and inference mechanisms used in

existent knowledge-based CDSSs.

2.3.3.1. Knowledge Representation Schemes

The goal of knowledge representation is to provide intelligent systems with
information about a specific domain in a form that can be processed efficiently, and
basically, knowledge representation schemes can be classified into four categories:
logic, procedural, graph/network, and structured (Carter, 1999). This section reviews

knowledge representation schemes according to these four categories.
® [Logic

Firstly, logic seems to be the most common representation format used by researchers
in the field of general artificial intelligence in the literature. In general, medical
knowledge can be divided into two types, namely declarative knowledge and
procedural knowledge. Declarative knowledge includes propositions and sentences.
Propositions are statements about the world that are either ‘true’ or ‘false’. These

statements may be connected by Boolean operators such as ‘and’, ‘or’, and ‘and not’
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to form sentences. Procedural knowledge provides more explicit information about
what action can be taken or what conclusion can be drawn from declarative
knowledge. For example, “‘ElectroCardioGram (ECG) shows >2mm ST elevation in
two contiguous chest leads’ or ‘ECG shows >1mm ST elevation in two contiguous
limb leads’ is declarative knowledge, and “IF ‘ECG shows >Imm ST elevation in
two contiguous limb leads’, THEN ‘treat the patient as with ST-Segment Elevation
Myocardial Infarction (STEMI)’” is procedural knowledge. The logic-based
representations are declarative in nature, in that they consist of ‘true’ or ‘false’
statements and all questions are resolved through standard logic inference mechanism

which is simply a ‘look up’ of known facts (Carter, 1999).

®  Procedural knowledge representation

Secondly, procedural knowledge representation, on the other hand, is not simply a
‘look up’ of known facts. It offers a ‘process’ to aid diagnostic and therapeutic
decision-making (Carter, 1999). Procedural knowledge in medicine is usually
provided in the form of rules in existent CDSSs. Many implemented CDSSs, from the
very early CDSSs such as MYCIN, PUFF (Aikins et al., 1983), and IMM/Serve
(Miller et al., 1996), to recently developed CDSSs such as Unified Medical Language
System (UMLS)-based CDSS (Achour et al., 2001), and Chinese medical diagnostic
system (Huang and Chen, 2007) are all rule-based. Actually, rules have been the
dominant knowledge representation scheme for medical expert systems since the days

of MYCIN (Carter, 1999).

In practice, because of the existence of uncertainty in clinical domain knowledge,

clinical signs and symptoms as discussed in Section 2.3.2, some CDSSs embed fuzzy
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logic, certainty factors or probabilities into traditional ‘[F-THEN’ rules to represent

knowledge with uncertainties.

Fuzzy logic has been widely applied in CDSSs (Shiomi et al., 1995, Suryanarayanan
et al., 1995, Palma et al., 2006). Certainty factors together with rules are employed in
chest pain diagnosis support system (Hudson and Cohen, 1987, Hudson and Cohen,
1988, Hudson and Cohen, 2002), and Bayes’ rule are used in Lliad (Warner, 1989).

However, it is hard to get Bayes’ probabilities (Spooner, 1999, Spooner, 2007).

®  Network-based knowledge representation

Thirdly, in terms of the network-based knowledge representation schemes used in
knowledge-based CDSSs, Bayesian belief network (BBN) is a commonly used
representation scheme, many CDSSs in the literature such as (Burnside et al., 2006,
Nicholson et al., 2008) are based on BBN. A Bayesian network is a way to put Bayes’
rule to work by laying out graphically which events influence the likelihood of
occurrence of other events. In CDSS design, the choice of adopting a Bayesian
network as representation scheme allows one to explicitly take advantage of
conditional independencies from the modelling viewpoint, and to rely on several
powerful algorithms for probabilistic inference. But it is really very difficult for
researchers to derive all necessary parameter values or probabilities among the
network (Stefania Montani, 2006). Decision trees are another network-based
knowledge representation schemes used in knowledge-based CDSSs, and they are
frequently used in guideline-based CDSSs such as EsPeR system (Colombet et al.,
2005) and breast cancer treatment CDSS (Skevofilakas et al., 2005). The advantage of

decision trees is that they are simple to understand and interpret, and it is possible that
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uncertainties can be incorporated into the decision trees. But it is always hard for

CDSSs developers to extract an exact decision tree from domain experts.

®  Structural representation

Fourthly, structural representations emphasise the ‘packaging’ of knowledge into well
defined pieces with higher levels of organizations (Carter, 1999, Carter, 2007).
‘Frame’ was the first widely accepted structural knowledge representation format
created in 1970s (Minsky and Haugeland, 1975), and it is an application of the object-
oriented approach to knowledge-based systems, and a frame is a data structure
containing typical knowledge about a concept or object. Some CDSSs such as earlier
CENTAUR (Aikins, 1980) and Arden Syntax (Clayton et al., 1989, Starren et al.,
1994), and GASTON (de Clercq et al., 2001) and GLARE (Terenziani et al., 2003)
all use frame as one of their representation formats. Since each frame has its own
name and a set of attributes or slots which contain values; for instance, the frame for
patient might contain an age slot, sex slot, smoking status slot, etc. frames can be used
to construct semantic network model. An important part of every frame is the pointer
to a more general frame. The slots are filled with fillers which can be either atomic
values or names of other frames. The slots of the generic frames can have procedures
attached to them. The reasoning in frame-based system starts by identifying of a given
object as an instance of a generic frame. After that all slot fillers which have not been
set explicitly but can be inherited, are inherited. Where available, the procedures for
frame can be invoked. Disadvantages of a frame-based system include: it can not
process objects which characteristics are not known in advance; it can not process non
typical situations; the procedural knowledge is not represented by a frame but by the

procedures attached to frames (Grigorova and Nikolov, 2007).
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In recent CDSS studies, Data-Base Management Systems (DBMS) offer another
structured format for knowledge representation, and there are two types of databases
which are frequently found in clinical settings—relational and object-oriented (Carter,
2007). Relational DBMS uses a relational record to store and manage data, and each
record has a number of fields. Records are then collected together into tables, while
each row in the table represents a unique rerecord and each column represents a
feature of the record. However, a column in the relational DBMS can not hold
more complex data structures, for example, another record, or a list of numbers.
Differing from relational database object-oriented DBMS incorporates object-oriented
technology into DBMS, where the data is seen as an object, and it permits greater
expressiveness by permitting the storage of data types that can not be handled by
relational DBMS (Pinciroli et al., 1992). Therefore some CDSSs use object-oriented
DBMS to store complex medical datasets which are limited by data types in relational
databases. A major drawback of DBMS is that although its Structured Query
Language (SQL) can manipulate ‘query’, ‘add’, ‘update’ and ‘delete’ to its stored
objects, it lacks a specific knowledge inference mechanism to reason and draw logic

conclusions from the data (Carter, 2007).

As discussed above, most knowledge representation schemes have their own
advantages and drawbacks. Especially in dealing with uncertainties, knowledge
representation schemes in existent CDSSs lack a mechanism that can
comprehensively incorporate or represent different clinical uncertainties in a

satisfactory way.

The choice of an appropriate knowledge representation scheme in the construction of

a knowledge base depends on the domain knowledge it represents and the inference
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mechanism it uses. Inference mechanisms used in existent CDSSs are reviewed as

follows.

2.3.3.2. Inference Mechanisms

An inference mechanism used in a CDSS is closely related to the corresponding
knowledge representation scheme employed in the system. From the literature,
inference mechanisms commonly used in knowledge-based CDSSs include rule-based,

Bayesian based, and frame-based.

In rule-based CDSSs, a set of ‘IF-THEN’ rules are processed. The forward and
backward chaining can be used to conclude a diagnosis and provide diagnostic
explanations for clinical users (Shortliffe and Perreault, 1990). Take forward chaining
for example, forward chaining is a top-down method taking facts as they become
available and attempts to draw conclusions from satisfied conditions in rules. The
process of inference using forward chaining involves assigning values to attributes,
evaluating conditions, and checking to see if all of the conditions in a rule are satisfied
so as to fire satisfied rules. If fuzzy logic is incorporated in rule-based systems for
handling uncertainties, compositional rule of inference (Zadeh, 1973) is commonly
used for fuzzy rule-based inference. If certainty factor as used in MYCIN (Shortliffe,
1976) is incorporated in rules for representing uncertainties, a threshold value need to

be set for assessing whether a rule in the rule chain is fired or not.

Bayesian systems predict the posterior probability of diagnoses based on the prior
disease probabilities, and the sensitivity and specificity of confirmed clinical signs
and symptoms (Warner, 1979). BBNs are often created as reformulations of

traditional Bayesian representations and can provide many of the same browsing and
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explanation capabilities of traditional systems (Li et al., 1994). Although Bayesian
rules are preferred by researchers in statistics, it is very hard to derive all necessary
probabilities and sensitivity and specificity of clinical signs and symptoms in target

clinical area.

As to reasoning in frame-based systems, it can not process objects which
characteristics are not known in advance. Since most medical knowledge is ill-
structured and involves uncertainties, it is difficult to use frames to make clinical

inference under uncertainties in CDSSs (Grigorova and Nikolov, 2007).

It is important to note that medical experts will turn to concrete examples to express
their knowledge when medical knowledge is difficult to be modelled in the format of
logical representation. In such situation, the case-based reasoning (CBR) approach
(Althoff et al., 1998, Kumar et al., 2009) is used in CDSSs. The advantage of CBR is
that concrete similar empirical clinical cases are more convincing than some other
implicit medical knowledge. The disadvantages of CBR include that it is difficult to
measure the similarity between cases, especially under different types and degrees of
uncertainties, the retrieval process is hard to be accurate and efficient, and the input

scheme required by the CDSS based on CBR may not be easily accepted by clinicians.

An important aspect of inference engines implemented in CDSSs is their
independence from their knowledge base. Since CDSSs take a great deal of time to

design and develop, reusability has been a focus of research (Tu et al., 1995).

2.3.3.3. Challenges of Knowledge-Based CDSSs

As reviewed from the literature, clinical uncertainties are inevitable not only in the

process of shaping domain knowledge in one formal format but also in each clinical
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role’s clinical judgments or observations. Thus one important aspect of knowledge
representation scheme and inference mechanism is their capability of representing and

reasoning under clinical uncertainties.

For knowledge-based CDSSs, dominant knowledge representation schemes used in
the literature that can somehow represent uncertainties include fuzzy rules, traditional
Bayesian rules, and BBN. Traditional ‘IF-THEN’ rules can be used together with
some certainty factors or fuzzy logic to represent uncertain clinical rules in target
clinical domain. Both traditional Bayesian rules and BBN wuse conditional

probabilities to represent clinical uncertainties to some degree.

However, there are drawbacks in reasoning with rules together with certainty factors,
or fuzzy logic, or Bayesian probabilities. Firstly, in rule-based CDSSs that
incorporates certainty factor model, the certainty factor in the conclusion of one rule
is based on the assumption that the premise is known with a certainty factor of 1, and
uncertainties are propagated through the rules of an inference chain. However, it is
unlikely that a premise is always perfectly known, and the premise of one rule can be
uncertain due to uncertain facts. Usually, in the system, a threshold value for premise
certainty factors is defined to prevent rules with too low premise certainty factors
from firing. For example, the premise threshold certainty factor is set to be 0.2 in
MYCIN, and the system will stop triggering one rule if calculated certainty factor of
its premise is 0.2 or less. This causes more or less information loss in the inference
process. Moreover, Clancy and Cooper (1984) observed that perturbations in certainty
factors led to an incorrect diagnosis in certain cases, and this observation suggests that
the certainty factor model may be inadequate for diagnostic systems (Heckerman and

Shortliffe, 1992). Secondly, in a fuzzy rule-based system, essential inference steps
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include: fuzzification and fuzzy rule inferencing, where fuzzification is for
interpreting a crisp numerical input as a fuzzy set with the membership function and
fuzzy rule inferencing is the process of reasoning with fuzzy rules. In cases when
linguistic result expressed by inferred fuzzy set contains required information, there is
no need for any defuzzification. In other cases, when a crisp value is needed for the
output variable, defuzzification is required. However, fuzzy rule inference is
controversial partly because of its fuzzification and defuzzification processes. Thirdly,
for Bayesian rule-based CDSSs, it seems that uncertainties in both clinical domain
knowledge and clinical signs and symptoms can be considered in both knowledge
representation and inference processes, but since this kind of CDSSs take advantages
of conditional probability and all necessary probabilities in the Bayesian rules or BBN
are difficult to derive, it is difficult for CDSSs researchers to elicit domain knowledge

from domain experts and to develop such CDSSs.

To conclude, although some existent knowledge-based CDSSs such as early MYCIN
have taken clinical uncertainties into consideration in system implementation,
methods used in existent CDSSs have their limitations in knowledge representation or
knowledge inference under uncertainties. For example, it is hard for experts to
estimate all parameters in Bayesian model based systems, and certainty factor model
may be inadequate for diagnostic systems in other clinical areas where the system
performance is sensitive to perturbations in certainty factors. Therefore, representation
of and reasoning about medical knowledge particularly under uncertainties are areas
that require refined methodologies and techniques (Lin et al., 2006, Musen et al.,

2006).
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2.3.4. Non-Knowledge-Based CDSSs

2.34.1. Machine Learning Technologies

In non-knowledge-based CDSSs, clinical domain knowledge is not extracted from
domain expert clinicians or medical literature, instead, it is automatically learned from
past experience or past clinical data by the system through some machine learning
technologies. Commonly used machine learning technologies used in non-knowledge-
based CDSSs include artificial neural networks (ANNs) used by Mangalampalli et al.
(2006), Yan et al. (2006), and Tan et al. (2008); genetic algorithms (GAs) used by
Grzymala-Busse and Woolery (1994) and Levin (1995); and decision tree learning

used by Gerald et al. (2002).
® ANNs

ANNs are frequently used by researchers as inference mechanism in CDSSs because
developers are not required to understand the relationship between input clinical data
and output clinical diagnosis recommendations during the development of this kind of
systems. ANNSs are a black box technique that models relationships by learning from
historical data, while developers of CDSSs based on Bayesian networks need to have
sufficient domain knowledge including related probabilities. Li et al. (2000) compare
ANNs with other mathematical models for building a traumatic brain injury medical
decision support system in their study, and the results suggest that ANNs may be a
better solution for complex, non-linear CDSS than conventional statistical techniques.
The major advantage of ANNSs is that they have the ability to learn from the observed

data. The disadvantage is that they are unable to provide reliable and logical
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representation of knowledge beyond their learnt zones, and the rules that the network

uses do not follow a particular logic and are not explicitly understandable.

®  Genetic algorithms (GAs)

GAs provide an approach to learning that is based on simulated evolution (Mitchell,
1997). The problem addressed by GAs is to search a space of candidate hypotheses to
identify the best hypothesis. Here hypotheses are often described by bit strings whose
interpretation depends on the application. Instead of searching from general-to-
specific or simple-to-complex hypotheses, GAs generate successor hypotheses by
repeatedly mutating and recombining parts of the best currently known hypotheses,
and the search for an appropriate hypothesis begins with a collection of initial
hypotheses. At each step, a collection of hypotheses is updated by replacing some
fraction by offspring of the fittest current hypotheses. In GAs the ‘fittest hypothesis’
is defined as the one that optimizes a predefined numerical measure for the problem at
hand. For example, if the learning task is to approximate an unknown function based
on a set of training examples with inputs and outputs, the hypothesis fitness can be
defined as the accuracy of the hypothesis over this training data. GAs have an
advantage that by iteratively extracting the best solutions, an optimal solution which
fits best can be reached, but how to define the fitness is a challenge in GA based

CDSSs (Spooner, 1999, Spooner, 2007).

®  Decision tree learning

In knowledge-based CDSSs, decision trees are used to represent domain knowledge if
they can be explicitly acquired from domain experts. While in non-knowledge-based
CDSSs, decision tree learning is used as a method to automatically acquire knowledge

from previous concrete cases that were already solved by domain experts (Hardin and
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Chhieng, 2007, Sam et al., 2008). In the process of learning a decision tree from
sample data, there is no need to make prior assumptions of data, and decision trees are
easily understandable. However, decision tree learning algorithms are unstable since
they can produce drastically different hypothesis from training examples that differ
just slightly, and there are limitations about the number and data type of output

variable (Mitchell, 1997).

2.3.4.2. Challenges of Non-Knowledge-Based CDSSs

On the one hand, as domain knowledge is learned from clinical data for non-
knowledge-based CDSSs, system users do not really know what happens in the
learning process and how the system handle those uncertainties in the learnt clinical
data, and it is this black-box learning process that hinders the use of non-knowledge-
based CDSSs. Take ANN-based CDSSs as an example, because clinicians can not
really understand the knowledge represented in ANNs, most clinicians would refuse

this type of CDSSs in clinical practice (Spooner, 2007).

On the other hand, in contrast to knowledge-based CDSSs, non-knowledge-based
CDSSs have an advantage of providing knowledge learning capabilities. This
advantage helps this type of CDSSs to be adapted to past clinical experience or
clinical data, while being adaptive to clinical practice is an important characteristic of

CDSSs to support evidence-based medicine (Sim et al., 2001).

To conclude, non-knowledge-based CDSSs have learning capabilities which help this
type of systems being adaptive to clinical practice, but their knowledge learnt from
past clinical experience or data are not easily understandable. This more or less

hinders clinicians using the systems. A potential research direction is to combine an
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easily understandable knowledge representation scheme with the learning capabilities
as used in non-knowledge-based CDSSs so that a knowledge-based CDSS can also
own learning capability and can be adaptive to clinical practice to provide evidence-

based clinical decision support.

2.3.5. Group CDSSs

Group or collaborative clinical decision making is another important research area of
CDSSs, and in the early 1990s, Hatcher (1990, Hatcher, 1994) did research on the
uniqueness of group CDSSs and proposed to use analytic hierarchy process (AHP) to
arrive at a clinical decision consensus in group CDSSs. In the mean time, Rao and his
colleagues (Rao et al.,, 1994, Rao and Suresh, 1995) found that although group
decision making is wide spread in medicine, limitations in technology and other
factors limited the growth of group CDSSs for medical decision making (MDM). Rao
et al. (1996) did an analysis on the classification of MDM from a group CDSS
perspective, and then Rao and Turoff (2000) proposed and developed a hypermedia-
based group CDSS to support collaborative MDM. MEDICALWARE™ (Rao and
Turoff, 2000), which is integrated with the group CDSS, is designed to provide
problem-solving support, access to clinical algorithms and procedures, expert
inference support and several MDM support tools with hypermedia functionality. In
the integrated group CDSS, Delphi method (Linstone and Turoff, 1975) was used for

supporting group decision making and achieving a group consensus.

However in the literature, there are currently not many publications on group CDSSs
yet apart from the above mentioned studies. But group or collaborative clinical
decision making is becoming popular in today’s health care (Rao et al., 1996,

Christensen and Larson, 1993, Rangel, 2009).
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2.3.6. Validation of CDSSs

Validation is a crucial component in the development of any CDSS (Berner, 1999). In
the literature, appropriate validation design is considered as an important perspective
in formal validation of CDSSs (Miller, 1996). Keith and Greene (1994) studied
validation of CDSSs from the following perspectives: (1) validation of the expert
knowledge; (2) validation of the integrated system; (3) external validation of the
system; (4) in-house online trial; (5) multicenter randomised trial in validation of their
system. Thomas et al. (1999) used case scenarios to validate their guideline-based
CDSS. Becker and colleagues (1997) validated their CDSS by validating not only the

knowledge base, but also the inference mechanism.

As discussed in the literature, a sound CDSS validation study contains the following
fundamental components: enough clinical cases for validation; an appropriate

validation design; knowledge base validation; and inference engine validation.

2.4. A New Belief Rule-base Inference Methodology Using the

Evidential Reasoning Approach

Above review helps to give audience a rough holistic picture of existent CDSSs, and
through the review we know that representation of and reasoning about medical
knowledge particularly under uncertainties are areas that require refined
methodologies and techniques. Motivated by this, we looked into the possibility of
using a recently developed new belief Rule-base Inference Methodology using the
Evidential Reasoning approach (RIMER) (Yang et al., 2006) to implement a CDSS
that can represent uncertain clinical domain knowledge and provide informative

clinical diagnosis recommendations.
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Next we provide a brief discussion of RIMER and its advantages compared to other

knowledge representation and reasoning methods used in existent CDSSs.

2.4.1. What is RIMER?

RIMER contains three main parts, one part is a model for representing uncertain
knowledge, one part is the method to do inference with knowledge and observed facts,
and one more part is an optimization model for fine-tuning knowledge model. In
RIMER, the belief rule base (BRB) is used for modelling target clinical domain
knowledge and the evidential reasoning (ER) approach is used to do clinical inference,
and a BRB optimization model is designed and used to train the belief rule-based
CDSS. BRB is extended from traditional rule base by adding a belief structure to it, in
which knowledge representation parameters including rule weights, antecedent
attribute weights and belief degrees in consequents are considered. The ER approach
(Yang and Sen, 1994, Yang and Singh, 1994, Yang and Xu, 2002) was originally
proposed to deal with multiple attribute decision analysis (MADA) problem having
both qualitative and quantitative attributes under uncertainty. In the situation of
reasoning with BRB, ER is employed to combine all belief rules triggered by
observed facts in the inference process, where the uncertainties in both observed facts
and belief rules can be rationally preserved and their effects can be represented in the

final reasoning results.

Details of BRB, inference with BRB using the ER approach, and the BRB

optimization model can be found in Section 3.2 of Chapter 3.
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2.4.2. Advantages of RIMER

Compared with alternative knowledge representation and reasoning methods used in
existent CDSSs, advantages of using BRB for uncertain domain knowledge modelling
and using the ER approach for reasoning with uncertain knowledge are discussed as

follows.

24.21. Advantages of Modelling Clinical Domain Knowledge

with BRB

When choosing a modelling methodology to model domain knowledge, several
factors including naturalness, uniformity, and understandability; degree to which
knowledge is explicit (declarative); modularity and flexibility of the knowledge base;
efficiency of knowledge retrieval; and capability of uncertainty representation should
be taken into account (Turban and Aronson, 2001). For a knowledge-based CDSS,
transparency and explanation ability of the system affect user acceptance. The more
transparent the system is, the easier will it be for users to accept it (Tsymbal et al.,

2009).

Compared to alternative methodologies used to model clinical domain knowledge in

existent CDSSs, BRB has following advantages:
® Transparent representation of domain knowledge

Not like ANNs representing domain knowledge in black boxes, belief rules can
represent domain knowledge in a transparent way. Take a belief rule ‘IF there is new
left bundle branch block (LBBB) with possibility of 80%, AND the history and

examination are strongly suggestive of STEMI, THEN the patient is diagnosed as
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with STEMI with 90% belief degree’ for example, the relationship between the
antecedent ‘new LBBB with possibility of 80%, AND the history and examination are
strongly suggestive of STEMI’ and the consequent ‘diagnosed as with STEMI’ is
transparent. While in ANNS, there is no transparent knowledge about the conclusion
‘diagnosed as with STEMI’. A non-expert has no idea about what happens between
the input and output, and even those parameters used in ANNs need to be pre-trained

by historical data.

® Naturalness of representation

Same as traditional rules, belief rules is a very natural knowledge representation
method with a high level of comprehensibility, and they look like a natural language
expression. For example, even a non-expert in clinical area who has no knowledge of
‘LBBB’ and ‘STEMI’ can understand the logic behind the example belief rule

discussed above.

® Handling different types of uncertainties in clinical decision making

BRB provides a flexible framework to capture different types of uncertainties in
clinical signs, symptoms and clinical domain knowledge. Take the belief rule
discussed above for example, it represents the uncertainties in domain knowledge for
diagnosing one patient as with ‘STEMI” when a clinician can not be 100% sure of the
patient’s Electrocardiograph (ECG) signs and the patient’s history and examination.
At the same time, the rule captures uncertainties in clinical symptoms such as ‘new
LBBB with possibility of 80% and ‘the history and examination are strongly

suggestive of STEMI’.

® Provision of explanations
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Given that explanations in CDSSs are necessary, BRB has the ability to provide
explanations for the derived conclusions in a straightforward manner. If a patient is
diagnosed as with ‘STEMI’ to a belief degree of 0.9 by a belief rule-based CDSS, the
system can provide an explanation of the diagnosis recommendation by presenting
users the inputs about the patient’s clinical signs and symptoms and all activated

clinical rules in the inference process, which are very straightforward.

2.4.2.2. Advantages of Using the ER Approach for Clinical

Inference

As to clinical inference, the ER approach has many advantages compared to

alternative reasoning methods used in existent CDSSs.
® Preserving uncertainties in the inference process

The ER approach initially aims to provide assessment to MADA problems which
have both quantitative and qualitative attributes with uncertainties. In the application
of reasoning with clinical BRB model, it is used to combine all belief rules triggered
by input facts with different belief degrees. Uncertainties in the inference process may
be caused either by uncertain domain knowledge or uncertain clinical data. Firstly,
uncertainties in domain knowledge such as incompleteness, and nonlinear causal
relationships can be represented in belief rules by belief degrees. Secondly, an input
with uncertainties to an antecedent clinical symptom can be transformed into a belief
distribution on all referential values of the antecedent with different matching degrees,
and the distribution describes the degree of each antecedent being activated.
Subsequently, inference using the ER approach takes into consideration of both the

rule activation weight and belief degrees in possible consequents, and thus both
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uncertainties in domain knowledge and input data can be rationally preserved and

their affects can be represented in the final reasoned results.

® Providing informative and prioritised clinical recommendations

The ER approach can generate a distributed consequent associated with belief degrees
after aggregating all activated rules in the inference process, and the inferred results
with belief degrees attached to possible consequents can provide an informative
clinical recommendation compared to those recommendations with single result. For
example, if a patient is diagnosed as with {(STEMI, 0.9878), (LBBB without STEMI,
0.0122), (neither STEMI nor LBBB, 0)} after matching the patient’s clinical data with
clinical rules in the BRB by the ER approach, we can see that all possible consequents
including ‘STEMI’, ‘LBBB without STEMI’, and ‘neither STEMI nor LBBB’ have
been associated with belief degrees in the inferred result, and the belief degrees
demonstrate different confidence in corresponding consequents, and such a type of
recommendation is more informative than inferred result with only one consequent
without belief degree such as {STEMI} or {LBBB without STEMI} or {neither

STEMI nor LBBB}.

® Ranking the severity of patients’ illness

ER-based inferred results can provide a severity ranking of patients’ illness, based on
the concept of utility and utility interval as proposed by Yang and Xu (2002) for the
combined assessment result generated by the ER approach. Let us examine the same
example again which is discussed above. Similar to the concept of expected utility
value, in the context of clinical diagnosis, we can use a severity score ranged from 0
to 1 to represent the seriousness of patient illness, where 1 represents that the patient

is in a most serious status and O represents that the patient has no clinical risk at all.
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For example, we can assign a severity score of 1 to patients with ‘STEMI’, a severity
score of 0.5 to patients with ‘LBBB without STEMI’, and a severity score of 0.25 to
patients with ‘neither STEMI nor LBBB’, where ‘STEMI’ is severer than ‘LBBB
without STEMI’ and ‘LBBB without STEMI ’is severer than‘ neither STEMI nor
LBBB’. Thus we can get an overall severity score for a patient with distributed
diagnosis recommendation, and the overall severity score is calculated by the
following equation: (overall severity score) = (severity score of ‘STEMI’) * (belief
degree in ‘STEMI’) + (severity score of ‘LBBB without STEMI’) * (belief degree in
‘LBBB without STEMI’) + (severity score of ‘neither STEMI nor LBBB’) * (belief
degree in ‘neither STEMI nor LBBB’). As to the patient with the distributed diagnosis
result {(STEMI, 0.9878), (LBBB without STEMI, 0.0122), (neither STEMI nor
LBBB, 0)} as discussed above, the overall severity score of the patient can be
calculated by (1*0.9878+0.5*%0.0122+0.25*0) = 0.9939. It is this overall severity

score that can be used as a measure to rank the severity of patients’ illness.

® Learning capability

Most existent knowledge-based CDSSs such as traditional ‘IF-THEN’ rule-based
systems and frame-based systems lack knowledge learning capability. While domain
knowledge used in existent non-knowledge-based CDSSs such as ANN-based

systems can only be learned from historical clinical data.

In belief rule-based CDSSs, domain knowledge can be explicitly modelled using BRB.
However, it is difficult to accurately determine the parameters of a BRB entirely
subjectively, and a change in rule weight or attribute weight may lead to changes in
the performance of a BRB. As such, the ER algorithm used for inference with BRB

model can be used to form optimization models to train BRB using accumulated past
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clinical data. Therefore, inference with BRB model using the ER approach can

possess system features of both knowledge-based and non-knowledge-based systems.

However, RIMER has its limitations. For example, just like knowledge representation
schemes used in existent knowledge-based CDSSs such as traditional rule-based
systems, it is hard to extract belief rules from experts. Though knowledge
representation parameters of BRB models can be fine-tuned by historical data, the
accuracy of the initial BRB in a belief rule-based CDSS is very important to the

system performance.

2.5. Conclusions

After a critical review of the literature on CDSSs, a conclusion can be drawn that a
number of CDSSs have been developed in the past 40 years, many of which show
potential for making significant impacts on patient care. However, after decades of the
development of these programs, no CDSS is widely used by clinicians (Carter, 1999,

Carter, 2007).

Miller and Geissbuhler (1999) identified that there are a number of problems that have
limited the ultimate success of CDSSs, and these include difficulties with domain
selection and knowledge base construction and maintenance, problems with the
diagnostic algorithms and user interfaces, and problems with system validation or

evaluation.

In more recent studies, Kawamoto et al. (2005) identified four features of CDSSs as

independent predictors of a good CDSS:

(1) Automatic provision of decision support as part of clinical work flow.
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(2) Provision of recommendations rather than just assessments.
(3) Provision of decision support at the time and location of decision making.

(4) Computer based decision support.

To achieve those four features as identified by Kawamoto and his colleagues, a CDSS
should have (a) a friendly user interface that help the clinicians easily play their roles
in part of the clinical work flow; (b) a knowledge base which contains comprehensive
clinical domain knowledge including uncertainties; (c¢) an intelligent diagnostic
inference mechanism that can handle medical uncertainties; (d) linkage to the whole
clinical work flow; and (e) reliable, informative and prioritised clinical decision
recommendations. These requirements are consistent with Miller and Geissbuhler’s

findings about what accounts for the lack of CDSS application in clinical practice.

The problem of developing an adequate database which can store both patients’
clinical data and declarative and procedural knowledge may not be difficult to
overcome with the rapid development of networking and database technologies.
However, representation of and reasoning about clinical domain knowledge under
uncertainty, and keeping the knowledge base be adaptive to clinical practice are still

the main challenges in CDSSs.

Based on the review results, the following four issues are identified as research gaps

in CDSSs literature.

(1) Current CDSSs need a more informative knowledge representation scheme
which can represent uncertain clinical domain knowledge comprehensively and

accurately (Musen et al., 2006, Lin et al., 2006).

(2) Current CDSSs need a refined inference mechanism which can reason with
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information which has different uncertainties (Musen et al., 2006, Lin et al.,

2006).

(3) Current CDSSs need an intelligent learning capability to automatically update
reasoning rules by learning from past experience or clinical data to make the

system be adaptive to clinical practice (Sim et al., 2001);

(4) Few CDSSs in the literature support both individual and group clinical decision
making although group MDM attracted attention for CDSSs researchers (Hatcher,
1990, Hatcher, 1994, Rao et al., 1994, Rao et al., 1996, Rao and Turoff, 2000).
There is a need for a CDSS that can also support group or collaborative clinical

decision making.

To address the gaps as described above, the recently developed RIMER was
investigated and employed in this research for clinical knowledge representation and
inference under uncertainties (Kong et al., 2008a, Kong et al., 2008b, Kong et al.,
2009). In RIMER, a rule base is designed with belief degrees embedded in all possible
consequents of a rule. Such a rule base is capable of capturing vagueness,
incompleteness, and nonlinear causal relationships, while traditional ‘IF-THEN’ rules
can be represented as a special case. Inference in such a rule base is implemented

using the ER approach.
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Chapter 3

Research Methodology and Design

3.1. Introduction

Research is defined as a systematic investigation to establish facts or principles or
collect information on a subject (Collins English Electronic Dictionary, 2008). Usually,
a study is conducted in sequential research process stages from deciding research topic,
defining research objectives, and choosing appropriate research methodologies to
collecting data, analyzing data, developing conclusions, and finalizing findings.
Choosing appropriate research methodologies and making a good research design
before conducting core research is important for a study to produce fruitful research
results. This chapter discusses the research methodologies and research design of the
study. A multi-methodology approach (Nunamaker and Chen, 1990) is employed in
the study to investigate how to design, develop, and validate a belief rule-based CDSS
that can provide online, intelligent, group and informative clinical decision support
under uncertainties. In the research, modelling and prototyping are main research
methods for design and development of the target CDSS. Field study is used to acquire
more specific clinical domain knowledge and to get better understanding of clinical
work flow. Statistical techniques are used to analyze the generated results in validating

the developed prototype system.

This chapter is organised as follows. The modelling methodology is discussed in
Section 3.2, where three models used in the research for design and development of an

intelligent evidence-based CDSS are discussed together with their advantages
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compared to available alternative models used in existent CDSSs. The system
development methodology-prototyping (Turban and Aronson, 2001) and its advantages
compared to other system development methodology are presented in Section 3.3.
Field study and statistical techniques are discussed in Section 3.4 and Section 3.5
respectively. A research design is also discussed in Section 3.6. Finally, the chapter is

summarised in Section 3.7.

3.2. Modelling

CDSSs are large systems consisting of interrelated components working together in a
coordinated manner. Generally, a knowledge-based CDSS should consist of five
essential components if we use a Data-Base Management System (DBMS) to store
both inputs and outputs of the system, as shown by the general system structure in
Figure 2-1 of Chapter 2. The first component is user interfaces, which facilitate
communication between system users and the systems. The second one is a knowledge
base, which contains the clinical rules necessary for the completion of its task. The
third one is a database, in which data and conclusions can be stored. The fourth
component is an inference engine, which matches clinical rules to input data to derive
its conclusions. The fifth one is decision models employed in the system to provide
different types of decision support. Considering machine learning through past clinical
experience and group clinical decision support, we can integrate a machine learning
functionality and an online group decision supporting functionality into the
knowledge-based CDSS. The system should then contain two more components -

knowledge training module and group decision supporting module.

It is found from the literature, as discussed in Chapter 2, that a good CDSS should

follow the three principles. Firstly, building appropriate knowledge base and inference
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engine to provide intelligent and accurate clinical decision support under uncertainties
is important for a CDSS to be successful in practice. Secondly, providing online group
clinical decision support is necessary for a CDSS to meet the needs of inevitable group
clinical decision making in clinical practice. Thirdly, building a knowledge training or
learning module to automatically update knowledge base according to accumulated
clinical practice is necessary for a CDSS to support today’s evidence-based medicine.
Different reasoning methods one could use in arriving at a diagnosis in the literature
could be using rules, statistics, neural networks, comparison with past cases and so on.
The knowledge representation scheme and the knowledge training model chosen are
closely related to the reasoning method. The group decision achieving methods used in
existent group CDSSs include Delphi method (Rao and Turoff, 2000) and AHP

(Hatcher, 1994).

In the research, a new belief rule-based inference methodology called RIMER (Yang et
al., 2006) is investigated and employed for the design and development of an online
intelligent group CDSS, and the target CDSS can help bridge the research gaps as

identified in Chapter 2.

In the clinical BRB model, domain knowledge is represented by a new knowledge
representation scheme, i.e. belief rules. They are different from conventional rules in
that they are designed with belief degrees embedded in all possible consequents of a
rule, and other knowledge representation parameters such as the weights of rules and
antecedent attributes are also considered in this scheme. Such a BRB is capable of
capturing the vagueness, incompleteness, and nonlinear causal relationships in

knowledge (Yang et al., 2006).
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In a belief rule-based system, an input to an antecedent attribute is transformed into a
belief distribution on referential values of the attribute, and subsequently inference
with the BRB is implemented using the ER approach. As a result of the ER-based
aggregation of all activated rules in the BRB, all possible consequents in the inferred

result are associated with belief degrees.

The ER approach, which is used for aggregating all activated belief rules in RIMER
methodology, is also employed to aggregate all group clinicians’ diagnosis preferences
in the system thanks to its advantages of combining both quantitative and qualitative

judgments under various uncertainties.

As for knowledge training in a belief rule-based system, several online and offline
BRB training models have been proposed by researchers (Zhou et al., 2009, Zhou et al.,
2010, Yang et al., 2007). Some models target both BRB structure and knowledge
representation parameters training (Zhou et al., 2010), while some other models target
only knowledge representation parameters training (Yang et al.,, 2007, Zhou et al.,
2009). Based on previous research on BRB training in the literature, an optimization

model for training the belief rule-based CDSS was implemented in the research.

The following subsections briefly introduce BRB, ER, and the optimization model

used for BRB training..

3.2.1. BRB

BRB is extended from traditional rule base by adding a belief structure, in which
knowledge representation parameters including rule weights, antecedent attribute

weights and belief degrees in consequents are considered.
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Conventionally, in a rule base, the kth rule in an ‘IF-THEN’ format can be described as

R, :If A A A} /\-~-AA£,then D, (3-1)

where 4 (i=1,...,7,) is a referential value of the ith antecedent attribute in the kth
rule, and 7, is the number of the antecedent attributes used in the kth rule. Dy is the

consequent of the kth rule.

If rule weights, antecedent attribute weights, and belief degrees associated with all
possible consequents are taken into account, rule described in (3-1) can be extended to
a packet rule using a belief structure, which is referred to as a belief rule and can be

described as R, :

If Af A AS Ao A A;‘I(,Then {(Dlaﬁlk)’(DZ’EZk)’""(DN’EN/C )}

N
[ B, =0, Z B j with a rule weight 6, and attribute weights (3-2)
i=1
O

ke{l }

é‘kl ’§k2 ’°

where Eik (i =1---,N;k = 1,-~,L) is the belief degree originally given by experts to
which D, is believed to be the consequent if in the kth belief rule the input satisfies the
packet  antecedents A" = (Alk,Aéc oo Ay, ) , the attribute ~ weight
S.(i=1,..,T,;k=1,..,L) represents the relative importance of the ith antecedent
attribute in the kth rule, and the rule weight 8, represents the relative importance of the
kth rule in the rule base. L is the number of all belief rules in the rule base. 7, is the

number of all antecedent attributes used in the kth belief rule. N is the number of all

possible consequents in the rule base.
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BRB is a collection of belief rules as described by (3-2). Inference with BRB is
implemented using the ER approach, and knowledge representation parameters
including rule weights 6, (k =1,...,L) , antecedent attribute = weights
5ki(i:1,...,Tk;k:1,...,L) and consequent belief degrees ﬂik(z’e{l,...,N}) can be

learned from past experience or data.

3.2.2. The ER Approach

The ER approach (Yang and Sen, 1994, Yang and Singh, 1994, Yang and Xu, 2002)
originally aims to deal with multiple attribute decision analysis (MADA) problem
having both qualitative and quantitative attributes under uncertainty. The kernel of the
ER approach is an ER algorithm which is developed for aggregating multiple attributes
based on a belief decision matrix and the evidence combination rule of the Dempster-
Shafer (D-S) theory (Shafer, 1976). Different from traditional MADA approaches that
describe a MADA problem using a decision matrix, the ER approach uses the belief
decision matrix, in which each attribute of an alternative is described by a distribution
assessment using a belief structure. How to use the ER approach to do inference with
BRB and how to use the ER approach to aggregate group preferences are briefly

discussed as follows.

3.2.2.1. Inference with BRB Using the ER Approach

Assume a BRB has L belief rules {Rl,R2,~ R, }, and the kth rule can be described as
R, : If U is A", then D is with belief degree B*, where U represents the

antecedent attribute vector, 4 represents the packet antecedents in kth rule, D

represents the consequent vector (Dl,Dz,---,DN) of the rule base, and S* represents
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the vector of belief degrees (f3,,, 3.+ By ) in the rule base. N is the number of

consequents in the BRB and k € {l,---,L}. In inference with the BRB using the ER

approach, a belief rule expression matrix can be described as Table 3-1.

Table 3-1: A Belief Rule ExEression Matrix for the BRB (Yang et al., 2006)

Input
QU] () | 4(w,) 4 (o,) A" (@)
Dl ﬁll ﬂlZ ﬁlk ﬂlL
2 ﬂZl ﬂ22 ﬁZk ﬂ2L
D, | B | B B B
DN ﬂNl ﬂNZ ﬂNk ﬂNL

In the belief rule expression matrix, D;(i e {l,..., N}) is the consequent vector D which
represents possible consequent in the rule base, and S, (i € {l,...,N },k € {1,...,L})

represents belief degree associated to the ith consequent in the kth belief rule in the

BRB. o, is the activation weight of the kth rule, which measures the degree to which

the kth rule is weighted and activated in the inference process.

The ER algorithm has recursive and analytical formats (Wang et al., 2006), the
following brief discussion of inference with BRB is based on the recursive ER
algorithm as introduced in the original paper for proposing RIMER (Yang et al., 2006),

and the inference process can be described by the following five steps.

o Step 1: Transform input clinical data to a distribution on referential values of

relevant antecedent symptoms using belief degrees.
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Given an input U = (U,, i=1, ..., T) together with its corresponding belief degree

e=(&,i=1---,T), where T is the total number of antecedent attributes in the rule

base, U; (i=1, ..., T) is the input value of the ith antecedent attribute, and

g;(i=1,---,T) represents the degree of belief assigned to the input value U; of the ith

antecedent attribute, which reflects the uncertainty of the input data. How should the
BRB be used to infer and generate output? Before an inference process starts, all input
data need to be transformed to a distribution on referential values of each antecedent
attribute using belief degrees and this transformation process can be implemented by
the rule or utility-based equivalence transformation techniques (Yang, 2001). For
example, the input value U; for the ith antecedent attribute along with its belief degree

&, can be transformed as
SW,.&)={4,.a,}j=1,....J, }i=1,...T (3-3)

where 4, is the jth referential value of the ith antecedent attribute, «; the degree to

which the input U; with belief degree &, belongs to the referential value 4, with
;20 and ijl a; < l(i =12,...,T ), and J; is the number of all referential values of

the ith antecedent attribute.
® Step 2: Calculate the activation weight of each rule in the BRB.

After the input transformation, the activation weight w, (k =1,..., L) which measures

the degree to which the packet antecedent A" in the kth rule is activated, can be

calculated with
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o = = (k=1---,L) (3-4)

S, =—""— ( 0<6k<1 ) is transformed from antecedent weight

0, (i =1,.... T k= 1,...,L) representing the relative importance of the ith antecedent
attribute in the kth rule. 6, (k=1,---,L) is the relative weight of the kth rule.
Q, (i =1....T, k) is the individual matching degree to which the input U; (i=1,...,T})
belongs to Al.k @=L---,T;k=1,---,L) that is the referential value of the ith
antecedent attribute used in the Ath rule, and it is generated from the input

transformation as described by equation (3-3), with ' >0 and Z,T; al <1 .

a, =H(a.k) (k=1,...,L) is called the combined matching degree to which the

input vector U matches the packet antecedent 4° in the kth rule. 7 is the total number

of antecedents in the kth belief rule. L is the total number of all belief rules in the BRB.

It can be easily found from equation (3-4) that in the calculation of the combined

matching degree «, (k = 1,...,L) of input to packet antecedent, all individual
matching  degrees ai" (i =1,....T k= 1,---,L) and all antecedent weights
0, (i =1,....7 k= 1,...,L) have been taken into account, and then the calculation of
the activation weight o, (k =1,---,L) takes into consideration both rule weights
0,(k=1,---,L) and the calculated combined matching degrees of input to packet

antecedent. This means that all knowledge representation parameters play their roles

in calculating a rule’s activation weight.
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® Step 3: Update belief degrees to possible consequents in the BRB based on

the input information.

As for the belief degree ,E,-k (0< ZZIE% <1;i=1,..., N; k=1,..., L) which is originally
given by experts when a BRB having a collection of rules as described by equation (3-

2) is established, if ZZIE”{ =1, the kth belief rule is said to be complete; otherwise, it

is incomplete. If Zilﬁik =0, it means the output of the kth belief rule is completely

unknown. In such situation, the incompleteness of the consequent in a rule is caused by
a lack of domain knowledge or expert experience, and the inferred result from this
incomplete rule should be incomplete according to the properties of the ER approach
(Yang and Xu, 2002). In other situation, when the input data is incomplete, for
example, the sum of matching degrees of an input to all referential values of an
antecedent attribute is smaller than 1, the inferred result from this incomplete input
data should be incomplete as well (Yang et al., 2006). For instance, if the input for the
antecedent attributes of a rule is completely unknown, a completely unknown
consequent will be generated. If the input of antecedent attributes is partially known,
the inferred result will also be partially known or incomplete. In the inference process,
the incompleteness in input data should be taken into consideration, because an
incomplete input for an antecedent attribute will cause an incomplete output after
inference with the rule where the attribute plays its antecedent role. Considering the
incompleteness of input data, belief degrees in consequents of a rule need to be

updated based on the real input. More specifically, the original belief degree
B (0 <pB, <l ZZI B, < 1) given to the ith possible consequent D, (i =1,..., N) in the

kth rule which is extracted from experts should be updated on the basis of the actual

input information in the inference process by
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ﬂikzﬂik T, (izl,“',N;kzln"'aL;t=1,"',Tk) (3_5)

where S, is the belief degree in consequent D, when the kth rule is activated by the

actual input and it is determined by original belief degree S, together with the

incompleteness of real input data, in which

(t k) {1, if the ™ antecedent attribute is used in defining R, (t =1,...,T, )}
T\, = 5

0, otherwise.

and a, is the degree to which the input U* belongs to the referential value

"o, <1(j=1--J,) . The

j=1 17

A (t=1-T;j=1--,J) with @,20 and )

transformation from input U* to A, is described as equation (3-3), where 4, is the jth

referential value of the rth antecedent attribute, and Ry is the kth rule in the BRB. N is
the number of consequents in the kth rule. 7 is the number of all antecedents in the

kth rule, and J; is the number of referential values of the 7th antecedent attribute in the

kth rule.

] Step 4: Aggregate all activated rules using the ER approach to generate a

combined belief degrees in possible consequents.

Once the activation weight of each rule and belief degrees in the possible consequents
of each rule in a BRB have been determined by the input clinical data, the ER
algorithm (Yang and Xu, 2002) can be applied directly to aggregate all activated rules
in a BRB to generate the combined degrees of belief in the consequents of a BRB as

follows

77



oW)=AD,.5,)j=1....N| (3-6)

This equation reads as that given an input to a belief rule-based system in the vector

form of U = {U Hsi=1...,T }, the outcome is consequent D, with a belief degree of

® Step 5 (optional): If necessary, calculate expected severity and severity
interval of different diagnostic consequents to rank the severity of patients’ illness

caused by the same disease.

For example, if the severity score of ‘H’ clinical risk is set to be 1, ‘M’ clinical risk set
to be 0.5, and ‘L’ clinical risk set to be 0, a patient’s overall severity score would be
0.8 if he/she is assessed as ‘H’ clinical risk with 60% probability and ‘M’ clinical risk
with 40% probability. The details of the concept and calculation of the expected utility

and utility interval of the ER approach can be found in Yang and Xu (2002).

For better understanding, a flowchart illustrated by Figure 3-1 can be used to describe

the whole inference process using the ER approach in a belief rule-based CDSS.
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1 Start )

v
Read clinical rules and knowledge

representation parameters extracted
from domain experts

A 4
Read input clinical data

\ 4
Transform input information to a distribution|

on referential values of relevant antecedent
symptoms as described by equation (3-3)

v
Calculate the activation weight of each

rule in the BRB using equation (3-4)

v
Update original belief degrees to

possible consequents in the BRB
using equation (3-5)

v
Ageregate all activated rules using]

the ER algorithm

Yes

Is there any need of
a severity score?
¥
Calculate expected severity and severity]
interval of diagnostic consequents

A

End

Figure 3-1: Inference with BRB Using the ER Approach in Recursive Format
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3.2.2.2. Group Preferences Aggregation Using the ER

Approach

Assume there are H consultants (C, (k< {l,..., H})) participating in a group consultation
for one patient, and there are R possible diagnosis results (D, (r e {l,..., R})) about the

patient. When we use the ER approach for group reference aggregation, the group

decision making problem can be expressed in matrix format as follows:

Cl C’2 CH

Dl ﬂll 1812 ﬂlH
D
D= :2 18:21 ﬂ:zz : ﬂZH W= [a)l @, - Oy ] (3-7)

DR ﬁRl ﬂRZ ﬁRH_

where C, denotes the ith consultant, D, denotes the rth possible diagnosis result about
the patient, 8, (r€{l,...,R},he{l,..., H}) represents belief degree provided by the
hth group consultant C, to the rth diagnosis result D, about the patient, and
, (h € {1,~--,H }) is the weight assigned to C, representing the importance of the Ath

group consultant in the group preference aggregation process. The detailed steps of
using the ER approach to aggregate group consultant preferences can be described as

follows.

o Step 1: Invite a group of clinicians to participate a group consultation for

one patient.

Assume we have a patient, who is with CCP, and the clinician on duty is not sure about
what should be taken in the next step based on current status of the patient, then we
need to carry out a group consultation for assessing clinical risk of the patient. If there
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are H experts in CCP field who are available for the group consultation, the clinician
on duty can act as a group facilitator role for the group consultation and invite these H

experts to participate it.

® Step 2: Acquire group consultant diagnosis preferences expressed as a

distributed assessment of possible diagnoses.

If possible diagnosis results for one patient is D,(ref{l,...,R}) and there are H
consultants are in the group consultation, the group facilitator can request the Ath
consultant input his/her risk assessment as {(D,,3,,),(D,,8,,), ..., (D, B )} Take
above mentioned patient with CCP for example, possible risk status of the patient may
include: ‘very high’ (D,), ‘high’ (D), ‘low’ (D3), and ‘no’ (D), and group facilitator

can request the Ath participated clinician express his/her risk assessment as {( Dy, £,, ),

(Dn, By1,)s (D, Bs),), (D, B,,)}, for example, {( ‘very high’, 0.8), (‘high’, 0.2), (‘low’,

0), (‘no’, 0)}.

o Step 3: Assign weight to each group consultant based on his/her expertise

and reputation.

The weight o, (h € {1,---,H }) of each participated clinician represents the importance

of each individual clinician based on his/her expertise or reputation in the group
consultation. Using the ER approach to aggregate all group preferences can take into
consideration of the importance of each group member. For example, there are two
experts in CCP who are invited to participate a group consultation, one is an
experienced clinician and is in a senior position while the other is less experienced and
in a junior position, the group facilitator may assign a weight of 1 to the former and a

weight of 0.7 to the latter in the group consultation.
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® Step 4: Aggregate all group consultant diagnosis preferences using the ER

approach to generate a combined belief degrees in possible diagnoses.

As soon as we get all the parameters such as weight o, (h € {1,---,H }) of individual
consultant and the distributed diagnosis preference {(D,, 8, ),(D,. 5., ) --., (Dx, B )}

provided by each consultant, we can use the analytic ER algorithm to aggregate the
group diagnosis preference and get a combined belief degrees in all possible diagnoses.

The analytic ER algorithm is as follows.

5 - ﬂxlnj;(whﬂ’h +1-o, Zi}qﬂm )_Hj:l(l_wh 211'8”’ )J’,, =1,---,R(3-8)
1_IUXIH/1:1(1_CO’1)J

with u = IZle H:':I (wh'Brh +1-o, 211 B )_ (R - l)x H:]:l (1 -, Z;il B )]>1

where S, (r = 1,~--,R) is the final belief degree attached to the rth possible diagnosis

D, after combining all group consultant diagnosis preferences in the group

I

consultation, ,H,h(rzl,---,R;h:I,---,H ) is the belief degree assigned to the rth
possible diagnosis D, by the Ath consultant, and @, is the weight of Ath group

consultant.

In the existent group CDSSs, methods used to achieve a group consensus in the group
decision making situation include Delphi method and AHP. The Delphi method seeks
to achieve a consensus among group members through a series of questionnaires
which requires several rounds for group members to fill in the questionnaires, yet it is
actually time consuming and needs carefully designed questionnaires to acquire
participants’ opinions in each round (Linstone and Turoff, 1975). If we use AHP in

the group decision making context, just as using AHP for supporting individual
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decision making, we need to acquire comparison information with regard to each pair
of objects be determined. Traditionally, there are two approaches that can be used to
get the comparison information as to each pair of objects. Firstly, the entire group

({52
1

provides a single numeric value for each pair of objects, for example, object
compared to object 47, and we can take the group provided comparison information

as a “consensus” of each pair objects. Secondly, we can request each group member

provide a numeric value that reflected her/his view of the relative importance of

L [
1

object compared to object 4, and then we use geometric mean of all group
member input numeric values to get a “consensus” of comparison information of each
pair of objects. After we get comparison information for each pair of objects, we can
use AHP method to aggregate the comparison information and get a final preference
order of the objects. However, using AHP in group decision making context to
achieve an aggregated preference order of objects has its limitations. The first option
of acquiring a group consensus on comparison information as to each pair of objects
suffers from the negative effects of status influence (or power differential problem)
which could prevent the realization of real consensus, and a major disadvantage of the
second option is that wide disparities in the comparison information could result in

the computed ‘consensus’ matrix being an inaccurate representation of the given

situation at human level (Bryson, 1996).

Compared to the above mentioned group decision support methods in the existent
group CDSSs, using ER in group clinical decision making context to achieve a group
consensus has the following advantages. Firstly, rather than seeking individual group
member’s diagnosis preference through several rounds of questionnaires as in Delphi
method, using the ER approach for group preference aggregation only needs each

individual group member’s belief degrees on all possible diagnosis results for one
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patient. It helps speed up the group decision making process. Secondly, uncertainties
in the judgement of all possible diagnosis alternatives can be reflected by the
distributed assessment, where the individual group member can provide both
complete and incomplete judgements. Note here complete judgement means belief
degrees of all possible alternatives add up to 1, while incomplete judgement means
the sum of belief degrees of all possible alternatives is smaller than 1. Thirdly,
influence of different individual group member on the final group consensus is
reflected by weight assigned to individuals in the preferences aggregation process.
Fourthly, based on the utility and utility interval of the group aggregated judgement

for a patient, the severity of the patient’s illness can be calculated.

3.2.3. An Optimization Model for BRB Training

As described in Section 3.2.1, the initial belief rules and knowledge representation
parameters including rule weights, attribute weights and consequent belief degrees are
originally given by domain experts or randomly generated, and they can not be 100%
accurate. To make the BRB to represent clinical domain knowledge more accurately,

we need to train or fine-tune the BRB using historical data.

Generally, machine learning comes in two categories: supervised learning and
unsupervised learning (Hardin and Chhieng, 2007) as shown in Figure 3-2. In
supervised learning the goal of learning is to adjust the knowledge representation
model through minimizing the discrepancy between the system results and observed
results of the training sample as shown in Figure 3-2 (A). As for unsupervised
learning, we know nothing about the knowledge representation model ahead and just
let the system learn meaningful structure from a set of historical data as shown in
Figure 3-2 (B).
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Observed Results

Data » Real System
Simulated Results
»|Learning System >
1
Feedback (error signal)

A)

Data » Learning System —»O
B)

Figure 3-2 (A): Supervised Learning; (B): Unsupervised Learning. (Hardin and
Chhieng, 2007)
In terms of BRB training, several online and offline models have been proposed in the
literature, where online training models target real-time BRB training by newly input
data and offline training models target BRB training by accumulated historical data.
All these BRB training methods fall into supervised learning category which requires
an initial BRB acquired from domain experts and uses a historical clinical dataset

with real clinical outcome to train the BRB.

In the research, target domain BRB is originally constructed based on expert
clinicians’ experience and knowledge and those clinical rules have been verified by
clinical research. Although domain knowledge in medicine keeps changing, it changes
at a comparatively low speed, and we do not have to update the domain BRB hourly
or daily. Thus, we choose the offline BRB training methods to train the developed

belief rule-based CDSS prototype by available accumulated clinical data.

As for the offline BRB training methods, Yang et al. (2007) proposed several optimal
learning models for training BRB. Depending on the type of input and output of
sample data, the optimal learning model can be constructed in different ways (Yang et
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al., 2007). For example, if the output of the training sample is of numerical type, a
single objective nonlinear optimization model can be constructed by minimizing the
total mean squared error between the simulated output and the observed output of the

sample data.

The following is a brief discussion of the BRB training model. The training
parameters of the optimization training model may consist of different sets of
knowledge representation parameters including rule weights, attribute weights and
belief degrees. If necessary, utilities or scores associated with different consequents
can be used for training as well. The objective of the optimization model is to
minimise the discrepancy between system generated diagnosis results and the
observed clinical status of the real or simulated patients, and the discrepancy is
calculated by total mean squared error between system and observed results. The
constraints of the optimization model are constructed based on the characteristics of
those knowledge representation parameters and the utility values. Details of the

optimization model are as follows.

The aim of BRB training is to find a set of parameters

(Hk,c?i,,[)’ijk:1,---,L;i=1,---,N;j:1,---,N) of a BRB that can help the BRB to

represent domain specific knowledge correctly. The training process is implemented
through minimizing the discrepancy between the system generated results and
observed results of the training sample. Assume there are M cases in the training
sample, and the input-output pairs,of those M cases are (fcm, V., )(m =1--- M ) The
process of learning from these M datasets can be depicted in Figure 3-3, where the

system generated output (ym) is produced by the system via the inference engine. The

real output (j/m) is observed by experts or acquired by instruments, and ff(P)
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represents the difference between the real output and the system generated output. The
objective function of the BRB optimization model is to minimise f(P) , and the
constraint function can be defined based on the conditions that the training parameters

must satisfy. As a result of the training process, there will be a new set of (Hk 0,8 jk)

for the BRB.

Real Output (3,,)

Real System

A 4

Input (%,,)

Belief Rule-based | System Genferated
System Output ym)

Figure 3-3: Training Process

Regarding the objective function of the training model, we used the total mean
1 M A 2 . . .
squared error A/[ . (ym — ym) to represent §(P). As an explicit ER aggregation

function is required in BRB training, the analytical ER algorithm (Wang et al., 2006)
was used to construct the objective function in the training model. When the
analytical ER algorithm is applied to inference with BRB, final belief degrees

,H_/.( J :1,---,N) attached to all possible consequents Dj(j :1,---,N) are inferred

using the following equation:

Hx |1_[;€:1 (a)kﬁ’jk +1-o, Zj'v:l B )_ H;; (1 — @ Z;V:l B )J
ﬂj = — 1 >
l_quIHk:l(l_wk)J

j=1,N(3-9)

where ﬂjk(j =1,---,N;k :1,---,L) is the original belief degree assigned to the jth

consequent in the kth belief rule,
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U= E;V_l H; (a)k By +t1-o, 27:1 B )— (N -1)x Hizl (1 - o, Zj/:l B, )r ,and o, is

the kth rule’s activation weight which is calculated using equation (3-4). Here the
diagnosis result generated by ER based inference engine for a patient is a set of belief

degrees attached to all possible consequents as (DJ.,,BJ. X j=1- N ) other than a

single numerical output. We need to transform the inferred result of the mth case to a

single numerical value (ym) based on the concept of utility and utility interval

proposed by Yang and Xu (2002), and the transformation is implemented using
Yy = Zj/:l,u(Dj)ﬁj(m = 1,---,M) ,  Where ﬂj(m)(j =1,---,Nym= 1,-~,M) is
generated by the inference engine, and ,u(D I X j=L-- N ) is the utility value or score
we set for the jth consequent D, . As for the constraints’ setting for the BRB training

model, it depends on specific domain knowledge and domain experts’ judgements.
3.3. Prototyping

Once the methodology of RIMER has proven feasible to model the clinical domain
knowledge and to do clinical inference in target clinical areas, a computerised CDSS
prototype can be developed to test whether such a CDSS is really reliable and useful
in a real clinical decision making scenario. Prototyping is employed as the system

development methodology in the research.

3.3.1. Brief Introduction to Prototyping

Prototyping is an adaptation of the traditional system development life cycle (SDLC).
A traditional SDLC starts from some kind of need and results in a completed system,
and it consists of four fundamental phases-planning, analysis, design, and

implementation which lead to a deployed system (Turban and Aronson, 2001). In a
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traditional SDLC, an ideal progression is to follow each phase in order, yet it is
possible to return to any phase from any other. While in prototyping methodology, a
system is developed sequentially in modules, and it is deployed to users and gains
feedback from users for further refinement when each module is completed, so that a
prototype system can be quickly developed and demonstrated to users. Figure 3-4

shows a typical prototyping development process.

Planning

\\

/'y > Analysis

et

> Design

T

Implementation

. Prototype Not OK %

Prototype OK
A

A

Implementation

Figure 3-4: Prototyping Development Process (Turban and Aronson, 2001)

Following the development process as shown in Figure 3-4, the analysis, design, and
prototype implementation phases are iteratively performed until a small prototype is

sufficiently developed.

3.3.2. Alternative System Development Methodologies
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There are several alternative system development methodologies which include the
traditional SDLC, parallel development which resembles the SDLC, and phased

development.

In parallel development, the design and implementation phases are split into multiple
sub-ones after the analysis phase, and each of the sub-ones involves development of a
separate subsystem. All the sub-ones come together in a single implementation phase,

in which a system integrator puts the subsystems together in a cohesive system.

In the phased development methodology, a system is developed sequentially by a
series of versions. Each version has more functionality than its previous version, and

they evolve into a final system.

3.3.3. Advantages of Prototyping

Compared to alternative development methodologies, prototyping has the following

advantages in developing a CDSS:
® Users are involved in every phase and iteration.

Unlike in the traditional SDLC, users only play roles in the planning phase when
system developers seek information from them. The iterative nature of prototyping
allows users to be involved in system design and development, which is important for
a CDSS. Getting system users involved in system design and development process
enables us to learn from them gradually about the ill-structured clinical domain

knowledge and system users’ real requirements of a CDSS in clinical practice.
® Prototype can be developed quickly.

Unlike a traditional SDLC, prototyping essentially bypasses the formal steps of
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requirements acquisition and analysis, since prototyping attempts to clarify users’
needs by actively involving them in a fast-feedback development process, and this
helps a prototype system to be developed quickly in the prototyping system

development methodology.

In the research, we need to design and develop a CDSS first and then use clinical
cases to test whether the developed CDSS is really reliable and useful. Due to limited
time and human resources, alternative system development methodologies discussed
above are not suitable, and prototyping methodology is the appropriate method to

develop a CDSS prototype for the study.

3.4. Field Study

In the research, practice guidelines in target areas are important resources for
knowledge elicitation in construction of knowledge base. But the domain knowledge
in target clinical areas keeps changing, and all the practice guidelines that we obtained
at the beginning of the study can be outdated soon. In such situation, we need to hold
regular interviews and meetings with expert clinicians for acquiring advanced clinical
domain knowledge. Moreover, field study is necessary for us to investigate the daily
clinical work flow in NHS hospitals and to acquire real user requirements for a CDSS

in clinical practice.

3.5. Statistical Techniques

After system design and development, real or simulated clinical cases are used to
validate the developed prototype system. For example, for inference engine validation,
real or simulated patients’ data can be used as inputs to the prototype system, and then
the automatic diagnostic recommendations generated by the prototype system can be
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used to compare with real clinicians’ conclusions, and finally a conclusion about the
prototype system’s reliability can be drawn based on the diagnostic performance

provided by the system.

Statistical techniques are used to analyze the diagnosis results generated in the
prototype validation process. The receiver operating characteristics (ROC) curve
(Metz, 1978, Park et al., 2004) is employed to analyze the diagnostic performance of
the different diagnosis tests taken in the validation, and the area under the ROC curve
(AUC) (DeLong et al., 1988, Mei-Ling Ting and Bernard, 2001) is used to compare
diagnostic performance of the different diagnosis tests. Brief introduction of the

statistical techniques used in the research can be found in Chapter 6. .

3.6. Research Design

Once research questions and objectives of a study are formulated concretely, a
researcher develops a research design as a strategic plan to conduct the study.
Research design is a format for detailed steps in a study to tackle previously identified

research questions and to achieve already set research objectives.

The research design comprises data collection, prototype CDSS design, development
and validation. The research is conducted based on a multiple-methodologies research
approach. The research consists of five research stages, the details of which are

outlined in Table 3-2.
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Table 3-2: Research Design

Stages Actions Objectives Questions to Answer MeI:ITSS?)Ii(C)gies
Stage1 | 1. Literature review 1. To identify research gaps Research question (1-1) Literature review
2. Theoretical investigation 2. To formulate research questions
Stage 2 | A feasibility study 1. To acquire target clinical domain | Research questions (1-2)& 1. Literature review
= Domain knowledge acquisition knowledge (1-3) 2. Field study
= Compare a traditional rule-based | 2. To analyze the feasibility of 3. Modelling
CDSS with a belief rule-based applying RIMER for
CDSS development of a CDSS
Stage 3 | 1. Design of a belief rule-based | To design and develop an online Research questions (1-2) & 1. Modelling
online intelligent group CDSS belief rule-based group CDSS with (1-3) & 2. Prototyping
2. Development of the belief rule- | learning capability Research questions (2) & (3)
based online intelligent group
CDSS prototype
Stage 4 | Validation of the developed CDSS To test the reliability of the prototype | Research question (1-2) & 1. Field study
prototype (1-3)& 2. Statistical analysis
= Domain knowledge acquisition & Research questions (3)
Data simulation
= Validation of inference engine:
compare  system’s  diagnostic
performance with one doctor’s
= Validation of training module:
compare the system’s diagnostic
performance before and after
BRB training
Stage 5 | 1. Finalizing main results 1. To draw conclusions about
2. Presenting  the  prototype | the feasibility of employing RIMER
system and system manual for developing a CDSS

2. To present the final prototype
system and the user manual
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(1) Identifying Research Problem

At research stage 1, a research topic on CDSSs is chosen, and information with

respect to the topic and its problems is initially extracted from the literature. Existing

CDSSs are reviewed for its further requirements and research questions are

formulated based on the identified research gaps. The potential of employing

advanced methods and technologies in decision making areas such as RIMER to

address the research problems is investigated. The research during this stage includes

the following activities:

® Review and analyze existent CDSSs;

® Provide a key feature analysis in uncertainty handling for the existent CDSSs;

L.

ii.

1il.

1v.

V.

Identify challenges of knowledge representation schemes and inference
mechanisms in existent knowledge-based CDSSs;

Identify challenges of knowledge learning and representation mechanisms in
existent non-knowledge-based CDSSs;

Identify challenges of group decision support in existent CDSSs;

Explore the possibility and creativeness of using advanced methods and
technologies from decision making area to design and develop an intelligent
group CDSS that can handle different uncertainties well;

Formulate research questions;

® Set detailed measurable research objectives for the research.

(2) A Preliminary Feasibility Study

At research stage 2, a clinical domain is chosen as a target clinical area for a

preliminary feasibility study, and specific domain knowledge need to be extracted

from domain medical literature or/and acquired from expert clinicians through field
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study. Subsequently, the feasibility of using RIMER for the design and development

of a belief rule-based CDSS is investigated. The research at this stage includes the

following activities:

® Acquire target clinical domain knowledge through literature review and field
study;

® (Construct BRB models based on the domain knowledge;

® Construct an inference model using the ER approach;

® Compare the belief rule-based system with traditional rule-based system in

drawing clinical conclusions about simulated cases in target clinical areas.

(3) Design and Development of a Belief Rule-based Online Intelligent Group

CDSS Prototype

At research stage 3, we design and develop a belief rule-based online intelligent group

CDSS. The system design and development need to consider the details of system

architecture, back-end database, user interfaces, knowledge base, inference

mechanism, group decision supporting module, and training module. The basic

prototyping system development process as shown in Figure 3-4 is applied in the

prototype development. The research at this stage includes the following activities:

® I[dentify the prototype’s characteristics in varying aspects: web-based architecture,
programming languages, software environment, and key components or
functionalities of the system;

® Design and develop the back-end database schema to store clinical data and to
physically construct BRB models;

® Design and develop web-based user interfaces based on the clinical work flow

depicted in target clinical practice guidelines;
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Design and develop ER-based inference engine;

Design and develop ER-based group decision supporting module;

Design and develop a BRB training module;

Integrate all key components together and present the online belief rule-based
group CDSS prototype to target system users;

Improve the prototype based on users’ feedback.

(4) Validation of the Online Intelligent CDSS prototype

At research stage 4, clinical data in target clinical areas is used for validating the

developed online intelligent CDSS prototype. In the validation, two core components:

inference engine and training module are validated respectively. The activities at this

stage include:

Acquire target clinical domain knowledge through field study;

Collect second-hand real patients’ data or invite expert clinicians to simulate
clinical data;

Test the system’s diagnostic performance using the acquired dataset;

Split the dataset into training and test sets based on some criteria;

Train BRB model in the system using the training dataset;

Test the trained system using the test dataset;

Analyze the system’s diagnostic performance before and after BRB training.

(5) Present the Final Prototype CDSS and User Manual

This final research stage summarises the results, draws conclusion about the

feasibility and viability of applying RIMER in development of a CDSS and presents

the final prototype system and system manual.
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3.7. Summary

As identified in Literature Review chapter, representing and reasoning with clinical
domain knowledge under uncertainties are areas that require refined technologies, and
there are strong needs for a CDSS to provide group clinical decision support and
automatic knowledge base updating in addition to individual clinical decision support.
Thus we propose to employ RIMER methodology to implement a belief rule-based
CDSS, while group clinical decision support and automatic clinical knowledge base
updating are also taken into account. In this chapter, the main models we used for
domain knowledge representation, clinical inference, and clinical knowledge base
training are briefly discussed first, and followed by a brief description of the system
development method - prototyping, and then we provide a brief discussion on field
study which we used for domain knowledge acquisition and clinical practice
observation, and the statistical method — ROC analysis which we employed to analyse
the system validation results, and finally, a concrete research design is provided based
on proposed methods. The advantages of using BRB for modelling or representing
domain knowledge, using ER for individual clinical diagnosis and group clinical
preferences aggregation, and using an offline BRB training model for automatic
knowledge base updating include: (1) BRB can help transparently represent domain
knowledge under uncertainties in an natural ‘IF-THEN’ rule format with a belief
structure, which can be provided as explanation if required; (2) inference with BRB
using ER can help preserve uncertainties rationally in the inference process and
represent their effects in the finally conclusion, while aggregating group preferences
using ER can help speed up the group decision making process compared to Delphi
method. In the following chapter, we will provide a preliminary study on feasibility of

employing RIMER for implementation of a CDSS.
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Chapter 4

A Preliminary Feasibility Study

4.1. Introduction

Prior to the design and development of an online intelligent CDSS based on the newly
developed belief rule-base inference methodology-RIMER, a preliminary study on

feasibility of employing RIMER for developing a CDSS was conducted.

This chapter discusses a detailed investigation for the feasibility of using RIMER in
developing a CDSS. In the feasibility study, clinical risk assessment of acute upper
Gastrointestinal (GI) bleed was chosen as target clinical area, and a patient with acute
upper GI bleed was simulated by an expert clinician in MRI for the investigation. In
the study, knowledge-based systems including traditional rule-based system and belief

rule-base system are constructed for investigation.

In a traditional rule-based CDSS, forward chaining or backward chaining is used as
the inference method, while in a belief rule-based CDSS, the evidential reasoning (ER)
approach is employed as the inference method. Equipped by an intelligent decision
system (IDS) (Xu and Yang, 2005), which is a Windows-based multiple criteria
assessment system that implements the ER approach, we obtained a diagnostic
recommendation through inference with the belief rule base (BRB) using ER in a
belief rule-based CDSS. Through comparison of diagnosis recommendation generated
by belief rule-based system and traditional rule-based system, we find that the

diagnosis recommendation generated by a belief rule-based CDSS is more
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informative than the diagnosis conclusion drawn from a traditional rule-based system

when there is uncertainty in clinical data.

The chapter is organised as follows. Section 4.2 discusses target clinical domain
knowledge acquisition for the feasibility study. Section 4.3 presents the domain
knowledge modelling, where the modelling of the domain knowledge using traditional
‘IF-THEN’ rule base and BRB are discussed in Section 4.3.1 and Section 4.3.2,
respectively. A description of a simulated patient in target clinical area will follow in
Section 4.4. Inference with the constructed knowledge base and the clinical data is
discussed in Section 4.5, where inference with the traditional rule base using forward
chaining method is discussed in Section 4.5.1, and inference with the BRB using the
ER approach is discussed in Section 4.5.2. Then conclusions about the feasibility of
using RIMER for developing a CDSS are provided in Section 4.6, where the
advantages of a belief rule-based system compared with a traditional rule-based

system is discussed as well. Finally, Section 4.7 summarises the chapter.

4.2. Domain Knowledge Acquisition

Knowledge acquisition is a very important starting procedure for the construction of
knowledge bases in CDSSs. The first step of knowledge acquisition is to select the
target clinical area and select expert clinicians to gain domain specific knowledge, and
then transfer the domain knowledge into computer interpretable knowledge based on

the designed knowledge representation scheme.

Target clinical domain selection and domain specific knowledge elicitation for the
feasibility study are described as follows in Section 4.2.1 and Section 4.2.2

respectively.
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4.2.1. Clinical Domain Selection

Upper GI bleeding is a significant and potentially life-threatening worldwide problem.
Despite advances in diagnosis and treatment, mortality and morbidity have remained
constant (Marc et al., 2000). In the UK, acute upper GI bleed is a common medical
emergency with an incidence of approximately 100 per 100,000 adults per year and a

mortality among unselected cases of 14% (Rockall et al., 1995).

Patients with upper GI bleeding vary in severity from those with exsanguinating
haemorrhage from oesophageal varices to those with simple streaking due to Mallory-
Weiss tear caused by retching after too much alcohol the night before. Thus to provide
proper management of patient with acute upper GI bleed, it is important for ED
doctors to make evidence-based decisions about the clinical risks involved to ensure
that appropriate, timely treatment is provided and that investigation is carried out in
an appropriate time-frame. Patients at high risk should be resuscitated and undergo
emergency endoscopy immediately. Patients at moderate risk should have Intravenous
(IV) access established, have their blood grouped and serum saved and should have
endoscopy performed rapidly (Central Manchester and Manchester Children's

University Hospitals NHS Trust, 2003b).

Motivated by the above facts, we chose clinical risk assessment of acute upper GI

bleed as target clinical domain for investigation in the feasibility study.

4.2.2. Target Domain Knowledge Elicitation

Generally, for acquiring medical domain specific knowledge, many computerised
knowledge acquisition tools have been developed by CDSSs researchers. Among

them, some tools such as a Unified Medical Language System (UMLS)-based
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knowledge acquisition tool developed by Achour et al. (2001) is designed for
acquiring domain specific medical rules, and other tools such as a guideline
acquisition module in a guideline-based CDSS developed by Terenziani et al. (2001)
is designed specially for the acquisition of clinical guidelines which can be used as the

best and standardised clinical procedures.

During this study we have expert clinicians in MRI as research collaborators who
have already published a clinical practice guideline for diagnosis of acute upper GI
bleed in ED. Therefore we do not have to use any computerised knowledge
acquisition tool which require our research collaborator to input their domain
knowledge as clinical rules or clinical guideline. Instead, we elicited rules for
assessing clinical risk of acute upper GI bleed first from the published practice
guideline, and then we invited our collaborators in MRI to verify those clinical rules

before applying them to construct knowledge base for target CDSS.

The clinical decision support guideline (CDSG) 2003-05 for acute upper GI bleed
(Central Manchester and Manchester Children's University Hospitals NHS Trust,
2003b), which we used for eliciting clinical rules for risk assessment of upper GI
bleed, was developed by clinicians in MRI, and were originally published on central
Manchester and Manchester children's university hospitals NHS trust intranet in 2003.
Their content was reviewed by Clinical Effectiveness Committee of the British
Association for Emergency Medicine in 2005. As presented in the practice guideline,
rules for assessing clinical risk of acute upper GI bleed are as follows in Table 4-1,
where SBP stands for ‘systolic blood pressure’, and NSAIs represents ‘non-steroidal

anti-inflammatory drugs’.
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Table 4-1: Rules for Clinical Risk Assessment of Upper GI Bleed
Clinical signs and symptoms, laboratory Clinical Risk
tests, and medical history High Moderate Low
H) ™) @)

Known or suspected oesophageal varices
Pulse > 130 bpm

SBP < 90 mm Hg

Postural SBP drop > 20 mm Hg

On NSAIs or anticoagulants

Major co-morbidity (eg cardiac or renal
Stigmata of liver disease

Witnessed acute fresh red blood in vomit
Over 75 years old

Urea > 8

None of the above N

el P B

2l 2]

Apart from acquiring domain knowledge from the CDSG as mentioned above, we did
field study in MRI to observe one expert clinician’s clinical practice and held regular
meegtings and discussions with expert clinicians to get correct and deep

understanding of these clincial rules.

Tradtitional rule base and BRB are constructed, in the following section for

developing a CDSS, based on the clinical rules as described in Table 4-1.

4.3. Domain Knowledge Modelling

4.3.1. Modelling with Traditional ‘IF-THEN’" Rule Base

Traditional ‘IF-THEN’ rule base is the dominant knowledge modelling methodology
in CDSSs (Carter, 1999). If we use traditional rules to represent the rules for assessing
clinical risk of upper GI bleed as described in Table 4-1, the rule base as shown in

Table 4-2 can be constructed.
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Table 4-2: Traditional Rule Base for Risk Assessment of Acute Upper GI Bleed

Number Antecedent Consequent
1 (F'is Y) Ris H
2 (F*is Y) RisH
3 (Fis Y) RisH
4 (F'is Y) RisH
5 (FlisN*FisN "~ Fis N " FlisN "~ Fis Y) Ris M
6 (F'isN "~ FPis N~ FPis N~ F'is N ~ F’is Y) Ris M
7 (F'isN*FisN*FisN* FlisN"* FisY) RisM
8 (FlisN"~ FisN " Fis N~ F'is N~ Fis Y) Ris M
9 (F'isN*FisN "~ Fis N~ F'is N~ Fis Y) Ris M
10 (F'isN "~ FPis N~ Fis N~ F'is N~ Fis Y) Ris M
1 (FlisN*FisN*FisN”~ FlisN "~ FPis N ~ F° Ris L.
isN*FisN”FisN" FisN " F'is N)

In above table, Y stands for ‘yes’, N stands for ‘no’, “*’ is a logical connective to

represent the ‘AND’ relationship, and the meaning of other symbols are as follows.

R represents ‘the clinical risk of acute upper GI bleed’.

F' represents ‘known or suspected oesophageal varices’.

F” represents ‘pulse > 130 bpm’.

F represents ‘SBP <90 mm Hg’.

F" represents ‘postural SBP drop > 20 mm Hg’.

F° represents ‘on NSAIs or anticoagulants’.

F®represents ‘major co-morbidity (eg cardiac or renal impaiment)’.
F’ represents ‘stigmata of liver disease’.

F®represents ‘witnessed acute fresh red blood in vomit’.

F’ represents ‘over 75 years old’.

10
F"" represents ‘urea > 8.

Note that the same set of symbols will be used in the following sections to describe
BRB which is constructed by extending the traditional rule base using the belief

structure.
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4.3.2. Modelling with BRB

In the traditional rule base as described in Table 4-2, there is no uncertainty in the
rules’ antecedent or consequent. However, there are indeed at least three
circumstances in which uncertainties may arise. Firstly in a real clinical environment,
conditions in a rule may not always be met with 100% accuracy by patients’ clinical
data because there are uncertainties in doctors’ subjective judgements about one
patient’s specific clinical symptoms. Secondly, diagnosis conclusions drawn from
different clinicians about one patient may not be the same due to the fact that different
clinician in the same clinical area may own different domain knowledge and different
practice experiences. Finally even two patients are diagnosed as having the same
disease, the severity of the two patients may be different, and accordingly, the two
patients may need to be treated in a different time order. To deal with the uncertainties,
belief rules may provide an alternative solution to accommodate different types of

uncertainties in representing both clinical data and clinical domain knowledge.

If those traditional rules described in Table 4-2 are extended using the belief structure
for more precisely imitating human reasoning knowledge in rule-based CDSSs, the
corresponding BRB representing clinical rules for risk assessment of upper GI bleed
can be described as in Table 4-3. For details of the belief structure in BRB, readers

can refer to Section 3.2.1 in Chapter 3.
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Table 4-3: BRB for Clinical Risk Assessment of Acute Upper GI Bleed

Number W Antecedent Consequent
1 1 (F'is Y) Ris {(H, 1)}
2 1 (F*isY) Ris {(H, 1)}
3 1 (F is Y) Ris {(H, 1)}
4 1 (F'isY) Ris {(H, 1)}
5 1 (FlisN”~ FFisN”* FisN” Flis N~ Fis Y) Ris {M, 1)}
6 1 (FlisN" FisN "~ Fis N Flis N~ Fis Y) Ris {M, 1)}
7 1 (F'is N~ Fis N~ FPis N~ F'is N~ F'is Y) Ris {(M, 1)}
8 1 (F'is N~ F2is N~ FPis N~ F'is N~ F¥is Y) Ris {(M, 1)}
9 1 (FlisN”~ FPisN”~ Fis N~ Flis N~ F'is Y) Ris {M, 1)}
10 1 (FlisN"®FisN"~ FisN” FlisN "~ F'is Y) Ris {M, 1)}
11 1| (FlisN»Fis N~ Fis N~ Fis N~ Fis N~ F'is N | Ris {(L, 1)}
"FisN"FisN” FisN"* F'is N)

In the BRB as shown in Table 4-3, the weight of each rule (represented by W in the
second column) and the weight of each antecedent attribute are assumed to be 1,
which means all rules possess the same importance and all antecedent attribute play
similar roles in assessing one patient’s clinical risk. Besides, each rule has a
consequent only with a belief degree of exactly one, which means if one patient’s
clinical data meets one rule’s antecedent condition, the patient will be 100% with a

clinical risk at the level as the rule’s consequent describes.

Although based on experts’ experience, we have not obtained rules like ‘IF (F" is 80%
Y) THEN R is {(H, 0.8)’, which can explicitly represent uncertainties in clinical
domain knowledge and clinical data. The rules as described in Table 4-3, which
represent certain clinical rules in assessing risk of upper GI bleed, are special cases of

belief rules, and they can be used to inference with uncertain clinical data.

4.4. Description of Clinical Data

Due to the strict data protection regulations in the UK, we used simulated patient data

to demonstrate the risk assessment process in both the traditional rule-based and belief
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rule-based CDSSs. The made-up patient’s data have been verified by an expert

clinician.

The detailed information about a simulated patient with acute upper GI bleed is given
in Table 4-4, where only ‘esophageal varices’ are judged as ‘strongly suspected’, and
all other clinical signs or symptoms are with certain judgments or exact numerical

values.

Table 4-4: One Simulated Patient with Acute Upper GI Bleed

Disease | Clinical signs and symptoms

upper GI | strongly suspected oesophageal varices;
bleed pulse is 131 bpm;

SBP is 90 mm Hg;

postural SBP drop is 20 mm Hg;
currently is on anticoagulants;

no major co-morbidity;

no stigmata of liver disease;

no fresh red blood in vomit;

76 years old;

urea is 8.

Note that the same patient’s data has been used in the published paper of Kong et al.

(2009) for illustration of inference with BRB.

Inference with the simulated patient’s data and constructed knowledge base is

described in the following Section.

4.5. Inference with Knowledge Base

45.1. Inference with Traditional Rule Base

There are two methods of inference often used in traditional rule-based CDSSs,
namely forward and backward chaining (Shortliffe and Perreault, 1990). In the study,
forward chaining is used for reasoning with the traditional rule base as described in
Table 4-2. Forward chaining is a top-down method which takes facts as they become
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available and attempts to draw conclusions (from satisfied conditions in rules) which

lead to actions being executed.

Inference with the traditional rule-based system using forward chaining involves
assigning values to attributes, evaluating conditions, and checking to see if all of the
conditions in a rule are satisfied. A general algorithm for forward chaining method

can be described as in Figure 4-1.

Input value Generate output
v
Assign value to - Evaluate conditions | Fire satisfied
attribute i in rules " rules
A

Figure 4-1: A General Algorithm for Forward Chaining in Rule-Based System

In the traditional rule-based system as investigated in the study, all rules are chained
according to the real work flow shown in the practice guideline. To acquire inputs, the
system would provide a chain of enquiries regarding clinical signs and symptoms
which are necessary for specific diagnosis. For example, enquiries for clinical risk

assessment in diagnosis of acute upper GI bleed may include:

1) Are there known or suspected oesophageal varices?

2) Ispulse > 130 bpm?

3) Is SBP <90 mm Hg?

4) Is postural SBP drop > 20 mm Hg?

5) On NSAls/anticoagulants or not?

6) Is there major co-morbidity (eg cardiac or renal impairment)?

7) Is there a stigmata of liver disease?
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8) Is there witnessed acute fresh red blood in vomit?
9) Is the patient over 75 years old?

10) Is the patient’s urea > §?

Only answers Y and N are provided as options for system users to choose for all

enquiries like those listed above in traditional rule-based system.

If we need to assess the simulated patient’s clinical risk using the traditional rule base
as described in Table 4-2, our work will be based on the general algorithm as
described in Figure 4-1. Firstly, the matching between the clinical data and antecedent
attributes of the traditional rule base can be described as (F' is Y)A(F2 is YYNF° is
NAF is NNEF is Y)NE® is NNE is NNE® is NF is Y)AF' is N). Secondly
only condition of Rule 1 and Rule 2 in Table 4-2 are satisfied by the data. As a result,
the inferred clinical risk of the patient generated by the traditional rule-based CDSS is

H.

45.2. Inference with BRB

Inference with BRB using the ER approach also involves assigning values to
attributes, evaluating conditions and checking to see if all of the conditions in a rule
are satisfied. However, inference with BRB using the ER approach is different from
inference with traditional rule base using forward chaining in many aspects. Firstly,
value assignments in the ER approach are different from forward chaining due to an
input transformation process. In a rule base, each antecedent attribute has a set of
referential values, and individual referential value is used in different rule as an

element of antecedent (Yang et al., 2006). Specifically, the kth rule in a traditional

‘[F-THEN’ rule base can be described as R, :1F A 4;»--- Az , THEN D, , where
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A" (i =1,--,T k) is a referential value of the ith antecedent attribute 4, in the kth rule,
T, is the number of the antecedent attributes used in the kth rule, and D, is the

consequent in the kth rule. In traditional rule-based systems, input data is usually with
certainty, and it can be matched directly with antecedents of rules in the system.
While in belief rule-based systems, input clinical data can be with uncertainty, and the
relationship between an input and each referential value in the antecedents of a rule
needs to be determined before an inference process can start (Yang et al., 2006). This
process is to transform an input into a distribution on referential values of one
antecedent attribute using belief degrees. Secondly, the condition evaluation process
is different. In the ER approach, since inputs can be transformed to distributed
referential values as described above, conditions of more than one rule may be
satisfied by one input patient’s data in parallel to different degrees. While in forward
chaining, there is only an activated rule or a chain of rules activated in sequence by an
input patient’s data. Thirdly, conclusions are derived by an aggregation process.
Using the ER approach, the conclusions generated by all the activated rules need to be
aggregated to generate an overall conclusion. While in forward chaining, there is no

rule aggregation or combination process.

Section 4.5.2.1 to 4.5.2.4 will provide a detailed description of the inference process

carried out by the belief rule-based CDSS for the simulated patient.

4.5.2.1. Input Transformation

In the BRB outlined in Table 4-3, {Y, N} is used as a set of referential values for all
clinical symptoms. The distributed values transformed from original clinical data of

the simulated patient described in Table 4-4 in Section 4.4 are as follows: F': {(Y,
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0.8), (N, 0.2)}, F%: {(Y, 0.67), (N, 0.33)}, F*: {(Y, 0.5), (N, 0.5)}, F*": {(Y, 0.5), (N,
0.5)}, F*: {(Y, 1), (N, 0)LF%: {(Y, 0), (N, D)}, F": {(Y, 0), (N, D)}, F*: {(Y, 0), (N,
)}, F7: {(Y, 0.6), (N, 0.4)}, and F'” {(Y, 0.5), (N, 0.5)}. In the clinical data
transformation process, a rule based transformation method (Yang, 2001) is adopted
for transforming both qualitative and quantitative input data. Here are the details of

the transformation.
o Qualitative Input Transformation

As for the qualitative input information regarding F 1, F°, F’, F" and F , Y’ and ‘N’
are the set of referential values for all these clinical symptoms. For F’, {known,
strongly suspected, maybe, suspected with a low degree, no} are used as its input
options, and transformation rules should be set between the input options and the
referential values of {Y, N}. According to an expert clinician’s advice, the following
transformation rules are used for F’ related inputs transformation: ‘known’ means
100% Y’, ‘strongly suspected’ means 80% ‘Y’ and 20% ‘N’, ‘maybe’ means 50%
‘Y’ and 50% ‘N’, ‘suspected with a low degree’ means 20% ‘Y’ and 80% ‘N’, and
‘no’ means 100% ‘N’. In real life application, the options set for acquiring original
information about qualitative clinical symptoms should be set depending on the
domain experts’ knowledge and experiences. There is no need to establish
transformation rules for clinical symptoms of F* 5 F , F” and F , because the referential
values ‘Y’ and ‘N’ are options for acquiring original input. Based on the clinical data
as described in Table 4-4, the transformed values for F ! ,F, F° , F” and Fare F': {(Y,
0.8), (N, 0.2)}, F*: {(Y, 1), (N, 0)},F”: {(Y, 0), (N, D}, F: {(Y, 0), (N, 1)}, and F*:

{(Y,0),(N, D)j.
o Quantitative Input Transformation
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As for quantitative input data regarding F°, F°, F’, F’ and F'’, their inputs are
numerical values, and ‘Y’ and ‘N’ are also used as referential values for these
symptoms. Moreover, each quantitative clinical symptom is associated with two types
of threshold values defined by domain experts including an upper limit value and a
lower limit value. Transformation rules for these quantitative clinical symptoms
should include that (a) if the input is larger than the upper range value, the input can
be transformed to 100% Y’ or ‘N’; (b) if the input is lower than the lower range value,
the input can be transformed to 100% ‘N’ or ‘°Y’; and (c) if the input falls into the
range between the lower and the upper limit values, the input can be transformed to

) -1 1
{(Y, ay — znput value owerrange value *100% ), (N, a]v — 1_ ay )} or {(N, a]v —
upperrange value— lowerrange value

input value —lower range value £100% ), (Y,a, = 1-a, )}, where ay stands for the

upper range value — lower range value

belief degree to which the input value can be transformed to ‘Y’ and ay stands for the

belief degree to which the input value can be transformed to ‘N’.

The reason for us to adopt a saturated linear utility change process as discussed above
rather than a step utility change process in transforming original input numerical value
of each quantitative clinical symptom is that the transformed inputs can make the
inference in the system better imitate human decision making in a real scenario. Take
F? for example, if the input value of F” is larger than (>) 130 bpm, then the patient
will be at high risk according to the original rules as shown in Table 4-1. However, it
is unknown what will be the judgment if the input value is exactly 130 bpm. In a real
clinical risk assessment of patients with upper GI bleed, a clinician would make his
assessment about a patient with pulse of 130 bpm based on his experience and other
observations instead of using 130 as the only standard to make a judgment. To solve

this problem in the belief rule-based CDSS, a value area of (127, 133) is used as an
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interval to define a gradual change area in risk assessment for patient’s pulse.
Therefore, the input value for enquiry about F~ equal to or higher than (>) 133 bpm
will be transformed to F°: {(Y, 1), (N, 0)} and the input value for enquiry about F*
equal to or lower than (<) 127 bpm will be transformed to F*: {(Y, 0), (N, 1)}. If the
input value lies in the range of (127, 133), it will be transformed to F’: {(Y,

input value —127(lower range value)

i 133(upper range value)—127(lower range value)

*100% ), (N, ay = l-ay)}. Similar

transformation will be implemented in input information for enquiries about F° FF
and F'’ and the linear change area is (85, 95) for Fg, (15, 25) for F4, (70, 80) for F* and

(5, 11) for F*°.

Based on the clinical data described in Table 4-4, the transformed values for F’ ,Fg JF,

F*and F'° are F>: (Y, ar= [131(input value) —127(lowerrange value)]

*100%=0.67),
[133(upperrange value)— 127(lowerrange value)]

(N, on=1-00=0.33)}, F'5: {(N, ay=(90-85)/(95-85)*100%=0.5), (Y, ay=1-ay=0.5)},
F (Y, ay=(20-15)/(25-15)*¥100%=0.5), (N, ay=1-ay=0.5)}, F's: {(Y, ay=(76-
70)/(80-70)¥100%=0.6), (N, on=1-00=0.4)}, and Fo: {(Y, ay=(8-5)/(11-

5)%100%=0.5), (N, o=1-0y=0.5)}.

4.5.2.2, Rules” Activation Weights Calculation

After the value assignment for antecedent symptoms, the next step should be to

calculate the activation weight for each packet antecedent in the rule base. Using

a, = H(a.k) (k=1,...,L) as described in equation (3-4), the combined matching

i=l
degrees of the input patient’s data to each rule’s packet antecedent are calculated as

follows: a;=0.8, 0,=0.67, 03=0.5, 04=0.5, 05s=0.0165, 0s=0, 0;=0, 0s=0, 0e=0.0099,
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a10=0.0083, and a,;=0, and the activation weights o, (k =1,....1 1) for all rules are

0,2,
L

Zﬁj%

J=1

generated using @, = (k =1,---,L)as described in equation (3-4) as follows:
@1=0.3194, ©,=0.2675, ®3=0.1996, ®4=0.1996, ©s=0.0066, wc=0, w7=0, ws=0,

0)920.004, 0)10:0.0031 and 601120.

4.5.2.3. Belief Degrees Update

What follows rules’ activation weights calculation is to update belief degrees in the
possible consequents of the activated rules in the BRB as shown in Table 4-3.

According to the activation weights @, (k =1,...,11) for each rule in the BRB as

calculated in above Section, Rules 1, 2, 3, 4, 5, 9 and 10 are activated to different
degrees by the simulated patient’s data. After updating of belief degrees in
consequents using equation (3-5) based on the transformed input values described in
Section 4.5.2.1, it can be found that the updated belief degrees in possible consequents
of the rules in the BRB remain original values because all the transformed inputs are
complete. Here, a complete input means that if the input U* is transformed to the

original distributed referential values with belief degrees as described in equation (3-
J; . . 1
3), Z,=1%- (1 =1---,T,;j= 1,~~-,J,.) should be 1. Take F* for example, the sum of ay

(0.8) and ay (0.2) of F’ transformed from the simulated input is 1, which means that
the input to the antecedent symptom F’ is complete. If inputs related to all antecedent
attributes are completes, the packet input will be a complete one and the belief
degrees in the consequents of the BRB will not be affected by the inputs and remain

as the original values given by domain experts.

4.5.2.4. Rules Aggregation via ER
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Finally, IDS (Xu and Yang, 2005), a Microsoft Windows-based multiple criteria
assessment system which implements the ER approach, is used as a tool to aggregate
all the activated rules. First, we need to model the belief rule-based clinical risk
assessment in the ER framework by taking each patient’s illness as an alternative to
be assessed, taking clinical risk as the top attribute for the assessment of the patient’s
illness, and taking each activated rule’s packet antecedent as a basic attribute for the
assessment of the top attribute. In this model, each rule’s activation weight acts like a
basic attribute’s weight, and each possible consequent of the BRB acts like each
individual evaluation grade set for the basic attribute. Accordingly, belief degrees in
possible consequents in the activated rules act like belief degrees to possible
evaluation grades. The model framed in IDS together with the inputs of the activated
rules’ activation weights are shown in Figure 4-2, in which the clinical risk
assessment model of the simulated patient is shown in the upper left side and the
dialog box in IDS for acquiring each activated rule’s weight is shown in the lower
right side where each activated rule is treated as a basic attribute in the model. A
dialog box in IDS for acquiring belief degrees in the possible consequents of each

activated rule for the clinical risk assessment model is shown in Figure 4-3.
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Figure 4-2: Clinical Risk Assessment Model in IDS
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Figure 4-3: IDS Dialog for Acquiring Belief Degrees in Consequents

After the modelling work, we can run IDS to generate assessments, and a final clinical
risk assessment for the simulated patient with upper GI bleed can be visually shown in
Figure 4-4, which shows that the patient’s clinical risk is assessed to be {(H, 0.9935),
(M, 0.0065), (L, 0)}. If the severity score of H risk is set to 1, the severity score of M
risk to 0.5, and the severity score of L risk to 0, the overall severity score of the
simulated patient generated by the ER approach is 0.9968, and this score can be used

to tell the severity difference between the patient’s illness and other patients’ which

are also caused by upper GI bleed.
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Figure 4-4: Clinical Risk Assessment for Simulated Patient with Upper GI Bleed

4.6. Feasibility Analysis

4.6.1. Advantages of Belief Rule-Based CDSS Compared To

Traditional Rule-Based CDSS

After detailed presentation of inference with traditional rule base using forward
chaining and inference with BRB using the ER approach for clinical risk assessment
of the simulated patient with acute upper GI bleed, a comparison of assessment results
for the simulated patient can be made between traditional rule-based and belief rule-
based systems, and it is shown in Table 4-5.

Table 4-5: A Comparison between Traditional Rule-based and Belief Rule-based
Clinical Risk Assessment
Clinical Risk Assessment Result
Traditional Rule-based System Belief Rule-based System
H {(H, 0.9935), (M, 0.0065), (L, 0)}

It can be seen from the comparison that the conclusion reasoned from belief rule-
based system are consistent with though not exactly the same as what is inferred from

traditional rule-based system. For the simulated patient, his/her clinical risk
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assessment result generated by the traditional rule-based system is ‘H’, while {(H,
0.9935), (M, 0.0065), (L, 0)} is the result reasoned from the belief rule-based system.
The reason is that although there is no uncertainty represented in the belief rules as
described in Table 4-3 in Section 4.3.2, a belief rule-based system can capture
uncertainties in clinical signs and symptoms for the simulated patient, but traditional
rule-based systems which have not taken uncertainties into consideration in system
design and implementation can only reason with clinical signs and clinical symptoms

with 100% certainty.

Based on the above observation, we can draw a conclusion that if there are uncertain
or incomplete input data regarding patients’ clinical signs and symptoms, the result
generated by belief rule-based system with distributed belief degrees attached to
different diagnoses is more informative than the one inferred from traditional rule-
based system with one certain diagnosis. Meanwhile, if all clinical signs and
symptoms can be described with 100% certainty, and there is no uncertainty in
clinical rules as well, the diagnosis conclusion derived from these clinical symptoms
should also be without any uncertainty. In such situations, belief rules reduce to

traditional rules.

Note that clinical domain knowledge for the diagnosis of different diseases may
contain different types and degrees of uncertainties, and real life clinical data are
actually more complicated than the simulated patient’s since information about a
patient’s clinical signs and symptoms may include ignorance of some symptoms,
vagueness or incomplete linguistic description, inexperienced judgements and so on.

In such situations, we prefer to using BRB to model uncertain clinical domain
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knowledge, and using the ER approach for inference to cope with uncertainties in

both clinical rules and clinical data.

Moreover, if two patients are with the same diseases and both are assessed to be at H
risk, a very important question in ED would arise as to who should be treated first,
which is an important issue in emergency triage system (Mackway-Jones et al., 2005).
In the belief rule-based system, a recommendation can be made based on the
calculated overall severity scores or severity intervals of the inferred assessments for
different patients. For example, if patients P' and P* are diagnosed by the system
simultaneously, and P' is assessed to be at {(H, 0.8), (M, 0.2), (L, 0)} risk and P? is
assessed to be at definitely H risk. If the severity score of H risk is set to 1, the
severity score of M risk 0.5, and the severity score of L 0.25, as a result, the overall
severity score of patients P' is 0.9 and P%’s is 1. If the order of treatment in ED is
based on patients’ severity ranking, P> should be recommended to be treated earlier
than P' by the belief rule-based system. However, for the traditional rule-based

system, it is difficult to give such a recommendation based on the inferred result.

In consequence, compared to traditional rules in developing a CDSS, RIMER has the
following advantages for developing a CDSS. Firstly, belief rules can provide a
flexible framework to capture uncertainties in both clinical sings and symptoms and
clinical domain knowledge. Secondly, inference with belief rules using ER can
generate a more informative conclusion which is a combined one. Thirdly, if
necessary, the distributed diagnosis recommendations can be used to rank patients’
severity. Actually, a traditional rule-based system is a special case of a belief rule

based system.
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4.6.2. Further Discussions of the Feasibility

From the comparison study conducted above between a belief rule-based CDSS and a
traditional rule-based CDSS, we can draw a conclusion that it is logically feasible to
model clinical domain knowledge using BRB and to employ the ER approach for
clinical inference. Further analysis of the technical feasibility of employing RIMER

for developing a computerised intelligent CDSS is discussed as follows.

From a technical perspective, developing a computerised system requires that there
should be appropriate computing technologies that can help to implement the system
design. As for a computerised belief rule-based CDSS, it needs to consist of at least
four fundamental components, namely user interfaces, database, knowledge base, and
inference engine. Interfaces are used to acquire inputs, present intermediate or final
conclusions and provide necessary explanations. Database is used to store and manage
input information, transformed input values and kinds of reasoned results. Knowledge
base consists of belief rules extracted from domain knowledge. Inference engine is

built with the ER aggregation algorithm.

In the study, the integrated development environment (IDE) available for developing
the CDSS is Microsoft Visual Studio .NET 2003 (Beres, 2003). With the aid of IDE,
we can not only design web-based system architecture, but also design and develop
each system component easily with its visual designers and a range of programming
languages. Firstly, friendly web-based interfaces can be easily designed and
developed by ASP.NET technology. Secondly, a database built by different types of
Data-Base Management Systems (DBMSs) such as Microsoft Access, Microsoft SQL
Server, Oracle and so on can be easily connected to the core programs developed in

the IDE through ADO.NET technology. Thirdly in terms of the knowledge base, we
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can use a unique method to store and manipulate the BRB in a relational database, and
it can help reduce the complexity of developing a rule compiler. Fourthly the
inference engine can be implemented by programming with languages such as Visual
Basic .NET, Visual C++ .NET, Visual C# .NET and so on that are seamlessly

integrated in the IDE.

To conclude, it is feasible to employ the RIMER methodology to develop a

computerised intelligent CDSS.

4.7. Summary

This chapter describes how to employ the new belief rule inference methodology -
RIMER for developing a CDSS, together with a comparison study of belief rules and
traditional rules in reasoning out the clinical risk result of a simulated patient with
upper GI bleeding. From the comparison study, the following conclusions can be
drawn. Firstly, a belief rule-based CDSS can handle different uncertainties in both
clinical domain knowledge and clinical data. Secondly, a belief rule-based CDSS can
provide a distributed diagnostic recommendation which is more informative than a
traditional rule-based CDSS that do not take uncertainties into consideration. Thirdly,
if necessary, a severity score or severity interval can be calculated to rank the
seriousness of patients’ illness in a belief rule-based CDSS. In conclusion, it is
feasible to employ RIMER for developing a computerised intelligent CDSS. The
design and development of an online intelligent belief rule-based group CDSS is

presented in the next chapter.
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Chapter 5
Design and Development of

An Online Belief Rule-based Group CDSS Prototype

5.1. Introduction

The preliminary feasibility study presented in Chapter 4 proves that it is feasible to
develop a computerised intelligent belief rule-based CDSS. What follows the
feasibility study is an implementation of an intelligent belief rule-based CDSS. This
chapter describes the design and development of the belief rule-based CDSS

prototype.

A new CDSS framework which integrates automatic knowledge learning functionality
and online group decision supporting functionality into knowledge-based CDSS has
been proposed and employed in the prototype design and development. The
developed CDSS prototype helps to bridge the research gaps in the CDSSs literature
as described in Chapter 2. Main system features of the prototype CDSS are discussed
as follows. Firstly, the prototype has two special functions, namely representation of
uncertain clinical domain knowledge using belief rules, and inference with belief rule
base (BRB) using the evidential reasoning (ER) approach. The functions enable the
prototype to handle uncertainties existing in both clinical signs and symptoms, and
clinical domain knowledge. Secondly, apart from providing individual diagnosis
support, a group discussion platform and an ER-based group preferences aggregation
mechanism are developed for supporting group clinical decision making. Thirdly, a

BRB training module is developed and integrated into the prototype, and it enables
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the system to automatically update clinical rules in the BRB by learning through
clinical cases accumulated in clinical practice. Fourthly, the user interfaces
implemented in the prototype are based on clinical guidelines, and the guideline-based
information flow can help the system to be integrated in clinical work flow easily,
while it can also facilitate system users adhering to clinical guidelines. Fifthly, the
BRB is uniquely structured and stored in a relational database in the prototype.
Manipulating BRB through a relational database facilitates not only the interaction
between knowledge base and other core system components, but also the sharing of
clinical domain knowledge between the prototype CDSS and other clinical application

systems.

The methodology used for developing the CDSS prototype is prototyping as discussed
in Chapter 3. Accordingly, we developed the system in an iterative way. Initially, we
developed and presented a preliminary prototype CDSS to experts in MRI based on
our system analysis elicited from first several meetings with expert clinicians in MRI.
Then we improved the prototype iteratively based on the system users — expert

clinicians’ feedback of the prototype.

The system development environment is Visual Studio 2003 .NET (Beres, 2003) on
platform Windows XP Professional. The programming languages include C#,
ASP.NET (Liberty and Hurwitz, 2002), and MATLAB
(http://www.mathworks.com/products/matlab/). The Data-Base Management System
(DBMS) used for design and development of back-end relational database is SQL

Server 2000 (Waymire and Sawtell, 2000).

The chapter is organised as follows. Section 5.2 introduces the system structure,

where system architecture design and system component design are discussed
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respectively in Section 5.2.1 and Section 5.2.2. Section 5.3 presents detailed design
and development of core system components, where inference engine is discussed in
Section 5.3.1, group decision supporting module in Section 5.3.2, training module in
Section 5.3.3, web-based user interfaces in Section 5.3.4, database in Section 5.3.5,
and knowledge base is discussed in Section 5.3.6. Conclusions about the prototype

system are provided in Section 5.4. Finally Section 5.5 summarises the chapter.

5.2. System Structure

5.2.1. Architecture Design

World Wide Web (WWW) technologies (Berners-Lee et al., 1994) have transformed
the design, development, implementation and deployment of decision support systems
(DSSs), and great progress has been made in web-based DSSs in the past decade
(Bhargava et al., 2007). Taking advantages of web technologies, a web-based DSS
can link multiple decision makers who might be separated in space or time for online
group discussion or meeting, and can deliver the suggestions or recommendations
generated from the system to a much broader audience of decision makers who is
geographically separated (Bhargava et al., 2007). As to web-based DSSs in clinical
area, web-based CDSSs have advantages in providing easy accessibility for clinicians
in geographically different places and easy dissemination of clinical domain
knowledge and patients’ clinical data among different clinical application systems. In
the research, through regular meetings with expert clinicians in MRI, we know that
frontier clinicians have a strong need of an online intelligent CDSS which can help
them to act in accordance with practice guidelines in their daily clinical work flow.
Motivated by the above facts, we adopt a web-based three-layer client-server
architecture (Sommerville, 2007) in the prototype design.
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In a client-server architecture, an application is modelled as a set of services that are
provided by servers and used by a set of clients (Orfali and Harkey, 1998). In this
architecture, clients need to be aware of the servers that are available but usually do
not know the existence of other clients, and clients and servers are separate processes.
In design of client-server systems, logical structure of the application that is being
developed should be reflected in the system architecture (Sommerville, 2007).
Usually, an application can be structured into three layers: the presentation layer
which is concerned with presenting information to the user and with all user
interaction; the application processing layer which is concerned with implementing
the logic of the application; and the data management layer which is concerned with

all database operations. Figure 5.1 illustrates these three layers.

Presentation Layer

A

\ 4

Application Processing Layer

A

\ 4

Data Management Layer

Figure 5.1: Application Layers (Sommerville, 2007)

In the three-layer client-server architecture, the presentation layer, the application
processing layer and the data management layer are logically separate processes that
execute on different processors (Sommerville, 2007). Generally, the three-layer client-
server architecture is composed of three logical parts: system user’s own computer
with a web browser that can display system’s user interfaces is the presentation layer;
a web server for providing all services related to the application being developed is

the application processing layer; and a back-end database for providing data
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management services is the data layer (Sommerville, 2007). The three-layer

architecture can be illustrated in Figure 5-2.
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Figure 5-2: Three-Layer Architecture

The prototype CDSS is designed on the basis of the three-layer architecture. In the
prototype, system users can access the system through web-based user interfaces,
application logic of the system reside in the middle layer which is usually
implemented in a web server, and data access technologies such as ADO.NET
(Hamilton and MacDonald, 2003) can be used by system components located in the
web server layer to communicate with the data management layer, which is usually

implemented by a back-end database server directly.

5.2.2. Component Design

As for the system components implemented in the three-layer architecture, there
should be generally at least four system components in a web-based CDSS based on

the general structure of knowledge-based CDSSs as shown in Figure 2-1 of Chapter 2.
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They include friendly web-based user interfaces, inference engine, knowledge base,

and database. Both inputs and outputs of the system can be stored in the database.

To address the research gaps identified from the CDSS literature discussed in Chapter
2, the target belief rule-based CDSS should possess at least three capabilities. The first
one is the capability of representing and reasoning with uncertain clinical domain
knowledge and clinical data. The second one is the capability of providing group
decision support. The third one is training or fine-tuning BRB by learning through

accumulated clinical cases.

Thus, a new CDSS framework which integrates automatic knowledge learning
functionality and online group decision supporting functionality into knowledge-
based CDSS is proposed and employed for the prototype design and development. In
the new knowledge-based CDSS framework, core components of the prototype
system should include inference engine, group decision supporting module,
knowledge base training module, database, knowledge base, and web-based user

interfaces.

® Inference engine is for matching the system users’ clinical inputs with clinical

rules in the knowledge base to generate automatic diagnostic recommendations.

® Group decision supporting module provides two important system functionalities.
The first one is providing a discussion forum for group clinicians from
geographically different places to hold online clinical group discussions and offer
individual diagnosis preferences. The second one is providing an ER based
diagnosis preferences aggregation mechanism to combine group diagnosis

preferences.
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® Knowledge base training module is for training BRB by optimizing the knowledge

representing parameters of the BRB through accumulated clinical cases.

® Database is used for storage and retrieval of system’s input data, some

intermediate data, and system output data.

® Knowledge base is for maintaining all clinical rules used in the system, and it is
modelled as BRB in the prototype. Specifically, BRB is uniquely designed to be

stored and manipulated in the back-end relational database in the prototype.

® Finally, friendly web-based user interfaces are for acquiring system users’ inputs

and displaying the system’s outputs.

The following Figure 5-3 illustrates the actual implementation of the above mentioned

core system components in the prototype.
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Figure 5-3: Core System Components Implemented in Three-Layer Web

Architecture

The system structure as shown in Figure 5-3 has three characteristics. Firstly, thanks
to advanced computing technologies, both inference engine and training module can
be developed independently of system environment or application domain, so that
they can be portable and adaptable to various application areas and different system
development or running environments. Secondly, domain specific knowledge
modelled as BRB is structured and stored in back-end relational database, which is the
same as or separate from the database used for various system data and patients’ data
storage. Thanks to mature technologies of today’s relational DBMS in data analysis
and communication with main systems developed with different programming
languages, structuring clinical domain BRB in a relational database can facilitate the

sharing of domain knowledge, and the interactions between the knowledge base and
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other system components including inference engine, training module, and group
decision supporting module. Thirdly, the core algorithm of inference engine and
group decision supporting module is the evidential reasoning (ER) approach, therefore
the computerised ER model which is implemented in inference engine can be reused

by the group decision supporting module for group diagnosis preferences aggregation.

The design and development of above discussed core system components in the

prototype are presented in the following Section.

5.3. System Components

In this Section, we discuss components implemented in web server layer one by one
first, and then we discuss components implemented in the client layer and back-end

layer.

5.3.1. Inference Engine

The purpose of inference engine in a knowledge-based CDSS is trying to generate a
reasonable clinical decision or recommendation by matching system’s input data with
domain specific knowledge modelled in the knowledge base. As such, an inference
process is an interaction between system’s inputs and the knowledge base, and the

interaction way is determined by the employed inference algorithm.

The inference engine in the belief rule-based CDSS prototype is implemented using
the recursive ER algorithm as described in the RIMER methodology (Yang et al.,
2006). The ER based inference engine is actually a non-linear function between a set
of parameters and another set of parameters. The former set of parameters include all

belief rules’ activation weights and consequent belief degrees in one BRB, where rule
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activation weights are determined by rule weights, antecedent attribute weights, and
matching degrees between system’s inputs and rules’ antecedents. The latter set of
parameters are generated by the non-linear function provided by the ER algorithm,
and they represent final belief degrees associated to all possible consequents in the
BRB after combining all belief rules activated by the system inputs. The recursive ER
algorithm implemented in the inference engine can be described by the flowchart in

Figure 5-4.

Read (1) rules’ activation weights set; and
(2) updated consequent belief degrees set
determined by system inputs.

v
Calculate (1) belief degrees to the consequent set inferred from the firs{
activated rule; and (2) remaining degree of belief unassigned to any
consequent inferred from the first activated rule. For the calculation of]
these belief degrees, readers can refer to Appendix B.

v
Calculate (1) belief degrees to the consequent set after combining current
rule and previous activated rules; and (2) remaining degree of belief
unassigned to any consequent after combining current rule and previous
activated rules.

IAbout the non-linear function used here for aggregating current rule and
previous rules, readers can refer to Appendix B.

\ 4

(Gg to the next
actiyated rule)

No

Have all activated rules
been considered?

Normalize the final combined belief]
degrees to the consequent set.

v

[ End ]

Figure 5-4: The Recursive ER Algorithm (Yang et al., 2006)
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There are two other fundamental sub-components that were developed in parallel in
the implementation of the inference engine, apart from the core computerised ER
algorithm as described in Figure 5-4. The first sub-component of the inference engine
is input transformation sub-component, and the second one is rule matching sub-

component.

® Input transformation sub-component

As for the input transformation sub-component, the BRB uses sets of referential
values to describe antecedent clinical signs and symptoms in its clinical rules, and the
input clinical data about one clinical sign or symptom is a value in qualitative or
quantitative or a mixed nature. So there is a demand for transforming the input clinical
data to sets of referential values with belief degrees so that the transformed data can
be used by the inference engine to do matching with clinical rules in the BRB.
Accordingly, the purpose of the input transformation sub-component is to transform
qualitative or quantitative or mixed clinical inputs to a set of data that can well
represent uncertainties and can be used by the inference engine to do inference with
the BRB. The techniques used for the input clinical data transformation are rule-based
and can be found in Yang (2001). The details of input transformation have been

described in Section 4.5.2.1 of Chapter 4.

® Rule matching sub-component

In terms of the rule matching sub-component, its purpose is to tell the inference
engine which rules in the BRB are activated and to what degrees by doing matching
between transformed input clinical data and belief rules in the BRB. As can be seen
from the ER algorithm outlined in Figure 5-4, if we want to make the core inference

algorithm portable and sharable for different kinds of domain application with
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different input data and different BRB, we will need to separate it from calculating
rules’ activation weights and updated consequent belief degrees, so that it can be
freely called by the inference engine independent of clinical domain BRB and input
clinical data. For this purpose, the rule matching sub-component is designed and
developed to complete the following tasks. Firstly, do matching recognition between
the transformed system inputs and clinical rules in the BRB. Secondly, calculate
activation weights for all rules using equation (3-4) and updated consequent belief
degrees using equation (3-5) as described in Chapter 3 based on system inputs. Finally,
feed the rule activation weights and updated consequent belief degrees into the core
inference algorithm. When the computerised inference algorithm get the data from the
rule matching sub-component, all activated rules will be aggregated by the ER
algorithm and a combined belief degree set assigned to the consequent set can be

automatically generated.

The sub-component structure of the inference engine implemented in the prototype is
sketched in Figure 5-5, where the core ER algorithm is implemented as dynamic link
library (DLL) by programming with Visual Basic .NET, and the other two sub-
components are implemented by programming with C#. The input to the inference
engine is clinical data about a patient, and the output of the inference engine is an
inferred diagnosis recommendation for the patient based on the input clinical data and

the embedded BRB in the system.

Inference Engine

Input Output
Input Rule Core ER
Transformation Matching Algorithm (DLL)

Figure 5-5: Sub-Component Structure of Inference Engine
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5.3.2. Group Decision Supporting Module

The group decision supporting module in the prototype is designed to serve two aims.

® One is for providing an online discussion forum for group clinicians or
consultants to offer different diagnosis opinions and shape individual diagnosis

preferences.

® The other one is for aggregating all group consultants’ diagnosis preferences via

ER to arrive at a group combined diagnosis recommendation for target patient.

Moreover, to facilitate online group consultants’ discussion, both the domain
knowledge stored inside the system and those Internet-based domain knowledge
resources are designed to be integrated seamlessly with the group module. Thus the
group consultation participators can have access to the domain specific clinical rules
stored in the system together with the Internet-based resources such as
(http://www .bestbets.org/) which can aid the consultation. Details of the implemented

group module are presented as follows.

The way that the group decision supporting module works is similar to the real life
group consultation in clinical practice. In real life clinical group consultation, there is
usually a group facilitator who helps to invite other consultants to participate in the
group consultation and facilitates the whole group discussion process, while the group
facilitator should have knowledge about all participated group consultants’ expertise

in advance.

Therefore we designed two types of system user roles in the prototype system, namely

group facilitator and consultant, which can login to the group decision supporting
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module and use the functionalities that the module provides. What follows are

discussion about the above mentioned two system user roles.

® Group facilitator role

The group facilitator role is for initializing and facilitating an online group
consultation. The system user acting as a group facilitator should inform participated
consultants of key information about target patient before the group consultation, so
that a participated consultant can use the key information to identify target

consultation group. The main user rights assigned to the group facilitator role include:

(a) inviting group consultants to participate in the group consultation;

(b) having access to target patient’s data and various domain knowledge resources;

(c) facilitating the group consultation;

(d) assigning weights to participated consultants based on their expertise;

(e) calling the ER-based aggregation mechanism to combine all consultants’

diagnosis preferences.

® Consultant role

The consultant role is for participating in a specific group consultation and providing
individual diagnosis preference for target patient. The main user rights assigned to the

consultant role include:

(a) joining the online group consultation about one specific patient;

(b) having access to target patient’s data and various domain knowledge resources;
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(¢) providing individual diagnosis preference.

The working flow of each user role acting in an online group consultation supported

Role of
Consultant

by the group module is illustrated in Figure 5-6.

Role of Group
Facilitator

Login the module as Login the module as
Group Facilitator Consultant
Initialize and facilitate a . R Participate in the target group consultation
group consultation i &
¢ Provide individual diagnosis preference

End the group consultation &
Call the group aggregation mechanism
(ER DLL)

Arrive at a final combined
diagnosis recommendation

Figure 5-6: Working Flow in Online Group Clinical Consultation

The group decision supporting module based on the ER approach has two main
characteristics. First, the ER based group aggregation mechanism can be implemented
using the ER DLL that is already developed in the inference engine as discussed in
Section 5.3.1. Reusing the ER DLL helps to reduce the complexity in developing the
group module, and the ER based group diagnosis preferences aggregation mechanism
can be integrated with the discussion forum seamlessly by the DLL technology.
Secondly, the capability of the group decision supporting module to be linked directly
to target patient’s data, the BRB, and Internet resources enables group consultants to
easily access target patient’s data and various domain knowledge in the consultation

process to shape their diagnosis preferences.
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The discussion platform implemented in the group module is implemented by
programming with ASP.NET and C#. The web-based user interfaces of the group
module can guide system users, who act as different user roles, to different work
flows in the process of holding an online group consultation and arriving at a final

aggregated diagnosis recommendation.
5.3.3. Training Module

Assuming there is a BRB containing L belief rules, 7" antecedent attributes, and N
possible consequents, the parameters of the BRB including rule weights

0, (k :1,~--,L), antecedent attribute weights o, (i =1---,T ), and consequent belief
degrees f3; (j =1---,N;k =1,---,L) can be originally given by domain experts or

generated randomly by systems. However, it is difficult to accurately determine rule
weights, antecedent attribute weights, and consequent belief degrees entirely
subjectively or randomly (Yang et al., 2007). As such, there is a need to fine-tune or
train belief rules originally constructed in a belief rule-based system by accumulated
historical data. The training module implemented in the prototype CDSS serves the

purpose of training the BRB by learning through accumulated clinical cases.

The core of the training module is a BRB optimization model. We used MATLAB to
develop and implement the BRB training model. Assume there are M set of training

samples, the mechanism of the training model can be described by Figure 5-7.
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Read M input-output
data pairs

Construct
objective function

v

Set constraints

v

Call fmincon function to search for a set of
optimizational parameters for the BRB

End

Figure 5-7: Mechanism of BRB Training Model

As described in Figure 5-7, core tasks of the BRB training model include (a)
constructing objective function; (b) setting constraints for the training parameters; and

(c) calling finincon to search for optimizational parameter set.

In the training module implementation, the training parameter set and constraints for

those parameters can be flexibly set by system administrators as required.

Apart from the core training model developed in MATLAB environment, a parameter
transferring sub-component 1is developed and implemented in Visual Studio
2003 .NET environment. Its functions include: (1) retrieving training data and initial
values of the training parameter set from the back-end database; (2) feeding the initial
values of training parameters into the training model; (3) getting the trained
parameters from the training model; and (4) putting the trained parameters set into the

back-end database.

137



The implemented sub-component structure of the training module is described in
Figure 5-8, where the BRB training model is developed and implemented in
MATLAB and packaged as component object model (COM) that can be integrated
with the parameter transferring sub-component developed in Visual Studio 2003 .NET

seamlessly.

( N

raining Module

M dataset and initial
values of (Hk,él.,ﬂjK)

Parameter —
Transferring > BRB Training
< Model
Database Trained values (COM)
Accesses of (Hk .0 ’ﬁjK)
N j
7'y
Web Setver
T
[ Back-end Database Database Server

Figure 5-8: Sub-Component Structure of Training Module

The training module is integrated into the prototype CDSS seamlessly and can
provide batch-mode automatic BRB training. However, before the prototype CDSS
can be put into clinical use, we need to find out the most suitable training parameter
set for the training module so that it can bring the most significant performance
improvement to the system. Thus, in the later system validation discussed in Chapter
6, we need to compare the performances of the training model with different training
parameter sets and identify the most suitable training parameter set for the training

module.
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5.3.4. User Interfaces

The component implemented in the prototype which concerns the interaction between

users and the system is web-based user interfaces.

As identified by CDSSs researchers Sittig et al. (2008), the human-computer interface
is one of top challenges in computerised clinical decision support. Human/computer
interface is the main point of contact between the user and the computer system,
therefore the interface should unobtrusively, but effectively, remind clinicians of
things they have truly overlooked and put key pieces of data and knowledge
seamlessly into the context of the work flow or clinical decision making process, so

that the right clinical decisions can be made in the first place (Berner and Moss, 2005).

Clinical guidelines, as a format of clinical domain knowledge, are increasingly used to
improve the quality of care by supporting clinical decision making in recent years.
Guideline-based CDSSs have the potential to provide recommendations aimed at each
specific patient (Peleg et al., 2003), while conventional text-based guideline can only
present population-based recommendations which are aimed at a population with a
specific disease. Studies (Grimshaw and Russell, 1993, Johnston et al., 1994, Lobach
and Hammond, 1994, Tierney et al., 1995) have shown that computer-based CDSSs
can improve clinicians’ compliance with clinical guidelines and patient outcomes
when developed to provide patient-specific assistances in decision making and
integrated with clinical work flow. Development of guideline-based CDSSs has thus
been proposed as a strategy to promote the implementation of guidelines (Field and

Lohr, 1992, McDonald and Overhage, 1994).
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Thus, in the design of user interfaces for the prototype CDSS, we consider two factors.
Firstly, in terms of interfaces for individual diagnosis, the information flow embedded
in the user interfaces should be the same as the related clinical guideline that
clinicians use daily in their practice, so that the CDSS can help clinicians to adhere to
the guideline. Secondly, the prototype CDSS should have the capability of being
integrated into the clinical work flow seamlessly, so that a right clinical decision can
be made in the right place at the right time. By using the prototyping methodology to
develop the CDSS prototype, we developed and improved the user interfaces

iteratively based on frontier clinicians’ feedback about the prototype.

In the following, the information flow of all the user interfaces implemented in the
system will be discussed, and for illustration, the user interfaces for individual
diagnosis will be described using diagnosis of upper Gastrointestinal (GI) bleed as an

example.

® Information flow of user interfaces

The information flow of the implemented user interfaces can be sketched in Figure 5-
9 based on the system’s main functionalities, which include individual diagnosis,

group consultation, and automatic knowledge updating.
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Figure 5-9: User Interface Information Flow Diagram

Note that there are different flows in the user interfaces as shown in Figure 5-9 due to
different functionalities that the system can provide. The system users should specify
their roles when they login to the system so as to navigate through different
information flow. The system user roles include: (1) clinician for individual diagnosis;
(2) clinicians for group consultation including group facilitator and consultant; and (3)
clinician for updating clinical rules in the BRB. For illustration, user interfaces for

individual diagnosis are described as follows.

® User interfaces for individual diagnosis
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Interfaces for individual diagnosis of one disease were designed based on the
guideline to facilitate system users to adhere to clinical guidelines. Take diagnosis of
upper GI bleed as an example, main user interfaces for diagnosis and treatment of

upper GI bleed can be illustrated as in Figure 5-10.

As can be seen from the interfaces in Figure 5-10, a clinical work flow for diagnosis
and management of patients with upper GI bleed in ED is provided in the main
diagnosis interface as shown in Figure 5-10(B) after a clinician logs into the system
through the login interface as shown in Figure 5-10(A). There are several links in the
main diagnosis interface linking to different web forms for acquiring different types
of patients’ data. For example, ‘Please input patient’s personal information here’ in
the main diagnosis interface is linked to the web form as shown by Figure 5-10(C) for
acquiring a patient’s personal data. Moreover, the interface can guide the clinician to
go back to the main diagnosis interface when necessary data has been input. Then the
clinician can proceed to the next diagnosis or treatment step as indicated by the
clinical work flow in the main interface. The interface in Figure 5-10(D) is for
acquiring a patient’s necessary clinical data for risk assessment, and from the interface,
the inference engine can be triggered automatically to do inference with the input
clinical data, and then another interface as shown by Figure 5-10(E) for showing the
inferred result of the patient can be displayed automatically. Note that all these
interfaces designed for acquiring patients’ data or displaying inferred results have
‘Back’ links which can guide clinicians back to the main diagnosis interface and to

proceed to the next step.

142



T 44 A - Vindovs e g

Geo- = O~ B it g G0 - Ervimpinshsmenapaibreese s a5
fe g Ve e PTG — Fie Edt View Favorkes Tods Help e
et e = e rome [ i 4 [ @nctmensann =
P ——
s et ool s / e heret | EMmergency Department »
& ONLINE INTELLIGENT GROUP CLINICAL [ Acute Upper Gl Bleed \ -
& DECISION SUPPORT SYSTEM Patient vomiting biood lease input patient’s personal informtion here J Pleass encer all availakle infermation for this petisnt,
< —_
g Fields namec ia red ae requived.

Please specify vour purpose for this login:

First Hame TEST Address Line 1 Manchester Bisiness S:hy

Lot e s e
Date Of Birth |frena0 City
Hedical Record No# 12 Postal Code

Complete Investizatel
averleaf
@Diagnosis

OGrmp Crnanl tatiom
OUpdate Nedical Rules => [r—

overlest
Decision Science Research Centre

Business Systems Division
Manchester Business School

mg IV stat

i Done
A) (B) ©

diagnosisResult - Windows Internet Explorer

2] pporGlblocd 05 1.aspx 6:21 i \g http: filacalhastfonlineCDSS diagnasisResul aspx
W | uppercbiesd-ost | ] w & (& diagnosisResult I ‘

Back
€DU/051: CLINICAL RISK ASSESSMENT OF ACUTE Back
UPPER GI BLEED
[Known or suspecied oesophageal vances | [Gionaly suspecte < | The system's diagnosis recommendation is shown as follows.
IF'!EI\PI~ | [131 I
[psioicoiecoipressureliS RS e s System's diagnosis recommendation With possibility
IPnSEu!aI SBP drop 15 | 50 N

g

[on NSAs or anficoagulants

[On anticosmelant= 1] => M 0.0065

IMaJm conorbidily  (eg cardiac o u-usm‘ ‘ |
4 Hn major ca-marh (v
St 1t f i di
[Friomata of iver aisease | = 0 09935
fncesed acutc fresh rod blood in vornit (4ol
not include coffee grounds or streaks of blood)
[E2EE I Ex— N
Iu:ea is | B |
[ Submit Reset )

Done

(D) (E)
Figure 5-10: Main User Interfaces for Individual Diagnosis of Upper GI Bleed
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About the user interfaces designed for group consultation and knowledge updating in

the system, readers can refer to a brief user manual in Appendix A.

Thus far we have presented all core system components implemented in the web
server layer and client layer. All these components can not work independently from
data layer, which is used to store and manage patients’ clinical data, system data, and
clinical domain knowledge used in the prototype CDSS. What follows is a discussion
about the database and the knowledge base implemented in the back-end relational

Data-Base Management System (DBMS).

5.3.5. Database

Generally, there are three phases to the database development process, namely logical
design, physical implementation, and application development (Hernandez, 2003).
Logical design involves determining and defining the structure of the database, which
includes tables and their fields, primary and foreign keys of tables, table relationships,
and so on. Physical implementation involves using proper DBMS software to
implement the database structure we created in logical design phase. Application
development involves creating an application that allows system users to interact with

the data stored in the database.

As the main application programs developed in the prototype CDSS have been
discussed from Section 5.3.1 to Section 5.3.4, we will briefly describe logical design

and physical implementation of the database in this Section.

® Logical design
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In designing the database, we used the database design method introduced by
Hernandez (2003). Using the design method, there are seven steps involved in
designing the database, namely (1) identify purpose of the database; (2) analyze the
data used in clinical environment, and identify Subjects that the database needs to
keep track of for supporting clinical decision making and Characteristics of those
subjects; (3) create the data structures, and this step involves establishing fables based
on identified subjects and associating each table with fields that represent
characteristics of the table’s subject; (4) determine table relationships; (5) define rules
to set constraints to the data stored in the database; (6) establish views to facilitate
manipulation of data stored in the database; and (7) review data integrity of the

designed database structure.

For clarification, here we give a brief discussion of terms used in this Section, and the
term definition is based on Hernandez (2003). Subjects represent objects such as
persons, places, or events that occur at a given point in time. Characteristics represent
details of one subject. Take the subject of patient as an example, the patient’s first
name, last name, age, gender and so on are characteristics of one patient. 7ables are
the chief structures in a relational database, and each table represents a single, specific
subject. Fields are the structures that actually store data in the database and a field
represents a characteristic of the subject represented by the table to which it belongs.
A relationship exists between two tables if we can in some way associate the records
of the first table with those of the second. Here a record represents a unique instance
of the subject of a table. A view is a virtual table composed of fields from one or more

tables in the database.
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In the following discussion, we will not show details of the whole logical design
process, we will however briefly discuss first the purpose of the database, and then the
subjects together with their characteristics that we identified by analyzing data
requirement for the prototype CDSS, and finally the tables we created for the database

according to those identified subjects and characteristics.

(1) Purpose of the database

The purpose of back-end database in a CDSS is for the maintenance of various data
used by or generated from system components reside in the server layer or client layer
as shown in Figure 5-3. For example, inference engine needs patients’ clinical data
and clinical rules in the BRB for reasoning about a patient’s clinical risk level or
disease status, while group decision supporting module needs not only patients’ data,
but also group consultants’ data to help a group facilitator organise a group

consultation.

(2) Identified subjects and characteristics

To identify subjects and their characteristics that the database need to keep track of,

we need to analyze the data requirement for the prototype CDSS first.

As for knowledge modelled as BRB in the system, logical design and physical
implementation of BRB in a relational database will be discussed in Section 5.3.6. In
this Section, we focus on discussion about other data used by or generated from the

system.

Besides domain knowledge modelled as BRB, other necessary data used by or
generated from the prototype can be classified into three categories: (a) patients’ data,

(b) doctors’ data, and (c) data generated from group consultation which includes
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group discussion content, group consultants’ individual diagnosis preferences, and

group combined diagnosis suggestion for one patient.

(i) Subjects and characteristics in patients’ data

As for a patient’s data stored in the prototype, it should contain (a) the patient’s key
personal data, (b) the patient’s clinical data including his/her clinical signs or
symptoms, (c) the clinical guideline used by doctors for his/her diagnosis, and (d)

system generated diagnosis recommendation about the patient’s disease.

We first identified “Patient” as one subject, and its characteristics include (1) key
personal information; (2) clinical data; (3) clinical guideline used for his/her diagnosis;
and (4) diagnosis recommendation generated by the system or the doctor. We then
further identified subjects from these characteristics which have their own
characteristics. Thus we treat characteristics of the subject “Patient” including
“Clinical sign or symptom”, “Clinical guideline”, and “Diagnosis recommendation”
as subjects. Furthermore, we take “Severity level” which is a characteristic of

“Clinical sign or symptom” and “Diagnosis recommendation” as a separated subject.

Identified subjects and characteristics from patients’ data can be listed as in Table 5-1.

Table 5-1: Identified Subjects and Characteristics from Patients’ Data

Subjects Characteristics

Patient (1) Key personal information including Medical Record No.
(MRN), last name, first name, gender, age, etc.
(2) Clinical data including his/her clinical signs or symptoms
(3) Clinical guideline used for his/her diagnosis
(4) Diagnosis recommendation generated by the system

Clinical sign or symptom  Name, severity level

Clinical guideline Name

Diagnosis Name, severity level

recommendation

Severity level Name, associated clinical sign/symptom or diagnosis
recommendation
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(i) Subjects and characteristics in doctors’ data

In terms of one doctor’s data stored in the system, firstly, the doctor should be a
system user of the system with username and password; secondly, the doctor should
have his/her user role for each login; and thirdly, the doctor should have his/her

expertise domain stored in the system.

We first identified “System user” as one subject, and its characteristics include (1)
user name; (2) password; (3) first name; (4) last name; (5) associated user roles; and
(6) expertise domains. Since characteristics of “Associated user roles” and “Expertise
domains” have their own attributes, we then take these two characteristics as separate

subjects.

Identified subjects and characteristics from doctors’ data can be listed as in Table 5-2.

Table 5-2: Identified Subjects and Characteristics from Doctors’ Data

Subjects Characteristics

System user (1) User name
(2) Password
(3) First name
(4) Last name
(5) Expertise domains
(6) Associated user roles

User role Name, user right

Doctor expertise (1) Associated doctor
(2) Expertise name
(3) Rank order compared to the doctor’s other expertises

(iii) Subjects and characteristics in data generated from group consultation

As for data generated from a group consultation, it is mainly include (a) discussion
content and individual diagnosis preferences provided by group consultants; and (b)

group combined diagnosis suggestion for the target patient.
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Identified subjects and characteristics from group consultation data can be listed as in
Table 5-3, where the subjects of “Group consultant”, “Group discussion content”,
“Individual diagnosis preference”, and “Combined diagnosis preference” are
characteristics of subject “Facilitated consultation group”. The characteristic of
“Belief degree provided by the consultant” associated to the subject “Individual
diagnosis preference” represents the belief degree assigned by one consultant to
his/her diagnosis preference. For the role of this belief degree played in the group
preferences aggregation process, readers can refer to Section 3.2.2 for how to use the
evidential reasoning (ER) approach to aggregate group diagnosis preferences with
belief degrees. The characteristic of “Aggregated belief degree” associated to the
subject “Combined diagnosis preference” represents the belief degree assigned to the
final diagnosis preference after aggregating all group consultants’ diagnosis

preferences.

Table 5-3: Identified Subjects and Characteristics from Group Consultation
Data

Subjects Characteristics
Facilitated consultation (1) Group facilitator
group (2) Group consultants

(3) Consulted patient

(4) Group discussion content

(5) Individual diagnosis preferences provided by group
consultants

(6) Aggregated diagnosis preference

Group consultant Name, weight

Group discussion content (1) Associated consultation group
(2) Associated consultant
(3) Discussion content

Individual diagnosis (1) Associated consultation group
preference (2) Associated consultant
(3) Diagnosis preference
(4) Belief degree provided by the associated consultant

Combined diagnosis (1) Associated consultation group
preference (2) Aggregated diagnosis preference
(3) Aggregated belief degree

(3) Created tables
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After identifying subjects and characteristics from data used by or generated form the

system, we designed tables to represent those identified subjects.

(i) Tables for patients’ data

In designing tables to represent subjects in patients’ data, we used table PATIENTS to
represent subject “Patient” with key personal information, table DIAGNOSISITEMS to
represent subjects of “Clinical sign or symptom” and “Diagnosis recommendation”,
table DISEASEDIAGNOSISGUIDELINES to represent subject “Clinical guideline”. To
make distinction among records of “Clinical sign or symptom” and “Diagnosis
recommendation” or other types of clinical data, we wused table

DIAGNOSISITEMCATEGORIES to represent categories of clinical data.

To represent severity level related to one patient’s clinical sign or symptom or
diagnosis recommendation, we used table DIAGNOSISITEMEVALUATIONGRADES to
represent severity level which is used to describe clinical signs or symptoms, clinical
risk or disease. For table linkage, we used table
PATIENTDISEASEDIAGNOSISGUIDELINES to link tables of PATIENTS and
DISEASEDIAGNOSISGUIDELINES, and we used table PATIENTDIAGNOSISITEMS to

link tables of PATIENTS and DIAGNOSISITEMS.

In a BRB, different severity levels associated to one antecedent clinical sign or
symptom may be used as a set of referential values for it. Thus to capture matching
degree of a doctor’s judgement about one patient’s clinical sign or symptom to
different severity levels associated to the clinical sign or symptom, we used field
DIAGNOSISITEMBELIEFDEGREE associated to table PATIENTDIAGNOSISITEMS to capture

these matching degrees. If severity levels are not applicable to one clinical sign or

150



symptom, the field of DiacnosisitemBELIEFDEGREE 1n table PATIENTDIAGNOSISITEMS
can be used to capture one doctor’s belief degree in his/her judgement about the

clinical sign or symptom.

To represent belief degrees in the system’s recommended clinical diagnosis as
described in equation (3-6) of Chapter 3, the field of DiagnosisiTEMBELIEFDEGREE 1n table

PATIENTDIAGNOSISITEMS can also be used to capture these belief degrees.

The created tables together with their fields for representing patients’ data can be

listed as in Table 5-4.

Note that due to space restrictions, in the following discussion, we can not show all of
the fields for a created table, we will however show the fields that are most

representative of characteristics belonging to the subject that the table represents.

Table 5-4: Tables for Representing Patients’ Data

Tables Fields

Patients PatientID, PatientFirstName, PatientMiddleName,
PatientlastName, PatientGender, PatientAge

DiagnosisItemCategories DiagnosisItemCategoryName,

DiagnosisltemCategorylD,
DiagnosisltemCategoryDescription

DiagnosisItems DiagnosisItemCategorylD, DiagnosisItemName,
DiagnosisltemID, DiagnosisItemDescription
DiagnosisltemEvaluationGrades DiagnosisltemID,

DiagnosisltemEvaluationGradeName,
DiagnosisItemEvaluationGradelD,
DiagnosisItemEvaluationGradeDescription

DiseaseDiagnosisGuidelines DiseaseDiagnosisGuidelineName,
DiseaseDiagnosisGuidelinelD,
DiseaseDiagnosisGuidelineDescription

PatientDiagnosisItems PatientID, DiagnosisItemID,
PatientDiagnosisItemID,
DiagnosisltemEvaluationGradelD,
DiagnosisItemBeliefDegree

PatientDiseaseDiagnosisGuidelines | PatientID, DiseaseDiagnosisGuidelineID
PatientDiseaseDiagnosisGuidelinelD

b

(ii) Tables for doctors’ and group consultation data
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Based on the identified subjects from doctors’ and group consultation data, we used
table USERS to represent subject “System users” and “Group consultant”, table ROLES
to represent subject “User role”, table DOCTOREXPERTISES to represent subject
“Doctor expertise”, table FACILITATEDGROUPS to represent subject “Facilitated
consultation group”, table GROUPDISCUSSIONS to represent subject “Group
discussion content”, table GROUPCONSULTANTDIAGNOSES to represent subject
“Individual diagnosis preference”, and table GROUPFINALDIAGNOSES to represent

subject “Combined diagnosis preference”.

Since the characteristic “Weight” of subject “Group consultant” is assigned by a
group facilitator before he/she calls the group preferences aggregation tool to combine
all group consultants’ diagnosis preferences, we can not design table USERS with the
field Wricnr. However, we used table GROUPCONSULTANTWEIGHTS to represent the
weights of group consultants in one consultation group, and this table has

relationships with tables of USERS and FACILITATEDGROUPS.

For table linkage, we used table USERROLES to link table USERS and ROLES.

The created tables together with their fields for representing system users’ and group
consultation data can be listed as in Table 5-5. The field of BeuerprGreE associated to
table GROUPCONSULTANTDIAGNOSES is for representing belief degree in one
consultant’s judgement about one patient’s clinical status, and the field
DIAGNOSISITEMBELIEFDEGREE — associated to table GROUPFINALDIAGNOSES is for
representing belief degree in one diagnosis preference after aggregating all group

consultants’ diagnosis preferences.
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Table 5-5: Table for Representing Data about System Users and Group
Consultation

Tables Fields

Users UserID, FirstName, LastName, UserName,
UserPassword

Roles RolelD, RoleDescription

UserRoles UserID, RolelD

DoctorExpertises DoctorID(UserID), DiagnosisltemID, ExpertiseOrder

FacilitatedGroups GrouplD, GroupDesc, FacilitatorID (UserID),
PatientID

GroupDiscussions GroupDiscussionlD, GrouplD,

ConsulatntID(UserID), DiscussionContent
GroupConsultantDiagnoses  GrouplD, ConsultantID(UserID),

DiagnosisItemEvaluationGradelD, BeliefDegree
GroupFinalDiagnoses GrouplD, DiagnosisltemEvaluationGradelD,

DiagnosisItemBeliefDegree
GroupConsultantWeights GrouplD, ConsultantID(UserID), ConsultantWeight

Note that we used different field names for the field of Userip in different tables. For
example, in table DOCTOREXPERTISES, we used field Docrorip to represent the
characteristic of “Associated doctor”, while Docrorip is actually the field Userip used
in table USERS for identifying different user records stored in the database. We added
Userip in parentheses to the field which functions the same but with different name in

different table as shown in Table 5-5.

® Physical implementation

For physical implementation of the designed tables as described above, we choose
Microsoft SQL Server 2000 as the DBMS software. For illustration, the diagrams
drawn by SQL Server 2000 for those implemented tables can be shown in Figure 5-11

and Figure 5-12.
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Figure 5-11: Diagram of Tables Representing Patients’ Data
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Figure 5-12: Diagram of Tables Representing System Users and Group

Consultation Data

Now the logical design and physical implementation of relational models for various
data except BRB used in the prototype have been discussed. The following Section
5.3.6 will present brief logical design and physical implementation of BRB in a

relational database.
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5.3.6. Knowledge Base

The knowledge base constructed in the prototype CDSS is based on belief rules.
Traditionally, a knowledge base in a rule-based system is constructed separately from
the back-end database which is used for storing system inputs and outputs. For
example, some logic programming language such as Prolog (Ivan, 2001) can be
applied specifically for rule representation and processing in a rule-based system, and
in such a system, knowledge base is implemented as a part of the main program of the
system and is separated from the fact data. EXtensible Markup Language (XML) has
been recently proposed as a carrier for business rule representation, interchange, and
reasoning in Web-based applications because of its easy readability and platform

independent attributes (HTTP://RULEML.ORGY/).

However, none of the above existent rule base implementation methods is ideal for
belief rule-based systems. As to using a specific logic programming language, it will
add complexity to system development if we use a specific logic programming
language to represent and manipulate belief rules, because the existent logic
programming languages can neither well represent belief rules nor provide ER based
inference for those rules. As to XML technology, it has advantages in representing
business rules because XML can provide a declarative format of rules which can be
read by both rule users and computers, but XML is not a widely used technology for
rule representation and inference though it has been recommended as a standard for
data storage for more than one decade. Compared to relational database, firstly, XML
syntax is too verbose for rule owners to design, and different rule owner may have
different XML design; secondly, XML-based rules will add complexity to system

developers to develop an inference engine to process XML-based rules since there is
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no existent standard XML processor to do XML documents processing for

applications. Readers can refer to (http://www.w3.org/XML/) for details of XML.

In the research, we propose to store and manage BRB by relational database. We will
discuss the knowledge base from perspectives of logical design and physical

implementation.

® Logical design

To design a relational model for a BRB containing L belief rules as described by
equation (3-2) in Chapter 3, as usual, we analyzed BRB first to identify necessary
subjects and characteristics that the knowledge base needs to keep track of, and then

based on the identified subjects and characteristics, we designed table structures.

(i) Subjects and characteristics identified from BRB

Based on the description of a belief rule Ry as described by equation (3-2) in Chapter
3, the relationship between BRB, belief rule, rule antecedent, and rule consequent can
be illustrated with Figure 5-13. For details of the symbols used in the figure, readers

can refer to Section 3.2.1 of Chapter 3.

BRB (with domain name)

v Contains

Belief rules (with rule weight 6, (k =1,---,L))

Contzunsv v Contains

Rule antecedent Rule consequent
(with antecedent attribute referential value| | (with consequent attribute referential value
& weight 5kl.(i =1,...T;k= 1,...,L)) & belief degree ﬂjk(j =1,...,N;k=1,...,L))

Figure 5-13: Relationship between BRB, Belief Rule, Rule Antecedent, and Rule

Consequent
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Usually the knowledge representation parameters in a BRB would change after
training. The trained set of knowledge representation parameters should be stored in
the system for domain experts’ check and approval. Furthermore, to keep track of the
training history, we need to store the trained knowledge representation parameters

after each training round in the database.

The subjects and characteristics that can be identified from a BRB and its training are
shown in Table 5-6, where subjects of “Belief rule” and “Training rounds” are
characteristics of subject “BRB”, subjects of “Rule antecedent” and “Rule
consequent” are characteristics of subject “Belief rule”, and subjects of “Trained rule
weights”, “Trained antecedent weights”, and “Trained belief degrees” are seen as

characteristics of subject “Training round”.
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Table 5-6: Identified Subjects and Characteristics from a BRB and Training
Subjects Characteristics

BRB (1) Domain name
(2) Order in the inference process
(3) Belief rules
(4) Training rounds
Belief rule (1) Associated BRB
(2) Rule number
(3) Rule weight
(4) Rule antecedents
(5) Rule consequents
Rule antecedent (1) Associated belief rule
(2) Antecedent attribute referential value
(3) Attribute weight
Rule consequent (1) Associated belief rule
(2) Consequent attribute referential value
(3) Belief degree
Training round (1) Associated BRB
(2) Trained rule weights
(3) Trained antecedent weights
(4) Trained consequent belief degrees

Trained rule weights (1) Associated training round
(2) Associated rule
(3) Trained rule weight
Trained antecedent (1) Associated training round
weights (2) Associated BRB
(3) Associated antecedent
(4) Trained antecedent weight
Trained belief degrees (1) Associated training round
(2) Associated rule
(3) Associated consequent
(4) Trained belief degree

(ii) Created tables

Based on the identified subjects and characteristics shown in Table 5-6, we designed
tables as shown in Table 5-7. As the antecedent attribute in one clinical rule is one
clinical sign or symptom and the consequent attribute in the clinical rule is a disease
or clinical risk, tables RULEANTECEDENTS and RULECONSEQUENTS are designed to
have relationships to tables of RULES and DIAGNOSISITEMEVALUATIONGRADES,
where the table DIAGNOSISITEMEVALUATIONGRADES is for representing severity

level of one clinical sign or symptom or one disease as discussed in above database
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design. For the table of RULEBASEANTECEDENTS, it is designed to have relationship

to tables of RULEBASES and DIAGNOSISITEMS, where table DIAGNOSISITEMS is for

representing clinical sign or symptom or disease status.

Table 5-7: Tables for Representing BRB

Tables Fields

Rulebases DiseaseDiagnosisGuidelineI D, RulebaselD,
RulebaseDesc, OrderID

Rules RulebaselD, RulelD, RuleWeight

RuleAntecedents RulelD, DiagnosisItemEvaluationGradelD

RuleConsequents RulelD, DiagnosisltemEvaluationGradelD,
ConsequentBeliefDegree

Rulebase Antecedents RulebaselD, DiagnosisltemID,
AntecedentAttributeWeight

TrainingRounds TrainingRoundID, RulebaselD, TrainingRoundDesc

TrainedRuleWeights TrainingRoundID, RulelD, TrainedRuleWeight

TrainedAntecedentWeights TrainingRoundID, RulebaseID, DiagnosisItemID;

TrainedAntecedentWeight

TrainedBeliefDegrees

TrainingRoundID, RulelD,
DiagnosisItemEvaluationGradelD, TrainedBeliefDegree

® Physical implementation

We use diagram drawn by Microsoft SQL Server 2000 about designed tables for

representing BRB and its training to illustrate physical implementation, and the

diagram is shown in Figure 5-14.

160



TrainedBeliefDegrees - -
?|Trainingfoundld

TrainingRounds

FE_TrainadBel:iaflagrass_TrainingRounds
? Ful=ld ? Trainingfoundld
? Diagnosizlteafraluationbradeld = | FulebaseId
TrainsdBelisflizgras Traininglazc
) £
FE_Tra:inzdBel:eflepress_Fulzs
FE_TrainedfuleWeight=_Traininsfounds
TrainedRuleWeights
? TrainingfoundId
7 |Fuleld
Trainsdfulafe:ght
FE_TrainsdintecsdentWeipght=_TraininegRounds a

TrainedAntecedentWeights
7 TrainingRoundld
7 Fulebazeld

Diagnosizltemld

TrainedintecedentWeight

FE_TrainedBulaWeighss_Fulacs

FE_TrainedAntecedsntWeisghts_Fulsbazes

5 5 FE_Trainingfounds_Rulsbazss
Rules q g
Talebazeld Rulebaszes
%‘ fuleld x; DizeazeDiagnosisbuidelin=ld
FuleWeight FE_Fulaz_Ffulabazas Z|Fulebaseld
FE_Ffulednteced=ntsz_Rules ¢ Fulebaselezc
Orderld
&
RuleAntecedents
7| Rule1z
? ["_zm::i:I—_::nE'-'z'_';:tio:Grac'e:d
AntecedentWeight =] FE_Rulebaseintecedents_Rulebases
! FE_FuleConsezquents_FulaWeights
RulebaseAntecedents
RuleConsequents P Bulsbaszeld

? Diagnosislteald

Antacedentittributaleight

F|ule1e

temEvaluationCradeld

InitialBalisfllarras

Figure 5-14: Diagram of Tables for Representing BRB

Structuring and storing BRB in relational database can meet the needs of a belief rule-
based system. Firstly, it supports dynamics of BRB. The BRB structure is a dynamic
one which may change after training with accumulated data. By storing BRB and its
training results in relational database as discussed above, changes of BRB can be
recorded in the database as well. As a result, the prototype can have a dynamic BRB
which can change with different training sample. Secondly, based on the mature

relational database technology, the domain specific knowledge, which is modelled by
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BRB and stored in relational database, can be freely retrieved, updated, and shared by
various computerised clinical systems independent of their platform. Thirdly but not
the least importantly, storing BRB in relational database ease the interaction between
knowledge base and other core system components thanks to mature database

technology.

5.4. Discussions

The system development is really a time-consuming and demanding process. During
prototype development, we have demonstrated developed system regularly to expert
clinicians in MRI. Based on experts’ prompt feedback, we improved the prototype
until we obtained the current one which is introduced in this chapter. Experts in MRI
gave positive judgements about the system, and they have strong interests in applying
a mature system in their clinical practice. The prototype seems to possess six main

system features.

(1) Web-based system architecture enables the system to be accessed online from
geographically different places, which makes the system have convenient

accessibility.

(2) Guideline-based user interface information flow design enables the system to be
integrated into clinical work flow relatively easily, and the system can help to

improve clinicians’ compliance with clinical guidelines.

(3) Modelling domain specific knowledge with BRB and inference with BRB using
the ER approach enables the system to represent and reason with clinical domain

knowledge under uncertainties in an informative and accurate way.
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(4) Group clinical decision supporting module helps the system to provide not only a
group discussion platform for experts to hold group meetings, discussions or
consultations, but also a ER-based group aggregation mechanism via which a

consultant group can arrive at a combined group diagnosis recommendation.

(5) Updating BRB automatically by learning through accumulated clinical cases
enables the system to be adaptive to clinical practice, and this functionality helps

the system to provide evidence-based clinical decision support.

(6) Structuring and storing BRB in relational database helps to keep the dynamic
nature of BRB, facilitates the interactions between knowledge base and other
system components, and makes the sharing of domain knowledge between

different clinical systems free of technology barriers.

To conclude, the developed prototype CDSS proves that it is feasible and viable to
develop a CDSS based on the RIMER methodology, and it helps to bridge the

research gaps in the CDSS literature as identified in Chapter 2.

5.5. Summary

Detailed design, development, and implementation of the belief rule-based CDSS is
described in this chapter. In the system development, three-layer system architecture
is employed in system design, and core system components implemented in the
system include: inference engine, group decision supporting module, knowledge base
training module, web-based user interfaces, database, and knowledge base, where
web-based user interfaces reside in the client layer, inference engine, group decision
supporting module, and knowledge base training module reside in web server layer,

database and knowledge base are implemented in the back-end layer. We
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implemented web-based user interfaces using ASP.NET, implemented inference
engine and group decision supporting module using C#, implemented knowledge base
training module using MATLAB, and implemented knowledge base and database
using Microsoft SQL Server 2000. The developed CDSS has the following three main
system functionalities: (1) representing and reasoning with uncertain clinical domain
knowledge, (2) offering group clinical decision support, and (3) providing automatic
clinical belief rules updating. In addition, it has the following system features: firstly,
its three layer system architecture makes it can be accessed easily through Internet or
Intranet; secondly, the clinical guideline-based user interfaces can help clinicians
comply with clinical guidelines; and thirdly, the knowledge base implemented using
relational database can help dissemination and sharing of clinical domain knowledge
free of barrier due to mature database technologies. Validation of the developed

prototype system is discussed in the following chapter.
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Chapter 6

Validation of the Online Intelligent CDSS Prototype

6.1. Introduction

Following the chapter of system design and development, validation of the prototype
CDSS is discussed in this chapter. The purpose of system validation is to validate two
key features of the system. One is the capability of handling clinical uncertainties and
providing reliable diagnosis recommendations. The other one is the system can
provide better diagnostic performance via learning from accumulated clinical data.
Thus two core components of the system form the focus of the system validation. One
is the inference engine, which 1is responsible for generating diagnosis
recommendations by matching input clinical data with clinical rules in the knowledge
base. The other is the training module, which is responsible for training or fine-tuning

the knowledge base by learning from accumulated clinical data.

For the validation design, we choose CCP as the target clinical area, and the main
purpose of the system is set as to aid doctors in ED to assess clinical risks of patients
with CCP. Ideally, in the CDSS validation, we should use real patients’ clinical data
to train BRB and to test the system’s diagnostic performance. However, we failed to
get the ethical approval of using such data due to the strict data protection regulations
in the UK, although our research collaborators in MRI have indeed managed to collect
two sets of patients’ data in CCP. Instead, we used a simulated dataset of 1000
patients with CCP to validate the developed prototype. The made-up dataset is

provided by Dr Richard Body in MRI. All the variables in the dataset including
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clinical signs and symptoms and clinical risk status have similar positive response

rates to reality.

Initial ‘IF-THEN’ clinical rules for risk assessment of CCP are provided by our
research collaborators in MRI, and the rules are their recent research outcome (Body,
2009). Based on the initial rules, we constructed belief rule base (BRB) for system
validation. In inference engine validation, we compared the diagnostic performance of
the system with a doctor’s in assessing clinical risks of those 1000 patients. In training
module validation, we split the simulated data into two sets: one set for training the
system, and the other set for testing the trained system’s diagnostic performance, and
to avoid a trained system to overfit the training data, we tried five rounds of BRB
training with different sets of training parameters to seek a set of training parameters

that is most suitable for the clinical data.

Three conclusions can be drawn from the system validation study. Firstly, the system
built with belief rule-based inference methodology can well handle clinical
uncertainties and can provide reliable diagnosis recommendations. Secondly, the
system’s diagnostic performance can be improved after BRB training, and the most
suitable training parameters for the BRB training model contains antecedent attribute

weights and belief degrees.

We used receiver operating characteristics (ROC) curve (Metz, 1978, Park et al., 2004)
which will be discussed in Section 6.4 to analyze the diagnostic performance of the
system before and after each BRB training in the validation, and all ROC curves were
plotted by SPSS v 17.0 software (http://www.spss.com/). We used StAR (Vergara et
al., 2008, http://protein.bio.puc.cl/cardex/servers/roc/home.php), which is a specific

software developed for statistical analysis of ROC curves, to compare the area under
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the curve (AUC) of different ROC curves. For details of using AUC to compare ROC
curves, readers can refer to (DeLong et al., 1988, Mei-Ling Ting and Bernard, 2001).
For application of ROC curve analysis in diagnostic tests, readers can refer to (Body,

2009).

This chapter is structured as follows. Domain BRB employed for the validation is
described in Section 6.2. Simulated dataset used in the validation is discussed in
Section 6.3. A brief introduction to the ROC curve analysis is provided in Section 6.4.
Inference engine validation and training module validation are presented in Section
6.5 and Section 6.6 respectively. Finally, conclusions of the chapter are summarised

in Section 6.7.

6.2. Domain Knowledge Base

CCP is probably the most frequent serious presentation to ED in the UK. At MRI,
some 3% of new attendances are covered by the label of CCP (Central Manchester
and Manchester Children's University Hospitals NHS Trust, 2003a). Possible CCP
can be viewed as a continuum, ranging from total global acute myocardial infarction
(AMI) to simple short lived angina. Within this spectrum lie the acute coronary
syndromes with critical cardiac ischaemia and minimal myocardial damage

(Mackway-Jones, 2001).

In all these disorders, the risk of death is highest before admission to hospital, with
mortality rates of up to 20% (Junghans and Timmis, 2006). Risk remains high after
admission to hospital, and although mortality rates have fallen greatly in recent years,
up to 7% of patients die before discharge, and risk continues to be high for six months

after the ischaemic event (Carruthers et al., 2005).

167



To minimise the risk of patients with CCP, it is crucial for clinicians in ED to identify
patients at high risk early on and treating them with appropriate level of care and

medical therapy (Junghans and Timmis, 2006).

Motivated by the above consideration, we chose CCP as target clinical area for system
validation, and the purpose of the system was set to provide support for assessing
clinical risks of patients with CCP. One of our collaborators, Dr. Richard Body in
MRI, has spent years in investigating more accurate and advanced rules for
identifying clinical risk of CCP. A set of advanced clinical risk assessment rules as
shown in Figure 6-1 are taken from his research (Body, 2009), and the knowledge
base constructed for system validation is based on these rules. In Figure 6-1, STEMI
stands for ‘ST segment Elevation Myocardial Infarction’, ECG stands for
‘electrocardiography’, and EVaMACS represents ‘Early Vascular Markers of Acute
Coronary Syndromes’ and its score can be calculated from results of different clinical
tests including Heart type Fatty Acid Binding Protein (H-FABP), Troponin I (Tnl),

and ECG as displayed at the left bottom of Figure 6-1.

If we use traditional ‘IF-THEN’ format to represent those rules shown in Figure 6-1,

seven ‘IF-THEN’ rules shown in Table 6-1 can be transformed from Figure 6-1.
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STEMI

No STEMI
EVaMACS 0 - Worsening angina
Score g OR diabetes?
Yes
1-2
v 4 v v
Very High Risk High Risk Low Risk

The EVaMACS score:

H-FABP>58ng/ml =2
TnI>0.055ng/ml =1

Acute ischaemic ECG features =2

Score>2 — Very high risk
Score 1-2 — High risk
Score 0 — Proceed to next question

Male sex
AND age>=40
years?

Figure 6-1: Rules for Assessing Clinical Risk of CCP (Body, 2009)

Table 6-1: Traditional ‘IF-THEN’ Rules Transformed from Figure 6-1

No. |Antecedent Consequent
1 IF ECG shows STEMI THEN Very High Risk
2 IF ECG shows no STEMI, AND EVaMACS Score is >2[THEN Very High Risk
3 IF ECG shows no STEMI, AND EVaMACS Scoreis [THEN High Risk
between 1 and 2
4 IF ECG shows no STEMI, AND EVaMACS Score THEN High Risk
equals 0, AND the patient has Worsening angina or
diabetes
5 IF ECG shows no STEMI, AND EVaMACS Score THEN Low Risk
equals 0, AND the patient has no Worsening angina or
diabetes, AND the patient is smoking
6 IF ECG shows no STEMI, AND EVaMACS Scotre THEN Low Risk
equals 0, AND the patient has no Worsening angina or
diabetes, AND the patient is not smoking, AND the
atient’s sex is Male and the patient ages >=40 years
7 IF ECG shows no STEMI, AND EVaMACS Scotre THEN No Risk

equals 0, AND the patient has no Worsening angina or
diabetes, AND the patient is not smoking, AND the

atient’s sex is Female or the patient ages <40 years
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From rules as shown in Figure 6-1 and Table 6-1, we can find that ECG status,
EVaMACS score, having worsening angina/diabetes or not, smoking status, sex and
age all are factors that can affect clinical risk level of a patient with CCP. According
to these rules, doctors would stop asking further questions or prescribing more tests
for a patient if they think they have obtained enough clinical evidence and can make a
final decision about the patient’s risk status. For example, doctors in ED would judge
a CCP patient to be at “Very High’ clinical risk if the patient’s ECG shows STEMI,
and the doctor would not consider other factors such as EVaMACS score, smoking
status, or diabetes status. However, in clinical practice, a careful doctor usually would
like to seek all possible clinical data to make conclusion about a patient’s risk status

due to inescapable uncertainties in clinical decision making.

Specifically, uncertainties occurring in the process of risk assessment of CCP may
arise from the following sources. Firstly, doctors may have incomplete or vague
knowledge in shaping clinical rules for risk assessment. For example, based on
clinical experience, some doctors may provide such a rule as “IF a patient’s ECG is
strongly suggestive of STEMI, THEN the patient has a high probability of ‘Very High’
risk”. Here, ‘strongly suggestive’ is not a clear cut description of doctors’ judgements
about one patient’s ECG. Secondly, doctors may not be 100% sure of their
judgements about patients’ clinical symptoms or clinical tests. For example, doctors
sometimes can not be 100% sure if a patient’s ECG is consistent with STEMI, and
they may use “maybe” to describe their judgement about the patient’s ECG status.
Taking these clinical uncertainties into consideration, we choose to use BRB to model

clinical domain knowledge.
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In our research, doctors did not provide us rules with uncertainties. Traditional rules
as described in Table 6-1 for assessing clinical risk of CCP without uncertainty are
what we have for system validation. We then extended the initial seven traditional
‘IF-THEN’ rules using a belief structure, and accordingly, a set of 48 belief rules can
be created as in Table 6-2, where Al, Az, A3, A*and A° represent ‘ECG status’,
‘EvaMACS Score’, ‘worsening angina or diabetes’, ‘smoking’, and ‘male sex and age
larger than 40’ respectively. Validation of inference engine and training module of

the system is based on this BRB.
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Table 6-2: BRB for Assessing Clinical Risk of CCP

No. Antecedent Consequent
Al A’ A’ A’ A® Clinical Risk
1 | STEMI >2 Yes Yes  Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
2 | STEMI >2  Yes Yes No [{(VeryHigh, 1),(High 0),Low, 0),No, 0)}
3 | STEMI >2 Yes No Yes |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
4 | STEMI >2 Yes No No |{(VeryHigh, 1),(High 0),(L.ow, 0),(No, 0)}
5 | STEMI >2 No Yes Yes |{(VeryHigh, 1),(High 0),(Low, 0),No, 0)}
6 | STEMI >2 No Yes No |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
7 | STEMI >2 No No Yes |{(VeryHigh, 1),(High 0),(Low, 0),No, 0)}
8 | STEMI >2 No No No |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
9 | STEMI [12] Yes Yes Yes [|{(Very High, 1),(High 0),(Low, 0),(No, 0)}
10 | STEMI [12] Yes Yes No |{(Very High, 1)(High 0),(Low, 0),(No, 0)}
11 | STEMI [12] Yes No  Yes |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
12 | STEMI [12] Yes No No |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
13 | STEMI [12] No Yes Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
14 | STEMI [12] No Yes No |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
15 [ STEMI [12] No No  Yes |{(Very High, 1)(High 0),(Low, 0),(No, 0)}
16 | STEMI [12] No No No |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
17 | STEMI 0 Yes  Yes  Yes |{(Very High, 1),(High 0),(L.ow, 0),(No, 0)}
18 | STEMI 0 Yes  Yes No |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
19 | STEMI 0 Yes No  Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
20 | STEMI 0 Yes No  No [{(Very High, 1),(High 0),(Low, 0),(No, 0)}
21 | STEMI 0 No  Yes Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
22 | STEMI 0 No Yes No [{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
23 | STEMI 0 No No  Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
24 | STEMI 0 No No No |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
25 No >2  Yes Yes Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
26 No >2  Yes Yes No |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
27 No >2  Yes No Yes |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
28 No >2  Yes No No [{(Very High, 1),(High 0),(L.ow, 0),(No, 0)}
29 No >2  No Yes Yes |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
30 No >2  No Yes No |{(Very High, 1),(High 0),(Low, 0),(No, 0)}
31 No >2  No No Yes |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
32 No >2  No No No |{(VeryHigh, 1),(High 0),(Low, 0),(No, 0)}
33 No [12]  Yes Yes Yes |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
34 No [12] Yes Yes No |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
35 No [12] Yes No Yes |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
36 No [12] Yes No No |{(VeryHigh, 0),(High 1),(Low, 0),(No, 0)}
37 No [12] No Yes Yes |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
38 No [12] No Yes No |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
39 No [12] No No  Yes |{(Very High, 0),(High 1),(L.ow, 0),(No, 0)}
40 No [12] No No No | {(Very High, 0),(High 1),(Low, 0),(No, 0)}
41 No 0 Yes  Yes  Yes |{(Very High, 0),(High 1),(L.ow, 0),(No, 0)}
42 No 0 Yes  Yes  No |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
43 No 0 Yes No  Yes |{(Very High, 0),(High 1),(Low, 0),(No, 0)}
44 No 0 Yes No  No [{(Very High, 0),(High 1),(LLow, 0),(No, 0)}
45 No 0 No  Yes Yes |{(Very High, 0),(High 0),(Low, 1),(No, 0)}
46 No 0 No Yes No [{(Very High, 0),(High 0),(Low, 1),(No, 0)}
47 No 0 No No  Yes |{(Very High, 0),(High 0),(Low, 1),(No, 0)}
48 No 0 No No No |[{(Very High, 0),(High 0),(Low, 0),(No, 1)}
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6.3. Simulated Dataset

The simulated dataset used for system validation is provided by our research
collaborator, Dr Richard Body, working in MRI. In the dataset, independent variables,
which contribute to clinical risk status of patients with CCP, include clinical signs or
symptoms, demographics, and clinical test results of simulated patients, namely
‘ECG’, ‘Worsening Angina’, ‘Diabetes’, ‘Smoking’, ‘Sex’, ‘Age’, and
‘EvaMACS Score’. Dependent variable in the dataset is ‘Outcome’ which is used for
recording the outcome of the simulated patients. Here, the outcome was the composite
of AMI or the occurrence of adverse events within six months, where adverse events
were defined as death (all-cause), AMI or the need for wurgent coronary

revascularisation (Body, 2009).

In the dataset, two numerical values including 1 and 0 are used to record outcome of
simulated patients, where 1 represents that the patient had AMI or he/she died, had
AMI or needed urgent coronary revascularisation within six months, and 0 represents
that the patient had no real clinical risk. As for the values used to record ‘ECG’,
subjective judgements including ‘definitely yes’, ‘strongly suggestive’, ‘maybe’, ‘a
little like’, and ‘absolutely no’ are used to simulate patients’ ECG status which is
diagnosed as with STEMI under uncertainties, and in the dataset, Dr Richard Body
has transformed these subjective judgements into degrees of belief in STEMI.
Specifically, for variable ‘ECG’, 1 represents ‘definitely yes with STEMI’, 0.8
represents ‘strongly suggestive of STEMI’, 0.5 represents ‘maybe STEMI, 0.2
represents ‘a little like STEMTI’, and 0 represents ‘absolutely no STEMI’. For other
variables including ‘Worsening Angina’, ‘Diabetes’, and ‘Smoking’, value of 1

represents ‘yes’ while value of O represents ‘no’. For variable ‘Sex’, 1 represents male
9
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and 0 represents female. Table 6-3 displays five example patients’ data extracted from

the simulated dataset.

Table 6-3: Example Patients’ Data in the Simulated Dataset

No.|Outcome| ECG Worse‘nlng Diabetes | Smoking | Sex | Age EVaMACS
Angina _Score
1 0 0.2 0 0 0 0 | 87 0
2 1 1.0 0 0 0 0 | 81 1
4 0 0.0 0 0 0 0 |39 0
5 1 0.5 1 0 0 1 1| 61 1

The dataset has two features that are important for the research. Firstly, the dataset is
close to reality. All of the variables including clinical signs or symptoms,
demographics, clinical test results and outcome in the dataset have similar positive
response rates to reality. For example, in clinical practice, around 20% of patients
with CCP attended in ED are with STEMI, and among them, some are definitely with
STEMI, some are strongly suggestive of STEMI, while some others show a little sign
of STEMI. The probabilities of the various STEMI situations are reflected in the
simulated data. Secondly, the dataset reflects uncertainties in clinical decision making.
In the simulated dataset, doctors’ judgement of a patient’s ECG can be ‘definitely yes
with STEMI’, ‘strongly suggestive of STEMI’, ‘maybe STEMI’, ‘a little like STEMI’,

and ‘absolutely no STEMI’.

Note that there are some conflicting cases in the dataset. For example, for the Rule 13
in the BRB as described in Table 6-2, if one patient’s clinical data match this rule’s
conditions, the patient should be at ‘Very High’ clinical risk. While in the simulated
dataset, there are 35 cases that are consistent with the rule, however there are two

other cases having no real clinical risk in spite that their ECGs show ‘strongly
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suggestive’ of STEMI and their other clinical data exactly match other conditions of

the rule. The latter 2 cases conflict with the former 35 cases.

To enforce our confidence of using the simulated dataset for the system validation, we
presented all conflicting data to two more sophisticated expert clinicians in CCP in
MRI to seek their advice for handling these conflicting cases in the system validation.
Based on their knowledge and clinical experience, the two experts believed that this
type of medical errors could happen everyday due to uncertainties, and they suggested
us including all conflicting data in the validation. Thus we tried to include all
conflicted cases in the simulated dataset for both the inference engine and the training

module validation.

6.4. Brief Introduction to Receiver Operating Characteristic

(ROC) Curve Analysis

In the prototype validation, a necessary procedure is to compare the diagnostic
performance of the system with a doctor’s. Moreover, to validate the implemented
training module as described in Section 5.3.3 of Chapter 5, we need to compare the
diagnostic performance of the system before and after BRB training. As such, a

question would arise as how to evaluate the diagnostic performance of different tests.

Usually, in diagnostic research, there are several ways for evaluating performance or
accuracy of a diagnostic test such as overall diagnostic accuracy, diagnostic odds
ratios, and ROC curve (Body, 2009), where the overall diagnostic accuracy and
diagnostic odds have their drawbacks and will be briefly discussed together with ROC
curve in Section 6.4.1. As identified by Body (2009), the ROC curve has its advantage

in demonstrating diagnostic performances as it can be used to summarise the accuracy
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of an investigation with a single number by calculating the area under the curve
(AUC). In the literature, the ROC curve has been widely used in evaluating the
performance of diagnostic tests or some other classifiers, and the AUC has also been
widely used for comparing performance of different diagnostic tests and machine
learning algorithms (Metz, 1978) (Body, 2009) (Bradley, 1997, Jin and Ling, 2005).
Taking the above into consideration, we opted to use the ROC curve to measure

diagnostic performance of all tests in the validation.

In this Section, a brief introduction to the ROC curve and the AUC is presented in
Section 6.4.1 and Section 6.4.2 respectively, followed by a brief discussion about

comparison of the AUC for different ROC curves in Section 6.4.3.

6.4.1. ROC Curve

Before introducing the ROC curve, we will briefly discuss some other measures for
evaluating diagnostic performance of a test first. In measuring a diagnostic test, a
decision matrix as described in Table 6-4 can be created to evaluate the diagnostic
performance of the test, where Positive means having a specific disease while

Negative means having no the disease.

Table 6-4: Decision Matrix for a Diagnostic Test (Body, 2009)

True Condition Status
Test Result Positive (+) | number | Negative (-) | number | Total
Positive (+) True(;’g)smve p False(lg’l()))sltlve b S+ b
Negative (-) | False Negative . True Negative J ftd
(EN) (rN)
Total a+e¢ b+d

The overall diagnostic accuracy of the diagnostic test is determined as the proportion

of cases in which the results of the diagnostic test and the reality are the same:
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a+d

Overall diagnostic accuracy =——
a+b+c+d

The diagnostic odds ratio is defined as the odds of a positive test result in patients

with disease, relative to the odds of a positive test result in patients without disease:

Diagnostic odds ratio = alc = ﬂ
b/d bc

Both of above described measures have their disadvantages in evaluating diagnostic
performance of a test. For example, if the prevalence of disease in the test population
is very low, any investigation that returns predominantly negative results will tend to

have a high overall diagnostic accuracy. For details, readers can refer to (Body, 2009).

A better way to assess the diagnostic test performance is to use sensitivity or True
Positive Rate (TPR), and specificity or True Negative Rate (TNR) (Body, 2009).
Sensitivity is determined by the proportions of patients with the disease who were
correctly identified by the diagnostic test. Specificity is determined by the proportion
of negatives which are correctly identified. These statistics can be calculated as

follows:

Sensitivity =

a+c

Specificity = %
+

The sensitivity and specificity of a diagnostic test can tell us about the ability of the
test to discriminate between healthy and diseased patients. Moreover, these values are

independent of the disease prevalence.

When the results of a diagnostic test fall into two obviously defined categories, such

as either the presence or absence of a disease, then the test has only a pair of
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sensitivity and specificity values using the sensitivity and specificity calculations as
discussed above. However, in many diagnostic situations, making a decision in a
binary mode is both difficult and impractical. For example, Some diagnostic test
results may be ordinal (for example a risk score with possible values being whole
numbers ranging from 0 to 5) or continuous (for example a blood test, where possible
values can be anything within the detectable range of the instruments, including
decimals). In order to calculate sensitivity and specificity for ordinal and continuous
data, the values must first be dichotomised. To do this we must select an appropriate
threshold value as a diagnostic cut-off. Values above this cut-off would be considered
‘positive’ and values below it considered ‘negative’. As a result, a single pair of
sensitivity and specificity values is insufficient to describe the full range of diagnostic
performance of a test (Metz, 1978). In such situations, the ROC curve can be used for
evaluation of the diagnostic performance of an investigation (Body, 2009). Details of

the ROC curve are briefly discussed as follows.

The ROC curve, which is defined as a plot of test sensitivity or TPR as the y
coordinate versus its 1-specificity or false positive rate (FPR), which is determined by
the proportion of negatives which are wrongly identified, as the x coordinate, is an
effective method of evaluating the performance of diagnostic tests which have ordinal
or continuous results (Body, 2009). Each point on the graph represents a pair of

sensitivity and 1-specificity based on a different diagnostic cut-off value.

Take a fictional diagnostic test for example, there are 20 patients involved in the test.
These patients have different clinical risk status in reality and they have been judged
by doctors with different risk scores ranging from 1 to 5. The detailed data are

presented in Table 6-5, where value 1 in Real Status column means that the patient is
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at high clinical risk, while 0 means no clinical risk. To measure the performance of
the fictional diagnostic test, a ROC curve as represented by blue line in Figure 6-2 can
be generated by SPSS, and all cut-off values used to shape the curve by SPSS is
shown in Table 6-6 which is cut from SPSS, where pairs of specificity and 1-
specificity values which correspond to each cut-off value are displayed as well. Take
the cut-off value of 2.5 for example, based on this cut-off, the calculated sensitivity of

the fictional diagnostic test is 0.9167, and 1-specificity of the test is 0.1250.

Table 6-5: A Fictional Diagnostic Test Data

No. Risk Score Real Status No. Risk Score Real Status
1 1 0 11 1 0
2 2 0 12 2 0
3 3 1 13 3 0
4 4 1 14 4 1
5 5 1 15 5 1
6 1 0 16 1 0
7 2 1 17 2 0
8 3 1 18 3 1
9 4 1 19 4 1
10 5 1 20 5 1
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Figure 6-2: ROC Curve Demonstrating the Performance of a Fictional

Diagnostic Test

Table 6-6: Coordinates of the Curve (Cut from SPSYS)

Diagnostic Cut-off Sensitivity 1-Specificity
0.0000 1.0000 1.0000
1.5000 1.0000 0.5000
2.5000 0.9167 0.1250
3.5000 0.6667 0.0000
4.5000 0.3333 0.0000
6.0000 0.0000 0.0000

A perfect diagnostic test would have 100% sensitivity and specificity and the ROC
curve would therefore intersect the top left hand corner of the graph. If a diagnostic
test has no ability to differentiate between healthy and diseased patients, the ROC
curve will take the form of a straight line intersecting the bottom left and top right

diagonals which is called ‘chance diagonal’, and it is represented by the green line in

Figure 6-2.
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6.4.2. Area under the Curve (AUC): a Measure of Overall

Diagnostic Performance

An advantage of the ROC curve is that it can be used to summarise the accuracy of a
diagnostic test with a single number by calculating the size of the area under the curve
(AUC) (Body, 2009). The AUC can take any value between 0 and 1, since both the x
and y axes have values ranging from 0 to 1 and size of the square between (0, 0) and
(1, 1) is 1. The closer AUC is to 1, the better the overall diagnostic performance of the
test. A test with an AUC value of 1 is one that is perfectly accurate, while a test with
an AUC value of 0 is one that is perfectly inaccurate. The practical lower limit for the
AUC of a diagnostic test is 0.5. Because if we were to rely on pure chance to
distinguish those subjects with a particular disease against those without a particular
disease, the resulting ROC curve would fall along this diagonal line, which is referred
to as the chance diagonal as shown in Figure 6-2, and the line segment from (0, 0) to

(1, 1) has an area with size of 0.5.

In the fictional example of clinical risk assessment as discussed in Section 6.4.1, the
AUC is estimated to be 0.9583 by SPSS, which suggests that the diagnostic

performance of the fictional test is very good as the AUC is very close to 1.

Note that a ROC curve and its AUC can be generated by different methods, namely
parametric and non-parametric approaches. If we use parametric to estimate a ROC
curve or the AUC, we need to make assumption about the distribution of the
diagnostic test’s results, and very often bi-normal distribution is assumed (Skalska
and Freylich, 2006). While we do not have to do any assumption about the test results
if we use non-parametric approach to plot ROC curve or estimate the AUC. In the

research, we chose non-parametric approach to do ROC analysis, and the ROC
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analysis conducted in this thesis is also based on non-parametric approach. For details
of parametric and non-parametric approaches for conducting ROC analysis, readers
can refer to (Metz, 1978, Hanley, 1988, Zou et al., 1997, DeLong et al., 1988, Mei-

Ling Ting and Bernard, 2001).

6.4.3. Comparing the AUC: Comparing Overall Diagnostic

Performance

The overall diagnostic performance of different tests can be compared by comparing
AUC of different ROC curves, as AUC is a measure of the overall performance of a
diagnostic test. The bigger its AUC is, the better the overall performance of the
diagnostic test will have. For example, we can easily find that diagnostic test BO has
better performance than A0 from Figure 6-3, as the AUC in test A0 is 0.9583 and the

AUC 1n test BO is 0.9844.
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Figure 6-3: Two ROC Curves with Different Values of the AUC (A0-0.9583; B0-

0.9844)
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Furthermore, to test the statistical significance of the difference between the areas
under different ROC curves, some specific software have been developed by
researchers for AUC comparison. Frequently mentioned software for AUC
comparison in the literature include MedCalc (http://www.medcalc.be/), ROCKIT
(http://www-radiology.uchicago.edu/krl/KRL ROC/software index6.htm), and StAR
(http://protein.bio.puc.cl/cardex/servers/roc/home.php). In the research, we chose
StAR to do AUC comparison as StAR is online software which can be accessed freely
and can meet our requirements for comparison of paired data. StAR is designed for
the ROC analysis of paired data and the core of the software is a non-parametric test
for the difference of the AUC that accounts for the correlation of the ROC curves.
Here, paired data are data generated from those diagnostic tests in which each case in

the studied sample has been tested (Metz et al., 1998).

Generally, we call the difference between the diagnostic performances of two tests
that are summarized by AUC statistically significant if there is enough evidence
showing that the difference does not occur by chance. When we use statistical
software to compare two groups of paired data, we can get a p-value from the
comparison, where p-value is a measure of probability that a difference between two
groups of data happened by chance. In statistics, the highest acceptable p-value, at
which we can still say that a difference between two groups does not happen by
chance, is called significance level or o level (Aczel and Sounderpandian, 2005,
Wright, 1997). The difference between two groups of data can be described as
statistically significant when a p-value is less than the set significance level, and as
non-significant when a p-value is above the significance level. Conventionally,
significance level is set to be 0.05 (Wright, 1997). The lower the p-value, the more

likely it is that the difference between groups of data does not occur by chance.
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In the following discussion, we will use p-values generated by StAR in comparing
AUC of ROC curves to measure the statistical significance of differences between

different diagnostic performances.

6.5. Inference Engine Validation

6.5.1. Method

Validation of the inference engine was basically composed of three main steps. The
first one was to produce a doctor’s assessment for risks of the simulated 1000 patients
and to calculate the doctor’s overall diagnostic performance. To facilitate the process
of acquiring the doctor’s assessment for those 1000 patients’ clinical risk status, we
produced risk assessment results for the 1000 patients first based on the initial rules as
shown in Figure 6-1, and then we invited one of our collaborators in MRI to verify the
judgements. The second step included using the simulated patients’ clinical data as
inputs to the system and triggering the system to assess clinical risk of the patients,
and then calculating the system’s overall diagnostic performance. The third step was
to compare the system’s diagnostic performance with the doctor’s and draw
conclusions about the reliability of the prototype system. The ROC analysis as
discussed in Section 6.4 was used to analyze the diagnostic performances of the

system and the doctor.

As noted in Section 6.4.1, the ROC curve analysis can effectively measure
performances of diagnostic tests having ordinal or continuous results. While in our
research, according to the evidential reasoning (ER) approach and the BRB described
in Table 6-2, the system’s inferred result for each patient should be a belief

distribution among four risk levels, namely ‘Very High’, ‘High’, ‘Low’, and ‘No’.
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Thus we need to transform the inferred diagnosis result, which is distributed in

different risk levels, into a value that suits the ROC analysis.

As proposed by Yang and Xu (2002), if necessary, an overall utility value can be
estimated from an assessment of both qualitative and quantitative characteristics.
Similar to transforming assessments of alternatives under decision into overall utility
values, the diagnosis recommendations about patients’ risk status provided by the
system or the doctor can be transformed into overall severity scores, as mentioned in
Section 4.6.1 of Chapter 4. As the overall severity score is numerical and continuous
in the range from 0 to 1, ROC curves can be constructed from overall severity scores
to demonstrate diagnostic performances of different tests. Therefore in our research,
we used the overall severity scores estimated from risk assessment results that are
either generated from the system or provided by the doctor to compare diagnostic

performances.

To estimate the overall severity score from risk assessment result of each patient, we
need to estimate severity scores of those four different risk levels as described in

Figure 6-1 first.

With advices from an expert clinician, we assigned a severity score of 1 to ‘Very
High’, 0.67 to ‘High’, 0.33 to ‘Low’, and 0 to ‘No’. For example, we can estimate a
patient’s overall severity score as 0.9668 if the risk result generated by the system for
the patient is {(Very High, 0.94), (High, 0.04), (Low, 0), (No, 0)}. Therefore, every
patient in the simulated dataset can be given an overall severity score automatically by
the system or manually based on the risk assessment result produced by one doctor,
and we can then use the overall severity scores of those 1000 simulated patients

generated in different situations to do the ROC analysis.
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6.5.2. Results

In inference engine validation, we obtained two sets of overall severity scores of the
simulated 1000 patients. One set was automatically generated by the system and the

other set was manually produced based on a doctor’s judgements.

In using the ROC curve to analyze diagnostic performances of the system and the
doctor, we used the recorded outcome of those 1000 patients as benchmark, and we
obtained the following two ROC curves as shown in Figure 6-4, which represent the
diagnostic performances of the system and the doctor’s. The ROC curve as
represented by the blue line in Figure 6-4 is plotted from the severity score set
generated by the system, and the AUC is 0.7921 (95% confidence intervals 0.7586 —
0.8257). The ROC curve as represented by the green line in Figure 6-4 is plotted from
the severity score set manually produced based on the doctor’s judgements, and its
AUC is 0.7525 (95% confidence intervals 0.7177 — 0.7873). Here we required SPSS
to give a 95% confidence interval estimate together with a single AUC value estimate,
where the 95% confidence interval can tell us that the value of the parameter in
estimation can lie within the estimated interval with 95% certainty (Aczel and

Sounderpandian, 2005).
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Figure 6-4: ROC Curves Demonstrating the Diagnostic Performances of the

System and One Doctor

From the two ROC curves as displayed in Figure 6-4, we can see that the AUC
representing diagnostic performance of the system is larger than the AUC
representing performance of the doctor. To test whether the difference of
performances between the system’s and the doctor’s is caused by chance or not, we
then used StAR to compare the AUC of these two ROC curves and got a p-value less

than 0.0001.

The results show that under clinical uncertainties, the diagnostic performance of the
CDSS prototype implemented using the RIMER methodology is better than manual
judgement produced by a doctor, and the performance difference is statistically

significant with a perfect p-value less than 0.0001.
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6.6. Training Module Validation

6.6.1. Method

The kernel model of the training module integrated in the system is the BRB
optimization model as described in Section 3.2.3 of Chapter 3 and Section 5.3.3 of
Chapter 5. In the validation, we need to validate that the diagnostic performance of
the system can be improved after BRB training with accumulated clinical cases. Thus
we should test performance of the system after BRB training using a dataset which is

independent and not included in the training dataset.

There is no a general rule on how to choose the training examples and the test
examples size (Hastie et al., 2001). Conventionally, in machine learning applications,
to measure performance of the training system, we can split all available data in half,
while one half goes to the training set for system training and the other half goes to
the test set for performance measurement after training (Seufert and O'Brien, 2007,
Liu et al., 2005, Agarwal et al., 2010, Yang et al., 2007). About the method we used
to draw training data and test data in the training module validation, we will discuss it

in next Section 6.6.1.1.

As described in Section 5.3.3 of Chapter 5, knowledge representation parameters
including rule weights 6, (k = 1,-~-,L), antecedent attribute weights o, (i =1..-,T ),
and consequent belief degrees ﬂkj(k =1,---,L;j =1,---,N) are main training

parameters for the training module. In our training module design and development as
described in Section 5.3.3 of Chapter 5, we employed the training model proposed by
Yang et al. (2007) which is based on numerical system outputs, .thus we need to

transform the distributed inferred results (Dj, B, X j=L-- N ) generated from the
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prototype for one patient into a numerical value that can denote the patient’s severity

status. Here, based on the utility concept ,u(Dj X j=1-,N ) proposed by Yang and

Xu (2002), as described in Section 6.5.1, different severity scores can be assigned to
the four consequent risk levels of the BRB in Table 6-2, and thus an overall severity
score can be generated by the system based on the inferred distributed result for one
patient. In such situations, the severity scores of the four consequent risk levels in the

BRB can also be trained by the training data. Here, D ! ( j=1- N ) is the
consequents of the BRB, and g, ( j=1-,N ) is the inferred belief degree from the

prototype associated to the jth consequent. L is the number of rules in the BRB, and it
equals 48 in our system; 7 is the number of antecedent attributes used in the BRB, and
it equals 5; N is the number of consequents in the BRB, and it equals 4 in the

prototype. For details of the BRB, readers can refer to Table 6-2 in Section 6.2.

However, in machine learning, a common issue is overfitting. A trained model is
thought to overfit training data if there is some alternative trained model, such that the
former model fits the training data better than the alternative one, but the alternative
one performs better than the former over a test dataset which is independent of the
training data (Mitchell, 1997). Overfitting is especially likely to happen when we give
the training algorithm a very rich searching space for the parameters of the model
being trained and thus enable the model being trained to overfit the training data

(Mitchell, 1997).

In the context of BRB training, we may get a trained BRB which can overfit the
training data if we give the training model too many parameters that can vary during

the training process.
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To avoid overfitting in BRB training, we tried five different sets of training
parameters for the training module. In the following discussion, we will use R, Rz, R’,

R?, and R’ to represent the BRB training with different parameters, where

R': training with rule weights 6, (k=1,---,48) , antecedent attribute weights
5,.(1':1,---,5), consequent belief degrees ﬂkj(k:1,---,48;j:1,---,4), and severity

scores of the four different risk levels ,u(D ! X j=1,- -,4);

R* training with rule weights 0, (k :1,---,48) , antecedent attribute weights

0, (i = 1,-~-,5), and consequent belief degrees ﬂkj (k =1,---,48;j = 1,-~-,4);

R’: training with antecedent attribute weights &,(i =1,---,5) and consequent belief

degrees ﬂkj(k =1,,48;j = 1,+-,4);

R*: training with rule weights o, (k=1,~-,48) and consequent belief degrees

ﬂkj(k =1,--,48; j =1,--,4);
R’: training with belief degrees By (k =1---48;j = 1,-~-,4).

There are actually some other combinations of the parameters for BRB training, the
reasons for us to try above five combinations are as follows. The main purpose for the
training is to find a BRB model that can better represent domain knowledge in
assessing clinical risk of CCP, though we set all knowledge representation parameters
of the BRB and severity scores of consequent risk levels as training parameters in the
first training round R', we took severity scores of the four risk levels out of training in
round R? as too many training parameters may cause the trained system overfit the

training data. As it is really hard for domain clinicians to give exact belief degrees to
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different consequent severity levels in those 48 rules as shown in Table 6-2, we took
consequent belief degrees as core parameters that need to be fine-tuned by training
data. Thus after training round R* where all knowledge representation parameters
were taken as training parameters, we tried to combine consequent belief degrees with
antecedent attribute weights and rule weights respectively as training parameters in
training rounds R® and R*, and finally in training round R’, we tried to put only

consequent belied degrees as training parameters to avoid overfitting.

Taking above mentioned into consideration, we designed the training module

validation as follows.

Firstly, we drew representative training examples and test examples from the

simulated 1000 cases.

Secondly, we trained the system by simulated cases in the training set with above
mentioned five different set of training parameters, and we set the same initial values

for the training parameters of each training round.

Thirdly, we test the performance of the system before and after different BRB training

over simulated cases in the test set.

Fourthly, we analyzed the system’s diagnostic performance using ROC curves as

described in Section 6.4.

Finally, based on the system performance analysis results, we drew conclusions about

the training module.

Further details regarding how to split the simulated cases into training set and test set

and how to set initial values and constraints for training parameters will be discussed
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in the following Sections 6.6.1.1 and 6.6.1.2.

6.6.1.1. Training Set and Test Set

First and foremost, we need to draw training examples and test examples from those
simulated 1000 clinical cases. Usually, in supervised machine learning as described in
Section 3.2.3 of Chapter 3, training set can be drawn from available data randomly
(Dale et al., 2010, Tong and Koller, 2001). In choose training examples, an important
attribute of training examples is how well it represents the distribution of test
examples over which performance of the trained system be measured, and generally,
learning is most reliable when the training examples follow a similar distribution to

that of the future test examples (Mitchell, 1997, Freund et al., 1997).

In the context of BRB model training and validation, to ensure the reliability of BRB
training, we need to draw similar data into both training set and test set. As in BRB
training, it is not uncommon that the following two situations about the training would
happen. Firstly, in some cases, parameters related to some clinical rules can be trained
from the training data, but there are no cases in the test set that can activate the trained
rules in testing performance of the trained system, and then it would affect the
performance evaluation of the training module since not all trained rules have made
contributions in the test of system performance after training. Secondly, in some other
cases, parameters related to some clinical rules can not be trained by the training data
due to lack of training examples in these regions where BRB was designed to operate,
but there are cases in the test set that can activate the untrained rules in system
performance testing after training, and then it would also affect performance
evaluation of the training module as untrained rules would lead to irrational

conclusions if they were initially assigned randomly or without care (Yang et al.,
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2007). Take Rule 1 in Table 6-2 for example, if knowledge representation parameters
related to Rule 1 can be trained from the training data, then in the test set, there should
be some patients’ data fall in the region that Rule 1 was designed to operate so that the
trained Rule 1 can play its role in system performance test after BRB training, and

thus the performance of the training module can be rationally evaluated.

To draw representative data into training set and test set for training and validating all
rules in the BRB model, we analyzed the matching status between all simulated cases
and clinical rules in the BRB first, and then we randomly split matched cases of each
rule probably into half (if there are enough cases for both training and test), while
probably one half goes to training set and the other half for test set. The details are as

follows.

® Analyzing matching status between simulated cases and clinical rules in the

BRB

In analyzing the matching status between simulated patients and clinical rules, we
checked the matching status between each simulated patient’s clinical data except
recorded outcome and one specific rule’s antecedents. Here, the degree of matching
between one simulated patient’s data and one clinical rule need not be with 100%
certainty, because inference with BRB as described in Section 4.5.2 of Chapter 4 and
Section 5.3.1 of Chapter 5 can consider different matching degrees between input data

and one rule’s packet antecedent.

In the simulated dataset as described in Section 6.3, we have uncertain judgements
about patients’ ECG status: ‘definitely yes with STEMI’, ‘strongly suggestive of
STEMI’, ‘maybe STEMI’, “a little like STEMI’, and ‘absolutely no STEMI’. Thus for

some clinical cases, they may be consistent with two different clinical rules’
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antecedents to different degrees because of the uncertain ECG judgements. In
calculating the number of matched cases to one clinical rule in the BRB, we
considered all cases whose matching degrees to the rule are larger than 0. The number
of all matched clinical cases to each clinical rule in the BRB as described in Table 6-2

is reported in Table 6-7.

Table 6-7: Number of Matched Clinical Cases to Each Clinical Rule in the BRB

Rule No.| Number of Matched Cases Rule No. Number of Matched
1 2 25 0
2 1 26 0
3 2 27 1
4 2 28 2
5 0 29 2
6 1 30 0
7 1 31 0
8 1 32 1
9 42 33 34

10 16 34 18
11 58 35 64
12 37 36 45
13 35 37 49
14 13 38 39
15 36 39 87
16 40 40 97
17 4 41 16
18 3 42 14
19 15 43 38
20 10 44 31
21 8 45 59
22 8 46 59
23 13 47 132
24 18 48 128

® Splitting simulated cases into training set and test set

From Table 6-7, we can find that the number of matched cases to rules numbering
from 1 to 8 and from 25 to 32 is 0 or 1 or 2, which means there are no enough cases
falling in the regions where these rules were designed to operate for both training and
testing these rules. Specifically, for Rule 5, Rule 25, Rule 26, Rule 30, and Rule 31,

there is no matched case in the dataset, and thus it is impossible to use the dataset to
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train these rules. For Rule 2, Rule 6, Rule 7, Rule 8, Rule 27 and Rule 32, there is
only one clinical case matched to each of these rule’s antecedents, and this means if
we put the matched case in the training set, there would be no case in the test set to
activate the rule after training. For Rule 1, Rule 3, Rule 4, Rule 28, and Rule 29, there
are two cases in the dataset that match each rule’s antecedents, and the only option for
us to do both training and testing for these rules is to put one case in the training set
and put the other case in the test set. However, if two clinical cases matched to one
clinical rule have extremely different recorded outcomes, it will negatively affect the
reliability of the training module if we put one case in the training set and put the

other case in the test set.

Taking above into consideration, we put aside the 12 cases in the simulated dataset
that are matched to rules numbering from 1 to 4, from 6 to 8, from 27 to 29, and Rule
32 as shown in Table 6-7, and randomly split the remaining 988 cases, with one half
for training and the other half for test. During the data splitting, we tried to make that
probably half of matched cases to each rule goes for training and the other half goes
for test. We did so to ensure that each rule that has been trained in the training process

can make contribution to system performance test after training.

As a result, rules numbering from 1 to § and rules numbering from 25 to 32 have not
be trained in the training process or tested in the test process, and the final diagnostic
performance analyses were based on clinical cases that match rules numbering from 9

to 24 and rules numbering from 33 to 48 in the BRB as illustrated in Table 6-7.

6.6.1.2. Initialization of the Training Model

® [Initial values of the training parameters
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For BRB training, a necessary task is to set initial values and constraints for the
training parameters. We set the initial values of the training parameters for each BRB

training round of R', R% R®, R*, and R’ as follows.

(1) Severity scores of four risk levels ,u(Dj X j= 1,---,4): ,u(Dl( Very High)) =1,

u(D,(High)) = 0.67, u(D,(Low)) =0.33,and u(D,(No) )=0;
(2)  Rule weights 6, (k =1,---,48): 8,(k=1,---,48) = 1;
(3)  Antecedent attribute weights 5,(i =1,---,5): &,(i=1,---,5) = 1;

4) Consequent belief degrees ﬂ,q.(k=1,-~,48; j=1,---,4): we set the initial

values of the consequent belief degrees in the BRB based on the statistical calculation
of the training dataset. For example, for Rule 11 in the BRB in Table 6-2, there are 9
cases in the training dataset that match the rule’s antecedents with 100% certainty,
and the recorded outcome of those 9 cases show that 8 of them were at ‘Very High’
clinical risk while 1 case had ‘No’ clinical risk. Thus we set the initial values of
consequent belief degrees in Rule 11 as {(Very High, 8/9=0.8889), (High 0), (Low, 0),
(No, 0.1111)}. Here, with advice from experts, we assigned ‘Very High’ clinical risk
to patients with outcome of 1 and ‘No’ clinical risk to patients with outcome of 0 in

the simulated dataset.

The initial values of severity scores of four risk levels, antecedent attribute weights,
rule weights, and consequent belief degrees will be displayed together with
corresponding trained values after different BRB training rounds in Table 6-8, Table

6-9, Table 6-10, and Table 6-11 respectively in Section 6.6.2.1. Readers can refer to
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the beginning part of Section 6.6.1 for details about the training parameters used in

training rounds R', R% R, R4, and R°.
® C(Constraints of the training parameters

In terms of the constraints for training parameters, we set constraints for training

parameters as follows.

(1) Severity scores of four risk levels ,u(Dj Xj = 1,---,4): 1> ,u(Dj Xj = 1,--',4) >0,

and (D, ( Very High)) > u(D,( High)) > u(D;(Low)) 2 u(D,(No));

(2)  Rule weights 6,(k=1,---,48): 1>6,(k=1,--,48)>0.01, here we set the

lower bound of rule weight to be 0.01, because we want to keep each rule’s weight to
be larger than 0 after training to ensure that each simulated patient in the test set could
be diagnosed with trained rules in the BRB. For example, if there is a patient in the
test set whose data is 100% matched to one clinical rule, the patient would not be
diagnosed by the system in the performance test process if the clinical rule’s weight is
trained to be 0, which means the rule is of no importance in diagnosis. To avoid such
situations, we set 0.01 as a lower bound to rule weight, and 0.01 can represent low
importance of the rule while the rule with trained weight 0.01 can still be activated in
the performance test process. We have tried other similar values as low bounds of rule
weight, and it actually makes no difference to the system’s performance after training

if it is set to be other similar small values.

3) Antecedent attribute weights 0, (i :1,--~,5): 1> 6, (ECG status) > 0.5, and
1> 51(1 = 2,3,4,5) > 0, here we set the weight of the ECG status between 0.5 and 1,

because we know the ECG status is a very important risk factor in daily clinical risk

197



assessment of CCP, and this constraint can help to make the importance of ECG
status not be less than half of other antecedent attributes’ importance in diagnosis

process.

(4) Consequent belief degrees ,B,g. (k =1---,48;j = 1,---,4)

12 (k=148 j=1,,4)2 0,and 12 3" B, (k=1,--,48)>0.

What follows is discussion about the results generated from the training module

validation.

6.6.2. Results

In this Section, the comparison of BRB model in the system before and after training
is discussed in Section 6.6.2.1. Comparison of the system’s performance on test set
before and after BRB training with different training parameters is discussed in

Section 6.6.2.2.

6.6.2.1. Comparison of the BRB before and after Training

In the BRB training process, with the same training data set, different training
parameters brought different changes to the BRB model in the system. As described
in Section 6.6.1, R', R%, R®, R®, and R’ are used to represent BRB training with

different parameters, and we will use these five symbols in the following discussion.

The severity scores of the four consequent risk levels were trained once in training R',
and the comparison of the severity scores before and after training R' is shown in

Table 6-8.
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For the BRB model, values of the antecedent attribute weights, rule weights, and
consequent belief degrees before and after each training round are shown in Table 6-9,
Table 6-10 and Table 6-11 respectively. In Table 6-8, Table 6-9, Table 6-10 and Table
6-11, values in column ‘Initial’ represent the initial values of associated parameters
before training. Values in columns ‘R, ‘Rz’, ‘R, ‘R* and ‘R” represent the trained

values of associated parameters after training R', R%, R?, R* and R” respectively.

Table 6-8: Severity Scores of Consequent Risk Levels Before and After Training
Rl

Risk Level Severity Score
Initial R'
Very High 1.0000 1.0000
High 0.6700 0.5977
Low 0.3300 0.4006
No 0.0000 0.0038

Table 6-9: Antecedent Attribute Weights Before and After Training R', R%, and
R

Antecedent Attribute Attribute Weight
Initial R’ R® R®
Al 1 0.5 0.5 0.5
A? 1 1 1 1
A’ 1 1 1 1
At 1 1 1 1
A’ 1 1 1 1
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Table 6-10: Rule Weights Before and After Training R', R%, and R*

Rule Weight Rule Weight
No. No.
Initial R' R’ R* Initial R' R’ R*
1 1 1.0000  1.0000 1.0000 | 25 1 1.0000  1.0000 1.0000
2 1 1.0000  1.0000 1.0000 | 26 1 1.0000  1.0000 1.0000
3 1 1.0000  1.0000 1.0000 | 27 1 1.0000  1.0000 1.0000
4 1 1.0000 1.0000 1.0000 | 28 1 1.0000  1.0000 1.0000
5 1 1.0000  1.0000 1.0000 | 29 1 1.0000  1.0000 1.0000
6 1 1.0000  1.0000  1.0000 | 30 1 1.0000  1.0000 1.0000
7 1 1.0000  1.0000 1.0000 | 31 1 1.0000  1.0000 1.0000
8 1 1.0000  1.0000 1.0000 | 32 1 1.0000  1.0000 1.0000
9 1 1.0000  1.0000  1.0000 | 33 1 0.5829  0.6754 0.7614
10 1 1.0000  1.0000 1.0000 | 34 1 0.8170  0.8258 0.6635
11 1 0.4153  0.4097 0.2498 | 35 1 0.9472  0.9396 0.9886
12 1 0.0100  0.0100  0.0100 | 36 1 1.0000  1.0000 0.9997
13 1 0.9986 0.9973 0.9992 | 37 1 0.0386  0.0119 0.0175
14 1 0.7337 0.7586  0.5464 | 38 1 1.0000  1.0000 0.9999
15 1 0.0100  0.0100  0.0100 | 39 1 0.9998  0.9995 0.9988
16 1 0.7860 0.8113 09173 | 40 1 0.9765 0.9981 0.6959
17 1 1.0000  1.0000  1.0000 | 41 1 0.8759  0.8887 0.8321
18 1 1.0000  1.0000  1.0000 | 42 1 0.0343  0.0778 0.0100
19 1 0.8134 0.7930 1.0000 | 43 1 1.0000  0.9999 0.9514
20 1 0.8789  0.8662  1.0000 | 44 1 0.9999  0.9982 0.9031
21 1 0.7496  0.7264  0.9666 | 45 1 1.0000  1.0000 1.0000
22 1 0.7571  0.7316  1.0000 | 46 1 1.0000  1.0000 0.9893
23 1 0.6853  0.6488 0.9857 | 47 1 1.0000  0.9994 0.9994
24 1 0.6206  0.5783  0.9969 | 48 1 0.9983 0.9893 0.9567
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Table 6-11: Consequent Belief Degrees Before and After Training R!, R, R, RY, and R®

No.

Consequent Belief Degree

Very High Clinical Risk

High Clinical Risk

Low Clinical Risk

No Clinical Risk

Initial

Rt R R3

R4 RS

Initiall

R!

R2

R3

R4 RS

Initial|

R1

R2

R3

R4 RS

Initial

R1

Rz R3 R4

R5

O 00 NN AN U A WRWDN =

NN N NN = om m e e e e
AW DN = S VO 00 NN Ot DN =R o

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.8889
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
0.9496 0.9566 0.9771
0.8402 0.8393 0.8637
0.8732 0.8745 0.7762
0.9550 0.8969 0.5010
0.8242 0.8322 0.9765
0.9945 0.9891 0.9238
0.9879 0.9850 0.6819
0.8258 0.8282 0.7665
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
0.8877 0.8742 0.7538
0.9218 0.9133 0.8344
0.8488 0.8328 0.6815
0.8744 0.8578 0.7144
0.8470 0.8192 0.6224
0.8417 0.8139 0.5564

1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
0.9367 0.9444
0.7488 0.7603
0.8731 0.7566
0.9092 0.4126
0.8161 0.9183
0.9945 0.8731
0.9985 0.6274
0.6706 0.7095
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
0.9799 0.9826
1.0000 1.0000
0.9927 0.9928
0.9985 1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0107
0.0010
0.0450
0.0059
0.0055
0.0029
0.0011
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0002

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0091
0.0149
0.1031
0.0076
0.0069
0.0073
0.0008
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0002
0.0018

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0055
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0516 0.0121
0.0178 0.0000
0.0696 0.0001
0.0022 0.0000
0.0007 0.0000
0.0015 0.0000
0.0224 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0001 0.0000
0.0015 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0266
0.0000
0.0280
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0004

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0029
0.0012
0.0396
0.0000
0.0092
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0117
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0020

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 0.0000
0.0000 0.0000
0.0034 0.0000
0.0137 0.0314
0.0127 0.0000
0.0013 0.0000
0.0471 0.0002
0.0000 0.0000
0.0000 0.0000
0.0070 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0001
0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1111
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0504
0.1491
0.0991
0.0000
0.1419
0.0000
0.0092
0.1731
0.0000
0.0000
0.1123
0.0782
0.1512
0.1256
0.1530
0.1577

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0405 0.0229 0.0599
0.1504 0.1309 0.1859
0.0709 0.2238 0.0964
0.0000 0.4990 0.0200
0.1511 0.0117 0.1345
0.0040 0.0762 0.0048
0.0077 0.3181 0.0000
0.1710 0.2335 0.3000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.1257 0.2462 0.0000
0.0866 0.1656 0.0000
0.1672 0.3185 0.0201
0.1422 0.2856 0.0000
0.1806 0.3776 0.0071
0.1843 0.4417 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0556
0.1961
0.2434
0.5873
0.0815
0.1269
0.3726
0.2905
0.0000
0.0000
0.0000
0.0000
0.0173
0.0000
0.0071
0.0000

201



Table 6-11 (Cont. ): Consequent Belief Degrees Before and After Training R1, R2, R3, R4, and RS

Consequent Belief Degree

No. Very High Clinical Risk High Clinical Risk Low Clinical Risk No Clinical Risk

Initial R! R? R3 R# R5 [Initial] R! R? R3 R# R5 [Initial] R! R? R3 R# R5 [Initiall R! R? R3 R# R5
25 11.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
26 | 1.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000
27 11.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000
28 11.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
29 11.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000
30 |1.0000|1.0000 1.0000 1.0000 1.0000 1.0000 |0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000
31 1 1.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
32 11.0000 [ 1.0000 1.0000 1.0000 1.0000 1.0000 |0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 |0.0000 0.0000 0.0000 0.0000 0.0000
33 10.2857]0.3250 0.3465 0.3877 0.4252 0.4453 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0001 |0.0000 | 0.0020 0.0036 0.0000 0.0166 0.0012]0.7143]0.6730 0.6499 0.6123 0.5583 0.5534
34 10.0000(0.1221 0.1287 0.1680 0.1735 0.2659 | 0.0000 | 0.0000 0.0000 0.0000 0.0004 0.0000 | 0.0000 | 0.0030 0.0003 0.0000 0.0259 0.0012 |1.0000|0.8749 0.8710 0.8320 0.8001 0.7328
35 10.3077{0.1150 0.0968 0.0000 0.1042 0.0000 |0.0000 | 0.2191 0.2280 0.3237 0.2215 0.3487|0.0000 | 0.0367 0.0259 0.0061 0.0743 0.0044|0.6923]0.6292 0.6492 0.6702 0.6000 0.6469
36 0.1667 | 0.0676 0.0819 0.0000 0.0674 0.1133]0.0000 |0.1196 0.1132 0.1907 0.1195 0.1126 | 0.0000|0.0813 0.0773 0.0331 0.1142 0.0007 | 0.8333|0.7314 0.7276 0.7762 0.6989 0.7735
37 10.2143(0.1899 0.1844 0.3329 0.1955 0.3911{0.0000 | 0.0200 0.0229 0.0000 0.0184 0.0000 | 0.0000|0.0169 0.0553 0.0000 0.0281 0.0000 | 0.7857|0.7732 0.7374 0.6671 0.7580 0.6089
38 10.3333]0.1307 0.1454 0.1021 0.1594 0.1281 | 0.0000 | 0.0307 0.0072 0.0523 0.0171 0.0458 | 0.0000 | 0.0276 0.0420 0.0446 0.0339 0.0287]0.6667|0.8110 0.8054 0.8010 0.7896 0.7974
39 10.1667|0.0538 0.0555 0.0000 0.0727 0.0314]0.0000 |0.1897 0.1795 0.2134 0.1494 0.1810|0.0000|0.0358 0.0161 0.0031 0.0286 0.0131 |0.8333|0.7206 0.7488 0.7836 0.7493 0.7744
40 10.0323]0.0358 0.0290 0.0000 0.0323 0.0520 | 0.0000 | 0.0000 0.0114 0.0369 0.0039 0.0000 | 0.0000 | 0.0000 0.0021 0.0209 0.0083 0.0001|0.9677]0.9642 0.9575 0.9422 0.9555 0.9479
41 10.4000)0.3983 0.4188 0.4277 0.4531 0.4676 | 0.0000 | 0.0385 0.0015 0.0000 0.0012 0.0000 | 0.0000 | 0.0001 0.0006 0.0000 0.0041 0.0018]0.6000|0.5631 0.5790 0.5723 0.5416 0.5306
42 10.1667 [ 0.1438 0.1499 0.3153 0.1774 0.3581 | 0.0000 | 0.0162 0.0100 0.0000 0.0001 0.0000 | 0.0000 | 0.0014 0.0057 0.0000 0.0179 0.0000 | 0.8333]0.8385 0.8344 0.6847 0.8046 0.6419
43 10.1818]0.1123 0.1127 0.0663 0.1893 0.1915 | 0.0000 | 0.0857 0.0877 0.1478 0.0000 0.0000 | 0.0000 | 0.0136 0.0169 0.0335 0.0000 0.0000|0.8182]0.7884 0.7827 0.7524 0.8107 0.8085
44 10.2000|0.1552 0.1468 0.1254 0.2150 0.2197]0.0000 | 0.0440 0.0658 0.0976 0.0008 0.0000 | 0.0000|0.0173 0.0109 0.0231 0.0000 0.0000 | 0.8000|0.7835 0.7765 0.7539 0.7843 0.7803
45 10.1923(0.1178 0.1139 0.0565 0.1773 0.1759 | 0.0000 | 0.0981 0.0970 0.1705 0.0206 0.0173|0.0000 | 0.0237 0.0239 0.0381 0.0045 0.0047 | 0.8077 | 0.7604 0.7652 0.7349 0.7977 0.8021
46 10.1200]0.0480 0.0381 0.0000 0.1201 0.1211 | 0.0000 | 0.0988 0.1049 0.1707 0.0001 0.0000 | 0.0000 | 0.0227 0.0244 0.0346 0.0005 0.0000 | 0.8800|0.8305 0.8327 0.7946 0.8793 0.8789
47 10.1017]0.0445 0.0021 0.0010 0.0771 0.0917|0.0000 | 0.0456 0.1351 0.1348 0.0336 0.0091 | 0.0000 | 0.0623 0.0318 0.0260 0.0094 0.0051 |0.8983|0.8476 0.8309 0.8382 0.8799 0.8941
48 10.0364]0.0161 0.0064 0.0014 0.0110 0.0352 | 0.0000 | 0.0130 0.0225 0.0482 0.0021 0.0011 |0.0000 | 0.0251 0.0499 0.0027 0.0712 0.0013]0.9636|0.9457 0.9212 0.9477 0.9156 0.9623
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From Table 6-10 and Table 6-11, we can see that the rule weights and belief degrees
attached to rules numbering from 1 to 8 and numbering from 25 to 32 kept untouched
in the training process. The reason is that as described in Section 6.6.1.1, there are no
enough clinical cases in the simulated dataset fall in the regions that above rules were
designed to operate, and then we put those scarce cases aside before drawing data into

training set and test set.

Therefore, in the following system performance test over both the test set, above rules
that kept untouched in the training process will not make contribution, and changes of
the system’s performance before and after BRB training over the test set are made by

the other rules, which were trained by the training data.

6.6.2.2. System Diagnostic Performance over Test Set

This Section discusses changes of the system’s diagnostic performance before and
after BRB training over simulated patients in test set. Here, BRB training was
conducted with R', R?, R’, R*, and R°. Based on the system generated overall severity
scores (as discussed in Section 6.5.1) for patients in the test set before and after each
BRB training, we employed SPSS to plot six different ROC curves as in Figure 6-5 to
illustrate the system’s performance before and after each BRB training. In Figure 6-5,
the source of each curve is annotated, where ScoreWithPreTrainedBRB represents
severity scores of patients generated by the system running with a BRB model before
any training; ScoreAfterR’ represents severity scores generated by the system running
with a BRB model after training R'; ScoredfterR’ represents severity scores
generated by the system running with a BRB model after training R?; ScoreAfterR’
represents severity scores generated by the system running with a BRB model after

training R*; ScoredfterR’ represents severity scores generated by the system running

203



with a BRB model after training R*; ScoredfterR’ represents severity scores generated
by the system running with a BRB model after training R°. Take the blue curve in
Figure 6-5 for example, from the annotated source of the curve in the figure, we know
that the blue curve is based on patients’ severity scores generated by the system
before BRB training, and the curve can be used to illustrate the system’s performance

over the test set before BRB training.

Source of the Curve
| ScoreWithPreTrained
BRB

I~ ScoreAfterR1
ScoreAfterR2

[~ ScoreAfterR3
ScoreAfterR4

I~ ScoreAfterR5
Reference Line

3

0.8

N\

o
o

Sensitivity

o
Y
\2

0.0

0.0 02 0.4 0.6 0.8 1.0
1 - Specificity

Figure 6-5: Six ROC Curves Demonstrating the Diagnostic Performance of the

System before and after BRB Training over Test Set

We then required SPSS to estimate corresponding AUC values together with their
95% confidence intervals for the six ROC curves. The AUC values and their 95%
confidence intervals estimated by SPSS are shown in Table 6-12, where each ROC

curve is denoted by its source severity scores.
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Table 6-12: AUC Values and 95% Confidence Intervals of the Six ROC Curves
in Figure 6-5

ROC Curves 95% Confidence Interval
AUC

(denoted by source scores) Lower Bound Upper Bound

ScoreWithPreTrainedBRB 0.7956 0.7464 0.8449
ScoreAfterR' 0.8280 0.7830 0.8729
ScoreAfterR’ 0.8299 0.7860 0.8739
ScoreAfterR’ 0.8290 0.7851 0.8729
ScoreAfterR* 0.8245 0.7791 0.8699
ScoreAfterR’ 0.8208 0.7752 0.8664

As seen from Table 6-12, AUC of the ROC curves representing system’s diagnostic
performance after BRB training are all larger than the AUC of the ROC curve

representing system’s diagnostic performance before BRB training.

Based on results as shown in Table 6-12, we can draw a conclusion that the training
module implemented with different sets of training parameters can invariably help the
system to improve the diagnostic performance, and training rounds R', R% and R’

helped to bring better system performance than training rounds of R* and R’ .

However, since the difference between the AUC of ROC curves after BRB training R,
R% R?, R* and R’ is slight, we cannot tell which training has brought most significant
performance improvement to the system. To test which BRB training can help the
system to achieve most significant performance improvement among all conducted
BRB training, we need to statistically analyze the statistical significance of the

performance improvement after each BRB training round.

Thereafter, to measure the statistical significance of the system’s diagnostic
performance improvement, we used StAR to compare the AUC values of RUC curves
representing system’s performance before BRB training and after each BRB training
with different training parameters, and the AUC comparison results are shown in

Table 6-13.
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Table 6-13: p-values for AUC Comparison between ROC Curves before and
after BRB Training

ScoreAfterR'| ScoreAfterR? |ScoreAfterR?|ScoreAfterR*| ScoreAfterR®
ScoreAfterR? 0.4530
ScoreAfterR®|  0.8863 0.8881
ScoreAfterR*|  0.4984 0.2038 0.5639
ScoreAfterR®|  0.3890 0.2326 0.0984 0.5596
Ti‘i’zggfm 0.0323 0.0198 0.0076 0.0764 0.0836

Based on the comparison results as shown in Table 6-13, we know that training R’
(with p-value 0.0076) brought the most statistically significant performance
improvement for the system though there is no significant difference between system
performances after training rounds of Rl, Rz, R? , R4, and R® . Thus we considered the
parameter set that was used in training R’ as the most suitable training parameter set
for the training module, and it is composed of antecedent attribute weights

0, (i = 1,---,5) and consequent belief degrees ﬂ,q. (k =1---48;j = 1,---,4).
6.7. Summary

This chapter presents a validation study of the developed CDSS prototype. The
system validation was conducted using a set of 1000 simulated patients in CCP. The
BRB constructed in the system for validation is based on rules for assessing clinical
risk of CCP provided by one of our research collaborators — Dr. Richard Body at MRI,
and the statistical method we used for diagnostic performance evaluation is ROC

analysis. There are two main conclusions that can be drawn from the validation study.

® Firstly, based on the RIMER methodology, the developed prototype CDSS can
handle different uncertainties in both clinical domain knowledge and clinical data,

and the system can provide reliable diagnosis recommendations.

206



® Secondly, based on the BRB optimization model implemented in the system, the
system’s performance can be statistically significantly improved after training
BRB with available accumulated cases. While the most suitable training
parameters for the training module contain antecedent attribute weights and belief

degrees.

Based on the developed CDSS prototype and the system validation study presented in
this chapter, we can conclude that it is feasible, viable, and reliable to use RIMER for

implementing a CDSS.
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Chapter 7

Conclusions and Potential Future Research

7.1. Introduction

This chapter first summarises the whole study, pointing out what has been done in the
study in Section 7.2. Then Section 7.3 recapitulate the whole thesis and highlights
main findings and contributions of the research, where the main findings from
previous chapters are discussed in Section 7.3.1 and main contributions of the
research are discussed in Section 7.3.2. Finally, limitations of the research and

possible future research are discussed in Section 7.4

7.2. Summary of the Study

Motivated by the strong need in CDSSs research for a competent CDSS, which can (a)
represent and reason with clinical domain knowledge under uncertainties; (b) update
knowledge base automatically based on accumulated clinical cases; and (c) provide
online group clinical decision support, the study aimed to use a newly developed
belief rule-base inference methodology — RIMER (Yang et al., 2006) for the design
and development of an online intelligent group CDSS. Main research questions that
the study tries to answer include: (a) is it feasible to employ RIMER for developing a
CDSS? (b) how to facilitate online group clinical decision making and arrive at a
group combined clinical recommendation for target patient in a belief rule-based
CDSS? and (c) how to train belief rule-based CDSS and make its knowledge base be
adaptive to clinical practice? Based on theses research questions, the measurable

objectives of the research include: (a) investigate existent CDSSs, and identify system
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features of existing CDSSs; (b) acquire target clinical domain knowledge; (c)
investigate the feasibility of employing belief rule base (BRB) to model clinical
domain knowledge and using the evidential reasoning (ER) approach to do clinical
inference in a CDSS; (d) design and develop an online belief rule-based group CDSS
prototype; and (e) validate the online intelligent CDSS prototype using clinical cases
in target clinical areas. Clinical areas being investigated in the study includes upper
Gastrointestinal (GI) bleed and CCP. Finally, a belief rule-based online group CDSS,
which provides guideline-based individual diagnosis support, group consultation
support, and automatic knowledge base updating via learning through accumulated
clinical cases, was developed in the research. The prototype CDSS has been validated

using a set of simulated clinical cases in CCP.

The research methodology used in the study is a multiple-methodology approach.
Modelling and prototyping are the two main research methods used for prototype
design and development. Field study is used in the study for gaining deep
understanding of domain knowledge and daily clinical work flow in NHS hospitals,
and acquisition of users’ requirements of a CDSS. Statistical techniques including the
receiver operating characteristic (ROC) curve analysis and the area under the ROC
curve (AUC) comparison are used in the prototype validation for system performance

analysis.

In the research, various research gaps in the CDSSs literature that impedes
successfully application of existent CDSSs in clinical practice were identified first.
Then a preliminary study on the feasibility of using RIMER for developing a CDSS
was conducted. It is followed by the design and development of a belief rule-based

online group CDSS which can help address the identified research gaps, and finally
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the validation of the developed prototype was conducted using a set of simulated

patients’ data.

The research developed an online belief rule-based group CDSS and proved that (a) it
is feasible and viable to use RIMER for developing a CDSS; (b) the developed CDSS
can handle uncertainties in both clinical domain knowledge and clinical data, and the
system can provide reliable diagnosis recommendations; and (c) the BRB in the
system can be updated automatically by learning through available cases accumulated
in clinical practice, and the BRB training can help to improve the system’s diagnostic

performance statistically significantly.

In a word, all the research questions presented in Section 1.2 of Chapter 1 have been

addressed comprehensively by the study.

7.3. Major Conclusions

7.3.1. Findings

This thesis has proposed using RIMER for developing an intelligent CDSS that can
make use of the uncertainty-handling capability of RIMER for representing and
reasoning with clinical domain knowledge under uncertainties. A preliminary
feasibility study proved that it is logically feasible to employ RIMER for developing a
CDSS. In order to demonstrate the technical feasibility of the proposed belief rule-
based CDSS, an online CDSS prototype was developed using Visual Studio
2003 .NET and MATLAB. A set of patients in CCP was simulated by an expert
clinician in MRI for validating the developed prototype. The major findings

addressing the research questions are outlines as follows.
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The developed prototype CDSS shows the feasibility and viability of using

RIMER for developing an online intelligent CDSS.

Representing clinical domain knowledge with belief rules and inference with
BRB using the ER approach enables the system to handle uncertainties in both

clinical domain knowledge and clinical data.

The group decision supporting module implemented in the prototype enables
clinicians to hold online group meetings, discussions or consultations via the
system. The ER-based group preferences aggregation mechanism in the module

can help to arrive at a group combined diagnosis recommendation.

The BRB training module implemented in the system helps the system to update
the knowledge base automatically by learning through available accumulated
cases, and it helps to improve the system’s performance after learning from
accumulated cases. Therefore, the training module enables the system to be
adaptive to clinical practice and provide an evidence-based clinical decision

support.

Structuring and storing BRB in relational database facilitates the interactions
between knowledge base and other system components. It also facilitates the
sharing of domain specific knowledge due to the mature database technology and

networking technology.

The system validation offers encouraging outcomes for the system. Firstly the
system can provide reliable diagnosis recommendations under clinical
uncertainties. Secondly automatic BRB training using accumulated clinical cases

can help the system improve diagnostic performance statistically significantly.
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7.3.2. Contributions

The research questions pursued in this study are new, creative, and important in
CDSSs research fields. The research is quite complex and demanding, as it is
interdisciplinary and mainly involves (a) investigation of the existent CDSSs; (b)
investigation of clinical domain knowledge; (c¢) investigation of advanced models for
representing and reasoning with clinical domain knowledge under uncertainties, group
preferences aggregation, and knowledge base training; (d) system design and
development; and (e) system validation. The research deals with theoretical
investigation, field study, software development, and system validation. It bridges the

gaps in the CDSS literature. Major contributions of the research are listed as follows.

(1) From the CDSS research perspective:

® The research develops a new CDSS framework which integrates automatic
knowledge learning functionality and online group decision supporting

functionality into a knowledge-based CDSS.

® The research proposes and uses relational database to uniquely store and
manage BRB model, and this makes physical knowledge base construction
flexible and portable. It also makes the knowledge sharing between different
clinical systems free of technology barriers thanks to mature relational

database technologies.

(2) From a practical domain application perspective:

® The research develops a target clinical domain BRB for modelling domain

specific knowledge under uncertainty. The BRB can be used not only for
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generating automatic diagnosis recommendations but also for clinicians’ future

domain knowledge reference in practice.

® The research develops an ER based inference engine to infer with input
uncertain clinical data and back-end uncertain domain knowledge in the BRB.
The inference engine infers with different clinical uncertainties in a rational

way, and can generate prioritised and informative diagnosis recommendations.

® The research develops an ER based group clinical decision supporting module.
The group decision support module provides not only a group diagnosis
preferences aggregation mechanism but also a discussion forum for group

consultants to hold online group discussions or consultations.

® The research develops a BRB training module that can help update the
embedded clinical rules automatically and routinely and keep the knowledge

base being adaptive to clinical practice.

® The research implements guideline-based user interfaces which not only
facilitates clinicians complying with the practice guidelines, but also makes the

integration of CDSS with clinical work flow implemented easily.

7.4. Potential Future Research

Although the research shows positive and encouraging results about employing
RIMER methodology for developing a CDSS, there are limitations in the research.
Firstly, from technical perspective, the system developed in the research is a prototype
with preliminary functionalities, and the system has not been tested with real clinical

scenarios. Secondly, from system validation perspective, only inference engine and
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BRB training module were validated in the research with simulated data, the group
decision supporting module was not validated due to lack of data. Thirdly, about the
simulated data used in system validation, though the data is close to reality, the
recorded outcome of patients in the dataset is a composite one, and the dataset can not
tell exactly at which level that one patient’s clinical risk is. Fourthly, in clinical
environment, one patient’s clinical data that are necessary for clinical risk assessment
may not be available at the point of risk assessment, and the risk status of one patient
may keep changing, but these two situations in clinical risk assessment have not been
considered in the research. Finally, through the ROC curve analysis in system
validation, we know that the system can provide reliable diagnosis recommendations
and the system’s performance can be statistically significantly improved after BRB
training, but it is difficult for doctors to accept the system and use it in clinical
practice just based on current research outcomes. Then we need further research to

convince the clinicians to accept the system in their clinical practice.

We know that more work needs to be done to deploy the system in a real clinical
environment. Future research on the belief rule-based online group CDSS could be

promising in many areas. Some of them are listed as follows.

® Apart from the uncertainty in domain knowledge and clinical data, which are
represented as incomplete clinical rules in the system’s BRB and uncertain
subjective judgements about patients’ clinical symptoms, there are other various
types of uncertainties in clinical domain specific knowledge and patients’ data.
For example, belief degrees assigned to possible consequents of one clinical rule
may be an interval other than a numerical value. Thus the BRB model in the

system can be further developed to embed other possible types and degrees of
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uncertainties in domain knowledge, and the ER based inference engine can be

extended to accommodate these uncertainties in the inference process.

® A dynamic belief rule-based clinical inference model can be developed and
integrated into the system for providing continuous and dynamic clinical decision
support, considering the fact that availability of patients’ clinical data is unstable
and the clinical status of a specific patient may keep changing in the diagnosis

process.

® The prototype can be tested by various real clinical scenarios, and real patients’
clinical data in target clinical areas can be used to train and to validate the system

to get more convincible results about the system.

® As for knowledge base training with accumulated clinical cases, study about more
advanced BRB training techniques can be conducted for learning situations where
there are no preliminary clinical rules but a large set of patients’ data is available

in one clinical area.

® The system can be deployed in a real clinical environment after various technical
tests, and then the study about real clinical benefits that the system can bring to

hospitals, doctors and patients can be conducted.

® Research about user acceptance of the system can be conducted after the system
is deployed in real clinical environment, considering the fact that doctors may
still have doubts about the adoption of a CDSS in their clinical practice even if
the system is proven to technically facilitate clinical decision making and help

reduce medical errors.

Many fruitful research can be conducted by using and enhancing the belief rule-based
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online group CDSS although many challenges remain ahead.
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Appendix A Brief User Manual

Al. Introduction

This user manual briefly describes guidance on the use of the system for various
specific purposes: support of individual diagnosis of one patient; support of group
consultation about one patient; and support of automatic knowledge base updating.

This brief user manual uses screenshots to guide system users to main features of the

system.

A2. Individual Diagnosis Support

(1)  Login as a clinician for the purpose of individual diagnosis.

oo El51x]

O - (Bl hepslocahostioninecdssiogin.zspx |

WA @logn L -

Tianpas e
S ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

524

5
f 5
E
%

Login Name: |admin
Password:  |ssses

Please specify your purpose for this login:
@Diagnosis
OGrouwp Censultation
Olpdate Nedical Rules

Decision Science Research Centre
Business Systems Division
Manchester Business School

& ocairiraret o,

(2)  Click on the main symptom of the patient. Note that we use upper

gastrointestinal (GI) bleed as an example diagnosis for illustration in this
manual.
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nosis Home - Windows Internet Explorer

& - e e 9] [é9) () [zonemam secwrey customizea weo ] (B
i Fle Edit View Favortes Tools Help
P G [ @i weme =l N v [ Pags v (3 Took +

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

48 DIAGNOSIS
W Cardiac Chest Pain
" Upper G| Bleed

@
[
o
=3

Dane % Localintranet E100% v

(3)  Click on ‘Please input patient’s personal information here’.

28

] hitpsiiocalhost/riinecdss upperGlbleed-000.aspx

(<1

 Fle Edt View Favortes Tooks Help

g Favores ‘guppeleh\eed{Iﬂﬂ ‘ ‘

MTS
Gl Bleed

Emergency Department
are herel '

¥ Acute Upper Gl Bleed

atient’s

lease input rmtion here

Patient vomiting blood

Complete
EDL/060

overleaf

Investizatel

overlesf

IV access
NBM

Clinical Risk
Assessment

Investisate
IF/052
overleaf

Complete
CDU/054

overleaf i

Buitable for
cou

Complete

javascript: _doPostBackl"addptLinkButton’,") € Intemet 45 - ®100%

(4)  Input the patient’s personal information.
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)

(6)

Windows Internet Explorer,

va ‘g it locathostjorinecdss addPatient aspx

i Fle Edt View Favortes Tooks Help

g vk | @ adtarin o ]

I
5
3
(2]

Flease enter all available information for this patient.

Ficlds named in red are required.

First Name Address Line 1 | |
Last Name Address Line 2 | |
Date Of Birth City ]
Hedical Record No# Postal Code ]

Done @ Iemet Va- Siow -

Click ‘OK’ to go back to the main interface for diagnosis of upper GI
bleed.

/~ http:/flocathostfontinecdss/AddPatient.aspx jows Internet Explorer

B> & ottt o EE e [2E

i Fle Edt View Favorbes Took Heh

g Fvorkes ‘OhtkD‘//\U:a\hvskﬁvnhns:dss/AddPat\snt‘asw ‘ ‘ Pl (=] i - page - safety-

Message from webpage

: Tnformation about the patient has been successfuly stored! The next step is to complete PDI/OS0 overleaf!

@ Intemet ¥ v R0k -

Click on ‘Complete PDI/050 overleaf’.
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x|

DI0SO - Windows Internet Explorer

@ v [ o ocabost/cricecs |2~
Fie Edt Viw Favortes Took Hep
g Faveries ‘guupeyemeewumsn ‘ ‘ F2 v B v e sdtey-
Back B
TS Emergency Department \
6l Bleed Acute Upper Gl Bleed
Patent vomiting blood lease input patient’s personal informtion here
Conplete -
PDI/050
Tou are herg! g\ overleaf
Complete Investigatel
CDO/051 P/053
overleaf overleaf
Clinical Risk
‘Assessment
Investigate,
Ip/082
ovarieat
resuscitation
Conplete
CDU/054
overleaf
) Suilable for
cou
Conplete
Ref/058 L
hittp: flocalhostjonlinecdssfupperGIbleed-050. aspx. € Intemet S5 - ®100% v

(7)  Input your judgment about the patient.

2 upperGlbleed-050 - Windows Internet Explorer,

> ‘L hitpi{flecahhest/anlinecdss upperGlbleed-050.asp

Fle Edt View Favortes Toos Hep

g Faveries ‘@uppeleh\eemDSﬂ ‘ ‘ R ) S v e safey e

Back

PDI/050: SUITABILITY FOR PROTOCOL
DRIVEN INVESTIGATION (ALL YES)

|No need for immediate resuscitation | @Yes ONo

|Acute upper Glbleed is primary complaint | OFes ONa

[Coom [

Done @ internet Jac % v

(8)  Clinical decision support terminates here if the patient is not suitable for
the guideline-driven investigation.
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"~ upperGlbles Windows Internet Explorer |- =]
@3- [ ) ntoiscabostcninzcezsupperGrbieed OISO e ] (B3 [#2 ][] @00 |[o]-

Fie Edt View Favortes Teds Help

o’

o - Ei L. @ ~ Page~ Safety~

i revorees |(£uwerelb\sed—cnuusm

-
Back —
e e e o = o = @ & ® ® ® ® = e = e *= & ® o e o = e
e e o o e o o e o e o e o ® ® o e ° o e e e e e =
e e = = @ = ® = ® ®= o = ® ® ® ® ® = ® @ = ® = -
TS Emergency Department \
&l Bleed Acute Upper Gl Bleed [
Batient voriting blood lease input patient’s personal informtion here |
Complete -
The diagnosis EDL7GG0R
process is | )\ 2HeHeft u
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Complete Investigatel
1p/053
overleaf
- /
Clinical Risk
Assessment
Complete
CDU/054
overleaf
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cou
_— ]
@ Ineermet | Roe -

(9)  Or, clinical decision support continues if the patient is suitable for the
guideline-driven investigation. Click on ‘Complete CDU/051 overleaf’.

(__ upperGlbleed-CDUO51 - Windows Internet Explorer |- [=]X]

e ‘Er.ttp Hflocalhostjorlinzcdss/uppertiblesd-cOLOS1 sspx vl B[+ ][% |,‘_|amg\e | Pl

Fie Edt View Favortes Teds Help

. ravorkes |(guupermmeed—mun51 ‘ ‘ - B[S i - eager sarery~
-
TS Emergency Department
o ok Acute Upper Gl Bleed [
Patient voriting blood atient’s personal informtion here | 4
Complete = /
PDI/050
overleaf
You are here!
Investigatel
IP/063
overleaf
B /
Clinical Risk IV access
Assessment NBwm e
e
[P/ 052
verleaf
1 Fluid
resuscitation
overleaf N
Suitable for i
ebU
overleaf
es
@ Ineermet | Roe -

(10) Input the patient’s clinical information for risk assessment.
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¢ upperGlbleed-051 - Windows Internet Explorer

G_\:;’ + [ htp: ocahostfoninecdss/uppercitieed-051 aspx
i Fle Edit View Favortes Tools Help

ﬂ’i[ (@ upperGbised 051 [7‘

St B @ v (sheage v ook v

Back

CDU/051: CLINICAL RISK ASSESSMENT OF ACUTE
UPPER GI BLEED

|Known or suspected oesophageal varices | ’W‘

|Pulse is | 51

Isystolic blood pressure (SBP) is

& pESEbeR | o g

[Postural SBP drop is

| : | — b
n NSAls or anticoagulants | ’m‘

IMajor co-morbidity (eg cardiac or renal

impairment) Mo major co-morb v

|§gmala of liver disease | No i
itnessed acute fresh red blood in vomit (di

Inot include coffee grounds or streaks of blood) No 4

|Urea is

B | —
| E—
l

[ swmt | [ Resat

& Local rirenet o -

(11) Click on ‘OK’ to check the risk assessment result for the patient.

/- http:#flocalhost/onlinec dss/upperGlbleed-051.aspx - Windows Internet Explorer

@@ - ‘5 it flocalhost foniinecdssfupper Glblesd-051.aspx “l Ba ||| ‘5" Googe “E]

i Fie Edt View Favorites Tools Help

.p Favortes | () e flocathostcnlinesdsupperGlblesc-05L. aspx | | E =]y - page - sefety -

Message from webpage

l: Information about the patient has Please proceed with system!

[T @ Irteret Voo Raon -

(12) Click on ‘Check it!” to get the patient’s severity score. Input your
judgment about the patient’s severity score. Click on ‘Link to all activated

rules in the inference process!’ to check all rules activated in the process of
assessing the patient’s risk.
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diagnosisResult - Windows Internet Explorer

@T’)v [ ) o dfcabostfoinecdssiiaprcsiRea. o “3|| x| |28 ceoe o]
Fo e e e b
g Favores |gmagmgneguu | | BB = o oree - seey-

Back

The system's diagnosis recommendation is shown as follows. If you do not agree with the
system's recommendation, please change the automatic results by dlicking the Edit
button.

System's diagnosis Meaning of the With No,I don't agree with the
recommendation Recommendation possibility  resuld

moderate risk

| high riskc 0.9918 Edit |

|Based on the syster's diagnosis, the severity score of the patient is: | 0.9959

If wie give a severity score of "1" to the risk lewel of "Wery High", and give a

severity score of "0" to the risk level of "No risk”, please input your

udgement of the patient's severity status based on your observation:

Link to all activated rules in the inference pracess!

[Double -cick to changs secuity settings

Done @ ntemer A -

(13) All activated rules are displayed.

playActivatedRules ternet Explorer

@3 w [ o flocabostfonineccssidspleyicivatedRuies. spc *2|[5¢| 4B onge 2 [
Fie Edt Vew Favories  Toos Help
7 Fevores | @ dipsyrctivatedies | | S B L e sty
The following clinical rules are activated in the inference process. The rules are
ordered based on their activation weights.
03276003 [F Known or suspected oesephageal varices is yes, THEN rike of acute upper GL
bleed s H
0.2457002 IF Pulse is larger than 130 bpm, THEN risk of acute upper Gl bleed is H
IF systolic blood pressure (SBP) is lower than 90 mm Hg, THEN risk of acute
0.2047502
upper GT bleed is T
i ]:F;ostuml SBP drop is larger than 20 mm Hg, THEN sisk of acure upper G bleed
i
IF Puilse is not lerger than 130 bpr and systolic blood pressure (SBP) is notlower
than 90 mm He and Postural SEP drop is not larger than 20 mm Hg and Known or
0.008130008 upper GI
suspected oesophageal varices is no and On ANSTs or anticoagulants is yes,
bleed is M
THEN L
TF Dulse is not larger than 130 bpm and systolic blood pressure (SBP) is not lower sk of acute
0.004914005  than 90 mm Hg and Postural SBP drop is not larger than 20 mm Hg and age is over upper GL
75 years old and Knovwen or suspected oesophageal warices is no, THEN bleedis M 9|
@ m | @
@ Irtemet Vp | Hio0% -

(14) Go back to the main diagnosis interface. Click on ‘Investigate IP/052
overleaf’. Here we use clinical management of patient in ‘High risk’ for

illustration in this manual.
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/__ upperGlbleed-CDUOS1-AFTER - Windows Internet Explorer
@71 e ‘E‘hktp//\n(a\l’mstfan\\r.e(d;)ﬁupveréib‘eeu‘—ibu’ﬁ1raftev s vl B €2 % ‘r'lGam;?e ‘P =

Fie Edt Vew Favories Tools Help

|7| - B - s sty

¢ Favorites | (& upperGlbleed-COUOS1-AFTER
-
Back =
= e o o ® ® e & e ® ® ® ® ® e ° e = ® = e = o = =
e e e o e o e 2 = e = * * * = = o = o = e = = = =
e o ®» = @ 2 ® = ® = ® = ® = = ® ® = ® = = = = = =
TS Emergency Department \
Gl Bleed Acute Upper Gl Bleed
Patient vomiting blood lease input patient’s personal informtion here "
Complete = - ./
PDI/060
overleaf L
You are here!
Complete Investigatel
CDU/ 051 IP/053
overleaf overleaf
Clinical Risk Moderale
Assessment
Investigate
IP/062
Overleaf ¥
i Fluid
resuscitation
Buitable for
cou
PRI S ]
@ Internet Gy v H0% -

Done.

(2 upperGlbleed-052 - Windows Internet Explorer,

R
OO~ (B moimatonivecisimpm oot o o] [¢2] x| [0 |-

File Edt View Favories Tools Help

N - B = i - e ssfey-

& upperlbleed-052 | |

. Faveries

IP/052: CXM 4 units, Clotting @¥es Ol

@ Inernet Va | Samn -

(16) What to do next is to follow the ‘High risk’ branch in the guideline and
manage the patient as the guideline indicated step by step.
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(__ upperGlbleed-IP052-after - Windows Internet Explorer

€

i Fie Edit View Fovortes Took Help

[ Faverites | (@ pperGlblesd-TP0SZ-after ‘ ‘
-
Back —~
e e ® ® o o = e e ® e = e ® ® = e = ® = ® = e = =
e e e e o o 2 o * o e = * = *= = = = o = = =
e = = = @ ® = = =2 = @ = @ ® *= = ® = = * = =
TS Emergency Department £
GiBleed Acute Upper Gl Bleed
Patient vomiting biood lease input patient’s personal informtion here
Complete
PDI/050
everlesf V g
Complete Investigate
CDU/061 1p/053
overleaf overleaf
Clinical Risk
V Assessment
PCYLEY ate/ [fou are here!
IF/062 '
Overleaf Y
Fluid
resuscitation
Complete
DU/ 054
overleaf .
Builable for i
cou
— =

@ e

G- s -

<

A3. Group Consultation Support

(1) For group facilitator

a.  Login as a clinician for the purpose of group consultation.

jows Internet Explorer

G- & 9] (%5] ] [zonemtorm secunty customized web ] [215)
i File FEdit View Favortes Tools Help
#* & [@oon [ BB & - [P Gk T

Thenversty cf Manchester
Mancheszer
Business School

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

Login Name:
passor:

Flease specify your purpose for this login:
ODiagnosis
®Croup Consul tation
Olpdate Nedical Rules

Decision Science Research Centre
Business Systems Division
Manchester Business School

& Lorairiranet o -

b.  Click on ‘For Group Facilitator’.
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d.

” Group Consultation Home - Windows Internet Explorer

0o

ioFle Edt Vew Favoites Took Help

e [gemumnsu\tammnme [ ‘

3] [#2) [5¢] [zonesiarm Security custamzea et 51| (2]

L i v [rPage = (3 Tools v

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

Q GROUP CONSULTATION
% For Group Facilitator
> For Consultant

=3
I
2
=

Done & Local intranet #100% v

Input necessary information about the patient who is the target of the
group consultation.

(" facilitator - Windows Internet Explorer

O~ [E] toocsrostonineccsiFacitator aspe

ioFle Edt Vew Favoites Took Help

e [g facitator [7‘

3] [#2) [5¢] [zonesiarm Security custamzea et 51| (2]

L i v [rPage = (3 Tools v

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

s Please input required information sbout the patient for whom you
plan to facilitate a grous consultation.

Patient MRN#:
Last Name:

&J Local intranet H100% v -

Select the purpose of the group consultation from the listbox.
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e indows Internet Explorer
O~ [E] toocsrostonineccsiFacitator aspe 3] [#2) [5¢] [zonesiarm Security custamzea et 51| (2]
i File Edit View Favorites Tooks Help

X g [ @reanater =l i o [ Page + {3 Todls +

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

s Please input required information sbout the patient for whom you
plan to facilitate a grous consultation.

Patient MRN#:
Last Name:

The patient is under investigation of

the diagnosis puideline: [AcutsipUppariiGiBised

CDSG

Please specify what clinical decision are

vou going to seek group consultation for
this patient?

& Local et Sk -

e. Select available consultants whose expertise is in target area.

€ ~ [E] Motiocsbosoninessinsconsant.sspx 3 [%2] [X] [zonentom securty cusomizea web = (O]

PoHe Edt vew ravores Took felp

W 4 [ @neconsuen: [=] - - [rpese - {Tods - 7

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

Please select your target consultants and add them to your group.

Available member consultant whose expertise is in this field:

Last Name

Consultant First
1D ame

Expertise Select the
Ranlk consul tant

Richard Body 2
3 Kevin  Nackway_Jones 2

o]
[
a
=

Dore & Local intranet. a0 v -

f. Wait online for group consultants’ discussion and diagnosis preferences.
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(_ FacilitatorGroupConsultation - Windows Internet Explorer

[cISR0 B (5) o) [zrtam sscars comamest i 5 (B
File Edit View Favorites Tools  Help
* & [EFanhtamGmupcnnsu\tamn [ | o - & - [Brpece = 3 Toos +
&
Back =1

Group member diagnosis suggestions are as follows:

Consultant (First Consultant (Last Diagnosis With
Name) Name) Recommendation Possibility

Group member discussions are recorded as follows:

Consultant (First Name)  Consultant (Last Name) Discussion Details

Message from the consaltancy group's facilitator:

Done & Local intranet #100% v

g.  Facilitate the group consultation by inputting your judgment in the
textbox.

(- FacilitatorGroupCons ultation - Windows Internet Explorer
[<I°N5 8] ) [zmmtta sy comomst e s (B

Fle Edt View Favorites Tooks Help

W [EFanhtamGmupcnnsu\tamn [ - & [ Pege - Griooks v

Message from the consultancy group's facilitator:

1 think we can terminate our consultation now.
@ T ]

Please input your ion to in
the following blank area:

I think we can terminate our consultation now.

Link to the pafient's latest medical record

Ask the system to agaregate member consuftant diagnoses.

Link to the final group diagnosis of the patient.
Link to BestBETs website!

Link to Map of Medicine website!

Link to clinical rules! ~

Done & Local intranet #100% v

b

h. Click on ‘Ask the system to aggregate member consultants’ diagnoses’

after you have terminated the group consultation.
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(- FacilitatorGroupCons ultation - Windows Internet Explorer
[<I°N5 5] <) [zmetam scevy cumoriz vt (9]

ioFle Edt Vew Favoites Took Help

9 & | @ramamarncmaan [ (B B e - Qe - 7

[E3

Message from the consultancy group's facilitator:

I think we can terminate our consultation now. a
< | 3

Please input your
the following blank area:

Link to the pafient's latest medical record

Ask the system to agaregate member consuftant diagnoses.

Link to the final group diagnosis of the patient.
Link to BestBETs website!

Link to Map of Medicine website!

Link to clinical rules!

i

& Local et o -

1. Assign weight to group consultants in the group consultation.

ighiConsultant - Windows Internet Explorer

G~ [E] mepitocanosonineschspueigconsutnt asp B3 [%2) [5¢] [zonepiorm securty customzeawes ][]

iRl Edt View Favorites Took Help

W 4 [ @ wonconsukan: =l (BB & e Qe - 7

Back to Consultation Home

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

Please give each grou member an importance weight based on your

knowledge about their expertise and experience in this field.
Tips: If you think each member’s diagnosis should be treated
equally, you should give them equal weights. If you know
that one consultant is wery strong in this field, but
compared to other group members, he/she is a little short of
experience, you can give him/her a weight of 0.8 or aroun
Please note that you should give your importance index
ranged from 0 to 1.

Importance

Last Name Weight

Consul tant First
1D ame:

Richard Body

Kevin  Nackway_Jones

Dore & Local intranet. H100%

] Check the aggregated risk result for the patient. Click on ‘Edit’ to input
final judgment for record purpose.
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indows Internet Explorer

g cocgl J \Elj

- La hitp: flocahestfonline cdssfgroupdiagnosisResult asp:

{ Fle Edt View Fovortes Tooks Help

[ ) - Pager Sofoty -

i rees | @ansdosmson [ -

Back to Consultacy Home

After ing all di i dations based on the
evidential reasoning approach, the system's diagnosis recommendation is
shown as follows. If you do not agree with the system's recommendation,
please click Edit to input your diagnosis suggestion.

Please note that only the consultancy group's facilitator has the right to do so.

System’s diagnosis Meaning of the With No, I don't agree
recommendation Recommendation possibility  with the result!

moderate rick.

|z high risk 06 Tdir |

Done @ Intermet dp v R10% - .

(2) For consultant

a. Login as a clinician to do group consultation.

3 (#9] [ ] [zonenarm security Customized wieb e

i File Edit View Favortes Tools  Help
% & [@roon =l D v [ pags - 3 Tooks +
S ——

Mancheszer
Business 5chool

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

Login Name:

Please specify your purpose for this login:
ODiagnosis
®Group Consultation
Olpdate Nedical Rules

Decision Science Research Centre
Business Systems Division
Manchester Business School

& Local et Sk -

b. Click on ‘For Consultant’.
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d.

(- Group Consultation Home - Windows Internet Explorer

0o

3] [#2) [5¢] [zonesiarm Security custamzea et 51| (2]

ioFle Edt Vew Favoites Took Help

e [@emupcunsu\tammnme [ ‘

L i v [rPage = (3 Tools v

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

#8 GROUP CONSULTATION

- For Group Facilitator
> For Consultant

=3
I
2
=

Dore

&J Local intranet

0% v -

Input necessary information about the target patient.

(- consultant - Windows Internet Explorer.

- [3]x]

G- [elnoieurimmecsma:

(5] [ [zt sty comarcsa v (B

P oHe Edt Ve avores Took felp

e [g consutant [7‘

- & - e - Grods - 7

Back

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

s Please input required information about ths patient you ars
invited to contribute consultation.

Patient MRN#:
Last Name:

& Local intranet

S -

Check the recorded information about the patient.

231



" ptLatestRecord - Windows Internet Explorer

i3 gm "
@Ov [ Pepsttecahostoningcdssiptatesiecord. asex =S “&,,‘
i Fle Edt View Favorites Tools Help
i revortes | @ atestrecord ‘ ‘ B S - peer ey
7]
First Name Last Name
Clinical Value/ ¢
Fudgement
Major co-morbidity o major co-morbidiy
System's Diagnosis of  System's Recommendation With Possibility
tisk of acute upper G bleed M 0.0082 £
ical Treatments Alr one For The Patient Tnclude:
C30M 4 units, Clotting
9
@ intermet 7o muoow -

e. Select your preference from the listbox about the patient’s risk level.
Enter your judgment about the patient’s in the textbox. Click on ‘Link to
the final group diagnosis of the patient!’ after receiving the message
from the group facilitator for terminating the group consultation.

ndows Internet Explorer

e ) [53)[#][5¢] [20 5000 ‘\E’v‘
i File Edt View Favorites Took Help
i Fevortes | @ grouConsutstin ‘ ‘ S B L e paer sy
B
Back
Group iagnosi: ggestion are as Your diagnosis suggestion about this patient is:
follows:
Diagnosis Neaning of Rith
Consultant Consultant Diagnosis With Suggestion Diagnosis Possibility
(First Name) (LastName) Recommendation  Possibility .
L low risk
s derate risk
Richard Body M 01 pogergie 15
E high risk
Richard Body H 09
Group members' discussion are recored as
follows:
'Y ou can also provide your detailed diagnosis for
his patient in the following blank area.
| think the patient is in high risk with high possibilty.
Consultant (First Consultant (Last Discussion
Name) Name) Details
Link to the patient’s latest medical record!
Link to the final group diagnosis of the patient!
Link to BestBETs mebsite!
Link to Map of Medicine website!
v
@ Intemet - ®i00% -

f. Check the final aggregated risk result for the patient.
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(" groupdiagnosisRasutt - Windows Internet Explorer

@;:)' ‘i‘hklp‘ﬂ/\v(a\hwst/urvhne:dss/Qerd\a\zncs\sResu\t‘asw V‘ B4 | X ‘rflewq\e

Flz Edt Vew Favorkes Toos Help
P P — [ e
Back to Consultacy Home
After aggregating all r based on the
idential r : h, the system's di g Jation is
shovn as follows. If you do not agree with the system's recommendation,
please dlick Edit to input your diagnosis suggestion.
Please note that only the consultancy group’s facilitator has the right to do so.
System's diagnosis Meaning of the o, I don't agree
recommendation Recommendation ity  with the result!
moderate risk Edit
H H high risk. 06 Edit H
Dane @ Intermet Gy - Hioon <

A4. BRB Updating Support

(1) Login as a clinician for the purpose of updating medical rules.

(- Login - Windows Internet Explorer

[< 1M

Fle Edt Vew Favortes Toos Help

& & [ =

8] (¥ [ ] [zonestam securiy Customized web 5] [

& - = - i Page - ChTedks <

The University cf
Mancheszer
Business School

R

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

b
Z
Z

Login ame:
passuore

Please specify your purpose for this login:
ODiagnosis
O6roup Consultation
®Update Nedical Rules

Decision Science Research Centre
Business Systems Division
Manchester Business School

G Lo vt S -

(2) Click on ‘Display All Rules Used in The System’ for displaying all medical
rules stored in the system. Click on ‘Train Medical Rules based on Diagnosed

Cases’ for automatically training medical rules using accumulated cases in the
system.
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ingHome - Windows Internet Explorer

O & 8] [#9] [x] [zcnemtam seauty customees web s (8]
i Fle Edt Wew Favortes Toos Help
& G [@uanngens =l P @ v [ Rage « CFTook = 7

ONLINE INTELLIGENT GROUP CLINICAL
DECISION SUPPORT SYSTEM

Q TRAINING/UPDATING MEDICAL RULES
" Display All Rules Used in the System

"> Train Medical Rules Based on Diagnosed Cases

=3
I
o
=3

Done

& Lacal intranet H100% v

(3) For displaying medical rules

a. Select the target rule base for displaying.

(- displayRules1 - Windows Internet Explorer

@v [ htpsicalhosoninecassispermulest asex

HE

(2] %] (e | 2l-|

i Fle Edi ¥iew Favortes Tods Help

. Favarites

(& displayRuiest ‘ ‘

- 5o sy

~

=3
5
B
23

There are several rule bases being used in the system, please select

the rule base you are interested, and the system will display all rules
belong to the rule base you selected.

Olnitial test rule base
@ Clinical risk assessment for upper GI bleed

O Assessment of clinical probability of myocardial damage

OClinical rigl agzesement of cardiac chest pain

@ Internet h - s -

b. Check all rules stored in the rule base.
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p indows Internet Explorer

@9. ) Httpilocalbost/oriinecdss/displayRules. aspx (B[4 [ ] [28 soose HEJ
i Fle Edi View Fsvorkes Tods Hep

5 Fovories |gdw\ambs |7‘ - (=] o - Page Safety - 5

Below are all rules in the rule base you selected.

47 TF Enown or suspecied oesophageal varices i yes,

THEN risk of acute upper GI bleedis H

42 IF Pulse is larger than 130 bpm, THEN risk of acute
upper Glbleed is H

4o TF systolic blood pressure (SEP) is lower thar 90 ram
Hg, THEN risk: of asute upper G1 bleed is

5o T Posturel SBP drep i Larger than 20 rm He, THEN
tisk of acute upper GI bleed is

TF Pulse s not Jarger than 130 bpm and systolic blood
pressure (SEP) is not lower than 90 mm Hg and

51 Postural SBP drop is not larger than 20 mm Hg and sk of acute upper GLbleed is M
Known or suspected oesophageal varices is no and On
AIVSIs or anticoagulants is yes, THEN

IF Pulse is not larger than 130 bpm and systolic blood
i ]

S
(e

Dane & Internet fa v Riwooe -

(4) For automatically updating medical rules

a. Select target rule base for training.

jows Internet Explorer

OO~ 2 s tectosionvmsatinims: H[E 4] [x] By |2
i Fle Edt View Favortes Took Help
i\?;avmeg |g[mmu\es, |7‘ - = @ > Bmme S o
Back
All rule bases used in the sy for ing patients® clini risk

level are displayed below. Please select the one you are interested, and
you can have a brief look of all patients that have been assessed using
that rule base.

Olnitial test rule base
@Clinical risk assessment for upper GI bleed
O Assessment of clinical probability of myocardial damage

OClinical risk assessment of cardiac chest pain

Dane & Internet fa v Riwooe -

b. Click on ‘OK’ to train selected rule base using accumulated clinical
cases.
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(- trainRules - Windows Internet Explorer

@g- [ it tocobostorinecisfsetises s EERIE e
Fle Edt View Favortes Toos Help

g rovnies | Buarnes [] R S R~ R
All clinical patients whose clinical risks have been assessed using the
rule base you selected, along with their observed severity scores are
displayed first, and then you can make a decision about whether the
rule base need to be trained on the basis of those cases.
190 0.9 0.9611372
191 0.8 0. 83335 |
192 0.7 0. 6667
] | @
Now, it’ s your decision. If press "0k”, the system will do rule
base training for you based on all above clinical cases. I
press "No”, you can let the system do training next time.

Done @ Internet 45 v Rio0% ~

c. Select the training parameters you want to check after the training. We
use rule weights as an example for illustration in this manual.

indows Internet Explorer

ST T———

Fle Edt View Favorkes Tooks Help

g roenes | Buarnuese ]

B - B) (S - P seiey- i

Back
Al dg P! ation | ers have been fully
i by il ini cases. Select one of the

fellowing options, you can have a look of the differences hetween the
trained values and the original values of those parameters in the rule

base.
@Rule weights
CAntecedent attribute weights

OSeverity scores of different risle levels

OBelief degrees associated with different consequents

@ Internet 45 v Rio0% ~

d.  Trained rule weights are displayed.
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nRulesruleweight - Windaws Internet Explorer

x
[ IS e — & B[] ] e |28

i Fle Edt View Favorkes

Tooks

5 Fovories I Evwarruesnizneight

Ol

- (=] o - Page Safety - "

The differences between trained rule weights and original values given

by ¢
Rulc ID
65

ans are displayed as below.
iginal Rule Weight Trained Rule Weight

E

66

(i

67

68

69

70

Tl

T2

73
&

1
1
1
1
1
1
1
1
0.

9999 8
i | &

| @ Internet L fa v Riow -
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Appendix B BRB Inference Using the ER Approach in
Recursive Format (Yang et al., 2006)

Suppose we have a BRB that has L belief rules with N possible consequents, and rule

activation weights @, (k=1,--,L) and belief degrees in consequents
p . ( j=1-,N;k=1, ---,L) of the BRB have been calculated based on observed facts.

The ER approach in recursive format can be directly applied to inference with the

BRB as follows.

First, transform the degrees of belief I for all j=1---,N, k=1,---,L into basic

probability masses using the following ER algorithm:

m; :a)kﬂjk9j =L-,N

for all k =1,---,L, where m,, =m,, +m,, forall k=1,---,L and Z;la)‘i =1. The

probability mass assigned to the consequent set D, which is unassigned to any
individual consequent, is split into two parts: one caused by the relative importance of

the kth packet antecedent A* (or my, ) and the other by the incompleteness of the kth

k ~
packet antecedent 4™ (or m,, ;).

Then, aggregate all the packet antecedents of the L rules to generate the combined
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degree of belief in each possible consequent D, in D. Suppose m,,, is the
combined degree of belief in D, by aggregating the first &k packet antecedents
(Al,---,Ak ), and my,,,, is the remaining degree of belief unassigned to any
consequent. Let m

jaqy =m;, and mp,,\ =m;,. Then, the overall combined degree

of belief f, in D, is generated as:

{Dj }: mM; ey = KI(k+1) [mj,l(k)mj,k+l M XM g T M 10T l k=1,L-1

Mp 1y =Mp iy T Mp riy» k=1,---,L
{D} T ey = Ky [mD,I(k)mD,k+l FMp 1y XM p gt T p 11y M p s ]: k=1,-L-1

{D} : mD,l(lm) = Kl(k+1) [n_/lD,I(k)n_/lD,kH ]» k=1---,L-1

-1

N
1(k+1) 1- Z

J=1

M 1My ke Jk=1,---,L -1

uan

1- Mp

m
(D}: p, = o
P l_mD,I(L)

B, represents the remaining belief degrees unassigned to any D, . It has been proven
that ZL B, + B, =1. The final conclusion generated by aggregating the L rules,

which are activated by the actual input vector A ={Ak,k=1,---,L} , can be

represented as

S(A*): {(Dj"gj)’j :1”"=N}-
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