9,351 research outputs found

    Designing data warehouses for geographic OLAP querying by using MDA

    Get PDF
    Data aggregation in Geographic Information Systems (GIS) is a desirable feature, spatial data are integrated in OLAP engines for this purpose. However, the development and operation of those systems is still a complex task due to methodologies followed. There are some ad hoc solutions that deal only with isolated aspects and do not provide developer and analyst with an intuitive, integrated and standard framework for designing all relevant parts. To overcome these problems, we have defined a model driven approach to accomplish Geographic Data Warehouse (GDW) development. Then, we have defined a data model required to implement and query spatial data. Its modeling is defined and implemented by using an extension of UML metamodel and it is also formalized by using OCL language. In addition, the proposal has been verified against a example scenario with sample data sets. For this purpose, we have accomplished a developing tool based on Eclipse platform and MDA standard. The great advantage of this solution is that developers can directly include spatial data at conceptual level, while decision makers can also conceptually make geographic queries without being aware of logical details.This work has been partially supported by the ESPIA project (TIN2007-67078) from the Spanish Ministry of Education and Science and by the QUASIMODO project (PAC08-0157-0668) from the Castilla-La Mancha Ministry of Education and Science (Spain). Octavio Glorio is funded by the University of Alicante under the 11th Latin American grant program

    CFBM - A Framework for Data Driven Approach in Agent-Based Modeling and Simulation

    Get PDF
    Recently, there has been a shift from modeling driven approach to data driven approach in Agent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models [1, 2]. In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, evaluation of the output of the simulation platform. That raises the question how to manage empirical data, simulation data and compare those data in such agent-based simulation platform. In this paper, we first introduce a logical framework for data driven approach in agent-based modeling and simulation. The introduced framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform). Secondly, we demonstrate the application of CFBM for data driven approach via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to initialize and validate the models. The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach

    A UML Profile for Variety and Variability Awareness in Multidimensional Design: An application to Agricultural Robots

    Get PDF
    Variety and variability are an inherent source of information wealth in schemaless sources, and executing OLAP sessions on multidimensional data in their presence has recently become an object of research. However, all models devised so far propose a ``rigid'' view of the multidimensional content, without taking into account variety and variability. To fill this gap, in this paper we propose V-ICSOLAP, an extension of the ICSOLAP UML profile that supports extensibility and type/name variability for each multidimensional element, as well as complex data types for measures and levels. The real case study we use to motivate and illustrate our approach is that of trajectory analysis for agricultural robots. As a proof-of-concept for V-ICSOLAP, we propose an implementation that relies on the PostgreSQL multi-model DBMS and we evaluate its performances. We also provide a validation of our UML profile by ranking it against other meta-models based on a set of quality metrics

    The combination of spatial access methods and computational geometry in geographic database systems

    Get PDF
    Geographic database systems, known as geographic information systems (GISs) particularly among non-computer scientists, are one of the most important applications of the very active research area named spatial database systems. Consequently following the database approach, a GIS hag to be seamless, i.e. store the complete area of interest (e.g. the whole world) in one database map. For exhibiting acceptable performance a seamless GIS hag to use spatial access methods. Due to the complexity of query and analysis operations on geographic objects, state-of-the-art computational geomeny concepts have to be used in implementing these operations. In this paper, we present GIS operations based on the compuational geomeny technique plane sweep. Specifically, we show how the two ingredients spatial access methods and computational geomeny concepts can be combined fĂĽr improving the performance of GIS operations. The fruitfulness of this combination is based on the fact that spatial access methods efficiently provide the data at the time when computational geomeny algorithms need it fĂĽr processing. Additionally, this combination avoids page faults and facilitates the parallelization of the algorithms.

    Multidimensional modeling and analysis of large and complex watercourse data: an OLAP-based solution

    Get PDF
    International audienceThis paper presents the application of Data Warehouse (DW) and On-Line Analytical Processing (OLAP) technologies to the field of water quality assessment. The European Water Framework Directive (DCE, 2000) underlined the necessity of having operational tools to help in the interpretation of the complex and abundant information regarding running waters and their functioning. Several studies have exemplified the interest in DWs for integrating large volumes of data and in OLAP tools for data exploration and analysis. Based on free software tools, we propose an extensible relational OLAP system for the analysis of physicochemical and hydrobiological watercourse data. This system includes: (i) two data cubes; (ii) an Extract, Transform and Load (ETL) tool for data integration; and (iii) tools for OLAP exploration. Many examples of OLAP analysis (thematic, temporal, spatiotemporal, and multiscale) are provided. We have extended an existing framework with complex aggregate functions that are used to define complex analysis indicators. Additional analysis dimensions are also introduced to allow their calculation and also for purposes of rendering information. Finally, we propose two strategies to address the problem of summarizing heterogeneous measurement units by: (i) transforming source data at the ETL tier, and (ii) introducing an additional analysis dimension at the OLAP server tier

    Graph BI & analytics: current state and future challenges

    Get PDF
    In an increasingly competitive market, making well-informed decisions requires the analysis of a wide range of heterogeneous, large and complex data. This paper focuses on the emerging field of graph warehousing. Graphs are widespread structures that yield a great expressive power. They are used for modeling highly complex and interconnected domains, and efficiently solving emerging big data application. This paper presents the current status and open challenges of graph BI and analytics, and motivates the need for new warehousing frameworks aware of the topological nature of graphs. We survey the topics of graph modeling, management, processing and analysis in graph warehouses. Then we conclude by discussing future research directions and positioning them within a unified architecture of a graph BI and analytics framework.Peer ReviewedPostprint (author's final draft
    • …
    corecore