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Abstract. In an increasingly competitive market, making well-informed
decisions requires the analysis of a wide range of heterogeneous, large and
complex data. This paper focuses on the emerging field of graph ware-
housing. Graphs are widespread structures that yield a great expressive
power. They are used for modeling highly complex and interconnected
domains, and efficiently solving emerging big data application. This pa-
per presents the current status and open challenges of graph BI and ana-
lytics, and motivates the need for new warehousing frameworks aware of
the topological nature of graphs. We survey the topics of graph model-
ing, management, processing and analysis in graph warehouses. Then we
conclude by discussing future research directions and positioning them
within a unified architecture of a graph BI and analytics framework.

1 Introduction

Graphs are fundamental and widespread structures that provide an intuitive
abstraction for the modeling and analysis of complex, heterogeneous and highly
interconnected data. They have the benefit of revealing valuable insights from
content-based and topological properties of data. The great expressive power of
graphs, along with their solid mathematical background, encourages their use
for modeling domains having complex structural relationships. In the context
of Big Data, the focus of organizations is often on handling the rising volume
of their data. However the variety and complexity of data through the different
phases of data capturing, modeling and analysis is at least equally important.
The variety challenge is the most critical challenge in big data nowadays, and
efficiently handling the variety of data sources is considered to be the main driver
of success for data-driven organizations [1]. Graphs meet the requirements to be
the perfect canonical data model for data integration systems [2] given (1) their
capability to deal with semantic relativism and semantic heterogeneities, (2) they
are semantically richer at least as any other model (so they can represent any
semantics), (3) they allow to create multiple views from the same source, (4) and
most importantly, graphs are extremely flexible to compose new graphs. That
is given two graphs, with one single edge a new graph could be directly created
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without affecting the existing ones. Therefore, graphs are suitable to deal with
big data variety better than any other data model.

Furthermore, in industry, graph analysis is considered as ”possibly the single
most effective competitive differentiator for organizations pursuing data-driven
operations and decisions after the design of data capture” according to Gartner,
Inc., a research and advisory firm [3]. Indeed, large complex graphs have emerged
in various fields and graph analytics are being increasingly used to solve complex
real-world problems. In the financial sector for example, several types of fraud
could be detected and prevented in auction and transaction networks [4]. In [5],
the authors used bank transaction to build a financial transactions network,
where each node represents a client, and each edge represents a transaction. As
fraudsters tend to collaborate to orchestrate complex fraud at large scale, the
probability that a customer is involved in a fraud depends on his neighborhood
in the transaction graph. Graph analytics could be used to define and retrieve
complex fraud patterns, or to score customers by fraud exposure. In [6], the
authors built a Call Detail Record graph to understand the call routines and
interactions between customers. This information can later be used to prepare
marketing campaigns or to prevent customer churn.

It is clear that the topological properties of graphs are of big potential to
decision-making systems. They supply these systems with a new class of com-
plex structural business facts and measures that could be explored for making
more accurate decision in data-driven organizations. In current information sys-
tems, Business Intelligence (BI) systems are critical for strategic decision mak-
ing. Graph BI in particular, is emerging as the BI field that extends current BI
systems with graph analytics capabilities. It enables graph-based insights such
as detection of popular users or communities in social networks, or revealing
hidden interaction patterns in financial networks. Graph BI can help address
the above-mentioned big data applications since (1) data is interconnected in
complex ways, but graphs can help reduce this complexity with intuitive data
models and queries, (2) the data size is large, but data warehouses and Online
Analytical Processing (OLAP) analysis are suitable for storage, organization,
synthesis and analysis of large volumes of data, and (3) graph mining extends
traditional techniques by including discovery of the topological properties, thus
characterizing more precisely business applications. Traditional BI systems, and
particularly data warehouses, were designed to support relational data man-
agement and analysis. Due to the fundamental difference between graph and
relational data, the existing systems are not suitable for efficient graph analysis.
The structure-driven management and analytics of graph data call for the de-
velopment of novel data models, query processing paradigms and storage tech-
niques. Therefore, as motivated by multiple research lines [7, 8], current BI and
analytics systems need to be extended to efficiently support warehousing [9],
processing [10], mining [11] and OLAP analysis [12, 13] of the graph structural
and content-based information.

Figure 1 provides an overview of the different components of the envisioned
graph BI system. While adopting a similar template as the traditional BI systems



(i.e., it preserves the familiar data analytics workflow), graph BI extends current
systems with graph-aware components that deliver graph-derived insights.
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Note that through this paper the terms ”graph and network”, ”node and ver-
tex”, and ”edge and relationship” are often used interchangeably. The remainder
of this paper presents the current state and the open challenges of graph BI & an-
alytics, with a focus on graph warehousing. Section 2 discusses the topic of graph
data modeling and management. Section 3 surveys the existing frameworks for
graph analytics. Section 4 identifies future research directions and position them
within a unified architecture of a graph BI & analytics framework.

2 Graph Data Modeling

The variety of data structures urges the need for equipping analysts with model-
ing and querying tools that are aware of the specific nature of each data model.
The relational model and its implementations have been developed and matured
for decades. However, they were pushed to their limits as the one-size-fits-all
data management solutions. The wide adoption of the emerging NoSQL solu-
tions by industry, while not yet as mature as relational model, proved the need
to push databases into fields beyond the traditional business applications. More
specifically, organizations experience an urgent need for models and techniques
for efficient management of graph data. Indeed, graph models have the ability to
deal with semantic relativism and heterogeneities, offer the flexibility to combine
graphs, and support the capability to associate data and metadata.

2.1 Graph Models

According to the literature, the two main families of graphs are property graphs
and knowledge graphs:



Property Graphs : Property graphs describe a directed, labeled and attributed
multi-graph. Each real-world entity is represented by a node that contains its
label and properties. The label denotes the ”type” of the node (i.e., the class
to which it belongs). Relationships between entities are represented using edges.
The flexibility of property graph models allows the representation of rich struc-
tural properties, such as hierarchies and assertions. Property graphs were intro-
duced in the database community to store schemaless data (due to their flexibil-
ity to absorb any semantics and attach data with metadata). In the literature,
multiple query languages were designed to enable graph-oriented querying of
property graphs [14]. However, there is no standard query language for property
graphs. Therefore, graph database vendors defined their own graph traversal and
query languages, such as Cypher and Gremlin. Cypher is an SQL-like declara-
tive language, that uses isomorphism-based no-repeated-edges bag semantics. It
was introduced by Neo4j, and is centered around pattern matching enriched by
built-in algorithmic operators. Gremlin is a graph traversal language, built using
Groovy, introduced by Apache TinkerPop3, that uses the homomorphism-based
bag semantics.

Knowledge Graphs: The basic formalism behind knowledge graphs, used to
describe and link resources, is the Resource Description Framework language
(RDF), a W3C recommendation. The basic RDF block is the triple, a binary re-
lationship between a subject and an object; i.e., < subject, predicate, object >.
The subject and the predicate must be resources (i.e., identified by a URI),
whereas the object can be either a resource or a literal (i.e., a constant value such
a string or an integer). A set of RDF triples form an RDF graph. RDF Schema
(RDFS), a W3C recommendation, was introduced to express basic constraints
on RDF triples. In the same line, the Ontology Web Language (OWL) allows to
express richer constraints and semantics. As OWL is serialized on top of RDFS,
it results in a graph too. Importantly, it is also usual to refer to knowledge graphs
(i.e., RDF(S) or OWL) as ontologies. This is because they can be translated to
a fragment of First Order Logic (FOL), typically, within the family of Descrip-
tion Logics (e.g., in the case of OWL and OWL fragments), and benefit from
generic reasoning algorithms in that field. Finally, the W3C recommendation to
query knowledge graphs is the SPARQL Protocol and RDF Query Language
(SPARQL). Relevantly, SPARQL enables to activate generic reasoning capabili-
ties when querying knowledge graphs to infer non-explicit knowledge. Knowledge
graphs were born within the semantic web stack and therefore initially thought
for enabling interoperability and reasoning on semantic data. They are tightly
related to the knowledge representation community and therefore thought to
represent generic knowledge rather than data as for databases. For this rea-
son, knowledge graph databases are referred to as triplestores rather than graph
databases. One key aspect with regard to property graphs is that they provide
means (i.e., URI) to universally identify graph vertices and edges from external
sources. This facilitates linking and sharing of data and metadata. However, un-
like property graphs and traditional graph databases, which are optimized for
graph traversal, they are primarily optimized for handling RDF triples. Another



difference is that in property graphs properties could be directly added to edges
as well as vertices. In essence, however, knowledge graphs are also graphs and
can benefit from the traditional graph algebras presented in the database field.

2.2 Graph Management

Orthogonal to the previous classification there are two main approaches widely
used for graph data management (regardless of property or knowledge graphs) at
the logical/physical level. The first consists on the use of native graph data mod-
els and database engines. The second leverages alternative models, mainly the
relational model. For the latter, the graph data is represented by a set of tables,
i.e., node tables and edge tables. Traditionally, relational-based graph database
engines have been related to triplestores and knowledge graphs, whereas na-
tive graph database engines were related to property graphs. Nevertheless, this
is nowadays changing and it is currently possible to find native databases for
knowledge graphs. These approaches are discussed next:

Native Graph Data Models : In recent years, the trend in developing graph data
management systems has shifted to the development of native, relationship-
oriented graph databases. Most native graph databases implement a the prop-
erty graph model or a variation of it. The problem of impedance mismatch is
resolved since relationships are first-class citizen, and the data is represented as
it is perceived without the need to project it on an intermediate representation.
The data model is more straightforward to design, and the queries are more
intuitive to formulate [15]. From a performance perspective, graph databases
are optimized for graph traversals. The cost of traversing an edge is constant,
and the overall cost of arbitrary navigation through the graph is much lower
than the equivalent joins in relational tables. Subsequent implementation as-
pects such as graph query processing, indexing, storage, matching and retrieval
which are specifically developed and tuned for graph workloads lead to better
performances, especially for queries requiring multiple joins, or containing cycles
or other complex patterns. However, they perform worse than the relational-
based engines for analytical queries that perform scans over the whole graph. In
the software market, established BI vendors are aware of the potential of native
graph solutions and have already developed many graph databases such as Neo4j,
DataStax Enterprise Graph, Oracle Spatial and Graph, Microsoft GraphEngine,
IBM Graph, and Amazon Neptune.

Relational-based Database Models : This approach benefits from the well-established
relational model features, and enables a smooth integration with a wide range of
relational platforms. However, the relational model and its implementations fall
short of meeting the requirements for (1) intuitive data modeling, (2) topology-
aware graph querying (such as path retrieval and comparison, and graph pat-
tern matching), and (3) traversal-optimized performances. Mapping graph data
to relational representation raises the problem of impedance mismatch at the
modeling and querying levels. For example, due to the fundamental difference



between the two models, transformation of graph data to the relational model
is a manual, complicated process, with a high risk of information loss during
the transformation process. The relational model was designed to handle data
such as sets of records and transactions instead of entities and connections. The
relational query languages and query processing engines are optimized to per-
form table scans instead of traversals. Graph traversal is often simulated using
expensive join operations, which incurs a heavy workload especially for highly
interconnected tables. Moreover, the SQL is not suited to target the topology of
the graph with queries such as pattern matching, neighborhood or path retrieval.

3 Graph Analytics

A plethora of graph analysis techniques were proposed in the literature to reveal
interesting properties about the graph topology and the connectivity between
graph elements. The core analysis operations of graphs are (1) graph traversal
to assess reachability, find shortest paths, and retrieve the neighborhood, (2)
metrics computation of local (e.g., centrality), and global properties (e.g., di-
ameter), and (3) graph matching, such as subgraph isomorphism and pattern
matching [14]. Most of these operations are supported by graph database en-
gines. This section describes more advanced graph analytics and focuses on three
pillars of graph analytics: graph OLAP, graph mining, and graph processing.

3.1 OLAP on Graphs

The multidimensional model is widely used to represent data in the warehouse.
The business facts are stored following the multidimensional model in cubes that
embed aggregated data denoted as measures, which are the metrics for the anal-
ysis. The measures are placed into the so-called multidimensional space, where
dimensions are the factors influencing the values of the measures. OLAP tech-
niques are widely used by BI analysts to conduct interactive and complex query-
ing over large volume of data, from different perspectives and through different
hierarchical levels, highlighting the items of interest, and then drilling down to
the underlying data from which facts were inferred. The main approaches for
the multidimensional design and OLAP analysis of cubes on graphs are:

Graph OLAP was among the first attempts to design a conceptual framework
for OLAP analysis over a collection of homogeneous graphs [12]. Each graph of
the collection is considered as a snapshot. Attributes are considered as the di-
mensions, and could be either attached to the whole graph snapshot, or to single
nodes. In the first case, the attributes of the snapshots are called informational
dimensions. The aggregations of the graph are performed by overlaying a col-
lection of graph snapshots and merging those with shared informational values.
The analysis is referred to as informational OLAP aggregations, and consists
in edge-centric snapshot overlaying. Thus only edges are merged and changed,
with no changes made to the nodes. In the second case, the attributes of the



nodes are called topological dimensions. Topological OLAP aggregations con-
sist on merging nodes and edges by navigating through the nodes hierarchy. Qu
et al. introduced a more detailed framework for topological OLAP analysis of
graphs [16]. The authors discussed the structural aggregation of the graph fol-
lowing the OLAP paradigm. They presented techniques based on the properties
of the graph measures for optimizing measure computations through the differ-
ent aggregation levels. Berlingerio et al. [17] defined a multidimensional model
similar to Graph OLAP, but where the dimensions are the labels of the edges,
and presented a set of analytical graph-based measures.

Graph Cube is a framework for multidimensional analysis and cube computation
over the different levels of aggregations of a graph [18]. It targets single, homo-
geneous, node-attributed graphs. A subset of the attributes of the nodes is con-
sidered as the dimensions. Following these so-called dimensions, the graph cube
is obtained by restructuring the initial graph in all possible aggregation. Given n
dimensional attributes, the framework introduces the cuboid query, which gen-
erates 2n aggregate graphs (called graph cuboids). Crossboid is a second query
introduced by Graph Cube to analyze the interrelationships between different
graph cuboids. Pagrol is a Map-Reduce framework for distributed OLAP analy-
sis of homogeneous attributed graphs [19]. Pagrol introduced the notion of Hyper
Graph Cubes that extends the model of Graph Cube by in addition considering
the attributes of the edges as dimensions, and introduced various optimization
techniques for cubes computation and materialization. Ghrab et al. [20] extended
those models with a framework for building OLAP cubes on heterogeneous at-
tributed graphs. They presented an extension of property graphs tailored for
multidimensional analysis and supporting dimension hierarchies.

Graph OLAP on RDF There is an active research line to generate OLAP cubes
on top of RDF and RDF(S) graphs. Nebot [21] and Kämpgen [22] were two of
the main attempts to bridge both areas. The former proposes a semi-automatic
method for on-demand extraction of semantic data into an MD database. In
this way, data could be analyzed using traditional OLAP techniques. The latter
study the extraction of statistical data published using the QB vocabulary, a
W3C standard, into an MD database. Both approaches moved the semantic data
to a traditional data warehouse. Subsequent attempts avoided such approach
and query graph data in an OLAP manner without moving it. For example,
Beheshti et al., introduced a distributed framework for OLAP on RDF data [23].
They proposed GOLAP, a graph model for OLAP on graphs, and FSPARQL an
extension to SPARQL for OLAP querying of RDF data. GOLAP introduced a
rule-based approach for defining new dimensions on the graph. However, it was
not until the definition of the QB4OLAP vocabulary that cubes on RDF graphs
could not be guaranteed to be MD-compliant. In [24], Varga et al. discusses the
drawbacks of previous vocabularies, such as QB, to properly represent MD data
and how QB4OLAP overcomes them. This way, resulting cubes can be properly
analyzed with traditional OLAP algebras. Relevantly, Pratap Deb Nath et al.



present a framework to conduct ETL transformations on top of graph data to
produce QB4OLAP-based cubes [25].

3.2 Graph Mining

Data mining refers to the process of discovering patterns or models for data. In
contrast to querying that retrieves known patterns, mining enable the discovery
of previously unknown, implicit information and knowledge embedded within a
dataset. Traditionally, data mining techniques process data as collection of in-
dependent instances (i.e. observations). However, the recent emergence of graph
structure as a rich data model involves a paradigm shift on how data mining
algorithms can be applied. In fact, graph mining algorithms provide a new way
of extracting and discovering latent insight from graphs by leveraging the rela-
tionships between entities. However, graph mining algorithms face three main
challenges: (1) adapting the mining algorithms to make them graph-aware, (2)
redesigning the algorithms to be implemented by those new high-performance
techniques, and (3) storing and exploiting multiple but related graphs that serve
for the same business purpose as in the graph warehouse.
A plethora of graph mining techniques were proposed in the literature such as
graph clustering, frequent subgraph mining, proximity pattern mining and link
prediction. These techniques are relevant in the BI context as they reveal inter-
esting properties about the topology and the connectivity between business enti-
ties. For example, consider the case of recommender systems in e-commerce [26].
The domain could be a represented as a bipartite purchase graph, with two
types of nodes representing products and customers. An edge is added between
a product and a customer if the latter has bought the product. Using graph
mining such as graph clustering, two other graphs could be derived: (1) client
similarity graph, and (2) product similarity graph. Mining these three graphs
enables advanced analysis scenarios such as (1) customer profiling by detecting
customer groups using community detection, and the leaders within each group
using centrality, (2) product segmentation by detecting products representative
of each segment, and (3) using link prediction, targeted marketing personalized
to the customer’s profile and tailored by current product trends.

The historical and integrated view provided by the data warehouse makes
it a suitable backbone for offering a variety of analysis scenarios. In the graph
warehouse context, graph mining could be combined with OLAP to offer more
capabilities both during the phase of the design and also the analysis of the
graph warehouse data. During the design phase, graph mining algorithms could
be used to enrich the OLAP cubes with new types of topological dimensions
and measures (e.g., PageRank, community). During the analysis, graph mining
could assist the analyst in complex tasks such as building summarized business-
oriented views of the graph, providing new perspectives to analyze the graph,
or discovering interesting or anomalous patterns within the large graph cube
space. In the context of outlier detection, graphs provide an elegant framework
to predict and describe outliers. For example, in the context of graph cubes
mining, [27] developed a measure of interestingness of patterns in a graph cube,



while [28] proposed an entropy-based filter to detect interesting associations
between attributed nodes in a graph cube.

3.3 Graph Processing

To deal with large and evolving graphs, which is the case in data warehouses,
graph BI systems need to integrate large-scale graph processing frameworks.
Graph processing frameworks are designed to natively support the graph topol-
ogy, and they offer graph programming models and abstractions to easily imple-
ment a multitude of graph algorithms. These frameworks have the capabilities to
efficiently perform large scale, ad-hoc, and distributed computations over large
graph data that exceed a single machine capacity. They offer features such as
automatic graph partitioning, load balancing, network and disk transfer opti-
mization, and fail-over of the processing tasks.
However, distributed graph processing poses additional challenges to centralized
or traditional parallel data processing in that [29]: (1) graph structure is irregu-
lar which poses challenges to the graph data partitioning and limits parallelism,
(2) computation is driven by the structure, which causes a poor memory locality
and poses data transfer issues, and (3) algorithms traverse the partitioned graph
in an exploratory way, and are iterative by nature, which is I/O intensive. To
tackle these challenges and enable efficient large-scale graph analytics, different
processing paradigms were introduced [30]:

– Hadoop Family frameworks: MapReduce denotes a programming model for
large-scale data processing. Hadoop is an open-source framework that sup-
ports data-intensive distributed applications and clones the Google’s MapRe-
duce framework. It is designed to process large amount of unstructured and
complex data and runs on shared-nothing architectures. MapReduce frame-
works are useful for content-based aggregation of graphs (e.g., graph cube
aggregation), but they are not efficient for graph-specific computations [31].

– Synchronous frameworks: Pregel [32], and its open source implementation
Apache Giraph, are distributed fault-tolerant graph processing frameworks
designed to execute vertex-centric graph algorithms following the Bulk Syn-
chronous Parallel processing (BSP) paradigm. BSP is a shared-nothing pro-
cessing paradigm for parallel algorithms execution. The computation is done
as a series of super-steps over a set of processing units, each having its local
memory. Each super-step consists of three phases, first (1) each processing
unit performs concurrently and locally its computations, then (2) data is ex-
changed between the different processes, finally (3) when a process finishes
the computation and communication, it reaches the synchronization barrier
and it waits for the rest of processes to finish before proceeding to the next
super-step. The advantage of this paradigm is that it ensures a deadlock-free
computation. However, the downside is the execution time, where the system
has to wait for the slowest machines to finish before proceeding.

– Asynchronous frameworks: In contrast to the synchronous shared-nothing
processing frameworks, GraphLab [33] and PowerGraph [34] are asynchronous



and follows the the Gather-Apply-Scatter computational model, with shared
memory abstraction. These frameworks might provide better performances,
but incur more complexity and higher scheduling and consistency costs.

– Hybrid Systems: These frameworks enable a mixed workload of graph-parallel
and data-parallel processing. GraphX [35] is a component of Apache Spark
[36] developed for graph processing . It is a fault-tolerant, distributed, in-
memory graph processing framework built on top of the Resilient Distributed
Dataset abstraction. GraphX provides a set of primitive operators to load
and interactively query the graph data. GRADOOP is a distributed frame-
work for graph management and querying [37]. It introduces a new graph
model that extends property graphs, support Cypher queries, and the queries
are processed using of Apache Flink [38].

4 Future Research Directions

This paper calls for the development of novel intelligent, efficient and industry-
grade graph warehousing systems. The potential directions include (1) further
research on solving complex graph problems (e.g., subgraph isomorphism and
graph partitioning), (2) building native graph components (e.g., native graph
ETL operations, graph OLAP engines, and a multidimensional query language
for graphs), and (3) the integration of artificial intelligence techniques to enable
self-service BI for business users. To this end, machine learning should be in-
tegrated within the BI systems to automate the warehousing tasks from data
preparation, to complex modeling and augmented analytics of graphs (e.g., auto-
mated discovery of multidimensional concepts, detection of interesting patterns,
and forecasting of business KPIs evolution).

The modules missing for developing an industry-grade graph BI and analytics
system are unified in the envisioned architecture presented in Figure 2, and they
summarize the future research directions as follows:

– Graph Extraction (1): This module allows the extraction of graph data from
different data sources that could initially be in various formats and flowing
at various rates such as graph streams. The data is cleaned to only cap-
ture entities that satisfy the quality constraints (e.g., contains the required
attributes with valid values), which guarantees the reliability of data.

– Graph Construction & Enrichment (2): The captured graph data is inte-
grated and formatted according to a given graph model. A promising research
direction is the development of graph-aware ETL processes with native graph
manipulation operations augmented with machine learning capabilities. ML
techniques such as Information Retrieval and Automatic Natural Language
Processing could help in the automated extraction and construction of mul-
tidimensional graphs from unstructured data such as text. For example, geo-
location and sentiment analysis could be applied to enrich the attributes of
the data entities and therefore equip businesses with the capability to ana-
lyze data from new perspectives. New graph entities could be discovered as
well. For instance, using community detection, new labels could be added
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to the nodes, and using similarity, new edges could be added between the
similar node. Multiple variation of the traditional ETL approach exist in
the literature, and might be worth exploring for Graph ETL such as the
Extract-Load-Transform, or the Capture-Transform-Flow.

– Graph Data Warehouse (3): The graph data warehouse is the reference cen-
tral information repository for graph-based decision making. Data is ex-
tracted from different sources and integrated using a common graph model.
The cleansed and integrated data is natively stored and managed as a mul-
tidimensional graph in the graph warehouse. Whereas that data would be
transformed to tables in traditional data warehouses. Nevertheless, the con-
ceptual layer remains the same (i.e., represented as dimensions and facts).
The changes are related to the logical and physical levels. The graph ware-
house provides a suitable backbone for natively analyzing graphs with BI
tools such as graph OLAP and graph mining.

– Cube Design and Computation (4): The semantic relativism inherent in
graphs allows to create several views from the same data and make them
co-exist in a much simpler way than other data models. Afterwards, given a
graph lattice, the graph cubes enable the computation and the aggregation
of corresponding graph cuboids. Once the required graph cuboids are com-
puted, the result is persisted in the corresponding data marts. To leverage
graph properties, graph cubes embed graph-structured measures and dimen-
sions. There is a need for cube computation and aggregation libraries capable
of efficiently handling graphs. This line of research includes optimizations
such as graph cuboids materialization, indexing, and graph icebergs.

– Discovery of multidimensional concepts and definition of potential multidi-
mensional schemas (5): Multiple multidimensional schemas could be built
from the same graph warehouse to satisfy the various analysis needs. Real-
world graphs, such as social networks, are complex, dynamic and flexible.
Interesting graph entities might be hidden in the large data sources. There-
fore, there is need for novel graph-aware approaches that enables automatic
detection and extraction of multidimensional concepts from large complex
graphs. This could be done through the analysis of the topological aspects of
graphs, and the projection of the properties of the multidimensional models
on them. This will help end-users cope with the complexity and large volume
of graphs, and expose potential interesting discovery to decision makers.

– Assistance with the analysis and synthesis of graphs (6): Given the complex-
ity and large size of the initial graph, there is need for intelligent modules
capable of performing automated preliminary analysis of the graph to guide
the analyst during the exploration of the graph cubes. The goal is to enable
self-service BI and facilitate complex tasks such as the extraction of mean-
ingful graph summaries, the discovery of interesting phenomena in the graph
cuboids such as frequent graph patterns and outlier relationships.

– Mining and querying OLAP cubes (7-8): Complex and interactive OLAP
analysis and mining of graph cubes is performed at this phase. In contrast to
traditional OLAP, graph cubes enable the multidimensional analysis of graph
metrics stored in the graph cuboids. For example, analysts could examine the



centrality of leaders from multiple perspectives, or identify the communities
and their connections at different levels of aggregations. To this end, there is
a need to develop graph OLAP engines that support graph-structured cubes.
In addition, Online Analytical Mining of graph data is a promising research
direction to empower graph OLAP with mining capabilities. Graphs are dy-
namic and enabling OLAP on evolving networks by analyzing changing facts
and dimensions will help in understanding the structural and informational
evolution of networks. Many BI vendors have already integrated graphs into
their BI solutions. However, the support for graphs is still limited and there
is still a need to push further the integration of graph-derived insights into
the decision-making process.

5 Conclusion

Graphs are interesting structures that provide a solid foundation for intuitively
representing various domains and solving complex problems, while enabling bet-
ter performance. Graph analytics leverage structural and content-based infor-
mation to create added-value services, and extend current solutions with new
topology-enabled capabilities. In this paper, we surveyed the state of the art
on graph BI and analytics, and proposed an architecture of Graph BI and An-
alytics platform augmented with machine learning capabilities, which lays the
foundations for promising future research directions. In all, graph analytics have
a bright future, and this paper calls for more attention from academia and in-
dustry to build next-generation graph-powered BI and analytics frameworks.
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