352 research outputs found

    Towards Scalable Multi-View Reconstruction of Geometry and Materials

    Full text link
    In this paper, we propose a novel method for joint recovery of camera pose, object geometry and spatially-varying Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes that exceed object-scale and hence cannot be captured with stationary light stages. The input are high-resolution RGB-D images captured by a mobile, hand-held capture system with point lights for active illumination. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. To facilitate scalability to large numbers of observation views and optimization variables, we introduce a distributed optimization algorithm that reconstructs 2.5D keyframe-based representations of the scene. A novel multi-view consistency regularizer effectively synchronizes neighboring keyframes such that the local optimization results allow for seamless integration into a globally consistent 3D model. We provide a study on the importance of each component in our formulation and show that our method compares favorably to baselines. We further demonstrate that our method accurately reconstructs various objects and materials and allows for expansion to spatially larger scenes. We believe that this work represents a significant step towards making geometry and material estimation from hand-held scanners scalable

    Color image-based shape reconstruction of multi-color objects under general illumination conditions

    Get PDF
    Humans have the ability to infer the surface reflectance properties and three-dimensional shape of objects from two-dimensional photographs under simple and complex illumination fields. Unfortunately, the reported algorithms in the area of shape reconstruction require a number of simplifying assumptions that result in poor performance in uncontrolled imaging environments. Of all these simplifications, the assumptions of non-constant surface reflectance, globally consistent illumination, and multiple surface views are the most likely to be contradicted in typical environments. In this dissertation, three automatic algorithms for the recovery of surface shape given non-constant reflectance using a single-color image acquired are presented. In addition, a novel method for the identification and removal of shadows from simple scenes is discussed.In existing shape reconstruction algorithms for surfaces of constant reflectance, constraints based on the assumed smoothness of the objects are not explicitly used. Through Explicit incorporation of surface smoothness properties, the algorithms presented in this work are able to overcome the limitations of the previously reported algorithms and accurately estimate shape in the presence of varying reflectance. The three techniques developed for recovering the shape of multi-color surfaces differ in the method through which they exploit the surface smoothness property. They are summarized below:• Surface Recovery using Pre-Segmentation - this algorithm pre-segments the image into distinct color regions and employs smoothness constraints at the color-change boundaries to constrain and recover surface shape. This technique is computationally efficient and works well for images with distinct color regions, but does not perform well in the presence of high-frequency color textures that are difficult to segment.iv• Surface Recovery via Normal Propagation - this approach utilizes local gradient information to propagate a smooth surface solution from points of known orientation. While solution propagation eliminates the need for color-based image segmentation, the quality of the recovered surface can be degraded by high degrees of image noise due to reliance on local information.• Surface Recovery by Global Variational Optimization - this algorithm utilizes a normal gradient smoothness constraint in a non-linear optimization strategy, to iteratively solve for the globally optimal object surface. Because of its global nature, this approach is much less sensitive to noise than the normal propagation is, but requires significantly more computational resources.Results acquired through application of the above algorithms to various synthetic and real image data sets are presented for qualitative evaluation. A quantitative analysis of the algorithms is also discussed for quadratic shapes. The robustness of the three approaches to factors such as segmentation error and random image noise is also explored

    Photometric stereo with applications in material classification

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The Impact of Surface Normals on Appearance

    Get PDF
    The appearance of an object is the result of complex light interaction with the object. Beyond the basic interplay between incident light and the object\u27s material, a multitude of physical events occur between this illumination and the microgeometry at the point of incidence, and also beneath the surface. A given object, made as smooth and opaque as possible, will have a completely different appearance if either one of these attributes - amount of surface mesostructure (small-scale surface orientation) or translucency - is altered. Indeed, while they are not always readily perceptible, the small-scale features of an object are as important to its appearance as its material properties. Moreover, surface mesostructure and translucency are inextricably linked in an overall effect on appearance. In this dissertation, we present several studies examining the importance of surface mesostructure (small-scale surface orientation) and translucency on an object\u27s appearance. First, we present an empirical study that establishes how poorly a mesostructure estimation technique can perform when translucent objects are used as input. We investigate the two major factors in determining an object\u27s translucency: mean free path and scattering albedo. We exhaustively vary the settings of these parameters within realistic bounds, examining the subsequent blurring effect on the output of a common shape estimation technique, photometric stereo. Based on our findings, we identify a dramatic effect that the input of a translucent material has on the quality of the resultant estimated mesostructure. In the next project, we discuss an optimization technique for both refining estimated surface orientation of translucent objects and determining the reflectance characteristics of the underlying material. For a globally planar object, we use simulation and real measurements to show that the blurring effect on normals that was observed in the previous study can be recovered. The key to this is the observation that the normalization factor for recovered normals is proportional to the error on the accuracy of the blur kernel created from estimated translucency parameters. Finally, we frame the study of the impact of surface normals in a practical, image-based context. We discuss our low-overhead, editing tool for natural images that enables the user to edit surface mesostructure while the system automatically updates the appearance in the natural image. Because a single photograph captures an instant of the incredibly complex interaction of light and an object, there is a wealth of information to extract from a photograph. Given a photograph of an object in natural lighting, we allow mesostructure edits and infer any missing reflectance information in a realistically plausible way

    Shape recovery from reflection.

    Get PDF
    by Yingli Tian.Thesis (Ph.D.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 202-222).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Physics-Based Shape Recovery Techniques --- p.3Chapter 1.2 --- Proposed Approaches to Shape Recovery in this Thesis --- p.9Chapter 1.3 --- Thesis Outline --- p.13Chapter 2 --- Camera Model in Color Vision --- p.15Chapter 2.1 --- Introduction --- p.15Chapter 2.2 --- Spectral Linearization --- p.17Chapter 2.3 --- Image Balancing --- p.21Chapter 2.4 --- Spectral Sensitivity --- p.24Chapter 2.5 --- Color Clipping and Blooming --- p.24Chapter 3 --- Extended Light Source Models --- p.27Chapter 3.1 --- Introduction --- p.27Chapter 3.2 --- A Spherical Light Model in 2D Coordinate System --- p.30Chapter 3.2.1 --- Basic Photometric Function for Hybrid Surfaces under a Point Light Source --- p.32Chapter 3.2.2 --- Photometric Function for Hybrid Surfaces under the Spher- ical Light Source --- p.34Chapter 3.3 --- A Spherical Light Model in 3D Coordinate System --- p.36Chapter 3.3.1 --- Radiance of the Spherical Light Source --- p.36Chapter 3.3.2 --- Surface Brightness Illuminated by One Point of the Spher- ical Light Source --- p.38Chapter 3.3.3 --- Surface Brightness Illuminated by the Spherical Light Source --- p.39Chapter 3.3.4 --- Rotating the Source-Object Coordinate to the Camera- Object Coordinate --- p.41Chapter 3.3.5 --- Surface Reflection Model --- p.44Chapter 3.4 --- Rectangular Light Model in 3D Coordinate System --- p.45Chapter 3.4.1 --- Radiance of a Rectangular Light Source --- p.45Chapter 3.4.2 --- Surface Brightness Illuminated by One Point of the Rect- angular Light Source --- p.47Chapter 3.4.3 --- Surface Brightness Illuminated by a Rectangular Light Source --- p.47Chapter 4 --- Shape Recovery from Specular Reflection --- p.54Chapter 4.1 --- Introduction --- p.54Chapter 4.2 --- Theory of the First Method --- p.57Chapter 4.2.1 --- Torrance-Sparrow Reflectance Model --- p.57Chapter 4.2.2 --- Relationship Between Surface Shapes from Different Images --- p.60Chapter 4.3 --- Theory of the Second Method --- p.65Chapter 4.3.1 --- Getting the Depth of a Reference Point --- p.65Chapter 4.3.2 --- Recovering the Depth and Normal of a Specular Point Near the Reference Point --- p.67Chapter 4.3.3 --- Recovering Local Shape of the Object by Specular Reflection --- p.69Chapter 4.4 --- Experimental Results and Discussions --- p.71Chapter 4.4.1 --- Experimental System and Results of the First Method --- p.71Chapter 4.4.2 --- Experimental System and Results of the Second Method --- p.76Chapter 5 --- Shape Recovery from One Sequence of Color Images --- p.81Chapter 5.1 --- Introduction --- p.81Chapter 5.2 --- Temporal-color Space Analysis of Reflection --- p.84Chapter 5.3 --- Estimation of Illuminant Color Ks --- p.88Chapter 5.4 --- Estimation of the Color Vector of the Body-reflection Component Kl --- p.89Chapter 5.5 --- Separating Specular and Body Reflection Components and Re- covering Surface Shape and Reflectance --- p.91Chapter 5.6 --- Experiment Results and Discussions --- p.92Chapter 5.6.1 --- Results with Interreflection --- p.93Chapter 5.6.2 --- Results Without Interreflection --- p.93Chapter 5.6.3 --- Simulation Results --- p.95Chapter 5.7 --- Analysis of Various Factors on the Accuracy --- p.96Chapter 5.7.1 --- Effects of Number of Samples --- p.96Chapter 5.7.2 --- Effects of Noise --- p.99Chapter 5.7.3 --- Effects of Object Size --- p.99Chapter 5.7.4 --- Camera Optical Axis Not in Light Source Plane --- p.102Chapter 5.7.5 --- Camera Optical Axis Not Passing Through Object Center --- p.105Chapter 6 --- Shape Recovery from Two Sequences of Images --- p.107Chapter 6.1 --- Introduction --- p.107Chapter 6.2 --- Method for 3D Shape Recovery from Two Sequences of Images --- p.109Chapter 6.3 --- Genetics-Based Method --- p.111Chapter 6.4 --- Experimental Results and Discussions --- p.115Chapter 6.4.1 --- Simulation Results --- p.115Chapter 6.4.2 --- Real Experimental Results --- p.118Chapter 7 --- Shape from Shading for Non-Lambertian Surfaces --- p.120Chapter 7.1 --- Introduction --- p.120Chapter 7.2 --- Reflectance Map for Non-Lambertian Color Surfaces --- p.123Chapter 7.3 --- Recovering Non-Lambertian Surface Shape from One Color Image --- p.127Chapter 7.3.1 --- Segmenting Hybrid Areas from Diffuse Areas Using Hue Information --- p.127Chapter 7.3.2 --- Calculating Intensities of Specular and Diffuse Compo- nents on Hybrid Areas --- p.128Chapter 7.3.3 --- Recovering Shape from Shading --- p.129Chapter 7.4 --- Experimental Results and Discussions --- p.131Chapter 7.4.1 --- Simulation Results --- p.131Chapter 7.4.2 --- Real Experimental Results --- p.136Chapter 8 --- Shape from Shading under Multiple Extended Light Sources --- p.142Chapter 8.1 --- Introduction --- p.142Chapter 8.2 --- Reflectance Map for Lambertian Surface Under Multiple Rectan- gular Light Sources --- p.144Chapter 8.3 --- Recovering Surface Shape Under Multiple Rectangular Light Sources --- p.148Chapter 8.4 --- Experimental Results and Discussions --- p.150Chapter 8.4.1 --- Synthetic Image Results --- p.150Chapter 8.4.2 --- Real Image Results --- p.152Chapter 9 --- Shape from Shading in Unknown Environments by Neural Net- works --- p.167Chapter 9.1 --- Introduction --- p.167Chapter 9.2 --- Shape Estimation --- p.169Chapter 9.2.1 --- Shape Recovery Problem under Multiple Rectangular Ex- tended Light Sources --- p.169Chapter 9.2.2 --- Forward Network Representation of Surface Normals --- p.170Chapter 9.2.3 --- Shape Estimation --- p.174Chapter 9.3 --- Application of the Neural Network in Shape Recovery --- p.174Chapter 9.3.1 --- Structure of the Neural Network --- p.174Chapter 9.3.2 --- Normalization of the Input and Output Patterns --- p.175Chapter 9.4 --- Experimental Results and Discussions --- p.178Chapter 9.4.1 --- Results for Lambertian Surface under One Rectangular Light --- p.178Chapter 9.4.2 --- Results for Lambertian Surface under Four Rectangular Light Sources --- p.180Chapter 9.4.3 --- Results for Hybrid Surface under One Rectangular Light Sources --- p.190Chapter 9.4.4 --- Discussions --- p.190Chapter 10 --- Summary and Conclusions --- p.191Chapter 10.1 --- Summary Results and Contributions --- p.192Chapter 10.2 --- Directions of Future Research --- p.199Bibliography --- p.20

    Image-Based Acquisition of Shape and Spatially Varying Reflectance

    Full text link
    corecore