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ABSTRACT

Humans have the ability to infer the surface reflectance properties and three-dimensional

shape of objects from two-dimensional photographs under simple and complex illumina

tion fields. Unfortunately, the reported algorithms in the area of shape reconstruction re

quire a number of simplifying assumptions that result in poor performance in uncontrolled

imaging environments. Of all these simplifications, the assumptions of non-constant sur

face reflectance, globally consistent illumination, and multiple surface views are the most

likely to be contradicted in typical environments. In this dissertation, three automatic

algorithms for the recovery of surface shape given non-constant reflectance using a single-

color image acquired are presented. In addition, a novel method for the identification and

removal of shadows from simple scenes is discussed.

In existing shape reconstruction algorithms for surfaces of constant reflectance, con

straints based on the assumed smoothness of the objects are not explicitly used. Through

explicit incorporation of surface smoothness properties, the algorithms presented in this

work are able to overcome the limitations of the previously reported algorithms and ac

curately estimate shape in the presence of varying reflectance. The three techniques

developed for recovering the shape of multi-color surfaces differ in the method through

which they exploit the surface smoothness property. They are summarized below:

• Surface Recovery using Pre-Segmentation - this algorithm pre-segments the

image into distinct color regions and employs smoothness constraints at the color-

change boundaries to constrain and recover surface shape. This technique is com

putationally efficient and works well for images with distinct color regions, but does

not perform well in the presence of high-frequency color textures that are difficult

to segment.
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• Surface Recovery via Normal Propagation - this approach utilizes local gra

dient information to propagate a smooth surface solution from points of known

orientation. While solution propagation eliminates the need for color-based image

segmentation, the quality of the recovered surface can be degraded by high degrees

of image noise due to reliance on local information.

• Surface Recovery by Global Variational Optimization - this algorithm uti

lizes a normal gradient smoothness constraint in a non-linear optimization strategy

, to iteratively solve for the globally optimal object surface. Because of its global

nature, this approach is much less sensitive to noise than the normal propagation

is, but requires significantly more computational resources.

Results acquired through application of the above algorithms to various synthetic and

real image data sets are presented for qualitative evaluation. A quantitative analysis of the

algorithms is also discussed for quadratic shapes. The robustness of the three approaches

to factors such as segmentation error and random image noise is also explored.
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CHAPTER 1

Introduction

Humans have the ability to infer the surface reflectance properties and three-dimensional

shape of objects from two-dimensional photographs under simple and complex illumina

tion fields which include visual effects such as specular highlights and shadows. A central

theme of research in computer vision has focused on understanding and mimicking this

ability of humans to reconstruct object shape from two-dimensional visual cues. The sig-

niflcant interest in this fleld stems not only from a desire to comprehend the human visual

system, but also from the vast number of practical applications in which shape recovery

technology can be employed. Reconstruction of object shape can improve the performance

of automated visual tasks ranging from military applications, in which object recognition

and pose estimation are often critical, to artistic systems, where re-illumination and view

re-rendering axe often desired. Unfortunately, most of the reported algorithms in the area

of shape reconstruction require a number of siniplifying assumptions that result in poor

performance in uncontrolled imaging environments. Thus, the focus of the research effort

discussed in this dissertation is to develop automatic algorithms which are able to recover

surface shape under realistic illumination and surface reflectance conditions from single

photographs.

Shape estimation is formally deflned as the recovery of the surface normals of localized

patches along a continuous object surface cis shown in figure 1.1. Due to the physics

of light reflection at material smfaces, the apparent intensity of a surface patch in an

image is a function of the angle between the surface normal and the direction cosines

of the incident illuminants. Thus, gray-scale image intensity information can be used to

estimate object shape. Techniques which employ intensity data in this manner are known
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Figure 1.1: Surface Normals: (a) is the input image of a spherical styrofoam . (b)
illustrates the surface normals extending from various points.

as shape-from-shading methods. The primary difficulty with using intensity information

to estimate the angle between surface normal and illumination direction is that surface

orientation has three degrees of freedom while intensity information and normal conditions

can only provide two constraints. The under-constrained nature of this problem results in

an inherent ambiguity in the recovered surface shape due to the cone of orientations that

can map to the same intensity for a given imaged point [1]. Thus, the primary challenge

in the development of shape from shading algorithms lies in uncovering other sensory or

heuristic data which can be used to further constrain the shape estimation process as

was attempted by authors like [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Traditional shape-from-

shading algorithms also require objects to have a constant surface albedo, or apparent

color, severely restricting their application under realistic imaging conditions.

Horn, in his seminal work [12], employs a smoothness condition to provide the fi

nal constraint required to recover a unique shape from gray-scale image data. Surface

orientation is recovered by assuming a known orientation for one surface patch and prop

agating the solution from that point using the relationship between intensity derivatives

and surface normal components. Object shapes obtained using this technique are often

very irregular because shading gradients are approximated using discrete, noisy image

data. Ikeuchi et. at. [7] introduced a relaxation procedure for shape recovery to avoid



the problem introduced by point estimation of derivatives. Given known boundary condi

tions, this technique uses variational methods to iteratively solve equations arising from

global smoothness constraints and the surface normal/illuminant direction relation to es

timate shape. Global optimization via iteration is computationally expensive, however,

and requires knowledge of smface normals at the object boundary to ensure convergence.

Multiple images of the same object can also be used to resolve the ambiguity inherent

in smface orientation recovery from intensity variation. Termed photometric stereo [13],

at least three registered images of the same scene are obtained from a constant viewpoint

but with a light source which is moved between image acquisitions. Using these multiple

images results in a system of linear equations in terms of the surface normal elements

which has a unique solution-if the light source positions are known relative to the viewing

angle for each image. Although this technique results in a straightforward linear solution

to the shape from shading problem, the use of a controlled mobile light source and multiple

images make this technique impractical outside of the laboratory or other highly controlled

environments. This approach provides little insight into the human ability to reconstruct

such shape information from a single image as well.

As reported by Drew [3], the problem of acquiring multiple gray-scale images can be

avoided by employing color images because RGB color cameras provide three registered,

spectrally distinct images at the same instant. If an object is imaged using a color camera

under non-degenerate illumination conditions, the same equations used in traditional pho

tometric stereo algorithms can be used to estimate the surface normal of each observed

object point if each channel is treated as a separate input image. Algorithms which use

this approach are known as shape-from-color techniques. In addition. Drew [3] and oth

ers [13],[14] have also shown that it is possible to recover the both positions and color of

the illuminants in the scene; and the object surface normals up to an unknown rotation

simultaneously, eliminating the requirement that illumination conditions be known prior
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to shape reconstruction. While allowing for unknown lighting conditions makes such al

gorithms more adaptable to realistic lighting conditions, these methods still demand the

surface reflectance of the object be constant.

All of the above mentioned algorithms utilize the following assumptions to sirhplify

and constrain the shape estimation process:

1. Minimal Inter-reflection - the above, algorithms assume that the power of the

direct light source is significantly stronger than the light reflected off of the object

surface onto itself. .

2. Variant Light Source/Viewing Positions - the above techniques assume the

light source and viewing positions are significantly different..

3. Distant Light Sources - the methods discussed assume light sources are located

far enough from the object surface so that the incident illumination is parallel across

the surface.

4. Continuous Surface Shape - the above mentioned algorithms assume the object

surface can be modelled as a spatially continuous function.

5. Global Illumination Conditions - the techniques described above require each

surface point to be illuminated by all light sources present.

6. Constant Surface Reflectance the above algorithms assume objects do not

vary in color.

The first four assumptions are fairly weak and present little difficulty to the construc

tion of systems for use outside the laboratory. For most non-mirror like surfaces, the

power of inter-refiected light is negligible compared to the illuminating source. In most



typical indoor and outdoor scenes, multiple illumination sources are present that are or

ders of magnitude distant from the object when compared with the object size. A large

subset of objects of interest for shape recovery are also smooth and continuous from a

given view point. The penultimate and the last assumptions pose the primary difficulties

for the construction of shape-from-shading algorithms which can be used in uncontrolled

environments. Of primary concern is the assumption of constant, non-specular surface

reflectance, since most everyday objects exhibit surface color variations. Shadows caused

by both self-occlusion and other objects in the illumination field are also common in pho

tographs of everyday scenes. To effectively move shape-from-shading from the realm of

the laboratory into practice, tools must be constructed which either do not require or can

significantly relax these two requirements.

1.1 The Research Goal

The primary goal of this research effort is to delineate automatic algorithms for estima

tion of object surface shape with non-constant surface reflectance properties (multi-color

objects), under general, non-degenerate illumination conditions, from single-color images

as shown in figure 1.2. Specifically, three algorithms have been developed for this task

which explicitly employ the fundamental equations that relate surface normals to appar

ent image colors and smoothness conditions to recover the shape of spectrally varying

objects. The first, or pre-segmentation, approach segments the image into distinct color

regions and employs smoothness constraints at the color-change boundaries to constrain

and recover surface shape. This technique is fast and works well for images with large

color regions, but does not perform well in the presence of high-frequency color textures

that are difficult to segment. The second, or normal propagation, approach utilizes a

smoothness-constrained propagation method in the spirit of the previous work done by
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Horn [12] to recover surface shape without pre-segmentation. The accuracy of surfaces

recovered using the propagation technique is still affected by image noise, however. The

third, or variational, technique utilizes a global smoothness constraint to iteratively solve

for the optimal object surface. While requiring no pre-segmentation and offering resistance

to random image noise, this third approach is computationally expensive when compared

to the other two algorithms. Thus, a,potential user is given the opportunity to choose

between the three different algorithms for a given set of application conditions.

Along with the development of the three algorithms for surface shape estimation given

multi-color objects, various tools were also constructed.. These include software for color-

based image segmentation in the presence of significant shading variations, for shadow

identification and extraction, and for validating shape estimation results. Critical issues

regarding the design and production of these tools will also be discussed in this dissertation

as appropriate.

1.2 Summary of Unique Coritributions

In the course of reconstructing the shape of multi-colored objects under general il

lumination conditions, this dissertation makes two unique contributions to the field of

automated shape reconstruction. These are:

1. The development of three algorithms for recovering the shape of objects under gen

eral illumination conditions using single color images,

• with constant and non-constant surface reflectance, and

• with/without cast shadows.

2. The design of a process for identifying and eliminating shadows in color imagery

without using the darkest region assumption or requiring a linear camera.
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1.3 Organizational Overview .

Chapter 2 provides a detailed review of relevant previous research in the area of shape-

from-shading. An algorithm for shape reconstruction given single-color objects is discussed

in chapter 3. The detrimental effects of non-constant surface reflectance and shadowing on

this single-color algorithm are also presented arid examined. In chapter 4, three algorithms

for estimating the shape of spectrally varying surfaces are developed and empirically exam

ined. In chapter 5, a novel shadow detection and removal technique is discussed. Chapter

6 summarizes the work presented, distinctly lists the unique contributions of this research,

and suggests possible areeis for future,work.



CHAPTER 2

Review of Previous Work

2.1 Introduction

As described in the previous chapter, the primary goal of this dissertation is to con

struct a computer-based system which estimates object shape from a single-color image

under realistic illumination conditions. The construction of such a platform requires spe

cific knowledge from the fields of surface refiectance theory, shape estimation, and illumi

nation artifact detection. In this chapter, a detailed review of previous work in the field of

shape from shading will be presented. A discussion of previous work in shadow detection

and removal will be presented in chapter 5.

2.2 Surface Refiectance and Radiometric Models

Before discussing shape from shading techniques, a brief review of standard refiection

and radiometric measurement models is presented, because such algorithms rely heavily

on the underlying analytical structure of such models. When light from a source (or

sources) impinges on a material surface, it becomes partially reflected at the interface

and partially absorbed and scattered within the material. The spectral energy that is

scattered, interacts with the body colorant of the material and eventually emerges from

the material surface is called the body or diffuse refiectance component (see figure 2.1).

The energy that is reflected at the interface is referred to as the interface or specular

reflectance component. Assuming superposition is valid for light refiectance, the dual

nature of the surface refiectance phenomenon can be expressed analytically as

If (a;, y; A) = Iffx, y; A) -j- Is{x, y; A) (2.1)

,  9
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Figure 2.1: Phenomenon of light reflection, showing specular and body reflections

where:

Id is the diffuse component,

Is is the specular component, and

It is the total light reflected from a point on the object surface.

The diffuse component represents the spectral composition of the material and is as

sumed to radiate in all directions, while the specular component represents the mirror-like

properties of the object and tends to reflect the illumination colorant in a distinct direc

tion. While various parameterizations have been developed for modeling both diffuse and

specular reflections [6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], most algorithms

for estimating shape from intensity changes employ the Torrance-Sparrow model with

Is{x,y;X) = 0 (see Appendix A). Using this reflectance model and assuming m distinct



illuminants, equation 2.1 can be rewritten as

m

It{x,y,X) = '^gi{x,y)Li{X)Sd{x,y,\) (2.2)
i=l

where gi{x, y) = ns{x^ y)-ni = cos(0i) is the cosine of the angle between the surface normal

at surface point (x,y) and the direction cosine of the ith. illuminant, Li{X) is the intensity

of the ith illuminant at wavelength A, and Sd{x,y, X) is the diffuse reflectance at surface

point {x,y).

While equation 2.2 represents the strength of the light at a specific frequency impinging

on a viewer from a speciflc surface point, the radiometric effects of the camera must also

be considered if shape from shading techniques are to be applied to real images. The

apparent intensity of a pixel at a given wavelength is often modeled using the expression

Et{x,y,X) = C{x,y]X) ̂ ^^ns{x,y)-fiiLiiX)^ S{x,y\X)dX^
=  ij^ C{x,y,X)L^{X)N{x,y)Sb{x,y,X)dXj (2.3)

where C{x,y,X) and 7(A) represent the linear and non-linear gain of the detection

device, respectively. Assuming a typical color camera with red, green, and blue channels;

and narrow bandwidth detectors, equation 2.4 can be written in vector form as

Et{x,y,X) = {B{x,y;X)Nns{x,y)y^^^ (2.4)

where

B(a;,y;A) G7^3><"^,B(x,y;A) = C(a;, y; A)S(a;, y; A)L(A),

C{x,y,X) eTl^^^,C{x,y,X) = dia.g{C{x,y,Xi),C{x,y,X2),C{x,y,Xz))

S(a;,y; A) e 7^^^^S(a:,y; A) = diag(5(a;,y; Ai),5(a:,y; A2),5(a;,y; A3))

L(a) e7^3xm^L(A) = [a(Ai) L(A2) i(A3)]'^,

7(A) 7(A) = [7(^0,7(^2),7(^3)]

11



and the vector operation, is defined as = [vi^V2^v^^].

As demonstrated by equation 2.4, the apparent color of an imaged pixel can be rep

resented as a linear function of the camera gain, surface refiectance, illuminant colorants,

and illuminant directions followed by a non-linear gamma correction. In the algorithms

considered in the remainder of this dissertation, it is assumed that the linear camera gain

matrix and the non-linear gain vector are known and their effects are removed. In this

case of camera gain compensation, equation 2.4 can be rewritten as

.B(r,2/;A) = S(r,y;A)L(A)Nn,(r,y). (2.5)

2.3 Shape Estimation from Shading

Shape from shading techniques employ gray-scale images acquired using a single point

light source to recover object shape. The apparent intensity equation thus becomes

E{x,y) = affns{x,y)

where nj(r, y)ns {x, y) — 1, and a, known as the surface albedo, is assumed to be constant

across the entire surface. Because the above expression and normality condition only pro

vide two constraints on possible solutions to this three dimensional problem, variational

constraints based on the assmnption of smooth object surfaces are employed to obtain

unique shape estimates. In general, there are two approaches to using the smoothness

constraint to recover surface shape from intensity images. The first employs incremen

tal propagation from surface points of known height/orientation, while the second uses

relaxation techniques to recover optimal surface shape estimates using global information.

2.3.1 Incremental Propagation from Surface Points of Known Height

Originally developed by Horn [12], this method is sometimes referred to as the character

istic strip method because the algorithm essentially develops surface solutions along space

12



curves. This algorithm assumes that the reflectance function and the lighting parameters

be perfectly known [28].

Consider the coordinates of a surface point {x, y, z)"^ on a space curve that falls along

the object of interest, and let 6x, 5y be incremental steps along the surface in the x and

y directions. If 5z is the corresponding change in height, then the surface gradients p and

q are given by

dz

-

5z

^  (5y'

the change in height is given by

5z = p5x + qSy, , (2.6)

and changes in p and q are calculated using second derivatives of height,

Sp = rSx + s6y

6q = sSx + t5y (2.7)

where

6^z

~ 6x^

-

Sx6y

6y' -

In the characteristic strip method, the apparent intensity of an image pixel is rewritten

in terms of the surface gradients simply as

E{x,y) = R{p{x,y),q{x,y)) (2.8)

where R{p, q) is called the reflectance map. Differentiating equation 2.8 gives

5E{x,y) ̂

5E%,y)
Sy

13

= rRp + sRg (2.9)

= sRp + tRq ~ (2.10)



with fx = %■
Because the direction of Sx and Sy may be arbitrarily chosen, Sx and Sy can be

rewritten as

Sx = Rp^

Sy = Rg^

The change in the parameter ^ is along the solution cirrves whose surface orientation is

known, and the changes in Sp and Sq can be expressed as functions of image intensities.

Differentiating equations (2.7 and 2.10) w.r.t. ^ yields

X = Rp

y = Rq

z = pRp + qRg

p — Rx

q = Ey

where / signifies derivative w.r.t. By expressing the changes of gradients Sp and Sq as

functions of image intensity changes, a scaled depth map can be estimated.

While the above technique works quite well under ideal laboratory conditions, it suffers

from several difficulties which makes it inadequate for real imaging scenarios. First and

foremost, the algorithm requires that the surface reflectance of the object remain constant

or else the reflectance map will vary across the image. Second, this algorithm assumes a

single point light source and an image that demonstrates no surface self-occlusion. Third,

derivatives estimated using discrete noisy image data are explicitly used to recover incre

mental changes in surface depth Sz. This estimation often results in malformed shape

reconstructions due to numerical uncertainties.

14



2.3.2 Shape Estimation by Relaxation

To overcome the difficulties associated with the explicit use of estimated derivatives during

the shape reconstruction process, Ikeuchi [29] developed a variational method for recon

structing shape using gray-scale intensity variations.

Recall that the image irradiance E{x,y) is related to the surface reflectance map,

R{p{x,y),q{x,y)) by

E{x,y) = R{p{x,y),q{x,y))

To recover surface shape, the variational algorithm attempts to minimize the expression

y) = [E{x, y) - R(p{x, y),q{x, y))]^ -I- y (V^p)^ -f (V^y)^]

over p{x,y) and q{x,y) where.the smoothness constraint is incorporated by the Lagrange

multiplier p [30]. Minimizing A{x,y) with respect to p and q using numerical approxima

tion yields the following expressions for the surface gradients, .

dR
p{x,y) = pav + {l/lJ.)[E{x,y)+R(p,q)]— (2.11)

dRq{x,y) = qav + {l/p)[E{x,y) - R{p,q)]^, (2.12)

where

Pav{x,y) = ^\p{x + l,y)+p{x-l,y)+p{x,y + l)+p{x,y-l)]
qav{x,y) = ̂ [q{x + l,y)+q{x-l,y)+q{x,y + l) + q{x,y-l)].

Given known initial conditions for the surface orientation at the boundaries of the surface

patch of interest, equations 2.11 and 2.12 can be iteratively refined to estimate the best

smooth surface for the regions. For further details on the algorithm, the reader is referred

to either [1] or [31].

While the global minimization approach employed by this technique significantly re

duces the effect of image noise on the resultant shape, this algorithm still assumes that
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the object surface is a constant color, is illuminated by a single point light source, and

does not cast shadows upon itself. These assumptions severely restrict the variational

technique's application outside of laboratory or other highly controlled conditions.

2.3.3 Photometric Stereo

Photometric Stereo was pioneered by Woodham [13, 14]. This technique uniquely recov

ers surface orientation using at least three gray-scale images with different illumination

geometry. A typical photometric stereo experimental setup consists of a camera and A; > 3

point illumination sources with known intensities and directions ni, ...n^ as shown in fig

ure 2.2. The pixel intensities in each of the images acquired from a fixed direction under

Source
L2
\  / Norrr

\  / Source
lal —

/\ I
Source X

L1

Figure 2.2: A typical photometric stereo experimental setup with multiple light
sources LI, L2 and L3

varying illumination directions are given by

Ek{x,y) = anl{x,y)fis{x,y)
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where nk{x,y) is the direction cosine of the light source in image k. Combining these

equations in matrix form yields

E{x,y) = aN{x,y)ns{x,y)

where

E{x,y)^n^\ E{x,y) = [Eo{x,y) Ei{x,y) ... Ek-iix,y)]'^ and

N(a;,y) G N(a;,y) = [no(a;,y) ni{x,y) ... nfc_i(a:,y)]'^.

The surface orientation at each image point can be recovered by inverting N to obtain

The photorhetric stereo technique can provide a unique computational solution to the

surface estimation problem [14]. Unfortunately, this algorithm assumes that the relative

position of the camera and the object remain fixed while a point light source is moved

to distinct positions between the acquisition of multiple frames. This requirement makes

application of this technique problematic outside of the laboratory. In addition, this

technique provides little in the way of understanding the human ability to obtain the

same information from a single image and still assumes a single-color surface without

self-occlusion.

2.3.4 Shape from Color Photometric Stereo

Christensen and Shapiro [2] attempted to overcome some of the shortcomings of traditional

photometric stereo by employing two or more color images of a given object acquired using

flat white, point illumination. The camera position remains fixed while the illuminant

position is varied in the two images. The primary advantage of using two color images is

that shape can be recovered for regions which exhibit both specular and diflfuse reflection.
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The color photometric stereo algorithm assumes that a mapping, Mi exists which

maps surface orientations to apparent colors in a given image, Ei{x,y), such that

Ei{x,y) = Mi{ns{x,y)), i = l...k (2.14)

where k is the number of acquired images. Given this relation, the surface normal for

a given imaged point, ns{x,y) that satisfies the apparent colors, Ei{x,y) must lie in the

intersection of the set of all possible normals for that point which map to the given apparent

color. Hence, the surface normal for a given imaged surface point can be recovered using

the expression

ns{x,y) = f].Mi '^{Ei{x,y)), i^l...k (2.15)

where M^^ is a set-valued function that maps a color to the set of normals that correspond

to that color such that

Mi^{Ei{x,y)) = {nsix,y) \ Mi{ns{x,y)) = Ei{x,y)}

The color photometric stereo technique has several advantages over the previous tech

niques which employ gray-scale images. First, any illumination model can be employed

due to the general nature of the mapping, M. Second, the technique allows for shape

recovery in surface regions, which exhibit both specular and diffuse refiection again due

to the generic nature of the normal to apparent color mapping. Third, it can be used to

recover surface shape given multi-colored objects.

In spite of these significant advances, the color photometric stereo technique suffers

from several significant difficulties when applied outside of a controlled environment. The

most problematic of these drawbacks is the o priori construction of the set of all possible

image appearances for surfaces in the image. It is often not possible to construct such sets

for typical objects without the use of absolute colorimeters. In addition, the assumption

of a flat white light source limits the algorithm's applicability outside of tightly controlled
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conditions. It is also possible that under certain circumstances, more than two images are

required to recover surface shape, or that the set of all possible normals, could be

empty. Finally, the method requires more than a single image to recover object shape.

2.3.5 Shape from Color

Drew et. al. [3] and others [32, 33, 34, 35] demonstrate that surface orientation can be

recovered directly from a single image by exploiting the linear relationship between color

and surface normal given in equation 2.5. If all of the surface reflectance, illuminant color,

and illuminant positions are known for a given image and object, then the surface normal

of a speciflc imaged point is given by

ns{x,y) = {L{X)'N)~'^S~'^{x,y;X)E{x,y,X).

Drew [3] also demonstrated that it is possible to recover both the surface shape and

the linear mapping relating normals to apparent colors up to an unknown rotation from

a single image given constant surface reflectance. Drawing from this work, a number of

other algorithms for estimating this unknown rotation from a single image have also been

reported [33, 34].

Estimating shape using color imagery eliminates the need to acquire multiple images

in order to provide a closed form solution for the recovery of surface normals. If a constant

surface reflectance is assumed, it also allows for the recovery of both the surface-to-color

mapping and the smrface shape from a single image up to an unknown rotation. These

two properties make this algorithm applicable to a broad range of images which have

been acquired under unknown illumination conditions. It still requires constant surface

reflection and a lack of shadows to be effective, however.

This dissertation focuses on the development of algorithms for shape estimation given

single images of multi-color objects acquired under complex illuminations by building

upon and signiflcantly expanding the principles introduced by previous efforts to extract
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shape from color. In the next chapter, surface reconstruction via shape-from-color will be

discussed in more detail in order to demonstrate and verify the capabilities and illustrate

the limitations of existing techniques when applied to surfaces with constant color, varying

color and shadows.
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CHAPTER 3

Shape Reconstruction for Single-Color Objects

3.1 Introduction

As discussed in chapter 2, when a scene is globally illuminated by multiple sources,

the apparent color of the reflected light at an image pixel is given by

E{x,y;X) = S{x,y,X)L{X)'Nns{x,y) (3.1)

Letting

M(a;, y; A) = S(x, y; A)L(A)N(a;, y)

equation 3.1 can be rewritten in terms of apparent color as

Hsix, y) = y; A)~^E(a;, y; A) (3.2)

This equation represents the fundamental shape from color mapping — a linear trans

formation which relates the apparent color to surface orientation. Under controlled,

laboratory-like conditions when the light source positions and spectra, and the surface

reflectance of the object are known, surface orientation can be recovered from apparent

color via a simple matrix inversion.

3.2 Estimating the Shape-from-Color Transform

When the surface reflectance and illuminant properties are not- known, as is often the

case for unknown objects in outdoor scenes or uncontrolled imaging environment. Drew

et al [3] demonstrated that surface orientation could be recovered up to a global rotation

(as shown in figure 3.1) by exploiting the normality constraint of the surface.
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Figure 3.1: Recovery of Surface Orientation: (a) is real image of a single-color cone
illuminated by three lights of different spectral content, (b) is the corresponding 3D
shape reconstruction up to a rotation.

When the shape-from-color mapping, M, is not known, both M and can be recov

ered up to an orthogonal transformation, R. Let the matrix G be defined such that

G = M-i

Ha = GE

1 = Hj Ha = E'^G'^GE = E'^'DE

(3.3)

(3.4)

(3.5)

where D = G^G. For each pixel.

diiEi -1- d22E'2 "k dzzE^ -f- 2di2E\E2 + 2d\'iEiE2 + 2d2zE2E^ = 1

where

(3.6)

E — [El, E2, E^]^

Equation(3.6) is an equation for an ellipsoid centered on the color-spax^e origin. Given I

pixels, there are I such equations which can be used to form the linear system

Fz = 1 where

22
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f jp2 jp2 Tp2 oz?z? OZT' TT' oir z? i

•? = (c^ll, <^22) <^33) 6^12) C?13) C^23)^

(3.8)

Solving the above expression for z results in an estimate for D that is unique up to an

orthogonal transformation.

The entries of the matrix G can then be computed from D using the decomposition

algorithm [36] described below:

1. Set gn = 912 = ffis = 0

2. Set 521 = d2i/gu, 922 = ±•^^22 — 521) 523 = 0. The ± sign is chosen so as to make

the columns of G, {91,92,93) a right-handed system.

3. Set 531 = dsi/gii, 532 = (^32 - 52i53i)/522, 533 = ̂\Jd33 ' 531 " 532-

4. Compute M = G~^.

The recovery of G up to a rotation using the above algorithm implies that only an

estimate of G is known . It also implies that only the rotated version of the surface

normals are found. Let Gg be an estimate for G and Nrot be the rotated surface normal

estimates. Then

= G-^E = Gj^Fus = Rn, (3.9)

where R - G~^F

The estimate of the unrotated normal is

n.= R-Wrot = BT'Alrot (3.10)

This rotation matrix R can be recovered by integrability condition on the normals. Further

information on how this approach works, could be found from [3].
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3,3 Reconstructing Relative Depth Maps from Surface Normals

Given the surface normal at a point in the image, the relative depth of each point

can be determined. Let (u,v) be the image space coordinates of {x,y,z) on the image

projection plane. Assuming orthographic projection, the depth of each point is given by

z = Us

u

V

k
= -fuU - fvV + fzk (3.11)

up to a scale. The constant is a scale factor. If Ug = [—fu — fv fz]^ then

-z = -fuU - fvV + fzk

Where /„, fy and fz are the partial derivatives of / w.r.t. u,v and 2: respectively. If

the surface is explicitly given by z = then fz — 1- Substituting for Hs using

equation(3.2) gives:

z{x,y) = (M- ̂ {x,y;X)E{x,y;X))
u

V

k

(3.12)

3.4 Outlier Detection

If a given pixel does not see all the illuminants, it is considered an outlier to the process

and is removed from the surface estimation process. Often such pixels have lower average

intensity values than other pixels in the image. Hence, Least Median of Squares LMS

regression outlier detection as proposed by Rousseeuw and Leroy [37] is used for outlier

rejection during the surface reconstruction procedure. The LMS algorithm yields a robust

dispersion estimate given by

So = p ̂ 1 + ^median{\ri\)^ (3.13)
where Vi is the residue for the pixel, n = — 1 (see equation(3.5)) and p =

l/$~^(0.75) « 1.4826 and $ being the assumed probability function. The color pixel is
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considered valid if it satisfies the constraint

< C- (3.14)

where C has empirically been taken as 2.5.

3.5 Experimental Results

A flow chart describing the entire shape reconstruction for uniformly colored objects

process is shown in figure 3.2. Figure 3.3 through 3.7 demonstrate typical shape recon

structions obtained for single-color objects using both synthetic and real images. In all

cases, the illuminant mapping, M, was unknown and was estimated using the technique

described in section 3.2. Note that the algorithm is able to accurately recover the shape

of the imaged surface in a qualitative visual sense in all cases.

3.6 Effect of Non-Constant Surface Reflectance on Shape
Reconstruction

As previously discussed, one of the prevailing assumptions for shape reconstruction is

that of constant surface reflectance. This irnplies that the surface reflectance term, S, is

assumed to vary only with wavelength. A, and not with pixel coordinates {x,y). Thus,

even if the illuminant mapping,. M, is known up to a surface reflectance, the proper
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Figure 3.2: The flow chart for 3D shape reconstruction for single-color objects
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a Input image

-

Figure 3.3: Shape reconstruction of a single-color cylinder: (a) is synthetic input
image, (b), (c) and (d) are results of different views of the reconstructed shape, (d)
is a view displayed using an inventor.
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Figure 3.4: Shape reconstruction of a single-color cone: (a) is synthetic input image,
(b) and (c) are the results of shape reconstruction displayed at different views.

0  D

Figure 3.5: Shape reconstruction of a single-color torus: (a) is synthetic input image.
Results of shape reconstructions for different views are shown in (b) and (c).
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Figure 3.6: Shape reconstruction of a single-color sphere: (a) is synthetic input
image, (b) is the corresponding shape reconstruction.
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Figure 3.7: Shape reconstruction of a single-color real cone image: (a) is real input
image captured with Kodak DC 120 Zoom. Results of different views of the recon
structed shape are shown in (b) and (c).
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object shape cannot be recovered as is shown in figures 3.8 and 3.9. In figure 3.8, the shape

of a multi-color torus was estimated using the existing shape-from-color technique. The

reconstructed shape shown in figure 3.8b is a qualitatively poor match for a torus. This

in accurate reconstruction results because the surface shapes corresponding to different

colors in the image domain have been recovered to varying degrees. The inability to

handle varying surface colors is one of the major limitations of existing shape-from-color

techniques. In chapter 4, a detailed analysis of the behavior of the existing shape-from-

color algorithm will be presented and used to develop three new algorithms for recovering

shape-from-color in the presence of varying surface refiectance.

D.8

0.6
0.5-

D.4

0.8 O.Z
0.6

0.4

Figure 3.8: (a)Effect of non-constant surface refiectance on shape reconstruction:
(a) is a multi-color torus whose 3D shape is to be reconstructed, (b) is the resulting
shape reconstruction using a uniform single surface color approach. The shape falls
short of a torus.
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Figure 3.9: Effect of non-constant surface reflectance on shape reconstruction: (a)
is synthetic cylindrical image illuminated by three lights of different spectral content,
(h) and (c) are different views of the corresponding 3D shape reconstruction using a
single uniform surface color approach.
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3.7 Effect of Shadow on Shape Reconstruction

Self-occlusion and shadows pose the same problem as non-constant surface reflectance.

The major distinction here is that the illuminant parameters in matrix,A = LN, vary and

may be written as A(a;, y; A) = L(x, y, A)N(rE, y). The existence of the cast shadow in the

scene confuses the vision system which consequently leads to a false shape reconstruction

as shown in flgures 3.10 and 3.11. Hence, a means of identifying and removing shadows in

color imagery is desired. In chapter 5, a novel algorithm for identifying and eliminating

shadows based on color-space clustering will be presented.

Figure 3.10: Effect of shadow on shape reconstruction: (a) is a real image of a cone
with a shadow, captured with Kodak DC 120 Zoom camera, (b) is the corresponding
3D shape reconstruction. Shadow mars shape reconstruction.
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Figure 3.11: Effect of shadow on shape reconstruction: (a) is synthetic image of a
torus with a shadow. Results of the shape reconstruction are shown in (b) through
(d). Shadow has a negative effect on shape reconstruction.
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3.8 Conclusion

In this chapter, shape reconstruction for single-color objects was discussed. The limita

tions of existing techniques in the presence of non-constant surface reflectance and shadow

were also examined.

This dissertation is built upon Drew's work on single-color objects but extended to

multi-color objects by relaxing the major assumptions. In the next chapter, three different

techniques for reconstructing shape for multi-color objects are presented.

34



CHAPTER 4

Shape Reconstruction for Multi-Color Objects

In the previous chapter, the applicability and limitations of the existing shape-from-

color techniques were presented. It was shown that the algorithm tends to perform poorly

in the presence of non-constant surface reflectance and shadows. In this chapter, three

new algorithms for recovering surface shape from color images with surfaces that display

non-constant surface reflectance are presented.

4.1 Problem Overview

Reconsider the apparent color to surface normal mapping

ns{x,y) = {L{X)Nr'S-Hx,y,X)E{x,y-X) = A-\X)S-\x,y,X)E{x,y,X). (4.1)

Where A(A) = L(A)N. If a constant surface reflectance is assumed, then this expression

is rewritten as

n.{x,y) = A-HX)SciXr'E{x,y,X). (4.2)

In this expression, the illumination mapping has no dependence on the pixel location

ix,y)-

Now, assume equation 4.2 is used to estimate surface shape for a surface with non-

constant surface reflectance as given by equation 4.2. The actual surface normal at a given

point, fis, is related to the recovered surface normal,

ns{x,y) =T{x,y)ns{x,y) (4.3)
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where

T{x,y) en^^^-,T{x,y) = diag(7i,72,73)■

Recovering accurate shape estimates from color in the presence of non-constant surface

reflectance can, therefore, be viewed as a six dimensional problem in which the three

elements of the approximate surface normal, n^, and the three diagonal elements of the

correction matrix, r(a;, y), must be calculated. Equation 4.2 can be used to provide three

constraints for the solution of this six dimensional problem, while the normality constraint

of the surface orientation vectors provides a fourth. To solve the shape-from-color problem

for multi-color surfaces, two more constraining equations must be identifled.

Note, however, that the traditional shape-from-color approaches have not made explicit

use of the surface smoothness they assume. By requiring the object to demonstrate

smoothness, the surface normal gradients, and can be used to provide the

two additional constraints required to estimate surface shape for multi-color objects.

In the remainder of this chapter, three different algorithms will be presented which

make explicit use of the surface smoothness to estimate shape-from-color for multi-color

surfaces. In the flrst technique, the image is segmented into regions of constant surface

reflectance and shape is estimated for each region. The global surface is then constructed

by aligning the various region shapes using boundary smoothness constraints. The second

algorithm employs a similar method as Horn's original shape from shading technique

by propagating solutions from points of known orientation. The third algorithm uses a

variational approach to fit an optimal smooth surface to the given color image data given

the initial solution assuming a constant surface orientation, ng.
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4.2 Shape Reconstruction by Pre-Segmentation

As discussed above, when a surface displays non-constant reflectance, S(rc, y; A) varies

both spatially and spectrally. Thus, each distinct color region of the surface displays a

diflferent shape to apparent color mapping. If these regions of constant surface reflectance

ran be identified prior to shape estimation, boundary conditions can be used to recover

the shape. Pre-identiflcation of constant surface reflectance regions requires the image to

be segmented based on color. In the work presented, both K-Means [38, 39] and a robust

algorithm reported by Comaniciu, et. al. [40] are used to identify regions of constant color.

Boundary pixels are identified after the color segmentation process using an 8-neighbor

connectedness process.

Recall from equation 4.1 that

n..{x,y)=A ^(A)S ^{x,y,X)E{x,y,X)

If the surface is assumed to be continuous at the boundary of two color patches, then

adjacent surface normals on either side of the boundary between regions i and j are such

that fis,i{x^y) « nsj{x,y). If it is- assumed that the entire surface is the same color as

region i such that Sj = Sc, then the correction factor for every normal in region j, Pj{x, y)

can be found by entry-wise division of ns,i{x,y) by nsj{x,y) such that

ri(a:,y) =

0
3,t

0

n® n
00

•3,1

0

n S,J

0
h' n

(4.4)

If this same procedure is employed between all region boundaries, the entire object surface

can be recovered up to an unknown afiine transformation represented by Sc(a;, y; A). If the

surface reflectance of one region is known, then the surface can be recovered completely.
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The pre-segmentation algorithm for shape reconstruction for multi-color surfaces is

summarized below.

• Identify background and outlier pixels. They are not used in the shape reconstruc

tion.

• Segment the multi-color image into' its main representative colors and keep track of

pixels in each segment.'

• Extract the color boundaries based on the result of the segmentation.

• Compute the preliminary surface orientation map, ns{x,y) using equation 4.2.

• Determine the correction matrix, Tj given in equation 4.4 above for all color regions.

• Compute the corrected surface orientation map, ns{x,y).

• Compute the smooth depth map shape.

4.3 Shape Reconstruction by Normal Propagation

While the pre-segmentation approach works well for surfaces with distinct regions

of constant surface reflectance, it is problematic for surfaces with either slowly varying

or high frequency color textures, such as human faces or bricks, or any object which

is difficult to segment based on color. As observed in figure 4.20(e), the segmentation

algorithm had difiiculty recognizing only two distinct color regions, and thus the quality

of the shape reconstruction is reduced. The second algorithm for recovering shape-from-

color eliminates the need for image segmentation by employing a propagation approach

ba^ed on surface smoothness constraints.
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Initially, the surface orientation, Ug, is computed for each surface pixel as if it were a

single color using the standard shape-from-color technique. Any background and outlier

pixels are identified and are not used for the shape reconstruction process. The relative

depth map of the surface is then computed using equation 3.12.

In the second phase of the algorithm, the assumed smoothness of the imaged surface

is employed to construct, two constraints

hs{x,y) ^ hs{x+ i,y + j) foT i =-1,0,1; j =-1,0,1, and

z{x,y) w z[x + i,y + j) i =-1,0,1; j =-1,0,1. (4.5)

Assuming ns{x,y) and z{x,y) are correct for the current surface point {x,y), then the

neighboring surface orientations must be such that

cos~^ (ns{x,y)'^ns{x+ i,y + j)^ < ei for i =-1,0,1; j =-1,0,1 and

z{x,y) -z{x + i,y + j) < £2 for i =-1,0,1; j =-1,0,1 (4.6)

where ei and 62 are user-defined thresholds. In the experimental results shown in this

, chapter, ei = 0.003 radians and 62 = 0.04.

If both of the above conditions are violated for a given neighbor, then the algorithm

assumes that neighbor is a different color than the current pixel and a correction factor,

r(a;,y), is computed. Again, using the same constraint between adjacent surface nor

mals as employed by the pre-segmentation technique, ns{x,y) risix + i,y + j) for i =

— 1, 0,1; j = —1,0,1, the correction factor is again given as

T{x + i,y + j) =
ha{x+i,y-\-j)^ .

0  ns(X'y)y Q
ns{x+i,y-\-3)y

n  n ris(x,yY
n3{x,i,y+jY

(4.7)
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Hence, if the correct surface orientation is known for at least one point on the surface,

then the entire surface can be reconstructed by propagating the correct surface orientation

using the constraints of equation 4.6.

As is the case for shape from shading techniques which employ local gradient infor

mation, image noise can reduce the quality of surface shapes recovered using propagation

approach. To reduce the effect of image noise on the shape reconstruction process, the

input image is smoothed using an edge preserving anisotropic diffusion smoothing algo

rithm [41, 42, 43]. To further reduce the effects of image noise, a 4-connected averaging

filter is applied to the surface orientation map, ns{x,y), prior to the shape reconstruction

process. As a final step, a median filter [44, 45] is applied to the relative depth map

computed with the corrected surface normals.

The normal propagation algorithm for "shape reconstruction described above is sum

marized below:

1. Apply anisotropic smoothing filter to image.

2. Identify and remove background and outlier pixels.

3. Compute the surface orientation, ns{x, y) for each surface point as if the object were

a single-color.

4. Apply the 4-connected averaging filter to the surface orientation map, ns{x,y).

5. Compute the angle between normals for adjacent surface points.

6. Compute the relative depth between adjacent surface points.

7. If the results in steps 5 and 6 above are less than ei and 62 respectively, go to step

9.
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8. If the results in steps 5 and 6 are greater than ei and £2 respectively, determine

V{x,y) and compute ns{x,y) — T{x,y)ns{x,y).

9. Compute the shape corresponding to the image point using equation(3.12).

10. Post-process the result by median filtering of the mapped depth.

4.4 Shape Reconstruction Using a Constrained Variational Approach

The accuracy of surface shapes recovered via the normal propagation technique is

susceptible to high degrees of image noise. As an alternative to solution propagation

using local gradient estimates, variational techniques are often developed that employ

global smoothness constraints to iteratively solve for optimal solutions given a set of

input data. In this section, a variational approach to recovering shape-from-color for

non-constant surface reflectance is presented.

Prom equation(3.2) the color vector associated with a three-channel camera is given

by

E{x, y; A) = M(a;, y; X)ns {x, y) (4.8)

Given initial estimates of both the illuminant mapping, M(a;,y; A), and the surface orien

tation map, ns(a;,y), the .error associated with those estimates is expressed as

5{x,y) =E{x,y\X) -M{x,y,X)ns{x,y) (4.9)

Thus, a possible solution to the shape-from-color problem is given by the illuminant map

ping and surface orientation map which minimizes the functional

6 = J J E — Mn dxdy (4:.10)

where dependence on x,y, and A have been dropped for simplicity.
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Many possible solutions to equation 4.10 could exist, however, that violate (1) the

quadratic constraint on the recovered surface normals, n^n = 1, and (2) the assumed

smoothness of the recovered orientation map. To insure that each normal is unity, a new

term is incorporated into the functional using a Lagrangian multiplier, fi, yielding

^ = J j (||^-Mn|p+//(||n|p - 1)^) (4.11)

It is of interest to note that Drew's method for recovering shape given unknown lighting

conditions is essentially a closed-form solution to the functional of equation 4.11 over both

M and n. In the presence of non-constant surface reflectance, however, an additional

constraint based on surface smoothness must be added to the functional to insure a unique

solution (or a solution up to an unknown rotation in the case of an unknown illuminant

mapping). Using the smoothness penalty constraint.

Ifja;!! -t- I n.y\ \ )

the functional is rewritten as

5 = E — Mn 4- ̂ (||n,||2 + ||n,|l2) + y(||n|p - 1)^) dxdy (4.12)

where is another multiplier for the smoothness constraint.

Assuming the illuminant mapping, M, is known, the functional of equation 4.12 must

be minimized with respect to the surface orientation map, n. Using the calculus of varia

tions, the Euler equation corresponding to equation 4.12 is given by

M^(E - Mn)-b/3V^n - Ain = 0. (4.13)

Solving equation 4.13 for the scaled surface orientation fj,n yields

Hn = M^{E- Mn) -b ̂ V^n (4.14)
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Pre-multiplying equation 4.14 by produces the following expression for the Lagrangian

. multiplier, n,

jjL = — Mn) +

= ffM^{E-M.n)+^{V'^n-n)

-  {Mnf{E - Mn) • n) (4.15)

Substituting this expression for /j, into equation 4.13 yields

(I - nn^)M^(.E - Mn) + (I - nfF)/3V^n = 0 (4.16)

Letting K = (I — nn^) reduces the above expression to

K {m^{E - Mn) + ̂SV^n) = 0 (4.17)

To avoid the trivial solution to the above expression where

n = yf{E-M.n)+^V'^n

let the updated solution to the above expression be given by m, such that in = v + nn

where v is orthogonal to n. This leads to the expression

Km = K(i; + kH) - KIT = v

where k; is a scalar = ̂1 - HiTlp. Hence, by substitution, equation(4.17) can be written

. as

Km = u = K^V^n + KM^(JS - Mn) (4.18)

Using the above expressions for K,m and v, the following sets of equations can be

used to iteratively update a globally optimal surface orientation map using color image

data in the presence of non-constant surface reflectance,

^fc+i) ^ K + M^(i - Mn(^))) (4.19)

^(fc+i) ^ ̂ fe+i) +.^(fc).yi _ ||i;(fc+i)||^ (4.20)
= I-n('=)nW. , (4.21)
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The iterative procedure is stopped when the change in the RMS error, A5 is less than

some user specified criteria, £3.

As with any iterative scheme, values for n must be supplied to initialize the process. In

addition, an estimate for the shape-from-color mapping, M, must be provided. Instead of

supplying arbitrary values, Drew's single-color approach is used to initialize n assuming a

constant surface refiectance and supply an estimate for the matrix, M. By using the single

color surface orientation map estimate, ns{x,y), the iterative scheme is starting from the

quadratically constrained solution.and proceeding to a solution which is both quadratically

and smoothness constrained. It is of interest to note that the final solution for the surface

orientation at step k, n''{x,y), should be such that = T{x,y)ns = T{x,y)n^.

4.5 Experimental Results

All three algorithms have been evaluated using numerous images of objects of different

shapes and colors acquired under various illumination conditions. The first set of tests

were conducted using synthetic images created with SGI Showcase using OpenGL. In these

cases, the illuminant matrix, A is known, but the actual surface refiectance of the object

is not. The surfaces recovered using all three approaches are shown in figures 4.1 - 4.5

for a subset of these objects. As can be observed from these figures, all three approaches

performed quite well given these simple color variations and surface geometries.'

The next data set includes real images of simple objects such as cylinders, spheres,

and cones, a subset of which are shown in figures 4.6 - 4.8. Again, all three algorithms

recovered qualitatively accurate shape reconstructions for the imaged objects.

The next set of images is made up of human faces of various ethnic backgrounds, and

thus differing shapes and skin tones. Results from a subset of these images are shown

in figures 4.9 through 4.19.- Although varying in quality, it is possible to match the
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recovered shape of the persons face to the given color image. It is interesting to note that

the difference between the three algorithms become more apparent using this data set. In

general, human faces are more difficult for; segmentation algorithms to group into coherent

regions, and thus the quality of the shapes recovered using the pre-segmentation approach

is reduced in a few cases (see figme 4.11).

The final three figures 4.20 - 4.22 demonstrate the effects of poor color segmentation

on the recovered shape using the pre-segmentation approach. In the first figure, the

segmentation algorithm over-segmented the input image thereby resulting to poor shape

reconstruction. In the second figure, the lower color region of the sphere is improperly

segmented, creating a large 'hole' in the recovered surface. In the case of the third object,

the highly textured (marbleized) surface results in many pixels being misclassified by color,

leading to a less visually accurate shape reconstruction.
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im-Figure 4.1: Shape reconstruction of a multi-color cone: (a) is input synthetic ....
age. (b) is the segmentation result. Results of the shape reconstruction by the three
techniques are compared in (c) through (e) using (c) Pre-segmentation approach (d)
Normal propagation approach and (e) Variational approach.
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Figure 4.2: Shape reconstruction of a multi-color cylinder: (a) is synthetic input
image. Results of the shape reconstruction by the three techniques are compared
in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation
approach and (d) Variational approach.
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Figure 4.3: Shape reconstruction of a multi-color torus: (a) is synthetic input image,
(b) is the segmented result Results of the shape reconstruction by the three techniques
are compared in (c) through (e) using (c) Pre-segmentation approach (d) Normal
propagation approach and (e) Variational approach.
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Figure 4.4: Shape reconstruction of a multi-color sphere: (a) is a synthetic input
image. Results of the shape reconstruction by the three techniques are compared
in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation
approach and (d) Variational approach.
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Figure 4.5: Shape reconstruction of a multi-color complex object: (a) is the input
image. Results of the shape reconstruction by the three techniques are compared in (b)
through (d) using (b) Pre-segmentation approach (c) Normal propagation approach
and (d) Variational approach.
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Figure 4.6: Shape reconstruction of a real image of a cylinder: (a) is the input
image, (b) is the segmentation result, (c) shows the extracted edges for color bound
ary identification. Results of the shape reconstruction by the three techniques are
compared in (d) through (f) using (d) Pre-segmentation approach (e) Normal prop
agation approach and (f) Variational approach.
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Figure 4.8: Shape reconstruction of a multi-object (in contact), multi-color image:
(a) the input image. Results of the shape reconstruction by the three techniques
are compared in (b) through (d) using (b) Pre-segmentation approach (c) Normal
propagation approach and (d) Variational approach.
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Figure 4.9: Shape reconstruction of a human face: (a) the input image (Dr. Smith's
face), (b) is the pre-processed image, (c) is the segmentation result. Results of the
shape reconstruction by the three techniques are compared in (d) through (f) using
(d) Pre-segmentation approach (e) Normal propagation approach and (f) Variational
approach.
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Figure 4.10: Shape reconstruction of a human face: (a) the input image (Jason Rud-
isill's face). Results of the shape reconstruction by the three techniques are compared
in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation ap
proach and (d) Variational approach.
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Figure 4.11: Shape reconstruction of a human face: (a) the input image (Stephen
Jesse's face). Results of the shape reconstruction by the three techniques are com
pared in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation
approach and (d) Variational approach.
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Figure 4.12: Shape reconstruction of a human face: (a) the input image (Mengwei
Li's face). Results of the shape reconstruction by the three techniques are compared
in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation
approach and (d) Variational approach.
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Figure 4.13: Sha-pe reconstruction of a human face: (a) the input image (Mengwei
Li's face). Results of the shape reconstruction by the three techniques are compared
in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation
approach and (d) Variational approach.
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Figure 4.14: Shape reconstruction of face: (a) is a real image of a human face (Kaiyn
Wang). Results of the shape reconstruction by the three techniques are compared
in (b) through (d) using (b) Pre-segmentation approach (c) Normal propagation
approach and (d) Variational approach.
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Figure 4.15: Shape reconstruction of face: (a) is a real image of a human face (Zhong
Du). Results of the shape reconstruction by the three techniques are compared in (b)
through (d) using (b) Pre-segmentation approach (c) Normal propagation approach
and (d) Variational approach.
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Figure 4.16: Shape reconstruction of face: (a) is President Bush captured from TV
during his address to the nation on Thursday September 20, 2001 after the World
Trade Center Bombing, (b) is the cropped and pre-processed image. Results of the
shape reconstruction by the three techniques are compared in (c) through (e) using
(c) Pre-segmentation approach (d) Normal propagation approach and (e) Variational
approach.
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Figure 4.17: Shape reconstruction of face: (a) is a real image of a human face
(Lawretta Ononye, author's wife). Results of the shape reconstruction by the three
techniques are compared in (b) through (d) using (b) Pre-segmentation approach (c)
Normal propagation approach and (d) Variational approach.
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Figure 4.18: Shape reconstruction of face: (a) is a real image of a human face
(Ifechukwu Ononye, author's son). Results of the shape reconstruction by the three
techniques are compared in (b) through (d) using (b) Pre-segmentation approach (c)
Normal propagation approach and (d) Variational approach.
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Figure 4.19: Shape reconstruction of face: (a) is a real image of a human face
(Nnaebuka Ononye, author's son). Results of the shape reconstruction by the three
techniques are compared in (b) through (d) using (b) Pre-segmentation approach (c)
Normal propagation approach and (d) Variational approach.
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Figure 4.20: Shape reconstruction of sphere - poor segmentation case: (a) is real
image of a multi-color spherical object (b) pre-processed image by smoothing (c) is
the segmentation result, (d) shows the extracted edges for color boundary identifica
tion. Results of the shape reconstruction by the three techniques are compared in (e)
through (g) using (e) Pre-segmentation approach (f) Normal propagation approach
and (g) Variational approach.
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Figure 4.21: Shape reconstruction of sphere - failure of pre-segmentation approach:
(a)is real image of a multi-color (three distinct colors) of a spherical object and (b) is
the segmentation result. Results of the shape reconstruction by the three techniques
are compared in (c) through (e) using (c) Pre-segmentation approach (d) Normal
propagation approach and (e) Variational approach.
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4.5.1 EflFect of Noise on Shape Reconstruction

The robustness of the normal propagation and variational algorithms to noise was tested

by adding various levels of salt and pepper noise to the synthetic image shown in figure

4.23a. The noise densities, cr = 0.1,0.3 and 0.5 were applied to the image to construct

noisy examples. The time, t taken for each algorithm, as well as the number of iterations, n

required (for the case of variational algorithm) to process were determined. The estimated

shapes for each of the tests are shown in figures 4.23 and 4.24. It is qualitatively apparent

that the variational technique provides better shape reconstruction in the presence of

significant noise as would be expected. These processing time and number of iterations

for the variational approach also increased with increasing levels of noise.

4.5.2 Quantitative Evaluation of Reconstructed Shapes

Unfortunately, the development of shape metrics that accurately mimic a human's inter

pretation of similar surfaces is still an open research problem. Often numerical shape

validations are misleading and therefore the best validation tool for shape reconstruction

might be visual observations. However, if the input data is limited to simple shapes, then

numerical measures of shape similarity often correlate well with human observations.

To provide a quantitative measure of the ability of the three algorithms to reconstruct

the shape of multi-color objects, two image sets were constructed to which quadratic

equations could be fit to the reconstructed surface maps, z{x,y), using least squares

techniques[46, 47, 48]. The first set of images contained cylinders of varying textures

while the second was constructed using spheres.
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Figure 4.23: Effect of noise on shape reconstruction: (a) is a noiseless synthetic
image (b) generated by adding "salt and pepper" noise density of 0.1. Results of the
shape reconstruction by Normal propagation approach are shown in (c and d) and
the Variational approach are shown in (e and f).
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Figure 4.24: Effect of noise on shape reconstruction: (a) and (b) are noisy images
of figure 4-^3a. The noise densities are 0.3 and 0.5 respectively. Results of the
shape reconstruction by Normal propagation approach are shown in (c and d) and
the Variational approach are shown in (e and f).
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The functional representation of the recovered surface is to be determined by the

quadratic

fi{x, y) = aoxl + aivl + o-2Xiyi + a^Xi + a^yi + 05 (4.22)

for some choice of Uj, i = 0,1, ...5

At each data point, the difference between the surface elevation, z{x, y) and fi{x, y) defines

the error. Thus, the coefficients Oj must be chosen such that the mean square error 5 is

minimized, where
1  AT 2

^ = ̂̂ {zi{x,y)-fi{x,y)) (4.23)
i=0

and N is the number of data points. The function (5 is a minimum when

0(Xi
2 = 0, 1, ...5 (4.24)

To solve the above minimization problem, the entities X G z ^ and

are constructed, where

X =

^0 Vo ^oyo xo yo 1.0

Vi yi 1.0

xl vl' X2y2 X2 y2 1-0

- xlf yjf xj^yN XN yN 1-0 .

(4.25)

z =

zo

Zi

Z2

ZN

a =

qq

ai

0-2

03

04

05

(4.26)
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and the expression

Xa = z

is solved for the quadratic coefficients a such that

X^Xa = X^z

a = ^X^z (4.27)

Figures 4.25 and 4.26 show quadratic surfaces recovered using the above procedure.

The two test image sets of cylinders and spheres used for the evaluation are shown in

tables 4.1 and 4.2 respectively. The LMS error (in pixel units) between the best quadratic

fit and the actual recovered shape are also shown in the tables for each of the three

algorithms. The techniques were also evaluated when salt and pepper noise of density

0.3 was added to each of the test image sets. The results are equally shown in tables 4.1

and 4.2.

4.6 Conclusion

In this chapter, three approaches to recovering the shape of multi-color objects from

color images were developed and experimental evidence of their efficacy was presented.

The first, or pre-segmentation, algorithm works well for surfaces with distinct regions

of constant surface reflectance which axe by definition easier to segment. Its inadequacies

become apparent for surfaces with either slowly varying or high frequency color textures
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Figure 4.25: Evaluation of reconstructed shape of a multi-color cylinder: (a) real
input image, (b) -(d) are different views of the shape generated by quadratic surface
fitting while (e) and (f) are the ones obtained directly from our technique.
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Figure 4.26: Evaluation of reconstructed shape of a multi-color spherical object: (a)
real input image, (b) shape generated using quadratic surface fitting and (c) the
reconstructed shape by variational approach.
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Table 4.1: Quantitative evaluation of the techniques using textured cylindrical test
image sets.

PS = Pre-segmentation NP = Normal Propagation V = Variational
WON = Test image with no noise WN = Test image with noise

Test image PS Approach
WON

NP Approach
WON WN a = 0.3

V Approach
WON WN cr = 0.3

1
0.0594 0.0564 0.0633 0.0644 0.0647

E 0.00825 0.1152 0.1257 0.0799 0.0817

0.1952 0.2141 0.2158 0.01858 0.1904

0.1952 0.1351 0.1688 0.1327 0.1656

%
0.1239 0.1930 0.1983 0.1697 0.1787

s
n

0.0543 0.0681 0.0871 0.0530 0.0651

0.0737 0.1067 0.0994 0.0732 0.0717

0.0737 0.0861 0.0968 0.2015 0.2189

»
0.0641 0.0821 0.0912 0.0719 0.0754

0.0450 0.0545 0.0632 0.0553 0.0587

Average Error 0.0967 0.1111 0.1210 0.1087 0.1171
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Table 4.2: Quantitative evaluation of the techniques using textured spherical test
image sets.

PS = Pre-segmentation NP = Normal Propagation V = Variational
WON = Test image with no noise WN = Test image with noise

Test image PS Approach
WON

NP Approach
WON WN CT = 0.3

V Approach
WON WN cr = 0.3

•
0.0403 0.0637 0.0717 0.0591 0.0562

•
0.0572 0.0499 0.0951 0.0436 0.0563

•
0.0448 0.0695 0.0844 0.0660 0.0557

s  • <

0.0528 0.0412 0.0788 0.0549 0.0749

_l 0.0763 0.0558 0.0987 0.0858 0.0718

0.0755 0.0555 0.1079 0.0789 0.0817

0.1309 0.0451 0.0824 0.0544 0.0636

1

1 0.0676 0.0498 0.0684 0.0671 0.0475

<1
0.0676 0.0487 0.0863 0.0644 0.0620

n
0.0577 0.0454 0.0850 0.0585 0.0623

Average Error 0.0671 0.0525 0.0858 0.0636 0.0632
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as could be seen from figures 4.7, 4.8 and 4.20. Hence, the performance of this algorithm

is limited to that of the segmentation scheme used. The use of this technique is therefore

recommended for surfaces with distinct regions of constant surface reflectance. The pre-

segmentation approach failed" completely' when salt and pepper noise of density 0.3 was

added to the image sets. This is because the segmentation could not find a consistent

region of constant surface reflectance. Therefore, the performance of this technique could

not be quantitatively compared with the other two techniques under this level of noise.

In the second, or normal propagation, technique, the short-coming of pre-segmentation

is avoided. It worked quite well in the cases where the pre-segmentation failed. Its major

set back is its sensitivity to high degrees of image noise.

The third, or variational, approach uses the global smoothness constraint to iteratively

solve for the optimal object surface. While it often provides the best visual result, it is

also more robust to noise than the normal propagation as evident from figures 4.23 and

4.24 as well as in tables 4.1 and 4.2, but also requires more computation time.
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CHAPTER 5

Shadow Detection and Removal

5.1 Introduction

Prom theory of classical physics, light propagates in straight lines. When the rays of

light encounter an obstacle, they graze through the edges of the obstacle and consequently,

cast a sharp shadow on the screen as shown in figure 5.1 below. For an extended light

source, the shadow consists of two parts, the darker region called the umbra surrounded

by a slowly darkening region, the penumbra.

Shadows pose a similar problem to the shape estimation process as non-constant sur

face refiectance. Reconsider the apparent color to surface normal mapping of equation 4.1

ns{x,y) = A~^(A)S~^(a;,y; A).E(a;,y; A).

In the presence of shadows, the illuminant matrix. A, becomes a function of image coordi

nates {x,y), violating the assumption of constant illumination across the scene. Unfortu

nately, apparent color variations caused by shadows mimic those produced by continuous

changes in surface shape due to the physics of shadow formation. Therefore, shadows

must be identified and eliminated before the surface shape can be reconstructed using the

smoothness constrained algorithms of the previous chapter, regardless of whether or not

the surface refiectance is constant. In this chapter, a novel technique is presented which

employs simple segmentation procedures along with color normalization to both identify

and remove shadows without requiring a linear camera or assuming the darkest image

regions are shadows.
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Figure 5.1: Schematics of shadow formation: (a) is an illustration of shadow forma
tion by a single illuminant. (b) illustrates physics of shadow formation by multiple
illuminants.

5.2 Previous Work in Shadow Detection

Shadow recognition in a scene by an artificial vision system is a difficult task and

therefore a number of cues that suggest its presence have been employed in other efforts.

The four most prominent cues are summarized below.

1. Darkest Region Gambit - the image region with the lowest average intensity is

likely to represent pixels in shadow.

2. Hue/Saturation Invariance - the apparent hue and saturation of surfaces in and

out of shadows remains constant [49].

3. Illuminant Direction Dependence - the shape, size, and position of shadows are

directly dependent on scene illuminant directions [50].

4. Surface Texture Invariance - cues for recovering texture that do not depend on

absolute intensity are preserved across shadow boundaries [51].
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Due to the nature of imaging sensors, it is often safe to assume that the darkest

regions of images are cast shadows. Thus, a number of approaches, primarily developed

for gray-scale- imagery, assume shadows are located in the areas of the image with the

lowest intensities [52, 53]. This assumption does not always hold as could be seen from

figures 5.2(a and b). In each of these figures, the darkest region does not lie in the shadow.

In figure 5.2(a), the darkest region is the hair with an average intensity, Eq = 8, while the

average intensity-of a point in the shadow region is Eg = 69. A similar situation is shown

in figure 5.2(b), where the darkest region is the eye of the frog, not the shadow.

The hue/saturation invariance property has been employed in various research ef

forts [49, 54, 52, 53] to eliminate shadows in scenes. Given an image pixel on a constant

color surface outside the shadow, Eo{x,y), the invariance property states that any pixel

on the same surface inside the shadow, Es{x,y), is such that

Es{x,y) = aEo{x,y)

where cc is a constant such that a < 1. Thus, shadows can be eliminated from the image via

normalization. Unfortunately, image normalization removes apparent color changes that

arise from surface shape variation as well. In addition techniques based on normalization

provide only for removal, not identification, of pixels in shadow.

In his work on visual recognition of shadows, Funka-Lee [50] used an active observer

equipped width an extendible probe for casting its own shadows on the scene. This allowed

the observer to experimentally determine the number, location, and spectral content of

the light sources present. The hue/saturation invariance property was then used to iden

tify shadows in a unique way. Constrained by the information obtained regarding the

illumination environment and assuming a sensor with linear gain, the color space of the

image is searched for radial line features that result from the slowly darkening nature of

shadow pixels in the penumbra. Pixels which fall along these lines are assumed to be
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Figure 5.2: Illustration of break-down of darkest region theory: (a), is a man with
a cast shadow on the wall. The darkest region corresponds to his hair with RGB
distribution of about 8 0 0. The RGB of the shadow region is about 72 66 69.
(b) shows a plastic frog with a cast shadow on the background. The darkest region
corresponds to the eye and and not the shadow.

in shadows. While this approach works well in both controlled and uncontrolled environ

ments, many imaging sensors, including most off-the-shelf color cameras, have a non-linear

gain component that distorts the expected radial lines, creating radial curves which are

often undetected.

In the remainder of this chapter, a novel algorithm for shadow identification and re

moval is presented. Employing a simple variation on the hue/saturation invariance based

method described above, this technique is able to identify and remove shadows from color

images acquired using non-linear gain sensors without employing the often unrealistic

darkest region assumption.

Before continuing, it should be noted that shadows may be classified as cast or self.

A cast shadow arises whenever a free space exists between the shadow and the agent

81



obstructing the light source while in a self shadow, such a free space does not exist. This

part of the dissertation focuses on cast shadows on backgrounds. The dissertation does

not address self shadows in color imagery.

5.3 A Shadow Detection Algorithm Assuming Linear Camera Gain

The primary disadvantage of previously reported shadow removal techniques that em

ploy the hue/saturation invariance property is that such algorithms only remove shadows

from the image. In this section, a new method is presented which uses the hue/saturation

properties of images with shadows, along with color-based image segmentation, to not

only remove, but identify image pixels in shadowed regions.

The RGB is the feature space used. The input image is transformed from its image

domain to the feature space using Mean Shift Algorithm (MSA) [55] described in appendix

B.2. Pixels with similar RGB distribution cluster together and high density clusters rep

resent prominent features in the image. The number of such clusters denotes the number

of significant distinct color regions including the shadow (s) in the image. Since under

typical illumination conditions, the normalized color of two points on any given surface of

the same material will be the same even if one of these points is directly illuminated and

the other is in a shadow. To further illustrate this, let {rs,gs,bs) be the RGB values of

the pixels in the shadow region and (fi, gi,bi) be the ones at a point on the corresponding

surface not in a shadow. If normalized color scheme is applied to these two distinct re

gions, the same normalized color result will be obtained provided the color space is linear.

For our case, the input image is normalized and the same clustering algorithm applied

to both normalized and unnormalized images. Let tUu and rrin be the number of clusters

corresponding to the unnormalized and normalized images respectively. If = m^, it

suggests there is no shadow in the scene. If rrin is less than then the difference
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- rriji shadow clusters have vanished as a result of the process. The shadow clusters have

consequently merged with other color clusters with identical normalized color. To detect

which of the two clusters belongs to the shadow, we examine the two clusters that merged.

The one whose cluster center has a lower RGB values belongs to the shadow. Figure 5.3a

is a synthetic input image with shadow and 5.3bs are the normalized images. The clusters

corresponding to figures 5.3a and 5.3b are respectively shown in figures 5.3d and 5.3e. The

cluster labeled 3 which corresponds to the shadow which is completely eliminated after

normalization. Figure 5.3b2 is a post-processed image of figure 5.3bl.

The realism of the vanishing clusters after normalization holds if we have linear color

space. In other words, the above technique works good if the camera is linear. In the next

section, we will discuss the case where the camera is not linear.

5.4 Shadow Detection in a Non-Linear Color Space

If the color space is not linear, the shadow detection technique described above will

perform below par. In this case, the color space and of course the camera will have to

be linearized by doing some gamma correction ( see appendix A.3). Even with gamma

correction, normalization may not cause the shadow to vanish completely (see figme 5.8b)

as discussed in the previous section. When this is the case, we find the normalized clusters

that are closest to each other and form pairs of such clusters, called the shadow candidate

pairs. The formation of these pairs may result to some invalid ones. The invalid shadow

candidate pairs can be eliminated by a user defined Euclidean distance measure constraint,

e. Clusters are said to have merged if e is zero or close to being zero. Hence, any shadow

candidate pair whose Euclidean distance measure is less than e is regarded as a valid pair.

For any valid shadow candidate pair with clusters, Ci and C2, the darker of the two is the

shadow and by keeping track of the pixels that reside in such cluster, the shadow image
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Figure 5.3: Shadow extraction and removal procedure: (a) is synthetic image with
shadows, (bl) is the result of the normalization and (b2) is the post-processed image
of (bl). (c) is the extracted shadow and (f) is the restored image, (d and e) show
the clusters corresponding to images in (a and b) above. The cluster labeled 3 cor
responds to the shadow, (e) shows the clusters corresponding to (b). The shadow is
gone after normalization
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could be extracted as shown in figures 5.3c, 5.4c and so on.

5.5 Shadow Removal

We have so far discussed how to recognize and extract shadows. The main issue to be

addressed is how does one restore the given image? In other words, how is the shadow

removed from the image so that it (image) looks as if it never had one (shadow)? This

issue (of shadow removal) has not been addressed at length in literature. To address the

above issue, we consider a pair of merging clusters Ci and C2 say. If C2 is the darker of

the two clusters, it is therefore regarded as shadow. The corresponding pixels that are in

the C2 are then mapped to the mean of Ci. This type of mapping results to a noticeable

edge effect as shown in figures ,5.4e and 5.8d. The reason for this phenomenon is that

real illuminants do not cast sharp shadows because they are not point sources and may

only be partially obstructed. The umbra (which is the darker region of a shadow is due

to complete obstruction of the light source) and the penumbra (which results from partial

obstruction of illuminant) regions are shown in figure 5.5 as DE and EG respectively.

Consequently, the transition from shadow to non-shadow is not a step function but a

slowly varying function as shown in figure 5.5. In this figure. Mi and M2 are means

of the shadow and non-shadow clusters that merged together. The decision boundary B

tends to equalize the distance between the two means. After the preliminary mapping of

shadow pixels to M2, the region to the left of the decision boundary, B gets mapped to

M2 leaving the partial penumbra region, EG unmapped as illustrated in figure 5.6. As a

final phase of the shadow removal, the pixels in the partial penumbra region EG are then

mapped to the mean, M2. This eliminates the edge effect as shown in figure 5.4f.
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5.6 Results of Shadow Detection and Removal

Further results of shadow detection and removal are shown in figures 5.4, 5.8 through

5.10 for single-color background. In figure 5.4, the input image is a real image of a synthetic

frog captured with Kodak Zoom 120DC camera with a cast shadow on gray background.

Figures 5.4b and 5.4c are the normalized and extracted shadow images respectively. The

background is shown in figure 5.4d which is set to white while the main object in the

image is set to black. The restored image is shown in figure 5.4e which exhibits some edge

effects. This image is further processed to get rid of the edge effect due to the penumbra in

the shadow. The result is shown in 5.4f. In figures 5.7 and 5.8, a human head and a man

with a cast shadow on a wall are shown. The final restored images are shown in figures

5.7f and 5.8e respectively. Similar results are shown in figures 5.9 and 5.10. Figme 5.10a

is the author of this dissertation with a cast shadow on a wall and the restored image is

shown in figure 5.10e. •
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Figure 5.4: Illustration of shadow extraction: (a) is real image of an artificial frog,
(b) is the normalized image (c) shows the extracted shadow and the background is
shown in (d). (e) is the restored image with edge effects due to penumbra and (f) is
the final image after post-processing.
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Di2 = Distance between means of two merging ciusters
DE = Umbra . EG = Penumbra

Figure 5.5: Transition from shadow to non-shadow. Mi is the mean of the shadow
cluster

Ms is the mean of the non-shadow cluster which the shadow cluster merged with
B is the boundary between Mi and Ms

Intensity

Shadow
Non—Shadow

Direction

FG is the unmapped partial penumbra region

Figure 5.6: Mapping of shadow to the corresponding non-shadow mean: The result
of mapping the shadow pixels in region DE and EF shown in figure 5.5 to the mean,
Ms. The edge effect is due the partial penumbra region FG not mapped to Ms.
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Figure 5.7: Extraction of shadow cast by a human head: (a) is real image of a
human head with a cast shadow on a wall, (b) is the normalized image (c) shows
the extracted shadow and the background is shown in (d). (e) is the restored image
with edge effects due to penumbra and (f) is the final image after post-processing.
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Figure 5.8: Extraction of cast shadow on wall: (a) is real image of a man with a
cast shadow on a wall, (b) is the normalized image (c) shows the extracted shadow
). (d) is the restored image with edge effects due to penumbra and (e) is the final
image after post-processing.
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Figure 5.9; Extraction of shadow cast by human fingers: (a) is the input real image,
(b) is the normalized image (c) shows the extracted shadow ). (d) is the restored im
age with edge effects due to penumbra and (e) is the final image after post-processing.
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Figure 5.10: Extraction of shadow cast on a wall: (a) is real image of the author of
the dissertation with a cast shadow on a wall, (b) is the normalized image (c) shows
the extracted shadow ). (d) is the restored image with edge effects due to penumbra
and (e) is the final image after post-processing.
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5.7 Shadow on Multi-Color Background

When the cast shadow drops on a multi-color background such as the case illustrated

in figures 5.11 below, its detection and removal become more challenging especially if

the material properties of any given surface of the background is similar to the spectral

properties of any shadow segment. The procedure is similar to the case of single-color

background. The main difference is the existence of multiple shadow and background

clusters. Once again, the input image is normalized and then mapped to the RGB feature

space. The next step is to pair clusters that are closest to each other using the user

defined Euclidean distance measure constraint. For example using figure 5.11 below,

after the normalization, the shadow cluster corresponding to SI will be paired with the

background labeled Bl. Similarily, 82 will be paired with background B2. There is no

doubt that false pairing of clusters will exist but the Euclidean distance measure constraint

will help to eliminate the most of the false ones.

Results of the shadow detection and removal are shown in figures 5.12 and 5.13 below.

Figure 5.12 has a two-color background while figure 5.13 has a three-color background.

Bl

B2

81

82

Kwr-

Figure 5.11: Transition from shadow to non-shadow.
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Figure 5.12: Shadow removal on two-color background: (a) is real image of an
artificial frog with a cast shadow on a two-color background, (b) is the normalized
image (c) shows the segmented image while the extracted shadow is shown in (d).
(e) is the restored image with edge effects due to penumbra and (f) is the final image
after post-processing.
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Figure 5.13: Removal of shadow on multi-color background: (a) is real image of an
artificial frog with a cast shadow on a multi-color background, (b) is the normalized
image (c) shows the segmented image while the extracted shadow is shown in (d).
(e) is the restored image with edge effects due to penumbra and (f) is the final image
after post-processing.
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5.8 Algorithm for Shadow Detection and Removal

The following algorithm is used to detect and remove cast shadow(s) in color images.

1. Pre-process the given image by smoothing.

2. Segment/Cluster the image and determine the number of clusters. Call this m„.

3. Normalize the pre-processed input image and segment/cluster. Let the number of

clusters in this case be m„.

4. If niu > rriji, determine the clusters that have merged and go to step 8.

5. If niu = m„, form pairs of normalized clusters that are closest to one another. Call

them Ci and C2 with means Mi and M2 respectively.

6. If the distance between Mi and M2 < e, stop - there is no shadow else go to 7.

7. Extract the darker of Ci and C2.

8. Locate the shadow pixels in the image domain and map them to the mean of the

pixels to which they merged with.

9. Post-process to eliminate the edge effect.

10. End

5.9 Some Results of Shape Reconstruction in the face of Shadow

In chapter 3, we discussed the problem of shadow on shape reconstruction and we have

just discussed how to eliminate this problem. By using the combination of our shadow

removal technique and the shape reconstruction developed in chapter 4, we obtained some

results some of which are shown in the figures 5.14 and 5.15. In figure 5.14, (a) is a
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synthetic image with a shadow, (b) and (c) are different views of the reconstructed shape

in the presence of the shadow. The corresponding results after shadow has been removed

are shown in (d), (e) and (f) respectively. Figure 5.15(a) shows a real image of a human

fingers with a cast shadow. Result of shape reconstruction using the unprocessed image

is shown at two different views in (b) and (c). Figure 5.15(d) is the image resulting from

shadow removal. The Two different views of the reconstructed shape are shown in (e) and

(f)-

5.10 Conclusion

The shadow detection and removal algorithm detects a cast shadow that drops on

the image background. It also recovers the background that is partly in shadow and

partly lit and works equally well on a multi-color background- The algorithm is based on

normalization and segmentation/clustering technique and it uses user defined Euclidean

distance measure constraint tool to validate the shadow candidate pairs.

Since shadow removal is based on mapping the shadow pixels to the mean of the cor

responding background the shadow resides, the technique will not work well on a textured

and random pixel backgrounds. Another limitation of this approach is the assumption of

a linear color space. This is not a serious limitation as the problem can be overcome by

linearization of the color space by gamma correction. The algorithm is also dependent

on the segmentation/clustering algorithm used. Since no segmentation scheme is perfect,

the shadow identification is therefore restricted by the limitation of the segmentation or

clustering algorithm used.
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Figure 5.14: Sha'pe reconstruction of an object in shadow: (a) is synthetic image
with a shadow. Results of the shape reconstruction are displayed at different views
in (b) and (c). (d) is the restored image and the corresponding results of the shape
reconstruction are shown in (e) and (f).
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Figure 5.15: Shadow reconstruction of human fingers with shadow: (a) is a real
image of a human fingers. Results of the shape reconstruction are displayed at
different views in (b) and (c). (d) is the restored image and the corresponding
results of the shape reconstruction are shown in (e) and (f).
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A combination of our shadow and shape reconstruction schemes was employed to

reconstruct shape in the presence of shadow. These combined schemes worked well as

evident from the results shown in figures 5.14 and 5.15. Although the fusion of these

^  schemes work well enough, it is still limited by the segmentation algorithm which is used

for shadow identification and removal.

In the next chapter, we suggest how our results could be improved and other future

^  related work.
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CHAPTER 6

Conclusions and Suggestions for Future Work

6.1 Conclusions

The research goal was to:

1. Develop an algorithm for recovering shape of objects using single-color images under

general illumination conditions

• ' with constant and non-constant surface reflectance,

• with/without cast shadows

for calibrated and uncalibrated systems, while relaxing the assumptions given in

chapter 1.

2. Design a tool for identifying and eliminating shadows in color imagery without the

darkest region assumption for a linear camera.

3. Implement a tool based on least-mean-squared distance shape metric for testing the

validity of the shape estimation process.

Each of these tasks was accomplished and the first two are the major contributions of this

dissertation. For task one, three different techniques were developed:

• the pre-segmentation approach for identifying regions of constant surface reflectance

and the use of boundary conditions,

• normal propagation which utilizes a smoothness constraint and transformation cor

rection. matrix and
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• the variational approach that utilizes a global smoothness constraint to iteratively

solve for the optimal object surface.

The first approach is dependent upon the segmentation algorithm. The rest of the two

techniques were designed to overcome dependency on segmentation. The extensive ex

perimental tests show that in general the variational approach returned the best results

followed by the normal propagation and also robust to high degree of image noise.

The main difficulties with these techniques are:

• the pre-segmentation approach is dependent upon the segmentation algorithm and

failed when the segmentation algorithm was not able to locate all the true regions

of constant surface reflectance,

• the normal propagation is quite sensitive to noise and it requires the input image

to be well pre-processed by smoothing,

• the variational approach while offering resistance to noise is relatively slower than

the previous ones. It takes between 1 to 10 minutes, depending on the complexity

of the image to run.

On the issue of shadow identification and removal, a clustering algorithm was designed

without the usual darkest region assumption. The experimental results were nice as seen

in the previous chapter. However, the main difficulty is that it is dependent on the

segmentation algorithm used. It will fail whenever the segmentation scheme fails.

A validation tool based on least-mean-square distance shape metric was used to vali

date our results. The results show that our scheme performed reasonably well.
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6.2 Suggestions, for Future Work

There are several ways this work can be extended to give better results. We observed

that segmentation played a key role in this work. It was used in the shape reconstruction

(in the pre-segmentation approach) and in shadow detection and removal problem. These

schemes failed anytime the segmentation algorithm performed below par. To improve

on the performance of these schemes, we suggest two different techniques, segmentation

algorithm could be designed.

Prom the shape reconstruction schemes, a transformation correction matrix F was

computed whenever a change in the spectral surface-reflectance was detected. By group

ing pixels that exhibit same F, the entire image may be segmented. Another segmentation

technique being suggested will use fewer dimensional feature space (azimuth and eleva

tion) . A sketch of the algorithm is given below:

1. Normalize the input image and map into the feature space to obtain the parent

cluster, which is the union of all the clusters in the feature space.

2. Compute the mean and variance (m^, Op) of the parent cluster.

3. Compute the distance between the mean and the farthest pixel from mean, rmax-

4. Reduce the radius to ri and compute the new mean and variance (mi, ci) of all the

pixels residing inside this circle. If mi ̂  mp, shrink/inflate the circle by 5r. If mi

is fairly constant and mi ̂  mp (call the new radius r2 ), break up the cluster into

two: child-in and child-out.

5. Using the child-out as the parent cluster go to step 2. If in step 4, mi = mp, then

a terminal case, is reached in which case all the pixels in the cluster will belong to

child-in at that level and the iterative process ends.
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We called this technique, Color Image Segmentation by Hierarchical Mean Shift Approach

and the hierarchical structure is obtained by iteratively splitting the child-out cluster until

a terminal point is reached. At the end of the iterative clustering procedure, all the pixels

in the image must have been classified into groups or classes. The mean of each of the

classes (child-in) is computed and all the pixels in each class are assigned to the value

of the mean of their class to obtain segmentation result. The algorithm will be slightly

modified for shadow removal.

Finally, the dissertation did not address the issue of texture mapping of original color

of the input image unto the reconstructed shape. It is therefore being suggested to explore

the possibility of doing that as future work.
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APPENDIX A

Surface Reflectance and Radiometric Camera Models

A.l Lambertian Model

A Lambertian surface, which is also referred to as a perfectly diffuse reflector provides

radiance which is independent of the viewing direction. Hence, the surface appears equally

bright from all viewing directions. The amount of light reflected, I(a:,y; A) from a small

area, dA toward the viewer is directly proportional to the cosine of the angle between the

viewing direction and the normal vector. This may be expressed as

I{x,y,X) = aIo{X) {n{x,y) •v{x,y)) (A.l)

where

lo is the intensity of the light source, a is the albedo (0< a < l)and A is the wavelength

of the illuminant.

The popularity and simplicity of this model has lead to most common assumption

over the years in computer vision. Most reflectance dependent algorithms assume the

intensity distribution of diffuse reflection from inhomogeneous dielectric is Lambertian

[56]. If a surface is Lambertian, it follows that there is absence of specularity. The main

difficulty with this model is that most common objects display some specularity at a given

viewing/illumination angle combinations. This is the major motivation for other models.

A.2 Torrance and Sparrow Reflection Model

One of the most commonly used models, Torrance and Sparrow Reflection Model [57],

[58], assumes that the intensity of the reflected light I{x, y\ A) from a given surface consists

of two parts. The part which is dependent on the angle of reflection is called specular
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reflection, Is{x, y, A) and the other which is independent of angle of reflection is called the

diffuse or body reflection, Ib{x, y; A). Using this model, the radiance of the reflected light

which is a function of geometric scale factors and wavelength is given by

I{x,y,X) = Is{x,y;X) +lB{x,y,X) (A.2)

where I{x, y; A) = radiance of the reflected light. Since the spectral composition of reflected

hght is not dependent on the geometric conditions [58] for single light, eq(A.2) can be

rewritten as

I{x,y,X) = gs{x,y)Rs{><) + 9B{x,y)RBW (A.3)

where gs{x,y) and gB{x,y) are the geometric scale factors for specular and diffuse

reflections and

Is{x,y,X) = gs{x,y)Rs{X)

lB{x,y\X) = gB{x,y)RB{X)

where Rs{X) and Rb{X) may be defined by

Rs{X) = L(X)Ss(X)

Rb(X)^L(X)Sb(X)

Where -L(A) is defined as the spectral power distribution of the incident light and S the

spectral surface reflectance. Hence, eq(A.3) may be re-written as:

I(x,y;X) = gs(x,y)Z(X)Ss(X) + gB(x,y)L(X)SB(^) (A.4)

For multiple light sources of about the same spectral content, eq(A.4) can be rewritten

cLS a superposition of all light sources as;
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^Ii{x,y,X) = ̂{gs{3:,y)L{X)Ss{X))i + '^{gB{x,y)L{X)SB{X))i (A.5)
i=l t=l i=1

where n = the number of light sources.

Figure A.2 below illustrates image formation using multiple light sources. We have

chosen to use this model in this work. The motivation for this choice includes the simple

and flexible nature of the model. It works well on a wide range of materials and offers easy

separability of specular and difiuse components. Although the model has a disadvantage

that not all materials can be modeled, the vast majority of materials can be eflfectively

represented.

A.3 Radiometric Camera Models

The camera spectral responsivity, C(A) has the tendency to modify reflection model.

Using the form of Torrance and Sparrow Reflection Model given in eq(A.4), the model

modifies to:

I{x,y,X) = gsix,y)C{X)l,{X)Ss{X) + gB{x,y)C{X)'L{X)SB{X) (A.6)

The diagonal entries of C are Cr,Cg and cj. The above equation (eq(A.6)) may be referred

to as the quantum catch of the camera. The quantum catch of the camera is affected by

the camera non-linearity, which is also known as camera or system gamma. This brings

about the issue of gamma correction.

Gamma Correction

There is a non-linear relationship between a pixel value and its displayed intensity. Com

puter monitors have intensity to electrical response curve which is about 2.2 power func

tion. To illustrate this, consider a pixel of intensity i, (0 < i < 1), sent to a computer

monitor. The monitor displays this intensity as i^"^. The device (monitor) is therefore
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Figure A.2: The geometry of an image formation using multiple light sources LI,
L2 and L3

114



said to have a gamma of 2.2. For the intensity to be displayed correctly, the computer

monitor must be gamma corrected. Therefore, gamma correction may be defined as an

image processing algorithm that compensates for the non-linear effect of signal transfered

between electrical and optical devices [59]. The formula for gamma correction for a device

with a gamma factor of 2.2 is given by Shao [59]:

^display ^received

^display ^received

^display ^received

where R, G, B values are normalized to the range of [0,1]. To compensate for the nonlinear

relationship between intensity and display, the RGB data must be gamma corrected as

follows:

Rtransmit — Ryeceived

Gtransmit — ^receiued

Rtransmit Rreceived

Where P = The R, G, B values are also normalized to the range of [0,1]. The

compensation linearizes the displayed signals. Hence, the displayed signal becomes:

Rdisplay Rtransmit

=  iR'recei.edf-" (^-10)

Similar expressions hold for Gdisplay Bdisplay

A.4 Euler's Equation

The Euler equation corresponding to the functional (see Courant and Hilbert [60])

j J^F{x,y,n,ns:,ny)dxdy (A.ll)
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The Euler equation corresponding to the functional
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APPENDIX B

Clustering and Color Image Segmentation

A vast body of knowledge exists in the field of color image segmentation and a complete

review of this work is beyond the scope of this proposal. Two color segmentation schemes

are used in this work and are: Robust Analysis of Feature Spaces [40], K-Means clustering

technique [61], [62], [38], [39], [63].

B.l Robust Analysis of Feature Spaces

In the robust analysis of feature spaces technique[40], the image is transformed to

an isotropic space, the LUV space where dominant features (colors) correspond to high-

density regions. The transformation equations are shown in the appendix. The next stage

of the analysis of the featme space, Comaniciu et al[40] used a non-parametric method

called the Mean Shift Algorithm (MSA) [55] to estimate the density of gradients. In their

space, a sphere is used as a search window. The radius of the sphere defines the resolution

of the segmentation. The MSA iteratively shifts each data point to the average of data

points in its neighborhood until the center of each cluster is found. It may also be referred

to as a mode-seeking algorithm

B.2 Mean Shift Algorithm

Let p(x) be the probability density function of n-dimensional feature vectors, x and

a sphere (whose radius r defines the size of the so called search window) centered on x

and contains feature vectors y such that ||y — s|| < r . Define a vector z = y — x . If its

expected value, given x and is p, then /i is given by

117



fj. = E[z\ Ss]

= / {y-x)p{y\ Ss)dy
Jss

= / (B.l)
Jss p{y e Ss)

For sufficiently small sphere, S^, p{y e Ss) ̂p{S)Vs^

where Vs^ — volume of sphere.

Using the first order Taylor series approximation gives

p{y) = p{x) + {y- Vp(f) (B.2)

where Vp(rr) = gradient of probability density function. Substituting eq(B.2) into

eq(B.l) gives

{y-x){y-xf Vpjx)
P
_ f I {y-x)[y-xy Wp[x) \
" Is, [ Vs, p{S) ) y

Fukunaga [63] shows that the above integral could be reduced to

_ / \ Vp{x)
^  + 2y p{x)

Hence,

(B.3)

(B.4)

Notice that the mean shift vector is same as the difference between the local mean and

the center of the search window. The center of the high density region is deemed to be

attained when the mean shift becomes less than or equal to some threshold value. Further

details about the derivation can be found in [55], [40] and [63].

The question to be addressed here is having obtained the feature space, how does

one initiate the search for the centers of the high density regions. How does one ensure
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that the search commences from a point near the high-density region? The size of the

search window defines the segmentation resolution. The bigger the size of the window

(ie the radius of sphere) the lower the resolution becomes. Comaniciu et al[40] explained

how to go about these questions. The initial location of the search window is randomly

chosen and to ensure that the search begins from a point close to the high-density region,

a number of locations (about 25 pixels at a time) are chosen at random in the image

domain. At each location, the mean of 3x3 neighbors is computed and mapped into the

feature space. If the neighborhood of these pixels belongs to a large homogeneous region

of high probability, then the initial start point is deemed to have been found. The Mean

Shift Algorithm (MSA) is then used to locate the closest center of high-density region also

referred to as the mode. Ideal convergence is obtained when the mean shift is zero (this is

very difficult to realize in practice). The reference [40] regarded a mean shift of less than

0.1 to be adequate for good convergence.

At the mode, the pixels and their 8-connected neighbors yielding the feature vectors

inside the search window are deleted from both domains. The above procedure is repeated

until the number of feature vectors in the search window becomes less than a preset

threshold. Any color deemed significant in the image domain are extracted and then used
V

as initial feature palette for final feature palette. In the final palette, all the pixels that

make up the feature vectors inside the search windows are assigned to the color of the

window center without regard to the image information. For further information on how

this segmentation works, see [40].

B.3 Transformation from RGB to LUV

This equations below are used to transform from image domain displayed in RGB

format to a LUV feature space.
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" R '
G =

B

3.247

-0.972

0.057

-1.540

1.875

-0.205

-0.499

0.042

1.060

' X '
Y

Z

M

' X ' - " R '

Y — M-i G

Z
-

B

Where X, Y and Z are device independent tristimulus called the CIE special sets of

mathematical lights. The chromaticity coordinates x, y, and z are related to X, Y and Z

by

X
X  -

X + Y + Z

Y
y =

X + Y + Z

z = 1 — X — y

We can define another chromaticity coordinates u' and v' given by

u' -

V =

4X

X + 15Y + 3Z

9Y

X + 15Y + 3Z

The CIE LUV color space is thus defined as:

L* = 116 ( - 16 for (Jr ] > 0.008856

= 903.3 ( ̂ for 1 < 0.008856
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u* = 13L(u' - u'J

V* = UL{v' - O

where

u„ -
"  + 15Yn + SZn

9y„
V„ =
"  Xn + 15Yn + 2>Zn

as defined by [64]

The index n denotes the neutral white reference light. Using the CIE daylight standard

Des illuminant gives Y^ equal to 100. The other two tristimulus values Xn and Zn are

95.05 and 108.88 respectively. If Yn is normalized to 1, Xn and Zn are then 0.9505 and

1.0888 respectively. For neutral colors, u* = v* = 0. The steps for feature space analysis

are summarized in [40].

B.4 K-Means Clustering

This method is also referred to as K-means Partitional Clustering. The spectral content

of the pixels, the R-G-B values may be used as the main features for clustering multicolored

images. It essentially decomposes the data set into a set of disjoint clusters. It minimizes

a criteria function by assigning clusters to the peaks in the probability density function

or the global structure [65]. The algorithm is given by the following steps.

1. Choose K different initialization points which are indeed the initial input means.

2. For each pattern, determine which of the K cluster means it is closest to and assign

the pattern to that cluster.
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3. At the end of each iteration, compute the new mean for each of the K clusters or

classes.

4. Stop when no new pattern is being assigned to a cluster. Otherwise, repeat steps 2

and 3 above.

The measure of similarity used in this work is the Euclidean distance. The flow chart

that illustrates the algorithm is shown in flgure B.l below.

B.5 Color Segmentation using K-Means Technique

At the end of the iterative clustering procedure, all the pixels in the image must have

been classified into groups or classes according to the measure of similarity used which is

the Euclidean distance. The mean of each of the classes is computed and all the pixels in

each class are assigned to the value of the mean of the class. The number of classes which is

of course the number of clusters is defined by the value of K. Higher values of K gives more

number of cluster classes. The higher the K, the more and better the features extracted

becomes. Hence, K deflnes the segmentation resolution. The higher the resolution, the

better the 3D shape recovery becomes. This is because more of the representative colors

in image domain are more properly transformed with correct transformation matrix.
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Figure B.l: K-Means Flow Chart for Color Segmentation
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