2,924 research outputs found

    HSTREAM: A directive-based language extension for heterogeneous stream computing

    Full text link
    Big data streaming applications require utilization of heterogeneous parallel computing systems, which may comprise multiple multi-core CPUs and many-core accelerating devices such as NVIDIA GPUs and Intel Xeon Phis. Programming such systems require advanced knowledge of several hardware architectures and device-specific programming models, including OpenMP and CUDA. In this paper, we present HSTREAM, a compiler directive-based language extension to support programming stream computing applications for heterogeneous parallel computing systems. HSTREAM source-to-source compiler aims to increase the programming productivity by enabling programmers to annotate the parallel regions for heterogeneous execution and generate target specific code. The HSTREAM runtime automatically distributes the workload across CPUs and accelerating devices. We demonstrate the usefulness of HSTREAM language extension with various applications from the STREAM benchmark. Experimental evaluation results show that HSTREAM can keep the same programming simplicity as OpenMP, and the generated code can deliver performance beyond what CPUs-only and GPUs-only executions can deliver.Comment: Preprint, 21st IEEE International Conference on Computational Science and Engineering (CSE 2018

    Using the High Productivity Language Chapel to Target GPGPU Architectures

    Get PDF
    It has been widely shown that GPGPU architectures offer large performance gains compared to their traditional CPU counterparts for many applications. The downside to these architectures is that the current programming models present numerous challenges to the programmer: lower-level languages, explicit data movement, loss of portability, and challenges in performance optimization. In this paper, we present novel methods and compiler transformations that increase productivity by enabling users to easily program GPGPU architectures using the high productivity programming language Chapel. Rather than resorting to different parallel libraries or annotations for a given parallel platform, we leverage a language that has been designed from first principles to address the challenge of programming for parallelism and locality. This also has the advantage of being portable across distinct classes of parallel architectures, including desktop multicores, distributed memory clusters, large-scale shared memory, and now CPU-GPU hybrids. We present experimental results from the Parboil benchmark suite which demonstrate that codes written in Chapel achieve performance comparable to the original versions implemented in CUDA.NSF CCF 0702260Cray Inc. Cray-SRA-2010-016962010-2011 Nvidia Research Fellowshipunpublishednot peer reviewe

    A Similarity Measure for GPU Kernel Subgraph Matching

    Full text link
    Accelerator architectures specialize in executing SIMD (single instruction, multiple data) in lockstep. Because the majority of CUDA applications are parallelized loops, control flow information can provide an in-depth characterization of a kernel. CUDAflow is a tool that statically separates CUDA binaries into basic block regions and dynamically measures instruction and basic block frequencies. CUDAflow captures this information in a control flow graph (CFG) and performs subgraph matching across various kernel's CFGs to gain insights to an application's resource requirements, based on the shape and traversal of the graph, instruction operations executed and registers allocated, among other information. The utility of CUDAflow is demonstrated with SHOC and Rodinia application case studies on a variety of GPU architectures, revealing novel thread divergence characteristics that facilitates end users, autotuners and compilers in generating high performing code

    BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    Full text link
    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The general mathematical framework and robust algorithms are not limited to cryo-electron microscopy but can be generalized for electron tomography and other imaging experiments

    Performance and Power Analysis of HPC Workloads on Heterogenous Multi-Node Clusters

    Get PDF
    Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes, allowing for application optimizations. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. In particular, we show how the same analysis techniques can be applicable on different architectures, analyzing the same HPC application on a high-end and a low-power cluster. The former cluster embeds Intel Haswell CPUs and NVIDIA K80 GPUs, while the latter is made up of NVIDIA Jetson TX1 boards, each hosting an Arm Cortex-A57 CPU and an NVIDIA Tegra X1 Maxwell GPU.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-Blanc projects [17], grant agreements n. 288777, 610402 and 671697. E.C. was partially founded by “Contributo 5 per mille assegnato all’Università degli Studi di Ferrara-dichiarazione dei redditi dell’anno 2014”. We thank the University of Ferrara and INFN Ferrara for the access to the COKA Cluster. We warmly thank the BSC tools group, supporting us for the smooth integration and test of our setup within Extrae and Paraver.Peer ReviewedPostprint (published version

    Multi-Tenant Virtual GPUs for Optimising Performance of a Financial Risk Application

    Get PDF
    Graphics Processing Units (GPUs) are becoming popular accelerators in modern High-Performance Computing (HPC) clusters. Installing GPUs on each node of the cluster is not efficient resulting in high costs and power consumption as well as underutilisation of the accelerator. The research reported in this paper is motivated towards the use of few physical GPUs by providing cluster nodes access to remote GPUs on-demand for a financial risk application. We hypothesise that sharing GPUs between several nodes, referred to as multi-tenancy, reduces the execution time and energy consumed by an application. Two data transfer modes between the CPU and the GPUs, namely concurrent and sequential, are explored. The key result from the experiments is that multi-tenancy with few physical GPUs using sequential data transfers lowers the execution time and the energy consumed, thereby improving the overall performance of the application.Comment: Accepted to the Journal of Parallel and Distributed Computing (JPDC), 10 June 201
    • …
    corecore