
Multi-Tenant Virtual GPUs for Optimising Performance of a Financial
Risk Application

Prades, J., Varghese, B., Reano, C., & Silla, F. (2016). Multi-Tenant Virtual GPUs for Optimising Performance of
a Financial Risk Application. Journal of Parallel and Distributed Computing. DOI: 10.1016/j.jpdc.2016.06.002

Published in:
Journal of Parallel and Distributed Computing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-
nc-nd/4.0/which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

http://pure.qub.ac.uk/portal/en/publications/multitenant-virtual-gpus-for-optimising-performance-of-a-financial-risk-application(39aa350e-f63e-4f27-b86f-2ace28c883d4).html

Multi-Tenant Virtual GPUs for Optimising
Performance of a Financial Risk

Application
Javier Prades

Universitat Politècnica de València, Spain
japraga@gap.upv.es

Blesson Varghese
Queen’s University Belfast, UK

varghese@qub.ac.uk

Carlos Reaño
Universitat Politècnica de València, Spain

carregon@gap.upv.es

Federico Silla
Universitat Politècnica de València, Spain

fsilla@disca.upv.es

Accepted to the Journal of Parallel and Distributed Computing on 10 June 2016

Abstract

Graphics Processing Units (GPUs) are becoming popular accelerators in modern High-Performance Computing (HPC) clusters.
Installing GPUs on each node of the cluster is not efficient resulting in high costs and power consumption as well as
underutilisation of the accelerator. The research reported in this paper is motivated towards the use of few physical GPUs by
providing cluster nodes access to remote GPUs on-demand for a financial risk application. We hypothesise that sharing GPUs
between several nodes, referred to as multi-tenancy, reduces the execution time and energy consumed by an application. Two
data transfer modes between the CPU and the GPUs, namely concurrent and sequential, are explored. The key result from the
experiments is that multi-tenancy with few physical GPUs using sequential data transfers lowers the execution time and the
energy consumed, thereby improving the overall performance of the application.

I. Introduction

Hardware accelerators are achieving a prominent role
in modern High-Performance Computing (HPC) clus-
ters for making applications faster. This is evidenced
by four out of top ten supercomputers listed on
Top500 (http://top500.org) and the top ten supercom-
puters listed on Green500 (http://www.green500.org) in
November 2015 have employed hardware accelerators,
such as Graphics Processing Units (GPU). Incorporating
GPUs in large clusters allows for heterogeneity, thus
making it possible for an application to exploit the regu-

lar processor as well as the accelerator [1, 2].

Clusters can now be set up to employ a small number
of GPUs by providing applications shared access to re-
mote GPUs on-demand [3,4]. Such a set up is feasible on
a limited budget because not only are a few GPUs used
to provide acceleration, but also the energy consumed
is well justified since the GPUs are well utilised in the
cluster [5, 6]. This is possible as a result of maturing
GPU virtualisation technologies that facilitate virtual
GPUs (vGPUs) in a cluster. An application can request
Acceleration-as-a-Service [7] from one or many vGPUs.

1

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

Figure 1: Execution time of the financial application on multiple
local GPUs

One vGPU can reside on a physical GPU (pGPU), re-
ferred to as single tenancy, but is limiting in that multiple
applications cannot make use of the same pGPU since
it is exclusively locked for a single application. When
multiple vGPUs reside on the same pGPU, otherwise
known as multi-tenancy, either the same application has
access to a pool of vGPUs on the same pGPU or multiple
applications can share the same pGPU. We hypothesise
that using multi-tenancy can improve the performance
of an application.

Numerous challenges arise when multiple GPUs are
shared across a cluster for an application, of which
three are considered in this paper. The challenges are
addressed in this paper by exploring remote CUDA
(rCUDA) [8], a GPU virtualisation framework, for im-
proving the performance of a real-world case study
employed in the financial industry. The application typ-
ically runs in a cluster environment, but can hugely
benefit from GPU acceleration for deriving important
risk metrics in real-time. The benefit of executing the ap-
plication on multiple physical GPUs is shown in Figure 1.
We hypothesise that using a large number of vGPUs can
further optimise application performance. However, the
following three challenges and research questions arise,
which are addressed in this paper: (i) Data will need
to be transferred from the CPU to the vGPUs for com-
putations. However, data transfer will be restricted by
bottlenecks due to limited bandwidth which affects the
overall scalability of the application. Hence, “What data
transfer approaches can mitigate the effect of data bot-
tlenecks?” (ii) Multi-tenancy may degrade application
performance since the underlying hardware resource
is shared. This results in increased execution time and
consequently higher energy consumption. Hence, “How
can vGPUs be shared effectively to optimise applica-

tion performance and energy consumed?” (iii) Using
multi-tenancy an application can be deployed in multi-
ple ways. For example, an application can be executed
on 2 vGPUs residing on 1 pGPU or 8 vGPUs residing on
1 pGPU. These possibilities significantly increase with
multiple pGPUs. Each deployment option consumes
different amounts of energy and impacts the overall
execution time. Hence, “Can performance and energy
of an application be estimated in the multi-tenancy ap-
proach?”

To address the above challenges we propose two data
transfer approaches, namely concurrent and sequential,
for transferring data with the aim of mitigating the effect
of data bottlenecks. In the context of the financial appli-
cation, the sequential data transfer approach is expected
to improve performance since data transfers from the
CPU to the GPU and GPU computations can be over-
lapped for multiple pGPUs. The approach is further
extended for overlapping the data movement and com-
putation time for multiple vGPUs on the same pGPU
resulting in a further improvement in performance of
the application. The key result is that the financial appli-
cation can be executed under two seconds for deriving
risk metrics in an energy efficient manner on the same
hardware compared to single tenancy thus confirming
our initial hypothesis. Performance and energy con-
sumed by the application are modelled to determine the
combination of vGPUs on a pGPU that can maximise
performance and GPU utilisation and at the same time
minimise the energy consumed.

The key contributions of this research are: (i) investi-
gating the lack of scalability due to data transfer from
CPU to the GPU in the context of the financial risk ap-
plication, (ii) proposing two approaches to transfer data,
namely concurrent and sequential, (iii) evaluating the
above data transfer approaches in the context of single-
tenancy for overlapping computations and data transfer
of multiple pGPUs, (iv) developing an approach that
exploits multi-tenancy for overlapping computations
and data transfer of multiple virtual GPUs on the same
physical GPU to optimise the performance of the appli-
cation, (v) evaluating the performance of the application,
considering execution time, GPU utilisation and energy
consumed by the application, and (vi) developing a
mathematical model to derive deployment options for
the application by estimating performance and energy
of different combinations of virtual GPUs mapped onto
physical GPUs.

The remainder of this paper is organised as follows.
Section II highlights related work in the area of HPC
solutions for GPU virtualisation and financial risk appli-

2

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

cations. Section III briefly presents the rCUDA frame-
work. Section IV considers a financial risk application
for evaluating the feasibility of multi-tenancy for im-
proving performance. Section V presents the platform,
experiments performed and the key results obtained.
Section VI concludes this paper.

II. Related Work

High Performance Computing (HPC) solutions are ex-
ploited in the financial risk industry to accelerate the
underlying computations of applications. This reduces
overall execution times making such applications fit for
real-time use. Solutions range from small scale clusters
[9, 10] to large supercomputers [11, 12]. More recently,
hardware accelerators with multi-core and many-core
processors are employed. For example, financial risk ap-
plications are accelerated on Cell BE processors [13, 14],
FPGAs [15, 16] and GPUs [17, 18].

HPC clusters offering heterogeneous solutions by us-
ing hardware accelerators, such as GPUs, along with
processors on nodes are feasible [1, 2]. Clusters can be
set up to incorporate a GPU on each node. This is not
an efficient solution for accelerating an application be-
cause of the relatively high cost of GPUs, high power
consumption of nodes using GPUs and the under utilisa-
tion of GPUs (applications do not require acceleration of
GPUs during their entire execution). However, a more
efficient solution would be if nodes executing an ap-
plication can access GPUs when required. This can be
facilitated by GPU virtualisation. Currently there are no
solutions available for the financial risk industry to har-
ness the potential of GPU virtualisation. In this paper,
we investigate the use of virtual GPUs for a financial
risk application.

The mechanism of GPU virtualisation allows nodes
of a cluster that do not own a physical GPU for accel-
erating computations of applications that run on it to
remotely access GPUs. Acceleration is obtained as a
service seamlessly to a requesting node without being
aware of accessing remote GPUs. A single application
(running on a Virtual Machine (VM) or on a node of a
cluster without a hardware accelerator) benefits from
the acceleration of a remotely located single GPU or
multiple GPUs to reduce execution time. The rate of
GPU utilisation can be increased since multiple applica-
tions can access the same GPU. This in turn reduces the
number of GPUs that need to be installed in a cluster,
and reduces the cost spent on energy consumption, cool-
ing, physical space and maintenance, usually referred
to as the Total Cost of Ownership (TCO). Furthermore,

the source code of an application usually does not need
any modification to reap the benefits of virtual GPUs.

GPU virtualisation is usually applied at the high-level
Application Programming Interface (API) of GPUs be-
cause low level protocols used to interact with accelera-
tors are proprietary and, additionally, not publicly avail-
able. Hence, APIs such as CUDA [19] or OpenCL [20]
are used. In this paper we use CUDA (Compute Unified
Device Architecture) for an application that is used in
the financial risk industry.

There are several remote GPU virtualization frame-
works supporting CUDA. GridCuda [21] supports
CUDA 3.2, although it is not publicly available.
vCUDA [22] supports the CUDA 3.2 and implements
an unspecified subset of the CUDA runtime API. The
communication protocol between the node that executes
the application and the remote GPU has a considerable
overhead, because of the costs incurred during encod-
ing and decoding, which results in a noticeable drop of
overall performance. GViM [23] is based on CUDA 1.1
and does not implement the entire runtime API. Fur-
thermore, GViM is designed to be used on VMs so that
applications executed on them can access GPUs located
in the real host; GViM does not support the access of
GPUs in remote nodes. gVirtuS [24] supports CUDA
2.3 an again implements only a small portion of the
runtime API. For example, in the case of the memory
management module, it implements only 17 out of the
37 available functions. Although it is intended mainly
to be used by VMs for accessing real GPUs located in
the same node, it facilitates TCP/IP communications
between clients and servers, thus allowing the access to
GPUs located in other nodes. DS-CUDA [25] supports
CUDA 4.1 and includes specific communication support
for InfiniBand Verbs, thus reducing the overhead of com-
munications between the node executing the application
and the node owning the GPU. However, DS-CUDA
is limited in that it does not allow data transfers with
pinned memory and supports maximum data transfer
of 32 MB.

The rCUDA framework [8] is binary compatible with
CUDA 6.5 and implements the entire CUDA Runtime
and Driver APIs (with the exception of graphics func-
tions). It provides support for the libraries included
within CUDA, such as cuBLAS or cuFFT. In addition, a
number of underlying interconnection technologies are
supported by making use of a set of runtime-loadable,
network-specific communication modules (currently
TCP/IP and InfiniBand). Concurrent virtualization ser-
vices are made available to remote clients simultane-
ously demanding GPU acceleration by managing an

3

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

independent GPU context for each client. rCUDA per-
forms better than other publicly available GPU virtu-
alisation frameworks (considered in Section III) and is
therefore chosen for this research.

III. rCUDA

The rCUDA framework, otherwise referred to as remote
CUDA, is used in the research presented in this pa-
per. As shown in Figure 2, the rCUDA framework is a
client-server architecture. Numerous Clients executing
applications that can benefit from hardware acceleration
can concurrently access Servers that have physical GPUs
on them. The client makes use of the remote GPU to
accelerate part of the software code of the application,
referred to as kernel, running on it. The framework
transparently handles the data management and the
execution management; the transfer of data between
the local memory of the client, the local memory of the
server and the GPU memory, and the remote execution
of the kernel.

Figure 3 shows the hardware and software stack of the
client and the rCUDA server. The client nodes that exe-
cute the application (shown in Figure 2), make use of the
rCUDA Client Library, which is a wrapper around the
CUDA Runtime and Driver APIs. The library is respon-
sible for (i) intercepting calls made by the application to
a CUDA device, (ii) processing them for forwarding the
calls to the remote rCUDA server, and (iii) retrieving the
results of the calls from the rCUDA server. On the other
hand, each GPU server has an rCUDA daemon running
on it which receives CUDA requests and executes them
on the physical GPU.

An efficient communication protocol is developed for
seamless execution between rCUDA clients and servers.
This protocol, using either regular TCP/IP sockets or
the InfiniBand Verbs API when this high performance
interconnect is available in the cluster, is designed to
provide lightweight support to the remote CUDA oper-
ations provided by the external accelerator. The CUDA
commands intercepted by the rCUDA client wrapper

Figure 2: Distributed acceleration architecture facilitated by
rCUDA

Figure 3: rCUDA client and server software/hardware stack

are encapsulated into messages in the form of one or
more packets that travel across the network towards the
rCUDA server. The format of the messages depends
on the specific CUDA command transported. In gen-
eral, the messages have low network overheads. Every
CUDA command forwarded to the remote GPU server
is followed by a response message, which acknowledges
the success/failure of the operation requested on the
remote server.

Figure 4 shows an example of the communication
between the rCUDA client and the rCUDA daemon
executing on the remote server. In this example, the
following steps occur:

Step 1 - Initialise: The client establishes connection with
the remote server automatically, and the request for ac-
celeration services is intercepted and the GPU kernel
along with related information such as statically allo-
cated variables are sent to the server.

Step 2 - Allocate Memory: Based on the client request
device memory is allocated on the GPU for data that
will be required by the GPU kernel. The cudaMalloc

requests are intercepted by the client and forwarded to
the remote server.

Step 3 - Transfer Data to Device: All data required by the
kernel is transferred from the host to the remote device.

Step 4 - Execute Kernel: The GPU kernel is executed
remotely on the rCUDA server.

Step 5 - Transfer Data to Host: After the execution of the
kernel on the remote server the data is transmitted back
to the host.

4

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

Figure 4: Communication sequence between a client and the
rCUDA server daemon

Step 6 - Release Memory: The memory allocated on the
remote device is released.

Step 7 - Quit: In this final step the client application stops
communicating with the remote server. The rCUDA
daemon executing on the server stops servicing the
execution and releases the resources associated with the
execution.

Figure 5 compares the performance of publicly avail-
able GPU virtualisation frameworks, namely DS-CUDA,
gVirtuS and rCUDA by using the bandwidthTest bench-
mark from the NVIDIA CUDA Samples [26]. Our choice
of selecting rCUDA for this research is based on its su-
perior performance over other frameworks as shown in

the figure. The performance of CUDA 6.5 is used as the
baseline reference. Bandwidth is used as a measure for
comparing performance since it is a limiting factor for
data transfers between host (CPU) memory and device
(GPU) memory (data size can be in the order of MB) and
affects the performance of the virtualisation frameworks.
Other metrics such as latency are less relevant in this
context.

The test-bed employed for carrying out the bandwidth
performance experiments is presented later in Section i.
Virtual Machine (VMs) were not employed to simplify
the experiments. The bandwidth test was run on a na-
tive domain and the server side of the virtualisation
framework used was executed in a remote node. The In-
finiBand FDR network technology was used to connect
both nodes. The rCUDA and DS-CUDA frameworks
made use of the InfiniBand Verbs API and gVirtuS made
use of TCP/IP over InfiniBand since it cannot take ad-
vantage of the InfiniBand Verbs API.

The three virtualisation frameworks support different
versions of CUDA which had to be used for obtain-
ing the bandwidth benchmarks. DS-CUDA is compat-
ible with CUDA 4.1, gVirtuS supports CUDA 2.3 and
rCUDA supports CUDA 6.5. In our experience, em-
ploying different CUDA versions has minimal impact
on bandwidth performance and therefore no additional
noise was introduced by using different versions.

The following observations are made from Figure 4.
Firstly, CUDA achieves highest performance when
pinned memory is used (refer Figure 5a and Figure 5b),
achieving nearly a bandwidth of 6000 MB/s. The band-
width is however reduced for copies using pageable
memory (refer Figure 5c and Figure 5d).

Secondly, Figure 5 shows that rCUDA outperforms
DS-CUDA and gVirtuS. For copies using pageable mem-
ory rCUDA even performs better than CUDA; this has
been previously reported, which is due to the use of
an efficient pipelined communication between rCUDA
clients and servers based on the use of internal and
pre-allocated pinned memory buffers [8]. rCUDA and
DS-CUDA support InfiniBand Verbs API and therefore
have access to large bandwidths which are available on
this interconnect. However, DS-CUDA has relatively
poor performance when compared to rCUDA. There-
fore, it is assumed that both frameworks manage the
InfiniBand interconnect differently. DS-CUDA neither
supports memory copies larger than 32MB nor pinned
memory. The performance of gVirtuS is significantly
lower than the other frameworks. It may be immediately
inferred that this is because TCP/IP is used and has a
lower bandwidth in comparison to InfiniBand Verbs.

5

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

(a) Host pinned memory to device memory (b) Device memory to host pinned memory

(c) Host pageable memory to device memory (d) Device memory to host pageable memory

Figure 5: Comparison of bandwidth for pinned memory and pageable memory of rCUDA, DS-CUDA and gVirtuS using CUDA as a
baseline reference (DS-CUDA does not support pinned memory)

However, using the iperf tool [27], TCP/IP over Infini-
Band FDR provides approximately 1190 MB/s, which is
a noticeably larger bandwidth than the one achieved by
gVirtuS. Therefore, the poor performance of gVirtuS may
be due to the inefficient handling of communication.

IV. Financial Risk Application

A candidate application that can benefit from
Acceleration-as-a-Service (AaaS) in HPC clusters is in-
vestigated in this section. We present such an application
employed in the financial risk industry, referred to as
‘Aggregate Risk Analysis’ [28] for validating the feasibility
of our proposed multi-tenancy approach. The analysis
of financial risk is underpinned by a simulation that
is computationally intensive. Typically, this analysis is
periodically performed on a routine basis on production

clusters to derive important risk metrics. Such a set
up is sufficient when the analysis does not need to be
performed outside routine.

Risk metrics will need to be obtained in real-time,
such as in an online pricing scenario, in addition to
routine executions. In such settings, a number of input
parameters to the analysis will need to be varied to
satisfy the customer. This generates a large number of
requests to execute the analysis multiple times based
on the complexity of the client’s portfolio. It may not
be feasible to furnish all these requests generated by
single or multiple clients; it will be impossible to quickly
obtain a large set of resources on an in-house cluster
already provisioned for executing other routine jobs.
Here, GPUs can play an important role in furnishing a
large number of requests.

While GPUs can provide a feasible solution, employ-

6

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

ing a large number of GPUs to furnish bursts of re-
quests will be expensive. As considered in Section I
virtual GPUs are pragmatic and cost effective to min-
imise under utilisation. In this context, we leverage the
acceleration offered by virtual GPUs in an HPC cluster
to develop a faster application fit for use in real-time set-
tings. The rCUDA framework suits such an application
because minimal changes need to be brought about to
the production cluster and the acceleration required for
the analysis is obtained as a service from a remote host.
The analysis has previously been investigated in the
context of many-core architectures [29], but we believe
virtual GPUs can be a better option.

Aggregate risk analysis is performed on a portfolio
of risk held by an insurer or reinsurer and provides
actuaries and decision makers with millions of alternate
views of catastrophic events, such as earthquakes, that
can occur and the order in which they can occur in a
year. To obtain millions of alternate views, millions of
trials are simulated with each trial comprising a set of
possible future earthquake events and the probable loss
for each trial is estimated.

i. Input and Output Data

Three data tables are required for the analysis, which
are as follows:

i. Year Event Table, which is a database of pre-
simulated occurrences of events from a catalogue of
stochastic events that is denoted as YET. Each record in
a YET called a ‘trial’, denoted as Ti, represents a possible
sequence of event occurrences for any given year. The
sequence of events is defined by an ordered set of tuples
containing the ID of an event and the time-stamp of its
occurrence in that trial Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}.

The set is ordered by ascending time-stamp values. A
typical YET may comprise thousands to millions of tri-
als, and each trial may have approximately between 800
to 1500 ‘event time-stamp’ pairs, based on a global event
catalogue covering multiple perils. The representation
of the YET is shown in Equation 1, where i = 1, 2, . . .
and k = 1, 2, . . . , 1500.

YET = {Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}} (1)

ii. Event Loss Tables, which is a representation of col-
lections of specific events and their corresponding losses
with respect to an exposure set denoted as ELT. Each
record in an ELT is denoted as ELi = {Ei, li} and the
financial terms associated with the ELT are represented
as a tuple I = (I1, I2, . . .).

A typical aggregate analysis may comprise 10,000
ELTs, each containing 10,000-30,000 event losses with
exceptions even up to 2,000,000 event losses. The ELTs
can be represented as shown in Equation 2, where i =
1, 2, . . . , 30, 000.

ELT =

{
ELi = {Ei, li},
I = (I1, I2, . . .)

}
(2)

iii. Portfolio, which is denoted as PF and con-
tains a group of Programs, P represented as PF =
{P1, P2, . . . , Pn} with n = 1, 2, . . . , 10.

Each Program in turn covers a set of Layers, denoted
as L, cover a collection of ELTs under a set of layer
terms. A single layer Li is composed of two attributes.
Firstly, the set of ELTs E = {ELT1, ELT2, . . . , ELTj}, and
secondly, the Layer Terms, denoted as T = (T1, T2, . . .).

A typical Layer covers approximately 3 to 30 individ-
ual ELTs and is represented as shown in Equation 3,
where j = 1, 2, . . . , 30.

L =

{
E = {ELT1, ELT2, . . . , ELTj},
T = (T1, T2, . . .)

}
(3)

The output of the analysis is a loss value associated
with each trial of the YET. A reinsurer can derive
important portfolio risk metrics such as the Probable
Maximum Loss (PML) [30] and the Tail Value-at-Risk
(TVaR) [31] which are used for both internal risk man-
agement and reporting to regulators and rating agencies.
Furthermore, these metrics flow into a final stage of the
risk analytics pipeline, namely Enterprise Risk Manage-
ment, where liability, asset, and other forms of risks are
combined and correlated to generate an enterprise wide
view of risk.

ii. Algorithm and GPU Implementation

Given the above three inputs, Aggregate Risk Analysis
is shown in Algorithm 1. The data tables, YET, ELT and
PF, are loaded into host (CPU) memory. The analysis
is performed for each Layer and for each Trial in the
YET and a Year Loss Table (YLT) is produced. In this
paper, we assume a Portfolio comprising one Program
and one Layer, and therefore the for loops of lines 1 and
2 iterate once. If there are N available devices (GPUs),
then the YET is split to N smaller YETs, represented as
YETi, where i = 1, 2, . . . , N.

There are two functions that facilitate device execu-
tion. The first function TransferDataToDevice copies
YETi and the ELT to the device memory as shown in
Algorithm 2.

7

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

Algorithm 1: Aggregate Risk Analysis

Input : YET, ELT, PF
Output : YLT

1 for each Program, P, in PF do
2 for each Layer, L, in P do
3 Split YET to YETi, where i = 1, 2, . . . , N
4 for each i do
5 TransferDataToDevice (i, YETi, ELT)
6 LaunchDeviceKernel (i)
7 end
8 end
9 end

10 Populate YLT from YLTi, where i = 1, 2, . . . , N
11 return

The second function LaunchDeviceKernel executes
the function on the device as shown in Algorithm 3.
Each event of a trial and its corresponding event loss in
the set of ELTs associated with the Layer is determined.
A set of contractual financial terms (I) are applied to
each loss value of the Event-Loss pair extracted from an
ELT to the benefit of the layer. The event loss for each
event occurrence in the trial, combined across all ELTs
associated with the layer, are subject to further financial
terms (T) [28].

Two occurrence terms, namely (i) Occurrence Reten-
tion, TOccR, which is the retention or deductible of the
insured for an individual occurrence loss, and (ii) Oc-
currence Limit, TOccL, which is the limit of coverage
the insurer will pay for occurrence losses in excess of
the retention are applied. Occurrence terms are appli-
cable to individual event occurrences independent of
any other occurrences in the trial. The event losses net
of occurrence terms are then accumulated into a single
aggregate loss for the given trial. The occurrence terms
are applied as lT = min(max(lT − TOccR), TOccL).

Two aggregate terms, namely (i) Aggregate Retention,
TAggR, which is the retention or deductible of the in-
sured for an annual cumulative loss, and (ii) Aggregate

Algorithm 2: TransferDataToDevice Function

Input : i

1 Select device i
2 Copy YETi, ELT to device i
3 return

Algorithm 3: LaunchDeviceKernel Function

Input : i
Output : YLTi

1 Select device i
2 for each Trial, T, in YETi do
3 for each Event, E, in T do
4 for each ELT covered by L do
5 Lookup E in the ELT and find

corresponding loss, lE
6 Apply Financial Terms to lE
7 lT ← lT + lE
8 end
9 Apply Financial Terms to lT

10 end
11 end
12 return

Limit, TAggL, which is the limit or coverage the insurer
will pay for annual cumulative losses in excess of the
aggregate retention are applied. Aggregate terms are
applied to the trial’s aggregate loss for a layer. The ag-
gregate loss net of the aggregate terms is referred to as
the trial loss or the year loss. The aggregate terms are
applied as lT = min(max(lT − TAggR), TAggL).

A single thread is employed for the computations of
each trial of the application. ELTs corresponding to a
Layer were implemented as direct access tables to facili-
tate fast lookup of losses corresponding to events. Each
ELT is implemented as an independent table; therefore,
in a read cycle, each thread independently looks up its
events from the ELTs. All threads within a block access
the same ELT. The device global memory stores all data
required for the analysis. Chunking, which refers to
processing a block of events of fixed size (or chunk size)
for the efficient use of shared memory is employed to
optimise the implementation; the computations related
to the events in a trial and for applying financial terms
benefit from chunking. The financial terms are stored
in the streaming multi-processor’s constant memory.
In this case, chunking reduces the number of global
memory update and global read operations.

In this paper, the implementation of fine-grain
parallelism in LaunchDeviceKernel is not the fo-
cus. Instead, the optimisation of performance and
efficiency of resource utilisation by managing the
two functions, namely TransferDataToDevice and
LaunchDeviceKernel on virtual GPUs is considered and
reported in the next section.

8

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

V. Evaluation

In this section we optimise the performance of the finan-
cial risk application to reduce its execution time such
that real-time response can be achieved. To this end
we present (i) the hardware platform on which the ex-
periments are performed and, (ii) the use of the remote
GPU virtualisation framework, and (iii) an approach for
transferring data from a CPU to GPUs with the aim of
reducing the execution time.

i. Platform

The experimental platform employed in this research
comprises 1027GR-TRF Supermicro nodes. Each node
contains two Intel Xeon E5-2620 v2 processors, each
with six cores, operating at 2.1 GHz and 32 GB of DDR3
SDRAM memory at 1600 MHz. Each node has a Mel-
lanox ConnectX-3 VPI single-port InfiniBand adapter
(InfiniBand FDR) as well as a Mellanox ConnectX-2 VPI
single-port adapter (InfiniBand QDR). The nodes are
connected either by a Mellanox switch MTS3600 with
QDR compatibility (a maximum rate of 40Gb/s) or by
a Mellanox Switch SX6025, which is compatible with
InfiniBand FDR (a maximum rate of 56Gb/s). One
NVIDIA Tesla K20 GPU is available for acceleration on
each node. Additionally, one SYS7047GR-TRF Super-
micro server with identical processors was populated
with 4 NVIDIA Tesla K20 GPUs and 128 GB of DDR3
SDRAM memory at 1600MHz, to serve as a local server
for the purpose of comparison. The CentOS 6.4 operat-
ing system was used, and the Mellanox OFED 2.4-1.0.4
(InfiniBand drivers and administrative tools) was used
at the servers along with CUDA 6.5.

ii. Application Scalability

As presented in Section I the use of multiple GPUs re-
duces the execution time of the application by evenly
distributing computations across the GPUs assigned to
the application. However, a closer look at the perfor-
mance as shown in Figure 1 highlights that the scalabil-
ity of the application as the number of GPUs increases
is sub-linear. Table 1 is the result of executing the appli-
cation on the Supermicro SYS7047GR-TRF server using
CUDA with up to four GPUs. The normalised execution
time indicates that perfect scalability is not achieved.
For example, when two GPUs are used the normalised
execution time should be 0.5 instead of 0.506 and simi-
larly when four GPUs are employed 0.25 is expected as
against 0.261. The offset of execution time with respect

1 2 4
0

2

4

6

8

10

12

1.378 0.76
0.467

9.55

4.77

2.39

Computation on GPU

Data Transfer

GPUs

Ti
m

e
 (

s)

Figure 6: Computation and data transfer times for the financial risk
application when executed on single and multiple GPUs
with CUDA

to perfect scalability as a reference increases with the
number of GPUs involved in the computations.

To account for sub-linear scalability further investiga-
tions were carried out. The time taken for computations
on the GPUs and the time taken for transferring data to
the GPUs (1, 2, and 4 GPUs) were considered as shown
in Figure 6. The GPU computations take most of the
execution time of the application (87.39%, 86.25%, and
63.65% of the total application execution time when 1, 2,
and 4 GPUs are used respectively). The GPU computa-
tions scale in a perfect manner as the number of GPUs
available to the application is increased. However, the
time taken for data transfer does not scale well and ac-
counts for 12.6%, 13.74%, and 16.34% of total execution
time when 1, 2, and 4 GPUs are used, respectively.

At first glance, it can be assumed that the increase in
data transfer time may be due to the lower communica-
tion bandwidth of CUDA for transfers of small chunks
of data (refer Figure 5c and Figure 5d). When pageable
memory is transferred the attained bandwidth for data
smaller than 10 MB is significantly reduced. Therefore,
given that the size of input data transferred to each GPU
is progressively reduced as the number of GPUs in-
creases, then the input data may be smaller than 10 MB
and thus the effective bandwidth for moving data to the
GPUs is reduced in practice. However, in the case of our
application the initial data size is 4 GB and when this
data is shared among four GPUs the data transferred to
each GPU is larger than 10 MB. Hence, the data transfer
to the GPUs is performed at full bandwidth.

A closer look at the application reveals that the YET
data structure (4 GB) presented in Section IV is uni-
formly split between the GPUs for computations. How-

9

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

Table 1: Scalability of the financial risk application when executed using CUDA

No. of GPUs
1 GPU 2 GPUs 4 GPUs

Total execution time 10.928 5.53 2.857
Normalised execution time 1 0.506 0.261
Execution time with perfect scalability 10.928 5.464 2.732
Offset with respect to perfect scalability 0 0.066 0.125
% offset with respect to perfect scalability 0 1.2% 4.57%

ever, the ELTs and PF data structures (120 MB and 4 MB)
are not split between the GPUs, instead are transferred
fully to each GPU. Consequently, the total data move-
ment to GPUs increases which is shown in Figure 7.
Excluding the ELTs, the data that is not split between
the GPUs is less than 10 MB resulting in a lower band-
width for transferring this data requiring an additional
2.6 milliseconds. However, this cannot fully account for
sub-linear performance.

One important reason for the degradation of perfor-
mance is data transfers to all GPUs are concurrently
performed. Although each GPU is located in a differ-
ent PCIe link, all data is extracted from main memory,
which results in a bottleneck. This memory bottleneck
is highlighted in Figure 8, which shows the bandwidth
attained for each individual data copy when several
data transfers are carried out concurrently to different
destination GPUs by a single memory controller.

We summarise that for the financial risk application
executing on multiple GPUs data transfers do not scale
perfectly as the computations for two reasons. Firstly,
there are input data structures that cannot be split be-
tween the GPUs and need to be copied onto each GPU
creating an overhead. Secondly, concurrent data trans-
fers from the CPU main memory to GPUs result in a
bottleneck at the memory controller.

iii. Reducing Execution Time Using rCUDA

Current servers are constrained in the number of GPUs
that can be accommodated on them1. We believe remote
GPU virtualisation (in this research rCUDA is employed)

1Manufacturers, such as Cirrascale and Supermicro, have inte-
grated up to 8 GPU cards in a single server. However, these are
exceptions and costly options. Moreover, there are performance bot-
tlenecks since the GPUs are usually grouped as a set of four cards
that share a single PCIe x16 link with a processor socket. This results
in slower communication between main memory and the GPUs. Per-
formance is further degraded when a GPU card comprises multiple
devices.

is an appropriate mechanism to make a large number
of GPUs available to an application. Figure 9a and Fig-
ure 9b present the performance of the application using
the QDR InfiniBand and the FDR InfiniBand networks
respectively for up to 16 GPUs.

Figure 9 indicates that the computation times when
using rCUDA on 1, 2, and 4 GPUs are the same as
shown in Figure 6 using CUDA. This is expected given
that the computation time on the GPU is independent of
whether it is on the same node as the application or on
a remote node. With increasing number of GPUs there
is perfect scalability. When 16 GPUs are employed, the
computation time is less than one second (0.62 seconds)
making it possible to do an industry size simulation in
real-time.

Two observations are made regarding data transfers.
Firstly, when one remote GPU is used, the data transfer
time using rCUDA is better than using CUDA (CUDA
requires 1.378 seconds whereas rCUDA takes 1.23 sec-
onds with QDR InfiniBand and 0.68 seconds with FDR
InfiniBand). This lower transfer time as considered in
Figure 5c is because rCUDA obtains more bandwidth
than CUDA by using pageable memory. The improve-
ment of communication performance is seen in Figure 9b
for 2 GPUs.

Secondly, data transfer using rCUDA follows a differ-
ent trend to CUDA. For CUDA the data transfer times
to each GPU reduced as the number of GPUs increased
(refer Figure 6). On the contrary, rCUDA time increases
when both QDR and FDR InfiniBand are used. This is
not surprising since the reasons for sub-linear scalability
of data transfer time considered in the previous section
is applicable for rCUDA. In this case, the bandwidth
bottleneck is the InfiniBand card in the cluster node exe-
cuting the application, which is a single communication
link for all the GPUs. This bottleneck is highlighted in
Figure 10.

Figure 10 shows the bandwidth achieved for individ-

10

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

(a) Data transferred to each GPU (b) Total data transferred to all GPUs

Figure 7: Amount of data transferred during the execution of the financial risk application

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

One Data Transfer
Two Simultaneous Data Transfers
Four Simultaneus Data Transfers

Amount of Data (MB)

B
an

dw
id

th
 (

M
B

/s
)

Figure 8: Attained bandwidth when concurrent data transfers to
GPUs are performed. Source data is located in the same
memory bank.

ual data transfer to a different remote GPU when multi-
ple transfers are executed concurrently. The bandwidth
for each transfer is proportional to the number of data
movement operations in progress. In addition to the
previous observations that result in an increase of data
transfer times, there are a large number of cudaMalloc()
functions that are invoked prior to the data transfer (the
memory allocation time is included in the data transfer
time). In rCUDA, memory allocations for a large num-
ber of data structures on remote GPUs requires 2.7 mil-
liseconds with FDR InfiniBand (compared to 1.7 millisec-
onds in CUDA on a local GPU) and 2.67 milliseconds
with QDR InfiniBand (lower time due to low latency,
despite reduced bandwidth [32]). Therefore, when a
large number of GPUs are used by an application the
time required for memory allocations can increase up
to 43.2 milliseconds for 16 remote GPUs; this is 4.2% of

the total data transfer time.
The use of rCUDA allows to leverage a large number

of GPUs to speed up the application despite poor per-
formance for data transfers. The total execution time
is reduced from 2.86 seconds when using local GPUs
on CUDA to 1.66 seconds when using remote GPUs on
rCUDA. Reducing the total execution time enables the
application to provide a solution in real-time.

iv. Mitigating the Impact of Data Transfers in
rCUDA

In this section, we consider two data transfer modes,
namely concurrent and sequential, and further develop
an approach based on multi-tenant GPUs in rCUDA.

iv.1 Concurrent vs Sequential Data Transfers

Figure 11a shows the life cycle of execution of a real
application using rCUDA with four remote GPUs and
FDR InfiniBand. Each cell represents execution time
of 35 milliseconds. This corresponds to the four GPU
execution shown in Figure 9b. The same amount of data
is moved to the four GPUs concurrently by interleaving
across the network and the remote GPUs start compu-
tations at the same time approximately. However, from
Figure 10 it was noted that the bandwidth achieved is
inversely proportional to the number of multiple data
transfers concurrently performed which results in de-
grading performance.

An alternate method is shown in Figure 11b. Data to
the first GPU is transferred without sharing the band-
width for the remaining three data streams. Since there
is no competition for bandwidth it only takes a quarter

11

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

(a) On QDR InfiniBand (b) On FDR InfiniBand

Figure 9: Scalability of the financial risk application when executed with rCUDA.

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

One Data Transfer
Two Simultaneous Data Transfers
Four Simultaneus Data Transfers

Amount of Data (MB)

B
an

dw
id

th
 (

M
B

/s
)

(a) On QDR InfiniBand

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

One Data Transfer
Two Simultaneous Data Transfers
Four Simultaneus Data Transfers

Amount of Data (MB)

B
an

dw
id

th
 (

M
B

/s
)

(b) On FDR InfiniBand

Figure 10: Bandwidth attained for multiple data transfers concurrently to different remote GPUs using rCUDA.

of the time required when data is concurrently trans-
ferred (shown in Figure 11a). Computations on the
first GPU start while data is transferred to the second
GPU. In this manner, data transfer is performed on fully
available network bandwidth. This is referred to as the
sequential data transfer method.

Data is transferred at full network bandwidth and
there is an overlap with GPU computations in the se-
quential data transfer approach. However, it is noted
that the execution time is not reduced since the fourth
GPU begins its computations when it would in concur-
rent data transfers. Figure 12 shows the GPU utilisation,

12

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

GPU 0
GPU 1
GPU 2
GPU 3

Idle GPU Data Transfer GPU Computation

(a) Concurrent data transfers

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

GPU 0
GPU 1
GPU 2
GPU 3

Idle GPU Data Transfer GPU Computation

(b) Sequential data transfers

Figure 11: Communication approaches for transferring data to GPUs.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

125

250

375

500

625

750

875

1000

1125

1250Power
Energy
Utilization
Avergage Utilization

Time (s)

U
til

iz
at

io
n

 %

P
ow

er
 (

W
)

or
 E

ne
rg

y
(W

s)

(a) Concurrent

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

125

250

375

500

625

750

875

1000

1125

1250Power
Energy
Utilization
Avergage Utilization

Time (s)

U
til

iz
at

io
n

 %

P
ow

er
 (

W
)

or
 E

ne
rg

y
(W

s)

(b) Sequential

Figure 12: GPU utilisation, power and energy consumption of con-
current and sequential data transfers to GPUs consid-
ered in Figure 11

power and energy consumption of concurrent and se-
quential data transfers to GPUs. The average values of
the four GPUs considered in Figure 11 are used. The
Y-axis on the left indicates GPU utilisation and the Y-
axis on the right shows power (in Watts) and energy
(in Watts per second, denoted as Ws in the figure) con-
sumed. The power and energy of GPUs are measured
instead of the cluster since multiple GPU configurations
(n GPUs per node) could be employed, which results in
different energy measurements. There are no gains in
the energy consumed and very little difference in GPU
utilisation for both concurrent and sequential transfers.

Regardless, in this research sequential data transfer is

foundational in developing an optimised approach for
executing the application using remote GPUs which is
based on multi-tenancy of virtual GPUs.

iv.2 Multi-tenancy Approach

The key concept of the multi-tenancy approach is based
on the fact that current GPUs perform kernel executions
and DMA (Direct Memory Access) operations concur-
rently. If it were possible to move data to a GPU the
same time it was executing a kernel, there could be gains
in further improving the performance of the executing
application.

This can be facilitated by a multi-tenancy approach
in which a number of remote GPUs (or virtual GPUs
referred to as vGPUs) reside on or are mapped onto the
same physical GPU (pGPU)2. Figure 13 shows the con-
cept of multi-tenancy when 2 and 4 vGPUs are mapped
to a pGPU.

When 2 vGPUs are mapped on to a pGPU as shown in
Figure 13a 8 GPUs are available to the application (4 pG-
PUs are used). Input data will be split such that 8 GPUs
will be used for computations. The initial data transfer
is shown as “Data Transfer” followed by computations by
the first vGPU labelled as “1st vGPU ComputationÂt’Ât’.
After transferring data in the 12th time step, there are
four more vGPUs that will require their input data. Data
transferred to the remaining four vGPUs beginning at

2Multi-tenancy is achieved on rCUDA by setting two en-
vironment variables prior to application execution, namely
RCUDA_DEVICE_COUNT and RCUDA_DEVICE_j. The first vari-
able indicates the number of GPUs accessible to the ap-
plication. The second variable indicates the cluster node
in which the jth GPU is located. For example, “export
RCUDA_DEVICE_COUNT=2” when 2 GPUs are assigned to the
application and “export RCUDA_DEVICE_0=192.168.0.1” and
“export RCUDA_DEVICE_1=192.168.0.2”. The server of the
RCUDA_DEVICE_j variables need to point to the same node. Hence,
the application does not require to be modified to accommodate multi-
tenancy using rCUDA.

13

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

GPU 0
GPU 1
GPU 2
GPU 3

Idle GPU Data Transfer 1st vGPU Computation 2nd vGPU Computation Overlapped Communication

(a) 2 vGPUs per GPU

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

GPU 0
GPU 1
GPU 2
GPU 3

Idle GPU Data Transfer 1st vGPU Computation 2nd vGPU Computation 3rd vGPU Computation 4th vGPU Computation Overlapped Communication

(b) 4 vGPUs per GPU

Figure 13: Sequential data copies with several vGPUs per GPU.

time step 13 are overlapped with the computations of
the first four vGPUs. Since two vGPUs are mapped
onto a single pGPU, computations of both vGPUs can-
not progress in parallel as they belong to different GPU
contexts. Therefore, the NVIDIA driver executes them
sequentially (using as many GPU resources required by
each kernel). So the second kernel must wait until the
execution of the first kernel is completed.

Two key observations are made from multi-tenant ex-
ecutions. Firstly, the total execution time has reduced
in contrast to the execution life cycle presented in Fig-
ure 11b although the same hardware resources are used.
The application completed execution in time step 80 us-
ing 2 vGPUs per pGPU compared to time step 88 when
no multi-tenancy is employed. The time that each GPU
computes is exactly the same. The time saved is because
of the overlap between computations and data transfers
of multiple vGPUs on the same pGPU. In Figure 11b
data transfers overlapped with computations of other
pGPUs but there were no overlaps on the same GPU.

Secondly, the data transfer time takes longer when
more vGPUs are employed. In Figure 11b, data is trans-
ferred completely to all GPUs at time step 20, whereas
in Figure 13a, the input data arrives at time step 24. The
reasons for longer data transfer times have been con-
sidered in the previous section. Despite the larger data
transfer time, the total execution time gains since there
is an overlap between computation and data movement.

Figure 13b shows the use of 16 vGPUs mapped on
to 4 pGPUs. The execution time is further reduced due
to the larger overlap between computation and data
transfers when compared to 2 vGPUs residing on a
single pGPU. Again the time for computing is the same
on each physical GPU but the data copying time has
increased. The overall execution time is further reduced
to 76 time steps.

Multi-tenancy can be analysed from the perspective of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

125

250

375

500

625

750

875

1000

1125

1250

Power
Energy
Utilization
Avergage Utilization

Time (s)
U

til
iz

at
io

n
 %

P
ow

er
 (

W
)

or
 E

ne
rg

y
(W

s)

(a) 2 vGPUs per pGPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

125

250

375

500

625

750

875

1000

1125

1250

Power
Energy
Utilization
Avergage Utilization

Time (s)

U
til

iz
at

io
n

 %

P
ow

er
 (

W
)

or
 E

ne
rg

y
(W

s)

(b) 4 vGPUs per pGPU

Figure 14: GPU utilisation, power and energy consumption of the
multi-tenancy approach considered in Figure 13.

energy required to complete the execution of the applica-
tion. Figure 14 shows the energy consumed during the
execution of the application along with the utilization of
the physical GPU. The multi-tenancy energy consump-
tion is lower than sequential communications without
an overlap between data transfers and computations on
the same GPU seen in Figure 12. The energy consumed
is 1145 Watts per second without using multi-tenancy
and 1094 and 1041 Watts per second when 2 and 4 vG-
PUs are tenants on a pGPU, respectively. It is observed
that GPU utilisation increases in the multi-tenancy ap-
proach. The average GPU utilisation rises from 71.44%
without multi-tenancy up to 79.65% for 2 vGPUs per
pGPU and up to 81.93% when 4 vGPUs are mapped on

14

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

to a pGPU.
In short, multi-tenancy allows for data transfers to

be overlapped with computations on the same GPUs
thereby reducing total execution time of the financial
risk application. Furthermore, the energy required to ex-
ecute the application is reduced and the GPU utilisation
is increased.

v. Performance Analysis Using Multi-tenancy

An analysis of the application performance as measured
by execution time is presented in this section. The cluster
nodes in our experimental set up have 12 cores (up to 24
threads with hyper-threading) and therefore we use a
maximum of 24 vGPUs (to avoid any noise due to CPU
overhead). Up to 12 pGPUs will be used to map the
vGPUs.

Figure 15 and Figure 16 show the time taken for data
transfer and computation for varying pGPUs when the
rCUDA framework is used over QDR and FDR Infini-
Band. The ‘Overlapped data transfer and computation’
label denotes that data transfers and computation are
carried out concurrently on the same pGPU. The be-
haviour of the application is as expected. Multi-tenancy
with sequential transfers allows for overlapping com-
putations and data movement on the same pGPU, thus
reducing the execution time. When QDR InfiniBand
is used, time for data transfer without overlaps with
communication is reduced up to 70%, 84%, 66%, and
42% when vGPUs are mapped to 1, 2, 4, and 6 pGPUs,
respectively. In the case of FDR InfiniBand, the same
time is 65%, 77%, 57%, and 56%. Consequently, the total
power consumed is reduced but not indicated on the
graph.

It is noted that when 12 pGPUs are used the data
transfer times are not reduced further because (i) the
execution time decreases with more pGPUs, and (ii) the
data transfer time increases when more vGPUs are used
allowing for little overlap between data transfers and
computation on the same pGPU. This necessitates the
need for determining the effective combination of pG-
PUs and vGPUs by estimating application perfomance
both in terms of execution time and energy consump-
tion.

vi. Modelling Multi-tenancy for Performance
and Energy Estimation

An important challenge is to automatically determine
the best multi-tenancy configuration for a deployment
that can maximise performance (minimising execution

time), but at the same time minimise the energy con-
sumed.

vi.1 Performance Model

We firstly consider a basic model to account for exe-
cution time of the application when sequential data
transfers are used with rCUDA, but without exploiting
multi-tenancy. Subsequently, the model is optimised
to take multi-tenancy into account. The model is then
applied in the context of the hardware (NVIDIA Tesla
K20 GPUs with QDR and FDR InfiniBand) we have
employed in this research.

The total execution time depends on: (i) time for
transferring data and (ii) time for computing on the
GPUs as shown in Equation 4, which inherently depends
on the number of GPUs (pGPUs or vGPUs) available to
the application.

TotalExecutionTime = Ttrans f er(#GPUs)+

Tcomputation(#GPUs) (4)

Since there is perfect scalability for the computation
times on the GPU (Section ii and Section iii), the time
required for computations by a given number of GPUs
can be obtained as shown in Equation 5.

Tcomputation(#GPUs) = ComputationTime_1pGPU /

#GPUs (5)

The time to transfer the input data to all GPUs is
shown in Equation 6. The time taken to allocate mem-
ory on each GPU using cudaMalloc() and the time for
moving small and large data structures to the GPUs are
taken into account. Different data sizes achieve varying
network bandwidth (Figure 5c). To simplify the equa-
tion, the time to transfer data structures smaller than
100 bytes is denoted as Tsmall_trans f ers

3

Ttrans f er(#GPUs) = #GPUs ∗ (TcudaMalloc+

Tsmall_trans f ers + Ttrans f er_4MB + Ttrans f er_120MB)+

Ttrans f er_4GB (6)

When multi-tenancy is taken into account there is an
overlap between data transfers and computations on the
same pGPU which reduces the total execution time. As

3Data structures smaller than 100 bytes achieve the same band-
width and are therefore grouped together. The InfiniBand frame size
is typically 2 KB, which will be sent to the GPU in all cases where
data is smaller than 100 bytes.

15

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

Computation (Non-Overlapped)Overlapped Communication and ComputationData Transfer (Non-Overlapped)

vGPUs per pGPU

Ti
m

e
 (

s)

1 2 4
0

2

4

6

8

10

12

1 2 4 6 12
0

1

2

3

4

5

6

7

1 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4
0

0.5

1

1.5

2

2.5

3

3.5

1 2
0

0.5

1

1.5

2

2.5

3
1 pGPU 2 pGPUs 4 pGPUs 6 pGPUs 12 pGPUs

Figure 15: Application performance for different combinations of pGPUs and vGPUs using QDR InfiniBand

Computation (Non-Overlapped)Overlapped Communication and ComputationData Transfer (Non-Overlapped)

vGPUs per pGPU

Ti
m

e
 (

s)

1 2 4
0

2

4

6

8

10

12

1 2 4 6 12
0

1

2

3

4

5

6

1 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

1 2 4
0

0.5

1

1.5

2

2.5

3

1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
1 pGPU 2 pGPUs 4 pGPUs 6 pGPUs 12 pGPUs

Figure 16: Application performance for different combinations of pGPUs and vGPUs using FDR InfiniBand

shown in Figure 13a, when 2 vGPUs are mapped onto a
single pGPU, the time for data transfer is the time taken
to move the first chunks of data to the pGPUs (until the
completion of time step 12). The time for moving the
remaining data chunks are not accounted for since it is
overlapped by computation time. This is captured in
Equation 7.

ExecTime_Multitenancy f ully_overlapped =

Ttrans f er(#vGPUs) / vGPUs_per_pGPU

+ vGPUs_per_pGPU ∗ Tcomputation(#vGPUs) (7)

If a very large number of vGPUs are used, then all
data transfer times may not be overlapped with compu-

tation times. This can happen when the computation on
the vGPU is not long enough to overlap data transfers
to the pGPU and the computations on it. In this case,
the total execution time depends on the time required to
copy data to all the vGPUs and is shown in Equation 8.

ExecTime_Multitenancynot_ f ully_overlapped =

Ttrans f er(#vGPUs) + Tcomputation(#vGPUs) (8)

As shown in Equation 9 the maximum value from
Equation 7 and Equation 8 determines whether the ap-
plication has significant overlaps between data transfer
and computations.

16

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

Table 2: Time in seconds for GPU memory allocation and data
transfer tasks of the financial risk application

Parameter QDR FDR
ComputationTime_1pGPU 9.55
TcudaMalloc 0.00267 0.0027
Tsmall_trans f ers 0.0048 0.0028
Ttrans f er_4MB 0.00133 0.00079
Ttrans f er_120MB 0.036 0.0205
Ttrans f er_4GB 1.171 0.67

ExecTime_Multitenancy =

MAX(ExecTime_Multitenancy f ully_overlapped,

ExecTime_Multitenancynot_ f ully_overlapped) (9)

Table 2 shows actual values of the model for the ex-
perimental platform used in this research.

Figure 17 and Figure 18 use these values in Equation 9
for 1 to 16 pGPUs and up to 12 vGPUs per pGPU. The
combinations of pGPUs and vGPUs that require the
lowest execution time can be explored in this space.
The estimated execution times are grouped for 1 to 4
pGPUs, 5 to 8 pGPUs, 9 to 12 pGPUs, and 13 to 16
pGPUs. In Figure 17a and Figure 18a, for one pGPU
up to 4 vGPUs can be used. The total memory on the
Tesla K20 devices is 4799 MB (from the nvidia-smi

command), which is exhausted by more than 4 vGPUs
(total memory size consumed by the application on
4 vGPUs is 4484 MB). It is inferred from the figures
that a large number of vGPU has detrimental effect on
performance due to the overheads in data movements.
Using QDR InfiniBand the model predicts a saturation
sooner than FDR InfiniBand because of the overhead of
data transfers due to a lower bandwidth available on the
QDR network. The optimal deployment configuration of
the application is 7 pGPUs with 2 vGPUs per pGPU and
9 pGPUs with 2 vGPUs per pGPU using QDR InfiniBand
and FDR InfiniBand respectively.

vi.2 Energy Model

The amount of energy required to execute the applica-
tion is modelled in this section. From Figure 13 it is
inferred that a GPU can be in the following four differ-
ent states: (1) idle, (2) receive data, but no computations,
(3) receive data and compute simultaneously, and (4)
compute, but no data to receive.

Power is measured by querying nvidia-smi every 200
milliseconds. The power required by the GPU in the first
two states is the same. The NVIDIA Tesla K20 device
requires 47 Watts while idling4 and receiving data. The
GPU requires 102 Watts in the last two states.

Using the above power readings for the four GPU
states along with total execution time obtained from
Equation 9 an energy model is developed as shown in
Equation 10. The energy required by the GPU for com-
putations (time spent on computations is obtained from
Equation 5) is eliminated to obtain the energy spent in
the first and second states. The computation time on the
pGPUs is vGPUs_per_pGPUs ∗ Tcomputation(#vGPUs).

TotalEnergy = #pGPUs ∗ (Tcomputation(#pGPUs)

102 Watts + (ExecTime_Multitenancy−
Tcomputation(#pGPUs)) ∗ 47 Watts) (10)

Figure 19 and Figure 20 present the results of the
energy model from Equation 10. It is noted that an
energy efficient deployment is obtained using 4 vGPUs
on 1 pGPU for both QDR InfiniBand and FDR Infini-
Band. This is as expected given that the least amount
of hardware is employed. However, there is a trade
off since the lowest execution times are not obtained
in this configuration. In Figure 21 and Figure 22, an
alternate space (energy ∗ execution time) is explored to
find configurations that can maximise performance and
minimise energy consumption.

vii. Generality of Proposed Approaches

The financial risk application analysed in this paper is
embarrassingly parallel and is representative of one class
of workloads that execute in high-performance comput-
ing environments. In these workloads, the computations
scale out linearly with the number of GPUs used. The
research challenges which were initially posed are hence
relevant to a wide range of accelerated applications that
therefore can benefit from exploiting vGPUs, particu-
larly in the context of multi-tenant vGPUs on a single
pGPU. The approaches we have proposed as solutions

4The idle state in Figure 13 is distinguished from the commonly
known “idle” state. In Figure 13, the GPU has already been as-
signed to the application and therefore has been initialised by the
GPU driver(this requires approximately 1.3 seconds in CUDA). After
initialisation, the GPU does not perform any task, but actively waits
for commands. In the commonly known “idle” state, the GPU is not
assigned to an application and is not initialised by the driver. In this
state, the Tesla K20 GPU requires 25 Watts.

17

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

1	pGPU	 2	pGPUs	

3	pGPUs	 4	pGPUs	

(a) 1 to 4 pGPUs

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

5	pGPUs	 6	pGPUs	

7	pGPUs	 8	pGPUs	

(b) 5 to 8 pGPUs

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

9	pGPUs	 10	pGPUs	

11	pGPUs	 12	pGPUs	

(c) 9 to 12 pGPUs

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

13	pGPUs	 14	pGPUs	

15	pGPUs	 16	pGPUs	

(d) 13 to 16 pGPUs

Figure 17: Results from performance model for QDR InfiniBand

to mitigate the challenges can thus be broadly applied to
the benefit of these embarrassingly parallel applications.

Typically, when accelerators are employed for embar-
rassingly parallel applications, the data necessary for
computations will need to be transferred from the host
to the memory of the used GPUs before computations
can be actually performed. In the face of limited band-
width for data transfers, linear scalability of the applica-
tion will be affected degrading the overall performance
of the application. However, by using our proposed ap-
proach of sequential data transfers along with the use of
multi-tenancy on real GPUs, overall performance can be
improved because data transfers from the host to the vir-
tual GPUs can be overlapped with GPU computations
for multiple physical GPUs. Such an approach effec-
tively shares physical GPUs to optimise an application’s
execution time and energy consumption.

There are multiple deployment options for an appli-
cation when multi-tenancy is exploited, depending both
on the characteristics of the application and those of
the underlying hardware. Each application will have

its own best combination of virtual GPUs that need to
be mapped onto a physical GPU for best performance.
Here our offline approach of modelling performance
both in terms of energy and performance for estimations
will be a handy method that can be broadly applied for
other embarrassingly parallel applications.

Nevertheless, the approaches shown in the previous
sections are less likely to hold for non-embarrassingly
parallel applications. Each application may have its
own challenges that will need to be addressed with
unique approaches specific to each problem. However,
given the complexity of modern day applications, it is
more common to use specific approaches for a type of
applications.

VI. Conclusions

In this paper, we have demonstrated the benefits of vir-
tual GPUs for an application. Single tenancy (using
one virtual GPU on a single physical GPU) and multi-

18

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

1	pGPU	 2	pGPUs	

3	pGPUs	 4	pGPUs	

(a) 1 to 4 pGPUs

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

5	pGPUs	 6	pGPUs	

7	pGPUs	 8	pGPUs	

(b) 5 to 8 pGPUs

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

9	pGPUs	 10	pGPUs	

11	pGPUs	 12	pGPUs	

(c) 9 to 12 pGPUs

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(s
)	

#	vGPUs	per	pGPU	

13	pGPUs	 14	pGPUs	

15	pGPUs	 16	pGPUs	

(d) 13 to 16 pGPUs

Figure 18: Results from performance model for FDR InfiniBand

tenancy (using a number of virtual GPUs on a physical
GPU) were explored in this context. Concurrent and
sequential data transfer models were considered. We
hypothesised that multi-tenancy can improve the per-
formance of the application. To validate the hypothesis
the application was executed using rCUDA (remote
CUDA), a framework that virtualises GPUs in a High-
Performance Computing (HPC) cluster and provides
remote GPUs to nodes that require acceleration on de-
mand. Experimental results indicate that multi-tenant
virtual GPUs with sequential data transfers optimise the
performance of the application with less hardware when
compared to single tenancy.

The research presented in this paper highlights that
multi-tenant virtual GPUs can improve performance of
an application. To achieve this we brought together the
concepts of virtual GPUs and multi-tenancy in a single
framework. The contribution of this research is to lever-
age multi-tenancy in the context of virtual GPUs within
the rCUDA framework. Further, we have demonstrated
this concept using a real world financial risk application

of industrial use to optimise performance in terms of
metrics, namely execution time, energy consumption
and GPU utilisation. Given the application our research
explores data transfer approaches with the aim of im-
proving performance and how it is affected by memory
and bandwidth bottlenecks. The experimental results
provide insight that would not be apparent without a
thorough evaluation. For example, it may be assumed
that concurrent data transfers would improve perfor-
mance, but the effect of memory and bandwidth limi-
tations make sequential data transfers more appealing.
The offline performance model is derived by making
use of the experimental results which determines the
configuration of the vGPU mapping on the pGPU for
maximising performance.

References

[1] K. H. Tsoi and W. Luk, “Axel: A heterogeneous
cluster with FPGAs and GPUs,” in Proceedings of

19

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

900	

950	

1000	

1050	

1100	

1150	

1200	

1250	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

1	pGPU	 2	pGPUs	

3	pGPUs	 4	pGPUs	

(a) 1 to 4 pGPUs

900	

1100	

1300	

1500	

1700	

1900	

2100	

2300	

2500	

2700	

2900	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

5	pGPUs	 6	pGPUs	

7	pGPUs	 8	pGPUs	

(b) 5 to 8 pGPUs

900	

1400	

1900	

2400	

2900	

3400	

3900	

4400	

4900	

5400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

9	pGPUs	 10	pGPUs	

11	pGPUs	 12	pGPUs	

(c) 9 to 12 pGPUs

900	

1900	

2900	

3900	

4900	

5900	

6900	

7900	

8900	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

13	pGPUs	 14	pGPUs	

15	pGPUs	 16	pGPUs	

(d) 13 to 16 pGPUs

Figure 19: Results from energy model for QDR InfiniBand

the 18th Annual ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, pp. 115–124,
2010.

[2] F. Song and J. Dongarra, “A scalable framework for
heterogeneous GPU-based clusters,” in Proceedings
of the 24th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 91–100, 2012.

[3] M. Becchi, K. Sajjapongse, I. Graves, A. Procter,
V. Ravi, and S. Chakradhar, “A virtual memory
based runtime to support multi-tenancy in clus-
ters with GPUs,” in Proceedings of the 21st Interna-
tional Symposium on High-Performance Parallel and
Distributed Computing, pp. 97–108, 2012.

[4] D. Sengupta, R. Belapure, and K. Schwan, “Multi-
tenancy on GPGPU-based servers,” in Proceedings
of the 7th International Workshop on Virtualization
Technologies in Distributed Computing, pp. 3–10, 2013.

[5] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and
performance characterization of computational ker-
nels on GPU,” in Proceedings of the 2010 IEEE/ACM
Int’L Conference on Green Computing and Communica-
tions & Int’L Conference on Cyber, Physical and Social
Computing, pp. 221–228, 2010.

[6] S. Iserte, A. Castello, R. Mayo, E. Quintana-Orti,
F. Silla, J. Duato, C. Reano, and J. Prades, “Slurm
support for remote GPU virtualization: Implemen-
tation and performance study,” in Computer Archi-
tecture and High Performance Computing (SBAC-PAD),
2014 IEEE 26th International Symposium on, pp. 318–
325, 2014.

[7] B. Varghese, J. Prades, C. Reano, and F. Silla,
“Acceleration-as-a-service: Exploiting virtualised
GPUs for a financial application,” in Proceedings
of the 11th IEEE International Conference on eScience,
pp. 47–56, 2015.

20

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

900	

950	

1000	

1050	

1100	

1150	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

1	pGPU	 2	pGPUs	

3	pGPUs	 4	pGPUs	

(a) 1 to 4 pGPUs

900	

1000	

1100	

1200	

1300	

1400	

1500	

1600	

1700	

1800	

1900	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

5	pGPUs	 6	pGPUs	

7	pGPUs	 8	pGPUs	

(b) 5 to 8 pGPUs

900	

1400	

1900	

2400	

2900	

3400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

9	pGPUs	 10	pGPUs	

11	pGPUs	 12	pGPUs	

(c) 9 to 12 pGPUs

900	

1400	

1900	

2400	

2900	

3400	

3900	

4400	

4900	

5400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

En
er
gy
	W

s	

#	vGPUs	per	pGPU	

13	pGPUs	 14	pGPUs	

15	pGPUs	 16	pGPUs	

(d) 13 to 16 pGPUs

Figure 20: Results from energy model for FDR InfiniBand

[8] A. J. Pena, C. Reano, F. Silla, R. Mayo, E. S.
Quintana-Orti, and J. Duato, “A complete and ef-
ficient CUDA-sharing solution for HPC clusters,”
Parallel Computing, vol. 40, pp. 574–588, 12/2014
2014.

[9] A. Srinivasan, “Parallel and distributed computing
issues in pricing financial derivatives through quasi
monte carlo,” in Parallel and Distributed Processing
Symposium., Proceedings International, IPDPS 2002,
Abstracts and CD-ROM, 2002.

[10] K. Huang and R. Thulasiram, “Parallel algorithm
for pricing american asian options with multi-
dimensional assets,” in High Performance Computing
Systems and Applications, 2005. HPCS 2005. 19th In-
ternational Symposium on, pp. 177–185, 2005.

[11] C. Bekas, A. Curioni, and I. Fedulova, “Low cost
high performance uncertainty quantification,” in
Proceedings of the 2nd Workshop on High Performance
Computational Finance, 2009.

[12] D. Daly, K. D. Ryu, and J. Moreira, “Multi-variate
finance kernels in the blue gene supercomputer,” in
High Performance Computational Finance, 2008. WH-
PCF 2008. Workshop on, pp. 1–7, 2008.

[13] V. Agarwal, L.-K. Liu, and D. Bader, “Financial
modeling on the cell broadband engine,” in Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pp. 1–12, 2008.

[14] C. Docan, M. Parashar, and C. Marty, “Advanced
risk analytics on the cell broadband engine,” pp. 1–
8, 2009.

[15] A. Irturk, B. Benson, N. Laptev, and R. Kastner,
“FPGA acceleration of mean variance framework
for optimal asset allocation,” in High Performance
Computational Finance, 2008. WHPCF 2008. Workshop
on, pp. 1–8, 2008.

[16] D. Thomas, “Acceleration of financial monte-carlo
simulations using FPGAs,” in High Performance

21

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

1	 2	 3	 4	 5	 6	 7	 8	

En
er
gy
	*
	E
xe
cu
,o

n	
Ti
m
e	
(W

s2
)	

#	pGPUs	

1	vGPU	per	pGPU	 2	vGPUs	per	pGPU	 3	vGPUs	per	pGPU	 4	vGPUs	per	pGPU	
5	vGPUs	per	pGPU	 6	vGPUs	per	pGPU	 7	vGPUs	per	pGPU	 8	vGPUs	per	pGPU	
9	vGPUs	per	pGPU	 10	vGPUs	per	pGPU	 11	vGPUs	per	pGPU	 12	vGPUs	per	pGPU	

(a) 1 to 8 pGPUs

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

9	 10	 11	 12	 13	 14	 15	 16	

En
er
gy
	*
	E
xe
cu
,o

n	
Ti
m
e	
(W

s2
)	

#	pGPUs	

1	vGPU	per	pGPU	 2	vGPUs	per	pGPU	 3	vGPUs	per	pGPU	 4	vGPUs	per	pGPU	
5	vGPUs	per	pGPU	 6	vGPUs	per	pGPU	 7	vGPUs	per	pGPU	 8	vGPUs	per	pGPU	
9	vGPUs	per	pGPU	 10	vGPUs	per	pGPU	 11	vGPUs	per	pGPU	 12	vGPUs	per	pGPU	

(b) 9 to 16 pGPUs

Figure 21: Combined space of energy and execution time using QDR InfiniBand

Computational Finance (WHPCF), 2010 IEEE Work-
shop on, pp. 1–6, 2010.

[17] L. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier,
“Pricing derivatives on graphics processing units
using monte carlo simulation,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 9,
pp. 1679–1697, 2014.

[18] D. M. Dang, C. C. Christara, and K. R. Jackson,
“An efficient graphics processing unit-based parallel
algorithm for pricing multi-asset american options,”
Concurrency and Computation: Practice and Experience,
vol. 24, no. 8, pp. 849–866, 2012.

[19] CUDA API Reference Manual 6.5, 2014.

[20] OpenCL 2.0 Specification, 2013.

[21] T. Y. Liang and Y. W. Chang, “Gridcuda: A grid-
enabled CUDA programming toolkit,” in Advanced
Information Networking and Applications (WAINA),
2011 IEEE Workshops of International Conference on,
pp. 141–146, 2011.

[22] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU ac-
celerated high performance computing in virtual
machines,” in Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pp. 1–
11, 2009.

[23] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan, “GViM:
GPU-accelerated virtual machines,” in Proceedings
of the 3rd ACM Workshop on System-level Virtualiza-
tion for High Performance Computing, pp. 17–24, 2009.

[24] G. Giunta, R. Montella, G. Agrillo, and G. Coviello,
“A GPGPU transparent virtualization component
for high performance computing clouds,” in Pro-
ceedings of the 16th international Euro-Par conference
on Parallel processing, pp. 379–391, 2010.

[25] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka,
K. Yoshikawa, and T. Narumi, “DS-CUDA: A mid-
dleware to use many GPUs in the cloud environ-
ment,” in Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Anal-
ysis, pp. 1207–1214, 2012.

22

Multi-Tenant Virtual GPUs for Optimising Performance • Accepted Jun 2016

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	 7	 8	

En
er
gy
	*
	E
xe
cu
,o

n	
Ti
m
e	
(W

s2
)	

#	pGPUs	

1	vGPU	per	pGPU	 2	vGPUs	per	pGPU	 3	vGPUs	per	pGPU	 4	vGPUs	per	pGPU	
5	vGPUs	per	pGPU	 6	vGPUs	per	pGPU	 7	vGPUs	per	pGPU	 8	vGPUs	per	pGPU	
9	vGPUs	per	pGPU	 10	vGPUs	per	pGPU	 11	vGPUs	per	pGPU	 12	vGPUs	per	pGPU	

(a) 1 to 8 pGPUs

0	

5000	

10000	

15000	

20000	

25000	

30000	

9	 10	 11	 12	 13	 14	 15	 16	

En
er
gy
	*
	E
xe
cu
,o

n	
Ti
m
e	
(W

s2
)	

#	pGPUs	

1	vGPU	per	pGPU	 2	vGPUs	per	pGPU	 3	vGPUs	per	pGPU	 4	vGPUs	per	pGPU	
5	vGPUs	per	pGPU	 6	vGPUs	per	pGPU	 7	vGPUs	per	pGPU	 8	vGPUs	per	pGPU	
9	vGPUs	per	pGPU	 10	vGPUs	per	pGPU	 11	vGPUs	per	pGPU	 12	vGPUs	per	pGPU	

(b) 9 to 16 pGPUs

Figure 22: Combined space of energy and execution time using FDR InfiniBand

[26] NVIDIA, The NVIDIA GPU Computing SDK Version
5.5, 2013.

[27] “iperf3: A TCP, UDP, and SCTP network band-
width measurement tool.” https://github.com/

esnet/iperf, 2015.

[28] A. Bahl, O. Baltzer, A. Rau-Chaplin, and B. Vargh-
ese, “Parallel simulations for analysing portfolios
of catastrophic event risk,” in High Performance Com-
puting, Networking, Storage and Analysis (SCC), 2012
SC Companion:, pp. 1176–1184, 2012.

[29] B. Varghese, “The hardware accelerator debate: A
financial risk case study using many-core comput-
ing,” Computers & Electrical Engineering, vol. 46,
pp. 157–175, 2015.

[30] G. Woo, “Natural catastrophe probable maximum
loss,” British Actuarial Journal, vol. 8, pp. 943–959,
2002.

[31] A. A. Gaivoronski and G. Pflug, “Value-at-risk in
portfolio optimization: Properties and computa-
tional approach,” vol. 7, no. 2, pp. 1–31, 2005.

[32] C. Reano, R. Mayo, E. Quintana-Orti, F. Silla, J. Du-
ato, and A. Pena, “Influence of InfiniBand FDR on
the performance of remote GPU virtualization,” in
IEEE International Conference on Cluster Computing,
pp. 1–8, 2013.

23

https://github.com/esnet/iperf
https://github.com/esnet/iperf

	Introduction
	Related Work
	rCUDA
	Financial Risk Application
	Input and Output Data
	Algorithm and GPU Implementation

	Evaluation
	Platform
	Application Scalability
	Reducing Execution Time Using rCUDA
	Mitigating the Impact of Data Transfers in rCUDA
	Concurrent vs Sequential Data Transfers
	Multi-tenancy Approach

	Performance Analysis Using Multi-tenancy
	Modelling Multi-tenancy for Performance and Energy Estimation
	Performance Model
	Energy Model

	Generality of Proposed Approaches

	Conclusions

