11,659 research outputs found

    Evolutionary discriminative confidence estimation for spoken term detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0913-zSpoken term detection (STD) is the task of searching for occurrences of spoken terms in audio archives. It relies on robust confidence estimation to make a hit/false alarm (FA) decision. In order to optimize the decision in terms of the STD evaluation metric, the confidence has to be discriminative. Multi-layer perceptrons (MLPs) and support vector machines (SVMs) exhibit good performance in producing discriminative confidence; however they are severely limited by the continuous objective functions, and are therefore less capable of dealing with complex decision tasks. This leads to a substantial performance reduction when measuring detection of out-of-vocabulary (OOV) terms, where the high diversity in term properties usually leads to a complicated decision boundary. In this paper we present a new discriminative confidence estimation approach based on evolutionary discriminant analysis (EDA). Unlike MLPs and SVMs, EDA uses the classification error as its objective function, resulting in a model optimized towards the evaluation metric. In addition, EDA combines heterogeneous projection functions and classification strategies in decision making, leading to a highly flexible classifier that is capable of dealing with complex decision tasks. Finally, the evolutionary strategy of EDA reduces the risk of local minima. We tested the EDA-based confidence with a state-of-the-art phoneme-based STD system on an English meeting domain corpus, which employs a phoneme speech recognition system to produce lattices within which the phoneme sequences corresponding to the enquiry terms are searched. The test corpora comprise 11 hours of speech data recorded with individual head-mounted microphones from 30 meetings carried out at several institutes including ICSI; NIST; ISL; LDC; the Virginia Polytechnic Institute and State University; and the University of Edinburgh. The experimental results demonstrate that EDA considerably outperforms MLPs and SVMs on both classification and confidence measurement in STD, and the advantage is found to be more significant on OOV terms than on in-vocabulary (INV) terms. In terms of classification performance, EDA achieved an equal error rate (EER) of 11% on OOV terms, compared to 34% and 31% with MLPs and SVMs respectively; for INV terms, an EER of 15% was obtained with EDA compared to 17% obtained with MLPs and SVMs. In terms of STD performance for OOV terms, EDA presented a significant relative improvement of 1.4% and 2.5% in terms of average term-weighted value (ATWV) over MLPs and SVMs respectively.This work was partially supported by the French Ministry of Industry (Innovative Web call) under contract 09.2.93.0966, ‘Collaborative Annotation for Video Accessibility’ (ACAV) and by ‘The Adaptable Ambient Living Assistant’ (ALIAS) project funded through the joint national Ambient Assisted Living (AAL) programme

    Real-time interactive speech technology at Threshold Technology, Incorporated

    Get PDF
    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed

    Travel linearity and speed of human foragers and chimpanzees during their daily search for food in tropical rainforests

    Get PDF
    To understand the evolutionary roots of human spatial cognition, researchers have compared spatial abilities of humans and one of our closest living relatives, the chimpanzee (Pan troglodytes). However, how humans and chimpanzees compare in solving spatial tasks during real-world foraging is unclear to date, as measuring such spatial abilities in natural habitats is challenging. Here we compared spatial movement patterns of the Mbendjele BaYaka people and the TaĂŻ chimpanzees during their daily search for food in rainforests. We measured linearity and speed during off-trail travels toward out-of-sight locations as proxies for spatial knowledge. We found similarly high levels of linearity in individuals of Mbendjele foragers and TaĂŻ chimpanzees. However, human foragers and chimpanzees clearly differed in their reactions to group size and familiarity with the foraging areas. Mbendjele foragers increased travel linearity with increasing familiarity and group size, without obvious changes in speed. This pattern was reversed in TaĂŻ chimpanzees. We suggest that these differences between Mbendjele foragers and TaĂŻ chimpanzees reflect their different ranging styles, such as life-time range size and trail use. This result highlights the impact of socio-ecological settings on comparing spatial movement patterns. Our study provides a first step toward comparing long-range spatial movement patterns of two closely-related species in their natural environments

    Learning to Behave: Internalising Knowledge

    Get PDF

    Rhythmic unit extraction and modelling for automatic language identification

    Get PDF
    International audienceThis paper deals with an approach to Automatic Language Identification based on rhythmic modelling. Beside phonetics and phonotactics, rhythm is actually one of the most promising features to be considered for language identification, even if its extraction and modelling are not a straightforward issue. Actually, one of the main problems to address is what to model. In this paper, an algorithm of rhythm extraction is described: using a vowel detection algorithm, rhythmic units related to syllables are segmented. Several parameters are extracted (consonantal and vowel duration, cluster complexity) and modelled with a Gaussian Mixture. Experiments are performed on read speech for 7 languages (English, French, German, Italian, Japanese, Mandarin and Spanish) and results reach up to 86 ± 6% of correct discrimination between stress-timed mora-timed and syllable-timed classes of languages, and to 67 ± 8% percent of correct language identification on average for the 7 languages with utterances of 21 seconds. These results are commented and compared with those obtained with a standard acoustic Gaussian mixture modelling approach (88 ± 5% of correct identification for the 7-languages identification task)
    • 

    corecore