77 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Implementation of Secure DNP3 Architecture of SCADA System for Smart Grids

    Get PDF
    With the recent advances in the power grid system connecting to the internet, data sharing, and networking enables space for hackers to maliciously attack them based on their vulnerabilities. Vital stations in the smart grid are the generation, transmission, distribution, and customer substations are connected and controlled remotely by the network. Every substation is controlled by a Supervisory Control and Data Acquisition (SCADA) system which communicates on DNP3 protocol on Internet/IP which has many security vulnerabilities. This research will focus on Distributed Network Protocol (DNP3) communication which is used in the smart grid to communicate between the controller devices. We present the DNP3 SAv5 and design a secure architecture with Public Key Infrastructure (PKI) on Asymmetric key encryption using a Certificate Authority (CA). The testbed provides a design architecture between customer and distribution substation and illustrates the verification of the public certificate. We have added a layer of security by giving a password to a private key file to avoid physical tampering of the devices at the customer substations. The simulation results show that the secure communication on the TLS layer provides confidentiality, integrity, and availability

    Cyberthreats, Attacks and Intrusion Detection in Supervisory Control and Data Acquisition Networks

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are computer-based process control systems that interconnect and monitor remote physical processes. There have been many real world documented incidents and cyber-attacks affecting SCADA systems, which clearly illustrate critical infrastructure vulnerabilities. These reported incidents demonstrate that cyber-attacks against SCADA systems might produce a variety of financial damage and harmful events to humans and their environment. This dissertation documents four contributions towards increased security for SCADA systems. First, a set of cyber-attacks was developed. Second, each attack was executed against two fully functional SCADA systems in a laboratory environment; a gas pipeline and a water storage tank. Third, signature based intrusion detection system rules were developed and tested which can be used to generate alerts when the aforementioned attacks are executed against a SCADA system. Fourth, a set of features was developed for a decision tree based anomaly based intrusion detection system. The features were tested using the datasets developed for this work. This dissertation documents cyber-attacks on both serial based and Ethernet based SCADA networks. Four categories of attacks against SCADA systems are discussed: reconnaissance, malicious response injection, malicious command injection and denial of service. In order to evaluate performance of data mining and machine learning algorithms for intrusion detection systems in SCADA systems, a network dataset to be used for benchmarking intrusion detection systemswas generated. This network dataset includes different classes of attacks that simulate different attack scenarios on process control systems. This dissertation describes four SCADA network intrusion detection datasets; a full and abbreviated dataset for both the gas pipeline and water storage tank systems. Each feature in the dataset is captured from network flow records. This dataset groups two different categories of features that can be used as input to an intrusion detection system. First, network traffic features describe the communication patterns in a SCADA system. This research developed both signature based IDS and anomaly based IDS for the gas pipeline and water storage tank serial based SCADA systems. The performance of both types of IDS were evaluates by measuring detection rate and the prevalence of false positives

    A Survey on Industrial Control System Testbeds and Datasets for Security Research

    Full text link
    The increasing digitization and interconnection of legacy Industrial Control Systems (ICSs) open new vulnerability surfaces, exposing such systems to malicious attackers. Furthermore, since ICSs are often employed in critical infrastructures (e.g., nuclear plants) and manufacturing companies (e.g., chemical industries), attacks can lead to devastating physical damages. In dealing with this security requirement, the research community focuses on developing new security mechanisms such as Intrusion Detection Systems (IDSs), facilitated by leveraging modern machine learning techniques. However, these algorithms require a testing platform and a considerable amount of data to be trained and tested accurately. To satisfy this prerequisite, Academia, Industry, and Government are increasingly proposing testbed (i.e., scaled-down versions of ICSs or simulations) to test the performances of the IDSs. Furthermore, to enable researchers to cross-validate security systems (e.g., security-by-design concepts or anomaly detectors), several datasets have been collected from testbeds and shared with the community. In this paper, we provide a deep and comprehensive overview of ICSs, presenting the architecture design, the employed devices, and the security protocols implemented. We then collect, compare, and describe testbeds and datasets in the literature, highlighting key challenges and design guidelines to keep in mind in the design phases. Furthermore, we enrich our work by reporting the best performing IDS algorithms tested on every dataset to create a baseline in state of the art for this field. Finally, driven by knowledge accumulated during this survey's development, we report advice and good practices on the development, the choice, and the utilization of testbeds, datasets, and IDSs

    Moving target defense for securing smart grid communications: Architectural design, implementation and evaluation

    Get PDF
    Supervisory Control And Data Acquisition (SCADA) communications are often subjected to various kinds of sophisticated cyber-attacks which can have a serious impact on the Critical Infrastructure such as the power grid. Most of the time, the success of the attack is based on the static characteristics of the system, thereby enabling an easier profiling of the target system(s) by the adversary and consequently exploiting their limited resources. In this thesis, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, which leverages the existing communication network with an end-to-end IP Hopping technique among the trusted peer devices. This offers a proactive L3 layer network defense, minimizing IP-specific threats and thwarting worm propagation, APTs, etc., which utilize the cyber kill chain for attacking the system through the SCADA network. The main contribution of this thesis is to show how MTD concepts provide proactive defense against targeted cyber-attacks, and a dynamic attack surface to adversaries without compromising the availability of a SCADA system. Specifically, the thesis presents a brief overview of the different type of MTD designs, the proposed MTD architecture and its implementation with IP hopping technique over a Control Center–Substation network link along with a 3-way handshake protocol for synchronization on the Iowa State’s Power Cyber testbed. The thesis further investigates the delay and throughput characteristics of the entire system with and without the MTD to choose the best hopping rate for the given link. It also includes additional contributions for making the testbed scenarios more realistic to real world scenarios with multi-hop, multi-path WAN. Using that and studying a specific attack model, the thesis analyses the best ranges of IP address for different hopping rate and different number of interfaces. Finally, the thesis describes two case studies to explore and identify potential weaknesses of the proposed mechanism, and also experimentally validate the proposed mitigation alterations to resolve the discovered vulnerabilities. As part of future work, we plan to extend this work by optimizing the MTD algorithm to be more resilient by incorporating other techniques like network port mutation to further increase the attack complexity and cost

    Fingerprinting cyber physical systems: A physics-based approach

    Get PDF
    Industrial Control System (ICS) networks used in critical infrastructure networks like the power grid represent a different set of security challenges when compared to traditional IT networks. The electric power grid comprises several components most of which are critical physical devices and have to be safeguarded to ensure reliable operation. The devices in the field are remotely controlled via the control network of the plant from the control center. The distributed nature of these networks makes it almost impossible to perform the same common security practices as done in traditional IT networks (e.g., regular security upgrades). It is partially due to the fact that these legacy devices are incapable of supporting future upgrades and because of the remote location of these devices. Cyber attacks on an electric grid can originate from an external intruder who has gained access to the control network or from a disgruntled employee who already has access to the network. Among several possible attacks on an electric grid, this work specifically proposes to tackle the false data injection issue during control command requests to the field devices in the substation. The thesis work proposes to help to ensure the authenticity of the responses by analyzing the observed response against the fingerprints developed by operation times associated with each device in the plant. Also, in this work, the accuracy of the proposed fingerprinting technique is evaluated from a dataset generated from controlled lab experiments.M.S

    ICT aspects of power systems and their security

    Get PDF
    This report provides a deep description of four complex Attack Scenarios that have as final goal to produce damage to the Electric Power Transmission System. The details about protocols used, vulnerabilities, devices etc. have been for obvious reasons hidden, and the ones presented have to be understood as mere (even if realistic) simplified versions of possible power systems.JRC.DG.G.6-Security technology assessmen

    Exploring security controls for ICS/SCADA environments

    Get PDF
    Trabalho de projeto de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2020Os Sistemas de Controlo Industriais (ICS) estão a começar a fundir-se com as soluções de IT, por forma a promover a interconectividade. Embora isto traga inúmeros benefícios de uma perspetiva de controlo, os ICS apresentam uma falta de mecanismos de segurança que consigam evitar possíveis ameaças informáticas, quando comparados aos comuns sistemas de informação [29], [64]. Dada a natureza crítica destes sistemas, e a ocorrências recentes de ciberataques desastrosos, a segurança ´e um tópico que deve ser incentivado. À luz deste problema, na presente dissertação apresentamos uma avaliação de possíveis aplicações e controlos de segurança a serem implantados nestes ambientes críticos e a implementação de uma solução de segurança extensível que dá resposta a certos ataques focados em sistemas industriais, capaz de ser implantada em qualquer rede industrial que permita a sua ligação. Com o auxilio de uma framework extensivel e portátil para testes de ICS, e outros ambientes industriais de testes, foi possível analisar diferentes cenários de ameaças, implantar mecanismos de segurança para os detetar e avaliar os resultados, com o intuito de fornecer uma ideia de como empregar estes mecanismos da melhor maneira possível num ambiente real de controlo industrial.Industrial Control Systems (ICS) are beginning to merge with IT solutions, in order to promote inter-connectivity. Although this brings countless benefits from a control perspective, ICS have been lacking in security mechanisms to ward off potential cyber threats, when compared to common information systems [29], [64]. Given the critical nature of these systems, and the recent occurrences of disastrous cyber-attacks, security is a topic that should be encouraged. In light of this problem, in this dissertation we present an assessment of possible security applications and controls that can be deployed in these critical environments and the implementation of an extensible security solution that responds to certain attacks focused on industrial systems, capable of being deployed in any industrial network that allows its connection. With the help of an extensible and portable framework for ICS testing, and other industrial testing environments, it was possible to analyze different threat scenarios, implement security mechanisms to detect them and evaluate the results in order to provide an idea on how to employ these mechanisms as best as possible in a real industrial control environment, without compromising it’s process
    • …
    corecore