177,097 research outputs found

    Median Independent Inequality Orderings

    Get PDF
    Preprin

    New neighborhood based rough sets

    Get PDF
    Neighborhood based rough sets are important generalizations of the classical rough sets of Pawlak, as neighborhood operators generalize equivalence classes. In this article, we introduce nine neighborhood based operators and we study the partial order relations between twenty-two different neighborhood operators obtained from one covering. Seven neighborhood operators result in new rough set approximation operators. We study how these operators are related to the other fifteen neighborhood based approximation operators in terms of partial order relations, as well as to seven non-neighborhood-based rough set approximation operators

    A Reduced Semantics for Deciding Trace Equivalence

    Full text link
    Many privacy-type properties of security protocols can be modelled using trace equivalence properties in suitable process algebras. It has been shown that such properties can be decided for interesting classes of finite processes (i.e., without replication) by means of symbolic execution and constraint solving. However, this does not suffice to obtain practical tools. Current prototypes suffer from a classical combinatorial explosion problem caused by the exploration of many interleavings in the behaviour of processes. M\"odersheim et al. have tackled this problem for reachability properties using partial order reduction techniques. We revisit their work, generalize it and adapt it for equivalence checking. We obtain an optimisation in the form of a reduced symbolic semantics that eliminates redundant interleavings on the fly. The obtained partial order reduction technique has been integrated in a tool called APTE. We conducted complete benchmarks showing dramatic improvements.Comment: Accepted for publication in LMC

    More Applications of the d-Neighbor Equivalence: Connectivity and Acyclicity Constraints

    Get PDF
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. For all these problems, we obtain 2^O(k)* n^O(1), 2^O(k log(k))* n^O(1), 2^O(k^2) * n^O(1) and n^O(k) time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and maximum induced matching width. Our approach simplifies and unifies the known algorithms for each of the parameters and match asymptotically also the running time of the best algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the d-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance and the generalizing power of this equivalence relation on width measures. We also prove that this equivalence relation could be useful for Max Cut: a W[1]-hard problem parameterized by clique-width. For this latter problem, we obtain n^O(k), n^O(k) and n^(2^O(k)) time algorithm parameterized by clique-width, Q-rank-width and rank-width

    Quotient completion for the foundation of constructive mathematics

    Get PDF
    We apply some tools developed in categorical logic to give an abstract description of constructions used to formalize constructive mathematics in foundations based on intensional type theory. The key concept we employ is that of a Lawvere hyperdoctrine for which we describe a notion of quotient completion. That notion includes the exact completion on a category with weak finite limits as an instance as well as examples from type theory that fall apart from this.Comment: 32 page

    Characterization of order-like dependencies with formal concept analysis

    Get PDF
    Functional Dependencies (FDs) play a key role in many fields of the relational database model, one of the most widely used database systems. FDs have also been applied in data analysis, data quality, knowl- edge discovery and the like, but in a very limited scope, because of their fixed semantics. To overcome this limitation, many generalizations have been defined to relax the crisp definition of FDs. FDs and a few of their generalizations have been characterized with Formal Concept Analysis which reveals itself to be an interesting unified framework for charac- terizing dependencies, that is, understanding and computing them in a formal way. In this paper, we extend this work by taking into account order-like dependencies. Such dependencies, well defined in the database field, consider an ordering on the domain of each attribute, and not sim- ply an equality relation as with standard FDs.Peer ReviewedPostprint (published version
    • 

    corecore