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Abstract

To date, inequality orderings for ordered response data are only suitable
for comparing distributions that share a common median state. In this
paper we propose a methodology for comparing distributions irrespective
of their medians. We set out to do so by introducing a general pre-ordering
and equivalence relation defined over distributions with different median
responses, leading us naturally to derive a partial ordering over equivalence
classes. We then discuss the implications of our results for the axiomatic
derivation of inequality indices for ordered response data.
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1. Introduction

Ordered response data are purely ordinal data which do not possess an appropriate
measurement scale. Typical examples of such data include self-reported health
status, happiness, educational attainment, socio-economic status and the degree of
satisfaction with life. Such data are collected from responses to diverse questions
such as: ”Taken all together, how would you say things are these days− would you
say that you are very happy, pretty happy, or not too happy?” (The United States
General Social Survey), or ”On the whole are you very satisfied, fairly satisfied,
not very satisfied or not at all satisfied with the life you lead?” (Euro-barometer
Survey Series.) Ordered response data have become increasingly the subject of
investigation by economists in relation to topics such as how income inequality
affects happiness (Alesina et al. 2004), the evolution of happiness inequality
(Stevenson and Wolfers, 2008) and the cross-sectional variation in inequality of
self-reported health status (Allison and Foster, 2004.)
The classical approach pertaining to the measurement of income inequality

(e.g. Atkinson, 1970, Shorrocks, 1980 and Cowell, 2000) is however not suited
to the context of ordered response data since the computation of Lorenz curves
and income inequality measures requires calculation of sums, means and other
moments which are not defined for ordinal data 1. Instead researchers have used
order statistics and related functions such as the cumulative distribution to order
distributions and measure the underlying level of inequality 2. Allison and Foster
(2004) for instance replace the Lorenz ordering by a Median Preserving Spread re-
lation, suited for the comparison of distributions of ordered response data which
share a common median response. Self-reported health data (the context dis-
cussed by Allison and Foster) typically exhibit identical medians; but there are
clearly other contexts where cumulative distributions do not share this convenient
property.
In Table 1, we report findings from Jones et al. (2010), where respondents in

the World Health Survey were asked to report their perception of treatment in
the health system of their country of residence. The median response in Austria
and Denmark was the highest state (very good), whereas the median response in
France and Spain was the penultimate state (good). The first two rows of the table

1This point is extensively discussed in the health economics literature. See for instance
Allison and Foster (2004) and Zheng (2006).

2See for instance Allison and Foster (2004), Zheng (2006), Apouey (2007) and Abul Naga
and Yalcin (2008).
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are comparable according to the median preserving spread relation, and likewise,
the third and fourth row are comparable. However, no comparison can be made
between Austria and Spain, Austria and France, Denmark and Spain or Denmark
and France 3. Income inequality comparisons are not restricted to distributions
with identical means and, similarly, in the context of ordered response data we
need to know how to order two distributions X and Y independently of their
medians. This is an important gap in the literature, which we set out to address
in this paper.
A central question in this paper is how to generalize earlier work in a way

that the new ordering remains identical to the median preserving spread criterion
when the distributions we are comparing do happen to exhibit an identical median
state. Also, we inquire as to what additional properties must inequality indices
for ordered response data satisfy above those that are available for indices that
compare distributions which share a common median response. Finally, this leads
us to examine the indices already available to date, and to inquire as to which of
these belong to the resulting new class of median independent inequality indices.
Our starting point in the paper is to observe that regardless of the actual me-

dian response, inequality must be zero when everyone is located at the median.
This allows us to define an equivalence relation on a subset of the set of cumulative
distributions. We call this restricted set the set of egalitarian distributions. By
considering neighboring distributions to particular elements of this set, we obtain
a general equivalence relation between distributions with differing medians. In
turn this allows us to obtain the equivalence class of any given cumulative dis-
tribution function X (the set of distributions that are equivalent to X.) We then
define a partial ordering on equivalence classes. This will ensure that cumulative
distributions which are equivalent will exhibit the same level of inequality.
Sections 2 and 3 of the paper contain preliminary definitions and results that

prepare the ground for the core sections. In Section 4 we generalize the relation
between the elements of the set of egalitarian distributions to obtain a general
equivalence relation across distributions which need not possess a common me-
dian. In Section 5 we derive our proposed partial ordering over equivalence classes
and discuss how this allows us to test in a simple fashion that a given distribution
X and all members of its equivalence class, exhibit less inequality than another
distribution Y and its entire equivalence class. In Section 6 we discuss the impli-
cations of our results for the axiomatic derivation of inequality indices for ordered

3The methodology we set out below in fact enables us to compare all pairs of distributions
from Table 1, with the exception of Spain and Austria.
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response data. We also examine in this section which of the indices available to
date belong to the new class of median independent inequality measures. We
conclude the paper in Section 7. A detailed appendix gathers the proofs of the
main results of the paper.

2. Order properties of the set of cumulative distributions

Our starting point is to consider a situation whereby the economic status of a
person is measured according to an ordinal scale c .= (c1, ..., cn). We denote C

.
=

{c : 0 < c1 < c2 < ... < cn < ∞} the set of ordered increasing scales. Because
the scale is entirely arbitrary, calculations of summary statistics (mean and other
moments) will not form the basis of our measurement of inequality. Instead,
following earlier work, the cumulative proportions underlying each outcome will
be the key inputs to our inequality indices.
Let Λ .

= {F = (f1, f2, ..., fn) : 0 ≤ f1 ≤ .. ≤ fn = 1} denote the set of cumu-
lative distribution functions (cdfs) defined over n ordered states, and let X =
[x1, ..., xn−1, 1] be a cdf . The notion of Median Preserving Spread, in short
MedPS, (Allison and Foster 2004) is central in ordering distributions which share
a common median response:

Definition 2.1 Let X .
= [x1, ..., xn−1, 1]� and Y

.
= [y1, ..., yn−1, 1]� be any two

elements of Λ. Y is a Median Preserving Spread of X, denoted X Y, if and
only if the two distributions satisfy the following three conditions:
(AF1) med (X) = med (Y ) = m
(AF2) for all i < m, xi ≤ yi
(AF3) for all i ≥ m, xi ≥ yi
We endow the set of cumulative distributions with a partial order (Λ,≺AF )

thus enabling us to order two distributions X and Y when the latter is obtained
from the former via a sequence of median preserving spreads:

Definition 2.2 Let X and Y be any two elements of Λ. X ≺AF Y, if and
only if there exists a finite sequence of distributions Q0, ..., Qk such that Q0 = X,
Qk = Y, and Ql−1 Ql for all l = 1, ..., k.

An inequality index for ordered response data is a function

∆ (X, c) : Λ× C → R+ (2.1)

which preserves the above order in the sense that X ≺AF Y entails ∆ (X, c) ≤
∆ (Y, c) for any given scale c ∈ C. Examples of such inequality indices are given
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in Table 1. Further key properties that such indices are required to satisfy will be
discussed in Section 6.
For ease of presentation, we specialize our discussion to the context n = 3 4,

and we simply refer to Λ as the set of cumulative distributions. We shall adopt
the definition that a state m is the median of X = [x1, x2, 1]

� if xm−1 ≤ 0.5 and
xm ≥ 0.5.
Let X = [x1 x2 x3]

� be some element of Λ and define the following three sets

Λ1
.
= {(x1, x2) : 0.5 ≤ x1 ≤ x2 ≤ x3 = 1} (2.2)

Λ2
.
= {(x1, x2) : 0 ≤ x1 ≤ 0.5 ≤ x2 ≤ x3 = 1} (2.3)

Λ3
.
= {(x1, x2) : 0 ≤ x1 ≤ x2 ≤ 0.5 ≤ x3 = 1} (2.4)

Λi denotes the set of cumulative distributions with median state i, and Λ =
Λ1 ∪ Λ2 ∪ Λ3. Since x3 = 1, we can visualize Λ and its three subsets in two-
dimensional space (see Figure 1.)

Example 1 Consider the following three distributions

F =

 0.7
0.8
1

 X =

 0.8
0.8
1

 H =

 0.2
0.3
1


Then F,X ∈ Λ1 while H ∈ Λ3. That is, med(F ) = med(X) = 1 while med(H) =
3. Observe furthermore that X ≺AF F while H is not comparable to F or to X
according to the relation ≺AF since F and X do not share a common median
response state with H. �
Returning to Figure 1, consider the following four distributions:

Π̃ = [0.5 0.5 1]� (2.5)

Π̂1 = [1 1 1]� (2.6)

Π̂2 = [0 1 1]� (2.7)

Π̂3 = [0 0 1]� (2.8)

For a given Λj, the ordering ≺AF entails that Π̂j is the most egalitarian distrib-
ution, and Π̃ exhibits most inequality. Alternatively we may state that each Λj

4All results in this paper generalize in the context n > 3. See the Appendix section for further
detail.
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has a minimal element Π̂j and a maximal element Π̃ in a way that each F ∈ Λj
is bounded by these two elements: Π̂j ≺AF F and F ≺AF Π̃. Thus, arrows in
the various subsets of Λ in Figure 1 indicate the direction of a median preserving
spread. We define

P =
q
Π̂1, Π̂2, Π̂3

r
(2.9)

as the set of egalitarian distributions. We close this section by observing that the
relation ≺AF does not allow us to compare any two elements of P or as a matter
of fact, any two distributions which belong to the interior of distinct subsets of
Λ, 5.

3. A general pre-ordering

Observe that Π̂1, Π̂2 and Π̂3 share a common property with regards to measur-
ing inequality: all individuals report the same value for our variable of interest.
Though these distributions are not identical, we may wish to consider them equiva-
lent in the sense that each Π̂j achieves the lowest possible level of inequality within
Λj
Equivalence relations are used to formalize a similarity between different el-

ements of a set. While we do not specify the equivalence relation we shall be
working with at this stage, we note that any methodology for measuring inequal-
ity is founded on a quasi-ordering, or pre-ordering 6 7. Our purpose in this paper
is to order distributionsX and Y with possibly different medians in a way that the
ordering remains equivalent to (Λ,≺AF ) when X and Y have the same median.
To do so, we shall jointly define an equivalence relation and a pre-order over

a set, via the formulation of two axioms. For a simple starting example, consider
the set of integers Z, and let s, s1 and t be any elements of Z. Then our first
axiom may take the form t � s ⇔ t ≡ s1 and |s1| ≤ |s| , while the second axiom
would state that t ≡ s⇔ |t| ≤ |s| and |s| ≤ |t| (that is, t ≡ s⇔ |t| = |s|.)
Returning to our specific problem, consider a general equivalence relation ≡R

and a pre-order � over the set of cumulative distributions, which are jointly
defined by the following two axioms:

5By interior, we are excluding comparisons between distributions which may be on the
common boundary of two subsets of Λ.

6We use the term pre-order to denote a reflexive and transitive relation.
7The Lorenz pre-order for instance provides the rationale for the Pigou-Dalton transfer prin-

ciple in the literature pertaining to the measurement of income inequality.
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•AXIOM 1 : X ≡R Y1 and Y1 ≺AF Y2 ⇔ X � Y2 for any X,Y1, Y2 ∈ Λ
(inequality aversion)
•AXIOM 2 : X � Y and Y � X ⇔ X ≡R Y for any X,Y ∈ Λ (equivalence)

We shall develop in the sections below specific relations which satisfies the
above axioms over the set of cumulative distributions.
AXIOM 1 makes it clear that we want to generalize an existing methodology

for comparing distributions with different medians, and this is to be achieved by
adding more structure to the set of cumulative distributions, via formalizing an
equivalence relation ≡R.
AXIOM 2 has clearly its analogue in the income inequality literature. If

equality of Lorenz curves is used to define a relation ≡L between two income
distributions, then ≡L may readily be verified to be a reflexive, symmetric and
transitive relation.
Our first result is formulated with the help of the concept of an equivalence

class for a given distribution X:

κR (X) = {Y ∈ Λ : X ≡R Y } (3.1)

That is, κR (X) gathers all the distributions that are equivalent to X in the light
of the definition of equivalence embodied in ≡R 8. The set of equivalence classes
(the quotient set) induced by ≡R will be denoted Λ/R:

Λ/R = {S ⊆ Λ : S = κR (X) for some X ∈ Λ} (3.2)

Proposition 3.1 Let X, Y1 and Y2 be any members of Λ and let ≡R denote
any equivalence relation over the set Λ with resulting equivalence classes κR (.).
Then the following two statements are equivalent:

(i) (Λ,�) is a pre-ordering which satisfies AXIOM 1 and AXIOM 2.

(ii) (Λ/R,≺R) defined by the relation κR (X) ≺R κR (Y2) ⇔ X ≡R Y1 and
Y1 ≺AF Y2, is a partial ordering over the set of equivalence classes.
This result is an instance of a more general theorem which enables a pre-

ordered set to induce a partial order over equivalence classes (Harzheim, 2005;
Theorem 4.9, p.17). The Proposition provides the basis for understanding the
meaning of a specific partial ordering that we define on equivalence classes (see

8For example, we will introduce in the next section an equivalence relation ≡E which will
enable us to formalize the intuitive property that Π̂1, Π̂2 and Π̂3 are all equivalent, and belong
to a same equivalence class.
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below): we may define a specific pre-ordering which satisfies AXIOMS 1 and
2, or equivalently, we may define a partial ordering over equivalence classes as
defined in the above Proposition. We shall develop the latter approach in the
next sections.

4. The equivalence relation

In this section we shall begin by formalizing the similarity between the elements
Π̂1, Π̂2 and Π̂3 of the set of equivalent distributions P, via an equivalence relation.
We then extend this equivalence relation to the entire set of cumulative distribu-
tions Λ. The resulting relation, (Λ,≡E), is used to define the set of distributions
which are equivalent to a particular distribution X, namely the equivalence class
κE(X).
Consider again the set of egalitarian distributions P. For the purpose of mea-

suring inequality, all three distributions in this set share a fundamental property:
every member of distribution Π̂j reports being at the respective median mj (but
medians differ across each Π̂j.) Also, returning to Figure 1, we may observe that
each of these distributions may be shown to be at a maximum distance from the
most polarized distribution Π̃ 9. Let |Z| denote the absolute value of a vector Z.
Formally, we have ���Π̂j − Π̃

��� = [ 0.5 0.5 0 ]� for all Π̂j ∈ P (4.1)

Accordingly, we can take these distributions as being related in that inequality
is always zero when everyone is at the median. More specifically the relation

Π̂j ∼ Π̂l ⇐⇒
���Π̂j − Π̃

��� = ���Π̂l − Π̃
��� (4.2)

defined over P is reflexive, symmetric and transitive, and accordingly is an equiv-
alence relation. How do we generalize this concept of equivalence to other distri-
butions?
Unless otherwise stated, we shall adopt the convention that F,G1, G2 and H

are distributions chosen such that F ∈ Λ1, G1, G2 ∈ Λ2 and H ∈ Λ3. Now
consider any ε and ω such that 0 < ω < ε < 0.5. According to the ≺AF relation,

9Though we do not specify any explicit metric for the set Λ, note though for example that a
Eucledian metric, as well as the usual metric (see footnote 10) would support this statement.
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we have in Λ1 : Π̂1 = (1 1 1)� ≺AF (1− ε 1− ω 1)� .= F. Likewise, in Λ3
: Π̂3 = (0 0 1)� ≺AF (ω ε 1)� .= H.
Observe that ���F − Π̃

��� =

������
1− ε− 0.5
1− ω − 0.5
1− 1

������ =
 0.5− ε
0.5− ω
0

 (4.3)

���H − Π̃
��� =

������
ω − 0.5
ε− 0.5
1− 1

������ =
 0.5− ω
0.5− ε
0

 (4.4)

so that
���H − Π̃

��� differs from ���F − Π̃
��� in that the vector ���H − Π̃

��� is a permutation
of the elements of

���F − Π̃
���.

Returning to Figure 1, observe that within the square shaped set Λ2, starting
from Π̂2 we may generate two distinct median preserving spreads G1 and G2 of
(0 1 1)�. Specifically, for 0 < ω < ε < 0.5, we have both Π̂2 ≺AF (ε, 1− ω, 1)� .=
G1 and Π̂2 ≺AF (ω, 1− ε, 1)� .= G2. We may observe again:���G1 − Π̃

��� =

������
ε− 0.5
1− ω − 0.5
1− 1

������ =
 0.5− ε
0.5− ω
0

 =
���F − Π̃

��� (4.5)

���G2 − Π̃
��� =

���H − Π̃
��� (4.6)

so that
���G1 − Π̃

��� and ���G2 − Π̃
��� are identical up to permutation. Each of F,G1 and

G2, and H are respectively neighboring distributions of Π̂1, Π̂2, and Π̂3
10. But

the above equalities also entail that all four vectors, namely,
���G1 − Π̃

���, ���G2 − Π̃
��� ,���F − Π̃

��� and ���H − Π̃
��� are identical up to permutation.

10If we endow Λ with a specific metric, we can formalize the concept that the distribution
F = [ 1− ε 1− ω 1 ]3 is a neighboring distribution to Π̂1. Let

d (X,Y ) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|
denote the usual metric, then (Λ, d) becomes a metric space.
Define B (X, r) .= {Y ∈ Λ : d (X,Y ) < r} as the open ball in Λ, centred at X, and with radius

r. Then since ω < ε, we have that F ∈ B
�
Π̂1, 2ε

�
, G1, G2 ∈ B

�
Π̂2, 2ε

�
and H ∈ B

�
Π̂3, 2ε

�
;

that is each of F,G1, G2 and H is contained within an open ball of radius 2ε and centred at the
most egalitarian distribution of the relevant subset of Λ.
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DefineM as the set of permutation matrices which permutate any but the last
component of an n-dimensional vector. We generalize the relation between Π̂1, Π̂2
and Π̂3 over P as follows:
Definition 4.1 Let X ∈ Λj and Y ∈ Λl Then X ≡E Y ⇔

���X − Π̃
��� =

M
���Y − Π̃

��� where M ∈M
The relation (Λ,≡E) embodies a certain symmetry in our judgements on the

level of inequality:

Example 2: Consider the following distributions:

F =

 0.7
0.8
1

 ∈ Λ1, H =

 0.2
0.3
1

 ∈ Λ3

Then F ≡E H since
���F − Π̃

��� =
 0 1 0
1 0 0
0 0 1

���H − Π̃
��� . �

The relation (Λ,≡E) generalizes the earlier relation (P,∼) in the sense that it
preserves the equivalence between the members of P. Furthermore,
Proposition 4.2 The relation (Λ,≡E) is an equivalence relation.
We use the above result firstly to define and obtain the equivalence class

of any X ∈ Λ. Then, in the section below, we shall specialize the result of
Proposition 3.1 in the context of ≡E to obtain the required partial ordering on
the set of equivalence classes, thus enabling us to compare distributions with
different medians.
We define then the equivalence class of any X ∈ Λ as follows:

κE (X) =
q
Y ∈ Λ, M ∈M :

���X − Π̃
��� =M ���Y − Π̃

���r (4.7)

We observe that the equivalence class of any member of the set of egalitarian
distributions is precisely the entire set P :

κE
�
Π̂j
�
=
q
Π̂1, Π̂2, Π̂3

r
= P j = 1, 2, 3 (4.8)

Returning to Example 2, it is instructive to examine in the light of the above
definitions the equivalence class of the distribution F :
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Example 3 For the distribution F =

 0.7
0.8
1

 of Example 2, we have

κE (F ) = {F,G1, G2,H}

where

H =

 0.2
0.3
1

 , G1 =
 0.3
0.8
1

 , G2 =
 0.2
0.7
1


�

5. Ordering distributions from different equivalence classes

If X and Y have different median responses, yet they are in the same equivalence
class, we shall need to ensure that inequality indices will give ∆ (X, c) = ∆ (Y, c)
for all c ∈ C. The question we shall attend to here is how to order a given
representative of κE (X) and one of κE (Y ) when the equivalence classes κE (X)
and κE (Y ) are distinct.
To pave the way for deriving our partial ordering over equivalence classes, we

return to AXIOMS 1 and 2 of Section 3, where we substitute the definition 4.1
of ≡E for the general equivalence relation ≡R. This first entails:
Definition 5.1 Let X and Y be elements of Λ with respective equivalence

classes κE (X) and κE (Y ). Then κE (X) ≺E κE (Y ) iff there exists Y ∗ ∈ κE (Y )
such that X ≺AF Y ∗.
This is one of several equivalent definitions of κE (X) ≺E κE (Y ) :

Proposition 5.2 Let X and Y be two cumulative distributions with equiva-
lence classes κE (X) and κE (Y ) respectively. Then the following three statements
are equivalent:
(i) κE (X) ≺E κE (Y ) .
(ii) There exist Û ∈ κE (X) and V̂ ∈ κE (Y ) such that Û ≺AF V̂ .
(iii) For all U ∈ κE (X) there exists V ∈ κE (Y ) such that U ≺AF V .
In words, when κE (X) is more egalitarian than κE (Y ) it is the case that

there is a distribution Û which is equivalent to X and a distribution V̂ which
is equivalent to Y , such that Û and V̂ have identical medians, and furthermore
Û ≺AF V̂ . In turn, (iii) above ensures that every distribution U of κE (X) will
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be comparable to some distribution V in the equivalence class of Y such that
U ≺AF V. We illustrate the above result by means of the following example:

Example 4 Recall the distribution F =

 0.7
0.8
1

 of Example 3 with equiva-

lence class κE (F ) = {F,G1, G2,H} . Now consider a distribution X =

 0.8
0.9
1

,
with equivalence class

κE (X) =

�
‘

X,B1, B2,D

�
such that

D =

 0.1
0.2
1

 , B1 =
 0.2
0.9
1

 , B2 =
 0.1
0.8
1


We may observe that X ≺AF F, B1 ≺AF G1, B2 ≺AF G2 and D ≺AF H. In other
terms, κE(X) ≺E κE (F ) �
We next substitute ≡E for the general equivalence relation ≡R in Proposition

3.1 to state the following result:

Proposition 5.3 The relation ≺E defined over the set of equivalence classes
Λ/E is a partial ordering.

Ideally, in order to make the above methodology easily applicable one needs a
simple empirical criterion for testing that either of the three conditions of Propo-
sition 5.2 is satisfied. We begin by observing from Lemma A1 of the Appendix
that when X ≺AF Y we have that

���X − Π̃
��� ���Y − Π̃

��� , and furthermore, if
med(X) = med(Y ) and

���X − Π̃
��� ���Y − Π̃

��� , this entails X ≺AF Y .
In the general case where X and Y do not necessarily have identical median

states, we obtain the following simple criterion for ordering equivalence classes:

Proposition 5.4 Let X and Y be any two distributions in Λ. Then the
equivalence class κE(X) is more egalitarian than the equivalence class κE(Y ) if

and only if there exists M ∈M such that
���X − Π̃

��� ≥M ���Y − Π̃
��� .

Note that in the criterion of Lemma A1-ii where X and Y have identical
medians, the permutation matrixM of the above Proposition is simply the identity
matrix.
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The result of Proposition 5.3 also entails that there exist least, and most,
egalitarian equivalence classes:

Corollary 5.5 For any distribution X with equivalence class κE (X), and for

any Π̂ ∈ P, we have κ
�
Π̂
�
≺E κE (X) and κE (X) ≺E κE

�
Π̃
�

The above result may be used to normalize inequality indices to take on a
minimal value of 0, and if required a maximal value of 1.

6. Median independent inequality measures

We now return to the general case where Λ is the set of cumulative distributions
defined over n ≥ 3 states, and we open this section with a discussion of a problem
that is inherent to the analysis of ordered response data. The problem is the
following: consider ranking two distributions X and Y using an inequality index
∆(., c), in relation to some scale c1 and then again using another scale c2, where
c1, c2 ∈ C. Then, unless suitable restrictions are placed on the inequality index
∆ (., c) , the ordering of the two distributions could fail to remain invariant to
changes in the measurement scale. Accordingly, we restrict our discussion below
to indices which are order invariant to the choice of scale:

• ORDER−SCALINV : ∆ (X, c1) ≤ ∆
�
Y, c

1
�
⇔ ∆

�
X, c

2
�
≤ ∆ (Y, c2) for

all X,Y ∈ Λ and all c1, c2 ∈ C (order invariance to scale)

Referring to Blackorby et al. (1978; Theorem 3.2 a) and Abul Naga and Yalcin
(2008), ∆ (X, c) is order invariant to scale if and only if ∆ is strictly separable in
X :

∆ (X, c) = Γ [φ (X) , c] (6.1)

where φ : Λ→ R, Γ : R×C → R+ and Γ is increasing in φ. From here on therefore
we assume that the inequality index is order invariant to scale, and we turn our
attention to two key properties the inequality index must satisfy in relation to the
ordering (Λ/E,≺E). Firstly, as ∆ ( , ) is a numerical representation of the partial
ordering over equivalence classes, we must first ensure that if the equivalence class
of X is more egalitarian than the equivalence class of Y, there is less inequality
under X than Y :

• EQUAL : κE (X) ≺E κE (Y )⇒ ∆ (X, c) ≤ ∆ (Y, c) for all c ∈ C (inequality
aversion)
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Next, we must ensure that if X and Y are equivalent distributions, the level
of inequality is identical under these two distributions:

• EQUIV : X ≡E Y ⇒ ∆ (X, c) = ∆ (Y, c) for all c ∈ C (equivalence)

To examine EQUIV consider the set of functions φ : Λ → R+ which are
constant on the equivalence class of X:

ΦE = {φ : Λ→ R+ : X ≡E Y ⇒ φ (X) = φ (Y )} (6.2a)

ΦE is the set of functions which are symmetric in |x1 − 0.5| , ..., |xn − 0.5| .
Example 5 Let α,β, k > 0 be constants and let c ∈ C. Consider the following

functions that map Λ to R+ :

φ1 (X) =
n[
i=1

|xi − 0.5|α + k (6.3)

φ2 (X) = k
n−1\
i=1

|xi − 0.5|α (6.4)

φ3 (X) = min
i=1,...,n

{|xi − 0.5|} (6.5)

φ4 (X) = max
i=1,...,n

{|xi − 0.5|} (6.6)

φ5 (X) =
n[
i=m

(xi − xi−1)ci −
m−1[
i=2

(xi − xi−1)ci − x1c1 (6.7)

φ6 (X) =
m−1[
i=1

xαi −
n[
i=m

xβi + k (6.8)

Then φ1,φ2,φ3,φ4 are elements of the set ΦE while φ5,φ6 do not belong to the set
ΦE as they are not symmetric in the arguments |x1 − 0.5| , ..., |xn − 0.5| . �
The lemma below, adapted from MacLane and Birkhoff (1999, Theorem 19;

p.35) allows us to conclude that φ(.) will satisfy the axiom EQUIV if and only if
φ (X) = γ [κE (X)] , where γ(.) maps the equivalence class of X to R+:
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Lemma 6.1 Given the equivalence relation ≡E on the set Λ, let φ : Λ→ R+
be any member of the set of functions ΦE. Then there is exactly one function
γ : Λ/E → R+ for which φ (X) = γ [κE (X)]

Put more simply, the function φ(.) may be seen as a composition of a first
mapping which projects X to its equivalence class 11, and a second mapping γ(.)
from Λ/E to R+.
Recall from Proposition 5.4 that κE (X) ≺ κE (Y ) if and only if

���X − Π̃
��� ≥

M
���Y − Π̃

��� for some M ∈ M. Clearly then, if the function φ : Λ → R+ were
to satisfy both EQUIV and EQUAL, φ (X) would be required to be symmetric
and decreasing in |x1 − 0.5| , ..., |xn − 0.5|. We summarize this discussion with the
following Proposition:

Proposition 6.2∆ (X, c) satisfies the axioms ORDER−SCALINV,EQUIV
and EQUAL if and only if there exist functions Γ : ran (φ) × C → R and
φ : Λ→ R+ such that

∆ (X, c) = Γ [φ (|x1 − 0.5| , ..., |xn − 0.5|) , c] (6.9)

where φ (·) is symmetric and decreasing in |x1 − 0.5| , ..., |xn − 0.5| and Γ (·) is
increasing in φ (·) 12.
This result enables us quite simply to construct new families of median in-

dependent inequality indices. It is conceivable, for example, to construct a new
measure based on the function φ2 (X) of Example 5,

∆ (Π, c) = 1− (0.5)−(n−1)α
n−1\
i=1

|xi − 0.5|α α > 0 (6.10)

where the function is normalized to take on values between 0 and 1. Alternatively,
any member of the set ΦE can be used for this purpose, and we have collected
several of its elements in Example 5.
The result also allows us to identify which of the existing inequality indices for

ordered response data satisfy the new ordering relation (Λ/E,≺E) of this paper.
Firstly, we note that all of the indices presented in Table 2 were constructed for
the purpose of preserving the ordering relation (Λ,≺AF ), that requires a com-
mon median response when comparing a given pair of distributions. Recall from

11This first mapping is also known as the natural projection of X to κE (X).
12For a given function φ(.), ran(φ) denotes the range of φ.
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Example 5, that the functions φ5 and φ6 do not belong to the set ΦE as they
are not symmetric in their arguments |xi − 0.5| . The Allison and Foster (2004)
measure ∆AF is based on the function φ5(.), and therefore does not preserve the
ordering relation introduced in this paper. Likewise, the alphabeta family of Abul
Naga and Yalcin (2008) is based on the function φ6(.) of Example 5, and accord-
ingly does not satisfy the ordering relation ≺E . Unlike the above two indices,
the Apouey (2007) measure and the Absolute value measure of Abul Naga and
Yalcin (2008), based on the function φ1 of Example 5, are symmetric functions of
|x1 − 0.5| , ..., |xn − 0.5| . Using the results of Lemma 6.1 and Proposition 6.2, we
may conclude that these indices preserve the ordering relation ≺E that we have
introduced in this paper.
Also, the result of Proposition 6.2 reveals that the class of inequality indices

that are order-preserving for this new relation is quite large and awaits further
exploration.

7. Concluding comments

Because the Lorenz ordering and related income inequality measures are not suit-
able for the analysis of ordered response data, researchers have adopted a median
preserving spread ordering, and constructed related inequality measures for the
analysis of such data. The median preserving spread concept however is a rela-
tion restricted to the comparison of distributions that exhibit common median
responses. We have thus studied in Section 3 a general pre-ordering and equiva-
lence relation that together extend the median preserving relation of Allison and
Foster (2004) to the comparison of cumulative distributions on the basis of their
equivalence classes, and irrespective of their medians.
Clearly, the set P of egalitarian distributions ought to constitute one such

equivalence class. The starting point of Section 4 was to formalize the similarity
between members of this set. This was provided to us by selecting a reference
distribution—the most polarized distribution Π̃ was chosen— and by observing that
all members of P were at an equal distance from this reference distribution. By
then extending comparisons to neighboring distributions of P, we have generalized
the equivalence relation (P,∼) to obtain our relation (Λ,≡E).
In Section 5 we have obtained several equivalent definitions of the resulting

partial ordering (Λ/E,≺E) over equivalence classes, thus allowing us to compare
distributions independently from their medians. In the specific case where two
distributions exhibit an identical median response, the methodology set out in this
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paper ensures that the ordering ≺E coincides with the median preserving spread
relation ≺AF of Allison and Foster (2004). Finally, in Section 6 we have obtained
the required functional form inequality indices must satisfy to be order-preserving
for the relation ≺E . The result enables the derivation of new families of median
independent inequality indices for ordered response data.

8. Appendix

The appendix gathers proofs of the main results stated in the paper. In the
general case where n ≥ 3, we define the most polarized distribution,

Π̃ = [0.5, ...0.5, 1]� (8.1)

the n egalitarian distributions,

Π̂1 = [1, ..., 1]� (8.2)

Π̂2 = [0, 1, ..., 1]� (8.3)
...

Π̂n = [0, ..., 0, 1]� (8.4)

and P = {Π̂1, ..., Π̂n} is the set of egalitarian distributions.
Let i,m, l ∈ N. We define the index sets

Nml = {i ∈ N : m ≤ i < l} (8.5)

Nlm = {i ∈ N : l ≤ i < m} (8.6)

If A and B are sets, we define A⊕B as the set that gathers all the elements of A
and B. If for instance, A = {a, b} and B = {b, c), then A⊕B = {a, b, b, c}.
We begin by stating and proving four preliminary lemmas. In what follows let

P (X) = [p1(X), ..., pn(X)]
� be a vector of n functions, where pn(X) = 1 and for

i = 1, ..., n−1 pi(X) : Λ→ [0, 1]. The notation below is standard in the literature
on the theory of majorization (cf. Marshall and Olkin, 1979): we let

0 ≤ p(1)(X) ≤ p(2)(X) ≤ ... ≤ p(n)(X) = 1 (8.7)

be the values of the n functions ordered in ascending fashion. Also define

P↑ = [p(1)(X), p(2)(X), ..., p(n)(X)]� (8.8)
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and observe that given the definition of P (X), the resulting vector P↑ is an element
of Λ.

Lemma A1 Let X and Y be any two elements of Λ. Then:
(i) X ≺AF Y =⇒

���X − Π̃
��� ≥ ���Y − Π̃

���
(ii) med(X) = med(Y ) and

���X − Π̃
��� ≥ ���Y − Π̃

��� entail X ≺AF Y.
Proof (i) If X ≺AF Y and m denotes the median state of both distributions,

this entails

xi ≤ yi i = 1, ...,m− 1 (a1)

xi ≥ yi i = m, ..., n (a2)

Thus (a1) entails for all i = 1, ...,m−1 that |xi − 0.5| ≥ |yi − 0.5| , while (a2) also
entails for all i = m, ..., n that |xi − 0.5| ≥ |yi − 0.5| . That is,

���X − Π̃
��� ≥ ���Y − Π̃

��� .
The converse is generally incorrect. For example, if n = 3 and X =

 0.8
0.8
1

 and

Y =

 0.3
0.8
1

 , then X is not comparable to Y yet
���X − Π̃

��� ≥ ���Y − Π̃
��� .

(ii) If med(X) = med(Y ) = m, then
���X − Π̃

��� ≥ ���Y − Π̃
��� entails (a1) and (a2).

Thus X ≺AF Y.
Lemma A2 For all m = 1, ..., n and l = 1, ..., n and for all X ∈ Λm, there

exists at least one distribution Y ∈ Λl such that X ≡E Y.
Proof Observe first that Π̃ lies at the intersection of all subsets of Λ. The

reflexive property of the equivalence relation ≡E then ensures that the result
holds immediately for Π̃. For a given X 9= Π̃, where X ∈ Λm, we shall therefore
consider three cases depending on whether l is smaller, greater, or equal to m.
Consider first the case l < m. Let pi(X) = 1−xi if l ≤ i < m, and pi(X) = xi

otherwise. Then, since |1−xi−0.5| = |xi−0.5|, we have that |P (X)−Π̃| = |X−Π̃|,
Also, we have by construction P (X)↑ ∈ Λ. Since P (X)↑ is a permutation of the
vector P (X), we have |P (X)↑−Π̃| =M |X−Π̃| for someM ∈M. Hence it follows
that P (X)↑ ≡E X. Note furthermore that for i ≥ l, pi(X) ≥ 0.5. Hence P (X)↑
has l − 1 elements taking values smaller than 0.5. and med(P (X)↑) = l. Hence
for Y = P (X)↑, we have that Y ≡E X, where Y ∈ Λl.
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Next, consider the case l > m. Let pi(X) = 1−xi if m ≤ i < l, and pi(X) = xi
otherwise. Repeating the steps related to the case l < m above, we find P (X)↑ ∈
Λl, and P (X)↑ = M |X − Π̃| for some M ∈ M. Hence, for Y = P (X)↑, we have
that Y ≡E X, where Y ∈ Λl.
Finally, when l = m, the reflexive property of the equivalence relation entails

X ≡E X.
Lemma A3 Let U and V be any two elements of Λm, with U ≺AF V.
For the case l < m and for X = U, V define the vector P (X) with elements

pi(X) = 1− xi i ∈ Nlm (8.9)

pi(X) = xi i ∈ {1, ..., n}\Nlm (8.10)

For the case l > m and for X = U, V define the vector P (X) with elements

pi(X) = 1− xi i ∈ Nml (8.11)

pi(X) = xi i ∈ {1, ..., n}\Nml (8.12)

Then, defining U∗ = P (U) and V ∗ = P (V ) we have:
(i) U∗↑ , V

∗
↑ ∈ Λl

(ii) U∗↑ ≺AF V ∗↑ ,
(iii) U∗↑ ∈ κE(U) and V ∗↑ ∈ κE(V )

Proof Consider first the case l < m. For (i), the proof is as in the proof of
Lemma A2 above. Next consider (ii). Since U and V are elements of Λm, with
U ≺AF V, we have ui ≤ vi for i = 1, ...,m − 1 , while ui ≥ vi for i = m, ..., n.
Accordingly this entails

1− ui ≥ 1− vi l ≤ i < m (8.13)

ui ≥ vi i = m, ..., n (8.14)

Construct the sets S1 = {1 − ui : l ≤ i < m}, T1 = {1 − vi : l ≤ i < m},
S2 = {ui : i = m, .., n} and T2 = {vi : i = m, .., n}. Finally define S = S1 ⊕ S2
and T = T1⊕T2. Observe that each element of T can be assigned a distinct upper
bound in the set S, so that no two elements of T are attributed the same upper
bound.
Let V ∗↑ = P (V ). Then, V ∗↑ = [v∗(1), ..., v

∗
(n)]

�. Define u∗i = ui for i < l. Next
define u∗l ∈ S as the least upper bound (L.U.B) of v∗(l) from the set S. Likewise,
define u∗l+1 as the L.U.B of v∗(l+1) in the set S\{u∗l }. Since v∗(l+1) ≥ v∗(l), it follows
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that u∗l+1 ≥ u∗l . Likewise, we may define u
∗
l+2 as the L.U.B of v∗(l+2) in the set

S\{u∗l , u∗l+1}, ..., and u∗n−1 as the L.U.B of v∗(n−1) in the set S\{u∗l , ...u∗n−2}. Defin-
ing U∗↑ = [u1, ..., ul−1, u

∗
l , ..., u

∗
n−1, 1]

�, this construction gives us that U∗↑ ≺AF V ∗↑
where U∗↑ , V

∗
↑ ∈ Λl.

Now assume to the contrary that for some j such that l ≤ j ≤ n, v∗(j) does not
have a least upper bound in the set S\{u∗l , ...u∗j−1}. Without loss of generality,
assume j = n. Then it must be that one of the inequalities [ 8.13—8.14] above was
violated, or equivalently that U ⊀AF V. This establishes (ii).
For (iii) use Lemma A2 to conclude that forM1,M2 ∈M we have

���U∗ − Π̃
��� =

M1

���U − Π̃
��� and ���V ∗ − Π̃

��� =M2

���V − Π̃
��� , so that U∗ ≡E U and V ∗ ≡E V.

The proof is similar in the context where l ≥ m.
Lemma A4 Let Mi,Mj be any two elements of M and let I denote the

identity matrix. Then we have:

(i) Mi ∈M⇐⇒M−1
i ∈M for all Mi ∈M

(ii) MiMj ∈M and MjMi ∈M for all Mi and Mj ∈M
(iii) I ∈M
Proof This follows from the result that the set of permutation matrices forms

a group under multiplication (Maclane and Birkhoff, 1999, ch. 2) and that M is
a subgroup of this set.

Proof of Proposition 4.2 Let F,G,H ∈ Λ. Then:
(i) REFLEX

���F − Π̃
��� = I ���F − Π̃

��� . Thus F ≡E F.
(ii) SYM : let

���F − Π̃
��� =M ���G− Π̃

��� whereM ∈M. Then since from Lemma
A4 M−1 ∈ M we have M−1

���F − Π̃
��� = M−1M

���G− Π̃
��� = ���G− Π̃

��� . Thus F ≡E
G⇐⇒ G ≡E F
(iii) TRANSI: Let

���F − Π̃
��� =M1

���G− Π̃
��� and ���G− Π̃

��� =M2

���H − Π̃
��� , where

M1 and M2 are elements of M. Then
���F − Π̃

��� = M1M2

���H − Π̃
���. Lemma A4

entails that M1M2 ∈M so that F ≡E G and G ≡E H =⇒ F ≡E H.
Proof of Proposition 5.2We shall prove (i)⇒ (ii)⇒ (iii)⇒ (i).

(i) ⇒ (ii) Let κE(X) ≺E κE(Y ). Then, from Definition 5.1, there exists
Y ∗ ∈ κE(Y ) such that X ≺AF Y ∗. Setting Û = X and V̂ = Y ∗, we have the
required result.
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(ii)⇒ (iii) Let Û ∈ κE(X) and V̂ ∈ κE(Y ) such that Û ≺AF V̂ . By assump-
tion, Û and V̂ belong to the same subset Λj of Λ. From Lemma A2, Û has an
equivalent distribution U, and V̂ has an equivalent distribution V, in each Λl.We
can construct U and V as indicated in Lemma A3, by setting U = U∗↑ and V = V

∗
↑

such that U ∈ κE(X), V ∈ κE(Y ) and U ≺AF V.
(iii) ⇒ (i) We have κE(X) = κE(U) ≺E κE(V ) = κE(Y ). Thus κE(X) ≺E

κE(Y ) as required.

Proof of Proposition 5.3 This follows from Proposition 3.1 since ≡E is an
equivalence relation.

Proof of Proposition 5.4 (⇒) κE (X) ≺E κE (Y ) entails, from Proposition
5.2, that there exists X∗ ∈ κE (X) with X∗ ≺AF Y. From Lemma A1 , it follows

that
���X∗ − Π̃

��� ≥ ���Y − Π̃
��� , i.e. ���X − Π̃

��� = M
���X∗ − Π̃

��� ≥ M
���Y − Π̃

��� for some
M ∈M.
(⇐) Assume that

���X − Π̃
��� ≥M ���Y − Π̃

��� . From Lemma A2 there exists Y ∗ ∈
κE (Y ) such that med(Y ∗) = med(X), and

���Y − Π̃
��� = M∗

���Y ∗ − Π̃
��� . In turn,

we have
���X − Π̃

��� ≥ MM∗
���Y ∗ − Π̃

��� . Definition 5.1 therefore entails κE (X) ≺E
κE (Y

∗) = κE (Y ) as required.

Proof of Proposition 6.2 (⇒) Let∆(X, c) satisfy the scale invariance axiom
ORDER−SCALINV. Then Theorem 3.2a of Blackorby et al. (1978) entails that
the inequality index is of the form ∆ (X, c) = Γ [φ (X) , c] where Γ is increasing
in φ(.). Together ORDER − SCALINV and EQUIV entail that ∆ (X, c) =
Γ [φ (X) , c] where φ(X) is a symmetric function of |x1− 0.5|, ..., |xn− 0.5|. Taken
together the three axioms entail that φ(X) is symmetric and decreasing in each
of |x1 − 0.5|, ..., |xn − 0.5|.
(⇐) Conversely, let ∆(Π, c) be of the form (6.1) where φ(X) is a symmetric

and decreasing function of |x1−0.5|, ..., |xn−0.5|. Then it can be verified straight-
forwardly that ∆(Π, c) satisfies the three axioms ORDER−SCALINV, EQUIV
and EQUAL.
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Table 1:  Respect and communication in health treatment: cumulative distributions for selected European countries  
 

Country Very bad Bad Moderate Good Very good Median state 

Austria   0.00 0.01 0.06 0.38 1 Very good 

Denmark        0.03 0.05 0.08 0.39 1 Very good

Spain       0.01 0.02 0.08 0.69 1 Good

France       0.03 0.05 0.14 0.52 1 Good

 
Source: Table 1 of Jones et al. (2010); Respondents in the World Health Survey were asked to rate their experience of the 
health system in relation to respectful treatment and communication. 
 
 
 
 
 
 
 
 



Table 2:  Some inequality measures for ordered response data 
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