245 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Massive MIMO systems for 5G: a systematic mapping study on antenna design challenges and channel estimation open issues

    Get PDF
    The next generation of mobile networks (5G) is expected to achieve high data rates, reduce latency, as well as improve the spectral and energy efficiency of wireless communication systems. Several technologies are being explored to be used in 5G systems. One of the main promising technologies that is seen to be the enabler of 5G is massive multiple-input multiple-output (mMIMO) systems. Numerous studies have indicated the utility of mMIMO in upcoming wireless networks. However, there are several challenges that needs to be unravelled. In this paper, the latest progress of research on challenges in mMIMO systems is tracked, in the context of mutual coupling, antenna selection, pilot contamination and feedback overhead. The results of a systematic mapping study performed on 63 selected primary studies, published between the year 2017 till the second quarter of 2020, are presented. The main objective of this secondary study is to identify the challenges regarding antenna design and channel estimation, give an overview on the state-of-the-art solutions proposed in the literature, and finally, discuss emerging open research issues that need to be considered before the implementation of mMIMO systems in 5G networks

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Soft Pilot Reuse and Multi-Cell Block Diagonalization Precoding for Massive MIMO Systems

    Full text link
    The users at cell edge of a massive multiple-input multiple-output (MIMO) system suffer from severe pilot contamination, which leads to poor quality of service (QoS). In order to enhance the QoS for these edge users, soft pilot reuse (SPR) combined with multi-cell block diagonalization (MBD) precoding are proposed. Specifically, the users are divided into two groups according to their large-scale fading coefficients, referred to as the center users, who only suffer from modest pilot contamination and the edge users, who suffer from severe pilot contamination. Based on this distinction, the SPR scheme is proposed for improving the QoS for the edge users, whereby a cell-center pilot group is reused for all cell-center users in all cells, while a cell-edge pilot group is applied for the edge users in the adjacent cells. By extending the classical block diagonalization precoding to a multi-cell scenario, the MBD precoding scheme projects the downlink transmit signal onto the null space of the subspace spanned by the inter-cell channels of the edge users in adjacent cells. Thus, the inter-cell interference contaminating the edge users' signals in the adjacent cells can be efficiently mitigated and hence the QoS of these edge users can be further enhanced. Our theoretical analysis and simulation results demonstrate that both the uplink and downlink rates of the edge users are significantly improved, albeit at the cost of the slightly decreased rate of center users.Comment: 13 pages, 12 figures, accepted for publication in IEEE Transactions on Vehicular Technology, 201

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    • …
    corecore