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ABSTRACT

We tend to assume that pervasive wireless connectivity exists everywhere, and with new
applications such as Virtual Reality, Autonomous Driving and the Internet of Things, this
with require a 1000-fold increase in capacity by 2020 based on cellular capacity in 2016.

This increase now presents significant challenges to wireless system designers. The majority of
consumer wireless technologies currently operate using spectrum between 380MHz and 6GHz.
Given the favourable propagation for cellular communications, wireless local area networking
(Wi-Fi), terrestrial television broadcasting and radar, this spectral spot has become extremely
crowded, and mechanisms to enhance the spectrum efficiency are thus needed. Massive multiple-
input, multiple-output (Ma-MIMO) enables efficient utilization of the limited radio resources
providing significant capacity improvement by multiplexing more simultaneous users within the
same radio resource by means of spatial domain signal processing.

This thesis evaluates the practicality of using Ma-MIMO in real-world scenarios and identifies
solutions to operational deployments as they are uncovered. At the time this work commenced,
only a few real-time evaluations had been conducted and the majority of the theoretical papers
were not validated. The work in this thesis presents the per-cell spectral efficiency (SE) of
145.6 bits/s/Hz achieved with a 128-antenna Ma-MIMO testbed and introduces the challenges
and the limitation factors that were revealed when delivering this level of spectrum efficiency
enhancement. Here, the Ma-MIMO channel robustness is evaluated through various indoor and
outdoor field trials, and the improved channel robustness was then exploited to design a simple
uplink closed loop power control scheme.

This thesis also introduces novel adaptive user grouping algorithms to further enhance
the Ma-MIMO advantages for different applications. The algorithms presented address the
interference caused by the multiple simultaneous user channel vectors in the same frequency-
time domain as well as errors due to hardware impairments. This can be achieved by means of
a novel error vector magnitude (EVM) prediction method proposed herein. Importantly, all the
proposed algorithms and approaches in this thesis have been evaluated experimentally by means
of a software-defined radio Ma-MIMO testbed.
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INTRODUCTION

The work presented in this thesis is a part of the ongoing research within the Communication

Systems & Networks (CSN) group at the University of Bristol in the field of fifth generation

mobile system (5G) wireless communication technologies. The author’s unique contributions

to each chapter are clearly stated on each of the first pages. The contents of this chapter is

summarized as follows:

• Summary of the background and the motivation behind the work of this thesis.

• Overview of massive MIMO technology in the concept of wireless communications.

• Highlighting the author’s main contributions to the state of the art technology.

• Explaining the structure of this thesis.
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CHAPTER 1. INTRODUCTION

Our use and reliance on Smartphone technology for services beyond voice and basic data

communications is now so evident in both our business and personal lives. Smartphones

are being used for various services such as downloading music or video clips, using

digital maps, shopping online, browsing the internet, etc. Now it is easier than any time before

for families and friends in different continents to video-stream at almost anytime and anywhere

using smartphones. It’s being used at some universities and learning institutions between the

students and the lecturer to increase the class efficiency through a real-time interaction and

feedback. It is also an easy method to share accidents related to crime and document any evidence

just by using a smartphone’s camera and a wireless network.

In addition to personal use, industries are exploiting wireless technology to increase the

flexibility and the productivity of their work. For example, the BBC in moving towards the

all wireless studio and using more high-definition (HD) wireless cameras at major cultural or

sporting events. New promising products and applications are heavily based on the wireless

technology. Drones technology with built-in light emitting diode (LED) lights has already started

to replace the fireworks in many festivals, concerts and recently in the Winter Olympics held

in South Korea [1]. The army of drones covered in LED lights are controlled via a secure and a

reliable wireless technology. Autonomous Driving (AD) is one of the sensitive technology which

required a truly remarkable engineering work towards establishing reliable channels with a

very low latency links for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) [2]. Other

applications such as machine-to-machine (M2M), internet of things (IoT) and delivering high

bandwidth (BW) to trains among other promising technologies are also utilizing the benefits of

wireless networks [3–5]. Furthermore, Smart cities are becoming more than a trend as several

cities around the world are digitally transforming such as Bristol in the United Kingdom, New

York in the United States of America and Dubai in United Arab Emirates. Managing the wireless

radio resources plays a significant role in creating an efficient and a reliable smart city platform.

Various challenges have been addressed through the evolution of mobile wireless communi-

cation networks to achieve different goals. The first generation mobile system (1G) dealt with

the challenge of providing voice calls through a wireless network by using an analogue signals.

Sending text messages was supported by using the digital technology in the second generation

mobile system (2G). Supporting data transmission with high data rate was started in the third

generation mobile system (3G) and enhanced in the fourth generation mobile system (4G) [6]. The

ongoing work towards 5G focuses on different kinds of challenges to support the new demands

of future applications. The existing paradigms for exploiting the wireless resources won’t be

able to support the 1000-fold increase in capacity requirements forecast for 2020 [7] and the key

performance indicator (KPI) targets for 5G networks have been set accordingly [8, 9].

The motivation behind investigating the massive MIMO (Ma-MIMO) technology to increase

the spectral efficiency (SE) is outlined in the rest of this chapter.
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1.1. THE CAPACITY CRUNCH OF THE LOW FREQUENCY BANDS (SUB-6GHZ)

Table 1.1: An overview of frequency assignment for the sub-6 GHz.

Wireless Access Technology BW Frequency Range

802.11b/g/n 20–40 MHz 2.4–2.5 GHz
802.11ac/n 20–160 MHz 5.1–5.9 GHz
GSM 9.6–59.6 MHz 380 MHz to 1.9 GHz
UMTS FDD 5 MHz 700 MHz to 3.5 GHz
LTE 1.4–20 MHz 450 MHz to 5.9 GHz

1.1 The Capacity Crunch of the Low Frequency Bands
(sub-6GHz)

The radio spectrum range between 380MHz and 6GHz is being used by many wireless technolo-

gies, where the number of customers is increased dramatically. Given the favourable propagation

for cellular communications, wireless local area networking (Wi-Fi), terrestrial television broad-

casting and radar, this spectral sweet-spot is extremely crowded and mechanisms to enhance

the spectrum efficiency are thus needed [10]. Table 1.1 shows the frequency range for main

cellular services such as long-term evolution (LTE), Universal Mobile Telecommunications Sys-

tem (UMTS) and Global System for Mobile Communications (GSM) [11–13]. It also shows the

short-range fixed access services such as 802.11 [14]. In communications system, path loss is

increased by using higher carrier frequencies due to the electrical scaling of the antenna aperture.

This is known as the Friis Transmission formula which is expressed mathematically as follows:

(1.1) ρR = ρGTGR c2

(4πR f )2

where ρ and ρR are the transmitted power and the received power, respectively. While GT and

GR are the transmit antenna gain and the receive antenna gain, respectively. f is the frequency

and c is the speed of light. The distance between transmit and received antennas is denoted by R.

Furthermore, higher frequencies have challenging propagation properties [15], highly effected

by the phase noise [15] and associated with technical challenges in designing the hardware

components [16]. The aforementioned challenges have led the majority of consumer wireless

technologies to be more attracted to the lower frequencies. However, another kind of challenges

comes with the sub-6 GHz such as larger size of antennas, limited bandwidth and congested

spectrum.

Although 802.11ac and LTE have increased the capacity in the sub-6 GHz, the cost and the

availability of radio spectrum are still need to be handled properly. The challenge for wireless

system designers is what to do next.

3
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Table 1.2: Advantages and disadvantages for sub-6 GHz and mmWave.

Advantages Disadvantages

sub-6 GHz Favourable Propagation
Congested Spectrum
Limited Bandwidth

mmWave Large BW
Phase Noise

Sensitivity to Doppler
Lack of Reflected and Diffracted Signals

1.2 Use of Millimetre Wave

Another approach for addressing the capacity goals of 5G and beyond wireless communications

is the use of millimetre wave (mmWave) [17]. The use of wideband channels is one of the key

elements towards meeting the new capacity demands for 5G technology. The 5G New Radio

specification is already using the high frequency bands to increase the capacity [18]. Up to

20 Gbits/s potential throughput was demonstrated by using a bandwidth of 2 GHz and a carrier

frequency of 73 GHz [19]. 28 GHz mmWave technology was demonstrated in London by Samsung

and Arqiva [20]. The world’s first 5G high mmWave over-the-air (OTA) field trial was conducted

by Huawei and Deutsche Telekom [21]. Different real-world environments were covered in this

field trial using 73 GHz at the Deutsche Telekom campus in Germany. Adaptive beamforming

and beam tracking techniques were used in multi-cell environments with different scenarios

The mmWave technology still needs the sub-6 GHz technology in urban areas to provide

control and handover signalling between different small cells in the cellular networks. Although

high data rate could be provided by the mmWave technology, it is still challenging to maintain a

reliable data transmission due to the propagation properties of the high frequencies. Besides, line-

of-sight (LOS) or strong reflected paths won’t always be available in the city. Therefore, the need

for squeezing the sub-6 GHz bands is crucial to accommodate the growing capacity demands and

the new requirements for 5G technology. Table 1.2 shows a brief comparison between sub-6 GHz

and mmWave.

1.3 Massive MIMO

Most of the radio resources are shared between several users by using different time slots,

frequencies and codes. frequency-divison multiple access (FDMA) and time-division multiple

access (TDMA) techniques are used to share the available radio resources in GSM. The code

domain is an alternative approach that can be used to share the available radio resources, such

as using the code-division multiple access (CDMA) in the UMTS. While orthogonal frequency

division multiplexing (OFDM) and single-carrier frequency-division multiple access (SC-FDMA)

are used in LTE by allocating users to resource blocks (RBs), which is a combination of time and
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frequency domains.

To achieve the 5G requirements with the 1000-fold increase in capacity by 2020, a better

approach for sharing the radio resources is needed. This increase now presents significant

challenges for wireless system designers, where the radio spectrum in sub-6 GHz is highly

congested as described in section 1.1. The success of multiple antenna signal processing has

resulted in a technology shift to Ma-MIMO. This employs a large number of antennas at the base

station and only a few at the user device. It is a transformative technology for increasing the SE,

multiplex more simultaneous users within the same radio resource by means of spatial domain

signal processing. This will enhance wireless access as well as enabling a multitude of new

wireless applications and businesses. Ma-MIMO enables efficient utilization of the limited radio

resources by providing significant capacity improvement by aggressively exploiting the spatial

domain [22]. In mmWave, massive MIMO is used for beamforming array gain, where analogue

phase control have been designed and studied for various applications. Only very recently digital

beamforming is considered using MIMO techniques at mmWave frequencies, where adaptive

control of the waveforms at each antenna is required [23].

The spatial multiplexing (SM) technique is one of the key elements behind improving the

system capacity in LTE advance. A base station (BS) with eight antennas elements can spatial

multiplexing up to eight users simultaneously [24]. By increasing the number of antenna ele-

ments at the BS, the transmitted signal can be directed more precisely towards the receiver.

This decreases the inter-user interference (IUI), which improves the network capacity. The key

aspects of the Ma-MIMO technology and its evolution from the basic MIMO system are covered

in Chapter 2.

1.4 Summary of Contributions and Thesis Overview

The work in this thesis was started in 2015, when the concept of Ma-MIMO has been considered

as a potential candidate for boosting the capacity in 5G. This thesis covers the journey of proofing

the concept of Ma-MIMO, evaluating the practicality of using Ma-MIMO in real-world scenarios

and identifying solutions to the operational deployments uncovered when using a 128 antenna

Ma-MIMO system. This section presents a summary of contributions, publications and the thesis

outline.

1.4.1 Summary of Contributions to the State of the Art

• Improving the University of Bristol Ma-MIMO testbed. It’s the world’s 1st real-time 128-

antenna Ma-MIMO testbed. The author has proposed, designed, built, and tested novel

algorithms and methodologies to enhance its performance. Several contributions using

field-programmable gate array (FPGA) implementations were made at the BS and the UEs

for power control algorithms, OTA synchronisation (chapter 3), user grouping techniques

5
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and error vector magnitude (EVM) estimations (chapter 5). In addition to these specific

contributions, the author enabled controlling the switching mode between power amplifiers

(PAs) and low-noise amplifiers (LNAs) based on the Ma-MIMO time division duplex (TDD)

frame scheduled through General Purpose Input Output (GPIO) at the BS and the UEs

sides.

• Demonstrating and evaluating the channel robustness in Ma-MIMO in different environ-

ments (chapter 3). Four measurement campaigns were conducted in indoor and outdoor

environments. Static users and mobility scenarios were used. The measurement campaigns

were conducted at the University of Bristol for the indoor environment with static users.

While the mobility scenarios were conducted at Lund University. 1

• Proposed and implemented a novel uplink closed loop power control scheme in a single cell

for Ma-MIMO (chapter 3). The algorithm was evaluated through several indoor, outdoor

and mobility Ma-MIMO measurements campaigns with real-time results.

• Introducing the challenges and the limiting factors when increasing the SE value (chapter

4).

• The author has bench-marked direct extraction from the physical implementation for real-

istic evaluation based on the EVM performance rather than relying on Shannon theoretic

capacity (chapter 4).

• Showing that the inaccurate uplink (UL) channel state information (CSI) has greater

impact on the downlink (DL) data transmission than it is on the UL data transmission due

to the error amplification caused by the reciprocity calibration matrix (chapter 4).

• Shown through theory and practical evaluation that by using zero-forcing (ZF) or minimum

mean square error (MMSE), a lower number of antennas at the BS with high hardware

quality could be better than increasing the number of antennas and reducing the hardware

quality (chapter 4).

• Introduced an estimation method with high accuracy between the EVM and the signal to

interference plus noise ratio (SINR) values for massive MIMO with ZF and MMSE (chapter

5).

• Introduced an EVM prediction method for a subset of users taken from the original set of

simultaneous users in a single cell Ma-MIMO (chapter 5).

• Novel adaptive user grouping algorithms for a single cell Ma-MIMO scenario are proposed

and shown to further enhance performance (chapter 5). For the first time, the algorithms ad-

dress the interference caused by the user channel vectors as well as hardware impairments.
1A video of the mobility measurement campaigns at Lund University is available at https://bit.ly/2Ayiikj.
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Here, this is uniquely achieved by extracting the EVM, and three different methodologies

are applied to address specific wireless connectivity objectives. Importantly, real-world

experimental data-sets have been used to evaluate the proposed user grouping algorithms.

• The author co-led a measurement campaign at British Telecom (BT)’s R&D headquarters

[25]2. The aim of the campaign was to explore the potential of Ma-MIMO technology and

to validate some off-line analysis based on data collected from previous measurement

campaigns. It also helped the mobile operator to understand the realistic benefits, chal-

lenges and requirements for the Ma-MIMO technology. The measurement campaign was

conducted by a researchers and engineers from University of Bristol, Lund University,

National Instruments (NI) and BT. The measurement campaign is described in appendix C.

• The author led the Ma-MIMO team at the ‘5G Layered Realities Weekend’ –Showcase in

Bristol’, successfully establishing twelve reliable spatial multiplexed video streams [26]

(chapter 5). This was the world’s first urban 5G showcase funded by the UK Government’s

Department of Digital, Culture, Media and Sport (DCMS)3. The author was responsible

for enhancing the Ma-MIMO testbed performance to enable reliable videos streams from

cameras for UL and DL data transmission. Several techniques and approaches were

proposed and implemented by the author to enable this work. The 5G showcase is described

further in chapter 5. In addition to the hardware and software modifications, the author

was responsible for the planing and the deployment stages. The author led the Ma-MIMO

team in an indoor pre-trial in Wills Memorial Building and an outdoor pre-trial in Bristol’s

Millennium Square. The purpose of these pre-trials is to evaluate all the modifications

before the 5G showcase. The first pre-trial is described in chapter 3 and the second pre-trial

in described in appendix D.

2A video of the measurement campaign at BT’s R&D headquarters is available at https://bit.ly/2DMZQaV
3A video of the world’s first urban 5G Showcase is available at https://www.youtube.com/watch?v=7Qzv_TtyKMU
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1.4.2 Published Work in IEEE

The outcomes of the aforementioned contributions have been published through the following

conference and journal papers:

• W. B. Hasan, P. Harris, A. Doufexi, and M. Beach, “Real-Time Maximum Spectral Efficiency

for Massive MIMO and its Limits,” IEEE Access, vol. 6, pp. 46122–46133, 2018

• W. B. Hasan, P. Harris, A. Doufexi, and M. Beach, “Impact of User Number on Massive

MIMO with a Practical Number of Antennas,” in 2018 IEEE 87th Vehicular Technology

Conference (VTC Spring), pp. 1–5, June 2018

• W. B. Hasan, P. Harris, A. Doufexi, and M. Beach, “Spatial Uplink Power Control for Massive

MIMO,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–6, June

2017

• P. Harris, W. B. Hasan, L. Liu, S. Malkowsky, M. Beach, S. Armour, F. Tufvesson, and

O. Edfors, “Achievable Rates and Training Overheads for a Measured LOS Massive MIMO

Channel,” IEEE Wireless Communications Letters, vol. 7, pp. 594–597, Aug 2018

• P. Harris, W. B. Hasan, S. Malkowsky, J. Vieira, S. Zhang, M. Beach, L. Liu, E. Mellios,

A. Nix, S. Armour, A. Doufexi, K. Nieman, and N. Kundargi, “Serving 22 Users in Real-Time

with a 128-Antenna Massive MIMO Testbed,” in 2016 IEEE International Workshop on

Signal Processing Systems (SiPS), pp. 266–272, Oct 2016

• P. Harris, W. B. Hasan, H. Brice, B. Chitambira, M. Beach, E. Mellios, A. Nix, S. Armour,

and A. Doufexi, “An overview of massive MIMO research at the University of Bristol,” in

Radio Propagation and Technologies for 5G (2016), pp. 1–5, Oct 2016

• P. Harris, S. Malkowsky, J. Vieira, F. Tufvesson, W. B. Hasan, L. Liu, M. Beach, S. Armour,

and O. Edfors, “Temporal Analysis of Measured LOS Massive MIMO Channels with Mo-

bility,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5, June

2017

• P. Harris, S. Malkowsky, J. Vieira, F. Tufvesson, W. B. Hasan, L. Liu, M. Beach, S. Armour,

and O. Edfors, “Performance Characterization of a Real-Time Massive MIMO System

Mobile Channelswith LOS ,” IEEE Journal on Selected Areas in Communications, 2017

1.4.3 Submitted Publication to IEEE

The following work has been submitted for publication:

• W. B. Hasan, P. Harris, H. Bromell, A. Doufexi, and M. Beach, “Adaptive User Grouping

Based on EVM Prediction for Efficient &Robust Massive MIMO in TDD,” IEEE Transactions

on Vehicular Technology, 2018
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1.4.4 Contributions to European Cooperation in Science & Technology
(COST)

Besides publishing journal and conference papers with Institute of Electrical and Electronics

Engineers (IEEE), the author has contributed to several technical meetings with European

Cooperation in Science & Technology (COST) through the following papers:

• W. B. Hasan, P. Harris, A. Doufexi, and M. Beach, “User Grouping for Massive MIMO in

TDD.” TD(17)03069, February 2017

• W. B. Hasan, P. Harris, A. Doufexi, and M. Beach, “Preliminary Investigation of Uplink

Power Control for Massive MIMO.” TD(16)01084, June 2016

• P. Harris, S. Malkowsky, J. Vieira, F. Tufvesson, W. B. Hasan, L. Liu, M. Beach, S. Ar-

mour, and O. Edfors, “Temporal Analysis of Measured LOS Massive MIMO Channels with

Mobility.” TD(17)03043, February 2017

• P. Harris, W. B. Hasan, H. Brice, M. Beach, E. Mellios, A. Nix, S. Armour, and A. Doufexi,

“Massive MIMO Mobility Measurements in LOS with Power Control.” TD(16)02031, Oct

2016

1.4.5 Further Contributions

In addition to the aforementioned contributions, the author was invited as a speaker to the

Testbed Design and Prototyping event at Toshiba Research Europe Limited 4, CommNet Winter

School at BT’s R&D in Ipswich and NI 5G event hosted by University of Cambridge. He was also

invited as a speaker to private RF Round Table events led by NI in Leuven, Belgium; Sydney,

Australia and Bristol, UK. Finally, the author’s work has jointly received the 2017 Collaborate to

Innovate (C2I) Award 5

• U. of Bristol, L. University, N. Instruments, and B. Telecom, “Collaborate 2 Innovate:

Information, Data & Connectivity Category.” The Engineer, September 2017 6

and has honorary mentioned in the 2016 IEEE ComSoc Student Competition 7

• P. Harris, S. Malkowsky, J. Vieira, and W. B. Hasan, “Communications Technology Changing

the World.” IEEE Communications Society, November 2016.

Honorary Certificate of Appreciation

4Toshiba Research Europe ‘Testbed Design and Prototyping’ available at http://www.scavenge.eu/training/_4/
5The 2017 Collaborate to Innovate (C2I) Award available at https://www.theengineer.co.uk/c2i-2017-winners-
announced/

6C2I Award also available at http://www.bristol.ac.uk/news/2017/september/massive-mimo.html
7The 2016 IEEE ComSoc Student Competition available at https://www.comsoc.org/education-training/student-
competition/student-competition-winners
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1.4.6 Thesis Outline

The remaining chapters of the thesis are as follows. Chapter 2 provides a background and a

literature review for Ma-MIMO. It covers the main advantages and challenges in using Ma-MIMO.

In Chapter 3, The University of Bristol Ma-MIMO testbed is introduced and real-time results

from several experimental campaigns are presented. Chapter 4 evaluates the impact of spatially

multiplexing and increasing the number of users within a single-cell Ma-MIMO system. It covers

the per-cell SE of 145.6 bits/s/Hz achieved with a 128-antenna Ma-MIMO testbed and introduces

the challenges and the limiting factors when increasing the SE value. Chapter 5 introduces novel

user grouping algorithms to further enhance the Ma-MIMO advantages for different applications.

It also presents an estimation method between the EVM and the SINR and introduces an EVM

prediction method for a single cell Ma-MIMO.The first urban 5G showcase in covered in this

chapter as well. Lastly, Chapter 6 presents the conclusions and the recommendations from this

work.
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BACKGROUND AND THEORY UNDERPINNING MASSIVE MIMO

This chapter covers the evolution of Ma-MIMO and provides the underpinning literature

review for the key aspects of this technology. The following summarize the contents of this

chapter:

• An overview of MIMO architectures, signal processing and the evolution towards multi-user

(MU)-MIMO ending up by Ma-MIMO.

• Illustrating the differences between analog beamforming and digital beamforming in the

context of Ma-MIMO.

• Presenting the main advantages and challenges when deploying Ma-MIMO.

• Presenting some of the existing Ma-MIMO testbeds and highlighting their results.

• Presenting the 3rd Generation Partnership Project (3GPP) definition of Ma-MIMO and the

relationship that this has with this PhD thesis.
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2.1 MIMO Review

The early research of MIMO can be tracked back to 1970, where the concept of MIMO was

introduced to deal with mutual interference without exploiting the multipath environment [42].

Practical solutions for MIMO using OFDM were introduced in [43], where the nature of the

multipath propagation was exploited. Although real-time results were achieved in 1998 by Clarity

Wireless [44] and Bell Labs [45], the first MIMO-OFDM was commercially released in 2004 by

Airgo Networks for wireless local area network (LAN). The significant throughput improvement

enabled new kind of applications. Since then, MIMO has been playing a major role in improving

the link reliability and increasing the data rate [46]. Examples of Wi-Fi access point and cellular

BS using the MIMO technology are shown in Figure 2.1.

Although the theoretical concept of MIMO can be applied to any wireless system, the industry

usually pairs it with the OFDM thus implicitly providing channel equalisation. Figure 2.3 shows

a narrowband UL MIMO system model with a number of transmit antennas NT and a number

of receive antennas NR . The received signal y between two multi-antenna devices is commonly

expressed in a 1×NR column vector as follows:

(2.1) y=p
ρ xH+n

where x is the 1× NT transmitted symbol column vector and H is the normalised NT × NR

frequency domain channel matrix. The transmit power and the 1×M additive white gaussian

noise (AWGN) vector are denoted by ρ and n respectively.

Decoding and precoding techniques are used to separate the transmitted data stream in

MIMO. For a successful separation, the channel matrix H should be known at the transmitter,

receiver or both sides. The CSI can only be known at the receiver or it can be fed back to

the transmitter, which are described as open-loop and closed-loop respectively. An example of

the open-loop method is the Bell Laboratories Layered Space-Time (BLAST) architectures [47]

and the common linear signal detection techniques, such as matched filtering (MF), ZF and

MMSE [48]. Whilst, the most common and practical closed-loop method is the eigenbeamforming

technique [49].

Figure 2.1: Examples of wireless communications using MIMO technology which can be seen
everyday. Wireless router on the left and BS tower on the right.
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Figure 2.2: Generic Uplink MIMO System Model

Generally, MIMO can be divided into three categories: single-user (SU)-MIMO, MU-MIMO

and Ma-MIMO. Several techniques such as space-time coding, beamforming and spatial multiplex-

ing of data streams were used in SU-MIMO. These techniques improved the system performance

in the 3G and 4G networks. Despite the huge benefits from each technique, they can’t be fully

used at the same time. A trade-off between spatial diversity and multiplexing schemes should

always be considered in SU-MIMO such as the adaptive switching method used in LTE [50].

2.1.1 Multi-user MIMO System

MU-MIMO was developed to enhance MIMO system by exploiting the spatial multiplexing gain.

It has been added to the 3GPP standards, the Worldwide Interoperability for Microwave Access

(WiMAX) standards and the Wi-Fi standards since LTE Rel 8, 802.16m and 802.11ac respectively

[51–53]. Here, K single-antenna users can be spatially multiplexed by M antennas at the BS, as

shown in Figure 2.3, where K ≤ M in general [54] and M ≤ 8 in LTE [55]. The unique spatial

signature for each user allows simultaneous communications between all users and the BS by

spatially sharing the wireless channel. However, the channel knowledge is more crucial compared

to SU-MIMO since it is required in signal processing to suppress the IUI. Unlike the situation

with SU-MIMO, joint encoding and detection among users are not needed with MU-MIMO and

each user is unaware of the full CSI. The BS has full access to the CSI and handles the additional

signal processing complexity. In UL data transmission, it detects the UL symbols by decoding the

received signal. While in DL data transmission, it precodes the DL symbols so that no additional

signal processing is required at the user side. Sections 2.2.3 and 2.2.4 covers the decoding and

the precoding techniques used in MU-MIMO and Ma-MIMO, since Ma-MIMO has evolved from

MU-MIMO.
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2.1.2 Channel Capacity in MIMO System

The achievable SE for a symmetrical MIMO system is shown in equation 2.2,where NR = NT

[49].

(2.2) CMIMO = log2

∣∣∣∣INT +
ρ

NT
HHH

∣∣∣∣bits/s/Hz

where INT is the NT ×NT identity matrix. The Gramian matrix HHH can be rewritten using the

eigenvalue decomposition as

(2.3) HHH =U DUH

where D is the diagonal matrix of NT eigenvalues σ2
i (i = 1...NT ) and U is a normalised unitary

matrix. The rank of the channel matrix, R, is determined by the number of non-zero eigenvalues.

This indicates the dimensions of the square matrices that form a linearly independent set. From

equation 2.3 and 2.2, the achievable SE can be rewritten as shown in equation 2.4.

CMIMO = log2

∣∣∣∣INT +
ρ

NT
UDUH

∣∣∣∣
= log2

∣∣∣∣U (
INT +

ρ

NT
D

)
UH

∣∣∣∣
= log2

[
|U | ·

∣∣∣∣INT +
ρ

NT
D

∣∣∣∣ · ∣∣∣UH
∣∣∣]

= log2

∣∣∣∣INT +
ρ

NT
D

∣∣∣∣
= log2

[
R∏

i=1

(
1+ ρ

NT
σ2

i

)]

=
R∑

i=1
log2

(
1+ ρ

NT
σ2

i

)
bits/s/Hz(2.4)
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The above equation shows that the capacity of R single-input single-output (SISO) channels,

where each channel i has gain σ2
i , and the MIMO channel capacity are equivalent. The transmitter

can split the total power equally between all antennas if it has no access to the CSI. The optimum

distribution of channel eigenvalues needs to be considered in some scenarios. For example, in a

full rank channel matrix with only one non small eigenvalue, the low gains prevent from having

useful spatial modes and only one is likely to be established. The sum of all eigenvalues for a

fixed channel matrix can be expressed as follows:

(2.5) Ξ≡
R∑

i=1
ξi = ‖H‖2

F

The above equation is derived from the definition of trace and Frobenius norm. With a full

rank MIMO channel and equal eigenvalues such that ξ= Ξ
R , the capacity in equation 2.4 can be

rewritten as follows:

CMIMO =
R∑

i=1
log2

(
1+ ρ

R
ξi

)
=

R∑
i=1

log2

(
1+ ρΞ

R2

)
= R log2

(
1+ ρΞ

R2

)
bits/s/Hz(2.6)

By normalising the channel matrix such that E
{‖H‖2

F
}= R2, the MIMO channel capacity with no

CSI can be represented as follows:

(2.7) CMIMO = R log2
(
1+ρ

)
bits/s/Hz

In a real environment, a water-filling algorithm is used for eigenbeamforming and optimum

power allocation. The water-filling power allocation maximises the capacity by appropriately

distributing the transmit power. This approach handles the commonly situation where some

spatial modes have better gains than others [49]. By replacing R with K , the above expressions

cover the MU-MIMO configuration. The water-filling algorithm is mostly inconvenient for MU-

MIMO since it requires a full access to CSI at the transmitter and receiver sides.

2.2 Massive MIMO System

The capacity improvements achieved by MU-MIMO played a major role in proposing Ma-MIMO

as an evolution of its concept by increasing number of antenna elements M at the BS [22].

Massive MIMO is a MU-MIMO architecture with a large number of antennas at the BS serving

several users within the same time and frequency. The ratio between M and the number of

simultaneous users served by one BS is still not agreed on. However, it was agreed that M is far

outweigh the number of simultaneous users. The theoretical concept of Ma-MIMO equipped the
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Figure 2.4: Normalised user-side Gramian matrix elements
∣∣HHH/M

∣∣ for 8 users (K = 8) served
by 8, 32 and 128 BS antennas (left to right). IID Rayleigh channels were used here.

BS with hundreds to infinity of antenna elements [56]. While from the 3GPP point of view, 16,

32 and 32+ antenna elements have been proposed so far as described in section 2.2.2.

The large number of antennas at the BS affects the MIMO channel by causing a very slow

growth in the variance of mutual information compared to its mean. As a result, the off-diagonal

values of the Gramian matrix become increasingly weaker compared to the diagonal value.

This phenomenon is called channel hardening and becomes more prominent as the number of

antennas is increased [57]. Figure 2.4 shows the effect of increasing number of BS antennas

using independent and indentically distributed (IID) channels. This can be explained by the

strong law of large numbers applied in equation 2.8 , which yields perfect and deterministic

orthogonality when all entries are IID Gaussian [58]. The Ma-MIMO degrees of freedom could

improve the MU-MIMO performance used in LTE.

(2.8) lim
M→inf

HHH → MI

It is shown in [59] that the effects of hardware impairments, small scale fading and noise

could also be averaged out by the law of large numbers. This could decrease the latency, increase

the SE and improve the link reliability, which enables Ma-MIMO to achieve the main physical

layer requirements for 5G.

2.2.1 Analog Beamforming vs Digital Beamforming

The work in [22], by Dr. Thomas L.Marzetta, formulates the massive MIMO concept. The original

idea was to exploit the scattering richness of the wireless environment caused by the very

large number of BS antennas in a MU-MIMO system, which is named later a Ma-MIMO. By

using the simple digital signal processing technique MF, a huge SE can be achieved. Different

signals are digitally designed for each antenna element at the BS side to spatially multiplexing

several data streams by transmitting superposition of the signals with separate directions. These

superpositioned signals are then coherently combined at the user side. The aforementioned

technique is commonly known as digital beamforming, where the amplitude/phase weights are
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Figure 2.5: Left: analog beamforming. Right: digital beamforming

applied before the digital-to-analogue converter (DAC) in DL and after the analogue-to-digital

converter (ADC) & digital down converter (DDC) in UL [60]. The number of transceivers required

at the BS side for this technique is equal to the number of antennas, as shown in Figure 2.5 right.

An alternative method for exploiting the spatial domain was introduced to decrease the

implementation cost in Ma-MIMO. Analog beamforming was proposed to be used instead of

digital beamforming. The same signal is transmitted from several antennas with different phases

by using the phase shifters, as shown in Figure 2.5 left. The amplitude/phase weights are applied

to the analog signals in the transmission stage and summed up before the ADC in the reception

stage. Therefore, only one transceiver unit is required with the analog beamfroming. Although the

cost is reduced, the effectiveness of using analog beamforming is debatable in terms of capacity

and the flexibility improvements for Ma-MIMO compared to the digital beamforming method.

The work in this thesis has adopted the original Ma-MIMO approach, where the digital

beamforming is applied for below 6 GHz.

2.2.2 Ma-MIMO in 3GPP

In spite of the huge capacity improvements Ma-MIMO can offer, there are significant challenges

for a successful commercialization. The cost and the power consumption are key factors for

designing the BS. Active antenna technology is required in Ma-MIMO, which is becoming

technically and commercially feasible. Therefore, the discussion of Ma-MIMO was started in

3GPP, where a two dimensional (2D) array structure was adopted in Release 13. This allows the

BS to control the wireless signals in elevation and azimuth dimension. It was officially named

full dimension MIMO (FD-MIMO) in Release 13 and a new reference signal (RS) was introduced

called beamformed channel state information RS (CSI-RS) [61]. In addition to the beamformed

CSI-RS, the non-precoding CSI-RS is supported by the FD-MIMO. A hardware distribution
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Figure 2.6: The 3GPP prospective for Ma-MIMO (FD-MIMO) [61].

structure between the baseband and the antenna array was proposed to enable both CSI-RS

techniques. This hardware architecture known as transceiver unit (TXRU), which can be seen in

Figure 2.6 (a). It provides the flexibility of controlling the signal’s phase and gain in the digital

and the analog domains, which is also known as hybrid beamforming.

For the non-precoded CSI-RS, the antenna array is divided to several groups as shown in

Figure 2.6 (d). Each TXRU is connected to one of the groups. The user monitors the non-precoded

CSI-RS transmitted from each of the groups, then feeds back two codebooks to the BS (vertical

and horizontal channel information). This enables the user to adopt the channel variation. For the

beamformed CSI-RS, the radio frequency (RF) signals from a group of TXRUs are connected to a

single antenna. RF combining circuits are needed as shown in Figure 2.6 (c). The BS transmits

several beamformed CSI-RS. The user selects the preferred beam after a scanning process. The

beam index is sent back to the BS, which then select that beam for the data transmission.
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Table 2.1: Massive MIMO in the 3GPP

Release number # of Antennas

13 16

14 32

15+ 32+

In DL, M resources are required for the non-precoding CSI-RS. While the required resources

for the beamformed CSI-RS scales linearly with the number of beams. In UL, the feedback

overhead depends on the codebock resolution and M when the non-precoding CSI-RS is used.

While it only depends on the number of beams, when the beamformed CSI-RS is used. Therefore,

the beamformed CSI-RS is more suitable for large number of antennas. Table 2.1 shows how the

number of antennas at the BS was increased based on the 3GPP releases [62].

All the conducted works in this thesis are based on a fully digital system and follows the

original concept of Ma-MIMO that was introduced in [22]. Although the 3GPP has not yet adopted

this approach, it is still being considered for boosting the wireless capacity.

2.2.3 Linear Decoding Techniques

In a single-cell Ma-MIMO architecture, simple linear detectors and precoders become close to

optimal due to the channel hardening effect [63]. Non-linear techniques could be optimal such

as dirty paper coding (DPC) in DL and successive interference cancellation (SIC) UL, but the

implementation require significant additional complexity [63, 64]. For brevity, only the common

linear detection techniques, MF, ZF and MMSE, are outlined in this section.

In UL data transmission, linear decoders can be used to recover the original transmitted

signal from equation 2.1. The equalized UL signal x̂ ∈CK can be expressed as

(2.9) x̂=W
(p

ρul Hx+nBS

)
where W ∈CK×Mis the linear decoder matrix and ρul is the corresponding UL transmit power.

The additive noise vector in UL is denoted by nBS , where σ2
nBS

is the noise variance.

2.2.3.1 Matched Filtering

MF is a low complexity operation where the decoder used in the equalization process can be

written as W = HH . It is also known as maximal ratio combining (MRC) and maximal ratio

transmission (MRT) for UL and DL scenarios, respectively. The decoder doesn’t consider the
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mutual interference between users and only maximises the user signal to noise ratio (SNR). By

using MF, the equalized UL signal in equation 2.9 can be rewritten as

x̂=p
ρul HHHx+HHnBS(2.10)

and the received symbol from user k can be expressed as shown in equation 2.11

(2.11) x̂k =p
ρul hH

k hkxk︸ ︷︷ ︸
Desired Signal

+

IUI︷ ︸︸ ︷
p
ρul

K∑
i 6=k

hH
k hixi +hH

k nBS︸ ︷︷ ︸
Noise

The above equation shows that the received symbol from user k is affected by the IUI from K −1

users and the AWGN noise. In theory, MF is a perfect decoder for Ma-MIMO when number of

antennas at the BS tends to infinity as the IUI is removed due to the low of large number shown

in equation 2.8. Thus, there is no need for complex decoders such as ZF and MMSE, where the

matrix inversion process is required. Besides, it is more more convenient for distributed Ma-

MIMO [65]. However, increasing number of antennas at the BS is challenging due to hardware

complexity and deployment difficulties [66]. As a results, more complex decoders could be needed

to mitigate the impact of IUI.

2.2.3.2 Zero Forcing

This technique is also known as the channel inversion, which attempts to remove the interference

between users [67]. With perfect CSI, ZF nulls out the IUI by multiplying the received signal

with Moore-Penrose pseudoinverse of the channel, denoted as H†. The ZF decoding matrix is

shown in equation 2.12

(2.12) W =
(
HHH

)−1
HH

By using ZF, the equalized UL signal in equation 2.9 can be rewritten as

x̂=p
ρul

(
HHH

)−1
HHHx+

(
HHH

)−1
HHnBS

x̂=p
ρul x+

(
HHH

)−1
HHnBS

(2.13)

and the received symbol from user k can be expressed as shown in equation 2.14

(2.14) x̂k =p
ρul

(
hH

k hk

)−1
hH

k hkxk︸ ︷︷ ︸
Desired Signal

+
(
hH

k hk

)−1
hH

k nBS︸ ︷︷ ︸
Noise

The ZF deecoding matrix does not consider the noise effect which might result a significant

noise amplification. Thus, the system performs poorly in a noisy channel. If z = (
HHH

)−1 HHnBS ,

it is shown in [49] that the total noise power Pz can be written as the following:

(2.15) Pz = MTr

[(
HHH

)−1
]
σ2

nBS
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The above equation shows that the trace of the term
(
HHH

)−1 and the number of antenna

elements at the BS M have the effect of increasing the total noise power. The noise amplification

could be dealt with by increasing the transmission power, which does not always reflect well on

the system.

2.2.3.3 Minimum Mean Square Error

This technique is also known as regularized channel inversion, which intends to mitigate the IUI

and to increase the SNR when it is needed [67]. So it is a trade-off between interference reduction

and signal strength, which are achieved by ZF and MF decoders, respectively. MMSE decoder is

obtained by minimising the mean square error (MSE) between the received and the transmitted

signal

(2.16) min
W

E
[|x−W y|2]

and the solution is optimised in equation 2.17, where γ is the SNR

(2.17) W =
(
HHH+ 1

γ
I
)−1

HH

shown in [58]. By using MMSE, the equalized UL signal in equation 2.9 can be rewritten as

x̂=p
ρul

(
HHH+ 1

γ
I
)−1

HHHx+
(
HHH+ 1

γ
I
)−1

HHnBS(2.18)

and the received symbol from user k can be expressed as shown in equation 2.19

(2.19)

x̂k =p
ρul

(
hH

k hk +
1
γ

I
)−1

hH
k hkxk︸ ︷︷ ︸

Desired Signal

+

IUI︷ ︸︸ ︷
p
ρul

K∑
i 6=k

(
hH

k hk +
1
γ

I
)−1

hH
k hixi +

(
hH

k hk +
1
γ

I
)−1

hH
k nBS︸ ︷︷ ︸

Noise

At high SNR, the MMSE decoder behaves similar to ZF. The IUI part from the above equation

becomes small since the identity matrix component within the bracket is decreased. While with

low SNR, the MMSE decoder behaves similar to MF. The IUI part is increased by increasing γ,

but the spatial channel gains are maximised. However, the MMSE decoder has a high complexity

compared with ZF and MF decoders. In theory, the noise variance nBS should be estimated. While

in practice, a regularised ZF could be used to optimise sigma manually for a certain system.

2.2.4 Linear Precoding Techniques

In DL data transmission, decoding the received signals are not required at the users side. The

complexity of the linear equalization is only added at the BS side, where the signal is precoded

then transmitted in DL. Therefore, knowing the channel at the BS is essential for DL transmission.
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Figure 2.7: Sum-rate comparison between MF, ZF and DPC. IID channels were used with 15 users.
The interference-free systems performance is denoted by ’o’. The DPC, ZF and MF performances
are denoted by an ’x’, solid lines and dotted lines respectively. While, ρf refers to the SNR.
Obtained from [63].

Acquiring the CSI depends on the duplexing approach the Ma-MIMO system is using. By using a

frequency division duplex (FDD) configuration, overheads resulting from acquiring the channel

are scaled by M and K since the channel between each antenna element at the BS and each

user should be estimated in UL and in DL. While by using a TDD configuration, the channel

estimated in UL transmission can be used to precode the DL signal [68]. This is achieved by

exploiting the channel reciprocity which resulting in overheads scaled with K [69]. Because of

the lower overheads TDD configuration has, it is most feasible to be used for Ma-MIMO.

With reciprocal channel and perfect CSI, the equalized downlink signal ŝ ∈CK can be mathe-

matically written as

ŝ=p
ρdl HPs+nUE(2.20)

where s represents the transmitted symbol vector from the BS to users in the same cell. The

corresponding DL transmit power and the additive noise vector are denoted by ρdl and nUE

respectively. P ∈CM×K is the linear precoder matrix, formed by using MMSE, ZF or MF

where P =


H MF(
HHH)−1 H ZF(
HHH + 1

γ
I
)−1

H MMSE

Figure 2.7 shows a sum-rate capacity comparison between MF, ZF and DPC in a single-cell

system. By using 100 antennas at the BS, ZF achieves the same sum-rate capacity as DPC. While

by using MF, number of antennas is not large enough to handle the interference between users

with high SNR values.
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2.2.5 FDD vs TDD

In the TDD system, the same frequency spectrum is being used for communications between the

base station and the users. This can be managed by allocating time slots for each of the uplink

and the downlink data transmission. During the UL phase, the BS estimates the CSI. This is

done by the orthogonal pilot sequences transmitted from the K users. The UL pilots precede

the UL data transmission which enables the BS to estimate the channels and then detect the

transmitted signals. The channel reciprocity can be used as an advantage on estimating the CSI

for DL data transmission. Not only propagation conditions determine the radio channel, but also

the transceiver front-ends at both sides of the radio link. Since different transceiver chains are

used at the BS and the UE, calibration techniques need to by used to account for the channels

differences [70, 71]. Only K pilots are required for estimating the channel in a TDD system.

While in an FDD system, M+K pilots are needed for estimating the DL channels. Prior precoding

the DL signal, the BS should receive M feedback coefficients from each user terminal. Figure 2.8

shows a possible samples allocation within a coherence interval and Table 2.2 presents the

pilot requirements differences in MIMO between FDD and TDD. Since a TDD system has lower

channel estimation overheads, it has been widely accepted over an FDD system [59, 72]. However,

Huawei and China Unicom have jointly conducted the 1st FDD based Ma-MIMO field trial [73]

and Philippines telecom provider, Globe Telecom, has partnered with Huawei to conduct the

world’s 1st trial by using an FDD Ma-MIMO commercial product [74]. But no information was

provided about the FDD system approach they are using.

Since an FDD system has large channel estimation overheads, much research has focused on

providing alternative methods on estimating the channel in FDD. The work in [75] allocates the

users into different groups followed by a precoding technique of two stages. This approach called

joint spatial division multiplexing (JSDM). The similarity of angle of arrival (AoA) and angular

spread (AS) metrics between some users is exploited in the first precoding stage. Low protocol

overhead between the users and the BS handles the slow changing in the covariance information

of the AoA and the AS metrics. Besides, the UL CSI can be used to refine the estimated covariance

matrix. In each group, a smaller matrix dimensions is used during the second precoding stage.

Although linear precoding can be used within these sub-channels, it is more feasible to use

non-linear precoding techniques. It was shown that by increasing the number of dominant eigen

modes in the pre-beamforming computation, a performance improvement can be achieved. This

could happen when the similarity between several transmit correlation matrices are applied to

larger number of groups. Although this larger number of groups improves the JSDM performance,

it also decreases the number of users in the group and increases the feedback overheads. The

pre-beamforming method has no advantage when only one users is allocated per group.
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Table 2.2: Comparison between the three types of MIMO in terms of the minimum number of
pilots required for channel estimation. For the channel estimation feedback, M > K is assumed.

number of pilots in FDD number of pilots in TDD
Uplink Downlink UL DL

Point-to-point MIMO
(no CSI at the transmitter)

K M K pilots M

Conventional MU-MIMO
K pilots

+ M CSI coeff.
M K M

Ma-MIMO K + M M K none

Uplink Pilots Downlink Pilots Downlink DataUplink Data

τul,p 

τc 

τul τdl,p τdl 

Figure 2.8: Possible samples allocations within a coherence interval.

FDD overcomes TDD only in terms of the power constraint over a certain BW [76]. The

Shannon rate for the DL scenario in a TDD system is written in equation 2.21. Since the

transmission happens over half of the time, it is divided by two.

(2.21)
BW

2
log2

(
1+ P

BWN0

)
While for an FDD system, the BW is divided by two since only half of the available bandwidth is

used as shown in the FDD Shannon rate equation 2.22. Therefore, the SNR in an FDD system

outperforms the one from a TDD system by three decibels (dB). The work in [76] shows that the

TDD multiplexing capability compensates the three dB difference.

(2.22)
BW

2
log2

(
1+ P

(BW /2) N0

)

2.2.6 Pilot Contamination

So far in this chapter, a single-cell setup was only considered for the sake of simplicity. Additional

challenges come with the multi-cell setup scenario. Pilot contaminations is one of these challenges

which can’t be avoided even by increasing the number antenna elements at the BS to infinity.

It is considered as one of the theoretical upper bounds for increasing the capacity in Ma-MIMO

[22]. In a multi-cell setup, the pilot or the training sequences can be contaminated from the
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Figure 2.9: Pilot Contamination. Obtained from [79].

adjacent cells. Although the orthogonality of the pilots are preserved in each cell, but due to the

resource limitation, the same training sequence might be used in the neighbour cell. This can be

seen in Figure 2.9. As a result, the channel estimation might be affected from the adjacent cells

which has a very harm impact on the system’s performance. The poor decoding and precoding

performance could introduce interference between users in the adjacent cells [77]. However, the

work in [78] states that the pilot conatmination is not a limiting factor for increasing the capacity

in Ma-MIMO. It was shown that with an appropriate multi-cell MMSE algorithm, unlimited

asymptotic capacity could be achieved.

Several approaches have been proposed to tackle the pilot contamination problem such as the

eigenvalue decomposition (EVD) based channel estimation approach [80], pilot contamination

precoding [81], blind pilot decontamination [81] and BS coordination technique [82]. In the BS

coordination technique, the multipath AoA from several users is exploited, where a selection

of user terminals with a non-overlapping AoA are made. Thus, orthogonal covariance signal

subspaces are established. Groups are assigned the same pilot sequence based on their spatial

features differences. The safety of assigning the same pilot for the groups is increased by having

more spatial features differences between them. And with larger number of users, the perfor-

mance is increased. The spatial features similarity evaluation is achieved by using the MSE

technique. Results by using Gaussian and uniformly distributed AoAs simulation show that

the common least squares (LS) estimation method has higher error than the coordinated pilot

assignment (CPA) method. The fast fading varies faster than the covariance information needed

in this method. This decreases the required amount of overheads for this method. However, larger

amount of overheads are needed with high mobility and there are limiting factors for decreasing

the required overheads associated with this technique [83].
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2.2.7 Interfering and Jamming Sources in Ma-MIMO

In a Ma-MIMO system, the interference and jamming should be handled carefully. The number of

potential interfering sources is increased in Ma-MIMO due to the SM nature. The same solution

that was proposed for the pilot contamination challenge could be used to tackle the interference

problem, where the BSs cooperates with each others [84]. Besides, the wireless network used

by the emergency services should be using robust techniques against any potential jamming or

interfering sources [85].

Ma-MIMO properties could be used to mitigate the impact of the potential interfering sources.

Generally, the estimated channel can be used to detect the jamming signals by comparing the

eigenvalue ratios with a pre-determined thresholds. Besides, time slots could be used to detect

the interference sources especially when the wireless network is used by the emergency services.

The covariance matrix variation can also be used to track the jamming source movement [85].

2.2.8 Ma-MIMO Testbeds and Real-time Results

The majority of the theoretical Ma-MIMO research have adopted the IID mathematical model

in their work. Although it is a useful model, but it could also be considered as an ideal scenario.

Therefore, real-world channel measurements are an essential step towards understanding the

channel behaviour in Ma-MIMO which allows us to produce valid mathematical channel models.

Furthermore, real-time performance evaluation is needed for fair comparisons between the Ma-

MIMO algorithms and approaches proposed in the theoretical researches. This could uncover the

unpredicted challenges and limitations for each technique. Comparisons between the theoretical

results and the ones from real-world deployment could be the key for producing new algorithms

to enhance the Ma-MIMO performance. Besides, the implementation requirements for some

algorithms or techniques could be set as a barrier towards using them in a real Ma-MIMO

system. In this section, some channel sounders and Ma-MIMO testbeds are introduced, which

have been already published when the author started his research in 2015. The University of

Bristol Ma-MIMO testbed is covered in section 3.1.

2.2.8.1 Lund’s Ma-MIMO Channel Sounder

Two different types of antenna array configurations were used for the channel sounders in [86]

and [87], as shown in Figure 2.10. The first antenna configuration is a compact cylindrical array,

where a MEDAV channel sounding solution was used [88]. The second antenna configuration is a

physically large virtual linear array, where a vector network analyser (VNA) was used. Although

the linear array has lower correlation and higher spatial resolution, it would still be more difficult

to deploy compared to the cylindrical array. The work in [86] compared between the channel

behaviour in different environments, where co-located LOS and non-line-of-sight (NLOS) were

used. Figure 2.11 shows the spatial orthogonality comparison by using four users. The singular
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Figure 2.10: Antenna array configurations for Lund channel Sounder. left: cylindrical array. Right:
physically large virtual linear array

value spread (SVS) was used for evaluating the spatial orthogonality, since it is one of the most

powerful method that can be used in MIMO [89]. It is defined in equation 2.23 as the ratio

between the largest singular value to the smallest singular value of the channel’s matrix singular

value decomposition (SVD)

(2.23) κb =
σ1,b

σK ,b
,

where b is one resource block. The results in Figure 2.11 show that the NLOS case with linear

array antennas performed similar to the IID Rayleigh channel. While the worst performance was

achieved by using a cylindrical array with LOS and NLOS scenarios.

The DPC technique was used to evaluate the capacity of the aforementioned scenarios.

Although the DPC associated with a very high implementation complexity, but it commonly

used as a benchmark indication level because it is optimal in the sense of the sum-rate capacity.

Figure 2.12, shows the DPC sum rate capacity by using the same aforementioned environments.

The left plot shows the LOS case and the right plot shows the NLOS case, which are corresponding

to the conditions in Figure 2.11. The best performance was achieved by using the uniform linear

array (ULA) in both cases, where the NLOS performance was almost similar to the IID Rayleigh

channel. While the worst performance was achieved by using the uniform cylindrical array (UCA)

with a LOS environment. These results indicates that the scattering richness is an essential

element on deciding the antenna array configuration for different environment.
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Figure 2.11: SVS comparisons between LOS and NLOS conditions from [86], where left is for the
LOS and right is for the NLOS.

Figure 2.12: Capacity comparisons between LOS and NLOS conditions [86], where left is for the
LOS and right is for the NLOS.

2.2.8.2 ARGOS Ma-MIMO Testbed

The first version of Argos test-bed has 64 antenna elements at the BS side, which can serve up to

15 terminals simultaneously [70]. This Ma-MIMO project is based on the Wireless Open-Access

Research Platform (WARP). An AD9523 board provides the clock distribution and the sync pulse

is being distributed by a different WARP board which enables the synchronisation in the system

as shown in Figure 2.13. To increase the set-up flexibility of the testbed, a second version of

Argos system was built. The newly customised rack has provided the flexibility of allocating

the antennas in different places. Furthermore, dividing the BS into several BSs has become

easier as well as increasing number of antenna elements up to 96. In addition to the hardware

modifications, the software framework has been modified as well, where additional flexibility have

been added to speed up the researchers work. The mobile client is equipped with four antennas,
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Figure 2.13: Argos Ma-MIMO Testbed [70], where Left is for the architecture and right is for the
implementation.

which is named "ArgosMobile". It is capable of supporting out-of-band feedback through an 802.11

interface. The BS can serves up to four ArgosMobiles (equivalent to sixteen spatial streams). The

ArgosMobile provides an easy set-up for mobility scenarios because of its eight hours battery

life. To increase this flexibility, another version is being considered to provide mobile clients with

smaller dimensions and higher level of weather protection.

So far, all the available results from this project are based on channel measurement and

no real-time results have been published yet. Figure 2.14 shows the total capacity results

and the channel measurements environment. By using a 64 antenna elements at the BS with

15 simultaneous users, the achievable SE could outreach the 80 bits/s/Hz with ZF technique.

Figure 2.15 shows a linear sum-capacity increment by adding more simultaneous users with ZF

and MF techniques. Although the sum-capacity growth with ZF is greater than MF, it was shown

that the sum-capacity could drop rapidly with ZF. Besides, MF could achieve a greater sum-

capacity with low transmission power and M = K . One adder and one bit-flip is only required for

the MF implementation. While the complexity is increased for ZF implementation. The complexity

level associated with the matrix inversion operation is MK2. By using a specialised FPGA, 150 µs

is needed for one matrix inversion operation (size of 15×15) [70]. The Argos beamforming (BF)

approach has better performance when number of antennas is increased at the BS.

The Argos Ma-MIMO testbed is a TDD system. Two novel reciprocity calibration algorithms

are used to handle the UL and DL channel variation caused by the different transceiver front-

ends at both sides of the radio link. The first algorithm adopts an internal reciprocity calibration

method named, "Internal Calibration", where no feedback is required from the user’s side during

the initialisation stage. It derives the calibration coefficients by using a single reference BS

antenna, which then shares its relationship to the rest of the antenna elements at the BS. A

feedback from all users to the reference antenna is still required. The second algorithm is an
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Figure 2.14: Capacity results from the first version of Argos Ma-MIMO testbed [70], where left is
the capacity results and right is the testing environment

Figure 2.15: The cell-capacity results by increasing number of simultaneous users [70]. From left
to right: M = 64 with regular transmit power, M = 15 with regular transmit power and M = 15
with reduced transmit power.

enhanced method of the first algorithm, which is called "Relative Calibration". The reason behind

this name is the relative CSI deviation from all the antennas at the BS. Therefore, the same BF

can be used by multiplying it with the phase offset. Although the absolute accuracy is no achieved,

but a reciprocal channel was established. This work demonstrates how the reciprocal channel

problem could be tackled in a TDD Ma-MIMO system. The reciprocity calibration algorithm was

evaluated on the Argos Ma-MIMO testbed. The communications between the reference antenna

and the remaining antenna elements at the BS was achieved by reporting the channel estimation

repeatedly to the main controller due to the limited buffer capacities. 300 µs was needed for

this precess, which is still within the coherence time for the trial’s environment. The reference

antenna was allocated in front of the antenna array with the same spacing distance, to tackle the

amplitude variations between them. The results show a very good stability over 4 hours, where

the frequency of the internal calibration stage was decreased.
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Figure 2.16: Ngara MU-MIMO Testbed in the demonstration environment [90]

2.2.8.3 NGARA FDD MU-MIMO

An FDD MU-MIMO system is presented in [90], with an interest of enhancing the rural wireless

internet access. The system has 32 antenna elements at the BS and uses ZF technique for decoding

the revived signal in UL and precoding the DL signal. However, the overheads associated with

the FDD mode might be a limiting factor for increasing the number of antennas at the BS side.

Nonetheless, they have presented a matrix inversion technique with the capability of inverting

3456 matrices (with dimensions of 14×32) in a less than 50 ms and with a high accuracy level.

Figure 2.16 shows the environment setup used to demonstrate 14 simultaneous video streams.

The BS antennas were allocated in the centre of the room while the users were distributed with

lower hight level. MATLAB was used to generate both UL and DL OFDM packets and a SE of

25 Mbits/s was achieved during the video streams. The maximum UL and DL SE were achieved

by serving more than eleven simultaneous terminals, where 67.26 bits/s/Hz and 50 Mbits/s are

the recorded for the UL data transmission and the DL data transmission respectively. Despite

these great results, the project still needs to deal with additional challenges, such as the different

propagation channels with rural environment and to increase the number of antenna elements

at the BS side.
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Table 2.3: Summarising the descriptions of the Ma-MIMO Testbeds

Name BS
# of Antennas

Users
# of Streams

BW
(MHz)

Carrier
(GHz)

Duplex

Ngara 32 32 28 0.6 FDD

Argos V2 96 16 n/a 2.6 TDD

Lund 100 12 20 3.7 TDD

Bristol 128 12 20 3.5 TDD

2.2.8.4 Nutaq Hardware Solution

On of the main challenges in Ma-MIMO is the hardware implementation. In addition to the

complexity associated with some Ma-MIMO techniques, handling the aggregation samples from

several RF chains is on of the key challenges [91]. PCIe 8x Gen 3 is a very high speed data

bus which is considered as one of the highest speed products in the market. Although it has a

capability to transfer up to 80 Gbits/s, it may not be enough to handle the aggregated samples

from the Ma-MIMO RF channels at 100 MHz. If 12 bit sampling resolution is used for each RF

channel, them maximum number of antennas at the BS would be 33. Titan MIMO achieved a

baseband throughput of 768 Gbits/s [91]. This was achieved by using rear transition modules

(RTMs) and a MicroTCA.4 chassis. To appropriately handle the point to point hight speed protocol,

MiniSAS connectors were used. An alternative approach was adopted for designing Lund’s Ma-

MIMO testbed and Bristol’s Ma-MIMO testbed, where the OFDM modulation/demodulation is

performed at the remote radio head (RRH).

2.2.8.5 Lund’s Ma-MIMO Testbed

This was the world’s first Ma-MIMO testbed operates in real-time [92]. Figure 2.17 shows the

BS side with the T shape patch panel antenna array. The testbed was developed through a

collaboration between NI and Lund University. The system is capable of using up to 100 antenna

elements at the BS and serves 10 simultaneous users. The 100 are connected to 50 dual-channel

universal software radio peripherals (USRPs), which are allocated in one rack. University of

Bristol constructed a Ma-MIMO testbed with 128 antenna element at the BS by using the same

NI platform. In 2015, a collaboration between University of Bristol, Lund University and NI was

started. The author worked closely with NI and the Ma-MIMO team at Lund University towards

improving testbed performance. For Bristol’s testbed implementation, a detailed description is

presented in section 3.1.1.
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Figure 2.17: Lund’s 100 Ma-MIMO Testbed [92].

2.3 Summary

This chapter has reviewed the key aspects of the Ma-MIMO technology and its evolution from

the basic MIMO system. The differences between the digital and the analog beamforming

was highlighted and the current 3GPP prospective for Ma-MIMO was introduced. A significant

capacity improvements with linear algorithms could be achieved by using the original fully digital

Ma-MIMO concept, which aggressively exploits the spatial domain. The main challenges towards

implementing Ma-MIMO were presented along side with the potential solutions. However, real

time evaluation is still required to understand the achievable results and the practical challenges

for this technology. The remaining of this thesis shows real-time evaluations from a fully digital

Ma-MIMO testbed.

For simplicity, the Ma-MIMO terminology refers to the original fully digital Ma-MIMO concept

introduced in [22] unless noted otherwise .
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POWER CONTROL AND SYNCHRONISATION ENHANCEMENTS OF A

REAL-TIME 128-ANTENNA MASSIVE MIMO TESTBED

In this chapter, the University of Bristol Ma-MIMO testbed is introduced and real-time results

from several experimental campaigns are presented. The main results and conclusions of this

chapter have been published in [29], [32], [34], [33], [39] and [38] . Below, we summarize the

main contributions in this work.

• Operational Enhancements to the University of Bristol Ma-MIMO testbed.

• Characterisation of the channel hardening for Ma-MIMO in an indoor LOS with static

users environment and an outdoor LOS with mobility environment.

• Proposing and implementing a novel uplink closed loop power control scheme in a single

cell for Ma-MIMO. The proposed algorithm increases both the energy efficiency (EE) and

single cell SE with reduced transmission overhead, latency and complexity in the receiver.

• Demonstrating an improvement in channel robustness in Ma-MIMO and the possibility of

relaxing the transmitter power control (TPC) update rate.

• Enhancing the synchronisation method between user clients by using a single antenna

to broadcast the primary synchronisation signal (PSS) in Ma-MIMO instead of using all

antennas with a random static pattern.

• Field trial evaluation and optimisation of the above through several indoor, outdoor and

mobility Ma-MIMO measurements campaigns with real-time results using a software-

defined radio Ma-MIMO testbed.
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Table 3.1: Specifications and Features for the University of Bristol Ma-MIMO Testbed

Number of Antennas at BS 128
Maximum Number of Users 25

Maximum Tx Power per chain 15 dBm
Carrier Frequency Licence at 3.51 GHz

Bandwidth 20 MHz
MCS 256-QAM, 64-QAM, 16-QAM, QPSK

Duplexing Scheme TDD
MIMO Linear Decoder/Precoder MMSE, ZF and MF

Figure 3.1: 128-antenna Ma-MIMO testbed (BS side)

3.1 Bristol’s 128 Massive MIMO Testbed

This section describes the key parts of the 128-antenna Ma-MIMO testbed used to provide

the real-time results in this thesis. It also describes all the parts used for implementing the

algorithms and the methodologies in this thesis. The testbed was built by the University of Bristol

using the NI commercial off-the-shelf (COTS) products which are based on the PCIe platform

known as PCIe eXtensions for instrumentation (PXIe). A list of the used components can be

seen in Appendix A. Table 3.1 and Figure 3.1 show the key specifications and the BS side of

the Ma-MIMO testbed. The monopoles antennas at the BS were replaced with a 128-element

patch antenna array for most of the work conducted in this thesis. The array was setup in a 32×4

configuration with alternate H & V polarisations as shown in section 4.1.1 Figure 4.1. The UEs

were in LOS and placed in a straight line with 2.5 wavelength spacing at a 3.51 GHz carrier

frequency. The system was designed and build to align closely with the TDD LTE air interface

with a scalable sub-6 GHz carrier frequency.

36



3.1. BRISTOL’S 128 MASSIVE MIMO TESTBED

Antennas 0 - 31 Antennas 32 - 63 Antennas 64 - 95 Antennas 96 - 127

Centralised MIMO Processing

x8 PCIe Link

x8 PCIe Link x8 PCIe Link

x8 PCIe Link

x4 PCIe Links x4 PCIe Links x4 PCIe Links x4 PCIe Links

Figure 3.2: Data Plane Architecture at the BS side

3.1.1 System Architecture

The 128 antennas are connected to 64 dual-channel USRPs divided equally into 4 racks as

shown in Figure 3.1. These USRPs provide the RF front ends and perform the OFDM modula-

tion/demodulation of each complex subcarrier. The 16 USRPs in each rack linked via x4 PXIe

links to a PXIe-1085 chassis with 18 slots acting as a switch. The PXIe-1085 chassis from each

rack is then connected via a x8 PXIe link to the main chassis allocated on rack A (first rack

from the left in Figure 3.1). The main chassis has 4 FlexRIOs 7976R co-processors performing

channel estimation and MIMO detection in UL and reciprocity calibration and precoding in DL.

Figure 3.2 shows the chassis structure of the Ma-MIMO testbed. The main chassis also has the

6674T timing card which is used for synchronising the USRPs, as well as the host controller used

for configuring and programming the testbed.

3.1.2 Reciprocity Calibration

The Ma-MIMO testbed estimates the calibration coefficients by using the method in [71], which

only occurs during the system initialisation. For most research scenarios, this approach is

sufficient once the system’s temperature has reached the stability mode where no significant drift

is happening [92]. The reciprocity calibration is an interesting area for future, where on-the-fly

recalibration can be used. The calibration coefficients are stored to be used in constructing the

precoding matrix, which is applied prior each DL data transmission [69].

3.1.3 Frame Structure

Figure 3.3 shows the Ma-MIMO testbed frame structure which is closely aligned with TDD LTE

physical layer. The switching periodicities of 5 ms and 10 ms used in TDD LTE was changed

to suit the reciprocity requirement for the DL in Ma-MIMO [93]. By reducing the switching
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Figure 3.3: physical layer (PHY) frame structure of the Ma-MIMO testbed

periodicities to the half of this, the UL and the DL transmission occur within the coherent time of

the channel. The first half subframe is the control slot, where the PSS signal is broadcasted. All

modulation and coding scheme (MCS) used in LTE are supported by the Ma-MIMO testbed [94].

3.1.4 Timing and Synchronisation at the BS Side

To ensure synchronized sample acquisition and coherent RF chains between all the USRPs,

frequency and trigger sources were distributed as illustrated in Figure 3.4. The NI 6674T PXIe

timing card [95] located in the master chassis was used to provide 10 MHz frequency source

through an oven-controlled crystal oscillator (OCXO) . It is an extremely stable frequency source

with an accuracy of < 5 parts-per-billion (ppb). Nine pieces of Octoclock hardware [96] were used

to distribute the frequency source between all the USRPs through an equal length cables. Each

Octoclock amplifies the 10 MHz source then divides it between eight USRPs. The start trigger

pulse is generated from the first USRP, which is linked to the 6674T. Then the pulse is distributed

between all the USRPs using the same Octoclock network for distributing the frequency.

3.1.5 Synchronisation Between Users

The 2953R USRP model is used for the UE implementation. This USRP model was chosen to

add the global positioning system (GPS) option for improving OTA synchronisation. Two users

with a single antenna or one user with two antennas can be obtained from one USRP. A laptop is

used as an equivalent to the PXIe8135 controller in the BS, which is connected via x1 PCIe link.

Time alignment and frequency offset correction between the BS side and each UE are achieved
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Figure 3.4

by using three different methods. This section outlines these methods such that they can be

referenced as required when viewing the results and comparisons that follow.

3.1.5.1 Extending the BS Octoclock Network Using Cables

In this method, the Octoclock network used at the BS side was extended to link all the UEs.

The extended Octoclock network was established by using additional Octoclocks and cables. One

Octoclock is linked to the 6674T located in the master chassis. This Octoclock can serve up to

sixteen UEs from eight USRPs. To increase number of UEs, the output of the Octoclock was linked

into two additional Octoclocks. This covers the maximum number of 25 users the Ma-MIMO

testbed can serve. Equal length cables were used between the UEs and the Octoclocks, while a

manual sample offset was introduced at the BS to account for the propagation delay introduced

by the cables.

3.1.5.2 Broadcasting PSS Using Random Static Pattern From all Antennas

This method enables OTA synchronisation using the LTE PSS, which is Zadoff-Chu (ZC) sequence

[97]. The PSS is broadcasted at the first OFDM symbol as shown in Figure 3.3. This signal is

broadcasted from each antenna at the BS forming a static pattern, which doesn’t take into account
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Figure 3.5: USRP subsystem mapping to the FlexRIOs.

the users’ locations. The random static pattern might not maintain a stable synchronisation due

to the poor PSS received signal at the user side. This is caused by coherently combining all the

PSS signals without considering the user’s location. The GPS at the user side can be used to

improve the synchronisation stability for this method.

3.1.5.3 Broadcasting PSS From Single Antenna1

An external antenna and one USRP are used to broadcast the PSS in this method. The external

USRP is timed and synchronised with all the USRPs located in the four racks. This is achieved

by extracting the frequency and the trigger sources from the 6674T located in the master chassis.

On the RRH FPGA of the external USRP, ZC sequence and the LTE PSS were implemented.

On the other hand, the PSS was removed from all the RRH of the 64 USRPs. The output of the

external USRP is connected to an amplifier to compensate the loss of the antenna array gain,

caused by using a single antenna. During the first OFDM symbol duration in the PHY frame

structure, the external antenna broadcasts the PSS. A comparison between this method and

broadcasting PSS using random static pattern from all antennas is presented in section 3.3.

1The author designed and implemented this method to further enhance OTA synchronisation of the Ma-MIMO testbed
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Figure 3.6: Formulating systolic array based on the QR decomposition
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3.1.5.4 MIMO Processorsa2

Each UE has a constant identity (ID) i.e., UE0, UE1, ... UE24. The RB size of twelve subcarriers

and the 15 kHz subcarriers spacing for the Ma-MIMO testbed aligns with the LTE, where one pilot

per RB can be assigned for each UE. A pilot is transmitted in the beginning of the K th subcarrier,

where K is equal to the users ID. Although this method doesn’t calculate a full detector/precoder

for each subcarrier, the performance isn’t highly affected as it was shown in [98]. The advantage

of this method is to reduce the required memory for storing the CSI by a factor of K . A Least-

square algorithm and zeroth-order hold across subcarriers are used for channel estimation, while

interpolating between subcarriers will be considered as a future enhancement. This approach

decreases the overall processing rate from 16.8MS/s to 16.8MS/s/12= 1.4Mmatrices/s, since only

one 128×12 detection matrix is needed per twelve subcarrier RB.

A partially parallel 4-path QR decomposition based on the modified gram schmidt (MGS)

described in [99, 100] was used to build the detection matrix. Four FlexRIOs were used for the

implementation with a clock rate of 200 MHz as shown in Figure 3.5. The systolic array QR

2This method was designed and built by National Instruments. The work conducted in this thesis is based on this
MIMO processing method.

41



CHAPTER 3. POWER CONTROL AND SYNCHRONISATION ENHANCEMENTS OF A
REAL-TIME 128-ANTENNA MASSIVE MIMO TESTBED

WMMSE × y

WMMSE,0

WMMSE,1

WMMSE,2

WMMSE,3

= Σ

×

×

×

×

y0

y1

y2

y3

= ��

12 x 128

128 x 1

(4) 12 x 32 (4) 32 x 1

12 x 1

Figure 3.8: 128×12 Ma-MIMO detection

decomposition shown in Figure 3.6 creates a balance between the throughput requirement and

resource utilization. This can be achieved by exploiting the MGS property to calculate R. The

FPGA resource usage can be decreased by using the same circuitry that derives Q. The following

equation shows the MMSE detection method:

(3.1) W MMSE y =
(
HHH+σnI

)−1
HH y

The above equation can be rearranged as follows:

(3.2) W MMSE = R−1QH
1 = Q2QH

1

σn

Where:

(3.3) F =
[

H
σnI

]
; QRD (F) =

[
Q1

Q2

]
R;R−1 = Q2

σn

Figure 3.7 summaries the MMSE process using QR decomposition. ZF and MF can be

performed by setting sigma to a very small value and by skipping the orthogonalisation steps

of the MGS procedure respectively. Formulating WMMSE and WH
MMSE are followed by the full

bandwidth computation for all the 100 RB, where UL subcarriers and DL data symbols are

decoded and precoded respectively. The partial parallel computation is shown in Figure 3.8,

which is carried out in thirty two 200 MHz clock cycles.

3.1.6 Host Processing

The 64 USRPs and the 4 FlexRIOs are configured through the PXIe8135 controller in the master

chassis located in rack A. All the hardware pieces of the BS and their locations’ are known to
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Figure 3.9: Displaying real-time results by the Host.

Figure 3.10: Visualising the received constellations and displaying video streams

the host software. By executing the software, peer-to-peer (P2P) routing are established for all

the subsystems (subsystem is a group of USRPs). As described in section 3.1.2, the reciprocity

calibration is established during the system initialisation. The memory on-board each of the 64

USRP is used to store the calibration coefficients, which are used for DL. After initializing the

system, all the bit-files are loaded and the P2P routes are established. Once the system is ready

to run, the graphical user interface (GUI) informs the user to click the run button. Then all the

USRPs are triggered and synchronized as described in section 3.1.4 to enable the flow of samples.

After that, the host controller become the primary interface between the system and the user.

Real-time results can be visualised on the connected screen as shown in Figure 3.9, allowing
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the user to monitor the system’s performance. The host can also changes different variables

while the system is ruining such as power level, synchronisation method, power gain, number of

active users, etc. The option for controlling new variables while the system is running should

be carefully programmed and added to the framework. Furthermore, the host can acts as a

data source and receiver. For example, it can transmit and receive video streams through User

Datagram Protocol (UDP) interface as shown in Figure 3.10

3.2 Uplink Power Control

The large number of antennas at the BS has a great impact on the system’s performance. Many

potential advantages are expected and numerous implementation challenges are addressed in

[77]. The channel hardening synonymous with Ma-MIMO technology [57] could be exploited

to increase the link EE if UL power control is considered. In LTE, open loop and closed loop

algorithms are used for power and signaling control. The minimum signaling rate depends on

operational conditions (environment and dynamics). The open loop algorithm is used when the

UE joins the system or when the channel conditions vary, while the closed loop algorithm is

used when the channel conditions are more stable. In the open loop mode, the UE derives the

desired UL power level by importing different values, sent from the BS, into a predetermined

equation [101]. While in the closed loop mode, the UE adjusts the UL power according to the

TPC command sent by the BS. The TPC command is interpreted according to a predetermined

lookup table which increases or decreases the UL power level with constant values [102]. A

simple receiver with a basic UL power control design is desirable for Ma-MIMO [103], yet little

research has been experimentally conducted on this topic. The UL power control algorithm in

[104] is based on a MMSE receiver, which brings with it significant complexity. The UL power

control presented here has two stages: the average UL SINR is determined, which is considered

as the lower bound, followed by a joint iterative pilot and data power control algorithm. The

work in [105] has considered power control for a single cell. It maximizes the minimum SE by

converting it into a geometric program (GP) and finds the local maximum points. A joint power

and data allocation algorithm is proposed in [106] which tends to improve the uplink EE based

MMSE channel estimation followed by MRC receive processing. The UL power control algorithms

proposed so far for Ma-MIMO are based on pilot and data power allocations amongst users,

either within the same or adjacent cells. To the best of the author’s knowledge, no power control

technique designed for Ma-MIMO has yet been tested in a field trial.

This section introduces a simple closed loop UL power control algorithm in a single cell for Ma-

MIMO based only upon the pilot channel estimation. Simple open loop UL power control is still

needed prior to the proposed closed loop UL power control. The channel hardening phenomenon

in Ma-MIMO provides an improved channel robustness, as it is shown later in section 3.2.3.2 and

section 3.2.6.2, which allows for fewer UL power control adjustments. A novel TPC mapping and
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de-mapping algorithm is proposed to obtain a high EE by transmitting only the minimum power

required. Furthermore, the single cell SE is increased by decreasing the interference level caused

by the spatial correlation between UEs.

3.2.1 System Model

A single-cell Ma-MIMO architecture is considered in this work. The BS is equipped with M

antennas serves K single-antenna users simultaneously where (M À K). The system operates in

TDD mode and uses the same time-frequency resources for all users. The UE transmits an UL

pilot for the channel estimation. The estimated channel matrix between the UEs and the BS is

denoted by Ĥul ∈CM×K . The BS derives the user-side Gram matrix, which is given by:

(3.4) G = ĤH
ulĤul

where the value of each complex element taken as its absolute
∣∣g i, j

∣∣ for all i and j. It then

approximates the SINR for each UE using the approximation method introduced in section

5.1. The maximum and minimum accepted SINR are predetermined and saved at the BS as a

threshold based on the MCS in use. For the field trial described in this chapter, the maximum

SINR threshold (SINRmax) is the lowest SINR value required for a sufficient transmission by

using 256-quadrature amplitude modulation (QAM). Similarly, the minimum SINR threshold

(SINRmin) is the lowest SINR value required for a sufficient transmission using binary phase-

shift keying (BPSK) based access.

3.2.2 Spatial Closed Loop UL PC Algorithm

The proposed algorithm exploits the spatial degrees of freedom provided by Ma-MIMO to achieve

the highest SINR for each user by considering the mutual spatial correlation arising from other

users. It also minimizes the required UL transmit power to achieve the highest possible UL

SINR per user without increasing the complexity at the user equipment. It is based only on the

physical layer parameters. The BS controls the user transmit power using only two bits in a TPC

command and the introduced algorithm increases both the EE and single cell SE with reduced

transmission overhead, latency and complexity in the receiver. The proposed algorithm supports

several popular linear MIMO decoders and precoders including MMSE, ZF and MF. A simple UL

open loop power control is needed prior applying the adjustment mechanism.

The BS has an acceptable inter-user spatial correlation threshold (ITh) which represents the

acceptable ratio between g ii and g i j. The UEs with high spatial correlation are paired according

to the following equation:

(3.5) CUn = {UEi,UE j}

where i, j ∈ [1,K] and n ∈ [1,K −1].
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As CU denotes the correlated users, the BS then derives the SINR range for each pair as

follows:

(3.6) SINR Rangen = |SINRi −SINR j|

The adjustment mechanism at the BS divides the UEs into three groups based on SINR

and ITh values. Each group targets a desired SINR value, denoted as DSINR. The groups are

illustrated in Figure 3.11, and are divided as follows:

1. Group 1 (red arrows): UE SINR value 6∈ [SINRmin,SINRmax]. The BS tells the UE to

increase or decrease its power so that the received SINR reaches the acceptable range.

2. Group 2 (Green arrows): The UE SINR is within the acceptable range and the SINR range

value is greater than 0.5 dB (in this work, a 0.5 dB step-size has been adopted as the

minimum resolution. But an adaptive method for changing this value based on the real-

time results is an interesting area for further work.). The BS assigns a desirable SINR for

both UEs as DSINRn =minn SINRn. The BS then tells each UE either or not to decrease

its transmit power so that the received SINR for both users equals DSINR ± 0.5 dB.

3. Group 3 (blue arrows): Either the interference is low between the UEs or the SINR range

is less than 0.5 dB. In both cases, the BS will tell the UEs to increase their transmit power

if it does not reach the maximum threshold, or it will tell them to keep using the same

transmit power.

The SINR values in group 2 are adjusted into DSINR. This is going to reduce the spatial

correlation between the UEs. In group 3 the spatial correlation will already be low, so the BS

starts to increase the SINR for both UEs by increasing their transmitting power. This step will

ensure that the SINR growth for the UEs won’t affect the others, and thus, the BS ensures the

SINR converges between the correlated UEs into the maximum harmless level between them,

where any additional increment would affect other UEs. The UEs in our design do not estimate

the SINR or the distance; they only apply the power adjustment according to the received TPC

command. This will reduce the complexity of the receiver as well as the overheads sent by the BS.

Open loop power control is still required when the users join the system, but can then be followed

by the proposed UL power control in this section.

3.2.3 Investigating Channel Hardening for Ma-MIMO

The proposed UL power control algorithm is based upon the assumption that Ma-MIMO achieves

highly improved channel robustness, where fewer UL power control adjustments are needed. The

lower atrium in the University of Bristol’s Merchant Venturers Building was used to evaluate

the channel hardening in real-time. The synchronisation between each UE and the BS was
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Figure 3.11: Spatial uplink power control algorithm for Ma-MIMO. Red arrows are group 1.
Green arrows are group 2. Blue arrows are group 3. Shapes filled in blue are at the UE while
others are at the BS.

achieved via cables as described in section 3.1.5. Figure 3.12 and Figure 3.13 show the LOS

indoor environment and the user side of this trial respectively .
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Figure 3.12: Measurements environment for the indoor supporting experiments.

Figure 3.13: User side for the indoor supporting experiments.

3.2.3.1 MU-MIMO Channel Robustness with 32 Antennas in LOS Indoor
Environment

The MU-MIMO channel was measured by the Ma-MIMO testbed with 32 active BS antennas. The

distance between the BS and the 12 single antenna clients was 20.81m and a static environment

was maintained. Figure 3.14 left shows the G matrix, which was averaged over 100 captures of

the channel measurement data.
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Figure 3.14: User side Gramian matrix for 12 UEs with single antenna (not normalized). Left,
MU-MIMO with 32 antennas at the BS. Right, Ma-MIMO with 112 antennas at the BS.

3.2.3.2 Ma-MIMO Improved Channel Robustness in LOS Indoor Environment

Here, the channel was measured by the Ma-MIMO testbed with 112 active antennas at the

BS. The distance between the BS and the 12 single antenna clients was 11.6 m. Three people

walked pseudo-randomly during the channel measurements. One person walked right next to

the client antennas, while the others were walking between the BS and the clients. The client

transmit power was adjusted before the channel measurements, but power control was not used

during this set of measurements. Figure 3.14 right illustrates the greatly improved channel

robustness averaged over 400 captures of the channel measurement data, and the channel

hardening phenomenon can be clearly seen. These conditions would allow our proposed algorithm

to work effectively. By comparing the results from Figure 3.14, the ratio between g ii and the max

g i j was decreased from 44% to 16%. Therefore, less UEs require the paring process in equation

3.5, which means less UEs are considered in group 2. Most of the UEs will be assigned into group

3 which only requires an increment on the UE transmit power till it reaches the SINRmax. Once

g i j > ITh occurs (where i 6= j), the UEs will be assigned into group 2, which reduces the spatial

correlation between them. This process allows the UEs to achieve the highest possible SINR

with the minimum transmit power. If the proposed algorithm is used for the case of 32 antenna

MU-MIMO, the SINR convergence process in group 2 requires more time and may not converge

due to the channel conditions.

3.2.4 Indoor LOS Power Control Evaluation with Static Users

The proposed closed-loop power control (PC) algorithm was implemented on the Ma-MIMO

testbed. The TPC update rate was 2 per second for this evaluation using quadrature phase-

shift keying (QPSK) with 2-subcarrier redundancy. The upper level of the Merchant Venturers

Building atrium at the University of Bristol was used as the test environment with a patch panel
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Figure 3.15: UE Distribution within the indoor atrium measurements at Merchant Venturers
Building (floor-plan).

antenna array to serve 12 UEs. The array was setup in a 32×4 configuration with alternate

H & V polarisations for all 128 antennas. The UEs were in LOS and placed in a straight line

with 2.5 wavelength spacing at a 3.51 GHz carrier frequency. However, this environment was

not completely static, as it was a normal working day with students and staff present. The UEs

were divided into three groups with different distances as shown in Figure 3.15 and Figure 3.16.

Each group has 4 UEs and the BS has a 128 element patch antenna array. The environment

was changing during channel measurements, although the client devices remained static, and

three different PC algorithms were tested. The first and the second PC algorithms are based on a

fixed SNR\SINR value, where the BS adjusts the UEs power level to a certain SNR\SINR value.

The third PC is the one proposed in section 3.2.2 to maximize the SINR per user and the overall

SINR. 800 captures of the channel measurement data were taken. The channel conditions when

the fixed SNR PC algorithm was used are illustrated in Figure 3.17 left.

Although the TPC update rate is only 2 times per second, the channel conditions are stable

since the ratio between the g ii and g i j is below 20% (where i 6= j). When the proposed PC

algorithm was used, the UEs increased their power level. The power increment was controlled by

the spatial correlation threshold as explained in the adjustment mechanism 3.11. Figure 3.17

right shows the channel conditions associated with the proposed PC algorithm.

The results obtained from the experiment are illustrated in Table 3.2 and Figure 3.17.

The average SINR per user and the overall average SINR were saved for the three different PC

algorithms. When the BS adjusts the UEs power level to a fixed SNR value, the aggregate average

SINR for all the UEs was 5.4 dB. This value was increased by 0.4 dB when the adjustment was

based on the SINR. The maximum SINR was achieved when the UEs’ power adjustments were

based on the proposed PC algorithm. It enhanced the total average SINR by 0.5 dB compared to
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Figure 3.16: UE Distribution within the indoor atrium measurements at Merchant Venturers
Building.

Figure 3.17: Plot
∣∣HH ×H

∣∣ for Ma-MIMO, where M=128 and K=12. left, the fixed SNR PC
algorithm was used. Right, the proposed PC algorithm was used.

when a fixed SINR was used.

Table 3.2: Aggregate average SINR based on three different PC algorithms.

Aggregate Average SINR (dB)
PC with fixed SNR 5.4
PC with fixed SINR 5.8
Spatial UL PC for Ma-MIMO 6.3
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Figure 3.18: The average SINR per user based on three different PC algorithms (Indoor Trial).

3.2.5 LOS Outdoor Power Control Evaluation with Static Users

Following the previous trials, an outdoor experiment took place in the University of Bristol’s

Merchant Venturers Building Courtyard. Two scenarios were measured in this trial. In the first

scenario, 6 USRPs were divided into three groups and the BS has a 128-element patch antenna

array as shown Figure 3.19. Only one UE was active from each USRP. In the second scenario,

the 6 USRPs were reallocated to group 2 and two UEs were active from each USRP. Starting

from this evaluation, the TPC update rate was increased to 10 times per second.

Two different UL PC algorithms were tested in this experiment for both scenarios. The first

is the one proposed in section 3.2.2, whilst the second is based on a fixed SNR value (where the

BS adjusts the UEs power level to a certain SNR value). The average SINR values per user are

illustrated in Figure 3.20 left for the first scenario and in Figure 3.21 for the second scenario. In

the first scenario, the aggregate average SINR for all the users achieved by the proposed spatial

UL PC algorithm was 12.5 dB and the aggregate average SNR was 14 dB as it is shown in Table

3.3. With a 13 dB SNR UL PC, the aggregate average SINR was 11.6 dB and the aggregate

average SNR was 13 dB. Since the aggregate average SNR value from the proposed spatial UL

PC was larger than the one obtained from the PC with 13 dB fixed SNR, the SNR reference

value was increased to 16.5 dB which increased the aggregate average SNR by 3.5 dB and the

aggregate average SINR by 0.9 dB. The average SNRs per user are illustrated in Figure 3.20

right. Since the UEs remained static during the three measurements, the path loss should be

the same. Which means the proposed spatial UL PC algorithm decreased the required UL power

level by 2.5 dB to achieve an aggregate average SINR of 12.5 dB.

In the second scenario, the aggregate average SINR for the twelve UEs was 5.6 dB when

the proposed spatial UL PC was used. This value was decreased by 0.6 dB when the UL power

level adjustment was based on an SNR reference level of 11.5 dB. The SNR reference level was
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Figure 3.19: Panoramic view of massive MIMO outdoor trial set-up (Merchant Venturers Building
Courtyard).

Figure 3.20: Measurements’ results based on two different PC algorithms (The 1st scenario of the
LOS outdoor trial). Left, the average SINR per user. Right, the average SNR per user.

then increased to 15.5 dB to increase the average SINR. Although the adjustment level was

increased by 4 dB, the aggregate average SINR was decreased by 0.2 dB. The reason behind this

decrement is the interference added to each user from the other eleven users. The separation

distance between the USRPs in the second scenario is small compared to the first one, which led

to higher spatial correlation between the 12 UEs. That is, increasing the UL power level might

lead to a point where the increment of the aggregate inter-user spatial correlation from all the

users would be more than the increment for the received signal power.
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Figure 3.21: The average SINR per user based on two different PC algorithms (The 2nd scenario
of the LOS outdoor trial).

Table 3.3: Aggregate average SINR based on two different PC algorithms.

Aggregate Average Aggregate Average Aggregate Average
SINR (1st scenario) SNR (1st scenario) SINR (2nd scenario)

Spatial UL PC 12.5 dB 14 dB 5.6 dB

PC with fixed SNR
(1st scenario 13 dB, 11.6 dB 13 dB 5 dB
2nd scenario 11.5)
PC with fixed SNR
(1st scenario 16 dB, 12.5 dB 16.5 dB 4.8 dB
2nd scenario 15.5)

3.2.6 LOS Outdoor Power Control Evaluation with Mobility

The Lund University Ma-MIMO testbed pictured in Figure 3.22 was used in this evaluation. It is

similar to the University of Bristol Ma-MIMO testbed, but with 50 USRPs at the BS providing

100 RF chains. The antenna array shown in Figure 3.22 consists of half-wavelength spaced

patch-antennas each with alternate H & V polarisations for all 100 antennas at a 3.7 GHz carrier

frequency 3.

3.2.6.1 User Equipment and Synchronisation

As described in section 3.1.5, each USRP provides two users. Three USRPs were mounted on

three carts providing six spatial streams (emulating pedestrian behaviour). The dipole antennas

3A video of the mobility measurement campaigns at Lund University is available at https://bit.ly/2Ayiikj.
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Figure 3.22: Lund Ma-MIMO BS

were attached directly to both RF chains in each USRP with vertical polarization. Additional

two USRPs were mounted in two cars for higher levels of mobility, where the antennas were

roof mounted with vertical polarization on either side of the car as shown in Figure 3.23. The

synchronisation between each UE and the BS was achieved by broadcasting the PSS with static

pattern from all antennas as described in section 3.1.5 and the GPS was used to improve the

sync stability. The Ma-MIMO BS was setup at the roof of the Faculty of Engineering building. An

overview of the setup is shown in Figure 3.24 and Figure 3.25

3.2.6.2 Channel Hardening Evaluation

Theoretical works show that fast-fading disappears by increasing number of antennas at the BS

to infinity [22] and [59]. To evaluate the Ma-MIMO channel over time in a dynamic situation

and the possibility of relaxing the update rate of power control, a mixture of both pedestrian and

vehicular UEs were introduced. The two cars are shown as C1 and C2 in Figure 3.24 circulating

below the maximum λ/2 measurement speed of 29 km/h. While the two pedestrian carts were

static, shown as P1 and P2. The UL transmission power level was the same from all the UEs.

The arrow in Figure 3.26 shows the movement of one of the cars during 3 seconds duration.
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Figure 3.23: User side. Left: pedestrian carts. Right: car mounting.

Figure 3.24: Overview of the mobility trial at the Lund University.

Two different number of antennas at the BS were considered. At first, all the channels were

captured from all the 100 antennas. Then the channels of a single vertically polarised antenna

was extracted. The relative channel magnitude between one UE in the car and the BS can be
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Figure 3.25: Scenario overview: BS position and pedestrian carts

Figure 3.26: View from BS with 3 s car-based user path indicated.

seen in the right of Figure 3.27. The fast fading is clearly seen when a single antenna was used

at the BS. By using 100 antennas, the fast fading was smoothed out and large variations were

happening over the course of seconds in stead of milliseconds. The power correlation over the

time offset is shown in the left of Figure 3.27. By increasing number of antennas to 100, the

stability of the power levels was increased so that the power control can be done at least 5 times

slower compared to a single antenna. These results demonstrate an improvement in channel

robustness for Ma-MIMO and the possibility of relaxing the TPC update rate.

57



CHAPTER 3. POWER CONTROL AND SYNCHRONISATION ENHANCEMENTS OF A
REAL-TIME 128-ANTENNA MASSIVE MIMO TESTBED

20.5 21 21.5 22 22.5 23 23.5

Time (seconds)

-14

-12

-10

-8

-6

-4

-2

0

2

R
el

at
iv

e 
C

ha
nn

el
 M

ag
ni

tu
de

 (
dB

)

Single Antenna
100 Antennas

-60 -40 -20 0 20 40 60

Time offset [ms]

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er
 C

or
re

la
tio

n

Pedestrian (single antenna)
Pedestrian (100 antennas)
Car (single antenna)
Car (100 antennas)

Figure 3.27: Left: relative channel magnitude over the three second period in Figure 3.26. Right:
correlation of the power over the same period in Figure 3.26.

Figure 3.28: View from BS indicating pedestrian movement of equipment

3.2.6.3 PC and Real-time Results

For the results in this section, one user was used from each pedestrian (one active RF chain from

each USRP). Three users moved from the starting point A heading towards the meeting point

B as illustrated in Figure 3.28. At the starting point A, the aggregate average SINR achieved

by the proposed spatial UL PC was equal to the one from the UL PC with a fixed SNR and the

aggregate average UL power level was also the same for both as shown in Table 3.4. Figure 3.29

shows the average SINR and the average UL power per user at the starting point A. When the

UEs were heading towards the meeting point B, the UL power level was changing according

to the TPC commands, with the end results shown in Figure 3.30. At the meeting point B, the

aggregate average SINR achieved by the PC with fixed SNR was 3 dB. This value was increased

by 2 dB when the proposed spatial UL PC was used to adjust the UL power level. The proposed

PC algorithm had also decreased the average UL power by 2.2 dB.
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Table 3.4: Aggregate average SINR and UL Gain Level for the trial

Average SINR Average UL Power

Location A B A B

Spatial UL PC 9 dB 5 dB 27 dB 26.8 dB

Spatial PC with

fixed SNR (9 dB)
9 dB 3 dB 27 dB 29 dB

Figure 3.29: Average SINR per user at starting point A for two different PC algorithms

Figure 3.30: Average SINR per user at meeting point B for two different PC algorithms

3.3 Real-time Evaluation for OTA Synchronisation

By broadcasting the PSS using a random static pattern from all antennas as described in section

3.1.5, the phase of the sync signal is generated randomly from each antenna at the BS creating

nulls in different locations. This has caused sync losses for the users based on their locations

and the sync signal phases from the antennas at the BS. The GPS was used to improve the

synchronisation stability for the measurements described in section 3.2.6. To overcome this
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23 m

12 User Clients

Figure 3.31: Trial environment in the Great Hall of the Wills Memorial Building.

problem, the PSS can be transmitted from a single antenna as described in section 3.1.5. To

evaluate the proposed solution, the Ma-MIMO testbed was deployed in the Great Hall of the Wills

Memorial Building at the University of Bristol to serve 12 clients places 23 m away on the opposite

side of the BS. The array was setup in a 4 × 32 configuration with vertical polarisations for all

128 antenna. The user clients were in LOS and place in a straight line as shown in Figure 3.31.

Sync loss counter was added to the system’s framework to evaluate the modified synchronisation

method. At first, a dipole antenna was used to broadcast the PSS. Then it was replaced by a

single patch antenna to focus the energy towards the users as it is shown in Figure 3.32. Two

people walked pseudo-randomly during the evaluation, next to the UEs, for 5 minutes duration.

This experiment was repeated twelve times (six times for broadcasting the PSS from the single

patch antenna and six times for broadcasting the PSS from all the 128 antennas). When the PSS

was broadcasted from the single patch antenna, there was no sync loss. But when the PSS was

broadcasted from all the 128 antennas, the average sync loss was 9 per second.

The success of using single antenna for synchronisation in this section has led the Ma-MIMO

team at the University of Bristol to adopt this method for all the experimental campaigns

including the the world’s first urban 5G showcase4.

3.4 Summary

In this chapter, the University of Bristol Ma-MIMO testbed was presented. By using this testbed

and the one Lund University has, the channel hardening for Ma-MIMO was evaluated in different

4A video about the world’s first urban 5G showcase is available at https://www.youtube.com/watch?v=7Qzv_TtyKMU
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PA USRP

Figure 3.32: Using an external single antenna for OTA synchronisation.

LOS environments. A spatial UL power control algorithm for Ma-MIMO was proposed which

can increase both the EE and the single cell SE. Only a small overhead is required to adjust

the transmit power level at the UEs since only two bits are required for the TPC command. By

carefully considering the spatial correlation levels provided by the user-side Gram matrix, a

maximum SINR can be safely achieved for each UE in the system. It was shown that the sum

SINR value was improved, where the majority of the users’ SINR value was increased by 1 to 2

dB. However, the SINR value for few users was decreased by 1 dB.

Furthermore, the synchronisation method between user clients and the BS was enhanced by

using a single antenna to broadcast the PSS in Ma-MIMO instead of using all antennas with a

random static pattern. All the points in this chapter were illustrated experimentally through

several indoor, outdoor and mobility Ma-MIMO measurements campaigns with real-time results.
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4
MAXIMIZING SE FOR MASSIVE MIMO AND ITS LIMITS

This chapter evaluates the impact of spatially multiplexing an increasing number of users

within a single-cell Ma-MIMO system having real-world practical impairments. The results and

conclusions of this chapter have been published in [27], [28] and [31]. The following summarize

the main contributions in this chapter:

• Presenting per-cell SE of 145.6 bits/s/Hz achieved with a 128-antenna Ma-MIMO testbed

and introducing the challenges and the limiting factors when increasing the SE value in

that trial.

• Showing and illustrating that for realistic performance the sum SE should be calculated

based on the EVM performance of the composite transceiver (TRX) equipment and each

spatial channel instead of using Shannon capacity calculations. As opposed to the results

obtained using Shannon capacity, it is shown that the maximum sum SE with practical

number of antennas could be achieved by decreasing the number of users before the sum

SE reached its peak value.

• Showing that the inaccurate UL CSI has greater impact on the DL data transmission than

it is on the UL data transmission due to the error amplification caused by the reciprocity

calibration matrix.

• Showing that by using ZF or MMSE, a lower number of antennas at the BS with high

hardware quality could be better than increasing the number of antennas and reducing the

hardware quality.

• Validating all the above points experimentally with real-time results using a software-

defined radio Ma-MIMO testbed.
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Accurate CSI is crucial for correct MU MIMO operation [22]. Numerous academic papers

have investigated the effect of inaccurate CSI in Ma-MIMO. The work in [107] illustrates

the impact of hardware impairments for the DL of a single cell with different channel

conditions. It shows how the number of BS antenna elements and their spacings can affect the

EVM at the UE side. The hardware impairment impact for a single-cell scenario was addressed in

[108]. This paper shows how the number of antennas affects the average sum rate with different

channel models. The effect of imperfect channel reciprocity and CSI error was also covered

in [109] for DL transmissions. The paper introduced a model that considers the impact of RF

mismatches on the linear precoding for a TDD Ma-MIMO system. The relationship between the

output SINR and the amplitude error variance were illustrated for ZF and MF. The impact of

inaccurate CSI in a single-cell for both UL and DL was covered in [68]. The impact of non-ideal

hardware on the capacity limits was covered in [110] for both UL and DL in a multi-cell scenario.

It shows how the pilot length and the number of antennas at the BS are affected by the relative

estimation error per antenna. The multi-cell scenario was then covered in [111] for both UL and

DL. It shows how the number of antennas, pilot allocation and hardware impairments affects the

spectral efficiency.

Although some research has investigated the impact of inaccurate CSI in Ma-MIMO perfor-

mance, some topics need further investigation. Firstly, the approaches used to calculate the sum

SE are based on Shannon capacity calculations and by using a very large number of antennas

at the BS. These approaches show that there is a peak value for sum SE achieved by serving

a certain number of users. Here, until the sum SE reaches its peak value, the maximum sum

SE is achieved by serving all users simultaneously. However in a real-time Ma-MIMO system,

these approaches are not applicable and do not consider using different MCS orders. Although

the Truncated Shannon Bound method considers using different MCS [112], it won’t be appli-

cable to use this method in real-time Ma-MIMO system since it relies on the SINR values as

shown later is section 5.1.1. Secondly, most of the imperfect channel reciprocity work assumes

accurate UL CSI which can’t be acquired in reality. Thirdly, most available results are based

on IID channels and do not cover SE comparison between different decoders/precoders for UL

and DL data transmission with a practical number of antennas at the BS. Lastly, there is no

publicly available work on experientially validating the impact of inaccurate CSI on Ma-MIMO

performance. As the theoretical work proposed that increasing number of antennas at the BS

decreases the interference caused by inaccurate CSI and from the channel itself, no validation

has been published. Several Ma-MIMO trials have conducted as a proof of concept. Thus, the need

for validation is high, as the industry needs to fully understand the trade-off between number of

antennas (cost) and system performance.

This chapter is structured as follows. Section 4.1 presents the highest spectral efficiency

achieved for any wireless system to date and introduces the challenges and the limiting factors.

Section 4.2 presents the system models. Section 4.3 shows the impact of adding more users on
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Ma-MIMO performance with inaccurate CSI in UL data transmission by using MF, ZF and

MMSE. Section 4.4 shows how the reciprocity calibration error is affected by the UL CSI accuracy

and the impact of adding more users in DL data transmission. Section 4.5 shows the difference

between using Shannon capacity calculations and the EVM performance on maximizing the sum

SE with IID and real-channel. Section 4.6 provides a comparison between adding more antennas

at the BS and building hardware with better quality. Section 4.7 validates all the points raised in

sections 4.3, 4.4, 4.5 and 4.6 experimentally. Lastly, Section 4.8 summarizes the key results from

this work.

4.1 Serving 22 Users in Real-Time with Massive MIMO and its
limits

4.1.1 Measurement Environment

The upper level of the Merchant Venturers Building atrium at the University of Bristol was used

as the test environment with a patch panel antenna array to serve 22 user clients placed 24.8m

away on the opposite balcony. The array was setup in a 32×4 configuration with alternate H &

V polarisations for all 128 antennas. The UEs were in LOS and placed in a straight line with

2.5 wavelength spacing at a 3.51 GHz carrier frequency. However, this environment was not

completely static, as it was a normal working day with students and staff present. An overview of

the setup can be seen in Figure 4.1.

4.1.2 System Configuration

The system was configured using the frame schedule described in section 3.1.3 and the synchroni-

sation between each UE and the BS was achieved via cables as described in section 3.1.5. The

channel estimation was performed in 5ms intervals, and all remaining slots were assigned for

UL data with a 256-QAM modulation scheme (MS). ZF detection was used for all throughput

measurements and equal transmit power was applied for all UEs. 100 channel data captures

were recorded to disk at an interval of approximately 200ms, resulting in a total measurement

period of approximately 3 minutes.

4.1.3 Outcomes and Limitations

In real-time it was possible to connect 22 users with 256-QAM and obtain the decoded UL

constellations shown in Figure 4.2 using 128 bit complex floating point processing. The absolute

throughput could not be measured for 22 users as only decimated host detection was performed,

but by observing the clarity of the constellations and the degree of spatial orthogonality achieved,

an appropriate estimation could be made. 22 UEs were successfully served, which would equate

to 145.6 bits/s/Hz using the frame schedule in [31]. This is a record reported result for spectral
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Figure 4.1: Measurement trial with the UEs 24.8m away (the upper level of the Merchant
Venturers Building atrium at the University of Bristol).

Figure 4.2: 256-QAM UL constellations from 22 UEs with 50cm client separation (the upper level
of the Merchant Venturers Building atrium at the University of Bristol).

efficiency [113] and truly demonstrates the tremendous potential of Ma-MIMO technology for

improving system throughput without bandwidth expansion [41].

Connecting a 23rd user caused significant degradation in the constellation quality and the

physical location of this additional user within the line of 24 UEs (see Figure 4.2) had no impact.

This is because all users were clustered as shown in Figure 4.1 and have the same SNR value.

Therefore, it is believed this could be related to the CSI accuracy introduced in [68]. Further

analysis through trials and simulations is now provided in this chapter to investigate the impact

of inaccurate CSI and number of UEs on Ma-MIMO performance. Different users distribution is

covered in Appendix C.
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Figure 4.3: 256-QAM UL constellations from 24 UEs with 50cm client separation. High EVM
values can be observed from the constellations in the orange collared rectangular compared to
the one in the Figure 4.2.

4.2 System Model

A single-cell Ma-MIMO architecture with imperfect CSI is considered in this chapter. Each UE

transmits a frequency-orthogonal UL pilot for the channel estimation. The actual UL channel

matrix during the uplink data transmission is denoted by Hul ∈CM×K , which is given by

(4.1) Hul = Ĥul +Eul

where Eul ∈CM×K is the difference between the estimated channel and the actual channel during

the uplink data transmission. This error could be caused by hardware impairments, interpolation

across frequency, large-scale channel attenuation and any other potential sources. In this chapter

the error in the UL channel estimation between the UE and the BS is modeled as a complex

Gaussian distribution ∼C N
(
0,σ2

e IM
)
, where σ2

e is the error variance [114]. Whilst this model

may not be so accurate in reality, it serves to illustrate the potential effects of UL CSI inaccuracies

in Ma-MIMO. The equalized UL signal x̂ ∈CK can be expressed as

(4.2) x̂=W
(p

ρul Hul x+nBS

)
where ρul is the corresponding UL transmit power. Simple UL power control is assumed in this

chapter. The UL transmit power is adjusted so the received SNR from all users is the same. The

additive noise vector in UL is denoted by nBS . The noise variance from the antennas at the BS is

modeled as ∼C N
(
0,σ2

nBS
IM

)
, where σ2

nBS
is the noise variance.

While it is generally agreed that the propagation channel is reciprocal in time [115], the

transceiver radio frequency (RF) chains at both ends of the link are generally not [72]. Therefore,
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the actual DL channel matrix during the DL data transmission is denoted by Hdl ∈CK×M . The

estimated DL channel matrix Ĥdl ∈CK×M and how it is affected by Ĥul are covered in section

4.4. The received downlink signal ŝ ∈CK can be written as

(4.3) ŝ=p
ρdl HdlPs+nUE

where s represents the transmitted symbol vector from the BS to users in the same cell, normal-

ized as E
{|sk|2

} = 1. The corresponding DL transmit power is denoted by ρdl . P ∈ CM×K is the

linear precoder matrix, formed by using MMSE, ZF or MF. nUE is the additive noise vector in DL.

The noise variance from the users’ antenna is modeled as ∼C N
(
0,σ2

nUE
IK

)
, where σ2

nUE
is the

noise variance.

4.3 Accumulation of Error Amplification in UL

With imperfect channel estimation the error in equation 4.1 will always be added to the estimated

channel. In sections 4.3.1, 4.3.2 and 4.3.3, the impact of adding users with inaccurate CSI is

explained for MF, ZF and MMSE respectively in the UL. From equation(4.2), the equalized signal

vector can be written as follows:

x̂=p
ρul WHul x+WnBS

=p
ρul

(
WEul +WĤul

)
x+WnBS

=p
ρul WEul x+p

ρul WĤul x+WnBS

(4.4)

The number of users affect the actual equalized signal for the target user k. This can be shown

by rearranging equation (4.4) as follows

(4.5) x̂k =
√
ρulk

K∑
i=1

(WEul)k,i xi︸ ︷︷ ︸
Cumulative Error

+

Desired Signal+Interference︷ ︸︸ ︷√
ρulk

K∑
i=1

(
WĤul

)
k,i xi +zk

where zk is the amplified noise for user k caused by the decoder. The "Cumulative Error" part

represents the interference introduced by CSI estimation inaccuracies. The "Desired Signal +

Interference" part consists of the UL transmitted symbol from user k and the interference caused

by the inter-user spatial correlation.

4.3.1 Match Filter Receiver

To cover the impact of inaccurate CSI, the MF decoder used in section 2.2.3.1 can be rewritten as

W = ĤH
ul . The equalized received signal from user k can be written as follows:

(4.6) x̂k =p
ρul

K∑
i=1

(
ĤH

ulEul

)
k,i

xi︸ ︷︷ ︸
Cumulative Error

+

Desired Signal + Interference︷ ︸︸ ︷
p
ρul

K∑
i=1

(
ĤH

ulĤul

)
k,i

xi +zk
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By increasing the number of antennas at the BS, the ratio between diagonal elements and

non-diagonal elements of the Gram matrix G = ĤH
ulĤul will also increase. This is known as the

channel hardening effect as previously explained in chapter 2 and demonstrated in chapter 3.

The "Desired Signal + Interference" part is extremely sensitive upon the number of antennas

at the BS. The "Cumulative Error" part is less impacted by the number of antennas since the

matrix elements resulting from the matrix multiplication of
(
ĤH

ulEul

)
are far smaller than the

channel Gram matrix when UL power control is applied. The interference from both parts is

increased by increasing the number of users.

4.3.2 Zero Forcing Receiver

To cover the impact of inaccurate CSI, the ZF decoder used in section 2.2.3.2 can be rewritten as

W =
(
ĤH

ulĤul

)−1
ĤH

ul . The equalized received signal from user k can be written as follows:

(4.7) x̂k =
√
ρulk

K∑
i=1

(((
ĤH

ulĤul

)−1
ĤH

ulEul

)
k,i

xi

)
︸ ︷︷ ︸

Cumulative Error

+√
ρulk xi + zk

Unlike MF, the interference is only caused from the "Cumulative Error" part which is introduced

by CSI estimation inaccuracies. This interference is increased by increasing number of users.

Similar to MF, the channel Gram matrix impacts the interference value. Although ZF suppresses

the interference from the estimated channel between users, it amplifies the interference intro-

duced by the inaccurate CSI. This interference is caused by the inverse of the channel Gram

matrix in the "Cumulative Error" part. Although the value of this part in ZF is larger than the

one in MF, the overall interference in MF is still higher than that of ZF.

4.3.3 Minimum Mean Square Error Receiver

To cover the impact of inaccurate CSI, the MMSE decoder used in section 2.2.3.3 can be rewritten

as W =
(
ĤH

ulĤul + 1
γ

I
)−1

ĤH
ul . The equalized received signal from user k can be written as follows:

x̂k =

Cumulative Error︷ ︸︸ ︷√
ρulk

K∑
i=1

(((
ĤH

ulĤul +
1
γ

I
)−1

ĤH
ulEul

)
k,i

xi

)
+p

ρul

K∑
i=1

((
ĤH

ulĤul +
1
γ

I
)−1

ĤH
ulĤul

)
k,i

xi︸ ︷︷ ︸
Desired Signal + Interference

+zk

(4.8)

The interference and the cumulative error parts are highly affected by the SNR value and the

number of users. With a low SNR value, MMSE is less affected by the CSI accuracy as it operates

similar to MF. While with a high SNR value, MMSE becomes more sensitive to CSI accuracy as

it operates similar to ZF.
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4.4 Imperfect Channel Reciprocity and Accumulation of Error
Amplification in DL

Channel reciprocity is essential for DL data transmission in a Ma-MIMO TDD system. Not only

propagation conditions determine the radio channel, but also the transceiver front-ends at both

sides of the radio link. Since different transceiver chains are used at the BS and the UE, the

actual downlink channel hdl ∈C1×M between the BS and one user can be written as follows:

(4.9) hdl = hT
ulDb

Where Db = diag (cb1, ..., cbM) is the calibration matrix and bi is the calibration coefficient [110].

The estimated calibrated version of the downlink channel ĥdl ∈C1×M between one user and the

BS can be written as follows:

(4.10) ĥdl = ĥT
ulD̂b

Where D̂b = diag
(
b̂1, ..., b̂M

)
is the estimated calibration matrix. b̂i = c (bi + e i) is the estimated

calibration coefficient where e i is an IID random process representing the calibration error and c

is the unknown common scaling factor. From equations (4.1), (4.9) and (4.10), the actual downlink

channel hdl between the BS and one user can be written as follows:

hdl − ĥdl = hT
ulDb − ĥT

ulD̂b

hdl = ĥdl +
(
ĥT

ul + eT
ul

)
Db − ĥT

ulD̂b

hdl = ĥdl + ĥT
ul

(
Db − D̂b

)+ eT
ulDb

hdl = ĥdl + ĥT
ulEb + eT

ulDb

hdl = ĥdl + edl

(4.11)

where

(4.12) edl = ĥT
ulEb + eT

ulDb

Eb = diag (−ce1, ...,−ceM) is the calibration error matrix. From equation (4.11), the downlink

channel matrix Hdl ∈CK×M between the BS and the UEs can be decomposed as follows:

(4.13) Hdl = Ĥdl +Edl

where Ĥdl ∈CK×M is the estimated calibrated version of the downlink channel matrix between

the UEs and the BS, while Edl ∈CK×M is the difference between the estimated calibrated channel

and the actual channel during the downlink transmission.

The UL CSI accuracy has greater impact on increasing the difference between the estimated

calibrated channel and the actual channel during the downlink transmission than it has on

increasing the difference between the estimated channel and the actual channel during the uplink
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data transmission. This can be seen in equation (4.12) where the error introduced by inaccurate

UL CSI (eul) is multiplied by the calibration matrix (Db). That means the difference between the

estimated calibrated channel and the actual channel during the downlink transmission could vary

with different Ma-MIMO hardware using the same reciprocity calibration algorithm and the same

radio prorogation environment due to varying the hardware impairment. This was experimentally

validated in section 4.7. The hardware impairment error value in DL data transmission is greater

than that in UL data transmission. This can be seen in equation (4.12) where the calibrated DL

CSI error is composed from multiplying the UL CSI error to the calibration matrix then adding

the multiplication result of the estimated UL CSI to the calibration error matrix. The received

signal in DL can be written from equations (4.3) and (4.13) as follows:

ŝ=p
ρdl HdlPs+nUE

=p
ρdl

(
EdlP + ĤdlP

)
s+nUE

=p
ρdl EdlPs+p

ρdl ĤdlPs+nUE

(4.14)

By rearranging the above equation, the received signal for user k can be written as follows:

(4.15) ŝk =
√
ρdlk

K∑
i=1

(EdlP)k,i si︸ ︷︷ ︸
Cumulative Error

+

Desired Signal+Interference︷ ︸︸ ︷√
ρdlk

K∑
i=1

(
ĤdlP

)
k,i si +nUEk

where P =


Ĥdl MF(
ĤdlĤ

H
dl

)−1
Ĥdl ZF(

ĤdlĤ
H
dl + 1

γ
I
)−1

Ĥdl MMSE

Since Edl > Eul , the interference caused by the "Cumulative Error" part in DL data transmis-

sion from equation (4.14) is greater than the one caused in UL data transmission from equation

(4.4). Therefore, adding more users increases the interference between users in DL data trans-

mission more than for UL data transmission. So the sum SE achieved in UL data transmission is

greater than that in DL data transmission. This was experimentally validated in section 4.7.

4.5 Spectral Efficiency Evaluation

Two different scenarios were considered to evaluate the Ma-MIMO performance for differing

numbers of users when CSI errors are present. An IID Rayleigh channel is used in the first

scenario, where M=128 and K is an even number ∈ [2,22]. In the second scenario, the real channel

captured from the trial described in section 4.1 was used. These scenarios were run through

an UL Ma-MIMO simulator developed at the University of Bristol. In addition to randomly

generated channels, new vectors can be transmitted through channels previously captured by the

physical system for more extensive analysis. For both scenarios in this section, the error in the
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channel estimation between the UEs and the BS is modeled as a complex Gaussian distribution

∼C N
(
0,σ2

e IM
)

[114] where an error variance of 0.01 (1%) was used for the simulations shown.

Whilst this value may be higher or lower and the model could not be so accurate in reality, it

serves to illustrate the potential effects of CSI inaccuracies in Ma-MIMO. Simulation results

with different error variance are covered in section 4.6 while real-time results are covered in

section 4.7.

4.5.1 Minimising Inter-User Correlation

In this chapter, the users were introduced in an order where the least overall correlation is

considered first to minimize the IUI damage with each step. This provides a fair comparison

between the theoretical evaluation method in section 4.5.2 and the practical evaluation method

in section 4.5.3. Algorithm 1 describes the full procedure which operates in two stages upon the

absolute values of the user side Gramian matrix calculated in equation 3.4. L is a vector of

size K which contains the user IDs, where L1 and LK are the first and last users respectively

introduced to the system. In the first stage, users with the lowest spatial correlation are added to

the system. This can be found by searching for the minimum value of the off-diagonal elements

in G . Following this, the second stage considers the mean correlation between the currently

ordered users in L1 and the remaining users that have not yet been added to L .

4.5.2 Theoretical Evaluation

Figure 4.4 shows SE comparison between the 1st and the 2nd scenario as the number of active

users increases across an SNR range of 0−50 dB for both ZF and MF algorithms. The sub-plots

in the first row show the median achievable SE per user by using ZF and MF for both scenarios.

Their equivalent sum SE are the sub-plots in the second row. The median per user SE is always

16.59 bits/s/Hz at 50 dB SNR in case of one active user since there is no interference source.

For ZF it can be seen in (a) and (b) that a median per user spectral efficiency of greater than 4

bits/s/Hz can always be maintained at 30 dB SNR. Increasing the SNR beyond 30 dB improves

lower numbers of active users, but plateaus at 4.89 bits/s/Hz in (a) and 4.219 bits/s/Hz in (b) for 22

users at 40 dB SNR. Sub-plot (e) and (f) in Figure 4.4 show the sum SE for 1st and 2nd scenario

respectively. With ZF, the median per user SE difference between 1st and 2nd scenario is small

since the interference is only caused by the cumulative error part in equation (4.7) where the

off-diagonal values of the Gram matrix for 1st scenario is less than the ones from 2nd scenario.

Despite the small difference in per user SE, the maximum sum SE in 1st scenario outperform

the one from 2nd scenario by 14.89 bits/s/Hz since 22 users are served simultaneously.

With MF, the median per user SE is greatly affected by adding more users as shown in

Figure 4.4, sub-plots (c) and (d). The maximum sum SE is achieved when only two users are

selected in both scenarios. For 22 users, the sum SE in 1st scenario is greater by 6.98 bits/s/Hz at

50 dB SNR.
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Algorithm 1: Sorting users by minimising spatial correlation

1 set K = 22

2 min =G1,1 . Initialise min

3 for m = 1 : K do
4 . Searching for the lowest spatial correlation between 2 users

5 for n = l : (m−1) do
6 if Gm,n < min then

7 min =Gm,n .
8 L1 = m
9 L2 = n . Updating the first two indexes of L vector

10 end
11 end
12 end
13 k = 2
14 while k<K do
15 D =L . whereL ∈ [1,k]
16 min =G1,1

17 for a = l : size (D) do
18 sum = 0
19 for b = l : k do
20 . Calculating mean spatial correlation
21 sum = sum+Ga,b

22 end
23 meanCOR = sum/k
24 if meanCOR < min then

25 elected =Da .
26 end
27 end
28 k = k+1
29 Lk = elected . Add elected user to L vector
30 end
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Figure 4.4: SE (1st row ) and sum SE (2nd row) comparison between IID Rayleigh channel and
measured indoor channel with ZF and MF.

4.5.3 Practical Evaluation

A common measurement of signal quality used in 3GPP LTE standards is the EVM. It is a

comprehensive metric which embraces all impairments on the transmitted signal as seen by the

receiver. Higher MCS are supported when the EVM is smaller [94]. From [116] and [94], the

EVM can be given as

(4.16) EVM%k =

√√√√√√√√√
1
N

N∑
n=1

|Sr(n)−St(n)|2

1
N

N∑
n=1

|St(n)|2
×100%

where N is the number of symbols the EVM was measured over. Sr(n) is the nth normalized

received symbol and St(n) is the ideal value of the nth symbol. For comprehensive analysis,

the EVM was plotted for the 1st and the 2nd scenarios by using ZF and MF. At the time of

conducting the work in this chapter, the required EVM for 64 QAM was 9% based on the 3GPP

LTE standards [117]. While the required EVM for 256 QAM was being considered and simulation

campaigns shown it might be in the range of 1.5%−4% [118]. Therefore, these EVM requirement1

1The required EVM for 64 QAM and 256 QAM were later changed in the 3GPP TS 34.104 V12.10.0 to 8% and 3.5%
respectively [94] which were used for the work in chapter 5.

74



4.5. SPECTRAL EFFICIENCY EVALUATION

Signal to Noise Ratio (dB) 
0 5 10 15 20 25 30 35 40 45 50

E
V

M
 %

0

20

40

60

80

100

120

K =2
K =4
K =6
K =8
K =10
K =12
K =14
K =16
K =18
K =20
K =22

39.8 40 40.2

2

3

4

(a) IID Rayleigh channel

Signal to Noise Ratio (dB) 
0 5 10 15 20 25 30 35 40 45 50

E
V

M
 %

0

20

40

60

80

100

120

K =2
K =4
K =6
K =8
K =10
K =12
K =14
K =16
K =18
K =20
K =22

39.8 40 40.2

2

4

6

(b) Measured indoor channel

Figure 4.5: EVM performance range with inaccurate CSI by using ZF. Total number of users is
gradually increased from 2 into 22 by two users.

Table 4.1: Realistic Performance (IID Rayleigh Scenario with ZF).

Serving all Users Maximizing Sum SE
K 22 25 19
MS 64-QAM 64-QAM 256-QAM
Sum SE 72.864 b/s/Hz 82.8 b/s/Hz 83.9 b/s/Hz

Table 4.2: Realistic Performance (Measured indoor scenario with ZF).

Serving all Users Maximizing Sum SE
K 17 21 16
MS 64-QAM 64-QAM 256-QAM
Sum SE 56.3 b/s/Hz 69.55 b/s/Hz 70.656 b/s/Hz

were chosen for the work in this chapter. (a) and (b) in Figure 4.5 show the EVM results with ZF

for the 1st and the 2nd scenarios respectively. For the 1st scenario, the EVM range was between

1.5% and 4.5% which corresponds to K from 2 till 22 with 40 dB SNR. In the 2nd scenario, the

EVM performance was slightly degraded and its range becomes between 1.9% and 5.8%. The

increment in the EVM range is caused by the high spatial correlation in the 2nd scenario which

amplifies the impact of inaccurate CSI. Table 4.1 and Table 4.2 show the sum SE results at 40

dB SNR for the 1st and 2nd scenarios respectively. In the 1st scenario, the maximum sum SE is

achieved by serving 19 users simultaneously with 256-QAM. When adding more users, 64-QAM

is used in order to provide reliable communications. Here the SE will only be increased when

26 or more users are served. In the 2nd scenario, the maximum sum SE is achieved by serving

16 users simultaneously with 256-QAM. This value can only be increased by adding more than

five users if 64-QAM is applied. As it is shown in both scenarios, by adding more users the EVM

performance becomes worse and the sum SE could be decreased. The degradation in the EVM
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Figure 4.6: EVM performance range with perfect CSI by using ZF. Total number of users is
gradually increased from 2 into 22 by adding two users.

Figure 4.7: Impact of user number on the observed EVM. 64-QAM with ZF for 24 users on the
left and 22 users on the right.

performance can be seen in Figure 4.7, which shows a a realistic 64-QAM constellations captured

from the trial in [119]. Details about this trial can be found in Appendix C. The constellations

on the left were captured with 24 active users. The constellations on the right were captured

after removing two users randomly. The observed EVM was enhanced just by removing two users

since the "Cumulative Error" part in (4.7) was reduced by two users. The EVM performance with

perfect CSI is shown in Figure 4.6 where (a) is for the 1st scenario and (b) is for the 2nd scenario.

The EVM performance was enhanced and its range found to lie between 0.85% and 0.97% in 1st

scenario and between 0.89% and 1.18% in 2nd scenario which corresponds to K from 2 up to 22

with 40 dB SNR. With perfect CSI, the EVM performance is slightly affected by the number of

users since it only amplifies the noise. Figure 4.8 shows the EVM results with MF for 1st and

2nd scenarios with 40 dB SNR. The sub-plot (a) and (b) are for the 1st scenario with perfect and

inaccurate CSI respectively. The sub-plot (c) and (d) are for the 2nd scenario with perfect and

inaccurate CSI respectively. The impact of inaccurate CSI can be ignored in both scenarios. The
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Figure 4.8: EVM performance comparison with MF between 1st (a&b) and 2nd (c&d) scenario.

EVM performance is highly affected by the number of users. Compared to ZF, the EVM value

corresponds to 22 users is increased by 30.5% in the 1st scenario and 64% in the 2nd scenario.

In the 1st scenario, the maximum number of users that can be served is 8 using QPSK. In the

second scenario, the maximum number of users is reduced by two using the same MS. Maximum

sum SE of 8.832 bits/s/Hz is achieved by serving two users with 256-QAM in both scenarios.

4.6 Number of Antennas at BS Compared to Hardware Quality

By further inspecting the results obtained in section 4.1 and applying the practical evaluation

method in section 4.5.3, some insight can be gained on the trend of maximizing the sum SE with

the relation to the number of BS antennas, spatial correlation between users and CSI accuracy.

Figure 4.10 shows the intensity plot results for the user-side Gramian matrix for 32 and 128

elements of the 32×4 patch array. For the 32 antenna case, the results were obtained using the

second 8×4 panel in from the left when facing the array. In order to obtain accurate results that

solely represent the achievable spatial separation, it is important to remove path-loss differences

among UEs by applying a form of normalisation to the raw captured channel matrix, denoted as

Hraw
b . To achieve this, the first normalisation described in [120] was applied. This normalisation

ensures that the average energy across all B frequency resource blocks (12 subcarriers per RB)

and M antennas for a given user vector in Hraw
b , denoted as hraw

i,b for user i, is equal to one. In this

sense, the variations across frequency are retained to provide better statistics. This is calculated

as

(4.17) hnorm
i,b =

√√√√ MB∑B
b=1 ‖hraw

i,b ‖2
hraw

i,b
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Figure 4.9: Maximum sum SE with ZF and MMSE in UL by different MS.

Figure 4.10: User-side Gramian intensity plots for 24 UEs for the measured indoor scenario.

where hnorm
i,b is the ith row of the normalised channel matrix Hnorm

b . The first thing that can be

seen is that the correlation level between UEs with 128 BS antennas is lower than the one with

only 32 BS antennas due to the channel hardening effect. By using ZF and MMSE decoders in

the UL Ma-MIMO simulator mentioned earlier with rate 3/4 low-density parity-check (LDPC)

code as described in [121] , the sum SE that can be achieved with each MS and σ2
eul

∈ [0,3%] can

be seen in Figure 4.9. An IID Rayleigh channel is used, where M=128 and K=24. The maximum

sum SE is achieved by serving all the 24 UEs with 256-QAM when σ2
eul

∈ [0,0.8%]. When the

UL error variance value is greater than 0.8%, the sum SE starts decreasing due to the lower

number of UEs that can be served simultaneously in order to fulfil the EVM requirements for the

256-QAM. When σ2
eul

∈ [1.3%,3%], the maximum sum SE is achieved by serving all the 24 UEs
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Figure 4.11: Maximizing sum SE in the UL data transmission. Blue: maximum sum SE. Red:
number of simultaneous users.

with 64-QAM. The blue colour in Figure 4.11 shows the maximum sum SE that can be achieved

by using ZF or MMSE in (a) and MF in (b) . For comparison purposes, the correspondent number

of UEs have been plotted in red colour on a second axis. Lower MS order is being used each

time the number of UEs is increased by increasing the value of σ2
eul

. An IID Rayleigh channel

is used for the 1st scenario, where K=24 and M=128. Then number of antennas at the BS was

decreased to 32 to increase the spatial correlation value between users. Both real-channels used

to produce the results in Figure 4.10 were used in the 2nd scenario. With perfect CSI and ZF,

256-QAM is used in both scenarios with M=128 and M=32 in Figure 4.11 sub-plot (a). When

M=128 and σ2
eul

∈ [0,0.5%], the maximum sum SE with the real-channel in the 2nd scenario was

similar to the one achieved by the IID channel where 24 UEs are served simultaneously. When

σ2
eul

∈ [0.6%,0.8%] and σ2
eul

∈ [0.9%,1.2%], number of UEs is decreased for the real-channel and

IID channel respectively in order to fulfil the 256-QAM requirements. But when σ2
eul

≥ 0.9% and

σ2
eul

≥ 1.3%, the maximum sum SE is achieved by serving all the 24 UEs with 64QAM except

when σ2
eul

= 3 with the real-channel scenario. By decreasing number of antennas at the BS to

32, the maximum sum SE become more sensitive to the accuracy of CSI. The maximum sum SE

dropped by 58 bits/s/Hz when σ2
eul

is increased from 0 to 3% with real-channel in 2nd scenario.

While it was only decreased by 34 bits/s/Hz with 128 antennas at the BS. Besides, the same

maximum sum SE is achieved by using real-channel or IID channel with most of the CSI accuracy

when M=128. While the maximum sum SE is always achieved by using IID channel when M=32.

These results can be explained from the "Cumulative Error" part in (4.7) and (4.8). When

M=128, the matrix elements resulting from inverting the Gram matrix
(
ĤH

ulĤul

)−1
are small

because of the channel hardening effect. Therefore, the interference resulting in this part will be

small as well and more UEs can be served simultaneously with higher MS. While when M=32,
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the matrix elements resulting from inverting the Gram matrix
(
ĤH

ulĤul

)−1
are high. Therefore

lower MS with less number of UEs are used.

When MF decoder is used, the maximum sum SE is not affected by the CSI accuracy when

σ2
eul

∈ [0,3%] as shown in Figure 4.11 sub-plot (b). The maximum sum SE is achieved by serving

five UEs with 16-QAM using an IID channel with M=128. While by using the same number of

antennas with real-channel, the maximum sum SE is decreased by 2.1 bits/s/Hz which is the

same results obtained from 32 antennas with an IID channel. This is achieved by serving two

UEs with 256-QAM. The lowest maximum sum SE is achieved by serving only one user with

256-QAM using real-channel with M=32. Although MF decoder has very low sensitivity to CSI

accuracy, it is highly sensitive to number of antennas and spatial correlation values between

UEs.

Increasing number of antennas at the BS could be expensive because of the additional

hardware requirements. Ma-MIMO with high CSI accuracy and low number of antennas could

be a better investment if it costs less and has similar performance. This can be achieved by using

hardware with high quality, such as better ADCs and LNAs, to reduce the hardware impairment

error and the noise floor value. Sub-plot (a) in Figure 4.11 shows that with 32 antennas at the

BS and σ2
eul

= 0.1%, the same maximum sum SE can be achieved when the number of antennas

is increased to 128 with σ2
eul

≥ 0.9%. This was experimentally validated in the next section.

Further results with different channel conditions can be found in Appendix B including DL data

transmission.

4.7 Real-Time Evaluation Using Massive MIMO Test-bed

In this section, real-time results are presented using the Ma-MIMO testbed in section 3.1. These

results demonstrate the impact of inaccurate CSI on the SE and show that increasing number of

antennas at the BS can decrease this impact. It also validates the following:

• The maximum sum SE with practical number of antennas could be achieved by decreasing

the number of users.

• Inaccurate UL CSI has greater impact on the DL data transmission than it has on the

UL data transmission due to the error amplification caused by the reciprocity calibration

matrix.

• By using ZF or MMSE, a lower number of antennas at the BS with high hardware quality

could be better than increasing number of antennas and reducing the hardware quality.

MF, ZF and MMSE were used for UL and DL data transmission by using the exact same

static environment but with two different UL CSI accuracy values.
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Figure 4.12: The frame schedule used in the Ma-MIMO test-bed for real-time evaluation.

4.7.1 Frame Schedule

For the SE results shown in this real-time evaluation, two different frame schedules were

configured for two different scenarios. For the UL scenario, the PHY frame schedule used in

section 3.1.3 was modified so that only UL data with two UL pilots per radio frame were used

which can be seen in Figure 4.12. While in the DL scenario, only DL data with two UL pilots

and two DL pilots per radio frame were used. The first OFDM subframe is for synchronization in

both scenarios to achieve sample alignment.

4.7.2 Low CSI Accuracy

For low CSI accuracy, OTA synchronisation was used based on Zadoff-Chu sequence. The phase

of the sync signal was generated randomly from each antenna at the BS which created nulls

in different locations. This caused sync losses for the users based on their locations and the

sync signal phases from the antennas at the BS. The synchronization error causes inter-carrier

interference (ICI), inter-symbol interference (ISI) and interference between data streams due to

the inaccurate CSI. The BS and the users save the sequence number of each transmitted radio

frame. When the user doesn’t detect the sync signal, it saves the radio frame number. The sum

SE calculation doesn’t consider the data transmission between the user who lost the sync signal

and the BS. This can be done by removing the data transmitted during saved radio frame number

in both UL and DL for that user. By doing that, the impact of ICI and ISI was removed before

calculating the sum SE while the interference caused by the inaccurate CSI is only considered in

this scenario.
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Figure 4.13: Measurement Environment (CSN Research Laboratory).

4.7.3 High CSI Accuracy

To increase the CSI accuracy, cabled synchronisation was used with an Octoclock module [96].

To achieve sample alignment, a start trigger that signals the start of the first radio frame is

fanned out to all radios by equal length cables. The user clients were connected to the Octoclock

by extended cable and the timing offsets were corrected for. For fair comparison, when the data

transmitted between the UE and the BS was removed from the sum SE calculation in the low

CSI accuracy scenario, it was also removed from the high CSI accuracy scenario.

4.7.4 Measurement Environment

The CSN lab was used for LOS measurements between the BS and 12 UEs from 6 USRPs.

Measurements were performed outside of university hours and the Ma-MIMO test-bed was

controlled remotely to ensure the same static environment was applied in all scenarios. An

overview of the setup can be seen in Figure 4.13. At the BS side, 64 element array was used

providing half-wavelength spacing at 3.5 GHz. A floor plan of the experiment is shown in

Figure 4.14 with the UE locations.

4.7.5 Validation Results

Table 4.3 and Table 4.4 show the maximum uncoded sum SE results for the UL scenario with

high and low CSI accuracy respectively. Maximum sum SE of 56.59 bits/s/Hz is achieved by

using ZF or MMSE with M=64 and high CSI accuracy serving all the 12 UEs with 64-QAM.
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Figure 4.14: CSN Lab floor plan showing the BS and UEs locations.

Although no error correction was used, this value is equal to the error free version using the

same frame schedule, number of UEs and MS. By reducing the number of antennas to 32, the

maximum sum SE is decreased by 6.39 bits/s/Hz due to the higher interference level although

the same number of UEs and MS are used. The interference caused by "Cumulative Error" part

in (4.7) and (4.8) when M=64 is less than the one when M=32 due to the channel hardening effect.

With low CSI accuracy, the maximum sum SE with ZF or MMSE is decreased by 7.49 bits/s/Hz

and 13.2 bits/s/Hz for M=64 and M=32 respectively. Decreasing the CSI accuracy has greater

impact when M=32 with ZF and MMSE. These results validate the theoretical work on massive

MIMO showing that by increasing number of antennas at the BS, the interference caused by

inaccurate CSI with ZF and MMSE will decrease. With MF, the CSI accuracy has no impact on

the maximum sum SE. Only the number of antennas affect the maximum sum SE achieved by

MF in the UL scenario. This can be explained from (4.6) where the interference caused by the

"Desired Signal + Interference" part, that is sensitive upon the number of antennas, is very large

compared to the one caused by the "Cumulative Error" part which is affected by the CSI accuracy.

Table 4.5 and Table 4.6 show the maximum uncoded sum SE results for the DL scenario with

high and low CSI accuracy respectively. The maximum sum SE results are decreased in the DL
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scenario due to the difference between the estimated calibrated channel and the actual channel

during DL transmission. With high CSI accuracy and ZF or MMSE precoders, the maximum

sum SE is decreased by 22.19 bits/s/Hz and 19.2 bits/s/Hz with M=64 and M=32 respectively

compared to the UL scenario with high CSI accuracy. While by applying the same comparison for

the low CSI accuracy, the maximum sum SE is decreased by 34.1 bits/s/Hz and 29 bits/s/Hz with

M=64 and M=32 respectively. By comparing the SE degradation between UL and DL scenarios

with high and low CSI accuracy, the maximum sum SE with low CSI accuracy was shown to

be affected more. The additional maximum sum SE degradation due to low CSI accuracy was

11.91 bits/s/Hz and 9.81 bits/s/Hz with M=64 and M=32 respectively, despite using the same

reciprocity calibration algorithm. This can be explained in (4.12) where the error introduced

by inaccurate UL CSI (eul) is multiplied by the calibration matrix (Db). These results validate

that UL CSI accuracy has greater impact on the DL data transmission than it has on the UL

data transmission. By comparing the results between high CSI accuracy and low CSI accuracy

in UL and DL scenarios, it can be seen that the maximum sum SE with 32 antennas and high

CSI accuracy always outperforms the one from 64 antennas with low CSI accuracy when ZF or

MMSE is used. This validates the simulation results in section 4.6 and concludes that increasing

number of antennas at the BS might not be efficient as much as increasing the hardware quality

to acquire more accurate CSI. By serving all the 12 UEs, the maximum sum SE was only achieved

in the UL scenario with ZF and MMSE using high CSI accuracy. While to achieve the maximum

sum SE for the remaining scenarios, the number of UEs was decreased. These results validate

that the maximum sum SE with practical number of antennas could be achieved by decreasing

number of users. From the results obtained in this section and section 4.6 using ZF and MMSE,

the maximum sum SE and number of UEs keep changing. That should emphasise the need for

a user grouping algorithm not only at the cell edges, but also within the cell itself in order to

maximize the sum SE.

Table 4.3: Real-time Results for UL Scenario (High CSI Accuracy).

K / MS Sum SE (b/s/Hz)
M=32 M=64 M=32 M=64

MF K=3, b=2 K=2, b=4 4.4 6.2
ZF& MMSE K=12, b=6 K=12, b=6 50.2 56.59

Table 4.4: Real-time Results for UL Scenario (Low CSI Accuracy).

K / MS Sum SE (b/s/Hz)
M=32 M=64 M=32 M=64

MF K=3, b=2 K=2, b=4 4.4 6.2
ZF& MMSE K=9, b=6 K=11, b=6 37 49.1
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Table 4.5: Real-time Results for DL Scenario (High CSI Accuracy).

K / MS Sum SE (b/s/Hz)
M=32 M=64 M=32 M=64

MF K=3, b=2 K=3, b=2 3.8 4.5
ZF& MMSE K=10, b=4 K=11, b=4 31 34.4

Table 4.6: Real-time Results for DL Scenario (Low CSI Accuracy).

MS / K Sum SE (b/s/Hz)
M=32 M=64 M=32 M=64

MF K=3, b=2 K=2, b=4 3.2 4.2
ZF& MMSE K=6, b=2 K=10, b=2 8 15

4.8 Summary

In this chapter, the highest SE of 145.6 bits/s/Hz achieved for any wireless system to date and its

limiting factors were presented. The impact of the number of users upon maximizing sum SE

in a TDD single-cell Ma-MIMO system was illustrated and experimentally validated. Common

linear decoders/precoders, MF, ZF and MMSE, were used in UL and DL data transmission cases.

A practical method based on EVM performance for realistic SE calculation was compared with

the theoretical method based on Shannon capacity. By using both IID Rayleigh and measured

Ma-MIMO channels with 1% CSI estimation error, it was shown that the maximum theoretical

sum SE is achieved by increasing the number of users. Unlike the conventional method for

theoretical SE calculation or assuming perfect CSI, it was shown and experimentally validated

that the maximum sum SE could be achieved by decreasing the number of users with practical

number of antennas at the BS.

Furthermore, it was shown and experimentally validated that the inaccurate UL CSI has

greater impact on the DL data transmission than it was on the UL data transmission due to the

reciprocity calibration error amplification. Besides, by using ZF or MMSE, a lower number of

antennas at the BS with high hardware quality could be better than increasing the number of

antennas and reducing the hardware quality.

The work in this chapter was based on the EVM performance with static users environment.

Some interesting points were not covered, such as the EVM performance with mobility environ-

ment and how the EVM corresponds to the bit error rate (BER) in different scenarios. Although

the BER metric requires additional overheads, it is still more accurate metric than the EVM. The

Ma-MIMO mobility evaluation in [34] could be extended for future work to cover the impact of

inaccurate CSI, where both the EVM and the BER metrics are used.
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5
ADAPTIVE USER GROUPING BASED ON EVM PREDICTION FOR

EFFICIENT AND ROBUST MASSIVE MIMO IN TDD

This chapter proposes novel user grouping algorithms to further enhance the Ma-MIMO

advantages for different wireless applications. The results and conclusions of this chapter have

been published in [36] and submitted to [35]. The following summarize the main contributions in

this chapter:

• Introduce an estimation method with high accuracy associating EVM to SINR values for

massive MIMO with ZF and MMSE.

• Introducing an EVM prediction method for a subset of user spatial bearers taken from the

original set of simultaneous users in a single cell Ma-MIMO.

• Illustrating the need for a user grouping algorithm for single cell Ma-MIMO.

• Presenting an adaptive user grouping algorithm for maximizing the SE, which is more

desirable for cellular networks.

• Presenting an adaptive user grouping algorithm for maximizing the number of simultane-

ous users for low data rate bearers which is suitable for the IoT.

• Presenting an adaptive user grouping algorithm for a specific quality per user for applica-

tions such as wireless cameras at major cultural or sporting events.

• For the first time, a methodology which addresses the interference caused by the user

channel vectors as well as hardware impairments for a single cell Ma-MIMO.

• Validate three adaptive user grouping algorithms proposed by the author experimentally

using a real-time trial as part of the world’s first urban 5G showcase using a software-

defined radio Ma-MIMO testbed [122].
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Theoretical Ma-MIMO work indicates that the user channel vectors become pairwise

orthogonal as the number of BS antennas is increased, facilitating the effective use of

MF [22]. However, the level of spatial orthogonality achieved when using a practical

number of antennas in real channels may not be ideal as shown in chapter 3. When the individual

user channels become correlated, ZF or MMSE become necessary for reliable data transmission

as shown in chapter 4. For real system deployments the BS has a fixed number of antennas,

whilst the number of active users can vary with time. Number of users could equal or surpass the

number of BS antennas, particularly during rush hour or at major cultural or sporting event. User

grouping is an essential solution for this problem, where each group is served by different radio

resources [123]. This could be the only need for user grouping algorithms in an ideal scenario.

However, there are some challenges that need to be addressed in Ma-MIMO system architectures.

Linear techniques, such as ZF and MMSE can suppress the interference between users, but

this requires perfect CSI. Errors in CSI can occur for many reasons such as local oscillator (LO)

phase noise, errors in reciprocity calibration and quantization errors [110]. Although ZF and

MMSE algorithms can suppress interference caused by the channel between users and the BS,

they are unable to suppress interference caused by inaccuracy in CSI. In addition, high spatial

correlation between users will amplify the interference caused by inaccurate CSI. Several studies

have addressed multi-grouping for Ma-MIMO. In [124] users are grouped according to the severity

of inter-beam interference: users which won’t cause serious inter-beam interference are allocated

into an identical group, whilst users that cause serious inter-beam interference are distributed

into different groups. In [125] the separation of users with high spatial correlation into different

groups is addressed. The grouping process relies on finding the correlation coefficients greater

than a certain threshold and isolating the corresponding users in separate groups. These are

then served at different scheduled times. The works in [124] and [125] all assume perfect CSI,

whilst in [126], inaccurate CSI is considered for DL due to reciprocity calibration errors of a TDD

architecture. This work was extended in [127] and focused on noncooperative transmission for

multicell multicast networks using Ma-MIMO. In both of these studies, the focus is primarily on

multi-cell and considers the impact of large-scale channel attenuation between the various users

and the BS. Most previous research has focused on the DL scenario by separating the users with

high spatial correlation based only on the channel between the BS and the users. Importantly,

these approaches do not consider the interference caused by inaccurate CSI which limits the

application of these results in real-world deployments. This chapter proposes novel adaptive

user grouping algorithms for single cell Ma-MIMO for both UL and DL scenarios. The proposed

algorithms decrease the interference level between users and mitigates the impact of inaccurate

channel estimation. This is achieved by exploiting the novel EVM prediction method introduced

in this chapter.

The chapter is structured as follows. In section 5.1, an estimation method between the EVM

and the SINR values is presented using ZF and MMSE decoders. An EVM prediction method
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for a subset of users taken from the original set of simultaneous users is also introduced for a

single cell Ma-MIMO. Section 5.2 illustrates the need for a user grouping algorithm in a single

cell Ma-MIMO. Section 5.3 introduces three adaptive user grouping algorithms for a single

cell Ma-MIMO covering several performance objectives. Section 5.4 provides results for the

proposed adaptive user grouping algorithms from a Ma-MIMO simulator. Section 5.5 validates

the proposed adaptive user grouping algorithms experimentally with real-time results in the

world’s first urban 5G showcase using a software-defined radio Ma-MIMO testbed. Lastly, Section

5.6 summarizes the key results from this chapter.

5.1 EVM Prediction & SINR Estimation for Massive MIMO

In this section, two different scenarios were considered to evaluate the accuracy of the SINR

estimation and the EVM prediction. An IID Rayleigh channel was used in the first scenario

with perfect and imperfect CSI, where M=128 and K ∈ {2,12,22}. In the second scenario, the

real channels captured from the trial described in section 4.1 were used. These scenarios were

run through an uplink Ma-MIMO simulator described in section 4.5. For imperfect CSI in both

scenarios, the error in the channel estimation between the UEs and the BS is modeled as a

complex Gaussian distribution ∼C N
(
0,σ2

e IM
)

[114] where an error variance of 0.01 (1%) was

used for the simulations shown. Whilst this value may be higher or lower and the model may

not be so accurate in reality, it serves to illustrate the potential effects of CSI inaccuracies in

Ma-MIMO. Instead of writing the EVM in equation 4.16 in a percentage format , it can be written

in an root-mean-squre (RMS) format as follows:

(5.1) EVMRMS =

√√√√√√√√√
1
N

N∑
n=1

|Sr(n)−St(n)|2

1
N

N∑
n=1

|St(n)|2

The relation between the EVM and the SNR in a single cell was addressed in many studies such

as [116] and [128] which was estimated as follows:

(5.2) SNR≈ 1
EVM2

RMS

The above approximation can be used in SISO and SU-MIMO. While in MU-MIMO and Ma-

MIMO, the interference between users highly impacts the accuracy of this approximation. In

order to increase the estimation accuracy, the SINR can be used in stead of the SNR as follows:

(5.3) SINR≈ 1
EVM2

RMS
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Figure 5.1: SINR estimation error using ZF (IID Rayleigh channels).
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Figure 5.2: SINR estimation error using MMSE (IID Rayleigh channels).

The accuracy of the above equation can be seen in Figure 5.1 and Figure 5.2 for the 1st scenario

and Figure 5.3 and Figure 5.4 for the 2nd scenario. The same approximation method was also

used in [129]. The UL SINR in (4.4) can be calculated as follows [48]:

(5.4) SINRulk =
ρulk

∣∣wkhulk

∣∣2
‖wk‖2σ2

n +ρulk

K∑
i 6=k

∣∣wkhul i

∣∣2
The errors in the SINR estimation based on the EVM value from (5.3) were plotted in Figure 5.1

and Figure 5.3 using ZF while MMSE was used in Figure 5.2 and Figure 5.4. When MMSE

was used, the SINR estimation error is always below 1 dB. By increasing the SNR above 5 dB,
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Figure 5.3: SINR estimation error using ZF (Measured indoor channels).
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Figure 5.4: SINR estimation error using MMSE (Measured indoor channels).

the error in the SINR estimation falls to below 0.4 dB. When ZF was used in both scenarios, the

SINR estimation error is always below 0.3 dB.

By selecting a subset of the available users, the UL SINR can be calculated based on the CSI

before the data is transmitted from these users (assuming the channel is coherent across the

transmission duration); while the EVM can only be measured after the data is transmitted from

these users then received and decoded at the BS side. Hence relying on the measured EVM to

predict the MCS order for a subset of users is not applicable. Predicting the highest achievable

MCS order for each user is essential for selecting the subset of the available users in order to

maximize the SE and provide reliable data transmission. The following two sub-sections 5.1.1

and 5.1.2 show how the EVM value can be predicted.
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5.1.1 EVM Prediction Based on SINR Calculation

The UL SINR in (5.4) is calculated based on perfect CSI. Whilst with imperfect CSI, the equation

can be modified as follows:

(5.5) SINRulk =
ρulk

∣∣wkĥulk

∣∣2
‖wk‖2σ2

n +ρulk

K∑
i=1

∣∣wkeul i

∣∣2 +ρulk

K∑
i 6=k

∣∣wkĥul i

∣∣2
Since eul can’t be obtained in real-system, the UL SINR can be estimated by ignoring the error

in CSI as follows:

(5.6) �SINRul k̃
= ρul k̃

∣∣wk̃ĥul k̃

∣∣2
∥∥wk̃

∥∥2
σ2

n +ρul k̃

K̃∑
i 6=k̃

∣∣wk̃ĥul i

∣∣2
where K̃ is the total number of users in the set that the SINRulk is being predicted for

(
K̃ ≤ K

)
.

From (5.3), the EVM value for user k can be predicted as follows:

(5.7) ��EVM2
RMSk̃

= 1�SINRul k̃

The accuracy of the predicted EVM (��EVM) square from the above equation is high with perfect

CSI. This can be seen in Figure 5.5 and Figure 5.6 for the 1st scenario and Figure 5.7 and

Figure 5.8 for the 2nd scenario. The green curves show the error between the predicted EVM

from (5.7) before data is transmitted and the actual EVM from (5.1) after the data is received

and decoded. When ZF or MMSE is used, the EVM% prediction error is below 1% at 12 dB SNR

(EVM%=EVMRMS ×100). By increasing the SNR, the EVM% prediction error is reduced until��EVMk̃ =EVMk at 20 dB SNR.

The accuracy of the CSI in (5.6) and the number of users can be seen to significantly impact

the accuracy of the predicted EVM in (5.7). This can be seen in Figure 5.9 and Figure 5.10

for the 1st scenario and Figure 5.11 and Figure 5.12 for the 2nd scenario. When the SNR is

increased above 9 dB and K̃ = 2, the EVM% prediction error is always below 1% with ZF and

MMSE in both scenarios. When increasing K̃ to 11
(
K̃ = K /2

)
, the EVM% prediction error begins

to increase at 20 dB SNR in the 1st scenario and 18 dB SNR in the 2nd scenario. When the SNR

value is increased further, the EVM% prediction error is seen to increase as well. The reason

for the increment in the EVM% prediction error is the CSI accuracy. The estimated SINR in

(5.6) doesn’t consider the interference caused by inaccurate CSI as the interference term embeds

the CSI error. The CSI accuracy has a greater impact on the EVM% prediction error when the

number of users is increased. This can be seen when K̃ is increased to 21
(
K̃ = K /2

)
. Thus, the

CSI accuracy plays a major role in the EVM prediction based on the SINR calculation method.
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Figure 5.5: EVM prediction error with perfect CSI using ZF (IID Rayleigh channels).
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Figure 5.6: EVM prediction error with perfect CSI using MMSE (IID Rayleigh channels).

5.1.2 EVM Prediction Based on SINR Calculation with Error Estimation

The impact of inaccurate CSI is considered in this EVM prediction method. The UL transmit

power is adjusted so the received SNR from all users is the same. The EVM value in (5.1) covers

the interference caused by inaccurate CSI, whilst the estimated SINR in (5.6) does not. So the

error caused by inaccurate CSI can be estimated by calculating the SINR value in (5.6) for user k(
when K̃ = K

)
and comparing it with the actual EVM value in (5.1) as follows:

(5.8) ζk =
∣∣∣∣∣EVM2

RMSk
− 1�SINRulk

∣∣∣∣∣
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Figure 5.7: EVM prediction error with perfect CSI using ZF (Measured indoor channels).

0 10 20 30 40 50
0

2

4

6

8

10

12
Measured Indoor Channel, Perfect CSI M=128, K=22, MMSE

Average Signal to Noise Ratio (dB) 

| E
V

M
%

 P
re

di
ct

io
n 

E
rr

or
 |

 

 
SINR calculation with error estimation, K̃ = 2

SINR calculation with error estimation, K̃ = K/2

SINR calculation with error estimation, K̃ = K-1

SINR calculation, K̃ = 2

SINR calculation, K̃ = K/2

SINR calculation, K̃ = K-1

Figure 5.8: EVM prediction error with perfect CSI using MMSE (Measured indoor channels).

The above error is mainly caused by the inaccurate CSI from all the simultaneous users (the

error between SINR and EVM estimation is very small as shown earlier in this section). Since

the spatial correlation between users has a significant impact on the interference value, the

estimated error in the EVM is divided between users based on the spatial correlation ratio in this

method. This can be represented in Υ ∈CK×K where Υk,l is the partial EVM2 error estimation

value for user k which is caused only by user l.

(5.9) Υk,l =


ζk

∣∣∣ĥH
ulk

ĥull

∣∣∣2∑K
i 6=k

∣∣∣ĥH
ulk

ĥul i

∣∣∣2 if k 6= l

0 otherwise
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Figure 5.9: EVM prediction error with inaccurate CSI using ZF (IID Rayleigh channels).
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Figure 5.10: EVM prediction error with inaccurate CSI using MMSE (IID Rayleigh channels).

After calculating all the partial EVM2 error estimation values for all the users, the predicted

EVM2 error value for user k̃ (in the subset of K̃ users) can be written as follows:

(5.10) ˜̃
ζk̃ =

K̃∑
i=1
Υk̃,i

By taking into account the above EVM2 error prediction, equation (5.7) can be modified as follows:

��EVM2
RMSk̃

= 1�SINR ul k̃

+ ˜̃
ζk̃(5.11)
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Figure 5.11: EVM prediction error with inaccurate CSI using ZF (Measured indoor channels).
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Figure 5.12: EVM prediction error with inaccurate CSI using MMSE (Measured indoor channels).

The accuracy of the ��EVM from the above equation is evaluated with perfect CSI and inaccurate

CSI. With perfect CSI, this method provides the same accuracy as the one in 5.1.1 with ZF as

shown in Figure 5.5 and Figure 5.7. When MMSE is used, the proposed method in this section

provides higher accuracy compared to the one in 5.1.1. The reason behind this is the low accuracy

of the approximation in (5.3) when MMSE is used with low SNR as shown in Figure 5.6 and

Figure 5.8. Meanwhile, the proposed method in this section has taken into account the difference

between the estimated EVM based on the approximation in (5.3) and the actual EVM from (5.1).

The main advantage of the proposed EVM prediction method in this section is its high

accuracy even with inaccurate CSI and large number of users. This can be seen clearly in

Figure 5.9 and Figure 5.10 for the 1st scenario and Figure 5.11 and Figure 5.12 for the 2nd

96



5.2. THE NEED FOR USER GROUPING

scenario. Unlike the EVM prediction method proposed in 5.1.1, this method maintains the EVM%

prediction error below 1% when SNR is greater than 8 dB for both scenarios, with ZF and MMSE,

even when K̃ is increased from 2 to K −1.

5.2 The Need for User Grouping

5.2.1 Indoor Environment

In this section, three different scenarios were considered to illustrate the need for dividing

users into different groups. These scenarios were first run through an UL Ma-MIMO simulator

described in section 4.5 using the indoor channel in section 4.1. The EVM is used to evaluate the

Ma-MIMO performance for differing numbers of users when CSI errors are present. This metric

was used for the three different scenarios where ZF was used to decode the UL received signal.

For all scenarios in this section, the error in the channel estimation between the UEs and the

BS is modeled as a complex Gaussian distribution ∼C N
(
0,σ2

e IM
)

[114]. In the first scenario,

σ2
e = 0.045 (4.5%) was introduced to the system when M=128 and M=64. Then σ2

e was decreased

to 0.0128 (1.28%) and 0.0018 (0.18%) for the second and the third scenario respectively.

The EVM performance for the three different scenarios is shown in Figure 5.13 for an

increasing number of users, where the SNR value is maintained at 30dB. Based on the 3GPP LTE

standards [94], the required EVM for 64 QAM is 8% [94] so the maximum number of users that

can be served with 64 QAM simultaneously in the 1st scenario is 13 and 9 when M=128 and M=64

respectively. Because of the channel hardening, 4 additional users were served by increasing

M from 64 to 128. In the second scenario, 22 and 16 users can be served simultaneously when

M=128 and M=64 respectively. Since σ2
e was decreased, the interference from the cumulative

error amplification part in (4.5) was decreased as well. This allows the BS to serve more users

in the second scenario which increases the sum rate and the SE. In the third scenario, all users

were served simultaneously when M=128 and M=64. The overall SE can be increased by adding

more users or using a higher MCS when EVM permits. The required EVM to achieve 256 QAM is

3.5% [94].

For a more comprehensive analysis, the EVM was plotted for the three scenarios in Fig-

ure 5.14, where 22 users were served simultaneously with an SNR range between 0 to 50 dB.

In the first scenario, the BS can’t serve all the 22 users simultaneously with 64QAM by simply

increasing the SNR. In the second scenario, all users can be served simultaneously only when

M=128 and SNR ≥ 35 dB. For the third scenario, all users can be served simultaneously when

SNR ≥ 25 dB and SNR ≥ 35 dB for M=128 and M=64 dB respectively. 256 QAM can be achieved

only in the third scenario where SNR ≥ 35 dB.
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Figure 5.15: Average BER performance using ZF with 64 QAM (LOS outdoor environment).

5.2.2 Outdoor Environment

In a LOS outdoor environment with low scatterers, the need for user grouping is even more

substantial as the pairwise orthogonality of the user channel vectors is low compared to an indoor

environment as it was shown in section 3.2.6. The outdoor channel from the trial in section

3.2.6.2 was used in the Ma-MIMO simulator with ZF to illustrate the need for dividing users. Two

different scenarios were considered, where M=100 and K=8. The error in the channel estimation

between the UEs and the BS is modeled as a complex Gaussian distribution ∼ C N
(
0,σ2

e IM
)

where σ2
e = 1% was introduced to the system in both scenarios. In the first scenario, all users were

served simultaneously. While in the second scenario, users were divided to two groups where

each user from the same USRP was assigned into different group to decrease the interference

between the users (the highest spatial correlation between any two users was achieved by serving

two users from the same USRP due to the narrow separation distance between them compared

to other users from different USRPs). Figure 5.15 shows the average BER performance when 64

QAM was used for the both scenarios. The green curves is the average BER performance when

all users were served simultaneously. The average BER is always 50% even by increasing the

SNR value. The blue and the red curves are the average BER for the second scenario, where each

color represents a different group. When the SNR was 20 dB, the average BER for group 1 and 2

was 10%. When theSNR was increased to 35 dB, the average BER becomes zero for both groups.

Dividing users into different groups has established a reliable data transmission without the

need for using a lower MCS order. Therefore finding a proper way for dividing users is necessary

to establish reliable data transmission and choosing the right MCS order.
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5.3 User Grouping Algorithms

The need for user grouping in a single cell Ma-MIMO is illustrated in section 5.2 and experi-

mentally demonstrated in chapter 4 for both UL and DL data transmission. The proposed user

grouping algorithm in this section mitigates the interference from the estimated channel coeffi-

cients between users and also the interference caused by inaccurate CSI. Here, this is uniquely

achieved by extracting the EVM, and three different methodologies are applied to address specific

wireless connectivity objectives. The user grouping algorithm is based on the spatial correlation

between users and the EVM metric. A different number of groups could be assigned for UL

and DL data transmission since they have different CSI accuracies. Three approaches to user

grouping are presented in this chapter to cover different applications’ requirements. In UL,

the EVM threshold (EVM
TH

) value for each MCS order follows the 3GPP requirement in [94].

While in DL, the EVM
TH

are increased based on feedback from the user side. Since the grouping

decision is decided based on the ��EVM at the BS side, the increment in the EVM
TH

for DL covers

the interference caused by the reciprocity calibration error (ex: EVM
TH

can be increased from 8%

based on [94] to 12% based on user’s feedback). The proposed algorithm works according to the

fixed frame structure the Ma-MIMO is already using, which aligns with the concept of adopting

predefined frame structure in LTE.

Definition 5.3.1. ν (A ,k) is the average ��EVM for the total number of users K̃, where:

• A is a group of users.

• k the candidate user to join the group A .

• K̃ is the total number of users in the set (A ∪ {k}).

• ν (A ,k)= 1
K̃

K̃∑
i=1

��EVM
2
i .

Definition 5.3.2. The predicted SE ( ˜̃SE) is the estimated SE for a set of users calculated by using

the highest MCS mode the ��EVM allows. This calculations are under an error free assumption

considering 3/4 rate LDPC [121].

Definition 5.3.3. ψ (A ,k) is the ˜̃SE for a set of users in group A and the candidate user to join

the group (k), where the ��EVM for each user is calculated based on new set of users (A ∪ {k}).

5.3.1 Maximizing Spectral Efficiency

This approach is suitable for cellular networks, where radio resources need to be used more

efficiently. The number of groups is decided based on the ˜̃SE calculations described in Algorithm

2 where only one group is used. U is a set of un-assigned UEs waiting to be assigned into group

A . At first, the two users with the lowest spatial correlation are assigned to A then only one
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user is added to the group at each user assigning step. Based on the EVM requirements, the

highest MCS mode is used to calculate the ˜̃SE at each user assigning step. The maximum ˜̃SE

for different sets of users is saved in the vector ˜̃se where each index of the vector is equal to the

total number of users in the equivalent set of users. ��evm is a vector of the lowest average ��EVM

for different sets of users where each index of the vector is equal to the total number of users

in the equivalent set. After obtaining the required information from Algorithm 2, the UEs are

assigned to different groups based on Algorithm 3. If the maximum ˜̃SE is achieved by serving

all users, then only one group is required. Otherwise, the number of groups is obtained from

dividing the total number of users by the number of users which maximized the ˜̃SE. The number

of groups is rounded up to the next integer number. G is the group vector where the index of the

vector represents the group number and each group contains a set of users. Users are assigned

into one of the groups Gn where n ∈ {1, ..., total number of groups}. Users with the highest spatial

correlation are first assigned into different groups. Then the rest of the users are assigned to the

group based on maximizing the ˜̃SE and minimizing the average ��EVM. As the number of groups

is a result of rounding-up, some users might be assigned into more than one group. Users will

stop being assigned into a groups when the ˜̃SE of that group starts decreasing.

5.3.2 Maximizing Number of Simultaneous Users

This approach is more suitable for IoT applications, since it maximizes the number of users

and does not require a high throughput value. Here, only QPSK is considered. Initially, only

one group is required, with more groups created later as necessary. The number of groups is

decided based on the ��EVM calculations described in Algorithm 4 where only one group is used.

The users are assigned in the order in which the lowest average ��EVM is achieved and saved

in the ��evm vector at each user assigning step. In this approach, the number of groups and the

users’ assigning process is described in Algorithm 5, where the EVM
TH

is equal to the EVM

requirements for QPSK (EVM
QPSK

). If ��evmK is less than the EVM
QPSK

, then only one group is

required. Otherwise, number of groups is obtained from dividing the total number of users by

the index number of the highest element’s value in the vector ��evm, while taking into account

the QPSK EVM requirements. This allows us to serve the largest possible number of users in

the same group without exceeding the EVM requirements of the targeted MCS. The number of

groups is rounded up to the next integer number. Users with the highest spatial correlation are

first assigned into different groups. Then the rest of the users are assigned to the group based on

minimizing the average ��EVM. If all the users’ ��EVM values are less than the EVM value required

for QPSK MCS, then the number of groups won’t change. Otherwise, an additional group is

created as described in Algorithm 5. As the number of groups is a result of rounding-up, some

users might be assigned into more than one group. Users will stop being assigned into a group if

the ��EVM of any user in that group becomes greater than the EVM
QPSK

. BPSK can also be used
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Algorithm 2: to Perform ˜̃SE Calculations for the Maximizing Spectral Efficiency
Algorithm

1 set U = {1, ...,K},A = {},G =
∣∣∣ĤH

ulĤul

∣∣∣
2 Find the lowest correlation value: g i, j

3 ˜̃se1 =ψ (A ,U i) , then A =A ∪ {U i}.

4 ˜̃se2 =ψ
(
A ,U j

)
, then A =A ∪ {U j}.

5 Remove U i&U jfrom U

6 for l = 3 : K do
7 set r = 0,T = {1, ...,K − l+1}.

8 for k = l : K do
9 r = r+1.

10 ˜̃setmp
r =ψ (A ,Ur)

11 ��evmtmp
r = ν (A ,Ur)

12 UEr =Ur

13 end
14 p ← argmaxp∈T

˜̃setmp
p

15 s ← argmins∈Tp
��evmtmp

s

16 if p is one element then
17 ˜̃sel = ˜̃setmp

p .

18 A =A ∪ {UEp}
19 Remove Up from U

20 else
21 ˜̃sel = ˜̃setmp

s .
22 A =A ∪ {UEs}
23 Remove Us from U

24 end
25 clear ˜̃setmp, ��evmtmp.
26 end
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Algorithm 3: User Grouping for Maximizing SE

1 U = {1, ...,K},G = {},G =
∣∣∣ĤH

ulĤul

∣∣∣.
2 v ← argmaxv∈U

˜̃sev

3 if v = K then
4 Exit Algorithm
5 end
6 N = dK /ve, set T = {1, ..., N}

7 %Assigning one user for each group
8 for n = 1 : dN/2e do
9 Find the highest correlation value: g i, j

10 if n = dN/2e 6= N/2 then

11 l ← argminl∈{i, j}
ââEV Ml

12 G(n×2)−1 =G(n×2)−1 ∪ {U l }

13 Remove U l from U

14 else
15 G(n×2)−1 =G(n×2)−1 ∪ {U i}

16 G(n×2) =G(n×2) ∪ {U j}

17 g i, j = 0, Remove U i&U j from U

18 end
19 end

20 %Assigning the remaining users to one of the groups
21 for k = 1 : (K −N) do
22 l ← argmax

l∈T
ψ

(
Gl ,Uk

)
23 p ← argmin

p∈Tl
ν

(
Gp ,Uk

)
24 if l is one element then
25 Gl =Gl ∪ {Uk}
26 else
27 Gp =Gp ∪ {Uk}
28 end
29 Remove Uk from U

30 end

31 Assigning some users to more than one group in order to maximise the capacity of each
group.
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instead of QPSK based on the application requirements.

Algorithm 4: to Perform ��EVM Calculations for the Maximizing Number of Simulta-
neous Users and the Link Quality Algorithms.

1 set U = {1, ...,K},A = {},G =
∣∣∣ĤH

ulĤul

∣∣∣
2 Find the lowest correlation value: g i, j

3 ��evm1 = ν (A ,U i) , then A =A ∪ {U i}.
4 ��evm2 = ν

(
A ,U j

)
, then A =A ∪ {U j}.

5 Remove U i&U jfrom U

6 for l = 3 : K do
7 set r = 0,T = {1, ...,K − l+1}.

8 for k = l : K do
9 r = r+1.

10 ��evmtmp
r = ν (A ,Ur)

11 UEr =Ur

12 end
13 s ← argmins∈T

��evmtmp
s

14 ��evml = ��evmtmp
s .

15 A =A ∪ {UEs}
16 Remove Us from U

17 clear ��evmtmp.
18 end

5.3.3 Link Quality

This approach is suitable for applications that require maintaining the throughputs per user

above a certain threshold or maintaining bit error rates below a predetermined threshold. As an

example, consider wireless cameras at a major sporting or cultural event, where each camera

requires minimum throughput value to support Ultra-High-Definition (UHD) quality for the

video stream.

Similar to the Maximizing Number of Simultaneous Users approach, this commences with

only one group and more groups can be created later if necessary. The number of groups is

decided based on the ��EVM calculations described in Algorithm 4 and the user assigning process

is described in Algorithm 5. Unlike the previous approach, the EVM
TH

is pre-determined based

on increasing the minimum achievable throughput per user. In this approach the EVM
TH

value

doesn’t have to comply with the 3GPP EVM requirements.
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Algorithm 5: User Grouping for the Maximizing number of Simultaneous Users &
the Link Quality Algorithms.

1 U = {1, ...,K},G = {},G =
∣∣∣ĤH

ulĤul

∣∣∣.
2 v ← argmaxv∈U

��evmv, subject to
(��evmv <EVM

TH
)

3 if v = K then
4 Exit Algorithm
5 end
6 N = dK /ve, set T = {1, ..., N}

7 %Assigning one user for each group
8 for n = 1 : dN/2e do
9 Find the highest correlation value: g i, j

10 if (n = dN/2e)&(n odd number) then

11 l ← argminl∈{i, j}
ââEV Ml

12 GN =G ∪ {U l }

13 Remove U l from U

14 else
15 G(n×2)−1 =G(n×2)−1 ∪ {U i}

16 G(n×2) =G(n×2) ∪ {U j}

17 g i, j = 0, Remove U i&U j from U

18 end
19 end

20 %Assigning the remaining users to one of the groups
21 for k = 1 : (K −N) do
22 p ← argmin

p∈T
ν

(
Gp ,Uk

)
23 Gp1

=Gp1
∪ {Uk} . if p is not one element, select p1

24 Remove Uk from U

25 end

26 %Checking the EVM requirements for all users

27 if any ââEV M > EV Mreq then
28 N = N +1,U = {1, ...,K},G = {},G =

∣∣∣ĤH
ulĤul

∣∣∣
29 Go to 7
30 end

31 Assigning some users to more than one group until the ââEV M for any user become
greater than EV Mreq .
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5.4 Results from Massive MIMO Simulator

In this section, the error in the reciprocity calibration matrix and the error in the channel

estimation between the UEs and the BS are modelled in the Ma-MIMO simulator as a complex

Gaussian distribution [130] [114] with an error variance of 0.02 (2%) and 0.01 (1%) used for each

of them respectively. Whilst this value may be higher or lower and the model may not be so

accurate in reality, it serves to illustrate the potential effects of CSI inaccuracies in Ma-MIMO.

3/4 rate LDPC code was used in the simulator. The same frame schedule used in section 4.7 was

used here.

For the "link quality" approach, the EVM
TH

value was selected to be below 3.5% to enable

reliable data transmission with a minimum throughput of 80 Mbits/s for each user by using

256-QAM. For comparison purposes, two additional methods are considered. In the first method,

two groups are created and users are assigned in an order where the minimum sum correlation

is applied to minimize the IUI damage with each new user joining the group. In this section, this

method is called "spatial correlation" where the assigning process relies only on the spatial corre-

lation between the users. In the second method, the user grouping algorithm is deactivated and

all users are served simultaneously using the highest MCS order the EVM value permits. These

two additional methods cover the total number of groups created after using the "maximizing

SE" approach as shown later in section 5.4.2 allowing us a fair SE comparison.

5.4.1 Channel Conditions

The proposed user grouping algorithms are applied using the Ma-MIMO simulator with the

following channel conditions:

• IID channels: Four different scenarios were considered using IID channels, where M=128

and M=64 were used in the 1st and the 2nd scenarios respectively, while K=22 in both

scenarios. These scenarios are similar to the ones used in the LOS measured indoor

channels. In the 3rd and 4th scenarios, K was increased to 40 users, where M=128 and

M=64 respectively.

• LOS measured indoor channels: The real channels captured from the trial described in

section 4.1 were used. Two scenarios were considered in the Ma-MIMO simulator using

these channels where M=128 and M=64 for each scenario respectively, while K=22 in both

scenarios.

• LOS measured outdoor channels: Real channels captured from the trial described in section

3.2.6.2 were used. Two scenarios were considered in the Ma-MIMO simulator using the

channels captured from this trial where M=100 and M=64 for each scenario respectively,

while K=8 in both scenarios.
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5.4.2 Results

Table 5.1 shows the number of groups, the maximum EVM values and the SE which resulted from

each of the three proposed user grouping approaches using the 1st scenario of the IID channels. It

also shows the results when the spatial correlation method was used and when the user grouping

algorithms were disabled. For maximizing the UL SE, 2 groups were used in 1st scenario. Each

group served 19 users with 256-QAM and the correspondent UL SE was 83.9 bits/s/Hz, where

some users were assigned to both groups. If any additional user was assigned to any of the groups,

64-QAM would have been used and the UL SE would have decreased to 72.86 bits/s/Hz (since the

EVM value becomes greater than 3.5%, which is the EVM threshold for using 256-QAM [94]). For

maximizing the DL SE, 1 group only was used achieving 72.86 bits/s/Hz by using 64-QAM. When

the "link quality" approach was used, the results was similar to the maximizing SE approach on

UL data transmission. While in the DL data transmission, 8 groups were needed to maintain the

EVM value below 3.5% and the throughput above 80 Mbits/s for each user providing the required

data transmission quality. By using the "maximizing number of simultaneous users" approach,

all users were served within one group in the UL and the DL data transmission, where 64-QAM

was used. When the "spatial correlation" method was used, users were assigned to the groups

based only on the spatial correlation. After the first data transmission interval, the highest

MCS order were used based on the measured EVM values. By using the proposed "maximizing

SE" approach, the UL SE was increased by 35.33 bits/s/Hz and 11.04 bits/s/Hz compared to the

"spatial correlation" and "deactivating user grouping" methods respectively. While the DL SE

was increased by 36.43 bits/s/Hz compared to the "spatial correlation" method. The ��EVM value

allow the system to find the number of groups and the number of users in each group needed to

establish the required data transmission.

Table 5.1: User grouping parameters: results for M=128 and K=22 (1stscenario: IID Rayleigh
Channels.)

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 3.4 6.2 2 1 83.9 72.86
Link quality 3.4 3.4 2 8 83.9 13.24
Maximizing number 4.2 6.2 1 1 72.86 72.86

of simultaneous users
Spatial Correlation 2.2 6.1 2 2 48.57 36.43
Deactivate user grouping 4.2 6.2 1 1 72.86 72.86

When K was increased to 40 and M was decreased to 64, the proposed algorithms created

different number of groups based on the desired goal as it is shown in Table 5.4. By using the

"maximizing SE" approach, the UL SE was increased by 33.12 bits/s/Hz and 11.04 bits/s/Hz

compared to the "spatial correlation" and "deactivating user grouping" methods respectively.
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Table 5.2: User grouping parameters: results for M=64 and K=22 (2ndscenario: IID Rayleigh
Channels.)

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 6.5 7.9 1 2 72.86 49.68
Link quality 3.4 3.1 4 11 30.91 8.83
Maximizing number 6.5 11.2 1 1 72.86 48.57

of simultaneous users
Spatial Correlation 5.1 7.6 2 2 36.43 36.43
Deactivate user grouping 6.5 11.2 1 1 72.86 48.57

Table 5.3: User grouping parameters: results for M=128 and K=40 (3rdscenario: IID Rayleigh
Channels.)

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 6.2 7.7 1 2 132.48 96.05
Link quality 3.3 3.8 3 14 83.9 13.24
Maximizing number 6.9 10.9 1 1 132.48 88.32

of simultaneous users
Spatial Correlation 4.9 7.9 2 2 66.24 66.24
Deactivate user grouping 6.2 10.9 1 1 132.48 88.32

Table 5.4: User grouping parameters: results for M=64 and K=40 (4thscenario: IID Rayleigh
Channels.)

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 7.6 10.8 2 2 99.36 61.82
Link quality 3.3 3.2 7 20 26.49 8.83
Maximizing number 11.8 16.5 1 2 88.32 75.07

of simultaneous users
Spatial Correlation 6.8 11.2 2 2 66.24 44.61
Deactivate user grouping 11.8 23 1 1 88.32 0

While the DL SE was increased by 17.21 bits/s/Hz compared to the "spatial correlation" method.

When disabling the user grouping algorithms, zero throughput in DL data transmission was

achieved due to the very large EVM value. When the LOS measured indoor channels were used,

the spatial correlation between users was increased. Table 5.5 and Table 5.6 show the number of

groups, the maximum EVM values and the SE which resulted from each user grouping approach.

When using the LOS measured outdoor channels, the spatial correlation between users was
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increased even further. Table 5.7 and Table5.8 show the number of groups, the maximum EVM

values and the SE which resulted from each user grouping approach. The proposed user grouping

algorithms consider the interference caused by the high spatial correlation and the impact of

high spatial correlation on inaccurate CSI. The maximum SE was always achieved by using the

"Maximizing SE" algorithm. The "link quality" approach maintained the EVM value below

Table 5.5: User grouping parameters: results for M=128 and K=22 (1stscenario: LOS Measured
indoor Channels).

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 6.5 7.9 1 2 72.86 62.93
Link quality 3.3 3.4 3 8 39.744 13.24
Maximizing number 7 10.2 1 1 72.86 48.57

of simultaneous users
Spatial Correlation 4.9 7 2 2 36.42 36.42
Deactivate user grouping 6.5 10.2 1 1 72.86 48.57

Table 5.6: User grouping parameters: results for M=64 and K=22 (2ndscenario: LOS Measured
indoor Channels).

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 7.9 10.6 2 2 62.93 39.74
Link quality 3.4 3.6 5 11 22.08 8.83
Maximizing number 10.3 17 1 1 48.57 24.28

of simultaneous users
Spatial Correlation 7.5 10.4 2 2 36.42 24.28
Deactivate user grouping 10.3 17 1 1 48.57 24.28

Table 5.7: User grouping parameters: results for M=100 and K=8 (1stscenario: LOS Measured
outdoor Channels).

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 7.1 8.2 1 2 26.49 23.18
Link quality 2.8 3 4 4 8.83 8.83
Maximizing number 7.1 9.8 1 1 26.49 17.66

of simultaneous users
Spatial Correlation 3.3 5.9 2 2 17.66 13.24
Deactivate user grouping 7.1 9.8 1 1 26.49 17.66
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Table 5.8: User grouping parameters: results for M=64 and K=8 (2ndscenario: LOS Measured
outdoor Channels).

Max Number of SE
EVM% Groups (b/s/Hz)

UL DL UL DL UL DL

Maximizing SE 7.9 7.7 1 2 26.49 19.87
Link quality 3.1 3.4 4 4 8.83 8.83
Maximizing number 7.9 11 1 1 26.49 17.66

of simultaneous users
Spatial Correlation 5 7 2 2 13.24 13.24
Deactivate user grouping 7.9 11 1 1 26.49 17.66

3.5% providing a minimum throughput of 80 Mbits/s for each user by using 256-QAM. While the

"maximizing number of simultaneous users" algorithm managed to serve the maximum number

of users simultaneously using the same radio resources.

5.5 Experimental Campaigns & User Grouping

The experimental evaluation was a part of the UK 5G Test-beds and trials program [122]. Funded

by the UK Government’s DCMS, this event was the world’s first urban 5G showcase1. In all the

considered scenarios, UL power control was used to adjust the UL transmit power so the received

SNR from all users was the same.

5.5.1 Trial Environment

The 5G showcase took place at Millennium Square in Bristol. The balcony of ‘We The Curious’

building was used to deploy the BS to serve 12 user clients placed 37.5m away down in the

square. The Ma-MIMO system operated at a 3.51 GHz carrier frequency sharing a common

20MHz radio channel. The patch panel antenna array was setup in a 4x32 configuration with

vertical polarisations for all 128 antennas. User clients’ antennas were in LOS and were mounted

outside along the top edge of the marquee in a straight line with 432mm spacing as shown in

Figure 5.16.

5.5.2 Frame Schedule

The PHY frame schedule used for the system is shown in Figure 5.17. In the experimental

campaigns, the frame schedule was configured to use one UL pilot, five UL data and one guard

on the first half subframe followed by DL pilot, five DL data and one guard on the second half

subframe. The first half OFDM subframe is for synchronization to achieve sample alignment.

1A video about the world’s first urban 5G showcase is available at https://www.youtube.com/watch?v=7Qzv_TtyKMU
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Figure 5.16: Outdoor trial environment with the 12 UEs 36.5m away.

5.5.3 Real-time Results

During the 5G showcase, a total of 24 HD videos were streamed in real-time in both UL and

DL. In order to establish reliable live HD video streams, the proposed user grouping algorithm

in this article was used. The "link quality" approach was selected to maintain the EVM value

below 13%. This EVM threshold with QPSK MCS was sufficient to deliver the required real-

time uncoded throughputs for each user with tolerable error level. The performance of the two

other user grouping approaches were evaluated as well. Table 5.9 shows the number of groups,

the maximum EVM values and the MCS which resulted from each of the three user grouping

approaches. It also shows the MCS and the maximum EVM values when the user grouping

algorithms were disabled.

For maximizing the SE, 4 and 6 groups were used for UL and DL scenarios respectively. The

correspondent SE was 12.3 bits/s/Hz as it is shown in Table 5.10. When the "link quality" approach

was used, the SE was decreased by 2.9 bits/s/Hz. This is because the aim of this approach is to

maintain the EVM value below 13% to provide reliable uncoded video streams using QPSK, which

was successfully established in the field. By using the "maximizing number of simultaneous

users" approach, all users were served within one group in the UL data transmission and within 3

groups in the DL data transmission. Although more users were served with QPSK using the same

radio resources, the uncoded throughput was decreased compared to the "link quality" approach.

Since the Ma-MIMO testbed was not using any error correcting code, the errors corresponded to

the high EVM values decreased the uncoded throughput. The lowest uncoded throughput was

achieved by disabling the proposed user grouping algorithm. This led into zero throughput in DL

data transmission due to the very large EVM value.

111



CHAPTER 5. ADAPTIVE USER GROUPING BASED ON EVM PREDICTION FOR EFFICIENT
AND ROBUST MASSIVE MIMO IN TDD

PS
S

GU
AR

D

U
L 

PI
LO

T

U
L 

DA
TA

UL
 D

AT
A

U
L 

DA
TA

GU
AR

D

0.5ms Slot

Control Slot

U
L

PI
LO

T

UL DA
TA

DL
 P

IL
O

T

DL
 D

AT
A

DL
 D

AT
A

DL
 D

AT
A

DL
 D

AT
A

DL
 D

AT
A

 G
U

AR
D

10ms Frame (140 OFDM Symbols)

1ms Subframe

U
L 

PI
LO

T

U
L 

DA
TA

UL
 D

AT
A

U
L 

DA
TA

UL
 D

AT
A

U
L 

DA
TA

UL
 D

AT
A

GU
AR

D

First Half Subframe Second Half Subframe

Figure 5.17: Frame Schedule.

Table 5.9: User grouping parameters results.

Max Number of MCS
(
2b)

EVM% Groups b =
UL DL UL DL UL DL

Maximizing SE 6 8 4 6 6 4
Link quality 12 12 2 4 2 2
Maximizing number 16 16 1 3 2 2

of simultaneous users
Deactivate user grouping 16 35 1 1 2 2

Table 5.10: Trial throughputs and spectral efficiency results using user grouping algorithms.

Uncoded UL Uncoded DL SE
throughput throughput

(Mbps) (Mbps) (b/s/Hz)
Maximizing SE 182 64 12.3
Link quality 135.3 53.2 9.4
Maximizing number 84 58.6 7.1

of simultaneous users
Deactivate user grouping 84 0 4.2

By comparing the results obtained in this outdoor LOS real-time trial to the one in section
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Figure 5.18: User-side Gramian intensity plots. Left, indoor trial with 22 UEs. Right, outdoor
trial with 12 UEs.

4.1, performance degradation can be observed. The maximum uncoded throughput and the

maximum SE were decreased by 1.664 Gbps and 133.3 bits/s/Hz respectively. Two main reasons

are behind this performance degradation. First, the rich multipath scattering in an indoor

environment creates a greater level of pairwise orthogonality between the user channel vectors

and thus increases the achievable capacity. While in an outdoor environment where the LOS

is the dominant signal, lower pairwise orthogonality is achieved between the user channel

vectors. This can be seen in Figure 5.18, where the user-side Gramian matrix for the LOS indoor

environment in [31] is on the left and the LOS outdoor environment from the 5G showcase is on

the right. The high spatial correlation level between users in the outdoor environment increases

the interference between users. This will either decrease the number of users that are using

the same radio resources or the MCS order. The second main reason behind the performance

degradation is the accuracy of the CSI. The distance between the users and the BS in the indoor

environment trial was 24.8m. While in the outdoor trial the distance was increased by 11.7m. The

maximum mean power level used in both trials for UL transmission was -16 dBm. By increasing

the distance between the users and the BS, the CSI accuracy was decreased because of the noise

floor effect on the pilots during the channel estimation process. This increased the interference

level between users which decreased the uncoded throughput and SE.

5.6 Summary

In this chapter, adaptive user grouping algorithms for a single cell were proposed to enhance

Ma-MIMO performance for different service types. Three different approaches were introduced for

assigning users into different groups to establish the data transmission requirements for different
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applications such as cellular networks, IoT and wireless cameras. The proposed algorithms are

based on the novel EVM prediction method proposed in this chapter jointly relying on the channel

correlation between users and the EVM performance which are the key elements behind ensuring

reliable data transmission and increasing the system throughput. The channel correlation

provides the interference level before equalizing the signal assuming perfect CSI. While the EVM

performance considers the interference from the channel and the interference caused by the

inaccurate CSI after equalizing the signal.

An experimental evaluation indicating the performance of the three approaches for the

adaptive user grouping algorithm in a real-world deployment has been presented. At first, all

users were assigned in one group during UL and DL data transmission. By using the "maximizing

SE" approach, the system throughput had significantly increased. When the "maximizing number

of simultaneous user" approach was used, more users were served using the same radio resources.

Furthermore, a total of 24 reliable UL and DL video streams were successfully established by

using the "link quality" approach.
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CONCLUSIONS AND RECOMMENDATIONS

This thesis has covered the journey of evaluating the practicality of using Ma-MIMO in

real-world scenarios, identifying solutions to the operational deployments uncovered,

designing, testing and optimising novel algorithms and methodologies. This research

thus has contributed to the application of Ma-MIMO to both enhance spectrum efficiency for sub-

6GHz carriers and enabling more reliable data connectivity using this technology. In Chapter 3,

the University of Bristol Ma-MIMO testbed is introduced and real-time results from several

experimental and measurement campaigns are presented. Improving the world’s first real-time

128-antenna Ma-MIMO testbed was made based on the results from these experimental and

measurement campaigns. Here, channel hardening was investigated in several environments

and a simple UL closed loop PC was introduced as developed by the author. Further, OTA

synchronisation between user clients was enhanced by using a single antenna to broadcast

the PSS in Ma-MIMO instead of using all antennas with a random static pattern. Chapter 4

then evaluated the impact of spatially multiplexing an increasing number of users within a

single-cell Ma-MIMO system. The trial and deployment of Ma-MIMO offering a record breaking

spectrum efficiency of 145.6 bits/s/Hz was presented and the limiting factors when attempting to

increase spectrum efficiency value in that trial were illustrated. It was shown and illustrated that

for realistic performance the sum spectrum efficiency should be calculated based on the EVM

performance instead of using Shannon capacity calculations. Lastly, Chapter 5 introduced a novel

user grouping algorithms for a single cell Ma-MIMO to further enhance the Ma-MIMO advantages

for different applications. For the first time, the methodology addresses the interference caused

by correlation in the user as well as hardware impairments. Specifically, the author has uniquely

achieved by extracting the EVM, and three different methodologies are applied to address specific

wireless connectivity quality of service objectives. The user grouping algorithms were validated
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experimentally with real-time results in the world’s first urban 5G showcase in Bristol (March

2018).

Derived from the real-time evaluation and the findings through this thesis, the following are

the recommendations to researchers and engineers who are addressing Ma-MIMO deployment

and further advancing the use of this technology to fully exploit the spatial domain.

• Recommendation 1: Exploiting the channel hardening in Ma-MIMO for designing power

control algorithms

The channel hardening phenomenon in Ma-MIMO was demonstrated in chapter 3. It was

shown in section 3.2.6.2 that fewer power control adjustments are needed when the number

of antennas at the BS is increased. This decreases the required overheads from the BS used

in open loop power control and the feedback from users used in closed loop power control.

The highly improved channel is recommended to be exploited to lower the complexity of

the power control algorithms in Ma-MIMO. This recommendation can be compared with

the reduction in power control update rates in wide band code-division multiple access

(WCDMA) when compared to narrow band CDMA. .

• Recommendation 2: With a practical number of antennas and linear equalizers at the BS,

ZF or MMSE should be used in Ma-MIMO

It was shown in chapter 4 that MF has low sensitivity to inaccurate CSI, but the interference

level between users due to the spatial correlation is very high with practical number of

antennas at the BS. So the idea of using MF is not applicable in real-world deployment.

As shown in section 4.3, ZF and MMSE suppress the interference caused by the channels

between users, but they have high sensitivity to the CSI accuracy. However, the overall

interference in ZF and MMSE is significantly lower than that of MF. Considering that and

the real-time obtained results from several trials in chapter 3 and chapter 4, ZF and MMSE

are recommended to be used in real-world Ma-MIMO deployments.

• Recommendation 4: Use a single antenna to enhance coverage of OTA sync signal

The PSS is repeatedly transmitted in the first OFDM symbol of the physical layer frame

each 10 ms. It was shown in chapter 4 that by transmitting the PSS using a random static

pattern from all antennas, the phase of the sync signal is generated randomly from each

antenna at the BS creating nulls in different locations since the sync signal is not precoded.

This has caused sync losses for the users based on their locations and the sync signal phases

from the antennas at the BS. To overcome this problem, it is recommended to transmit the

PSS signal from a single antenna as shown in section 3.3 and Appendix D. The power level

during the sync OFDM symbol duration should be increased to compensate the loss of the

antenna array gain, caused by using a single antenna. Sector antennas can be used for
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transmitting the PSS signal, but they should be pointed at different locations as shown in

Appendix D.

• Recommendation 5: EVM performance should be used to evaluate algorithms and tech-

niques in Ma-MIMO simulators

It was shown in chapter 4 that the maximum SE based on Shannon capacity calculations

was achieved by increasing the number of simultaneous users. The current technology can’t

reach this theoretical results. For realistic performance, the EVM performance method

proposed in section 4.5.3 is recommended to be used. Unlike Shannon capacity calculations,

it was shown in section 4.5.3 and experimentally validated in section 4.7 that the maximum

sum SE could be achieved by decreasing the number of simultaneous users.

• Recommendation 6: Optimisation of the number of antennas at the BS in Ma-MIMO

mainly relies on the equalizer, hardware quality, reciprocity calibration technique and the

propagation environment

One of the common questions about Ma-MIMO technology is “how many antennas are

needed at the BS?”. It was shown in chapter 4 that several factors impact the performance of

Ma-MIMO. The first main factor is the channel propagation between the BS and the users.

User-side Gramian matrices for a LOS indoor environment and a LOS outdoor environment

can be seen in section 3.2.3.2 and 5.5.3. Although the distance between users’ antennas in

the indoor environment is smaller than the outdoor environment, the spatial correlation

between users in the indoor environment is lower than the outdoor environment due to the

rich scattering environment. The second main factor is the equalizer used in the Ma-MIMO

system. It was shown in chapter 4 that ZF and MMSE equalizers outperform MF with

practical number of antennas at the BS. However, the performance might be improved if

non-linear equalizers are used to mitigate the interference between users. Therefore, lower

number of antennas might be needed to establish the same performance. The third main

factor is the hardware quality. It was shown in section 4.6 that the CSI accuracy from high

hardware quality with low number of antennas could be better than reducing the hardware

quality and increasing the number of antennas. The fourth main factor is the reciprocity

calibration technique. This only impacts the DL performance as shown in section 4.4. By

increasing number of antennas, the impact of the calibration error is reduced. However,

lower number of antennas can be used to achieve the same performance by decreasing the

calibration error.

Ma-MIMO simulators based on the four aforementioned factors can be used to decide

number of antennas at the BS in order to achieve the required performance.

• Recommendation 7: Estimating the SINR value based on the EVM performance
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The CSI accuracy highly impacts the performance in Ma-MIMO as shown in chapter 4.

Many algorithms rely on the SINR value as an indicator of the system’s performance. In

the theoretical work, the interference caused by inaccurate CSI can be covered in the SINR

calculations. However, this can’t be done in a real-system as shown in section 5.1.1. In

section 5.1, a practical SINR estimation method with high accuracy was presented based on

the EVM performance. This method is recommended to cover all the interference sources.

• Recommendation 8: A novel EVM prediction method for a single-cell Ma-MIMO

As shown in section 5.1, the EVM performance covers all the interference sources. However,

the EVM value can be obtained after receiving the signals and multiplying them with the

equalizer complex coefficients in UL scenario. So if a group of 24 users are transmitting

data, the EVM values can be obtained for these 24 users. If the EVM values are needed

to be calculated for a subset users taken from this group, only the subset users have to

transmit signals in order to calculate the EVM values. So relying on the EVM performance

would increase the complexity and the delay of any scheduling algorithm. However the

novel EVM prediction method introduced in section 5.1.2 overcomes this problem. This

method is recommended in a single cell Ma-MIMO with ZF and MMSE to predict the EVM

value with high accuracy for a subset of users taken from the original set of simultaneous

users without the need of re-transmit signals.

• Recommendation 9: The need for user grouping algorithm to mitigate the impact of

inter-user interference in a single-cell Ma-MIMO

The impact of multiplexing more simultaneous users in Ma-MIMO was illustrated in

chapter 4. The spatial correlation between users and the CSI accuracy play major role

in increasing number of simultaneous users. The need for user grouping algorithms was

illustrated in section 5.2. To improve the performance of Ma-MIMO, the spatial correlation

between user and the interference caused by inaccurate CSI should be considered when

user grouping algorithm is designed.

• Recommendation 10: Novel adaptive user grouping algorithms for a single-cell Ma-MIMO

to further enhance the SE gain and the link reliability

In chapter 5, novel adaptive user grouping algorithms for a single-cell Ma-MIMO were

introduced. For the first time, the methodology addresses the interference caused by the

user channel vectors as well as hardware impairments. Here, this is uniquely achieved

by extracting the EVM, and three different methodologies are applied to address specific

wireless connectivity objectives. The first, maximizes the spectral efficiency which is more

desirable for cellular networks as shown in section 5.3.1. The second, maximizes the number

of users for low data rate bearers, which is suitable for the IoT as shown in section 5.3.2.
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Whilst, the third approach focuses on specific quality per user, for applications such as

wireless cameras at major cultural or sporting events as shown in section 5.3.3.

The aforementioned user grouping algorithms have improved the Ma-MIMO performance

as shown from simulations and real-time evaluations in section 5.4.2 and section 5.5,

respectively. Therefore, these algorithms are recommended to be used in Ma-MIMO to

further enhance the SE gain and the link reliability.

The future work should consider the above recommendations. Considering a multi-cell sce-

nario and exploring the required update rate for channel estimation, TPC commands, EVM

prediction and user grouping are important and interesting areas. In addition to the work covered

in this thesis, the following suggestions are recommended as future work for its possibility to

improve the Ma-MIMO performance:

• Real-time Evaluation for Distributed Ma-MIMO

The improved channel robustness in Ma-MIMO has enabled this technology to be a key

element in 5G deployment. With practical number of antennas at the BS, the spatial

correlation between users in a LOS outdoor environment is large compared to the indoor

environment. This would effect the system’s performance and the ability to serve larger

number of simultaneous users. A theoretical promising solution is to allocate the BS

antennas in different places to decrease the spatial correlation between users and mitigate

shadowing (blockages), which is known as distributed Ma-MIMO [131]. However, real-time

evaluation is required for this method. Several challenges should be handled and tested in

field trials such as OTA synchronisation and reciprocity calibration. Besides, a comparison

between Ma-MIMO and distributed Ma-MIMO is required since the second approach comes

with high deployment cost so that a little performance improvement won’t be enough to

adopt this method.

• Detecting Jamming Users: Based on the SINR and the EVM Performances

The user who is jamming the network by intentionally introducing inaccurate CSI could

be detected based on the SINR and EVM performance. The difference between the EVM

performance and the channel correlation between users could be exploited to detect the

jamming user . The relations between the SINR value and the EVM performance introduced

in chapter 5 can be used as an indicator. An interesting area is to find the maximum

acceptable threshold for the difference between the EVM value and the estimated SINR

(based on perfect CSI) before removing the user from the system.

• An External Agent for Managing Radio Resources in sub-6 GHz wireless systems

It was shown in chapter 5 that user grouping improves the Ma-MIMO performance. How-

ever, this improvement might not be enough to meet the 5G requirements in a crowded area.
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

By serving large number of users, different time slots or frequencies are used to allocate

users into different groups. With high spatial correlation between users, larger number of

groups might be needed. This could led to a compromise between increasing the latency

or decreasing the data rate. Since the 5G technology will keep relying on the existing

wireless technology such as LTE, it could be useful to manage the radio resources between

all of them. An external agent between the different wireless access point could enhance

the wireless performance. For example, if some users have a very high spatial correlation

in Ma-MIMO, some of them could be re-assigned to an LTE access point. This is a very

interesting area for future work which is highly recommended to meet the 5G requirements

in a major cultural or sporting events and an area within the EPSRC TOUCAN Programme

Grant.
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MASSIVE MIMO TESTBED’S SPECIFICATIONS

The University of Bristol massive MIMO testbed was designed and implemented based

on the commercial off-the-shelf equipments from National Instruments. Table A.1 shows

the main hardware components used to build the Ma-MIMO testbed.

Table A.1: Hardware components for the University of Bristol massive MIMO testbed

121





A
P

P
E

N
D

I
X

B
NUMBER OF ANTENNAS AT THE BS AND CSI ACCURACY FOR

MAXIMISING SE

The work in this section extends the results in section 4.6 for maximizing the SE based

on the practical evaluation method introduced in section 4.5.3. It also covers the impact

of reciprocity calibration error in DL data transmission introduced in section 4.4. The

system model in section 4.2 is adopted for this work. ZF and MMSE decoders/precoders were used

in the Ma-MIMO simulator mentioned earlier with rate 3/4 LDPC code as described in [121]. For

the DL data transmission, σ2
eul

= 1% was used for the error variance in the UL channel estimation

between the UE and the BS. IID Rayleigh channels are used for the results in Figure B.1

Figure B.2, Figure B.3 and Figure B.4. The results in Figure B.1 show the maximum sum SE

when the total available number of users is 22. The correspondent number of bits used in the

MCS order for maximizing the sum SE can be seen in Figure B.2. When σ2
edl

= 0%, the maximum

sum SE for UL and DL scenarios are the same. For UL and DL scenarios, maximizing the sum

SE was less sensitive to inaccurate CSI when the number of antennas at the BS was increased

from 64 to 128. The results in Figure B.3 show the maximum sum SE when the total number of

users is 40. The correspondent number of bits used in the MCS order for maximizing the sum SE

can be seen in Figure B.4. With perfect CSI and M = 128, the maximum sum SE was increased

by 80 bits/s/Hz and 40 bits/s/Hz for UL and DL scenarios respectively. This is achieved by serving

all the 40 users with 256-QAM in UL and 64-QAM in DL. When the σ2
eul

∈ [0.2%,0.4%], the

maximum sum SE is achieved by serving all the 40 UEs with 64-QAM. By comparing between the

22 available users scenario and the 40 available users scenario, it can be seen that the maximum

sum SE is achieved when more users are available. That’s because the BS has more options to

select users with lower spatial correlation. Besides, using lower MCS order with larger number

of users could achieve higher sum SE than using higher MCS order with lower number of users.
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Figure B.1: Maximizing sum SE for 22 users with ZF and MMSE using IID Rayleigh Channels.
UL scenario on the left and DL scenario on the right.
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Figure B.2: The correspondent number of bits used in the MCS order to maximize sum SE for 22
users with ZF and MMSE using IID Rayleigh Channels. UL scenario on the left and DL scenario
on the right.

The LOS indoor channels captured from the trail in section 4.1 are used for the results in

Figure B.5 and Figure B.6. The maximum sum SE when the total available number of users

is 22 can be seen in Figure B.5. The correspondent number of bits used in the MCS order for

maximizing the sum SE can be seen in Figure B.6. Compared to the results from the IID channels,

the maximum sum SE was decreased due to the higher spatial correlation between users.
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Figure B.3: Maximizing sum SE for 40 users with ZF and MMSE using IID Rayleigh Channels.
UL scenario on the left and DL scenario on the right.
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Figure B.4: The correspondent number of bits used in the MCS order to maximize sum SE for 22
users with ZF and MMSE using IID Rayleigh Channels. UL scenario on the left and DL scenario
on the right.

The LOS outdoor channels captured from the trail in section 3.2.6.2 are used for the results

in Figure B.7 and Figure B.8. The maximum sum SE when the total available number of users

is 8 can be seen in Figure B.7. The correspondent number of bits used in the MCS order for

maximizing the sum SE can be seen in Figure B.8. Compared to the results from the IID channels

and the indoor channels, lower MCS order is used when number of selected user to maximise the

sum SE is 8 or less. This is caused by the high spatial correlation between users due to the low

scattering environment.
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Figure B.5: Maximizing sum SE for 22 users with ZF and MMSE using LOS measured indoor
channel. UL scenario on the left and DL scenario on the right.

0 0.5 1 1.5 2 2.5 3
2
eul

  %

2

3

4

5

6

7

8

9

10

11

12

N
um

be
r 

of
 B

its
 (

b)
  

0

5

10

15

20

K

M=128
M=64

0 0.5 1 1.5 2 2.5 3
2
edl

  %

2

3

4

5

6

7

8

9

10

N
um

be
r 

of
 B

its
 (

b)
  

0

5

10

15

20

K

M=128
M=64

Figure B.6: The correspondent number of bits used in the MCS order to maximize sum SE for 22
users with ZF and MMSE using LOS indoor channel. UL scenario on the left and DL scenario on
the right.

The hardware quality and the reciprocity calibration technique impact the accuracy of the

CSI in Ma-MIMO. Deciding the required number of antennas at the BS in Ma-MIMO is effected

by the hardware quality, the reciprocity calibration technique and the propagation environment.
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Figure B.7: Maximizing sum SE for 8 users with ZF and MMSE using LOS measured outdoor
channel. UL scenario on the left and DL scenario on the right.
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Figure B.8: The correspondent number of bits used in the MCS order to maximize sum SE for
8 users with ZF and MMSE using the LOS outdoor channel. UL scenario on the left and DL
scenario on the right.
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EXPERIMENTAL CAMPAIGN WITH BRITISH TELECOM

Massive MIMO was considered a key candidate for 5G technology the measurement

campaign in this section was conducted. Although Ma-MIMO was covered in many

theoretical researches, mobile operators wanted to understand the realistic benefits,

challenges and requirements for the Ma-MIMO technology. Therefore, a collaboration measure-

ment campaign was conducted by a researchers and engineers from BT, University of Bristol,

Lund University and NI [40]. In addition to exploring the potential of Ma-MIMO technology in

real-time, it was an opportunity to validate some off-line analysis based on data collected from

previous measurement campaigns. The measurement campaign took a place at BT’s R&D head-

quarters in Adastral Park, Ipswich [25]1. An indoor and outdoor environments were covered as

shown in in Figure C.1 and in Figure C.2. The University of Bristol Ma-MIMO testbed operated at

a 3.51 GHz carrier frequency sharing a common 20MHz radio channel. The patch panel antenna

array was setup in a 4x32 configuration with vertical polarisations for all 128 antennas.

For the outdoor environment, real mobile phone handset was evaluated in pedestrian use. It

was also placed inside a car for higher mobility evaluations. Off-line comparisons and analysis

were made based on the data captured from these experiments. For the indoor environment,

two scenarios were considered in a large exhibition hall . In the first scenario, 12 user clients

were placed on the opposite side of the BS as shown in Figure C.1. Twelve video steams were

spatially multiplexed in real-time. In the second scenario, 24 users were divided into two groups,

where each group had 12 users. The users where placed on the left and right sides of the large

exhibition hall as shown in Figure C.3 and Figure C.4. The PSS signal was broadcasted from all

the antennas at the BS and the sync signal was lost several times due to the reason described

in section 3.3. Therefore, IUI was increased between users due to the ICI, ISI and interference

1A video of the measurement campaign at BT’s R&D headquarters is available at https://bit.ly/2DMZQaV
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APPENDIX C. EXPERIMENTAL CAMPAIGN WITH BRITISH TELECOM

Figure C.1: Twelve real-time video steams in an indoor environment

Figure C.2: Outdoor evaluation. Left, UE side. Right, BS side.

between data streams cased by inaccurate CSI. Figure C.5 shows the 64-QAM constellations

for 24 user captured from this trial. While Figure C.6 and Figure C.7 show the 64-QAM

constellations after removing two users randomly. The observed EVM was enhanced by spatially

multiplexing less number of users. Based on the results from this experimental campaign, it

was recommended to improve the synchronisation method between the users and to increase the

accuracy of channel estimation in Ma-MIMO systems.

Despite these challenges, 24 users were spatially multiplexed with 64-QAM for each user.

This work had led Bristol, Lund and BT teams to receive the 2017 Collaborate to Innovate (C2I)

Award for their submission ‘Setting World Records in 5G Wireless Spectral Efficiency using

Ma-MIMO’ under the ’Information, Data & Connectivity’ category [132].
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Figure C.3: BS view of the indoor evaluation with 24 users.

Figure C.4: User side view of the indoor evaluation with 24 users.



APPENDIX C. EXPERIMENTAL CAMPAIGN WITH BRITISH TELECOM

Figure C.5: 64-QAM UL constellations from 24 UEs. High EVM values can be observed from the
constellations in the blue collared rectangular compared to the one in Figure C.6 and Figure C.7.

Figure C.6: 64-QAM UL constellations from 22 (After removing two user randomly)).
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Figure C.7: 64-QAM UL constellations from 22 (After removing two user randomly)).
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OUTDOOR EXPERIMENTAL CAMPAIGN FOR REAL-TIME

EVALUATION

An outdoor experimental campaign was conducted to evaluate the improved OTA synchro-

nisation method described in section 3.1.5 and exploring the possibility of serving all the

12 users in real-time HD video streams. This experimental campaign was a preparation

for the first urban 5G showcase described in section 5.5. Bristol’s Millennium Square was used

with a patch panel antenna array to serve 8 user clients placed on the opposite side of the BS

and 2 user clients on the balcony of We The Curious building. The Ma-MIMO system operated

at a 3.51 GHz carrier frequency sharing a common 20MHz radio channel. The array was setup

in a 32×4 configuration with vertical polarisations for all 128 antennas. Two sector antennas

were used to transmit the synchronization signal. The first sector antenna is pointed toward the

8 user clients allocated at the opposite side of the BS while the second sector antenna is pointed

toward the 2 user clients on the balcony as it is shown in Figure D.1. The sector antennas has

increased the synchronization power level and improved the synchronization performance. In the

experimental campaigns, the frame schedule was configured to use one UL pilot, two UL data

and one guard followed by DL pilot, one DL data and one guard for each half subframe except

the first half OFDM subframe which is used for OTA synchronization.

When the PSS was broadcasted from the two sector antennas, there was no sync loss. But

when the PSS was broadcasted from all the 128 antennas, the average sync loss was 11 per

second. Although the problem of OTA synchronisation described in section 3.3 was solved, the

system was not able to spatially multiplex 12 reliable video streams on UL or DL. The Ma-MIMO

system was only able to spatially multiplex six reliable video streams in UL data transmission

and three reliable video streams in DL data transmission. This was achieved by using QPSK.

Number of users was decreased gradually until a reliable video streams were achieved. These
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Figure D.1: Measurement Environment in Millennium Square with two sector antennas for OTA
Synchronization

results have encouraged to implement the user grouping algorithm, proposed in section 5.3, in

the Ma-MIMO testbed.
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