61 research outputs found

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE SWARM OPTIMIZATION FOR CLOUD COMPUTING

    Get PDF
    Cloud computing provides a pool of virtualized computing resources and adopts pay-per-use model. Schedulers for cloud computing make decision on how to allocate tasks of workflow to those virtualized computing resources. In this report, I present a flexible particle swarm optimization (PSO) based scheduling algorithm to minimize both total cost and makespan. Experiment is conducted by varying computation of tasks, number of particles and weight values of cost and makespan in fitness function. The results show that the proposed algorithm achieves both low cost and makespan. In addition, it is adjustable according to different QoS constraints

    An enhanced ant colony system algorithm for dynamic fault tolerance in grid computing

    Get PDF
    Fault tolerance in grid computing allows the system to continue operate despite occurrence of failure. Most fault tolerance algorithms focus on fault handling techniques such as task reprocessing, checkpointing, task replication, penalty, and task migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is one of the promising algorithms for fault tolerance due to its ability to adapt to both static and dynamic combinatorial optimization problems. However, ACS algorithm does not consider the resource fitness during task scheduling which leads to poor load balancing and lower execution success rate. This research proposes dynamic ACS fault tolerance with suspension (DAFTS) in grid computing that focuses on providing effective fault tolerance techniques to improve the execution success rate and load balancing. The proposed algorithm consists of dynamic evaporation rate, resource fitness-based scheduling process, enhanced pheromone update with trust factor and suspension, and checkpoint-based task reprocessing. The research framework consists of four phases which are identifying fault tolerance techniques, enhancing resource assignment and job scheduling, improving fault tolerance algorithm and, evaluating the performance of the proposed algorithm. The proposed algorithm was developed in a simulated grid environment called GridSim and evaluated against other fault tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without fault tolerance and ACO with fault tolerance in terms of total execution time, average latency, average makespan, throughput, execution success rate and load balancing. Experimental results showed that the proposed algorithm achieved the best performance in most aspects, and second best in terms of load balancing. The DAFTS achieved the smallest increase on execution time, average makespan and average latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and execution success rate by 6.49% and 9% respectively as the failure rate increases. The DAFTS also achieved the smallest increment on execution time, average makespan and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on throughput and highest execution success rate by 72.9% and 93.7% respectively as the number of jobs increases. The proposed algorithm can effectively overcome load balancing problems and increase execution success rates in distributed systems that are prone to faults

    A Multiconstrained Grid Scheduling Algorithm with Load Balancing and Fault Tolerance

    Get PDF
    Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline, and resource failure. This work attempts to design a resource allocation algorithm which is budget constrained and also targets load balancing, fault tolerance, and user satisfaction by considering the above requirements. The proposed Multiconstrained Load Balancing Fault Tolerant algorithm (MLFT) reduces the schedule makespan, schedule cost, and task failure rate and improves resource utilization. The proposed MLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent algorithms which separately concentrate on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts

    Imprecise computation grid application model for flexible market-based resource allocation

    Full text link

    Benchmark simulator with dynamic environment for job scheduling in grid computing

    Get PDF
    Job scheduling algorithm has a significant influence on grid computing performance. Characteristics of jobs and resources to be used in evaluating the performance of the scheduling algorithm must reflect the dynamic nature of real grid environment.Static models of jobs and resources cannot be used to generate jobs and resources in simulating the grid environment because of the dynamic nature of the grid.This paper presents a new graph representation of jobs and resources which is practical for hybrid metaheuristic model implementation such as ant colony optimization and genetic algorithm.A dynamic model that can generate jobs and resources similar to the jobs and resources in the real grid environment is also proposed.Jobs and resources may join in or drop out from the grid.Stochastic analysis is performed on the characteristics of jobs and resources.A simulator based on the dynamic expected time to compute, has been developed and can be used as a benchmark.The simulator can generate jobs and resources with the characteristics of jobs and resources in the real grid environment.This will facilitates the evaluation of dynamic job scheduling algorithm

    Analysis of Effective Load Balancing Techniques in Distributed Environment

    Get PDF
    Computational approaches contribute a significance role in various fields such as medical applications, astronomy, and weather science, to perform complex calculations in speedy manner. Today, personal computers are very powerful but underutilized. Most of the computer resources are idle; 75% of the time and server are often unproductive. This brings the sense of distributed computing, in which the idea is to use the geographically distributed resources to meet the demand of high-performance computing. The Internet facilitates users to access heterogeneous services and run applications over a distributed environment. Due to openness and heterogeneous nature of distributed computing, the developer must deal with several issues like load balancing, interoperability, fault occurrence, resource selection, and task scheduling. Load balancing is the mechanism to distribute the load among resources optimally. The objective of this chapter is to discuss need and issues of load balancing that evolves the research scope. Various load balancing algorithms and scheduling methods are analyzed that are used for performance optimization of web resources. A systematic literature with their solutions and limitations has been presented. The chapter provides a concise narrative of the problems encountered and dimensions for future extension

    The Inter-cloud meta-scheduling

    Get PDF
    Inter-cloud is a recently emerging approach that expands cloud elasticity. By facilitating an adaptable setting, it purposes at the realization of a scalable resource provisioning that enables a diversity of cloud user requirements to be handled efficiently. This study’s contribution is in the inter-cloud performance optimization of job executions using metascheduling concepts. This includes the development of the inter-cloud meta-scheduling (ICMS) framework, the ICMS optimal schemes and the SimIC toolkit. The ICMS model is an architectural strategy for managing and scheduling user services in virtualized dynamically inter-linked clouds. This is achieved by the development of a model that includes a set of algorithms, namely the Service-Request, Service-Distribution, Service-Availability and Service-Allocation algorithms. These along with resource management optimal schemes offer the novel functionalities of the ICMS where the message exchanging implements the job distributions method, the VM deployment offers the VM management features and the local resource management system details the management of the local cloud schedulers. The generated system offers great flexibility by facilitating a lightweight resource management methodology while at the same time handling the heterogeneity of different clouds through advanced service level agreement coordination. Experimental results are productive as the proposed ICMS model achieves enhancement of the performance of service distribution for a variety of criteria such as service execution times, makespan, turnaround times, utilization levels and energy consumption rates for various inter-cloud entities, e.g. users, hosts and VMs. For example, ICMS optimizes the performance of a non-meta-brokering inter-cloud by 3%, while ICMS with full optimal schemes achieves 9% optimization for the same configurations. The whole experimental platform is implemented into the inter-cloud Simulation toolkit (SimIC) developed by the author, which is a discrete event simulation framework
    • 

    corecore