
 Coventry University

DOCTOR OF PHILOSOPHY

A flexible model supporting QoS and reallocation for grid applications

Al-Bodour, Reda

Award date:
2011

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/a-flexible-model-supporting-qos-and-reallocation-for-grid-applications(084e5501-00eb-4f10-a00f-217c170744d3).html

A Flexible Model Supporting

QoS and Reallocation for Grid

Applications

Reda Al Bodour
2011

Abstract

The rise of business-oriented and commercial applications for Grid computing

environments has recently gathered pace. Grid computing traditionally has been

linked with scientific environments, where heterogeneous resources provided by Grid

systems and infrastructures were employed for carrying out computationally-

intensive and data-intensive scientific experiments or applications that may have not

been possible before. The natural progression is that business-oriented applications

will look to build on this success and utilise the large number of heterogeneous Grid

resources including computational resources such as CPUs and memory and storage

resources such as disk space, potentially available. The success of introducing these

applications into the mainstream is directly related to whether service providers can

deliver a level of Quality of Service (QoS) to a consumer and the ability of the

consumer to request high-level QoS such as the numbers of CPUs required or the RAM

required.

QoS refers to the guidelines and requirements requested by a user/consumer from the

service providers and resources. The communication and agreement establishment

processes between user and provider must be defined clearly to accommodate a new

type of user where knowledge of the underlying infrastructure cannot be assumed.

QoS parameters have generally been defined at the Grid resource level using low level

definitions. This tailors to specific applications and models related to scientific

domains where brokering, scheduling and QoS delivery is designed for specific

applications within specific domains.

This thesis presents a flexible model for high-level QoS requests. Business Grid Quality

of Service (BGQoS) is introduced for business-oriented and commercial Grid

applications which may wish to make use of the resources made available by Grid

system environments. BGQoS allows GRCs (Grid Resource Consumers) to specify

varying types of high-level QoS requirements which are delivered via querying up-to-

date resource information, matchmaking and monitoring operations. Moreover, we

present dynamically calculated metrics for measuring QoS such as reliability,

increasing the accuracy of meeting the GRC’s requirements. On the other hand GRPs

(Grid Resource Provider) are also capable of advertising their resources, their

capabilities, their usage policies and availability both locally and globally. This leads to

a flexible model that could be carried across domains without altering the core

operations and which could easily be expanded in order to accommodate different

types of GRC, resources and applications.

Page i

2011

Acknowledgements

I would like to express my deepest appreciation and gratitude to my Director of

Studies Professor Anne James, for her guidance, advice, experience and patience. I

would like to thank her giving me this opportunity. I would also like to thank my

supervisor Dr. Norlaily Yaacob for her encouragement, guidance and attention to

detail. Both have provided me with the attention and effort that has helped me

throughout my time as a PhD student. I would also like to express my appreciation for

Dr. Anthony Godwin for his input, advice and effort.

Thank you to all the staff at Coventry University who have tirelessly helped. Thank

you to my colleagues, fellow students and fellow members of my research group. You

have been kind and friendly throughout the years and for that I am thankful.

My father, Prof. Salman Albdour: Thank you for being there when I needed you, for

guiding me through the years, for your support, for your advice, for your talks and for

listening. Thank you for everything. Without you none of this would be possible.

My mother, Fereshteh Pourreza: Thank you for your support, for your patience, for

your kindness when I needed it and for your encouragement when I needed it. Thank

you for keeping my feet on the ground and thank you for your love and compassion.

My brother, Mohammad Al-Bodour: You have had to put up with the day to day stress

that accompanies a PhD and you have done so with patience and love. I am grateful

that you are in my life. Thank you.

Finally, thank you to all my friends. You have been amazing.

Page ii

2011

To my parents – Everything I was, am and will be, I owe to you.

Page
iii

2011

Contents

CHAPTER 1: INTRODUCTION .. 1

1.1. INTRODUCTION... 2

1.2. GENERAL SETTING... 2

1.3. QUALITIES OF SERVICE (QOS), RESOURCE OPERATIONS AND MOTIVATION............................. 3

1.4. RESEARCH QUESTION AND CONTRIBUTIONS .. 5

1.5. CONTRIBUTIONS... 6

1.6. METHODOLOGY... 7

1.7. THESIS ORGANISATION.. 8

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW .. 10

2.1. INTRODUCTION.. 11

2.2. GRIDS ... 11

2.2.1. GRID COMPUTING OBJECTIVES..13
2.2.2. GRID FEATURES ...15
2.2.3. GRID ARCHITECTURE ..16
2.2.4. GRID EVOLUTION...19
2.2.5. GRIDS CLASSIFICATION...23

2.3. GRIDS IN EUROPE.. 25

2.4. GRIDS FOR THE MAINSTREAM ... 28

2.4.1. UTILITY GRID COMPUTING...29
2.4.2. ADVANTAGES OF UTILITY GRID COMPUTING..29
2.4.3. CHALLENGES OF UTILITY GRID COMPUTING...30
2.4.4. CLOUD COMPUTING ...30

2.5. RESOURCE BROKERS AND SCHEDULERS .. 34

2.5.1. SCHEDULING WITH QOS ...35
2.5.2. DEFINITIONS...36
2.5.3. BROKER TYPES...39
2.5.4. SCHEDULING MODELS...39
2.5.5. MULTI-BROKER SOLUTION..40
2.5.6. EXAMPLES ...41

2.6. QOS ... 44

2.6.1. QOS IN GRID COMPUTING ..45
2.6.2. RELATED WORK IN QOS...46
2.6.3. PROJECTS RELATED TO MARKET ORIENTED AND COMMERCIAL GRID COMPUTING49

2.7. SUMMARY... 50

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT .. 51

3.1. INTRODUCTION.. 52

3.2. COMMERCIAL AND MAINSTREAM GRID COMPUTING.. 52

3.3. PROBLEM DESCRIPTION... 53

3.3.1. COORDINATED RESOURCE ALLOCATION..53
3.3.2. NEGOTIATION...53
3.3.3. CO-ALLOCATION OF RESOURCES ...54

Page
iv

2011

3.3.4. APPLICATIONS ..54
3.3.5. QOS GUARANTEES ...55

3.4. THE MODEL ENVIRONMENT ... 55

3.4.1. RESOURCE DISCOVERY, SELECTION AND ALLOCATION ...57

3.5. HIGH-LEVEL COMPONENTS ... 58

3.5.1. GRC ...58
3.5.2. GRPS..62

3.6. RESOURCES.. 62

3.6.1. RESOURCE PROPERTIES..62

3.7. QOS DEFINITIONS.. 69

3.7.1. QOS RESOURCE MANAGEMENT ..70
3.7.2. APPLICATION EXECUTION ..70
3.7.3. GUARANTEED QOS DURING EXECUTION ...71

3.8. OPERATIONAL FLOW WITHIN THE BGQOS ENVIRONMENT .. 72

3.9. SUMMARY... 75

CHAPTER 4: QOS SUPPORT WITHIN BGQOS ... 76

4.1. INTRODUCTION.. 77

4.2. OVERALL SCENARIO ... 77

4.3. HIGH-LEVEL ABSTRACTION... 77

4.4. QOS OFFER... 78

4.5. COMMUNICATION SCENARIOS.. 82

4.6. QOS ... 83

4.7. AGREEMENT ESTABLISHMENT .. 86

4.7.1. AGREEMENT BASICS..86
4.7.2. AGREEMENT COMPONENTS ...86

4.8. AGREEMENT NEGOTIATION.. 89

4.8.1. GRC AND BROKER ...89
4.8.2. BROKER AND GRP...89
4.8.3. BROKER AND BROKER...91

4.9. QOS SUPPORT METHODS IN BGQOS.. 93

4.9.1. BGQOS FLEXIBILITY ...93
4.9.2. COMPONENT SEPARATION ...93
4.9.3. SYMMETRIC QOS MODEL ...94
4.9.4. STANDARDISING REQUEST INPUTS AND METRIC UNIFICATION ..94
4.9.5. THE STANDARDISATION OF THE RESOURCE DESCRIPTION ..94

4.10. TEMPLATES ... 95

4.10.1. CHALLENGES...95
4.10.2. DIFFERENT TYPES OF TEMPLATES ...96

4.11. SUMMARY... 99

Page v

2011

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN... 100

5.1. INTRODUCTION.. 101

5.2. MODEL LAYERS .. 101

5.3. IMPLEMENTATION COMPONENTS OVERVIEW... 103

5.4. GRC IDENTIFICATION .. 105

5.5. QOSDESCRIPTION PARSER .. 106

5.6. META-NEGOTIATOR ... 106

5.7. META-BROKER ... 106

5.8. BROKER... 108

5.8.1. GRC COMMANDS .. 108
5.8.2. THE RESOURCE DISCOVERY COMPONENT (RDC).. 110
5.8.3. THE RESOURCE SELECTION COMPONENT (RSC) ... 112
5.8.4. THE SCHEDULING COMPONENT (SC) ... 113
5.8.5. THE RESCHEDULER COMPONENT (RC) ... 113

5.9. MONITORING COMPONENT (MC) .. 114

5.9.1. THE TASK MONITOR (TM) .. 114
5.9.2. THE RESOURCE MONITOR (RM)... 115
5.9.3. THE AGREEMENT MONITOR (AM) ... 116

5.10. THE RESOURCE MANAGEMENT COMPONENT (RMC) .. 116

5.10.1. THE RESOURCE UPDATER (RU).. 116
5.10.2. THE RESOURCE COMMUNICATOR (RC).. 116

5.11. THE AGREEMENT MANAGEMENT COMPONENT (AMC) .. 117

5.12. TASK LAUNCHER (TL).. 117

5.12.1. THE LOCAL TASK LAUNCHER (LTL) .. 117
5.12.2. THE GLOBAL TASK LAUNCHER (GTL) ... 117

5.13. THE TASK MIGRATION COMPONENT (TMC).. 117

5.14. THE ACCOUNTING AND BILLING MANAGEMENT COMPONENT (ABC) 118

5.14.1. THE ACCOUNTING MANAGER (AM) ... 118
5.14.2. THE BILLING MANAGER (BM) .. 118

5.15. SUMMARY... 119

CHAPTER 6: BGQOS OPERATIONS .. 120

6.1. INTRODUCTION.. 121

6.2. RESOURCE QOS CAPABILITIES.. 121

6.3. COST AND TIME ESTIMATION...124

6.3.1. TIME ESTIMATION.. 124
6.3.2. COST ESTIMATION .. 125

6.4. PHASES OF EXECUTION...126

6.4.1. PHASE1: INFORMATION RETRIEVAL ... 126
6.4.2. PHASE 2: MATCHMAKING ... 126
6.4.3. PHASE 3: AGREEMENT... 127
6.4.4. PHASE 4: RESOURCE ALLOCATION .. 127
6.4.5. PHASE 5: MONITORING AND MAINTAINING AGREEMENT... 127
6.4.6. PHASE 6: COMPLETION AND BILLING ... 127

Page
vi

2011

6.5. CANDIDATE RESOURCE ACCUMULATION... 128

6.5.1. FILTERING: MEETING THE CONSTRAINTS .. 128

6.6. CONSTRAINTS MINIMISATION.. 129

6.6.1. RANK ACCORDING TO THE PROXIMITY TO QOSDESCRIPTION ... 130
6.6.2. COMBINATION RANKING ... 131

6.7. POLICIES ... 132

6.8. MATCHMAKING.. 133

6.8.1. MULTI-TIER INTERFACE ... 134
6.8.2. GRC REQUEST AND QOSDESCRIPTION .. 135
6.8.3. RESOURCE DISCOVERY... 135
6.8.4. RESOURCE SELECTION ... 135
6.8.5. SCHEDULING AND EXECUTING TASKS ... 136

6.9. PARTNER AND GLOBAL ACCESS TO RESOURCES THROUGH BROKERS.................................... 136

6.10. REALLOCATION.. 138

6.10.1. ISSUES TO CONSIDER .. 138
6.10.2. REALLOCATION FOR GUARANTEED QOS GRCS... 139
6.10.3. TOLERANCE RATIO ... 140

6.11. REALLOCATION FOR BE GRCS... 143

6.12. SUMMARY... 143

CHAPTER 7: SIMULATION ... 144

7.1. INTRODUCTION.. 145

7.2. MOTIVATION FOR SIMULATION... 145

7.3. CURRENT SIMULATION TOOLS... 146

7.3.1. OPTORSIM.. 146
7.3.2. SIMGRID ... 147
7.3.3. MICROGRID.. 148

7.4. GRIDSIM.. 150

7.4.1. GRIDSIM FEATURES ... 151
7.4.2. GRIDSIM ARCHITECTURE .. 152
7.4.3. ENTITIES .. 154
7.4.4. MAIN GRIDSIM CLASSES.. 159

7.5. MODIFICATION TO THE ORIGINAL PACKAGE.. 161

7.6. SUMMARY... 167

CHAPTER 8: COMPONENT EVALUATION OF BGQOS .. 168

8.1. INTRODUCTION.. 169

8.2. OVERHEAD FOR RESOURCE OPERATIONS.. 169

8.3. OVERHEAD FOR DIFFERENT GRC TYPES .. 173

8.4. LOCATING RESOURCES AGAINST QOS RELIABILITY PARAMETER .. 175

8.4.2. RELIABILITY WITHOUT CONSTRAINT .. 176
8.4.3. RELIABILITY WITH CONSTRAINTS.. 177

8.5. RESOURCE SELECTION .. 180

8.6. EFFECT OF GRC TYPE ON SUCCESSFULLY COMPLETED TASKS... 182

Page
vii

2011

8.7. GRC ACCESS AUTHORISATION ..183

8.8. PROCESSING TIME FOR DIFFERENT GRC TYPES ..185

8.9. EFFECT OF THE NUMBER OF QOS PARAMETERS REQUESTED ...187

8.10. SCHEDULING PRECISION ..189

8.11. PARTIAL OFFERS ...191

8.12. QOS REQUIREMENTS VS RESOURCE UTILISATION..192

8.13. ON DEMAND VS ADVANCED RESERVATION...196

8.14. REALLOCATION AND MIGRATION...198

8.15. VIOLATIONS...200

8.16. REALLOCATION WITH RATIO..202

8.17. FURTHER COMPARISON WITH FCFS...204

8.18. ANALYSIS OF THE BGQOS OPERATION EVALUATION ..206

8.19. SUMMARY...208

CHAPTER 9 EVALUATION OF COMPLETE OPERATION OF BGQOS..209

9.1. INTRODUCTION..210

9.2. THE SIMULATED ENVIRONMENT ..210

9.3. EVALUATION METRICS..211

9.4. RESULTS ...214

9.4.1. RESPONSE TIME.. 214
9.4.2. RESOURCE UTILISATION.. 215
9.4.3. PERCENTAGE OF SUCCESSFUL GRC REQUESTS .. 216
9.4.4. PERCENTAGE OF SUCCESSFULLY COMPLETED TASKS .. 217
9.4.5. EFFECT OF VARYING COST AND TIME CONSTRAINTS... 218
9.4.6. GRC SATISFACTION.. 220

9.5. ANALYSIS..221

9.6. SUMMARY...222

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION ..224

10.1. INTRODUCTION..225

10.2. THESIS CONTRIBUTIONS ..225

10.3. CONCLUSION ...228

10.4. FUTURE WORK AND DIRECTIONS ...229

10.4.1. FULL STANDARDISATION OF METRICS AND METRIC UNIFICATION SUPPORT.................................... 229
10.4.2. EXPANSION FOR CLOUD COMPUTING .. 229
10.4.3. TESTING THE OPERATION ON A REAL TEST-BED ... 230

Page
viii

10

20

30

40

50

2011

Figures

FIGURE 1: JOHNSON & JOHNSON ON USING GRIDS (OGF 2007) ..12
FIGURE 2: LAYERED GRID ARCHITECTURE (LEDLIE ET AL 2003) ..17
FIGURE 3: GRID EVOLUTION (AL-FAWAIR 2009)...20
FIGURE 4: EXTRAGRID ARCHITECTURE (IBM 2007) ...22
FIGURE 5: BROKER COMPONENT TYPES...39
FIGURE 6: SCHEDULER MODEL TYPES ..39
FIGURE 7: NIMROD/G (MESSAGE LAB 2010) ...41
FIGURE 8: GRIDWAY BROKER (DSAG 2010)...43
FIGURE 9: RESOURCE QOS CHARACTERISTICS. ...65
FIGURE : GRC AND GRP GENERAL VIEWPOINT...73
FIGURE 11: INTERFACE FOR TIER A GRC ..84
FIGURE 12: TIER A GRC TEMPLATE ...85
FIGURE 13: RELATIONSHIP DIAGRAM (AGREEMENT)...88
FIGURE 14: SEQUENCE OF RESOURCE OPERATIONS BETWEEN GRC AND GRP(S) ..90
FIGURE 15: BROKER OPERATIONS AND INTERACTIONS WITH PARTNER AND GLOBAL BROKERS.92
FIGURE 16: SLA TEMPLATE ...98
FIGURE 17: BGQOS LAYERS.. 102
FIGURE 18: BGQOS COMPONENTS... 104
FIGURE 19: NO RESOURCES RETURNED.. 109
FIGURE : ACCEPTED VS REJECTED.. 123
FIGURE 21: THE RESOURCE OPERATION PROCESS ... 132
FIGURE 22: BROKER RANKING ACCORDING TO DISTANCE .. 137
FIGURE 23: MONITORING AND REALLOCATION OF TASKS ... 140
FIGURE 24: OPTORSIM ARCHITECTURE .. 147
FIGURE 25: SIMGRID ARCHITECTURE (CASANOVA ET AL 2008)... 148
FIGURE 26: MICROGRID INFRASTRUCTURE (MICROGRID).. 149
FIGURE 27: GRIDSIM LAYERED ARCHITECTURE... 153
FIGURE 28: FLOW DIAGRAM OF TIME-SHARED RESOURCES (CLOUDS LAB 2010).. 156
FIGURE 29: FLOW DIAGRAM OF SPACE-SHARED RESOURCES (CLOUDS LAB 2010).. 157
FIGURE : GRID INFORMATION SERVICE... 158
FIGURE 31: COMPONENT DIAGRAM FOR CREATING GRIDLET IN GRIDSIM .. 160
FIGURE 32: NEW LIST OF GRIDLET CHARACTERISTICS .. 162
FIGURE 33: INITIATING THE USER.. 163
FIGURE 34: TASK INFORMATION ASSOCIATION WITH USER... 163
FIGURE 35: RESOURCE INFO.. 164
FIGURE 36: A PORTION OF THE DATABASE TABLES ... 166
FIGURE 37: TASK MONITORING .. 166
FIGURE 38: AGREEMENT INITIATION AND PARAMETERS.. 167
FIGURE 39: RESOURCE OPERATIONS OVERHEAD .. 172
FIGURE : QOS V BE - OVERHEAD DIFFERENCE ... 175
FIGURE 41: SUCCESSFUL REQUESTS - RELIABILITY ... 177
FIGURE 42: EFFECT OF BUDGET AND DEADLINES - RETURNED RESOURCES.. 179
FIGURE 43: RANK SELECTED PERCENTAGE .. 181
FIGURE 44: SUCCESSFUL TASK PERCENTAGE - CLASS A V BE... 183
FIGURE 45: SUCCESSFUL TASK PERCENTAGE - LOCAL ACCESS, PARTNER ACCESS, GLOBAL ACCESS......................... 185
FIGURE 46: SUCCESSFUL TASKS - # OF PARAMETERS REQUESTED .. 188
FIGURE 47: SUCCESSFUL TASKS - # OF PARAMETERS REQUESTED (2) .. 188
FIGURE 48: SUCCESSFULLY SCHEDULED PERCENTAGE... 189
FIGURE 49 SUCCESSFULLY SCHEDULED PERCENTAGE - V GRIDWAY.. 189
FIGURE : AVERAGE PERCENTAGE OF QOSOFFERED IN RELATION TO THE QOSREQUESTED8T 190
FIGURE 51: UMBER OF PARTIAL OFFERS AND THEIR PRECISION .. 191
FIGURE 52: FAILURE OVER 30 DAYS .. 194
FIGURE 53: RESOURCE UTILISATION OVER 30 DAYS... 195
FIGURE 54: ALLOCATED RESOURCE CAPACITY .. 195

Page
ix

2011

FIGURE 55: OD V AR .. 198
FIGURE 56: COMPARISON BETWEEN BGQOS AND FCFS OVER 50 DAYS .. 205
FIGURE 57: RESPONSE TIME FOR 350 TASKS ... 214
FIGURE 58: RESPONSE TIME FOR 1100 TASKS.. 215
FIGURE 59: RESOURCE UTILISATION FOR 350 TASKS .. 216
FIGURE 60: RESOURCE UTILISATION FOR 1100 TASKS.. 216
FIGURE 61: PERCENTAGE OF SUCCESSFUL GRC REQUESTS FOR 350 TASKS... 217
FIGURE 62: PERCENTAGE OF SUCCESSFUL GRC REQUESTS FOR 700 TASKS... 217
FIGURE 63: PERCENTAGE OF SUCCESSFULLY COMPLETED TASKS FOR 350 TASKS... 218
FIGURE 64: PERCENTAGE OF SUCCESSFULLY COMPLETED TASKS FOR 700 TASKS... 218
FIGURE 65: EFFECT OF TIME CONSTRAINT ON RESOURCE UTILISATION FOR 1100 TASKS... 219
FIGURE 66: TASKS EXECUTED SUCCESSFULLY ON RESOURCE UTILISATION FOR 1100 TASKS 220
FIGURE 67: GRC SATISFACTION FOR 350 TASKS... 220
FIGURE 68: GRC SATISFACTION FOR 700 TASKS... 221

Page x

2011

Tables

TABLE 1: COMPARISON BETWEEN CURRENT BROKERS BASED ON IMPLEMENTATION LEVEL ..44
TABLE 2: GRC OPERATIONS ...61
TABLE 3: RESOURCE RESERVATION PARAMETERS...66
TABLE 4: RR OPERATIONS..68
TABLE 5: QOS DEFINITIONS ...69
TABLE 6: GRC COMMANDS... 110
TABLE 7: POTENTIAL RESOURCE SETS .. 130
TABLE 8: SUMMARY OF SWAP OPERATIONS FOR RANKING ... 131
TABLE 9: TASK TYPES AND REQUIREMENTS... 172
TABLE 10: QOS V BE - OVERHEAD DIFFERENCE ... 174
TABLE 11: BE V QOS .. 186
TABLE 12: BGQOS V FCFS WITH QOS GRCS .. 186
TABLE 13: SUCCESSFUL QOS DELIVER PERCENTAGE AND RESOURCE UTILISATION .. 193
TABLE 14: OD V AR.. 197
TABLE 15: EFFECT OF INCREASING TASK SUBMISSION RATE ON TASKS COMPLETED .. 199
TABLE 16: EFFECT OF INCREASING TASK SUBMISSION RATE ON QOS LEVEL .. 200
TABLE 17: NUMBER OF VIOLATIONS WITHIN AND OUTSIDE RATIO IN RELATION TO GRANTED REQUESTS................. 202
TABLE 18: RESOURCE TYPES ... 203
TABLE 19: MEETING THE RATIO QOS DEMAND .. 204
TABLE 20: RESOURCE CHARACTERISTICS ... 205
TABLE 21: EXPERIMENTAL SETUP ... 211
TABLE 22: EXPERIMENTAL MEASUREMENTS... 212

Page
xi

2011

2011

Publications

Albodour, R. and James, A. and Yaacob, N. and Godwin, A. (2008) Grid service QoS in

medical environments. ‘The 12th International Conference on Cooperative Work in

Design’, held 16-18 April in Xi'an, China. ISBN: 978-1-4244-1650-9. 548 – 552

Albodour, R. and James, A. and Yaacob, N. and Godwin, A. (2008) ‘QoS Requirements

for a Medical Application on the Grid’. Computer Supported Cooperative Work in

Design IV Lecture Notes in Computer Science, 2008, Volume 5236/2008, 316-

330, DOI: 10.1007/978-3-540-92719-8_29 : Springer-Verlag, Berlin, Heidelberg, 316-

330

Albodour, R. and James, A. and Yaacob, N. (2010) An extension of GridSim for quality

of service. ‘The 14th International Conference on Cooperative Work in Design’, held

14-16 April in Shanghai, China. ISBN: 978-1-4244-6763-1, 361 - 366

Albodour, R. and James, A. and Yaacob, N. (2011)’ High Level QoS-Driven Model for

Grid Applications in a Simulated Environment’, Future Generation Computer Systems,

The International Journal of Grid Computing and eScience Special Section “Quality of

Service in Grid and Cloud Computing” (in press)

http://www.springerlink.com/content/0302-9743/

2011

CHAPTER 1: INTRODUCTION

CHAPTER 1:

INTRODUCTION

1

CHAPTER 1: INTRODUCTION

1.1. Introduction

This chapter serves three main purposes. First, it introduces the general setting and

motivation behind the research. Second, it specifies the research objectives, including

the research question and the contributions. Finally, it provides an overview of the

methodology used and the structure of this thesis.

1.2. General Setting

The emergence of Grid Computing as a mainstream solution (Scale Out Software

2011) has allowed the progression and development of a new generation of

applications that utilise the resources Grids provide. Grids are systems that provide

the user with seamless access to a variety of resources, such as CPUs, storage space,

data and instruments. The Grid computing field is the result that has emerged from a

series of evolutionary steps in computing (Foster, Kesselman and Tuecke 2001), with

each providing a major advancement, allowing users to solve more complex problems

and gain otherwise unattainable results. This evolution started with the single user

model, to Massively Parallel Processors (MPPs), to clusters (Krishnamurthy et al

2001), to distributed systems and finally to Grid computing. Recently, large companies

such as SUN, IBM and Amazon have been providing Grid solutions by providing

resources and services to third parties.

A key ingredient in whether users can utilise grid resources successfully, is the

guarantee that users can control their requests. This includes being able to request

specific resources, set resource requirements or Quality of Service (QoS)

requirements and obtain guarantees that these requirements are met according to

their request throughout the duration within which there’s an association between

the user and the resources.

The focus of this thesis is threefold. First, to provide a flexible and expandable model

that is tailored to allowing the user to specify the types of resources they require and

the requirements associated with them at a high level, hiding the complexity of the

underlying infrastructure and its heterogeneity. Second, to provide a mechanism that

allows the selection of appropriate resources according to up-to-date resource

information, and finally, a solution that guarantees both the requirements of the user

and the resource provider are met throughout the execution of applications.

2

CHAPTER 1: INTRODUCTION

1.3. Qualities of Service (QoS), Resource Operations and Motivation

There are many definitions for QoS. In this research, Quality of Conformance has been

chosen which sees QoS as meeting user requirements and specifications. For example,

if a user requires a resource with computational power equal to x and the resource

provider offers a resource that delivers the amount of computational power required,

i.e. computational power ≥ x , provided that the resource does so throughout the time

the resource is dedicated to this user, then the resource can be said to have met the

request, or conforms to the request.

Moreover, each particular domain within the mainstream environment that the user

belongs to, will have its own set of QoS requirements and parameters that apply to

those domains applications. However, there is a case for carrying the parameters

across domains and establishing an arrangement for ensuring that the QoS carried

between domains conform to the same definition.

Resource information accessibility is vital to the success of carrying cross-domain

requirement specifications and provides the platform for locating the appropriate

resources that meet QoS parameters requirements submitted by the user. Current, up-

to-date and accurate information relative to each resource ensures that resources

selected are offering the level of QoS that is requested by the user and provides the

base for creating a working relationship between user and resource provider.

The explanation above presents a problem which needs to be tackled and that is the

problem of providing a description of the QoS requirements that can easily be created

and used to compare with the level of QoS that a resource is offering in order to carry

out appropriate resource selection. There is a need to specify a specific method of

describing QoS that the user can use. The information within these QoS descriptions

must be extracted in order to carry out resource operations, including resource

selection and allocation.

Therefore, resource operations must rely on a user’s requirements and the values they

set for the level of QoS each resource must provide. Many factors can play a role

within this system, such as resource provider policies, user budgets, and resource

quantity and time limitations.

3

CHAPTER 1: INTRODUCTION

1.3.1. Background

Grid computing research has not produced a comprehensive and flexible approach

which supports different types of Grids and applications. Current Grid technology is

diverse with an inclination for adopting a service oriented architecture (Papazoglou et

al 2008) that supports and provides commercial, business-oriented and mainstream

services to different domains. However, most current efforts address specific domains

such as bioinformatics (myGrid@EBI 2002) or weather prediction, producing specific

solutions tailored for applications within those domains and a solution that cannot be

carried across to another domain easily.

Moreover, the diversity or lack of QoS support presents major challenges in making

Grids a viable tool for the commercial and business-oriented domains where QoS is

essential. Many current Grid projects utilise resources that are offered voluntarily, this

model cannot be carried forward and the issue of QoS support must be addressed.

The proposed model is driven by the need to find a solution to the problem of

flexibility and QoS support and the thesis presents this model and the motivation

behind the work. Essentially, it is proposed in line with the assumption that

applications from different domains such as, education, engineering and medicine

require QoS guarantees and that the requesting of those guarantees is carried out in

an efficient manner at a high-level.

4

CHAPTER 1: INTRODUCTION

1.4. Research Question and Contributions

The selection of resources in Grids is not a straightforward process. This is due to the

dynamic nature of Grids, as well as the complexities arising from the distributed and

heterogeneous nature of its resources. However, these complexities become more

apparent when requesting resources is associated with a specific set of requirements

which these resources must meet. The rising number of applications, their types and

the different domains they belong to, has meant that the delivery of a standard set of

QoS attributes is one of the complexities that needed to be addressed. Moreover, a new

approach to QoS specification was needed to be undertaken. This led to the following

research question:

Is there a model for QoS of Grids and Grid behaviour that is flexible, capable of carrying

out resource operations and is guided by user requirements such that the delivery of QoS

to a variety of user types and domains can be guaranteed?

This question can be divided into multiple sub-questions related to implementing any

possible model:

At which level must the QoS required be specified within the Grid Architectural Model?

What type of QoS must be supported? How will they be measured?

How can a model that uses this set of QoS be implemented in a way that hides the

complexities from the user, while maintaining a successful operational model for

resource providers?

How can the issues of local and global resources be addressed? How can the

specification of users’ privileges to request such resources be addressed?

How will resource discovery and selection occur?

How can reallocation and rescheduling be supported at the same level? And on what

basis are these operations triggered?

How can this model be efficiently implemented? What are the components and

architecture required?

5

CHAPTER 1: INTRODUCTION

1.5. Contributions

This thesis presents:

 A comprehensive review of literature on Grid computing, QoS and related projects and

models.

 A high-level QoS approach to resource operations driven by a requirements

description originating from the user and utilising multiple types of resource

information, static and dynamic.

 A dynamic method for calculating specific QoS parameters using up-to-date

information, hence increasing the accuracy of resource information, leading to a more

accurate resource selection process.

 A multi-tier flexible user model which defines the types of users, their privileges and

responsibilities.

 A new method for requesting QoS through specialised interfaces, templates and tier

related restrictions.

 A QoS model defining the requirements and communication processes for successful

QoS support.

 A resource selection and ranking model for matchmaking resources with the users’

description of requirements.

 A method, which employs reallocation, for guaranteeing the level of QoS through the

run of an application according to the requirements submitted by the user.

 A novel local approach to searching for resources while maintaining the capability for

searching for global resources, using up-to-date resource repositories to hold

information on resources that are current. Including, an improved scheduling and

reallocation method that employs both the resource ranking capabilities of the model

and those of the resource repositories.

6

CHAPTER 1: INTRODUCTION

1.6. Methodology

The methodology is comprised within the following stages:

• Literature Review:

Gathering the information that is related to the field of research has helped in

formulating the research question as well as providing a clear picture of current

research in the field, and the current developments that directly relate to the research

undertaken and introduced in this thesis.

• Definitions:

An important part of answering the research question was that of identifying and

defining the required building blocks on top of which this research is carried out.

• Model design:

The model was designed to provide the platform that answers the research questions.

• Model development:

The novel model was presented, prototyped, improved, technically developed and

produced in detail.

• Simulation:

The model’s evaluation has been carried out using simulation. This is achieved

through using a simulation toolkit that has been expanded and extended for the

purposes of this research. The simulation toolkit was then used to provide the testing

and evaluation environment for this model.

• Evaluation:

The novel model and its components are evaluated using the newly expanded and

extended simulation toolkit. This evaluation process includes:

- Testing the functionalities of individual components of the model

- The success of the QoS model and QoS delivery.

- Evaluating whether the model meets its objectives.

- Evaluating the model in terms of functionality and performance.

7

CHAPTER 1: INTRODUCTION

1.7. Thesis Organisation

Chapter 2: Presents a comprehensive review of literature and background. It presents

a background of Grid Computing, its architecture and its objectives. Next, the chapter

introduces QoS and resource operations. Moreover, it also introduces related projects,

efforts and research.

Chapter 3: Presents the new model, Business Grid Quality of Service (BGQoS). High-

level concepts of BGQoS and related definitions are included within this chapter.

BGQoS and its associated concepts form the main contribution of this thesis.

Chapter 4: Presents the QoS model implemented within BGQoS. An explanation of the

QoS model and the methods implemented within it in order to guarantee the delivery

of QoS to the GRC are included within this chapter.

Chapter 5: Presents the components of BGQoS. Complete and detailed explanation of

BGQoS components, their responsibilities and specific tasks within the model are

included within this chapter.

Chapter 6: Presents the operations employed by the components presented in Chapter

5 in order to carry out their responsibilities. This chapter complements Chapter 5,

combining the components with their functional approach.

Chapter 7: Presents the simulation environment and its significance in implementing

and evaluating BGQoS. An explanation of the toolkit used and its expansion is included

within this chapter.

Chapter 8: Presents a comprehensive evaluation of the important operations,

components and functionalities of BGQoS.

Chapter 9: Continues the evaluation of BGQoS. A complete experimental environment

is introduced and the results are shown and analysed.

Chapter 10: Presents the summary and conclusion of the thesis. Furthermore, future

work and trends are included within this chapter.

8

CHAPTER 1: INTRODUCTION

9

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

CHAPTER 2:

BACKGROUND AND

LITERATURE REVIEW

10

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1. Introduction

The last decade of the 20th century witnessed a substantial increase in applications

requiring high levels of computing power and network bandwidth. The result was the

rapid improvement in hardware, software and network infrastructure. However, the

continued development of scientific applications and the thirst in different fields

including science, engineering and business (Tserpes et al 2007) to solve bigger and

more complicated problems, effectively meant that the technological advancement

was lagging and that the current generation of computing at that time which consisted

of computers, workstations and super-computers were not enough. Moreover, the fact

that these problems were computation and data intensive meant that the resources

they required were heterogeneous and often could not be provided within the same

organisation and were not located in the same geographical location. This chapter

introduces Grid computing, its concepts, architecture and operational model. It also

specifically explores work related to this thesis.

2.2. Grids

The availability of powerful computers and high speed networks at a reasonably low

cost rapidly changed the computing world. It allowed technology to introduce

resources sharing such as computational power and storage capacity, as wide area

distributed computing models, leading to what is currently known as Grid Computing.

By using this new distributed computing environment that allows the user to access

diverse types of resources that are located in different places, the users were allowed

to solve more problems that require resources that were beyond the capabilities of

their own sites, locations or organisations. Moreover, these capabilities were able to

provide a reliable method for speeding up the process of carrying out applications.

These distributed computing systems are called Grids and will hereafter be called

Grids in this thesis. Figure 1 is an example of utilising grid resources in order to assist

in product research and development.

The main aim of Grid computing is resource sharing and the utilisation of

heterogeneous and geographically distributed resources. This approach has come

from different scientific and research institutions and organisations who wanted to

carry out compute-intensive and data-intensive applications that required a large

number of resources while also requiring them to be completed within a realistic time

frame within which the results would still be applicable and viable. However, after

Grids established themselves within scientific domains and environments and have

11

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

allowed some of the biggest experiments in human history to be carried out, such as

the Large Hadron Collider (LHC) at CERN (2011), it was inevitable that Grid

Computing would evolve to be utilised within other domains.

The full text of this image has been
removed due to third party
copyright. The unabridged version
of the thesis can be viewed at the
Lanchester Library, Coventry
University.

Figure 1: Johnson & Johnson on using Grids (OGF 2007)

The inspiration to name these distributed computing systems as Grids is derived from

Electrical Grids. Electrical Grids pool together the generation capabilities of a large

number of geographically distributed electrical generators to provide usable, reliable,

cheap, and universal electrical power. In similar fashion, a Grid is designed around the

concept of pooling resources that might be geographically sparse and run by different

administrations, in order to provide easy, reliable, standardised, specialised, dynamic

and pervasive access to high-end computational resources. This concept has been

expanded to include data, instrument and human resources as will be explained

throughout this chapter (Czajkowski et al 1998, Roy and Sander 2001).

The project of Grids started with the objective of linking super-computers, combining

their capabilities and using them as a single unit. That concept grew to provide a

platform from which many applications could benefit, including engineering, physics,

data exploration, high throughput computing and service oriented computing. The

internet boom, which saw the internet grow at a very high speed alongside the web,

has produced interest in exploiting the Web as an infrastructure for running

distributed and parallel applications, effectively creating a Grid computing platform

(Foster et al 1999, Jeffery 2007).

According to CERN (2011) Grid computing can be defined as a service for sharing

computer power and data storage capacity over the Internet. Foster (2002) explains

12

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

that for a distributed computing environment to be called a Grid, it must meet a three

point checklist:

• It must be able to coordinate resources that are not subject to centralised control: A

Grid coordinates resources from different control domains. A Grid enables the sharing

of a large number of distributed resources that are not in the same geographical

location; otherwise we are dealing with a local management system.

• It uses standard, open, general purpose protocols and interfaces: Grids are built from

multi-purpose protocols and interfaces that can address multiple issues such as

resource discovery and resource access; otherwise we are dealing with an application

specific system.

• It delivers non-trivial Quality of Service: A Grid allows its resources to deliver Quality

of Service, meeting user’s complex demands; otherwise the potential of the system

cannot be guaranteed to be greater than its individual components.

For the effective and correct operation of Grids, the provisioning of system support

tools, User Interfaces (UIs), programming languages, programming environments,

Grid operating systems, storage services, process management services, security

infrastructure and management were necessary. However, the main challenge was

that of management of resource sharing and the later challenge of resource

scheduling.

2.2.1. Grid Computing Objectives

This section explains the objectives of Grids and the grid computing field in general.

2.2.1.1. Resource Sharing

The main aim for the development of Grid Computing was that of resource sharing

(Foster et al 1999), and still remains the main objective. Initially, internal projects

were carried out within the same institution, company or organisation. If a project

was large and required a large number of resources to be completed within a certain

amount of time; more resources were allocated to that project. These institutions

would use idle resources within their local environments and make use of them for

completing tasks. That opened the door to a situation where certain departments with

computationally intensive tasks would be allowed access to idle resources in off-peak

hours from other departments or local resources that are under-utilised or idle, to

13

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

carry out their operations. For example, if an application needed resources that

equalled the combined operational power of a complete floor, administrators would

allow those applications to utilise the unused computational power during periods

when these resources are not used by others in order to successfully carry out the

required tasks. This has evolved into the current Grids which allow the sharing and

selection of resources or a group of heterogeneous resources such as computing and

storage resources.

2.2.1.2. Efficient Utilisation of Idle, Unused and Unallocated Resources

In most organisations there are a large number of unutilised resources. According to

IBM (2007), computing resources in most organisations are only utilised to their full

capacity and potential five percent of the time. This idle status is by no means limited

to CPUs, it also applies to other resources in varying percentages. Grids help

organisations pooling their resources together; resources such as computational

cycles, software, database servers and network bandwidth.

2.2.1.3. Collaboration

The collaboration between different institutions and organisations is very difficult.

Each organisation might have a different architecture deployed. In fact, some

organisations might have different deployed architectures between different sites

within them. In addition, each organisation has its own policies; guidelines and rules

set in place governing any collaboration between different organisations. These

guidelines provide the boundaries of operation, and must be adhered to for any

collaboration to proceed. A Grid is an environment that allows the collaboration

between different organisations, service providers and users. It enables

heterogeneous, distributed resources to be pooled together and accessed on-demand.

This simplifies access to these resources and makes collaboration possible.

2.2.1.4. Large Problems, Tasks and Applications Solutions

Through Grids, multiple resources can be utilised and pooled together to solve very

large problems that would not have been possible if it were not for the access to

variable and distributed resources the Grid provides. This has allowed many fields

such as weather forecasting and meteorology (Ren et al 2006), industry

(Taylor, Surridge and Marvin 2009) and bioinformatics (myGrid@EBI 2002, Desprez

and Vernois 2005) to process large amounts of data, run large applications and carry

14

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Mike%20Surridge
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Darren%20Marvin
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=A.%20Vernois

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

out computationally intensive simulations. This presented another problem that is

also addressed by Grids and explained in the next objective, which is the increased

storage demand.

2.2.1.5. Storage Solution

Grids allow the storage of data by providing access to storage resources ranging from

high capacity disk storage to long term storage resources. Not only does this provide

space for storing data that was not previously available, but also provides the user or

application requiring the data access to these resources on-demand (Jeffery 2007).

2.2.2. Grid Features

This section presents the typical features of a Grid (Iamnitchi and Foster 2001, Foster

2002).

• Single Login: The provision of a single login that gives the user secure access to Grid

resources. Access control mechanisms are used to control and govern user access to

Grid resources.

• Resource Management: The provision of resource management, information services,

data storage and data transportation. The highly distributed environment proposed

for sharing heterogeneous resources via Grids must be able to meet the challenges of

resource management and monitor them through its architecture and protocols.

• Heterogeneity: Grid resources are not of a single type, in the same location or under

the same administrative domain. The latter is explained in the next feature of this list.

However, the heterogeneity of resource types available in Grids is a vital component

and feature.

• Multiple administrative domains: Resources in Grids are located in different locations

and operate under the umbrellas of different administrative domains, institutes and

organisations. Each of these domains has guidelines, policies and protocols that

govern the allocation, usage and utilisation of the heterogeneous resources that

belong to them. Grids must therefore operate within these constraints.

• Parallel processing capabilities: Results are returned more quickly, efficiently and

accurately, using the parallel processing capabilities of Grids. Not all applications can

15

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

be modified to run on a parallel computing infrastructure, therefore not every

application will be able to function on the Grid. This essentially means that the

common belief that Grids will be able to pool resources together to carry out any

application many times faster, is not accurate. In fact, developing applications to run

on the Grid is both a scientific and engineering challenge (Allen et al 2003), and while

there currently exist advanced techniques to do so, they have not been optimised and

there is still much work to be done. However, when developed, Grid applications

would be able to acquire and release resources according to their needs, on-demand.

Applications should also interact easily with users, interact with different types of

data and interact with other Grid applications. Grid applications would be capable of

completing tasks many times faster than when there was no access to distributed

resources. Indeed, some applications may even complete tasks that were not even

possible before the resource pooling powers of Grids (Allen et al 2003).

• Dynamicity and Scalability: The Grid by definition is a dynamic infrastructure in which

resources can fail, leave the Grid or change according to different conditions. Users,

service providers and organisations might also join, leave or change their relationship

with the Grid at any point. This is both a feature and a challenge in Grids, one that will

be addressed in detail within this thesis. The dynamic nature of Grids enables

resources to join the Grid at anytime, leading to an increase in its size that could be

significant and potentially affecting performance and other scalability issues.

Therefore, Grids must be scalable to accommodate this change, expansion and fluid

resource model.

2.2.3. Grid Architecture

Generally, Grids follow a layered architecture which figure 2 illustrates (Foster 2002).

Each layer uses the service or services provided by the levels below them and build

upon those services. In addition, each level is made of many components which

collaborate and communicate between themselves as well as with the lower levels

(Ledlie et al 2003, Amin, Von Laszewski and Mikler 2004, MANET Charter 2011).

16

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

The full text of this image has been removed due to third party copyright. The unabridged version
of the thesis can be viewed at the Lanchester Library, Coventry University.

Figure 2: Layered Grid Architecture (Ledlie et al 2003)

2.2.3.1. Fabric Layer

The fabric layer contains the resources; both logical resources and physical resources,

which Grids facilitate access to. Logical resources include distributed file systems and

a computer cluster (Foster and Kesselman 1999), Physical resources include

computational resources, data and data storage resources and network resources

(Foster and Kesselman 1999). This thesis, as mentioned previously, is mainly

concerned with computational and storage resources.

This layer defines the interface to native resources, and implements low-level

mechanisms that allow the user to access the resources. Once they are accessed, the

resources can be used. These mechanisms include but are not limited to resource state

inquiries and resource management that must be defined and implemented

specifically for the set of resources it interfaces with locally.

2.2.3.2. Connectivity Layer

The basic communication protocols and the core authentication protocols are defined

at this layer. These protocols are required for Grid networking service transactions,

and provide the mechanism to identify Grid resources and users. Protocols at this

layer are derived from the TCP/IP protocol stack. This includes Internet Control

17

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

Message Protocol (ICMP) (Rowstron and Druschel 2005), Transport Control Protocol

(TCP) (Traversat, Abdelaziz and Pouyoul 2003), Internet Protocol (IP) (Saxena,

Tsudik and Yi 2003) and Domain Name System (DNS) (Rikitake 2005).

2.2.3.3. Resource Layer

The resource layer uses the protocols defined in the connectivity layer to control

access, negotiation, and initiation, management, monitoring and accounting for Grid

resources.

This layer only controls individual resources, without regard to the global state of the

system. The resource layer uses the fabric layer (lower layer) to gain access to local

resources and controls them. This is done using the information protocol and

management protocol. The information protocol is used for calling the fabric layer

functions that access and control local resources. The management protocols are used

for negotiation and other management of resources (Foster, Kesselman and Tuecke

2001).

2.2.3.4. Collective Layer

The resource layer is only concerned with individual resources. The global state and

atomic actions of the complete set of resources pooled together is the responsibility of

the collective layer. The collective layer is not associated with a single resource, but is

global in nature and is concerned with communication and interactions between

selections of resources. Moreover, it is also responsible for the management of these

resources. The collective layer is therefore responsible for the coordination between

different Grid resources.

The Collective layer is built on top of the narrow layers beneath it, such as the

resource and connectivity layer. This means that it can implement many sharing

behaviour functions without placing extra requirements on the resources themselves

and using a limited number of the protocols from the layers beneath it. Directory, co-

allocation, scheduling, brokering, monitoring, diagnostics, data replication, software

discovery and partner services are in this layer (Netto and Buyya 2010).

18

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.2.3.5. Application layer

The application layer is the top layer of the Grid architecture. This layer includes the

user’s applications and enables the use of Grid resources. Created by application

programmers, they call the service and protocols provided by the lower layers.

2.2.4. Grid Evolution

In the literature (Al-Fawair 2009), Grid topology evolution is classified into four

distinct stages; clusters, intraGrids, extraGrids and interGrid. These stages are

illustrated in figure 3.

19

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

The full text of this image has been removed due to third party copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

Figure 3: Grid Evolution (Al-Fawair 2009)

2.2.4.1. Stage 1: Clusters

The initial stage of the development and the grounds for the evolution of Grids was

the cluster. Clusters are a collection of pooled resources that were used as a unit to

provide more computing power when necessary. Clusters are still the smallest and

most restricted types of Grids. Cluster computing is built on individual unit processors

and commodity operating systems.

Clusters are used to solve computing problems that were proposed by members of an

organisation and were beyond the capabilities of a single computing unit. Clusters

were implemented locally using the available resources within a single department,

20

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

organisation or group. These resources include personal computers (PCs), storage

devices and servers in particular, hence creating a heterogeneous pool of resources

used for delivering a service that a single unit could not. However, Clusters, as

explained before, are the simplest types of Grids, and while they operate in a

heterogeneous resource environment, the resource pool itself can only be accessed

locally at a single point, using a single queue (MANET Charter 2011).

2.2.4.2. Stage 2: IntraGrids

IntraGrids are distributed systems of clusters within the same organisation or

administrative domain. IntraGrids could span multiple geographical locations within

an organisation, but in some cases could be a collection of clusters within the same

location that are connected together. This allowed organisations to use the basic

concept in which clusters of resources are pooled together and expand it into a larger

model within the same environment, providing a larger scale of resource sharing and

making them available for authorised users. Reliability, security, control over resource

access and authentication were the main reason why the concentration of application

developers was on intraGrids.

2.2.4.3. Stage 3: ExtraGrids

ExtraGrids open intraGrids to trusted parties and partners, allowing them to share

resources and services between each other. These partners are specific and are

usually affiliated with the organisation that shares its IntraGrid. ExtraGrids to Grids

are what Wide Area Networks (WANs) are to networks. Unlike IntraGrids, the parties

that participate in creating an ExtraGrid have differing policies and do not fall under

the same administrative domain. However, the relationship between the collaborating

ExtraGrids is usually close and mutual.

ExtraGrid can provide a vessel to offload off-peak traffic to a trusted third party, for

commercial applications (Crawford et al 2003). Virtual Private Networks (VPNs) are

used to make these resources available. Figure 4, from IBM (2007), illustrates

ExtraGrid architecture.

21

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

The full text of this image has been removed due to third party copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

2.2.4.4. Stage 4: InterGrids

The evolution of Grid computing has led to the current generation of Grids. InterGrids

(Dias de Assun, Buyya and Venugopal 2008) are a collection of IntraGrid and

ExtraGrids that relate in terms of evolution to that of the networking field; from

separated Local Area Networks and Wide Area Networks to the inter-networked mesh

that is the Internet as we know it. This step of evolution has been as significant for

Grid computing.

InterGrids provide the platform for the development of the next-generation of Grid

applications that has started to gather pace recently. This has allowed Grid computing

to start being introduced into the mainstream. This thesis concentrates on the

flexibility and QoS aspects of this evolution phase and is concerned with providing the

required conditions for the success of InterGrids.

22

aa0349
Typewritten Text
Figure 4: ExtraGrid architecture (IBM 2007)

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.2.5. Grids Classification

Grids could be classified according to multiple criteria, one of which is a classification

that relies on their administration purpose and target users. This classification

produces four types, National Grids, Volunteer Grids, Project Grids and Enterprise

Grids. Another classification is based on the Grids' functionality and produces

Computational Grids and Data Grids. All of these types are explained in detail within

this section.

2.2.5.1. National Grids

National Grids utilise high-end computing resources as well as data across a nation to

create a national computing architecture which is distributed, reliable and integrated.

Access to national Grids is controlled by the governments or governmental

institutions responsible for it. National Grids were initially restricted to be used for

governmental projects, this however has changed recently. Currently, National Grids

are also used by educational institutions, research centres and other public sectors

(China Grid 2003, D-Grid 2005).

2.2.5.2. Volunteer Grids

Volunteer Grids are an idea in which internet users are given the choice to volunteer

unused personal resources. These resources are pooled and used towards achieving a

non-revenue scientific, partner or charity goal. In return every volunteer will have

restricted access to the Grid. Examples of these types of Grids include Berkley Open

Infrastructure for Network Computing (BOINC) (Anderson 2004) and SLINC

(Baldassari, Finkel and Toth 2006)

2.2.5.3. Project Grids

Project Grids may span wide areas, potentially across international domains and

different organisations that may be located across multiple geographical areas. These

Grids pool resources in order to provide service to different communities to achieve a

certain scientific or commercial target. Access to these Grids is governed by a privately

chosen administrative authority and is usually limited to the organisations that are

members of that Grid (Particle Physics Data Grid 2001, Chien 2003, UK e-Science

(Grid) Core Programme 2006).

23

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.2.5.4. Enterprise Grids

Enterprise Grids use the resources located within a single organisation and combine

them to produce a powerful, internally distributed computing model. These Grids are

at no cost as they only combine available resources within the same enterprise.

Moreover, administration is carried out by network administrators within that

organisation. Access to these Grids is limited to selected members of that organisation,

usually members involved with large projects of importance to that organisation

(Cappello et al 2005, Apple 2011a).

2.2.5.5. Computational Grids

A computational Grid is a collection of computing resources. These computing

resources represent computing elements and may belong to different owners in

different locations and domains. The computing elements themselves might be

heterogeneous. The initial purpose of these types of Grids was to run compute

intensive applications, in areas where the applications were very large, such as

complex scientific and engineering problems. Moore’s law states that the processing

power of computers double every 18 months. Combining computing elements can

provide the users with possibilities that were not feasible before the Grids (Jacob

2003).

2.2.5.6. Data Grids

Data Grids are designed for the storage and replication of data across multiple sites

allowing access to this data in an on-demand and efficient manner (Jacob 2003). To

illustrate this, the field of medical imaging (Erberich al 2007) is used.

Medical images are substantial in size and considering the number of images taken

every day, the issue of data storage needs to be addressed. On top of image sizes,

patient information and other related information must be stored with that image.

(IBM 2007 and Frost and Sullivan 2007).

The migration from analogue to digital imaging technology has been going on for

some time and new imaging technologies such as Magnetic resonance imaging (MRI)

and X-ray computed tomography (CT) are used globally. For example the number of

CTs taken has grown from 7 million in 2004 to almost 80 million in 2008 (IBM 2007,

Apple 2011a). These technology advancements have provided cost-effective

alternatives to open surgical intervention and so have been used more regularly and

24

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

on a larger scale. Moreover, in parallel, radiologists have started using digital software

systems. This has come at a cost, the amount of storage needed to store Imaging data

has been growing and is now posing a challenge, not only are there more tests

undertaken, those tests have much more data attached to them and that amount of

data is growing (IBM 2007, Apple 2011a).

Another challenge is the amount of fixed content which is retained for a long period of

time, regularly referenced and does not change. This has increased from 308,000

terabytes in 2003 to 1,250,000 terabytes in 2007 taking up massive amounts of

storage in a single geographical location due to the currently used “siloed”

architecture (IBM 2007). The volume of data produced by major institutions doubles

every six months and there are now around 150 petabytes of medical image related

data produced each year (Frost and Sullivan 2007).

Data Grids are responsible for storing the data and providing access to this data to

authorized users. Along with the distributed database systems, which can be

heterogeneous, they provide the infrastructure that is capable of data storage, data

discovery, data handling, data publication and data manipulation.

2.3. Grids in Europe

Over the last decade or so there have been major Grid efforts in America and in

Europe as well as elsewhere. The American effort in general defines the Grid as a

meta-computing infrastructure, while the European school has concentrated on data.

It is worth mentioning that this is not a restrictive statement and there have been both

data centred Grid projects in America such as the DataGrid (Chervenak et al 1999)

and there have been computationally centered Grid projects in Europe such as

EUROGRID (2004).

25

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

CoreGrid (2008), the European Research Network on Grid Foundations, Software

Infrastructures and Applications for large scale distributed Grid and Peer-to-Peer

Technologies, is a major European initiative. CoreGrid has aided in highlighting

European research achievements internationally, both in scientific and academic

domains. Ultimately, the main aim of CoreGrid was to deliver:

"A fully distributed, dynamically reconfigurable, scalable and autonomous

infrastructure to provide location independent, pervasive, reliable, secure and

efficient access to a coordinated set of services encapsulating and virtualizing

resources (computing power, storage, instruments, data, etc.) in order to generate

knowledge” (CoreGrid 2008)

Twenty nine full partners, nineteen countries -eighteen of which are European- have

been involved in the project and in achieving its objectives. Six research areas have

been targeted, these areas are:

• Knowledge & Data Management

• Programming Model

• Architectural Issues: Scalability, Dependability, Adaptability

• Grid Information, Resource and Workflow Monitoring Services

• Resource Management and Scheduling

• Grid Systems, Tools and Environments

With the LHC (2011) running at the CERN (2011) and producing massive amount of

data, Grid computing has been used to store, distribute and analyze 15 Petabytes of

data every year, according to Worldwide LHC Computing Grid (2011). A UK project

that is associated with the LHC is the UK Grid of Particle Physics (GridPP) (2008). The

initial phase of the project lasted for three years between 2001 and 2004 and created

a Grid test bed in the UK which was linked to other test beds around the world. This

test bed was used to collect real data from different experiments around the world,

run by different institutions. The collected data was analysed and used to create,

develop and enhance Grid tools and techniques. As of 2008 the third phase of the

project was initiated and is expected to last through 2011. The UK GridPP is no longer

a test bed and is currently a fully functional Grid infrastructure (Britton et al 2004). It

is collaboration between nineteen UK universities, the Science and Technology

Facilities Council (STFC 2011), the EU and CERN. GridPP is associated with the

following activities:

26

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

• Analysing data generated from the LHC’s Worldwide LCG project. The LCG

(2011) is the worldwide computing grid related to the LHC.

• Sharing experience and expertise with other projects and initiatives in the UK

and Europe.

• Sharing experience and expertise with industry in terms of Grid Development

and Deployment.

• Working with the UKs E-Science centres (STFC 2011)

Another project that is related to the LCG is the European DataGrid (The DataGrid

Project 2004) which was a European Union funded project that concentrated on

providing the infrastructure for carrying out compute-intensive operations and

analysis on large-scale databases, across widely distributed computing domains. The

main achievements of the project were enhancement of middleware stability,

successfully deploying it for use by applications, delivering middleware to the LCG

production infrastructure and providing euro-wide connectivity. Moreover, it has

been utilised by other projects such as UK science program. This project later carried

on becoming the Enabling Grid for E-science (EGEE 2010) project which was built

over the EU Research Network GÉANT (2011) providing researchers with access to a

production level Grid infrastructure. Since 2010, EGEE has been managed by The

European Grid Infrastructure (EGI) (2011).

EGI enables access to different types of resources from around Europe. Established in

2010, the EGI provides an infrastructure that allows world-wide multi-discipline

collaboration, integrates distributed resources, provides reliable services for

computation, data transfer and storage of large data sets and provides the capability

of carrying out data intensive and computeintensive simulations and applications

faster and in a reliable fashion on top of Grid resources. The main objectives of the

EGI are:

• Ensure the long-term sustainability of the European e-infrastructure.

• Coordinate the integration and interaction between National Grid

Infrastructures.

• Operate European Grid infrastructure to provide services to different

domains.

• Coordinate development and research to enhance European Grids and Grid

projects.

• Provide Global services to compliment European services.

27

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

• Link European infrastructure with global infrastructure .

• Collaborate and Cooperate with European industry, users and other domains

in order to promote the usage of Grid technology.

Other projects have been designed to specifically meet the demands of a domain, such

as MediGrid (2005). MediGrid is part of the German Grid Initiative (D-Grid) (2005).

this project has been aimed at highlighting the feasibility of using grid services in

medicine and life sciences.

The UK NGS National Grid Services (NGS 2011) project was launched to provide

researchers across the UK with the resources they may need to complete the scientific

goals of their research. The NGS has focused on reliable, robust and trusted services

by deploying a common Grid infrastructure that combines resources (nodes) and

services from multiple locations.

BEinGRID (Business Experiments in GRID) (2011), financed by the European

commission, aimed at identifying business needs that must be met by Grids. The

results of the experiments have been carried forward into IT-Tude (2011) which

provides a platform for providing services to business and commercial applications

through Grid and Cloud computing.

In general, the successful research carried out within Europe on Grids and the services

they could provide has been identified and recognised internationally and has

provided a base for carrying out further research and achieving advancement in the

field.

2.4. Grids for the mainstream

Grid computing went beyond parallel and distributed computing in providing a new

dimension of computing that is capable of the management of a large number of

geographically distributed heterogeneous resources belonging to different

organisational domains. Exploiting these capabilities is no longer limited to the

scientific domain. Recently, following a utility based model (Foster 2002, Andrzejak et

al 2008), providing resource via Grid for the mainstream (Scale Out Software 2011)

has been introduced. The following sections introduce this concept, along with the

advantages and challenges related to it.

28

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.4.1. Utility Grid Computing

The next evolutionary step in computing in general and Grids in particular is for

mainstream, business-oriented applications, single on-demand usage and individual

users to take advantage of the pool of heterogeneous resources, in the same manner

that these resources have been able to provide services to scientific applications for

the past two decades. Many models for this have been introduced; the most widely

accepted approach is that of utility computing (Ross 2004, Yeo et al 2006, Sun Utility

Computing 2007, Yeo et al 2010).

The utility computing model (Thickins 2004, Li, Li and Lu 2005) turns resources into

services that the customers can pay for according to their requirements included in

contracts between them and the providers of these resources. This model is loosely

based on the other utility systems of modern life, such as electricity, gas and others.

This model offers benefits to both customers and service providers.

There are a large number and range of resources that Grids make available, including

computing resources, storage resources and instruments and these can be logically

coupled to provide the customer with a platform that conceals these complexities and

presents these resources as a single unit. It is of no surprise that the business sector is

interested (Middleton 2009). This model promises computing and storage on-

demand, cutting the cost of upgrading on a regular basis, amongst the other

advantages introduced in the next section of this chapter.

2.4.2. Advantages of Utility Grid Computing

The advantages of Utility Grid Computing are (Foster 2002, Buyya et al 2009):

• Seamless access to computational resources, such as CPUs, as well as to other types of

resources, including storage resources and instrument resources, on demand,

• Improving productivity and reducing processing time, according the requirements of

the organisations, customers or individual users,

• Provisioning of extra resources, on demand and when required to solve problems that

were not possible before. This also eliminates the cost of application specific upgrades,

where resources were acquired for a single application and then remained idle without

usage, incurring a significant amount of cost and resource under utilisation,

• Utilising idle resources,

29

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

• On demand access to a reliable architecture providing an unlimited number of resources

that could be accessed if there are unforeseen circumstances,

• If an investment is made, maximum utilisation is insured,

• Access to resource brokers and scheduling techniques that offer a method for selecting

the appropriate resources and allocating them to the customer.

2.4.3. Challenges of Utility Grid Computing

The challenges of Utility Grid Computing are (Foster 2002, Buyya et al 2009)

• Customers must re-design their IT related procedures,

• Resource providers must re-design their IT related procedures,

• New policies must be negotiated between customers and agreed upon between

customers and service providers, as this model means that users do not have full

control over resources as in previous computing models,

• Service providers must understand the requirements of users, in order to agree on a

policy,

• Varying quality of service parameters must be provided by the service provider as the

users will require support for multiple quality of service attributes. SLAs (Service

Level Agreements) are used as contractual agreements assuring the users of the

delivery of quality of service by the service provider,

• Financial aspects must be considered and a delivering service, using those financial

aspects, must be supported. This mechanism should also support the penalties and

compensations required if there’s a breach in an established SLA,

• Dynamic and flexible resource allocation is required especially in the context of

mainstream applications where requirements (required service and durations) can

change dynamically,

• Non-technical issues such as regional, cultural or geographical location issues must be

addressed, in some instances requiring the organisations and service providers to

change their operational approach and expectations.

2.4.4. Cloud Computing

Cloud computing as a term is derived from “telecom clouds” (Jeffery and Neidecker-

Lutz 2010) which indicates a virtualised infrastructure where the end user has no

knowledge of the underlying architecture or technology. Recently, more attention has

been paid to Clouds as a computing infrastructure when Amazon (2011a and 2011b)

30

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

made resources available for their customers, dynamically and on demand. The

success of this effort by Amazon has led other resource providers to name their own

infrastructures as ‘Clouds’, the most recent of which has been Apple’s (2011b) iCloud.

However, with each resource provider assigning the term ‘Cloud’ to their resource

infrastructure, it has led to multiple definitions of what a Cloud is. In general, Clouds

can be defined as elastic execution environments that provide services by making

resources available to users, both internal and external (Jeffery et al 2010). More

specifically, clouds are primarily platforms that allow the execution of services and

applications across multiple resources in a virtualised environment providing a

specific level of service to the user. Virtualisation provides a layer that shields the user

from the underlying infrastructure and is important in Clouds.

2.4.4.1. Types of Clouds

Clouds can be classified according to the functionality they provide. Following is an

outline of this classification (Jeffery and Neidecker-Lutz 2010):

Cloud infrastructure as a service (IaaS): IaaS provides resources as services to users.

More commonly known as Resource Clouds, they provide data and storage solutions,

such as Amazon’s S3 Cloud (Amazon 2011a), as well as providing access to computing

resources, such as Amazon’s EC2 Cloud (Amazon 2011b).

Cloud Platform as a Service (PaaS): PaaS provides computational resources through a

platform on top of which applications can be developed and hosted. An example is

Force.com (2011) Cloud.

Cloud Software as a Service (SaaS): SaaS provides services and applications using the

cloud infrastructure instead of providing the cloud infrastructure itself. An example is

Google Docs (Google 2011).

2.4.4.2. Cloud characteristics

Earlier in this section, it has been outlined that there is yet to be a clear and standard

definition of what a Cloud refers to, however, there are common characteristics that

are expected to be found in an infrastructure for it to be a candidate to be called a

Cloud. Following is a list of these characteristics:

31

http:Force.com

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

• Elasticity

• Reliability

• Quality of Service

• Adaptability

• Virtualisation

• Multi-tenancy

• Security

• Data management

• Development tools

2.4.4.3. Grids vs Clouds

There has been a debate on whether Grids and Clouds are different and how they

differ (Brock and Goscinski 2010). This has led to a question on whether the terms

are interchangeable (Foster 2008). However, with no specific definition for Clouds,

comparisons have been difficult and have differed in the research (EGEE 2008,

Vaquero 2009).

Concept Development

Grids were preliminarily developed for scientific research and domains, with other

main stream domains later recognising the benefits that Grids can provide. On the

other hand, Clouds were developed for commercial usage from the start.

Overlaps and Common Issues

Resource Grids provide similar services to those provided by Resource Clouds and

therefore, there is an overlap between the two (Foster et al 2008). This overlap

includes research and common aims. This allows the common usage of concepts,

architectures and technological solutions. Virtualisation of resources, scalability,

reliability and interoperability are some of the shared aims between the two

technologies. More importantly and relevant to this thesis, is that both technologies

should ideally be able to guarantee a specific level of QoS.

Grids provide high performance application execution through providing resource

sharing mechanisms, while Clouds provide services on demand by providing access to

resources that give the impression of a single resource cluster. Both Grids and Clouds

32

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

support multiple types of heterogeneous resources and resource types and both

provide virtualisation of resources (Brandic and Dustdar 2011), although the extent of

vitualisation differs.

Ownership

From the last section we have highlighted that Clouds are systems that provide

resources to consumers of a specific party or service provider such as Amazon,

rendering their ownership unilateral. Amazon’s Clouds (Amazon 2011), Microsoft

(Microsoft 2011), iCloud (Apple 2011b) and Force.com (2011) are all unilaterally

owned. On the other hand Grids can be unilaterally or cooperatively owned by

definition, where the resources shared and provided to a user are heterogeneous in

terms or types, location and ownership.

Usability

Clouds are simpler to use than Grids (Jeffery and Neidecker-Lutz 2010), however, in

contrast Grids provide users with more information on task execution and underlying

infrastructure, as well as greater control in setting their requirements for resource

selection. Clouds provide simpler interfaces that restrict the user to a specific set of

operations providing a more usable approach to utilising resources. (Vaquero et al

2009).

Domains

Clouds, in their current format, do not cross administrative domains, in contrast with

Grids which do. This also explains the simpler security models that are applied in

Clouds, as opposed to Grids (Jha and Merzky and Fox 2009) .

Resource management

Grids were the next evolution step after Clusters, where resource management was

centralised. Grids provided a decentralised approach to research management. Clouds

have both centralised and decentralised resource management capabilities, as long as

these resource belong to the same organisation (Vaquero et al 2009).

33

http:Force.com

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

Virtualisation

Virtualisation is an important characteristic of Clouds, which hides the complexity of

the underlying infrastructure and supports a higher level of interoperability by

rendering the infrastructure independent. Moreover, virtualisation also provides the

capability of providing services to the user, regardless of the actual location of both

the user and the resource. While Grids provide a level of Virtualisation that covers

both data and computing resources, Clouds offer a higher level of virtualisation by

adding the virtualisation of hardware resources (Vaquero et al 2009).

Summary

Grids can be defined as unilaterally or cooperatively owned systems that allow

resource sharing. These resources can be heterogeneous and geographically

distributed. The selection of these resources depends on their availability and

capability and they have been used mainly for satisfying the demands of highly

intensive computational tasks typical in scientific experimentation. Clouds are

distributed systems that provide access to unilaterally owned, virtualised resources to

consumers based on a utility model, with an emphasis on scalability.

2.5. Resource Brokers and Schedulers

Grid brokers and schedulers are responsible for relieving the user from the burden of

allocating their tasks to resources and take on this responsibility. Research on

scheduling tasks onto appropriate resources is not new and has been an active

research area in many computing environments (Katchabaw, Lutfiyya and Bauer

1998, Bobroff et al 2008). A Grid Resource Broker is an integral part of Grids, and is

the glue that holds all the pieces together. Brokers are responsible for allocating the

appropriate tasks onto the appropriate resources. This task includes other subtasks,

such as: receiving user task requirements; resource discovery; task allocation; task

monitoring; and result delivery. Moreover, a broker is also responsible for acquiring

information on resources, such as resource architecture, availability and other

characteristics that are important in determining which tasks run on which resources

(Krauter, Buyya and Maheswaren 2002).

Up to the point of the most recent computing infrastructure before Grids, clusters, the

most popular method for scheduling was the use of a central scheduling scheme

34

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

within a single administrative domain environment. This means the users, the

resources and the scheduler are all located under the same administrative domain and

the scheduler is given full controlling power over all resources within that domain.

Moreover, computational resources assigned by the central scheduler are in the same

location as the data and storage resources that hold the data required by the

application. Applications are then carried out. This means that all users must submit

their tasks to the central scheduler, which then performs optimisation based on

achieving higher system utilisation, higher priority service for users and their

satisfaction, as well as other criteria that concentrate solely on enhancing the overall

performance of the system.

In this work, the concentration is on meeting the user’s QoS requirements when

running their application on the multi-organisational, geographically dispersed and

diverse resource environment or more simply, a Grid. Moreover, the model presented

is flexible and could be implemented for different domains.

In general:

• Resource Discovery: The first stage of scheduling which involves the identification of

candidate resources. The general filtering process depends on whether the user has

access to these resources and whether they are available. However, this filtering

process should also take into account the users’ requirements. This is elaborated upon

throughout this thesis.

• Resource Selection: Once the resources are filtered, the scheduler selects the resource

on which the task will execute. This can be done in multiple ways and according to

multiple criteria. This selection process is a significant part of the proposed approach

within the proposed model and will be explained in detail throughout this thesis.

• Task Allocation: Tasks are allocated to the selected resources from the previous steps.

File staging, monitoring and returning the results happens at this stage of scheduling.

2.5.1. Scheduling with QoS

The potential capabilities of Grid computing have been recently highlighted and

introduced into the business-oriented domains (NGG 2010), providing an alternative

cheaper method for accessing heterogeneous resources that may be geographically

distributed and owned by multiple and independent administrative domains. This

35

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

distribution has presented an open research field that is directly relevant to

distribution in computing and that is the coordination of resource allocation according

to user requirements, under the condition that this allocation process is both fair and

is in accordance with the policies of both sides. The assignment of applications and

tasks to distributed resources, henceforth referred to as scheduling, is the one of the

main problems that need to be tackled within the Grid computing.

The dynamic and complex nature of the Grid computing infrastructure not only

complicates the scheduling problem, but also justifies the need for QoS introduction

into the scheduling procedure to guarantee the requirements of both sides; the user

(individual, application or multiple applications) and the resource provider or service

provider (Dong and Akl 2006).

Quality of Service requirements and other service driven attributes must be taken into

consideration by the broker. Additional or different QoS might be related to Data

resources where data services play an important role in data resource discovery. As

well as data size and storage location, other data distinct QoS such as access control,

modification control and permissions must be considered.

The Grid Scheduling problem is usually viewed as a two-tier problem. The first tier

involves the selection of the appropriate resource from the pool of accessible,

distributed Grid resources and the second tier involves the allocation of the tasks to

be scheduled to the resources selected in the first tier. All scheduling operations are

carried out by the broker.

2.5.2. Definitions

Schedulers, in general, can be two types:

• Centralised: Dong et al (2006) define centralised schedulers as those that are based

within a single Grid infrastructure; receiving requests by all users and assigning those

requests onto the resources in the Grid, accordingly. A Grid scheduler gets a

significant amount of help from information repositories that hold information on all

resources available for selection. A centralised Grid broker is responsible for the

entire resource scheduling process and retains control over all submitted tasks and

the resources connected to it. This approach is effective for small infrastructure

connected to resources within the same administrative domain. One of the main

concerns with this approach is that it provides a single point of failure (Kertesz et al

36

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2007), where all the operations depend on the successful operation of the central

broker. More importantly, it could not support or sustain a dynamic environment

where users are allowed to specify and submit specific requirements.

• Local: These schedulers are located locally within and perform local scheduling. These

distributed entities create a distributed scheduling architecture that aims to utilise

resource around the Grid. This approach eliminates the single point of failure as well

as providing a scalable solution that can tailor to different environments.

For clarification; the following are a few definitions of terms that will be used

frequently over the next few sections:

• A task is a single and the simplest part of an application that is to be scheduled, i.e. the

tasks are the building blocks of applications.

• An application is a complete set of related tasks that when combined provide the

definition of an application.

App = {task1 ∪ task2 ∪ … ∪ taskn}

• A resource is the unit that carries out the operations on tasks. Resources can be of

many types; however resources in this thesis are limited to two types: computational

resources, storage resources and networking resources. The latter is the most

problematic resource type and is considered to be a bottleneck. Therefore, it requires

a larger amount of resource management.

• A location is the collection of resources that are governed by the same organisation

and are based at the same location.

• A virtual organisation is an entity that controls a collection of resources. Multiple

virtual organisations could belong to the same administrative domain and adhere to

the same policies.

• Scheduling is the operation of receiving the request for resources, discovering the

appropriate resources, selecting the required resources and allocating tasks onto

these resources.

Currently most scheduling algorithms and models available are best effort (Cao et al

2003, Deelman et al 2004, Ma et al 2011) scheduling mechanisms and are insufficient

for the demands of mainstream applications. The lack of dynamic and adaptive QoS

support in current grid scheduling is the purpose this research has been undertaken.

37

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.2.1. User Satisfaction Driven Scheduling

User driven scheduling has also been explored within Web services (Sun, He and Leu

2007). Some scheduling algorithms adopt the satisfaction of the user as the criteria for

their operations and accordingly try to minimize both performance measures as well

as cost for the users and their applications. Currently, most schedulers attempt to

reduce the time it takes the application between submission and completion. In fact,

this period, the makespan¸ is considered one of the most popular performance metrics

in Grid computing.

The makespan is defined as the time calculated from when the user submits the first

task, until the completion of all tasks and the return of the results to the user. Many

algorithms have adopted the definition above as a measurement of the performance of

those operations and have introduced scheduling algorithms accordingly (Munir, Li

and Shi 2007, Selvarani and Sadhasivam 2010). Reduction in the makespan came with

a higher cost for the consumer, an issue which was not addressed. The users became

more aware of this issue and concentration shifted from shortening the makespan

only to minimising the cost as well as shortening the makespan. This led to the

introduction of a more dynamic Grid scheduling approach that tailored to both

providing the user with performance as well as maintaining an upper limit to how

much they wanted to spend (Kim et al 2007, Dong and akl 2006).

Complex scheduling requirements as well as the adoption of the Grid computing

environment for mainstream applications is the reason why the introduction of QoS is

vital for the success of these applications on Grids and a new scheduling approach is

required.

2.5.2.2. Resource Provider Satisfaction Driven Scheduling

Other types of scheduling algorithms aim at providing the resource providers with the

best available utilisation of their resources and maximise their economic profit. The

utilisation of resources is the amount of time that the resources are allocated to a

specific task and are not idle. Some of the major scheduling solutions, such as Condor-

G (Condor® Project 2011) adopt this approach as their scheduling criteria.

38

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.3. Broker Types

There are many types of Grid brokers that can be classified according to their task

handling capabilities, components and QoS support. Figure 5 illustrates taxonomy of

different types of Grid Brokers:

Figure 5: Broker Component Types

2.5.4. Scheduling Models

Resource discovery and scheduling are supported by the scheduling responsibilities of

Grid brokers, rendering matchmaking as the main operation for Grid brokers. Figure 6

illustrates the taxonomy for different scheduling models implemented within Grid

Brokers:

Figure 6: Scheduler Model Types

39

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.5. Multi-Broker Solution

The need for a flexible solution within a Grid requires that this solution be carried

across multiple domains and must therefore be capable of dealing with the dynamic

and heterogeneous nature of Grids. Currently, available tools and resource

management solutions are coupled with specific applications or execution

environments, meaning they lack the flexibility sought.

The layered architecture of Grids, introduced earlier in section 2.2.3, means that the

flexibility of any solution can target a specific layer for implementation. The first layer,

or the resources layer, holds all the software and hardware components. These

resources are varied in nature and therefore, no solution is necessary at this level. At

the Grid middleware layers there have been some solutions implemented such as

UniGrids (2006), however they are restricted to specific operational requirements, in

this case between Unicore (2011) and Globus (2011). To tackle this issue, the solution

presented in this thesis is implemented at the top levels (the application and collective

levels) which provide an entry point to a Grid and its interface with users, as well as

taking advantage of middleware services to complement the solution. This high level

user driven approach to designing the model has been tailored in order to meet the

flexibility requirements while still maintaining a guaranteed level of QoS with a QoS

model that can be implemented in different environments.

The solution proposed implements a multi-broker structure which allows different

brokers to communicate with each other on behalf of the user once they submit their

requirements. The advantage of this implementation is that it allows the expandability

of the solution to incorporate different brokers and provides access to different types

of resources in different domains to users and applications. In general this allows the

brokers to control the operations required, including retrieving user requirements,

locating the appropriate resources, submitting tasks and returning results inclusive of

related operations such as data movement.

40

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.6. Examples

This section introduces a number of examples in Grid brokering efforts, projects and

models:

2.5.6.1. Nimrod/G

Nimrod/G (Buyya 2009), illustrated in figure 7, is a hierarchical system based on

computational economy. It is designed for the management and running of parameter

studies on computational Grids. Nimrod/G uses 4 adaptive algorithms:

• Cost optimisation

• Time optimisation

• Cost-Time optimisation

• Conservative time optimisation

The full text of this image has been removed due to third party copyright. The
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry
University.

41

aa0349
Typewritten Text
Figure 7: Nimrod/G (MeSsAGE Lab 2010)

aa0349
Typewritten Text

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.6.2. Condor-G

Condor-G (Condor® Project 2011) falls in the centralised scheduler category. It is a

high throughput centralised scheduling system that allows the user to take advantage

of both dedicated and non-dedicated computing resources, which makes Condor G a

more complex and different scheduler. The use of non-dedicated computing resources

means that a task can be dropped before it is completed in a very heterogeneous

environment. This system, developed in the University of Wisconsin provides the

following functionalities:

• Task submission to Grid resources

• Submission of task related input/output files and arguments required for task

execution

• Retrieving task status

• Cancelling tasks while executing

• Allows users to specify a single location for execution of their tasks

• Reporting back to users, via email feedback on the success or failure of tasks

• Creating a task history log

Condor-G can manage tasks running in distributed locations using a Condor queue and

serve as a front end to computational Grids. While Condor allows users to decide at

which Grid site to carry out their tasks, if there are many sites to choose from and a

decision is not made, Condor-G uses a matchmaking service to decide the Grid site

where the tasks are to be carried out.

2.5.6.3. Gridbus Broker

Gridbus (Cloud Computing and Distributed Systems (CLOUDS) Laboratory 2011) is a

data Grid broker designed with the main aim of scheduling distributed data Grid

applications onto Grid resources. Based on an economical model, it takes into

consideration the time and budget constraints of the user when scheduling

applications on resources. The Gridbus broker focuses on the scheduling of specific

parameter sweep applications with time and cost constraints. This means that the

scheduling process is a greedy application level process. It has been developed within

the Gridbus project, at the University of Melbourne, Australia.

42

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.6.4. Gridway

Gridway (Distributed Systems Architecture Group, Universidad Complutense de

Madrid 2010) is a model that performs task submission and execution monitoring.

Task execution using this model is a dynamic process that adapts to resource

conditions and applications demands for enhanced performance. This is accomplished

by providing resource migration capabilities if there is a noticeable performance

degradation or resource failure. Figure 8 shows the Gridway architecture.

The full text of this image has been removed due to third party copyright. The
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry
University.

Figure 8: Gridway Broker (DSAG 2010)

This model has also been used as a method for enabling multi-level hierarchical meta-

scheduling structures, where each group of resources is handled as another resource

in a recursive manner.

43

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.5.7. Solution Classification

A comparison between available implemented brokers, with regards to the level they

have been implemented at, is detailed in table 1.

Table 1: Comparison between current brokers based on implementation level

Solution Low-
Level

High -Level

Middleware Application
Girdbus X
Gridway X
GTbroker X
JSS X
HPC-
Europa

X X

P-GRADE
Portal

X X

Koala X

2.6. QoS

Users usually would like to specify a set of requirements, guidelines and constraints,

collectively referred to as QoS, governing the resource allocation process. In some

cases, the user may wish to specify the overall end-to-end QoS, therefore the request

for QoS is over all tasks submitted as opposed to the QoS specified for each individual

task.

The proposed model employs a resource broker or equivalent entity. Once the broker

receives the user’s tasks and their requirements, a search is initiated for the resources

that are: available; meet the user’s requirements; do not exceed the user’s constraints,

and, are within the permissions of said user. Users that do not set requirements are

called best effort users. The definition of QoS relates to the agreements between a

service provider and their customers which contain a fixed set of well understood QoS

requirements requested by the customers.

44

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

Quality can be defined from the following three different perspectives and views

(Deora et al 2003, Stankiewicz, Cholda and Jajszczyk2011):

• Quality of functionality: Quality is considered in terms of the amount of

functionality that a service provider offers to the customers. It characterizes the

design of an entity and can only be measured by comparing it against others offering

similar functionalities.

• Quality of conformance: Quality is considered in terms of meeting user

requirements and providers meeting their commitments and specification. Quality as

conformance, which can be monitored for each service individually, usually requires

the users’ experience of a service in order to measure the ‘promise’ against the

‘delivery’.

• Quality of reputation: Quality is considered in terms of the users’ perception of a

service in general. This perception is developed gradually over the time of a service

provider’s existence. Quality as reputation can be regarded as a reference to a service

provider’s consistency over time in offering both functionality and conformance

qualities, and can therefore be measured through the other two types of qualities over

time.

2.6.1. QoS in Grid Computing

The heterogeneity of Grid resources, their distributed geographical locations and the

different administrative domains they belong to are shared between many users,

dynamically and simultaneously. Recently, many business-oriented commercial

applications have emerged. These applications can benefit from Grids, especially

applications that have high computational and storage needs. The success and failure

of these applications to Grids, depends on whether users can be guaranteed that their

specific requirements are met or not (Tserpes et al 2007).

This issue becomes more important in the dynamic environment of Grid computing

where resources can enter and leave at any time. Resource load and availability vary

constantly. The delivery of a guaranteed set of QoS to the user is vital for the success

of mainstream applications on Grids.

45

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.6.2. Related Work in QoS

QoS in networks has been researched extensively, referring to the networks ability to

deliver the service asked of it within pre-set guidelines. More specifically, QoS as a

concept was a field in which parameters were introduced to measure network

operation between two points connected directly together. These parameters include

(Katchabaw, Lutfiyya and Bauer 1998) jitter (unwanted variation of one or more

characteristics, such as the variation of delay between packets traversing the same

route), packet loss (the number of packets that are sent but fail to reach the

destination) and throughput (the rate of packets going through the network and

reaching their destination successfully). Recently, with the Grid expanding towards

different commercial domains (Buccafurri et al 2008, Fölling et al 2010), the QoS of

Grids has become an active field of research. The majority of currently existing QoS

efforts in Grids concentrate on local optimal QoS scheduling. Although these

approaches do take user information and resource information into consideration

when allocating resources to different tasks, the concentration is on local resources.

Current approaches are not designed to meet Global requirements of QoS scheduling.

Our proposed model provides a direct solution to this issue, while maintaining a local

approach to scheduling. Golconda and Ozguner compared different QoS based

scheduling efforts (2004). Al-Ali et al (2004), propose the Grid QoS Management

model (G-QoSM). Their model uses service abstraction in the Open Grid Services

Architecture (OGSA) and extends it for QoS properties. G-QoSM reserves quantitative

resources, such as CPUs, then allocates and monitors these resources, independently.

Another, reservation based approach is presented by Venugopal et al (2008) where

they use the alternate offer protocol to make advance reservations. In both these

approaches, it is assumed the all resources involved understand the reservation and

negotiation protocols.

A quorum based resource allocation and management scheme is introduced by Nam

and Youn (2004). Each resource Quorum includes two entities, a middleware entity

and a network entity. Both of the entities can satisfy a user’s QoS requirements. A

heuristic algorithm is proposed by them in order to optimise the performance and

cost of every Quorum. Virtual Application Service (VAS) (Keahey and Motawi 2004) is

essentially an extended Grid Service with interfaces that deal specifically with the

negotiation of SLAs. The main objective of VAS is to ensure that time-sensitive

applications are carried out within the time that they are allowed and before a specific

deadline, hence the user only needs to provide the time constraint when submitting a

request. The system contains application information and application modelling

46

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

information that are used to determine the computation resources needed to carry

out a task, and reserves them. The General purpose Architecture for Reservation and

Allocation (GARA) (Roy et al 2004) is a general purpose architecture proposed.

GARA’s simple and useful reservation capability has made it popular in the Grid

community with its capability to CREATE, MODIFY, BIND and CANCEL reservations.

Moreover, it supports flow-specific end-to-end QoS specification and resource

monitoring. Curescu and Tehrani (2005) propose an approach where the bandwidth

is assigned such that the utility of the whole process, over time is minimised. Ghosh at

al (2003) propose QoS optimisation algorithms for allocating resources to tasks in

multi-processor environments. Their algorithms pick a QoS reference point, identify

the number of replicas required, create the replicas, place the replicas and finally

identify the number of processors required in order to maximise overall system

performance QoS. Dogan and Ozguner (2004) proposed a solution to allocating

individual resources according to multiple QoS requirements (Atakan et al 2006). In

their model, the cost of resources is a main factor and is not a constant, but varies

during the scheduling process.

A model providing service selection mechanisms based on QoS is presented by Taher,

Khatib and Basha (2005). A selection manager is used by Yu and Lin (2005) as a

solution for the service selection problem in complex Grid services with multi-QoS

requirements. The Selection Manager can be implemented as a combinatorial model

or a graph based model. An heuristic is proposed for the combinatorial model based

on the algorithms used for solving the multi-option, multi-dimension knapsack

problem, also used by Wieczorek et al. (2009), who propose an approach for

modelling scheduling problems as an extension to the knapsack problem solution. The

graph model, on the other hand, is based on the algorithm proposed as a solution to

the multi-constraint optimal path problem (Yu et al 2005). The main objective is

maximizing the utility of the system. To achieve this, a utility function is proposed and

the algorithm's attempt at maximising this function is intended to increase user

satisfaction. Their approach is specifically tailored for the user, without taking the

resource provider into consideration. A generalised resource management model is

presented by Czajkowski et al (2002) where the Service Negotiation and Acquisition

Protocol (SNAP) is used to map resource interactions to platform independent

Service Level Agreements (SLAs)

PBS (Altair 2009), LSF (Platform 2009), SUN Grid Engine (Sun Grid Engine 2006) and

Condor (Condor® Project 2010) are queuing systems that can be used, efficiently, for

delivering a single specific requirement. If all tasks and their requirements are known

47

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

in advance, a static approach (Pinedo et al 2005) can create a full schedule for all the

tasks at the same time meeting multiple user requirements. Other static approaches

include CCS (Hovestadt et al 2003) and GORBA (Suß et al 2005). They both use

advance reservations of resources that schedule a sequence of related tasks. However,

as they are static approaches, a complete recreation of the schedule is required, if

there is a change in resources while executing the sequence of tasks. For example, if a

resource fails while execution is in commencement, the whole schedule must be

recreated from the beginning. Triana (Taylor 2006, Oinn 2004) , Askalon (Askalon

Project 2010), Jopera (Pautasso et al 2004), eXeGrid (Hoheisel 2004) can be used in

the development of tools, languages and interfaces used for the composition of

workflows, while Pegasus (Deelman et al 2005) and LEAD (Askalon Project 2010)

concentrate on supporting the creation of workflows for large scale Grid applications.

Taverna (2011) is a system which is concerned with semantic Grid workflows and is

implemented as part of the myGrid (2011) project. The aim is to develop sophisticated

middleware technology tailored for bioinformatics (myGrid@EBI 2002) in biology

and provides fault tolerance solutions and implements a Graphical User Interface

(GUI) for the creation and representation of workflows.

In terms of task allocation, in large-scale Distributed Computational Grids, the simple

act of submitting a task can be made very complicated by the lack of standards. Some

systems, such as the Globus GRAM approach (Czajkowski et al 1998, GRAM 2011),

wrap local scheduling submissions but rely heavily on local parameter fields. Ongoing

efforts in the Global Grid Forum address the need for common APIs (GGF 2003a).

Most often, a user will run Secure Copy Protocol (SCP), File Transfer Protocol (FTP) or

a large file transfer protocol such as GridFTP (Allcock et al 2002) to ensure that the

data files needed are in place. In a Grid setting, authorization issues, such as having

different user names at different sites or storage locations, as well as scalability issues,

can complicate this process. Caminero et al (2011) propose a meta-scheduling

strategy that takes network characteristics into account. The main objective of their

strategy is for it to be scalable and manage QoS in Grid systems. A fuzzy clustering and

multi-group classification of QoS for web services approach is implemented by Lin et

al (2011) in which a model for marketing and selecting web services based on a multi-

group consumer consensus is presented.

The efforts described above have achieved a number of advances in Grid Computing in

general, and in resource operations and QoS in particular. Relevant methods have

been achieved with success. This work builds on the previous work introduced and

incorporates them into it, in order to propose a flexible generic model that can carry

48

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

out resource operations for QoS delivery across domains and present an

implementation model that could be utilised to accommodate the requirements of

these domains.

2.6.3. Projects Related to Market Oriented and Commercial Grid Computing

This section presents a number of examples of efforts, projects and models revolving

around commercial Grid environments. These projects reflect the growing expansion

trend for Grid Computing into different domains, allowing for many types of

applications to be executed. These projects highlight the need for a model that

satisfies the general criteria required for resource operations and underline the

relevance of this research.

2.6.3.1. GridEcon

GridEcon (2006) is a European funded project exploring the economic challenges in

adopting Grid Computing and Cloud Computing. Building a price based model that

matches user requests with resources according to the following:

• The quantity of resource units

• The period of time over which the resource is required or available

• The minimum selling price or the maximum buying price

• The expiry date of the request to buy or sell resource

2.6.3.2. SORMA

SORMA (2009) - Self-Organizing ICT resource Management is a funded project that

aims to:

• Create a model for realizing self-organizing resource management

• Define an economically sound market structure

• Provide resource users with intelligent tools to access the Open Grid Market

• Provide resource owners with economically sound sustainable and customizable

business models

49

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.6.3.3. FinGrid

FinGrid (2010) is a German research group and consortium of 6 businesses. Its main

tasks are to:

• Evaluate the market and compile empirical recommendations and investigate service-

oriented Grid cases.

• Come up with different prototypes that are used to demonstrate the feasibility of our

concepts in terms of security, accounting, monitoring and pricing.

• Evaluate different types of pricing mechanisms that seem to be applicable for the

financial service Grid.

• Propose a solution for how a financial on-demand Grid should utilize both unused

resources within a department as well as allow the spontaneous discovery and use of

computational resources in other departments or even other organizations.

• Investigate the issues involved for providing support for service level agreements in

financial applications.

2.7. Summary

This chapter contained a comprehensive review of literature covering aspects related

to this research and this thesis. Grid computing as a concept, its development,

architecture, challenges, evolution and projects have all been covered, this was

followed by a QoS definition as well as efforts and related work in that area. Finally,

examples of current ventures in Grids and Grid computing where the potential user

base is broad and covers multiple areas and domains, including those that are

business-oriented and commercial, were given. Within this chapter the significance

and the relevance of this research relative to current trends in Grid computing has

been highlighted. The following chapters of this thesis are dedicated to explaining the

environment, approach and methods employed by the novel flexible model proposed

in this thesis to accommodate QoS in Grids (BGQoS).

50

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

CHAPTER 3: MODEL

CONCEPTS AND

ENVIRONMENT

51

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

3.1. Introduction

This chapter introduces the proposed model BGQoS, its high-level components and its

environment. Definitions and the terminology used within this thesis relative to

BGQoS are also introduced within this chapter. Moreover, this chapter also introduces

the multi-tier user model which has been used within BGQoS. This chapter concludes

with an overview and general description of the design and operation of BGQoS,

building the foundation for this thesis.

3.2. Commercial and Mainstream Grid Computing

The infrastructure of inter-connected Grids provides the user referred to within this

thesis as a Grid Resource Consumer (GRC) with the option of acquiring resources that

may not be in the same location or administrative domain, as a commodity or utility.

More attention has been turned towards providing GRCs with Grid resources, on-

demand as utilities, opening the door for a new a paradigm that has picked up pace

and has garnered a significant amount of attention within the research community

over the past few years, Utility Grid Computing (Ross 2004, Yeo et al 2006).

This new paradigm of Grid Computing has provided a platform for commercial entities

to use Grid resources to run their applications, reliably, efficiently and on-demand;

however, this has presented a number of challenges. One of the most important

challenges is that of guaranteeing the level of QoS promised by resources and another

is hiding the complexities of the inter-connected Grid infrastructure from the GRCs.

There has been a significant amount of research that has been and is still being

conducted on QoS for Grids in scientific communities (Jeffery 2004). However QoS for

Grids in scientific communities are rigid and do not provide the versatility required

(Middleton et al 2009). It has been noticed that extending these concepts for the

commercial, business and personal use of Grids has not been paid sufficient attention

(Fölling et al 2010). Moreover, a flexible and general model that is capable of dynamic

resource allocation for different types of GRCs within the guidelines and policies of

organisations while hiding the complexities is missing. BGQoS attempts to fill that

void, by providing a solution for QoS guarantees within this new Grid environment

while hiding the complexities that are presented by the underlying infrastructure of

Grid computing, as well as being an flexible and expandable model that can provide a

solution to multiple domains within the target environment.

52

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

3.3. Problem Description

Mainstream, commercial and business-oriented applications would benefit from the

access to the heterogeneous pool of resources provided by Grids (BeinGRID 2009).

However, this progression within Grid computing coupled with the combination of

complex Grid infrastructures, the different locations of resources and the different

providers referred to within this thesis as Grid Resource Providers (GRPs) has

presented a number of challenges that need to be addressed, before a successful

integration takes place. Moreover, it is important that both GRCs and GRPs achieve

their goals. GRCs would like a specific level of QoS from the resources while

attempting to lower the cost of resource acquisition and reduce execution time, while

GRPs would like to utilise their resources to their maximum potential while

attempting to increase the revenue and impose their specific usage and allocation

policies. This may raise a conflict of interest and a mutual understanding between

GRCs and GRPs must be reached. This communication process between a resource

requester and a resource provider (GRCs and GRPs) is not a simple one and it too

raises a number of challenges.

3.3.1. Coordinated Resource Allocation

Current resource allocation and scheduling techniques are diverse, and differ between

different domains. Different resource brokers (Krauter, Buyya and Maheswaren 2002)

and schedulers are implemented for this purpose and provide an uncoordinated set of

resource allocation methods. This diverse approach to scheduling raises the

possibility of many problematic scenarios and inefficient ones as well. Moreover,

current approaches do not utilise resources to their potential and do not provide the

GRC with the service that could be otherwise achieved with agreement. This means

that brokers must communicate with the GRC as well as with each other to achieve co-

existence and coordination between different Grids. This introduced a new concept

called an interGrid where the definition of a single Grid could be expanded to include

the collective resources provided by different systems where each could be a single

Grid in its own right.

3.3.2. Negotiation

The complex, co-dependent and co-operative relationship between GRCs and GRPs in

different fields of computing has been explored, but it has perhaps gained more

importance with the introduction of Web Services where the relationship between the

two parties had to be redefined. Identification and agreement were required before

53

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

the actual service delivery occurs. These agreements are reached via a negotiation

process where service consumers request the service they require and the service

providers make an offer that the client can accept, turn down or negotiate. Once an

agreement has been reached, a contract, in most cases called a Service Level

Agreement (SLA) is drafted containing information on the client requesting the

service, the service provider and the service being provided. Non-functional

requirements, also called QoS, were included in these agreements. This model has

been carried forward to Grids and the negotiation process is even more important.

The inherent complexity and heterogeneity of Grids makes this a much more difficult

challenge. The simplification of an efficient process between GRCs and GRPs is vital

and cannot be understated.

3.3.3. Co-allocation of Resources

The co-allocation of resources could be defined in more than one way. It could be

defined as the allocation of multiple types of resources belonging to a single provider,

to a single consumer, application or organisation. It could also be defined as the

allocation of different resources belonging to different owners to a consumer or an

organisation. Both of these definitions of co-allocation scenarios could occur in Grids

and they must be addressed. The challenge in co-allocation (Li al 2007) of resources

not only lies in the complexities related to the different types of resources that are

requested and should be allocated, but with the coordination between GRPs to

provide the GRC with resource co-allocation capabilities (Netto and Buyya 2010).

3.3.4. Applications

It is assumed that applications for the mainstream to be deployed onto Grids will

require the co-allocation of resources described above, in a dynamic and in an on-

demand manner. These applications are defined as a multi-requirement, multi-

objective sequence of related tasks. These tasks require an execution environment

that is created at the top level of the Grid architecture and allows these applications to

take advantage of the resources that are provided by Grids. The dynamic nature of

application deployment is coupled with the dynamic nature of co-operation between

Grids and GRPs.

54

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

3.3.5. QoS Guarantees

The QoS requirements of mainstream GRCs are an optional set of requirements that

are chosen by authorised users and applications. As a default GRCs will use a Best

Effort approach (Cao et al 2003, Deelman et al 2004, and Lovas et al 2004) and there

have been efforts being made at improving Best Effort within Grids (Gallard et al

2008). When they are optional some GRCs may opt for a Best Effort approach or may

not be authorised to do otherwise. QoS remains an essential, necessary and a vital

component of this Grid environment. There are a number of challenges that need to be

addressed:

• GRCs must be able to specify their requirements, if they are authorised to do so.

• Appropriate resources must be allocated.

• Applications must be carried out on resources that meet the GRC requirement.

• The GRC must be guaranteed the level of QoS the GRP promise from their

resources.

• Appropriate monitoring, feedback, failure detection and reallocation methods

must be in place.

3.4. The Model Environment

Large scale Grids are typically composed of a large number of heterogeneous and

geographically distributed resources located in dynamic environments under multiple

administrative domains and controlled by different organisations and entities.

Managing QoS in these environments has become more challenging and relevant

because of the recent Grid expansion into business-oriented and consumer-oriented

domains (Tserpes et al 2007). Moreover, unlike scientific environments, the GRCs

targeted by BGQoS are assumed to be mainstream users and therefore cannot be

expected to have knowledge of the required protocols, standards and negotiation

processes. This new environment is the focus of BGQoS, moving away from the

scientific domains, where Grids, applications and QoS are specific for a certain

application and into the more general domain of applications where a specific set of

QoS, a scalable and flexible model and standard set of definitions can be used by

multiple applications in multiple domains. This emphasises the need for a flexible

model, which is one of the main objectives of BGQoS.

55

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Previous work and research has been conducted under the headline of resource

discovery where specification languages and algorithms were introduced. Given a

resource specification; a resource selection algorithm attempts to find resources using

available resource information and the applications attempt to obtain these resources

by directly negotiating with resource vendors or managers. These approaches do not

provide QoS at a high level, as they only attempt to minimise the makespan or overall

completion time of an application (Czajkowski et al 1998, Foster et al 1999, Fahringer

et al 2005). The expansion of Grid Computing has introduced new Grid concepts such

as Utility Grid Computing (Elmroth et al 2005, Grid Economics and Business Models

2006) where resources can be requested for applications in different domains

operating under a utility based model. This expansion means that previous

approaches prove inefficient in dealing with resource selection in a more general

context and prove inefficient in dealing with preventing and handling failures.

BGQoS aims to provide a flexible QoS-based novel approach with integrated resource

discovery, resource selection and resource allocation components. Resource discovery

is operated as a GRC request guided search instead of the NP-hard constraint problem

used for scientific applications, specifically tailoring resource discovery to high-level

QoS descriptions provided by the GRC. The GRC as an entity is responsible for

completing the QoS description of the resource requirements phase. Each GRC is

placed in our newly proposed hierarchical architecture which can be scaled to a

specific domain or organisation and according to their specific policies; each tier of the

architecture represents the obligations and authorisation level for every one of the

GRCs belonging to it.

BGQoS therefore presents:

• A novel approach for resource selection based on resource discovery via the

description provided by the GRC for their QoS requirements. The GRC is the focal

point which steers the resource discovery phase and is also the main guideline for

resource selection. This is done when the resource discovery phase yields a list of

resources or resource sets that could potentially provide the GRC with their

requirements. However, BGQoS allows the GRC to specify a set of constraints within

their description when a request is made. These criteria, along with other domain

specific criteria that could be introduced, are used for ranking resources for selection

purposes. The highest ranked list is to be chosen, the rest of the potential lists are

stored in databases that can be accessed for re-allocation and migration purposes, if

necessary.

56

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

• A novel approach for reallocation using integrated enhanced stop/start and resource

swapping techniques if there is resource failure to contend with and/or there is the

situation where the level of specified QoS is not met. This is detected through

monitoring the resources and task execution until application completion and session

termination.

The resource allocation process within Grid Computing has been generally split into

two distinct phases: (1) resource discovery or resource selection; and (2) resource

allocation. However, when BGQoS was designed and implemented, a separation

between the resource discovery and resource selection operations has been

implemented, each defined to be associated with a distinct operational phase. This

distinction between the two phases has allowed for the introduction of a more

accurate resource operational model. In other words, the approach used within

BGQoS decouples the resource specification and discovery process from resource

selection, introducing an explicit method for resource selection. This has allowed

BGQoS not only to locate the appropriate resources but select the most appropriate in

order to execute tasks and applications.

3.4.1. Resource Discovery, Selection and Allocation

The definition of BGQoS entails a duty to identify, select and allocate the appropriate

resources to the GRC, by establishing and maintaining communication between them.

This involves three steps:

Step 1:

Resource Discovery: Acquiring a list of resources that meet GRC’s criteria, these

criteria include the types of resources and the level of QoS required. This discovery

process uses a database that store resources information and location.

Step 2:

Resource Selection: Once a list of appropriate resources is accumulated, the selection

process is initiated. A preliminary filter is initiated followed by the selection of the

appropriate resources. BGQoS introduces a novel local selection mechanism that is

expandable to a global selection if the local resource cannot meet the requirements of

the GRC’s application.

57

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Step 3:

Resource Allocation: Once the resources have been selected the tasks are allocated to

the selected resources and are executed.

3.5. High-Level Components

The GRCs submit the tasks that are to be carried out using the resources while

maintaining a working relationship with the GRPs. The environment and

requirements for BGQoS have been introduced earlier, explaining that this

environment is tailored to dealing with consumers and applications within a business

context, requiring on-demand services from resources using an advertise-select-

allocate model that will be introduced within this thesis. Following is a list of these

high-level components and their definitions:

3.5.1. GRC

GRCs are the clients that need to run applications using Grid systems and the access to

resources they provide, and were referred to as users in our previously published

work (Albodour et al 2008, Albodour et al 2010). In terms of the implementation of

BGQoS, a GRC should be viewed as a profile which represents a real-life user.

A connected set of tasks form an application. The successful completion of an

application is achieved if all the tasks have individually been carried out successfully.

The definition of successful task execution is dependent on the application itself and

its requirements.

If Tasks = {𝑇𝑎𝑅𝐵1, … , 𝑇𝑎𝑅𝐵𝑑 } R make up an application and they are completed

successfully, then the application is considered to have been carried out successfully.

A GRC states the number of tasks that make up an application prior to submitting the

tasks and execution request. This is important for time and cost estimation,

introduced later within this thesis.

The necessities of the target environments require that there should be applications of

different types, in terms of: Resource Access; i) Local resources only, ii) All resources

(local and global) and QoS; i) Guaranteed QoS, ii) Best effort.

A multi-tier GRC architecture has been implemented, with each tier defining the

capabilities of each GRC, their access privileges and other information relevant to the

58

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

GRCs administrative domain. Two types of GRCs are proposed that fulfil the assumed

roles of GRCs within the environment introduced throughout this chapter. Some GRCs

will require the maximum allowable QoS parameters that could be specified. Some

GRCs require a specific set of QoS. These two GRCs fall under the first type called the

Guaranteed QoS GRCs. Some GRCs are restricted to best effort options; these GRCs are

called Best Effort (BE) GRCs. It is worth mentioning that even Guaranteed QoS GRCs

can request Best Effort Service.

An objective of BGQoS is to provide Guaranteed QoS to authorised GRCs. The

guarantee is that their specific requirements are met during the execution of their

tasks, and that they are allocated the resources that are capable of doing so. The

Guaranteed QoS GRCs have been split into two separate Tiers. The first Tier, which is

the top Tier, will have the maximum allowable access to QoS parameters. GRCs

belonging to this group will be able to specify a more comprehensive list of the QoS.

They are also able to specify cost and time constraints if they choose to do so. The

second tier of our GRC model allows users to specify a subset of QoS, predefined by

the administrative domain and restricted accordingly. These GRCs will also be able to

set constraints for cost and time, however, while the time constraint is still optional

the cost constraint is not. This is done to accommodate the multi-privilege reality of

any of the domains where mainstream applications apply.

From the discussion above, three layers covering the range from best effort to hard

guarantees of QoS are proposed for this thesis. These three layers cover the 3 major

types of GRCs and are sufficiently adequate for explaining the operation of BGQoS.

However, it is important to underline that since this is a layered architectural model, it

is easily expandable to introduce other types of GRC Tiers, according to the specific

requirements of every organisation and its structure and policies. This is an important

factor within the targeted Grid environment. For every tier, every GRC will be

assigned a 𝐺𝑅𝐶𝐼𝐼 that will be used for identification, authentication and authorisation

purposes. GRC tiers within this thesis have been assigned the following naming

scheme: Tier A; Tier B; and Tier C. Each of the three tiers of GRCs identifies the

privileges of its members, both in terms of resources and the amount of requirements

they can set.

59

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Highest Tier (Tier A)

The highest tier of users -users of Tier A- have access to both local and global

resources. Global resources can be accessed via a communication process (Bobroff et

al 2008) between brokers. This process is explained in chapter 4. Moreover, this tier

allows the user to request most specific parameters, larger number of resources and

priority reservation.

Middle Tier (Tier B)

Tier B GRCs are able to specify QoS requirements; however, the privileges list of

requirements is restricted for users of this tier to a subset of what the top tier

Guaranteed QoS GRCs are allowed to specify. The most important differences are

however, in that while it is an option for the top tier users to specify cost constraints,

it is not optional for this tier of GRC. A GRC at this tier must specify a cost constraint;

this is in line with the assumption that in most mainstream application environments,

there exists a category of GRCs which has privileges but the cost of those privileges

must be administered and limited to predefined budgets.

Lowest Privileges Tier (Tier C)

Tier C is the BE GRC Tier. GRCs at this tier are restricted to best effort allocation (Cao

et al 2003, Deelman et al 2004, Lovas et al 2004) of their tasks and applications.

However, they must, like users in the second tier, set a cost constraint. This allows

their administrative domains to maintain control over cost while still providing the

applications with Grid resources on an on-demand basis. No priorities are given to

applications submitted by BE GRCs.

All GRCs must first register before using any resources, local or global. BGQoS does

this registration locally as it is a distributed model that provides a local scheduling

technique to global resources, if required. During the registration period a tier B user

and a tier C user must specify their cost constraints, this both simplifies the search for

appropriate resources and reduces the overhead incurred by specifying cost

constraints, which are mandatory, every time. This constraint can be changed when or

if necessary. Once it is, an approval is requested and once approved the new

constraint is registered.

60

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Therefore a GRCb of tier B or a GRCc of tier C are required to be associated with

Cb for time = t → ti and Cc for time = t → ti as cost constraints between time

t and ti .

In order for the registration of any GRC to be accepted, a number of conditions must

be met. First, the GRC is checked to belong to the local administrative authority and

whether they are of the tier under which they are registering. Second, the cost

constraints for the second and third tier GRCs are checked as to whether they are

accurate and within the limitations set for each tier. Table 2 shows the operations

used within BGQoS in relation to GRCs:

Table 2: GRC Operations

addGRC

Adds a new GRC to the registry.

deleteGRC

Remove a GRC from the registry.

listGRCs

List the GRCs registered within the same organisation and same Tier

model.

createTier

Creates a new Tier which GRCs can be assigned to.

deleteTier

Removes a Tier and all its GRCs.

listTiers

Lists the Tier within the same organisation and the same Tier model.

assignTier

Assign Specific Tier with GRC, and map it to the 𝐆𝐑𝐂𝐈𝐃. Both the Tier

and GRC must exist prior to carrying out this operation.

unassignTier

Remove GRC from a specific Tier. Both the Tier and the GRC must

exist prior to carrying out this operation and the GRC with a specific

𝐆𝐑𝐂𝐈𝐃 must be assigned to that specific Tier.

modifyTier

Modify Tier related information

searchGRCs

Search for the set of GRCs that belong to a specific Tier. All the GRCs

that belong to the Tier specified are returned

61

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

3.5.2. GRPs

Each resource is owned by an entity called a GRP. GRPs decide which resources are

available to be shared and accessed; at what time, and, for how long. They are also

responsible for advertising the characteristics of their resources and registering them

to be used. Moreover, they represent the second party in the agreements that are

required and created before the GRCs submit their tasks to resources.

3.6. Resources

Resources are defined as a set of software and hardware resources that are controlled

by their respective GRPs and belong to a specific administrative domain. Resources

can be available for allocation locally or globally. Resources are heterogeneous and

geographically distributed, each of which have different functions, characteristics and

attributes, delivering differentiated levels of service.

The following section aims at illustrating and defining resources. In the context of this

thesis, it is the resources that are relevant to the environment that we study. This is

done in order to understand the nature of these resources and the development of

BGQoS, resource operations and the matchmaking process. The dynamic and

distributed nature of resources and their providers has to be understood in order to

facilitate the integration of our methods and components to deliver a functional

model. A distinctive approach to identifying resources and describing them is

therefore necessary. This section presents resources, how they are described, their

properties and the way they affect the resource allocation and matchmaking

processes.

3.6.1. Resource Properties

The main properties of Grid resources must be clearly defined in order to provide the

relevant information that is used for the correct allocation of tasks.

3.6.1.1. Divisibility

Resources are made of specific units that cannot be split. The processing capacity of a

resource, for example, can be split into units with each unit specifically allocated to a

GRC. Therefore, these resources must be able to be allocated to a single or multiple

62

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

GRCs according to time units. The same can be expanded to bandwidth or storage

space.

3.6.1.2. Single or Multiple

A single resource is that which is offered as one atomic unit. The definition of what a

unit is can be configured to suit each domain, in accordance with the flexibility criteria

of our model. For example, a GRP may provide a resource of 10 CPUs as a set of 1

inseparable unit containing 10 CPUs or as a separable unit made of two units the first

providing 5 CPUs and the second providing 5 separate CPUs. Multiple units are

resources that are offered together, for example, a GRP providing a CPU resource and

CPU memory to the same GRC as one offer.

3.6.1.3. Time

Each GRC may have constraints set for when they need the requested resources and

the duration of the allocation in accordance with the time they require their tasks to

be completed. In addition, a GRP may state in the policies they provide in relation to

the offered resource, the time slot for which the resource is available for allocation.

The specification of time requirements by both the GRC and GRP facilitate the

resource discovery and agreement negotiation processes, as introduced in chapter 6

of this thesis.

3.6.1.4. Cost

The cost of each resource per unit time is used in calculating both the estimated cost

for carrying out tasks on application for a specific period of time as well as calculating

the required amount the GRC needs to pay at the end of the execution of their tasks.

Each GRC may set a cost constraint, in order to specify the maximum amount they are

willing to pay in order to carry out their tasks, factoring in the selection process.

Resource Description

Trading resources based on the GRC requirements for carrying out their applications

within mainstream and business-oriented environment is facilitated by providing a

viable approach that selects the appropriate resources from the pool of resources that

63

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

are offered. This process involves the GRC requesting resources, the GRP advertising

them and the broker identifying these resources in order to allocate them to the GRC.

Each resource is associated with a Resourcedescription:

• Each resource is associated with a ResourceID that specifies the resource and where it

belongs.

• Each resource has a type that specifies whether the resource is a computational or

storage resource.

• Each resource is associated with a set of characteristics; these characteristics specify

the capacity, capability and properties of each resource, each measured by a specific

unit of measurement.

• Each resource is associated with a set of QoS characteristics which represent the

percentage of the full capacity of the resource that the GRP guarantees for a specific

time period.

• Each resource is associated with a price per unit of time which is used to identify the

cost of using the resource for a specific period of time according the QoS properties of

each resource.

• Additional information such as policies and special arrangements and agreements

with partners can be included in the Resourcedescription.

• Each Resourcedescriptionidentifies whether the unit is a composite resource comprising

two or more heterogeneous resources that are offered as one unit, for example CPU

and storage space.

Resource Repositories (RR)

Available resources are stored in Resource Repositories (RR). Each resource is stored

with its description. Some of the characteristics such as availability and reliability are

updated regularly according to dynamically recalculated values based on up-to-date

resource information gathered at pre-specified time intervals. The repository is

updated dynamically as resources are allocated to different tasks and new up-to-date

information becomes available. When resources are registered and stored in the RR,

the GRP must decide whether these resources would be available for global GRCs and

global allocation.

64

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

The collected information is used for creating lists of resource and resource sets that

are available at the time of execution to meet the requirements of the GRC and adhere

to the constraints set. No list is duplicated. All lists are ranked.

Access to RR

The information on available resources, such as the resource availability, are stored in

the RR is vital for the correct selection of resources. The regular and dynamic update

of the RR according to current information on resources provides a more reliable

decision making platform when selecting resources. Outdated, inaccurate or

incomplete information can lead to an inaccurate selection resulting in taking

incorrect decisions and failing to meet the requirements of GRCs.

In BGQoS, updating occurs at specific time intervals. The argument is that specifying a

time interval to organise updating and prevent “over-dating” reduces the load and

overhead, as well as maintaining consistency between the different repositories.

These intervals are chosen so that the information is relevant and up-to-date without

being too short that they defeat the purpose of reducing the load.

GRPID

PolicyID 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼

Resource Type

Computational Storage

Dynamic Dynamic Static Static

Availability

Reliability Availability

Reliability # of CPUs (StorageLT)

Bandwidth

CPU power

Memory

(StorageST)

Figure 9: Resource QoS Characteristics.

65

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Resource information provided by the GRP, using the templates introduced within

BGQoS, are stored, including information on the resources, their characteristics, their

QoS level and the schedule when it is available. Resources might be reserved for a

later time but available right now and therefore, the tasks allocated to them must end

before the reservation period arrives.

Resource Reservation

Resource reservation is defined under a specific set of parameters that specify the

type and period of reservation. Table 3 contains these parameters:

Table 3: Resource Reservation Parameters

Parameter Description
𝐦𝐚𝐱 𝐑𝐢 The maximum number of resources required by the tasks

that can be reserved.

𝐭𝐬𝐭𝐚𝐫𝐭𝐢 The start time determined by BGQoS

𝐭𝐟𝐢𝐧𝐢𝐬𝐡𝐢 The finish time determined by the BGQoS

𝐓𝐢 Time Constraint set by the GRC

The flexibility in making these reservations allows BGQoS to utilise the reserved

resources more efficiently. For example, if there is a reserved resource with a free

interval in between reservations which is sufficient for executing an incoming task, it

is considered a candidate resource. The limits for the first three parameters in Table 3

are defined by the GRPs and are controlled according to the policies which apply to

each resource set by the GRPs. The fourth parameter in Table 3, i.e. Ti is defined by

the GRC according to their own business requirements. BGQoS keeps a high level

overview of all tasks and resources.

Multiple Tasks Arriving Simultaneously

A controlled temporal access to the RR is employed to manage multiple requests by

multiple tasks arriving at the same time. This ensures that no single resource is

allocated to separate tasks at the same time. This guarantees that a single resource is

only matched and allocated to a specific task, eliminating the possibility of deadlocks,

maintaining integrity and delivering guarantees.

66

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Updating Resource Information

The resource information updating process is carried out automatically. An updating

entity is introduced, which is responsible for removing the resource from the list of

available resources if it is allocated to a specific task at that time. It is also responsible

for updating the dynamic information at the pre-set time intervals. The updating

operation implemented within BGQoS replaces similar information about the

resources according to a time stamp, with the most recent assumed to be the most

accurate. This time interval must be chosen carefully, so as to maintain current

information on resources that does not affect the correct resource selection process.

Updating takes place over three steps by the updating entity:

• Collect current information on resources.

• Access the RR and select the resources to be updated, replacing any information that

has an older time stamp than the information available from the first step.

• The resource information is updated and the new information is accessible, using a

checkpoint and save process.

The drawback to this approach is that it is time consuming, given that the number of

resources can be large; however, since this occurs outside the main scheduling

process by an independent entity, it is effective.

Resource Related Operations in RRs

The manipulation of RRs is carried out using a set of resource related operations that

have been implemented. Table 4 introduces the three operations and an explanations

or each.

67

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Table 4: RR Operations

createResource

It allows the creation of a resource, specifying the resource

characteristics. It also returns the unique 𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆𝑰𝑫 assigned to each

resource which has been specified before, or created if none was

specified. This operation updates the RR and the state of the RR,

creating a mapping between the resource IDs and their types and

owners.

updateResource

It allows updating the current information on existing resources within

the RR. The updating operation can be carried out by both the GRP and

BGQoS. The GRP uses this operation if they wish to update resource

information for the resources they provide. BGQoS carries out

updating operations according to current information retrieved on

resources, maintaining up-to-date information in accordance with the

objectives our BGQoS.

The updating operations are carried out according to the specification

introduced earlier within this section and are vital for the correct,

accurate and QoS driven resource selection process that has been

employed.

deleteResource

This operation allows the removal of existing resources from the RR.

This includes, removing the resource information, the mapping

information and any other related data connected to the resource.

A two phase commit protocol is used in order to guarantee the ACID

properties of the database and the transactions carried out on

resources and their information; Atomicity (to execute entirely),

Consistency (maintain the integrity of the data), isolation (individual

transactions run) and durability (the persistence of the result). This

means that either the transaction is the “commit” state or will roll back

to its original state, and it would not be assigned to a GRC and

information would not be updated.

68

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

This system of contacting the RRs provides a solution for single points of failure in

terms of resource information storage; however it may provide a delay in retrieving

information. This is a problem that is to be tackled in future work.

3.7. QoS Definitions

This section introduces the QoS related definitions that are used within this thesis and

within BGQoS. These definitions are included in Table 5.

Table 5: QoS Definitions

QoS Parameter

A QoS parameter is defined as a specific GRC requirement, input when submitting an

application. BGQoS supports two types of resources, mainly Computing and Storage

resources; therefore, most of the parameters that are mentioned hereafter are related

to these two types. However, it is important to point out that the model can be

expanded easily to accommodate other types of resources as required and relevant to

different domains.

QoS Constraints

In BGQoS QoS Constraints have been chosen to have their own heading and are

defined as the conditions that need to be met once there are resources that can

deliver the level of QoS that is specified by the request for QoS Parameters. These

constraints, in BGQoS, which for example include “The latest time that all tasks within

the application MUST be completed”, are delivered from the GRC to the GRP’s

resources as opposed to QoS Parameters which are delivered via the resource

description that meets the QoS Parameters of the GRC.

QoS Metrics

QoS metrics are defined as the measurement criteria or units of measurement for QoS

Parameters.

QoS Characteristics

They can be defined simply as the QoS parameters that are provided by resources.

Not all resource QoS characteristics are input by the GRP. BGQoS supports, dynamic

calculation of specific characteristics, which are updated according to information

retrieved dynamically throughout while the resource is available for allocation.

QoS offer

An offer can be described as a response to the input QoS request. These offers are a

set of resources that fulfil the requirements input by the GRC. A single offer is part of

69

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

the negotiation process.

3.7.1. QoS Resource Management

Resource management according to the QoS requirements of GRCs is the core of

BGQoS. This is done through a proposed QoS support model that will be explained in

Chapter 4. The components and operations are explained in chapters 5 and 6

respectively.

3.7.2. Application Execution

Once the appropriate resources have been located, BGQoS executes applications

accordingly, sending tasks to the resources to which they are assigned. Allocation and

execution management components are responsible for the actual task execution that

is carried out with the resources that are selected. Chapters 4, 5 and 6 introduce the

components and operations required for successful matchmaking. Once the task

arrives, the resource allocation components send the task to the appropriate resource,

which could be at a different site than where the GRC is located. The information

related to a task and required for its execution is downloaded and the tasks are

started.

The Task Launcher, which is described in chapter 5, section 5.14, is responsible for

starting the tasks on the resources, by creating the appropriate execution

environment and retrieving the required files, or in the case where the files are large,

pre-scheduling is required in order to make sure the files are available at the right

time. BGQoS accomplishes this by first submitting the Task Launcher to the resources

instead of the GRCs actual tasks or applications. The Task Launcher’s concept was

designed for it to run in any environment without modifications or additions

necessary for its operation. It is responsible for the input and output files for the

application, as well as keeping track of the number of locations where the resources

are located, the location of the input files and maintaining a unique TaskID for each

task until its completion where the output files are also its responsibility.

The purpose of BGQoS is not only to provide the GRC with the QoS requirements that

they request when they submit their mainstream application but to sustain the level of

QoS that was promised. The premise that both parties will adhere to what they agree

upon is documented in a contract or agreement that is initiated by the GRC, received

by the model and offered by the GRP. If there is a violation of the contract, which

70

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

might occur for multiple reasons, including resource failure and performance

degradation, middleware malfunctions and user errors (“WISDOM” et al 2005,

Junqueira et al 2005, Da Costa et al 2007), then the rescheduler in BGQoS is activated

and the reallocation process is initiated. However, there are multiple issues to

consider before the actual reallocation takes place, these issues are discussed in detail

in chapter 6, section 6.9.

In general, an application is within one of the following execution states:

• Tasks pending to be scheduled: At this stage, the tasks are ready to be submitted and

their requirements have been identified. The resources are being selected accordingly

and the information will be returned.

• Tasks scheduled: Once the appropriate resources have been located, the tasks are

scheduled and submitted.

• Tasks queued: This state is not applicable to all applications, and is only applicable if

there is a resource where a task is running and the task is scheduled to be allocated to

that resource. It is then queued in that resource’s queue.

• Tasks running: The resources have been identified, the tasks submitted and are

executing.

• Task error: The task does not complete its running phase successfully which could be

down to many reasons.

• Task completed: A running task has completed successfully.

• Application complete: All tasks belonging to an application have been completed and

therefore the application has been completed successfully. Data placement operations

have completed and the execution results are returned to the GRC.

3.7.3. Guaranteed QoS During Execution

In previous work by (Albodour et al 2008), the medical domain has been used to

highlight the importance of maintaining a guaranteed level of QoS, and this can be

carried across other domains highlighting its importance. More importantly this

example demonstrated that giving the GRC the ability to specify requirements and

expecting them to be delivered is mandatory if the integration between different

domains and the Grid is to be successful. Therefore, BGQoS supports:

• High-level QoS requirements specification.

• QoS metric unification.

71

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

• Resource information retrieval and dynamic calculation of relevant characteristics in

an accurate and effective manner.

• Negotiation of QoS parameters with GRPs.

• Establishing agreements between GRCs and GRPs.

• Advance reservation capabilities.

• Flexible pricing, based on on-demand agreements that the mainstream GRC can be

able to use to acquire the resources they require, when they require them and expect

a specific level of QoS.

3.8. Operational Flow within the BGQoS Environment

The operational flow within BGQoS is a combination of two flows, the first from the

GRC side and the other is from the GRP side. Figures 10 represent these viewpoints,

with a general list of the steps taken by each from the submission of the request by the

GRC to the returning of the results of the completed tasks that make up an application.

A detailed explanation of each process is introduced in the following chapters of this

thesis.

72

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Figure 10: GRC and GRP General Viewpoint

73

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

Service Level Agreement (SLA) templates have been introduced in previous research,

such as (Schmidt et al 2005 Hasselmeyer et al 2007, Sakellariou et al 2008). BGQoS

uses templates in order to simplify the requirements input process and limit it to

specific GRCs according to organisational specification. The GRC inputs are converted

into an XML-document via templates dedicated to every type of GRC relative to their

tier. These documents are parsed by the model to retrieve the required information,

which includes information on the GRC, their level, the QoS parameters and QoS

constraints. In other words, these documents provide the QoS description for the

consumer. On the other hand, GRPs provide QoS characteristics of their resources, in

addition to the dynamic resource characteristics that are included in a similar XML

document as the one related to the GRC. Resource information is stored and can be

accessed via the Resource Repository (RR). Effectively, these documents represent

QoS descriptions for the resources.

BGQoS uses these resource descriptions to locate the appropriate resources to meet

the GRC requirements. The GRC and the GRPs exchange those documents, forming the

basis of the negotiation process in implemented model. The documents go back and

forth between the GRC and the GRP, until an agreement is reached that is acceptable

to both parties. This agreement process through BGQoS has many advantages:

• Provides a clear description of the GRCs requirements.

• Provides a clear description of the resource characteristics.

• Simplifies the negotiation process.

• Provides a method for metric unification. The combination of templates and metric

unification, reduce the possibility of errors in allocation. In some experimental cases,

it eliminated it completely.

• Simplifies the matchmaking process.

• Simplifies agreement establishment.

The agreements reached are the conclusion of the a process initiated by the GRC with

providing their requirements, through multiple stages, including resource discovery,

resource list generation and resource selection until the negotiation process is

completed.

74

CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT

3.9. Summary

This chapter has presented the BGQoS environment, the definitions of related

components and the different players within this environment. It has also introduced

the concept of a multi-tier GRC model which allows users to be identified with a

specific set of characteristics related to a tier, facilitating the inclusion of new GRCs,

the expansion of the privileges paradigm and the simplification of GRC related

operations. QoS support within BGQoS and the specification and complete description

of these agreements, their components and their structure are presented in Chapter 4.

75

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

CHAPTER 4: QOS

SUPPORT WITHIN BGQOS

76

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.1. Introduction

The emphasis on QoS within BGQoS is driven by a high-level approach in keeping with

the objective of proposing a design for a high-level flexible model that can be carried

across multiple domains. Within the environment explained in Chapter 3, there exists

a large variety of GRCs, GRPs, and resources. The successful integration between

different mainstream domains and Grid Computing is therefore directly related to

whether GRCs are capable of requesting specific requirements from the GRPs before

utilising their resources. This chapter concentrates on QoS support within BGQoS and

explains the methods used to achieve this support. The importance of giving the GRC

the ability to state their QoS requirements has been emphasised throughout this

thesis. A running example is presented in this chapter to further illustrate the

functionality of the QoS model.

4.2. Overall Scenario

BGQoS supports the scenario where a GRC establishes communication with one or

more GRPs in order to utilise their resources and the services they provide. This

communication process concludes with an agreement that includes definitions and

guarantees on the level of QoS, the types of resources and times at which these

resources are to be allocated. The high-level design of BGQoS supports the

employment of current standards of operation such as SLA specification and provides

the basis for QoS establishment between different parties.

4.3. High-Level Abstraction

The operational steps within BGQoS include resource discovery and selection by

matching the QoS requirements submitted by the GRC with resource characteristics

associated with resources available to the GRC. This matchmaking process may

produce a number of resources that can meet these requirements. The QoS related

components within BGQoS use QoSparameters as an input and the output is a list of

resources that match against the QoSparameters.

This provides a high-level abstraction in which the matchmaking process is carried

out by BGQoS using a set of QoSParameters → {QP1, … . , QPn} and a set of resources

providing the attributes represented as resource characteristics → {Ch1, … . , Chn}

meeting the requested parameters as output → {Set1, … Setn}.

77

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

The simplification of the matchmaking process is an aim of BGQoS, presenting the GRC

with the option of attaining the best suited set of resources while hiding the

complexities of the infrastructure and differences in definitions in their requirements

and the resource characteristics.

If we consider an GRC attempting to carry out a number of tasks by requesting to

utilise computational resources, with the following QoSparameters: number of CPUs =

QP1, average CPU power = QP2, and reliability = QP3, then BGQoS uses the

information extracted from the submitted request, which includes the required

QoSparametersand maps them to suitable resources according to their characteristics.

There are two types of characteristics, static and dynamic. Static characteristics such

as number of CPUs are submitted by the GRP within the Resourcedescription in the

advertisement phase. These characteristics remain the same while the resource is

made available by the GRP and is expected to deliver the QoS specified accordingly.

Dynamic characteristics such as resource reliability are updated at specific time

intervals, dynamically and according to current information retrieved from

monitoring (Ropars et al 2006) the available resource. The updated information

replaces the previous information, while a historical record is kept, providing the

model with access to the current state of the resource in relation to specific

parameters. The historical record is used for calculating dynamic information such as

reliability and availability. BGQoS uses these characteristics to map the requested

parameters from the GRC with those provided by different resources available. The

computations used to calculate the relative execution time and cost are presented in

chapter 6 (6.3) and aim at simplifying the communication process between the GRC

and resources by providing the GRC with feedback and information calculated by the

model using the information available.

4.4. QoS Offer

At the entry point to BGQoS, the GRC submits an execution request accompanied by a

QoSdescription which includes their requirements, as well as the constraints that

complement these requirements. These descriptions are parsed and the

QoSparametersrequested by the GRC are extracted, these parameters serve as the input

to the QoS related components. The resulting output is a list of resources that is

78

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

filtered and ranked according to specific criteria. The result is a ranked list of

resources that meet the GRC requirements. The top ranked represents the first offer

generated to the GRC. This list not only is expected to satisfy the requirements set by

the GRC but also satisfies the resource usage policies specified by the GRP.

The ranked list of resources is saved in a database and is referred to if the top ranked

list is rejected, i.e. the top ranked list cannot be allocated or does not provide the

services required by the GRC throughout the execution of their application. The

purpose of the offer is to indicate that the requirements set by the GRC are matched to

the characteristics of the resources selected, i.e. a situation of exact match or over

qualified, which is explained in more detail in chapter 6, section 6.1. The offer is

therefore, dependant on the request submitted by the GRC and is tailored to meet the

requirements specified in that request. Continuing with example, if: QP1 = 5 CPUs,

QP2 = 2.4 Ghz and Reliability = 80 %, and we assume 4 different sets of resources

providing the following characteristics:

Set1 = { 7, 3.0,80}

Set2 = { 3, 2.4, 90}

Set3 = {5, 2.4,80}

Set4 = {5, 2.4, 85}

Set2 is eliminated, as it does not provide the required level to meet the parameters

submitted by the GRC. The potential list of resources is then= {Set1, Set3, Set4}. These

sets are ranked, with the highest ranked set presented to the GRC as the initial offer.

If we assume that the ranking criteria are solely based on measures to be described by

the GRC, the sets are ranked as follows:

Set4  Rank = 1

Set3  Rank = 2

Set1  Rank = 3.

Set4 will, therefore be presented as a QoS Offer to the GRC.

79

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.4.1. Offer Generation

The environment for which BGQoS is proposed presents both the GRC and the GRP

with an opportunity. The GRCs are provided with the option of utilising resources to

carry out tasks that would otherwise be infeasible and the GRPs are provided with an

opportunity to conduct business by providing the resources each GRC requires.

Realising this infrastructure however, where tasks are computationally intensive and

time sensitive, the value of the service by resources may vary and the domain

requirements are essential, cannot occur without delivering guaranteed list of QoS.

Within BGQoS, two scenarios may arise, the first is when the communication process

is between a single GRC and a single GRP and the second is when the communication

is between a single GRC and multiple GRPs. The next few sections of this chapter

elaborate on these two scenarios and the QoS support delivered through BGQoS.

The offer generation process provides the GRC with specific resources that meet the

requirements and QoS requests and is accomplished by a comparison between the

resource characteristics and the QoS parameters and calculating whether there is an

intersection between the two sets of attributes. Keeping with the notations, we

consider that a GRC specifies a set of n QoS parameters QP = {QP1 , … QPn} that need

to be met by the resources that will potentially execute their tasks. Each resource is

capable of providing a set of QoS defined by the resource characteristics, where each

resource has a set of characteristics Ch ={Ch1, … . , Chn}. Then the intersection

between the two provides the offer generated and can be expressed as the following

formula:

O =𝑄𝑃 ∩ 𝐶ℎ

The formula above simplifies the offer generation process by defining the intersection

between the requested QoS parameters by the GRC and the capabilities of resource

identified by the resources characteristics, resulting in an offer O.

QP is extracted from the QoSdescription submitted by the GRC and resource

characteristics are retrieved from the Resource Repository (RR), which means that

both must be specified in similar formats. The similar format ensures that an

80

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

intersection could be achieved between the GRC requests and the resource

capabilities.

Every offer is associated with a time limit for which it is considered to be valid. The

time validity is the responsibility of the resource broker which examines this

parameter and discards offers that have expired.

Let us consider the example again. If 50 tasks are submitted, each requiring a running

time of 10 seconds on a CPU at 2.4 GHz and we assume 4 different sets of resources

providing the following characteristics and the price for acquiring a resource per unit

of time t is represented by P(t) and is measured by price units u.

Set1 = { 7, 3.0, 80}, P(t) = 0.8 u

Set2 = {3, 2.4, 90}, P(t) = 0.5 u

Set3 = {5, 2.4, 80}, P(t) = 0.8 u

Set4 = {5, 2.4, 85}, P(t) = 0.5 u

If we add a Time Constraint T = 120 seconds and a Cost Constraint C = 70 units then

the offer generation process can be calculated as:

Step #1:

Set1 eT = 80, eC = 64 units

Set2 eT = 170, eC = 85 units

Set3 eT = 100, eC = 50 units

Set4 eT = 100, eC = 50units

Step #2

Set1  eT = 80, eC = 64 units

Set3  eT = 100, eC = 80 units

Set4  eT = 100, eC = 50units

𝑂 = {𝑆𝑅𝑡1, 𝑆𝑅𝑡4}

81

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

Where eT is the estimated time and eC is the estimated cost, both of which are

explained in detail in Chapter 6, section 6.3.

4.5. Communication Scenarios

The main concern of the model is to locate the appropriate resources fitting the

requirement description submitted by the GRC and assisting the process which

concludes with reaching an agreement between a GRC and one or more GRPs for

utilising these resources. The establishment of an agreement is necessary before

actual task execution using the resources selected. The formation of an agreement

between the GRC and GRPs providing them with the resources required is called

negotiation.

4.5.1. GRC – GRP

The first negotiation scenario represents the situation where a single GRC’s

requirements request is met by a single GRP, providing the service required. More

precisely, a single GRP attempts to deliver the resources with the level of QoS the GRC

requests in their description. This process is conducted through matching the

resource characteristics associated with the resources with the QoS Parameters

submitted by the GRC. Within this scenario, the GRP is expected to deliver an agreed

upon QoS in return for a specific price between with a specific time period.

The availability of resources is vital to meet these time requirements and the model

uses up-to-date information on the status of the resources and the usage policies

attached to resources to determine the availability of these resources when execution

is expected to start. A reservation based approach has been traditionally applied to

maintain exclusive access to resources in advance. Advance reservation methods are

supported within BGQoS.

4.5.2. GRC – GRPs

The second negotiation scenario represents the situation where a single GRC

requirements request is met by more than one GRP, hence multiple GRPs must be

negotiated with for providing the resources required. More precisely, the model

performs the matchmaking operation to select resources using the GRC’s QoS

description and the resource characteristics. If resources selected belong to different

GRPs, it is therefore necessary for more than one negotiation process to take place.

82

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

This poses both a problem and opportunity. The problem arises from the management

of the negotiation. However, because of the contest between different GRPs in

providing their resources, the pricing model changes with GRPs competing against

each other. The economic implications, pricing mechanisms and pricing policies are

beyond the scope of this thesis and are currently the subject of research. This thesis,

instead concentrates on the basis for the negotiation process for QoS.

4.6. QoS Management

The emphasis of QoS Management within BGQoS is on the request made by the GRC

for QoSparameters to be used as a standard for locating resources and the guarantee

that they are met throughout the execution of the tasks submitted by the GRC.

The GRC request includes a QoSdescription. The QoSdescription includes the specific QoS

parameters and constraints that are required by the GRC, as well as the number of

tasks submitted and related information. Each authorised GRC is allowed to specify a

set of QoS required parameters, Time Constraint and Cost Constraint.

The Time Constraint, T, identifies the maximum execution time that could be tolerated

and is represented by the time period calculated using the start time and the finish

time of a specific task. Therefore, the Time Constraint is specified by two parameters:

• tstart

• tfinish

The Cost Constraint, C, identifies the maximum execution price that could be tolerated

and is represented by the unit of currency specified in the template. For example, in

our case, the Cost Constraint is specified in GBP (£). Since the pricing mechanism in

BGQoS is associated with the period of time that the resources are utilised, the Cost

Constraint is defined by a parameter that states the total Cost of running a single task

or the complete set of submitted tasks.

• Ctask

• Ctotal

The QoS parameters within BGQoS are related to the level of the GRC. The layered

approach allows each organisation to increase the number of levels or decrease

83

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

according to their requirements. Within this thesis a three tier GRC model has been

presented, where the top tier or tier A are the most privileged and the bottom tier or

tier C are restricted to BE task submission, with only Cost Constraint specification

possible and mandatory. These parameters are input through a tier specific interface

which mirrors the privileges of each tier upon login.

Figure 11: Interface for Tier A GRC

The QoS parameters are converted into an XML based document holding the

information that will be used to locate resources, generate offers and establish an

agreement. Figure 11 shows the interface for a tier A user and Figure 12 shows an

example of a tier A description of QoS requirements:

84

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

Figure 12: Tier A GRC template

The QoSdescription definition above contains the following parameters that could be

requested by the most privileged GRC, namely Tier A GRCs in BGQoS.

• Long Term Storage (StorageLT) Metric = GB

• Reliability Metric = Reliability %

• Bandwidth Metric = Kbps

• Number of CPUs Metric = #

• CPU power Metric = GHz

• Memory (RAM) Metric = MB

• Availability Metric = Availability %

• Time Constraint Metric = t = time unit

• Cost Constraint Metric = c = currency unit

The QoSdescription can be implemented for multiple tiers of GRCs, according to the

requirements and authorisation level associated with each GRC tier. This model can be

expanded to accommodate the structure of each domain and organisation.

85

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.7. Agreement Establishment

Negotiation between the GRC and potential GRPs concludes with the establishment of

an agreement that contains information on both parties, the agreed terms and other

related information such as the penalties incurred if any violation occurs. Therefore,

the negotiation process must be outlined and the protocol explained.

In a distributed heterogeneous environment such as Grids, it is important to specify

the QoS requirements dynamically. However, it is unrealistic to expect different GRCs

and GRPs to “speak the same language”. BGQoS aims to provide a solution that is

accessible by different types of GRCs and applications and expandable to different

business-oriented or mainstream domains. Therefore, it is important to introduce a

negotiation approach that facilitates understanding between different parties

involved, be it the GRC or the GRP.

4.7.1. Agreement Basics

The formation of an agreement between the GRC and GRPs providing them with the

resources required is called negotiation. Current efforts are similar in the negotiation

approach. A consumer initiates the negotiation process by submitting their

requirements to a Provider. The provider replies with either accepting or rejecting the

request.

Work has been done in the area of service negotiation and SLA creation (Hasselmeyer

et al 2007, Sakellariou and Yarmolenko 2008). However, there still remains a need for

facilitation between different types of SLA templates. In a business-oriented or

mainstream environment, GRCs may wish to request specific resources, resource

requirements and QoS requirements. Most of the existing work assumes that all

parties can understand each other, providing rigid solutions which depend on that

assumption.

4.7.2. Agreement Components

The proposed agreement structure can be modified to suit each domain; however,

there are common components that represent the spine of any agreement reached

between the GRC and the GRPs.

86

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.7.2.1. Party Description

Each Agreement must contain information on the parties involved. These parties

include:

• The GRC: The agreement must contain the relevant information on the GRC requesting

the resources, such as the GRCID and their location.

• The GRP: The agreement must contain the relevant information on the GRP providing

the resources such as the GRPID, their location, the information on the resources

provided such as the resourceID .

4.7.2.2. Business Relationship

The business relationship portion of the agreement contains information on the

application and its execution parameters, such as the penalties and the price.

4.7.2.3. Task Description and Resource Requirements

The types of resources are described within the agreement, including the number of

resources of each type. Within BGQoS implementation, the GRC could request

computational resources and storage resources. However, this could be expanded in

the future to accommodate different types of resources. Task execution requirements

are also included within this portion of the agreement, such as the data required for

execution, specification of files required and the initiation parameters.

4.7.2.4. QoS Descriptions

The QoSdescription contains the QoS requirements that have been agreed between the

different parties. This description includes the GRC requirements, the expected level

of QoS provided and the ratio of GRC acceptance.

87

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

Agreement

Resource Description

Parties

GRP (s) GRC

Party

Characteristics

Metric

Metric Measurement

GRC request

SLO QoS Description

Parameters

1..n

1 1

1..n

1..n

1..n

1

1

Figure 13: Relationship Diagram (Agreement)

88

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.7.2.5. Time Constraint and Cost Constraint

The constraints provide the maximum time for completion of the tasks and the budget

which must not be exceeded.

4.7.2.6. Service Level Objectives (SLOs)

Agreements are necessary to specify the terms that have resulted from the

negotiation. However, within traditional Grid environment assumptions, violations

can only occur from the GRP. In reality, the responsibility for an agreement violation

can be down to the GRC or the GRP or both. The SLA describes the violation scenario,

the responsible party and the actions and the consequences of the violation.

4.8. Agreement Negotiation

The negotiation process is carried out between the different parties involved. Within

BGQoS there are three negotiation scenarios that may occur. Following is a

description of each scenario:

4.8.1. GRC and Broker

The Resource Broker Component (broker) communicates with the GRC in order to

describe the different components of the SLA. When the GRC submits an execution

request and the requirements, the parsed information is retrieved by the broker in

order to locate the appropriate resources through its various elements introduced in

section 5.8.

4.8.2. Broker and GRP

The broker communicates with GRP in order to acquire resources to suit the GRC

using the information provided by both parties. In this case, the resource prices are

returned to the GRC and if the GRC accepts the cost, a request is made to the GRP for

them to accept. If the GRP rejects the offer, the broker communicates with the GRP

associated with the second highest ranked list from potential resource sets. The

sequence diagram in Figure 14 illustrates the communication scenarios above.

89

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

GRC Broker RR GRP

Resource Registration

Resource Publication

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Execution Request

QoSdescription

Resource Information
Request

Request GRP information

RR Search

Discovered Resource
Information

Potential Resource
Sets

Return GRP information

Resource
Selection

Return Selected
resource Sets

GRC starts using the selected resource sets

Figure 14: Sequence of Resource Operations between GRC and GRP(s)

90

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.8.3. Broker and Broker

The broker communicates with other brokers in order to obtain resources that are not

located locally. The negotiation occurs at the first broker on behalf of the GRC and the

other at the second Broker on behalf of the GRP, allowing them to communicate via

the brokers and eliminating any confusion. Moreover, this also allows access to

different RRs holding information on the resources available and accessible. This

simplifies the negotiation process for global resources, while still maintaining that

each GRC’s requirement is met and the cost of resource utilisation is returned to the

GRP through an agreement set between two different brokers. This is illustrated in

Figure 15.

91

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

𝐵𝑅𝑅𝐵𝑅𝑅4

𝐵𝑅𝑅𝐵𝑅𝑅1

𝐵𝑅𝑅𝐵𝑅𝑅2
(Partner)

𝐵𝑅𝑅𝐵𝑅𝑅3
(Partner)

Resources

Applications Interface

𝑄𝑅𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Service

GRC

Tiers

Figure 15: Broker operations and interactions with Partner and Global Brokers.

92

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.9. QoS Support Methods in BGQoS

4.9.1. BGQoS Flexibility

In the presence of more than one domain and multiple types of resources that may

overlap in terms of ownership and description, it is important that the implemented

QoS model is capable of distinguishing between different resources, different requests

and different types of resources. This is supported and taken into consideration in

BGQoS which provides a standard model that recognises these types in which a

resource can be assigned a type and associated with a set of specific characteristics

and resource information that are identified by a unique ID.

Different types of GRCs are also supported with an expandable multi-tier model in

which different assignments can be made according to different domains and different

requirements. Moreover, these requests can be designed to reflect each tier,

accordingly.

4.9.2. Component Separation

The independence and separation of components from each other and with each

associated with a specification enhances the flexibility of BGQoS. In practice this

means, that each domain or administrative authority can tailor specific components

according to their specification or requirements without affecting any of the other

components or the operational functionality of BGQoS

For example, the independence of GRC tier specification and interface design enables

the model to accommodate different tier interfaces and the specification of

different QoSdescription generated. This allows the GRC to input their QoS requests

using different implementations of interfaces each mapping to the tier that GRC

belongs to without altering the operation of functionality of other components.

Component separation allows multiple tears to be added with multiple interface

designs associated with them, seamlessly and independent of other components

within BGQoS.

93

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

4.9.3. Symmetric QoS Model

BGQoS employs a symmetric QoS model. Let S be the multi-dimensional space

representing the QoS parameters that a set of resources available to the GRC can

provide, and let R be the requested QoSparameters by the GRC, which in turn represent

a subspace in S. Traditionally, a request (α) has been defined as a subspace in S. An

offer (O) is viewed as a point in space S. However, in this symmetric model an offer is

considered as a subspace in S just as requests, representing the range of QoS values

that a resource is going to supply. In this case O conforms to α if its subspace is within

the subspace for α. This interpretation of conformance results in a symmetric model

because QoS requests and offers can be specified in the same way allowing for the

intersection introduced in the previous section 4.4.

4.9.4. Standardising Request Inputs and Metric Unification

BGQoS is proposed for a multi-domain business context environment, with variable

applications and variable GRC populations. It is therefore important that a method

that would unify the high-level QoS metrics both for resource requirements and

constraints, requested by different applications, is specified.

To illustrate this, we use the constraints as an example. If a specific GRC inputs a

requirement that states “all tasks must be completed before 1 PM on Wednesday and

execution cost must not exceed 200”, it might seem clear enough, however it raises a

number of issues. Grid resources by definition are heterogeneous, geographically

distributed, belong to different GRPs and adhere to policies within their own

administrative domains. Therefore the constraint specification above is not sufficient

and must be put in context. 1 PM in which time zone? 200 units of which currency?

BGQoS uses templates which resolve this problem. The use of pre defined units at the

requirement specification phase reduces the chances of error or confusion.

4.9.5. The Standardisation of the Resourcedescription

Resource advertising is an important step in making resources discoverable, and this

advertising process includes a description of the resource. A Resourcedescription

includes both static and dynamic characteristics that are required in identifying the

resource’s eligibility for selection in accordance with the input requirements by GRCs.

Moreover, these resource descriptions are stored in the RR, and must be ordered

according to the specifications of the RR.

94

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

Resources could be a part of a candidate set of resources for selection and may have to

be compared with other sets of resources through a filtering process, called resource

ranking. Resource ranking is a process in which resource sets are compared in order

to select the most suited. The success of this process relies on the ability to compare

different resources against each other according to their characteristics.

The discussion above highlights the importance of providing a mechanism where

resources descriptions could be input, advertised, updated and stored. Moreover,

these descriptions should be match-able to GRC requirements and comparable to

other resource descriptions by other GRPs.

4.10. Templates

A set of templates have been developed which are responsible for providing the base

for descriptions of GRC requirements and resources. These templates can be

connected to interfaces that facilitate the input process for descriptions for different

types of GRCs and different types of resources, making up an important part of BGQoS.

These templates produce XML human readable documents that could be turned into

machine readable documents used for resource discovery, selection, allocation and

monitoring as well as providing the base for any future agreement between the

parties involved. This method not only simplifies the process in which GRCs input

their requirements but also makes the matchmaking process faster, more accurate

and more efficient within BGQoS. More importantly, it provides the GRC with

capability of using high-level definitions to express requirements.

On the other hand, the characteristics of resources are expressed using the same

standard approach which allows for precision when matchmaking. The core aim of

BGQoS is to deliver a model that can provide a sustained and guaranteed level of QoS

delivered by resources to consumers. These descriptions will allow the GRPs to

advertise their resources in a manner that is both in line with the requirement

specification process of GRCs and is machine readable. These templates are scalable

and portable, meaning that they could be expanded for other applications in other

domains within the new Grid environment.

4.10.1. Challenges

There are many challenges that have been addressed through the implemented design

such as:

95

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

• Heterogeneity in resource types and descriptions: GRCs should be able to express

their requirements without having the knowledge of how the resources are described

by each GRP.

• Heterogeneity in GRP domains: Resource operations should be carried out according

to the GRC requirements independently from the domain or GRP types.

• Multi-QoS requests: The GRC should be able to express different requirements as well

as the constraints in a single document which can be used in order to perform

resource operations.

• Flexibility: The model should be able to accommodate different types of GRCs,

requests, domains and advancements in resource technologies.

To address these challenges, the templates introduced represent the canvas from

which QoSdescriptions are generated supporting a standard method for resource

requests, including QoS requirements, constraints and resource types, a flexible set of

supported QoS, and an effective method for identifying the metrics under which these

QoS have been identified. This also means that it can easily be expanded in order to

accommodate different domains. Moreover, the resource discovery and selection

process where requirements are matched to characteristics is clarified. In conclusion,

a design tailored to accommodate seamless agreement creation using specific terms

that accommodate the heterogeneity of the participating parties and environments

has been created.

4.10.2. Different Types of Templates

The following types of template have been developed.

• The GRC request

The specification of GRC requests contains the following:

- GRC information

- GRC tier

- Resource type

- QoS parameters

- Constraints

96

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

• Interface related requirements

Each tier is connected to a specific interface which in turn allows the GRC access to a

specific template which they can use to input their request. These interfaces specify

the following:

- Search parameters

- Resource requirements

- QoS requirements

- Constraints

• The Resourcedescription

Resources and their functionality

following information:

- Resource information

- Resource types

- GRP information

- Service association

- Resource capabilities

- Policy information

• The response to the GRC request

 are defined using templates that include the

The response to the GRC request includes the following information:

- GRP information

- Resourcedescription

- QoS parameters

- Estimated time

- Estimated cost

Figure 16 shows an example of an agreement description, in which the parties are

identified and the QoSdescription is included, as well as the QoS requirements for each

parameter:

97

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

< 𝑆𝐿𝐴 𝑛𝑎𝑚𝑅"𝑅𝑥𝑎𝑚𝑝𝑙𝑅213" 𝑥𝑚𝑙𝑛𝑅 = "ℎ𝑡𝑡𝑝://𝑚𝑦. 𝑞𝑅𝑅. 𝑓𝑅𝑎𝑚𝑅𝑤𝑅𝑅𝐵. 𝑅𝑅𝑚/𝐺𝑅𝐶𝑅. 𝑥𝑅𝑑" >
< 𝑃𝑎𝑅𝑡𝑖𝑅𝑅 >
< 𝐺𝑅𝐶 𝑛𝑎𝑚𝑅 = ” 𝐶𝑙𝑎𝑅𝑅 − 𝐴 𝐺𝑅𝐶” />
< 𝐺𝑅CID = ” Tier − A GRC” />
< 𝐺𝑅PID = ” " /
< 𝐺𝑅𝑃 𝑛𝑎𝑚𝑅 = “𝐺𝑅Pname” />
</𝑃𝑎𝑅𝑡𝑖𝑅𝑅
< 𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝐹𝑅𝑅𝑚 > 21/10/2009 </𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝐹𝑅𝑅𝑚 >
< 𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝑇𝑅 > 25/10/2009 </𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝑇𝑅 > < QoSdescription >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐺𝐵” 𝑡𝑦𝑝𝑅 = “𝑑𝑅𝑅𝑏𝑙𝑅” 𝑛𝑎𝑚𝑅 “StorageLT” >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “%” 𝑡𝑦𝑝𝑅 = “𝑑𝑅𝑅𝑏𝑙𝑅” 𝑛𝑎𝑚𝑅 “𝑅𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦” >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐾𝑏𝑝𝑅” 𝑡𝑦𝑝𝑅 = “𝑑𝑅𝑅𝑏𝑙𝑅” 𝑛𝑎𝑚𝑅 “𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ” >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐺𝐵” 𝑡𝑦𝑝𝑅 = “𝑑𝑅𝑅𝑏𝑙𝑅” 𝑛𝑎𝑚𝑅 “𝑀𝑅𝑚𝑅𝑅𝑦” >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐺𝐻𝑧” 𝑡𝑦𝑝𝑅 = “𝑑𝑅𝑅𝑏𝑙𝑅” 𝑛𝑎𝑚𝑅 “𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑅𝑎𝑙𝐶𝑃𝑈” >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “%” 𝑡𝑦𝑝𝑅 = “𝑑𝑅𝑅𝑏𝑙𝑅” 𝑛𝑎𝑚𝑅 “𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦” >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐵𝑆𝑇” 𝑡𝑦𝑝𝑅 = “𝑡𝑖𝑚𝑅” 𝑛𝑎𝑚𝑅 “tstart " >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐵𝑆𝑇” 𝑡𝑦𝑝𝑅 = “𝑡𝑖𝑚𝑅” 𝑛𝑎𝑚𝑅 “tFinish " >
< 𝑄𝑅𝑆 𝑅𝑛𝑖𝑡 = “𝐺𝐵𝑃” 𝑡𝑦𝑝𝑅 = “𝑡𝑖𝑚𝑅” 𝑛𝑎𝑚𝑅 “Ctotal " >
</QoSdescription >
< 𝐴𝑔𝑅𝑅𝑅𝑚𝑅𝑛𝑡 >
< 𝑆𝐿𝑂 𝑛𝑎𝑚𝑅 = “𝑆𝐿𝑂𝑅𝑏𝑗𝑅𝑅𝑡𝑖𝑣𝑅”/>
< 𝐺𝑅𝑎𝑅𝑎𝑛𝑡𝑅𝑅 > 𝐺𝑅𝑃 < 𝐺𝑅𝑎𝑅𝑎𝑛𝑡𝑅𝑅/>
< Resourcedescription >
</Resourcedescription >
< 𝐴𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑 >
< 𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝐹𝑅𝑅𝑚 ></𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝐹𝑅𝑅𝑚 >
< 𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝑇𝑅 ></𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑𝑇𝑅 >
</𝐴𝑅𝑅𝑅𝑅𝑅𝑃𝑅𝑅𝑖𝑅𝑑 >
< 𝑄𝑅𝑆 >
< 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑅𝑎𝑙𝐶𝑃𝑈 >
< 𝑉𝑎𝑙𝑅𝑅 > 3.2 </𝑉𝑎𝑙𝑅𝑅 >
</𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑅𝑎𝑙𝐶𝑃𝑈 >
< 𝑀𝑅𝑚𝑅𝑅𝑦 >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</𝑀𝑅𝑚𝑅𝑅𝑦 >
< StorageLT >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</StorageLT >
< 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ >
< 𝑅𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</𝑅𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >
< 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >
< 𝑡𝑖𝑚𝑅_𝑅𝑡𝑎𝑅𝑡 >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</timestart >
< 𝑡𝑖𝑚𝑅_𝑓𝑖𝑛𝑖𝑅ℎ >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</timefinish >
< 𝐶𝑅𝑅ttotal >
< 𝑉𝑎𝑙𝑅𝑅 ></𝑉𝑎𝑙𝑅𝑅 >
</Costtotal >
</𝑄𝑅𝑆 >
</𝐴𝑔𝑅𝑅𝑅𝑚𝑅𝑛𝑡 >
</𝑆𝐿𝐴 >
Figure 16: SLA Template

98

CHAPTER 4: QOS SUPPORT WITHIN BGQOS

The information extracted from these XML documents is used to carry out the

resource operations and monitoring operations within BGQoS.

4.11. Summary

This chapter has explained how BGQoS supports QoS. This support is essential and

requires that there exists a specific communication process between different entities

producing a working relationship and agreement between the different parties

envolved. This chapter has explained the different communication partners, their

communication process and the communication requirements. The combination of the

different operations, definitions, modules and communication presented within this

chapter, make up the QoS support within BGQoS. The next chapter explains the

different components that carry out the support.

99

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

CHAPTER 5: BGQOS

SYSTEM COMPONENTS

AND DESIGN

100

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

5.1. Introduction

BGQoS aims at presenting a solution that is: flexible so that it can be expanded into

multiple domains; QoS driven so that it meets the requirements set by different types

of GRC, and, complete in that it covers the multiple aspects required.

The entities and components required to implement the model are the focus of this

chapter. Initially, the full list of components is introduced which is followed by an

explanation of where each fits within the Grid architecture. Then a detailed

description of each component is given. In the implementation of BGQoS, advantage

has been taken of current solutions and available technology, and new solutions and

approaches have been added.

5.2. Model Layers

BGQoS includes capabilities for specifying a selected set of QoS, which can be

expanded in future work to include more such as security and provenance.

Moreoever, BGQoS provides the GRP with the control over their resources by enabling

specification of usage policies and price requirements. Furthermore resource

management solutions are included in the scheduling and allocation process. BGQoS

is therefore a comprehensive model where the main focus is not the scientific

domains, but more in the mainstream. The flexibility and scalability of the model

means that as a solution it could be implemented in multiple domains with each

domain specifying their own requirements and definitions. In addition to providing a

solution to QoS specification and resource matchmaking, the model employs a flexible,

expandable and multi-tier GRC architecture that could be tailored to each specific

domain or organisation. The simplification of the matchmaking process, the

clarification of specifying QoS requirements and the multiple venues in which GRCs

can obtain information on their task have been included for a more complete model.

Figure 17 illustrates the different layers of BGQoS and the operation contained within

each layer.

101

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

Specification Layer
GRC
•QoSDescription

•Constraints

GRP
•ResourceCharacteristics

•PolicyDescription
•PriceDescription

Application
•Number of tasks
•Execution

requiremetns

Execution Layer
Resource
Operations
• Resource Discovery
• Resource Selection
• Resource Allocation

QoS scheduling Task Launching
and Execution

Best Effort
Scheduling

Monitoring
Services

File Transfer
Services

Resource
Management

Services

Context Layer

QoS-drive
decision making Price calculation Accounting and

Billing
Feedback and

output retrieval

Resources

Figure 17: BGQoS Layers

Dynamic calculation of resource parameters and updating a database holding this

information provides up-to-date accessible information that can be used for more

accurate and more efficient resource discovery and selection processes to take place.

This information is updated on a regular basis and is used for guaranteeing that the

level of QoS provided by resources matches that which the GRC requires

The fault tolerance and QoS recovery mechanism involved provide a guarantee that

the level of QoS over the run of the application and the tasks within this application

are not compromised and that the GRC is guaranteed the promised level of QoS. If

there occurs a situation where this is not possible, GRCs are informed and the

appropriate measures taken in accordance to prior agreements that are in place

before the execution commences.

Different components within the model ensure that the tasks are executed on the

resources and the results of the successfully completed tasks are returned. Moreover,

102

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

the billing components of the model make sure that the rights of all parties involved

are maintained throughout the execution phase.

5.3. Implementation Components Overview

The rest of this chapter is dedicated to the detailed explanation of the different

components that are implemented. The components that collectively make up BGQoS

are introduced in Figure 18.

103

104

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

Applications Interface

QoSdescription

Resources

GRC Identification QoSdescription

parser
Meta Negotiator

Meta Broker
RDC

RSC

SC

RsC

Agreement
Management

Resource
Management

Communication
Service

Accounting
Service

Execution
Service

File Transfer
Service

Billing
Service

Resource
Communication

Service

To and from databases

Resourcedescription

RDC

RSC

SC

GRC
Tiers

TM

RM

AM

Application Layer

Collective Layer

Resource Layer

Connectivity Layer

Fabric Layer

Figure 18: BGQoS Components

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

The combination of responsibilities by the different components of BGQoS are

designed to carry out dynamic resource discovery, selection and allocation using the

QoSdescription and Resourcedescription, as inputs. Resource information is stored in

specific databases. The resources are typically heterogeneous, geographically

distributed and operate under different policies. BGQoS operates on current

information that is available and updated at regular time intervals, using a

decentralised approach, where brokers can communicate with each other to provide a

global solution meeting the GRCs requirements on-demand, as well as local scheduling

capabilities.

Agreement maintenance is carried out via BGQoS. These agreements trigger

reallocation and migration operations if necessary, using dedicated components for

guaranteeing QoS promised to the GRC.

5.4. GRC Identification

The identification of the GRC, their tier and their administrative domain provides the

authentication and authorisation specifications within BGQoS. Every GRC belongs to a

tier in the multi-tier Grid user architecture. Each GRC must register and then a request

is made to join a tier. Each tier provides the definitions that specify which resources

the GRCs are authorised to use and what requests they can make. Moreover, each tier

provides information on access rights in terms of local and global resources. Following

is an explanation of the protocol followed for registering a GRC and assigning them an

ID that corresponds to their tier:

• A GRC requests to register and join a tier.

• A GRC is assigned a tier:

The expandable layered architecture allows each administrative domain to specify the

authorisation levels for each tier. Each GRC within a tier is given the authorisation

levels associated with that tier. The ID given to the GRC identifies locally the tier that

the GRC belongs to, and since all global resource allocation occurs through the broker

that is located within the same administrative domain, there is no compromise or

misunderstanding in the authorisation levels acquired by each GRC.

• Each GRC signs on with their ID.

• The GRC is directed towards an interface that corresponds to their tier. Interfaces can

be shared between different administrative domains or can be specific to each,

specifying the operations each GRC tier is allowed to carry out. The interfaces

105

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

eliminate confusion and error while providing a mechanism for communication,

feedback and task submission.

Once the GRC have been verified and submit their QoSdescriptionaccording to their

authorisation level, they submit their request for execution. The request is

acknowledged and the QoSdescription is sent to the QoSdescription parser.

5.5. QoSdescription parser

The responsibility of the QoSdescription parser is to extract the information from the

QoSdescription submitted by the GRC. This information includes but is not limited to:

• Information relative to the GRC, such as the GRCID and location

• Number of tasks to be submitted

• QoS requirements

• Time constraint

• Cost constraint

Other information can be included in the QoSdescription such as usage requirements

which must be met by the Policydescription associated with the resources

themselves. Policydescriptions are a part of the Resourcedescriptions .

5.6. Meta-Negotiator

The responsibility of the Meta-Negotiator is to use the information extracted from the

QoSdescriptionand liaise with the Meta-Broker on behalf of the GRC (Brandic et al

2008). The Meta-Negotiator feeds the Meta-Broker as an input and retrieves the

output in return and feeds it back to the GRC.

5.7. Meta-Broker

The Meta-Broker is responsible for selecting an appropriate broker to carry out the

resource operations on behalf of the GRC. The Meta-Broker uses broker ranking for

the selection process by accessing a populated list of brokers and using specific

ranking criteria to select the broker that fits the GRCs requirements best. The Meta-

Broker serves as a method for higher utilisation of the Grid resource brokers and

simplifying the broker selection process. Effectively a Meta-Broker provides a solution

for the interoperability problem by providing GRCs with a uniform access point.

106

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

In an operational scenario, given a set of tasks that needs to be executed according to

specific requirements. If the resource pool to be accessed is linked to different

brokers, the meta-broker selects the appropriate broker using the resource

information garnered from them, as well as other considerations, such as proximity or

other criteria that could be specified. For this, a ranking method is used that assigns

each Broker within a list of potential candidates with a rank value. If the selection

criterion is based on priorities assigned to the broker, the description for this

operation is presented in the following:

Input

QoSdescription

BrokerList= { }; Potential Brokers to be ranked

ResourceList= { }; The Resources related to each of the potential Brokers

based on GRPs connected and their Resourcedescriptions

Priorities= { }; Broker priorities according to policies and agreements

(Partnerships included).

Output:

Ranked Broker List

Start

(SizeOfList→ sl)

For i=1 to sl {

Compare Broker with Brokers above in the list

While (Broker Priority > higher Ranked Broker Priority)

Replace Rank value

Update Rank List

If Broker (Priority = higher Ranker Broker Priority)

{While resources available > resources available for higher Broker

Replace Rank Value

Update Rank List}

Else

Maintain list}

Return Ranked List

End

107

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

The QoSdescription submitted by the GRC and the Resourcedescriptions provided by GRPs

are used as an input, as well as a list of brokers and their priorities. Brokers are

ranked according to priorities and the resources related to them in the previous

explanation. Other or additional criteria that may be a requirement for the GRC or the

GRP can also be used. This returns a ranked list of brokers from the list of possible

brokers.

Within BGQoS, resource information on available resources is current and updated at

regular time intervals. This is taken into account in the resource broker ranking

operation, in addition to the QoSdescription specifying the GRC’s requirements. This

process eliminates the possibility that a Brokeri is ranked higher than Brokerj even

though Brokerj can provide the resources immediately while the resources related to

Brokeri are tied up and are not available immediately.

5.8. Broker

A Broker is responsible for the resource related operations that are required to

discover and select the appropriate resources using the information passed on from

other components. Moreover, a broker holds and manages the communication

between the GRCs and GRPs which is a necessary component for reaching an

agreement. A Broker provides the interface through which task management can be

initiated and the level of QoS maintained throughout the operation of the tasks with

the help of the Monitor. A Broker is responsible for resource discovery, selection,

scheduling, allocation and reallocation. Moreover, it is responsible for returning the

results of completed tasks to the GRC.

5.8.1. GRC Commands

A Broker provides the operation required to return information to GRCs or execute

their requests via one of the following commands:

Get Request Status

The GRC can request information on whether the resource discovery and selection

process has been completed and whether sufficient resources have been allocated to

meet their requirements. Three responses are possible:

• Request Granted: Returned if there are available resources that meet the GRCs

requirements.

108

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

• Request Rejected: Returned if there are no available resources that meet the GRCs

requirements && there are no resources that can meet the GRCs requirements (Figure

19).

Figure 19: No Resources Returned

• Request Pending: Returned if there are resources that meet the GRCs requirements

but are not currently available.

Other commands are included in Table 6:

109

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

Table 6: GRC commands

Get resource List

Returns a list of the resources selected, as well as, detailed

information related to them, such as the GRP and their location.

Get Estimated Execution Time

This command returns the Estimated Execution Time.

Get Estimated Execution Cost

This command returns the Estimated Execution Cost.

Get Task Status

Returns the status of the Task state, the task can be in one of the

following states:

Task
Pending

Task
Scheduled

Task
Queued

Task
Running

Task Error

Task
Completed

Task
Failed.

5.8.2. The Resource Discovery Component (RDC)

The RDC is responsible for locating the appropriate resources that meet the GRCs

requirements and produces a list of potential resources or resource sets according to

the types of resources required in the QoSdescription, the current state of resources and

any other requirements that may be attached to the tasks submitted. The RDC uses the

RR to retrieve information on available resources and uses this information to

perform matchmaking between the submitted tasks and the resources according to

the requirements of the GRC. The lists produced are not duplicated and are

individually constructed.

110

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

The information stored in the RR contains both dynamic and static parameters

relating to the resources that are available for selection. This information is updated

at regular time intervals, which ensures that that information used is up-to-date and

reflects the current state of the resources. The resource discovery component

performs the first phase of the matchmaking process, the second being completed by

the Resource Selection Component (RSC), introduced in section 5.10., which uses the

information handed down by the RDC to produce a ranked list of potential resources.

Following is a description of the operations of the RDC:

𝐈𝐧𝐩𝐮𝐭

QoSdescription

Resourcetype ; Required resource types for executing tasks.

Number of Task; The number of submitted tasks

𝐎𝐮𝐭𝐩𝐮𝐭

List of potential resources

𝐒𝐭𝐚𝐫𝐭

While avR > 0

{(Number of available resource in RR →av R)

For each task = taskt create a list Pt with length = R

{While (avR > 0)

{For taskt, where t = 1 to R

get resource If { resourcedescription = Typet && (resourcedescription

= Perfect Match | | resourcedescription = OverQualified}

Add to list Pt } }

Return resourceSetLists P = {P1 … PR}

𝐄𝐧𝐝

where avR is the number of available resources.

111

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

5.8.3. The Resource Selection Component (RSC)

The RSC uses the output of the RDC which are handed down as a stack of resources or

resource sets that can potentially meet the requirements specified by the GRC, to

produce a ranked list of resources or sets of resources. The RSC is responsible for

filtering potential resources according to the different criteria specified for the

ranking process. Therefore, prior to carrying out the ranking operation, the ranking

criteria must be retrieved by the RSC and used as input for its operation.

The criteria retrieved are then applied to the output handed down by the RDC to

provide a ranked list of resources (in BGQoS, the top resource is given the rank “1”).

Following is an explanation of the operation of the RSC:

Input

QoSdescription ;

ResourceSetList P; P = {P1, … . PR} retrieved from the RDC.

Ranking Criteria; The ranking criteria used, including ranking according to cost, time

and partnerships. Other ranking criteria such as policies can be added.

Number of Task; The number of submitted tasks

𝐎𝐮𝐭𝐩𝐮𝐭

Ranked list of potential resources

Start

For Taskt , where t = 1 TO R

{Retreive Pt

Rank resources in Pt according to Ranking Criteria

Update Pt

Resouce with highest Rank in list RPt}

Return RP

Store P

𝐄𝐧𝐝

112

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

5.8.4. The Scheduling Component (SC)

The SC receives the task execution request and triggers the RDC and the RSC,

requesting a set of resources that meet the requirements specified in the QoSdescription

submitted by the GRC with the task execution request. Once the RDC and RSC

complete their operation, as explained in the previous two sections, a ranked list of

resource sets is returned and handed down to the scheduler. The scheduler uses the

information handed down from the RSC to contact the resources, carry out task

assignment, reservation operation and prepares the tasks for execution.

Two types of scheduling could occur, the first is that each task is dependent on the

task before, i.e. must wait for the prior task to be executed, because it is dependent.

The other type is a hybrid scheduling mechanism that carries out tasks both in parallel

and in sequential manner. This can be explained that while some tasks are dependent

on other tasks to be executed successfully, and therefore must be carried out

sequentially, there may be other cases that are independent with resources available

and therefore, could be carried out in parallel.

5.8.5. The Rescheduler Component (RC)

The RC is responsible for carrying out the scheduling operations while the application

is executing, if triggered. This could occur if there is a violation of the agreement

between the GRC and the GRP, or degradation in the level of QoS that is more than the

ratio requested by the GRC. The information is returned to the GRC via the monitor

explained in section 5.11. The rescheduler is only triggered if a specific set of

conditions are met, as explained in the previous chapter.

Using the information returned by the RDC and the RSC, representing a ranked list of

resources, produced initially for the first scheduling operation and saved in a database

accessible by the RC, it goes through the sets to find the highest ranked available

resource set by requesting up-to-date information. Once it locates a set of resources

that is available, the RC carries out the scheduling operation for the remaining tasks.

The description of the RCs operation is as follows:

113

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

Input

QoSdescription

Ranked resource List RP: RP = {RP1, … . , RPR}

Number of tasks R-l: The number of tasks remaining to be rescheduled

Start

While there are remaining tasks:

{If Checkconditions = True;

{For Taskt

While there are resources available

Retrieve RPt from RP

If (the next highest ranked RPr is available)

{Assign Taskt to RPr

Send Taskt to QRPr
}

Else

{Check the next highest}

If (no RPr is available)

{Return Taskt as failed }

}

End

5.9. Monitoring Component (MC)

The MC is responsible for overseeing the parameters associated with the execution

process. The MC comprises multiple elements, each of which specifically performs

specific monitoring responsibilities. These elements collectively oversee and monitor

the different operations involved in successful task execution according to specific

requirements and retrieve information on tasks and resources (Ropars et al 2006).

The MC is also responsible for notifying the appropriate components of the

information retrieved.

5.9.1. The Task Monitor (TM)

The task monitor is responsible for overseeing the tasks and collecting information on

their location, execution, and level of QoS provided and the status of each task. The

information retrieved by the task monitor in relation to each task can be categorised

as:

114

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

• Task resource information

• Task status

• Task execution

5.9.2. The Resource Monitor (RM)

The RM is responsible for overseeing the selected resources. Following are the

information retrieved by the RM in relation to each selected resource:

Expected Execution Start time for a Task

The expected start time is the time at which task execution is carried out, having

completed resource related operations, including resource selection and scheduling

and queuing. Moreover, this is the time when requirements have been transferred and

resources prepared. It is when the Task Launcher initiates the actual execution of the

task on the resource.

Resource Information

Resource information includes information on the following:

• Resource Load

• Resource Queue Length

• Resource QoS delivery

• Resource Characteristics

Resource Characteristics include both static and dynamic characteristics associated

with each resource. Information on resources is updated at regular time intervals and

the relevant information is retrieved by the monitor and is used in comparison

operations to detect violations.

Resource Status

The resource can be in one of the following two states:

• Resource Functional

o Resource Ready

o Resource Busy

• Resource Failed

115

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

5.9.3. The Agreement Monitor (AM)

The AM is responsible for maintaining the agreement established between the GRC

and the GRP. The AM uses the information returned by the TM and the RM to carry out

the appropriate comparison operation and refers to the agreement to make sure that

task execution is carried out according to the agreed terms between the parties. This

includes that each task is submitted to the correct resource, that the level of QoS is in

line with the agreement, and that the policies are adhered to, as well as other

agreement parameters. If there is any violation to the expected execution scenario, the

AM is responsible for returning the appropriate notification to the relevant parties

and components.

5.10. The Resource Management Component (RMC)

The RMC is responsible for collecting resource information and storing it during the

advertising phase. The RMC is also responsible for the RRs and for maintaining

information on resources up to date using the available information at that specific

time. The RMC is made up from the following elements:

5.10.1. The Resource Updater (RU)

The RU is responsible for retrieving resource information at specific time intervals

and updating this information in the RRs. Resource information, initially stored in the

RR, contains the advertised resource characteristics in the Resourcedescription. The RU

performs the updating process, explained in the previous chapters , if i) the GRP

requests an alteration ii) The information received by the RU differs from the current

information stored in the RR relative to that specific resource identified by a specific

ResourceID.

5.10.2. The Resource Communicator (RC)

The RC is responsible for sending notifications to the GRP when an update operation

occurs, sending them the newly updated resource information and the characteristics

stored in the RR.

116

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

5.11. The Agreement Management Component (AMC)

The AMC is responsible for providing the tools for providing support for agreement

enforcement, renegotiation and penalties if violations occur, as well as drafting new

agreements if resource reallocation and migration take place.

5.12. Task Launcher (TL)

The TL is responsible for the actual execution of tasks utilising the services provided

by selected and assigned resources. Once the scheduler submits the tasks, the

responsibility is shifted to the TL for execution.

For every application, each task must be executed, required files accounted for,

required input data accessible and each output collected. Required files must be

downloaded and transferred if tasks are to be executed on resources that are not

located in the same geographical location. Therefore, input/output operations are the

responsibility of the TL. This includes validating that each task is receiving the correct

input and that input is available, as well as, collecting the output from completed

tasks.

5.12.1. The Local Task Launcher (LTL)

The LTL is responsible for handling all the tasks that are scheduled for execution on

local resources. This element receives the execution requests, the scheduling details

and initiates the actual execution of tasks using the information received.

5.12.2. The Global Task Launcher (GTL)

The GTP is responsible for handling all the tasks that are scheduled for execution on

global resources, by synchronising the task execution operation between different

sites, as well as carrying out global input/output operations.

5.13. The Task Migration Component (TMC)

117

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

The TMC is responsible for carrying out the required operations for tasks to be

reallocated to other resources within the application run. The TMC is triggered if the

conditions for reallocation and migration are met.

The TMC receives the new scheduling information from the RC which has been

introduced above, and initiates the migration process. The TMC carries out the

following operations:

• Synchronising the retrieval and placement of input data and input files.

• Task Launching on the new resources.

• Synchronisation between completed tasks on the first resource set and the migrated

tasks on the new resources.

• Synchronising with the ABC, AMC and MC.

• The TMC may be triggered multiple times within the run of the application if the

conditions for reallocation are met and the process is required.

5.14. The Accounting and Billing Management Component (ABC)

The ABC is responsible for calculating the actual cost and billing the GRC once the

application has been completed.

5.14.1. The Accounting Manager (AM)

The AM is responsible for calculating the final cost for running the application,

including migration costs, penalties and other criteria that must be added to the final

figure. The AM receives the list of resources utilised, the price for utilising them per

unit of time and the time they were utilised for. Moreover, the penalties, if any, in

relation to these resources are added to the final calculation. The AM calculates the

cost per GRP and sends the information to the BM which is responsible for collecting

the payment from the GRC and returning it to the GRP.

5.14.2. The Billing Manager (BM)

The BM is responsible for payment and financial operations and communication

between the GRC and the GRPs whose resources have been utilised. The BM receives

the information required from the AM and forwards them to the GRC and the GRPs

involved.

118

CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN

The BM uses the GRCs payment information, which is submitted as a part of the task

execution request, to collect the required amount from the GRC and deliver the

payment to the GRPs involved. Once the payment has been completed and received by

the GRPs, the BM notifies both parties and their receipts are sent accordingly.

5.15. Summary

This chapter has introduced the operational components within BGQoS, their

specification, responsibilities and the input/output operations related to each.

Collectively, they represent a solid unit capable of carrying out the entire operational

process covering different requirements, supporting GRC operations, GRP operation,

resource operations, broker operations and task execution. Overall the components

produce a model that is capable of carrying out QoS support while providing an

expandable and flexible platform that could be deployed to support multiple domains

within a diverse environment, supporting different types of users and resources. The

next chapter is dedicated to BGQoS operations carried out using the implemented

components implemented and the detailed explanation of each operation.

119

CHAPTER 6: BGQOS OPERATIONS

CHAPTER 6: BGQOS

OPERATIONS

120

CHAPTER 6: BGQOS OPERATIONS

6.1. Introduction

In Chapter 4 the QoS model employed within BGQoS has been introduced, which was

followed up in Chapter 5 with introducing the system components and design of

BGQoS which allow it to support the QoS. This chapter complements the previous

chapters, and provides further detail on the required operations of BGQoS.

6.2. Resource QoS Capabilities

A QoS GRC is capable of stating the QoSparameters they require. However, this raises the

issue of determining whether resources can meet these parameters, and how to derive

this relationship using the information available on the characteristics of each

resource, both dynamic and static. BGQoS supports the allocation of resources that

support a higher level than is initially required if the cost does not exceed the

constraints set by the GRC. If we assume that an authorised GRC is requesting a

computing resource in the shape of number of CPU cores, a computing resource in the

shape of Memory in RAM and a storage resource, then one of three cases occurs

within BGQoS. The first case is that of a perfect match, where the offer exactly matches

the request in terms of type of resources and the level of QoS requested. The offer in

this case if called a ‘Perfect Match’.

Case 1: Perfect Match:

QoS Parameters = Resource Characteristics

The formula is as follows:

{(CPU = Requested CPU) AND (RAM = Requested RAM) AND (Storage = Requested

Storage)}

The second case occurs when the level of service provided by a resource is higher than

the level of service requested by the GRC. The offer in this case if called ‘Over

Qualified’.

121

CHAPTER 6: BGQOS OPERATIONS

Case 2: Over Qualified:

Resource Characteristics > QoS Parameters

The formula is as follows:

{(CPU ≥ Requested CPU) AND (RAM ≥ Requested RAM) AND (Storage ≥ Requested

Storage) }

AND {(CPU > Requested CPU) OR (RAM >Requested RAM) OR (Storage > Requested

Storage)}

In other words all three resource characteristics(CPU, RAM and Storage) must be at

least equal to the requested QoS parameters and at least one of those three

characteristics must exceed the matched requested QoS parameter (otherwise the

case would be a perfect match rather than overqualified).

The third case occurs when the offer only partially meets the requested level of

Service. The offer in this case if called ‘Insufficient’.

Case 3: Insufficient:

Resource Characteristics < QoS Parameters

The formula is as follows:

{(CPU<Requested CPU) OR (RAM<Requested RAM) OR (Storage<Requested

Storage)}

If either case 1 (“Perfect Match”) or case 2 (“Over Qualified”) is true in relation to a set

of proposed resources, then these resources can be considered for allocation. The set

of potential resources that meet GRC requirements, are called candidate resources

122

CHAPTER 6: BGQOS OPERATIONS

lists. BGQoS supports the negotiation process between the GRP and the GRC in this

case. The model then filters the list for the most local and optimal solution meeting the

GRC constraints using resource ranking.

In the third scenario where case 3 (“Insufficient”) occurs, then the resources are

deemed unfit and are not considered as potential resource sets that could be allocated,

initially. Figure 20 illustrates the explanation above.

Figure 20: Accepted vs Rejected

The use of logical operators provides us with the option of introducing a variation of

the BGQoS operational model where the GRC can specify a second requirement set in

case the first one cannot be met. An OR operation is used in order to carry out this

operation.

For the same request, a GRC may wish to provide two descriptions: CPUi, RAMi and

Storagei as set of requirements (1) and CPUh, RAMh and Storageh as set of

requirements number (2). The first set is called a main request and is given a priority

value over the second set.

123

CHAPTER 6: BGQOS OPERATIONS

{(CPU ≥ Requested CPUi) && (RAM ≥ Requested RAMi)&& (Storage

≥ Requested Storagei)}

OR

{(CPU ≥ Requested CPUh) && (RAM ≥ Requested RAMh)&& (Storage

≥ Requested Storageh)}

If both requirements can be met, the main request is used.

6.3. Cost and Time Estimation

When the GRC submits a QoSdescription , they submit the number of tasks to be

executed. The completion of the matchmaking process means that a set of resources

has been selected for the tasks to be carried out. Using the information submitted by

the GRC and the information available on the selected resources, time estimation and

cost estimation can be carried out. These estimations are used for the following:

• Provision of live information during the run of the application.

• Comparison between the delivered and expected level of QoS from the resources with

tasks running.

• Meeting the Time and Cost Constraints.

6.3.1. Time Estimation

A service which supplies the GRC with an estimated time of completion once their

tasks are submitted and a request is met by a set of candidate resources has been

implemented within BGQoS. The model uses the information provided by the GRC in

the request and the allocated resource characteristics to calculate an estimated

completion time that is returned to the GRC. The estimated time can be calculated as

the sum of the following time components, if the tasks are carried out sequentially:

k

eT = � (eQTn + eETn + eTTn)
n=1

124

CHAPTER 6: BGQOS OPERATIONS

eT is the total estimated time for an application with k Tasks. eETn is the estimated

execution time of a Task Tn, eQTn is the queuing time for a task Tn and eTTn is the

estimated file transfer time for the same task, Tn. This service is referred to as the time

estimator.

However, if the tasks are carried out in parallel, then the estimated time can be

defined as the time at which the final task will be completed Timefinish and can be

defined as:

Timefinish = max (eQtn + eETn + eTTn)
n=1,k

6.3.2. Cost Estimation

In addition to the time estimator explained, cost estimation can be requested by the

GRC. The cost constraint specifies that a specific total cost should not be exceeded.

Once a set of resources has been identified and selected, the cost of running the tasks

could be calculated accordingly, using information on the price for using a resource

per unit time p(t) and the time the resource is expected to be occupying the resource

until completion, or the estimated τ. Since the resource usage cost in BGQoS is

calculated based on a time basis, i.e. the price is per unit time and the GRC is charged

for the period of time during which they use the resource.

If an application has k tasks:

k

eC = � pn(eτn)
n=1

Where eC is the predicted cost for the entire application and p (t) is the price of

running task n on resource Ri for time t. eTn is the estimated time it will require to

complete task n on resource Ri. This service is called the cost estimator.

125

CHAPTER 6: BGQOS OPERATIONS

6.4. Phases of Execution

BGQoS phases of execution are:

6.4.1. Phase1: Information Retrieval

This phase includes two sub-phases:

• GRC requirements retrieval: the GRC request is parsed and their requirements are

retrieved to be used in the next phase of the models operation. These requirements

include the types of resources required, the QoS parameters required and the

constraints that the GRC chooses to set.

• Resources information retrieval: The GRPs advertise their resources for local and

global use if they wish to make them available for GRCs. Once the GRC requests have

been received and the requirements information is retrieved by the model, the second

part of this first phase is to retrieve the information on resources from the Resource

Repositories (RRs) where up-to-date resource information is kept.

6.4.2. Phase 2: Matchmaking

A matchmaking decision, 𝑀𝑑 , is defined as the decision that complies with:

• QoSrequestedi ≤ QoSexpectedi , i.e. the resource selected meets the QoS requirement

submitted by the GRC.

• Ti > 𝑅Ti , i.e. the estimated completion time must be earlier than the Time Constraint

specified by the GRC.

• Ci > 𝑅Ci, i.e. the estimated completion cost must be less than the maximum Cost

Constraint specified by the GRC.

Once the GRC requests are received and all the relevant information is retrieved, in

addition to acquiring the information that is relevant on resources and their

characteristics, the matchmaking phase is initiated.

126

CHAPTER 6: BGQOS OPERATIONS

6.4.3. Phase 3: Agreement

The negotiation process concludes with an agreement between the GRC and the GRP

as mentioned above, the offer and conditions are included in an agreement which

serves as a contract between the two sides. One of the main contributions of BGQoS is

the simplification and automation of information retrieval from both GRCs about their

QoS requirements and the information from GRPs about their resources, their

characteristics, dynamic and static. BGQoS achieves this through using templates that

both sides use for their respective purposes. The templates provide the model with

the information required to map tasks to resources, by parsing the completed XML

based templates, called descriptions.

6.4.4. Phase 4: Resource Allocation

Once the agreement is set, the GRC sends their tasks for execution and those tasks are

allocated to the resource set that was agreed upon prior to the actual allocation. This

is done via the task allocation component of BGQoS. Each task submitted is given a

unique identifier TaskID when it is submitted to the resources that have been selected

for its execution.

6.4.5. Phase 5: Monitoring and Maintaining Agreement

This is a very important phase in the operation of BGQoS as it is when the tasks are

allocated to the resource sets; it has the responsibility to make sure that the GRC

receives the level of QoS that was promised from the resources that were allocated.

This monitoring process looks for any degradation in the parameters or any resource

failures. If a violation is found, measures are taken to rectify them. These measures

include migration, reallocation and penalty imposition.

6.4.6. Phase 6: Completion and Billing

Once all the tasks have been completed, the resources are released, the GRC is billed

and the session is terminated. The GRP then decides whether to re-advertise the

resources by making them available again. The dynamic information such as resource

reliability (Dabrowski et al 2006) and availability are updated according to the latest

information and statistics collected on the resource at that point.

127

CHAPTER 6: BGQOS OPERATIONS

6.5. Candidate Resource Accumulation

Candidate resources are discovered and ranked. Ranking candidate resources is

accomplished via a multi-step filtering and ranking process that is initiated after

accumulating the lists through matchmaking the QoSdescriptions of the GRC with the

Resourcedescriptions.

If the level of QoS available in the Resourcedescriptions and the QoSdescriptions from the

GRC produce a result of “Perfect Match” or “Over Qualified” then the resource is added

to the list of potential resources. To achieve this, two questions are asked:

• Is the GRC identified via the GRCID authorised to use the resources in the potential

set? Do they have access?

• Is QoSAvailable ≥ QoSRequested?

The answer to both questions must be a “Yes” for the set to be accepted as a potential

set and added to the initial list.

6.5.1. Filtering: Meeting the Constraints

The first filtering process occurs at this stage. The potential resources that are

identified are checked against the two constraints input by the GRC as part of their

QoS description, the time constraint and the cost constraint.

For a resource set Si containing resources {R1, … . . , Rn} selected as a solution to a

QoSdescriptions for an application Appi containing n Tasks then Si meets the constraints

iff:

n
� pRs(t) ≤ C && max (timefinisht

) < 𝑇
s=1 t=1,n

Where pRs(t) is the price of Rs for the time it was allocated to the GRC, timefinisht
is the

time at which the final task is completed. C, is the Cost constraint and T, is the Time

Constraint.

128

CHAPTER 6: BGQOS OPERATIONS

Once this is done, the lists of resource sets that do not meet the constraints set by the

GRC are removed and the rest of the sets retained and included in a new list. This list

is passed on to the next ranking stage.

6.6. Constraints Minimisation

There have been efforts in Web Services at exploring constraints and their role in

service composition and service allocation (Aggarwal et al 2004, Guan et al 2006). In

BGQoS we have defined an application as a collection of connected tasks. We have also

modelled the Grid as a collection of variable types of distributed heterogeneous

resources belonging to different owners that can be pooled together to execute the

tasks that comprise an application. These resources can include, in BGQoS, computing

and storage resources, so a Grid can include a set of resources = �R1 ,R2 , R3,…….Ri } .

The GRC may wish to select a constraint to be minimised if the option existed. For

time minimisation: if we assume that there are more than one set s of potential

resources that could execute n tasks submitted by a GRC according to their

requirements and that maxt=1,n (timefinishs
) is the expected completion time for final

task on set s. If we consider the cost of executing the submitted tasks on resource s as

cs , then the aim is to choose the set of potential resources with the earliest

maxt=1,n (timefinishs
) while the following conditions are true:

cs < 𝐶

And

max (timefinishs
) < 𝑇

t=1,n

Where C is the cost constraint and T is the time constraint.

129

http:R3,��.Ri

CHAPTER 6: BGQOS OPERATIONS

6.6.1. Rank According to the Proximity to QoSdescription

The list from the previous step provided the sets of potential resources that are

capable of meeting the requirements set by the GRC through the QoS description

submitted initially. Next the resources contained in the list are compared with each

other and stacked on top of each other where the top of the stack is the highest ranked

set. The top set is ranked 1 and is reserved. If we assume that the requirements are as

follows:

R > 80%

C = 150 units

T = 450 units

And we assume the potential list of resource sets returned is as shown in Table 7.

Table 7: Potential Resource Sets

𝑺𝒆𝒕𝑰𝑫 𝒆𝑪 𝒆𝑻 𝑹

𝑺𝟏 180.56 300.05 96.8

𝑺𝟐 172.5 400.25 90.5

𝑺𝟑 165.58 442.85 87.8

𝑺𝟒 178.9 381.72 93.50

𝑺𝟓 177.75 320.65 92.7

𝑺𝟔 172.9 338.7 82.9

For the purposes of this example the GRC has chosen to minimise the cost while

meeting the other requirements and constraints. In other words, the only time

consideration would be that eT < 𝑇 without taking time minimisation into account.

On the other hand, in terms of cost then eC < 𝐶 is taken with the objective of

minimising the cost. In terms of reliability, it needs to be over 80%, R > 80. The sets

returned meet these criteria and must be ranked, and the ranking is as shown in Table

8.

130

CHAPTER 6: BGQOS OPERATIONS

Table 8: Summary of swap operations for ranking

Sets 𝑪𝒅𝒊𝒇𝒇 𝒆𝑻𝒅𝒊𝒇𝒇 𝑹𝒅𝒊𝒇𝒇 𝑺𝒘𝒂𝒑 𝑹𝒂𝒏𝒌𝒔

𝑺𝟏, 𝑺𝟐 -8.06 100.2 -6.3 Yes

𝑺𝟐, 𝑺𝟑 -6.92 42.6 -2.7 Yes

𝑺𝟑, 𝑺𝟒 13.32 -61.13 5.7 No

𝑺𝟑, 𝑺𝟓 12.17 -122.2 4.9 No

𝑺𝟑, 𝑺𝟔 7.32 -104.15 -4.9 No

The minus signs in the table above represent the differences for the second set in the

comparison. Therefore, S3 is selected as the highest ranked resource set solution.

Figure 21 illustrates the resource operations including time and cost estimation.

6.6.2. Combination Ranking

A ranking process combining the two ranking steps above is available within BGQoS.

Where cost or time minimisation is carried out and the top f sets ranked S1 → Sf are

rearranged according to the proximity to QoSRequested.

Combining the two ranking steps provides a more reliable, accurate and relevant

selection method, however, it does incur more overhead for the resource selection

phase. Moreover, the minimisation preference of the GRC must be included in the

QoSdescription .

131

CHAPTER 6: BGQOS OPERATIONS

GRC Broker RR Resources

Execution Request

QoSdescription

Validate

Parse

Get Resource

Estimated
Cost

Estimated
Time

Rank
Resources

Select
Resources

Submit
Tasks

Figure 21: The resource operation process

6.7. Policies

Policy matchmaking (In et al 2004) is supported by BGQoS. It performs the required

operations in policy management, allowing GRPs to specify the policies for their

resources, and submit a policydescription explaining the specific requirements. As

explained throughout this chapter, BGQoS receives an execution request and a

QoSdesciption at the start of a session. Using the information available on resources,

static and dynamic, BGQoS selects the sets of potential resources before filtering the

lists and ranking them. Even though, the resources selected are capable of carrying

out the tasks according to the QoSdesciption, the usage policies set by the GRP must be

taken into consideration. For this another filtering step is proposed, based on the

resource usage policies attached to the resources. For example, the GRC may require

that they have access to the temporary files produced while the tasks are executing on

132

CHAPTER 6: BGQOS OPERATIONS

the resources they acquire. In this case, if two sets of resources are identical, with the

difference that the temporary files are saved for one set and they are deleted for the

other, the first set is the choice set. Whether the temporary files are kept or deleted is

specified in the usage policies submitted by the GRPs.

A Policydescription can contain multiple types of information. It may include: R

• Local policies in relation to the resources themselves. For examples, if a GRP is

advertising resources with a specific amount of computing power, it must also specify

the percentage of the resources it is willing to contribute within a specific period of

time.

• Indication whether the resources are allowed to be allocated to global GRCs or are

restricted to local GRC usage.

• The conditions of cooperation between different GRPs for providing a combined

resource set that meet the GRCs requirements.

• The operational restrictions for using their resources, such as the maximum load or

the maximum reservation period in relation to specific GRCs.

Each policy is attached to the ResourceID and the GRPID and is stored with the

resource it is associated with in the RR. Like the resources themselves, the policies are

accessible for authorised entities, allowing those entities to carry out retrieve,

update/edit and delete operations when necessary. Moreover, the policy itself is

produced in an XML based format. This allows BGQoS to parse through the documents

and extract the required information. BGQoS uses the extracted information to locate

the resources that are attached to usage policies that meet the GRCs requirements and

selects the appropriate resources accordingly.

6.8. Matchmaking

Matchmaking is the core operation of BGQoS. A flexible, accurate, simple and

expandable approach to matchmaking based on the QoSdescriptions submitted by GRC

is implemented. These QoSdescriptions outline the high-level requirements for their

tasks. Moreover, as explained in previous sections, descriptions are submitted in

accordance to policies defined within a multi-tier user grouping model. The

environment for which BGQoS is proposed itself includes multiple domains and many

applications that differ in terms of their requirements and the way they may use the

resources provided by different Grids. It is therefore very important that BGQoS is

133

CHAPTER 6: BGQOS OPERATIONS

easily expandable to these variable domains. It is at this stage of active resource

discovery and resource selection and matchmaking that resources through their

characteristics and the QoS descriptions where BGQoS provides the basic functionality

that can be built upon via other components to tailor to the different domains.

6.8.1. Multi-Tier Interface

In BGQoS a multi-interface model is implemented corresponding to the multi-tier GRC

architecture introduced. It also provides the GRC with the ability to specify high-level

QoS requirements that form the core of the QoSdescription , since we are aiming to

separate the GRC from dealing with the low level Grid infrastructure, directly. They

also serve as the entry point to BGQoS and session initiators. Every GRC logs into an

interface that is specifically tailored to them. This is in line with our multi-tier user

model. This simplifies validating the GRCs authorisation for making their

requirements as well as simplifying requirement setting for the GRC. Moreover, it

simplifies requirement extraction for the relevant components that are concerned

with searching for the appropriate resources.

The design and the components of the interface might differ according to domain or

specific administrative requirements. Every GRC in our model belongs to one specific

tier. This user model can be expanded to accommodate as many tiers as every

administrative domain sees necessary. Different interfaces have been developed for

each tier with the objective of allowing each GRC access to the resources to which they

have permission, as well as, allowing each GRC to specify their QoS requirements and

constraints as specified in the definition of their level.

The User interface component of BGQoS serves the following functions:

• Provides the entry point to the scheduling process, receiving GRC execution requests

and QoSdescription

• Limits each GRC to their level of privileges reducing errors and validating

requirements.

• Receives GRC Commands, such as requests for Task Status information and level of

QoS delivered.

• Invokes the proper elements of the model to commence executing tasks.

• Receives the output from successfully completed tasks and applications.

134

CHAPTER 6: BGQOS OPERATIONS

Once the registered GRC logs into their correct interface, they are capable of specifying

the QoS they require from the resources they require.

6.8.2. GRC Request and QoSdescription

The matchmaking process is initiated via a request by the GRC containing an

application execution request and a description of the requirements in terms of QoS

parameters, constraints and other relevant information that is specific to each

domain. The GRC must also submit the number of tasks that are to be sent for

execution. The importance of this information is explained in the following sections of

this chapter. These documents are parsed and the descriptions are extracted. This

information is used in the next step.

6.8.3. Resource Discovery

Potential resources are accumulated via the QoSdescription, the resourcedescription and

using the components and operations introduced in this and previous chapters. The

potential list of resources and resource sets is ranked in the next resource operation.

6.8.4. Resource Selection

The resource selection phase within BGQoS is an execution phase in its own right

within BGQoS as explained in previous sections, unlike previous approaches where

resource discovery and selection were combined within one execution step. Once the

resources are discovered in the previous step, the ranking process begins.

Resource ranking is achieved through following the resource ranking options:

• Resource Ranking according to GRC request.

• Resource Ranking with Cost Minimisation

• Resource Ranking with Time Minimisation

• Combinational resource Ranking.

135

CHAPTER 6: BGQOS OPERATIONS

6.8.5. Scheduling and Executing Tasks

Once resource ranking is completed, the resource set Si with rank = 1 , the top of the

resource set stack, is selected. Once the resource set is selected, the resources are

reserved and tasks are sent to those resources for execution according to the schedule

produced in relation to the selected resources.

6.9. Partner and Global Access to Resources through Brokers

In Grid environments, Grid users must rely on resource brokers to discover the

appropriate resources that meet their requirements, which has led to this surge in the

development of different resource brokers after the initial efforts of the Globus Grid

Resource Broker (Pathak et al 2005). However, these different resource brokers have

no clear way of communicating between each other, or a clear protocol for

communication between a GRC and a GRP through a set of resource brokers.

Moreover, in BGQoS the top level GRCs are allowed access to different resources on

different Grids, which presents the question: Which Grid should I use?

In BGQoS once GRCs submit their execution requests and QoSdescriptions , they expect

that the appropriate resources be located and selected. In addition to the methods

that have been introduced to achieve this goal, a component has been implemented in

BGQoS, which operates as a high-level communication platform between different

Grids and deciding which Grids to communicate with in case local resources cannot

meet the GRCs requirements.

The first step is to populate a list at each location with a list of potential brokers that

can be communicated with. In the following step the ranking technique is tailor

implemented and applied by BGQoS, by implementing broker ranking that follows the

following criteria:

- Priority: The first filtering phase is based on whether mutual agreements exist

between different, Grids, organisations and domains. If these agreements exist, only

brokers included in these agreements are considered and the rest are discarded. The

newly populated list of potential brokers proceeds to the next filtering step.

136

CHAPTER 6: BGQOS OPERATIONS

- Location: The proximity of the location of the broker is important and taken into

consideration when selecting the right broker, in keeping with BGQoS’s objective to

shorten distances between GRCs and the resources they require, for more efficient

and smoother allocation.

- The resources available and the number of successful tasks that have finished

successfully over a period of time, which can be calculated using up-to-date

information.

- The load of the Grid that the broker is a part of.

rank
GBi �⎯� 1

rank
GBn �⎯� n

If the geographical location or distance is the criteria followed, then the process is

shown in Figure 22:

𝐒𝐭𝐞𝐩 𝟏: 𝐏𝐚𝐫𝐭𝐧𝐞𝐫 𝐁𝐫𝐨𝐤𝐞𝐫𝐬

Contact the Broker Repository and get a set of Partner Brokers, PBrokerSet

For all Brokers pj ∈ PBrokerSet, calculate d(pi, pj), where d is the distance

Select pmin with minimum distance to pi

Contact partner broker

S(i) ← S(pmin)

Repeat for all Brokers in PBrokerSet if resources do not meet QoS requirements

𝐒𝐭𝐞𝐩 𝟐: 𝐆𝐥𝐨𝐛𝐚𝐥 𝐁𝐫𝐨𝐤𝐞𝐫𝐬

Contact the Broker Register and get a set of Global Brokers, GBrokerSet

For all Brokers gj ∈ GBrokerSet, calculate d(gi, gj), where d is distance

Select gmin with minimum distance to gi

Contact global broker

Repeat for all Brokers in GBrokerSet if resources do not meet QoS requirements

Figure 22: Broker ranking according to distance

137

CHAPTER 6: BGQOS OPERATIONS

However, just like resource ranking, it is possible to introduce ranking criteria

according to different requirements for different domains, organisations or

agreements.

6.10. Reallocation

In the previous sections BGQoS’ aim at assigning the right tasks to the right resources

by a matchmaking process driven by QoSdescription submitted by GRCs and using

available up-to-date information on resource characteristics and QoS levels has been

explained. Sustaining this level of QoS is a major objective of BGQoS. The combination

of appropriate resource selection and the sustainability of the level of QoS provided by

the selected resources provides the guarantee to the GRC that their QoSRequested is met

and maintained until the completion of the tasks submitted. The premise that both

parties will adhere to what they agree upon is documented in a contract that is

initiated by the GRC, received by the BGQoS and offered by the GRP. If there is a

violation of the contract, which might occur for multiple reasons, including resource

failure and performance degradation, then the reallocation components in BGQoS are

activated.

6.10.1. Issues to Consider

The decision to reallocate, from the GRCs point of view must be put into the context of

whether it is beneficial or not. There are a number of issues to consider:

• The percentage of tasks that have already been completed.

• Whether there are available resources that could be allocated immediately while still

meeting the GRC requirements.

• Whether the total cost, including the cost of moving the tasks from one resource to

another is viable and within the constraints.

If the conditions are met, then reallocation is viable and beneficial, the rescheduling

and reallocation components of the BGQoS are triggered. Our model performs

rescheduling and reallocation in two ways; the first is to a migrate to a different set of

resources for guaranteed QoS GRCs, and, the other performs resource swapping for

best effort GRCs, if there are resources available.

138

CHAPTER 6: BGQOS OPERATIONS

6.10.2. Reallocation for Guaranteed QoS GRCs

The first approach that BGQoS uses for Guaranteed QoS GRCs, migrates the application

to an alternate list of resources that meet the GRCs requirements. This approach is

implemented using an improved stop/start approach to rescheduling, using the

ranking mechanism introduced above, in which multiple lists of resource sets are

ranked according to specific criteria.

Stop/start is a rescheduling mechanism that halts the application at a specifically

defined point in operation and performs migration to another list of resources that are

available. When the running application encounters a contract violation, reallocation

is initiated and the tasks are to be migrated. When this occurs, the tasks are stopped,

user specific data is check-pointed and the application is terminated. The application

is restarted on the second list of resources that is available, using the check-pointed

data.

6.10.2.1.Reallocation via Ranked Lists

BGQoS accumulates information on resources and identifies a list of candidate

resources that could potentially meet the GRCs requirements and stay within their

constraints. Resources are ranked according to different criteria, including better

matching and constraint reduction through multiple filtering processes. The ranked

lists, are stored until the tasks are carried out successfully, the application is

completed and the results are returned to the GRC. The reallocation process within

our model uses this information for resources migration when is required.

139

CHAPTER 6: BGQOS OPERATIONS

Task Monitor

Resource Monitor

Agreement Monitor

Submitted Task Running Task Completed Task

Resources

GRC

Rescheduler
Component

Task Migration
Component

Reallocation

Monitor

Receive Task Data

Receive Resource Data

Tasks to be
reallocated

Completed tasks

Figure 23: Monitoring and Reallocation of Tasks

6.10.3. Tolerance Ratio

It is necessary to specify the points at which reallocation is viable, numerically. For

this a QoS ratio is introduced, calculated at specific time intervals, as the ratio between

the values of the expected QoS to be delivered at time i, QoSexpectedi and the actual QoS

delivered at that point, QoSdeliveredi , effectively calculating the percentage of QoS

delivered in relation to the original requested and agreed upon QoS. A Tolerance Ratio

TR is specified by the GRC, expressing the percentage to be tolerated if

the QoSdeliveredi < 𝑄𝑅Sexpectedi . If none is set by the GRC, a default value is referenced.

If QoSdeliveredi < 𝑄𝑅Sexpectedi then the actual Delivered Ratio DR as a percentage is

calculated as:

DR =
QoSdeliveredi × 100
QoSexpectedi

140

CHAPTER 6: BGQOS OPERATIONS

Case 1:

If DR ≥ TR no migration is necessary and the application continues its operation

normally until the next specified time for calculating a new DR, where the process is

repeated.

Case 2:

If DR < 𝑇𝑅, the rescheduling and reallocation components of the BGQoS check how

much of the application has been completed. This process is directly related to the

second of the issues to consider, specified earlier in this section, relating to whether

there is any benefit in migrating the application at that specific point in its execution

cycle.

Migration decision: �
Migration, if DR < 𝑇𝑅,

No Migration , if DR ≥ TR

At this point, there are a number of issues to consider, including:

• The size of an application

• The QoS requirements

• The Cost constraints specified by the GRC

• The Time constraints specified by the GRC

The first issue is solved by proposing a percentage of tasks completed, this both

eliminates the size of the application as parameter as well as maintaining the GRCs

control over the reallocation procedure, this parameter is called Completion Ratio CR.

The percentage of actual tasks completed can be calculated as Actual Completion Ratio

ACR:

Actual Completion Ratio = Number of completed tasks × 100
Total number of tasks

141

CHAPTER 6: BGQOS OPERATIONS

If 𝐴𝐶𝑅 ≥ 𝐶𝑅 then no migration is carried out and the penalties are incurred, if

𝐴𝐶𝑅 < 𝐴𝑅 then the third issue is to be considered. In general:

Migrate, if DR < 𝑇𝑅 𝑎𝑛𝑑 𝐴𝐶𝑅 < 𝐴𝑅Migration decision: �No Migration , if RDR ≥ TR or ACR ≥ CR

The third issue is whether the cost of migration is within the constraints of the GRC. If

the first two conditions are met in (1) and (2) then the cost of migrating the resources

is calculated as Migration Cost (𝐶𝑚𝑑𝑔𝑑𝑎𝑑𝑑𝑑𝑑):

Cmigration = (Cost (set1i) + Cost (Migration)

+ eCset2j
) – Penalties imposed on GRP providing set1

The condition to be met is:

Cmigration < 𝐶

The Time constraint is the final issue to be considered. While the resources lists have

fulfilled the initial Time Constraint requirements, the migration time must be added to

the total execution time, introducing a newly calculated estimated time of Completion,

Tmigration:

Ttotal = Tset1
+ eTset2j

+ Time required for Migration operation.

The condition to be met is:

Ttotal < 𝑇

142

CHAPTER 6: BGQOS OPERATIONS

If the conditions introduced in this chapter are met, then migration is initiated. The

migration operation specifies that under specific conditions, which are presented

above, it is possible that tasks may migrate to a different resource before the final

execution result is returned to the GRC.

6.11. Reallocation for BE GRCs

A simple resource swapping reallocation process is introduced for Best Effort GRCs. If

a resource fails, then the model checks if there are any other resources that are

available, locally. If there are, then a reallocation process is initiated. If there are not,

the tasks are returned to the GRC and they are informed that the application has

failed. In this case the application must be resubmitted and restarted.

6.12. Summary

This chapter has described the operations undertaken within BGQoS and its

components in order to successfully complete the responsibilities that collectively

cover the entire sequence of processes that are supported. QoSdescription driven

resource discovery and selection operations are explained within this chapter, in

addition to the states of the response generated when resource information is queried

and whether it has the potential to be a candidate resource. Resource ranking and

filtering operations have been introduced in parallel with cost and time minimisation

capabilities. Moreover, broker selection and ranking operations have been explained.

Reallocation operations have been explained in this chapter and the conditions that

need to be met in order for them to be carried out. The tolerance ratio serves as the

minimum level of QoS that a GRC is willing to accept from the resources selected. The

next chapter is dedicated to the simulation tools that have been used and developed in

order to evaluate BGQoS.

143

CHAPTER 7: SIMULATION

CHAPTER 7: SIMULATION

144

CHAPTER 7: SIMULATION

7.1. Introduction

This chapter explains the motivation for using a simulated environment to implement

and evaluate BGQoS. This chapter is split into three parts. The first part elaborates on

the reasons behind the motivation and current simulation tools available. The second

part explains the simulation tool that has been chosen in detail and presents its

relevant components. The third part explains the alterations and expansions carried

out on the toolkit in order to accommodate the requirements and the components of

BGQoS.

7.2. Motivation for Simulation

Simulation in Grid Computing is necessary due to the difficulties in locating available

Grid test-beds, the price of using these test-beds if they are available, the limited

number of these test-beds and administrative complexities of using them, as well as

other technical, logistical and monetary reasons. The simulation solution is the logical

substitute. Moreover, simulation allows multiple runs, and experiments to be repeated

for better results, accurate analysis and concrete development. This makes simulation

not only logical but also necessary and practical for testing new Grid models.

However, current Grid simulation tools are limited and do not provide the user with

the ability to completely simulate real-life environments, resources, applications and

users. Issues such as: negotiation between the GRC and GRP; contractual agreements

between GRCs and GRPs, and, multi-application, multi parameter guaranteed QoS

specific support, are some application-related issues that can only be partially

simulated using current simulation tools.

For applications that aim to use the Grid Computing infrastructure as a vessel to carry

out their operations, the functions mentioned above are important and essential to

introducing more multi-domain applications into the Grid computing mesh of

heterogeneous resources. All of the above have led to our decision to use simulation as

part of our methodology for implementing and testing our model.

However, because of the many components of BGQoS, the need to simulate a real life

environment, present more accurate results and carry out relevant experiments, it

was necessary to expand one of the current simulation tools to accommodate BGQoS

requirements. The tool that has been chosen is the GridSim toolkit (CLOUDS Lab

2010). GridSim is flexible and well documented; however, it lacks some of the

functionalities mentioned above. These functionalities are required to make

145

CHAPTER 7: SIMULATION

simulating BGQoS possible. The decision to use GridSim was down to its ability to

support many more functionalities than other simulation tools. Not only is it, in our

opinion, the most comprehensive, but it was designed in a way which allows additions

and alterations to be made. Moreover, GridSim's layered architectural model makes it

easy to understand and add to. (CLOUDS Lab 2010, Sulistio et al 2007, Buyya et al

2002).

7.3. Current Simulation Tools

This section introduces the simulation tools and technologies that are available and

could be used to simulate Grid environments.

7.3.1. OptorSim

OptorSim (DataGRID 2004), Figure 24, was developed by the DataGRID (2004)

initially to test their algorithms; it is available as open source software for Grid users.

OptorSim takes a Grid configuration file as an input. Configuration files define: the

resources; Grid topology; Tasks; Associated files, and, one of the parameters of the

algorithm to be used. This is followed by choosing one of two types of optimisation

algorithm:

• Scheduling algorithms

• Replication algorithms

OptorSim also allows the user to visualize the performance of a specific algorithm. It

provides a set of measurements which can be used to quantify the effectiveness of the

optimisation strategy under consideration, hence focusing on optimisation and data

replication.

146

CHAPTER 7: SIMULATION

Figure 24: OptorSim Architecture

7.3.2. SimGrid

SimGrid (1999), Figure 25, is a toolkit that is implemented in C programming

language and it was created at the University of California, San Diego (UCSD). SimGrid

provides core abstractions and functionalities that could be used to simulate specific

distributed computing environments. Specifically, the aim of SimGrid is to provide the

tool for carrying out research in resource scheduling in distributed environments.

The main step in a SimGrid simulation is the creation of resources, which are assumed

to have two performance parameters, latency and service rates. These parameters are

used to simulate performance using a vector of time-stamped values or constants.

SimGrid V2 introduced in 2003 introduced a new layer. This layer provided the toolkit

with the capability to build simulations in terms of communication agents alongside

its basic capability of scheduling tasks on resources (Legrand et al 2003, Casanova et

al 2008).

147

CHAPTER 7: SIMULATION

In 2006, a model called Grid Reality and Simulation (GRAS) was deployed on top of

SimGrid V2 in order to facilitate the operation of simulated codes in real time

environments. This model was built on top of the new software layer of V2; the Meta-

SimGrid (MSG) in simulation mode and is built on top of the socket layer in real mode,

introducing what is known as SimGrid V3 (Casanova et al 2008).

The full text of this image has been removed due to third party copyright. The unabridged
version of the thesis can be viewed at the Lanchester Library, Coventry University.

Figure 25: SimGrid Architecture (Casanova et al 2008)

The main disadvantage of SimGrid is because of its restriction to a single scheduling

entity and time shared system, it is difficult to perform simulations of multiple users,

resources or applications, each with separate policies and specifications.

7.3.3. MicroGrid

MicroGrid (2004), Figure 26, is an online simulation tool that was developed in the

University of California in San Diego (UCSD). MicroGrid is modelled for the Globus

toolkit and allows applications created in Globus to be carried out in a controlled

emulated environment.

The main aim of MicroGrid is to provide an online platform that supports the

simulated execution of real life applications. One advantage of MicroGrid is that it

supports running applications that use dynamic resource allocations. Moreover, it

provides a vessel for repeatable experiments in order to observe and study design

aspects for applications and middleware, exploration of extreme circumstances and

choices of application deployment, Grid resource allocation and network design.

148

CHAPTER 7: SIMULATION

The full text of this image has been removed due to third party copyright. The
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry
University.

MicroGrid reads a virtual Grid configuration file, and then uses the configuration to

build corresponding simulation objects required to create the virtual Grid. These

simulation objects include network elements and computing resources. MicroGrid

allows applications and middleware to be executed on virtual machines, allowing this

execution to be carried out near real-time. The user of MicroGrid specifies a set of

virtual resources before specifying the physical resources to be used for the compute

and online network simulation. The user will then be able to submit the application as

a task on the virtual Grid, and observe the execution (MicroGrid, Huaxia Xia 1999, Xin

Liu 2004, Richard Huang 2006).

The main disadvantage of MicroGrid is that applications need to be developed using

the Globus toolkit which produces a significant amount of overhead. Moreover,

modelling a large number of applications, environment and scenarios could require a

significant amount of time.

Other simulation tools are available, such as Bricks (2002) , GangSim (2006) and Grid

Scheduling Simulator (GSSIM) (2009).

149

aa0349
Typewritten Text
Figure 26: MicroGrid infrastructure (MicroGrid)

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

aa0349
Typewritten Text

CHAPTER 7: SIMULATION

7.4. GridSim

GridSim is a comprehensive, general purpose toolkit for simulating heterogeneous

resources, users and applications. Resources can be single processors, multi-

processors or distributed memory machines. It can also be used for simulating

different administrative domains, which in turn supports the simulation of multiple

policies, schedulers and organisations in a distributed computing environment. All of

the above are elements in designing a simulated Grid environment.

The GridSim toolkit currently provides the most comprehensive package that could be

used for simulating resources, applications, users, network connecting devices and

organisational layouts. It also supports the composition of user-centric applications,

simple resource discovery and simple resource management. Most important, this

allows different scheduling algorithms to be simulated and evaluated, which is the

reason why GridSim is preferred and used by many researchers.

Nimrod/G (Nimrod/G 2010)(Buyya et al 2000) has been used by the laboratory that

has created GridSim and its developers as the standard resource broker for the

evaluation of cost and budget constrained scheduling algorithms. These algorithms

are with time, cost and time/cost and conservative time optimisation, as introduced in

the previous chapter.

However, GridSim only provides the base and simple operations that are unable to

fully and accurately simulate a true Grid environment, the users, and schedulers.

Moreover, the definitions and creative flexibility for users, tasks and resources is

limited to what is standard. In the package, users are initially created and immediately

are required to create all their Gridlets or objects that represent real tasks, and are to

be simulated. More formally each user is called a user entity. It is worth noting that in

real Grid environments, this is not the case, as users are free to and should be able to

create their tasks when they choose at any point.

Because Nimrod/G is a user-centric scheduler, when the user sends his/her tasks to

be scheduled and requests the resources to do so, the resource broker that is

connected to this user tries to satisfy the users request without taking into

consideration any of the other requests from any of the other users. This greedy

method is unsustainable; it does not take load balancing into consideration and

neither does it consider congestion in the Grid. As mentioned before, Nimrod – G

(Nimrod/G 2010) provides cost, time and cost/time optimisation scheduling only,

150

CHAPTER 7: SIMULATION

however, the reality is that there many other scheduling policies and models that

could be implemented and are in most cases, application specific.

7.4.1. GridSim Features

The following lists the basic features that are provided in the GridSim toolkit:

1. It allows the modelling of resources. These resources are limited to PCs, workstations

and clusters. Resource are of two types:

• Time-share resources: A single computational entity or processor is able to execute

more than one task at any given time, using a round robin approach. In this approach,

each task is given a share of the processing power.

• Space-share: A single computational entity or processor can only execute one task at

any given time. It must therefore complete the execution of any current task allocated

to it before it can start another task.

Resources contain discrete machines, the number of which is decided by the simulator

with no upper limit. Each machine contains a number of Processing Elements (PE)

representing processors or CPUs. The processing power of each PE is calculated by the

standard measurement in Grids, millions of instructions per second (MIPS).

Resources can be allocated time zones, with weekday, weekend and holiday options

also available. This gives the resource a local time and allows the modelling of

workloads accordingly. Resources can be reserved in advance.

2. Different types of applications can be simulated. Different parallel application models

can be simulated.

3. Applications are made of a collection of tasks; these tasks could be specified by the

user to not be of the same category. This allows for a level of heterogeneity, allowing

the user to specify the number of compute-intensive tasks and the number of data-

intensive tasks that could be simulated as part of the same application.

4. There is no maximum number of tasks or upper limit to how many should be

compute-intensive or data-intensive.

5. Multiple users could be created with different user related properties.

151

CHAPTER 7: SIMULATION

6. Multiple users can submit their tasks to the same resources simultaneously. This

allows the implementation of scheduling techniques that allow competitive resource

allocation between users. This competitive environment is essential to the realistic

simulation of Grid resources.

7. Network specification:

• GridSim allows the planning, design and simulation of an entire network.

• Network speeds can be specified.

• Networks can be linked to users, resources, schedulers and other networks.

8. Simulation of dynamic schedulers is supported, in addition to static schedulers.

9. Statistics and information on selected operations can be recorded and used for

analysis.

7.4.2. GridSim Architecture

The layered architecture of GridSim is shown in Figure 27. Each one of the layers

provides an interface to the layer on top of it. The bottom layer, also referred to as the

first layer is concerned with the Java runtime environment and the JVM (Java Virtual

Machine). Their implementation is available for both Single Processor System (SPS)

and Multi-Processor System (MPS). The second layer contains the simulation

package, SimJava2, which is a basic, discrete-event simulation package. A release of

this package has recently become available. The third layer contains the GridSim

toolkit. Modelling the simulation, resource allocation, recording stats, Grid

Information Services and other parts of the toolkit are the main concern of this layer.

The fourth layer of the architecture is concerned with actual simulation of resource

brokers and schedulers. The final upper layer or fifth layer is where the modelling of

applications and resources for different scenarios defined by the users are

implemented. This upper layer uses the services of the layers below it.

SimJava2 is, as explained above, a discrete-event simulation package written in Java.

SimJava2 simulations contain a number of interacting entities, which are used by

GridSim. An entity is the simulated component that interacts with other components

in SimJava2. Each one of these entities runs in its own thread. Entities are represented

by the class Sim_entity.

Sim_entity contains all the functionalities that are available for the entities in the

simulation. A subclass of Sim_entity must be created to define an entity type. The body

152

CHAPTER 7: SIMULATION

() of this subclass contains the required behavioural characteristics of each entity,

which must be overridden in the subclass. Entities could be: users; resources; network

devices; Grid Information Services, and, statistical recorders. Every single entity is an

instance of a Sim_entity subclass.

A more detailed explanation of the GridSim entities is in the following section of this

chapter.

Figure 27: GridSim layered Architecture

153

CHAPTER 7: SIMULATION

7.4.3. Entities

This section explores some of the entities in GridSim, what they represent and their

roles.

7.4.3.1. User

Every Grid user to be simulated is represented by a User; each User is represented by

an instance of the User entity. Each User is distinguished from other Users via the

following properties:

• Number of tasks to be submitted.

• Execution time of each task

• Scheduling optimisation strategy, one of the following:

• Time

• Cost

• Cost/Time

• Task creation rate, which also defines the level of User activity.

• Time Zone.

• Deadline, Budget or Deadline and Budget combined.

Nj users can be created, competing for a common resource type j. Each Grid User has

tasks to execute on a resource r.

154

CHAPTER 7: SIMULATION

7.4.3.2. Resource Broker

Each User is connected to a resource broker; each resource broker is represented by a

Resource Broker entity. Each user submits their tasks to the resource broker they are

connected to, and the resource broker sends the tasks to the resources according to

the Users optimisation strategy: Cost, Time or Cost/Time.

7.4.3.3. Resources

Each resource is represented by an instance of the resource entity, a reusable entity

that is deployed in the Grid and used to fulfil tasks submitted by Grid users. Each

entity differs from other resource entities according to the following properties:

• The number of Machines in each resource:

• The number of PEs inside each Machine.

• The speed of each CPU or processor, measured by MIPS.

• The cost of each processing unit.

• The resource allocation policy, one of the following two policies:

155

CHAPTER 7: SIMULATION

• Time-shared allocation policy.

The full text of this image has been removed due to third party copyright. The unabridged
version of the thesis can be viewed at the Lanchester Library, Coventry University.

Figure 28: Flow Diagram of Time-shared resources (CLOUDS Lab 2010)

156

CHAPTER 7: SIMULATION

• Space-shared allocation policy.

The full text of this image has been removed due to third party copyright. The
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry
University.

Figure 29: Flow Diagram of Space-shared resources (CLOUDS Lab 2010)

157

CHAPTER 7: SIMULATION

• Local load factor.

• Time Zone where the resource is located.

• Operating system

• System architecture

7.4.3.4. Grid Information Service (GIS)

Each Grid Information Service (Figure 30) is represented by an instance of a GIS

entity. The Grid Information Service only provides basic operational communication

with users and resources in the GridSim package and have been given a new role in

BGQoS.

7.4.3.5. I/O Entities

Each I/O is represented by an instance of the I/O entity. I/O entities are responsible

for the flow of information between other entities in GridSim. Since each one of these

entities runs in parallel in its own thread, it is worth noting that for that reason

GridSim operates at full-duplex. In addition, I/O entities have buffers, which allow the

modelling and simulation of delays.

Figure 30: Grid Information Service

158

CHAPTER 7: SIMULATION

7.4.3.6. Gridlets

As mentioned before, user tasks in GridSim are represented by Gridlet objects.

Gridlets contain the information related to the tasks, such as the size of the file sent

from the user to the resource, and the size of the file that is to be returned from the

resource to the user. Each Gridlet also contains information about the user that

originated the Gridlet, the start time, finish time, total completion time, current status

and other information.

7.4.3.7. Communication and Interaction Between Entities

All interactions between entities are carried out in the form of messages or events.

These events can be initiated by an entity to be delivered either with immediate effect

or with a specifically defined delay to other entities. Events are different types:

• Internal Events: Events destined to the entity itself.

• External Events: Events destined for other entities.

• Synchronous Events: The source of the Event pauses until the Event is delivered to its

destination.

• Asynchronous Events: The source of the Event continues its regular operation without

pausing until the Event is delivered to its destinations. All internal Events are of this

type.

7.4.4. Main GridSim Classes

• GridSim:

Responsibility: Initializing and starting the simulation. To do so the following methods

are used: init () and startGridSimulation (); both static methods. This class also

activates the simulation kernel in SimJave2 and is required before any entity creation.

• GridSimCore.

Responsibility: Management of I/O operations of an entity.

This class is a new addition to the GridSim toolkit, aiming at taking over I/O

operations: reducing the complexity of the GridSim class. Moreover, entities in this

class are capable of knowing the bottleneck of a network route using the Gridsim.net

package, as explained by Sulistio et al (2007).

159

http:Gridsim.net

CHAPTER 7: SIMULATION

• TrafficGenerator.

Responsibility: Generations of network traffic.

This is used by entities of the GridSimCore class to determine bottlenecks of routes in

a network topology.

• Gridlet:

Responsibility: The creation of Gridlets.

As explained above, Gridlets are the entities in GridSim that represent user tasks. The

basic Gridlet class - before modification - contains information on the tasks submitted,

including, task length and number of PEs.

<<file>>
User.dat

<<class>>
User.java

<<class>>
UserConfig.java

<<class>>
Gridlet.java

Figure 31: Component diagram for creating Gridlet in GridSim

• GridUser:

Responsibility: The creation of user entities.

This class allows the users to communicate with and register with a GIS. It allows the

user to query the GIS on resources available.

• GridResource.

Responsibility: The creation of a resource.

This class represents a resource. The pre-modified version of this class includes the

following properties: Time zone, scheduling policy, number of PE and their ratings. A

160

CHAPTER 7: SIMULATION

more recent version of this class has allowed more flexibility in the creation of

different types of resources. However, this class has been modified for the purpose of

this research.

• AllocPolicy:

Responsibility: Handling the internal resource allocation policy for a GridResource.

New scheduling algorithms can be added by extending this class.

7.4.4.1. Advanced Reservation Classes

The most recent version of the GridSim toolkit includes Advanced Reservation

variations of the classes introduced above, such as: ARGridresource and ARPolicy. The

addition of these classes, has allowed GridSim to expand its simulation capabilities to

include:

• Requesting reservations of PEs.

• Creating reservations.

• Committing reservations.

• Modification of reservations.

• Reservation cancellation.

7.5. Modification to the Original Package

In order to evaluate BGQoS it was necessary to expand the capabilities of the GridSim

to add new features to support the components implemented with BGQoS. This will

help in making GridSim a more realistic simulation package that can be used with a

wider range of Grid applications and can support a broad range of QoS requirements,

which may vary according to differing circumstances of users, even when running the

same task. Users will be able to input more specific QoS requirements. The

introduction of databases into the simulation process will allow automated

renegotiation to be simulated. GridSim has been developing since its initial release.

GridSim 5.0 allows the users to develop their own scenarios, schedulers and allocation

policies. These, in addition, to the recently added advanced resource reservation and

failure detection capabilities have given the simulation package new dimensions.

161

CHAPTER 7: SIMULATION

The successful migration of Grid computing from the purely scientific and research

domains into the business-oriented service marketplace relies on the delivery of the

QoS explained in previous chapters. Therefore a clear relationship must be identified

between the users of these resources and services and those who provide them. These

relationships are governed by electronic contracts between them.

7.5.1. Tasks (Gridlets)

A new Gridlet class has been created with new characteristics where the user will be

able to specify, create and describe their tasks in more detail. Since our model is based

on QoS, the user is now able to clearly specify the QoS that each task should be

allocated. Moreover, a deadline parameter has been added to the Gridlet which allows

the simulation to remove the Gridlet and report it as a failure after a specific interval

has passed. The Gridlet characteristics that we have added correspond to the QoS list

that we have outlined in chapter 4 (4.7) and are as Shown in Figure 32.

Figure 32: New List of Gridlet Characteristics

7.5.2. Users

A new user class has been added to represent the GRCs within our BGQoS with each

GRC identified by their GRCID. The GRCID is also implemented into the expanded

Gridlet class, allowing the model to identify the origins of each task and link it to a

specific GRC, using that information to carry out its various operations.

162

CHAPTER 7: SIMULATION

Figure 33: Initiating the User

A user representing a GRC creates Gridlets representing tasks, which are submitted to

resources in order to be executed. This operation is carried out through the Broker

entity within BGQoS with its scheduling techniques outlined in the following sections,

as in the example in the following Figure:

Figure 34: Task information association with User

A multi-tier GRC architecture is an important element in BGQoS and is implemented

within this expansion. This has been done by altering the priority methods within

GridSim to accommodate the multi-tier architecture. Within this thesis, three types of

GRCs have been used; therefore, three types of priorities have been implemented.

For each simulation, a GRC entity must be created and must perform a registration

process before being able to submit Gridlets. Once this has been completed, each GRC

may create their Gridlets, request the QoS parameters for these Gridlets and submit an

execution request to the scheduling entities which carry out the operations of BGQoS

as explained throughout this thesis.

Our expansion only supports deterministic fixed types of QoS, where each QoS is

specified by a specific metric corresponding to the type of QoS and according to the

specification we have set.

163

CHAPTER 7: SIMULATION

7.5.3. Resources

One of the main challenges in expanding and extending GridSim was that of expanding

resources. New characteristics to model the different QoS that have been introduced

and have been added, however, two main types of resources which BGQoS supports

must be differentiated; computational resources and storage resources. Instrumental

resources and Expertise are beyond the scope of this research.

Two additions have been made to accommodate the two different types of resources;

the computing resource entity and the storage resource entity. Each entity supports

the QoS that are relevant to them and have been installed in the to the simulation

package to model a real life environment where the user should not worry about the

underlying complexities of differentiating between the resources they require, the

QoS they require and information fed back to them.

Another important addition to the original toolkit was the addition that resources can

communicate: the list of Gridlets that are running; the number of Gridlets completed,

and, the number of Gridlets that have failed, back to the user and/or scheduler. This

dynamic retrieval of information that is sent back to the scheduler and stored is a vital

process for the successful calculation of dynamic QoS which is an important and novel

part of our QoS model. These additions allow us to model and simulate this process.

Figure 35: Resource Info

164

CHAPTER 7: SIMULATION

7.5.4. Scheduler and Rescheduler

The scheduler entity is responsible for the resource operations; discovery, selection

and allocation. This scheduling process is QoS driven within BGQoS as expressed

throughout this thesis. In order to allocate the resources successfully, a new scheduler

is developed. This scheduler conforms to the model that we have presented and

provides a new addition where the pre-allocation, the allocation and the post

allocation process for resources are addressed. Moreover, we introduced criteria that

should be measured. These criteria can be used for QoS specification. They can also be

used as metrics during the processing of a task to ensure that the processing is being

carried out according to agreed QoS.

In addition, a new method for dynamic renegotiation is introduced. Information on the

execution of any task is retrieved over specific intervals during the allocation period.

A new entity is introduced for this purpose, called a re-scheduler.

Receiving GRC execution request and QoSdescription there are events that arrive at the

scheduler: initializing a request session; resource information retrieval; Gridlet

scheduling, and, Gridlet dispatching.

7.5.5. Databases

The introduction of databases into the simulation process has been proposed for all

phases of the simulation run, adding to the realistic execution of application runs in a

simulation environment because it provides a method where a database can be

populated with variable resource information that reflect the unpredictability of

resource failures and resource performance in real executions. GRC information,

including their IDs, tiers and virtual Organizations are kept in these databases.

Moreover, GIS information and SLA templates are also held in these databases.

The characteristics for every one of the resources that are advertised by the resource

providers will also be held in the databases have been referred to as RRs throughout

this thesis, as well as, the success and failure rate for every specific resource over a

specific number of runs. This will aid in measuring the qualitative QoS of the resource

before it is allocated to another user and other tasks. The resources IDs are kept in a

table inside the GIS where they register, and if they are available for global use, their

IDs are registered with the global GIS. These IDs are used as pointers to search the

database of resources and retrieve the information on the resource with the matching

IDs maintaining up-to-date information on each resource at a specific period of time.

165

CHAPTER 7: SIMULATION

These databases also hold the Service Level Agreements themselves, in case they need

to be referenced according to a pre-stated condition between the user and Service

Provider, such as the failure to deliver a specific percentage of the QoS required. If a

breach of contract occurs, then renegotiation is invoked and referencing the original

agreement is important, before a new agreement is reached and replaces the original

one. Figure 36 presents a sample of the database tables stored

Figure 36: A portion of the database tables

7.5.6. Monitoring Tasks

This extension allows the simulation to be tracked in terms of each Gridlet

individually, retrieving information on individual tasks:

Figure 37: Task Monitoring

This includes information on the number of tasks executed successfully, the number of

tasks pending, the number of tasks submitted and the number of tasks that have

failed.

166

CHAPTER 7: SIMULATION

7.5.7. Agreement Properties

Another extension implemented is tailored to accommodating the type of agreements

that are presented earlier in this thesis. Each agreement must have a specific id

associated with it which identifies it. Each agreement must also include the

guaranteed properties that must be met during the execution of the tasks which are

stored in an array.

Figure 38: Agreement initiation and parameters

7.6. Summary

In this chapter the need for a simulation environment is highlighted. Simulation has

been used to test and implement BGQoS. While there is a case of creating a brand new

simulator, the availability of simulation software and toolkits and the ability to expand

and extend them in order to carry out the appropriate funcationality has been chosen.

GridSim was selected as the most appropriate toolkit to use and was expended with a

number of new constructs in order to demonstrate the ideas embodied in BGQoS. This

chapter described the expansion.

167

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

CHAPTER 8: COMPONENT

EVALUATION OF BGQOS

168

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.1. Introduction

This chapter introduces the experimental evaluation of BGQoS. The evaluation

investigates the behaviour and performance of the separate operations and

components within BGQoS, and moreover, it presents an investigation and

comparison between the different operations and their effect on the full model.

Each section within this chapter represents an independent experiment with a main

goal. The goal, experiment metrics, experiment setup and results are explained for

each section. The purpose is to illustrate the different functionalities of BGQoS that

have been explained in this thesis and identify their validity, and whether they achieve

their goals.

Each section contains an analysis of the experiment included within. A complete

analysis and concluding remarks are presented at the end of the chapter. Chapter 9

contains an experiment utilising the full model and presents the results within.

8.2. Overhead for Resource Operations

Overhead is measured to show the efficiency and feasibility of BGQoS and corresponds

to the delay experienced in the different stages of operation within BGQoS. The

relationship between the GRC and the GRPs providing the resources must be

conducted within the shortest time possible. The main objective of measuring

overhead is to examine which resource operation incurs the most overhead and to

monitor the effect of this overhead on the overall operation of BGQoS and whether the

level of overhead is acceptable. In the following sections, the operations for which we

have measured the overhead are presented.

8.2.1. The Measured Operations and Evaluation Metrics

Overall overhead can be broken down into specific overhead measurements, each

reflecting the overhead at a specific stage within the operation of BGQoS. The

following sub-sections identify the major overhead that can be calculated and

identifies them as metrics for the measurement of overall overhead.

169

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.2.1.1. 𝐐𝐨𝐒𝐝𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐢𝐨𝐧 and Execution Request Submission

Each GRC is registered to a specific tier, therefore, the overhead incurred because of

the authorisation and authentication process is negligible. This is because of the

method we have employed where the tier defines the privileges associated with its

registered GRCs and is checked as opposed to the GRCs themselves. The task

submission overhead expected from submission is calculated as ∑ Tsubmission. It is

related to the size of the tasks submitted and the number of tasks submitted and their

relative information and data requirements.

The overhead for this operation can be calculated using the following equation:

Overheada = Tauth + ∑ Tsubmission (Equation 8.1)

Where Tauth the time is required to authenticate the GRC and their login and

Tsubmission is the time required for submitting the tasks to be executed.

8.2.1.2. Information Retrieval from Resource Repositories (RR)

Informational retrieval is carried out in response to a GRC execution request, through

querying the appropriate databases containing resource information. Since the query

is sent to a database, it simplifies the resource information retrieval process by

eliminating the process of querying individual resources.

Resource information within BGQoS is updated at regular intervals and therefore is

assumed to be up-to-date and reflecting the current state of the resources. The query

returns a list of resources that fulfil the GRC requirements stated in the QoSdescription.

The overhead from this operation is calculated as follows:

Overhead1 = TimeQuery (Equation 8.2)

TimeQuery is the time required to search the information in the database. This time

varies depending on the size of the database, the number of resources and the number

of accessible RRs.

170

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.2.1.3 Resource Selection According to 𝐐𝐨𝐒𝐝𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐢𝐨𝐧

Resource selection is the operation which concludes with the selection of resources

that meet GRC requirements from the resource information retrieved process which

are in turn extracted from the appropriate databases. The overhead incurred at this

step is directly related to the time required to compare resources and their

characteristics and whether they fulfil the requirements and constraints requested by

the GRC.

Overhead2 = TimeSelect (Equation 8.3)

Where TimeSelect is the time required to complete the selection operations introduced

in earlier chapters in order to confirm whether that:

QoSrequested ≤ QoSoffered

8.2.1.4. Resource Ranking

Resource ranking uses the information fed in through the previous steps in order to

rank the resources according to specific criteria. The overhead is calculated as the

time required for completing ranking operations of candidate resources:

Overhead3 = Timeranking (Equation 8.4)

Timeranking is the time required to rank a list of resources within the candidate

resource stack in an order that meets the GRC requirements. Timeranking is directly

related to the number of candidate resources to be ranked.

8.2.2 Experiment Setup

• GRPs and Resources

The experiment is setup of three GRPs each providing a dedicated 10 CPU cluster for

task execution. For this experiment the CPUs in terms of computational power are

equal. The GRC selects the number of CPUs they require, the length of time they

require them for and set a cost constraint that must not be exceeded.

171

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

• The GRC and Tasks

The graph and comments below are related to the overhead calculated for a single

GRC submitting multiples of three tasks shown in table 9 i.e. 3, 6, 9,…, 30 tasks. The

tasks vary in size and the number of CPUs they require.

Table 9: Task Types and Requirements
Small Medium Large

of CPUs

requested

28 56 128

Execution

Time

Required

8

minutes

21

minutes

80

minutes

8.2.3. Results

Figure 39 Represents the overhead incurred in milliseconds from the three main

resource operations; Resource Information Retrieval, Resource Selection and

Resource Ranking.

30

3 12 21 30

Resource Information 20
ms Retrieval

10
Resource Selection

0

Resource Ranking

Tasks Submitted

Figure 39: Resource Operations Overhead

Resource information retrieval does not depend on the number of tasks to be

submitted by the GRC, with resource information retrieval accruing in a similar

manner; the small variations in the Figure above are negligible. However, the

overhead itself cannot be neglected, if predicted and expected. Within this experiment,

it was around 10 ms.

172

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

The average overhead from resource selection was 15.5 milliseconds for the

experiments carried out between 3 – 30 tasks. This was followed by a similar

overhead for the resource ranking operations which averaged at 19.1 ms resulting in

an average of 34.6 ms of overhead after the information has been retrieved. This

overhead is to be expected and because of the main objective of BGQoS, it can be

tolerated.

8.3. Overhead for Different GRC Types

In the previous section, the overhead related to resource operations has been

examined under the assumption that there is a single GRC. The overhead was

measured in order to establish which resource operation incurs the most overhead

and whether it is tolerable and acceptable in relation to the objective of BGQoS for

different numbers of tasks submitted. This section examines the overhead relative to

the different types of GRCs within BGQoS.

8.3.1. Evaluation Metrics

The evaluation metric we use for this experiment is the overall overhead incurred

from the resource operations, calculated for two different types of GRCs. This

overhead is calculated via the following equation:

Overall Overhead = Overheada + Overhead1 + Overhead2 + Overhead3 + Timeft +

Timequeue (Equation 8.5)

Overheada, Overhead1, Overhead2 and Overhead3 are calculated via equations 8.1, 8.2,

8.3 and 8.4 respectively. Timeft is the time required for transferring execution files

and Timequeue is the time the tasks are waiting for execution or the time that a task

queues at a resource which they are allocated. FCFS queuing mechanisms are

employed. Both times are calculated within the simulation.

173

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.3.2. Experiment Setup

• The GRC and Tasks

Two GRCs submitting multiples of one hundred tasks shown in table 9 i.e. 100, 200,

300, 400 and 500 tasks are setup for this experiment. The tasks vary in size and the

number of CPUs they require. The first GRC is of the QoS GRC (Tier A) type, the second

is of the BE (Tier C) type. Moreover the Tier A GRC request includes a request for a

minimum RAM of 256 associated with each CPU selected.

• GRPs and resources:

The experiment is setup with three GRPs each providing a dedicated 10 CPU cluster

for task execution. For this experiment the CPUs are assumed to have equal

computational power. The QoS GRC select the number of CPUs they require, the length

of time they require them for, a memory requirement, and, set a cost constraint that

must not be exceeded, while the BE GRC must rely on BGQoS BE resource allocation

with a predefined cost constraint.

8.3.3. Results

The results obtained for the overall overhead in resource selection for the two types

of GRCs and with a 3 parameter request submitted by the QoS GRC are contained in

table 10.

Table 10: QoS v BE - Overhead Difference

Number

of

Tasks

BE QoS with 3

Parameters

Overhead

Difference

100 21.3 185.6 164.3

200 34.0 311.3 277.3

300 46.6 385.3 336.9

400 61.3 510.4 449.1

500 74.2 769.2 695.0

174

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

The results shown in table 10 are illustrated in Figure 40.

0

200

400

600

800

1000

0 200 400 600

m
s

Tasks Submitted

BE

QoS 3 Parameters

Overhead Diff

Figure 40: QoS v BE - Overhead Difference

The significant difference in the overhead incurred is due to the resource operations

related to obtaining a select resource set that meet the GRC requirements. There are

no resource selection and ranking operations related to BE GRCs, therefore the

overhead experienced is related to resource information retrieval,

Timeftand Timequeue. While this experiment shows that these times are negligible, it is

a small experiment and does not present a heavy load. No reservation was carried out

and no priorities had been given.

However, this experiment has presented evidence that almost all the overhead is

contained in the resource selection and ranking operations within BGQoS. Moreover,

there are situations, especially where there is a significant number of resources

available and low load that BE execution may reduce the makespan. BE GRCs however,

cannot be guaranteed the level of QoS for which resources must be selected relative to

QoS GRCs.

8.4. Locating Resources against QoS Reliability Parameter

In this section the capability of BGQoS in locating the correct resources that meet the

reliability parameter requirement as requested by the GRC. Two experiments are

carried out, the first without taking any constraints into consideration and only

focusing on reliability. The second takes constraints into consideration and

determines the effect they have on meeting GRC requirements.

175

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.4.1. Evaluation Metric

The reliability of a resource is a dynamic resource characteristic that is updated at

regular intervals according to up-to-date information retrieved on the current status

of the resource. Reliability Re as a percentage is calculated as:

Re = k × 100 (Equation 8.6)
n

Where n is the total number of tasks submitted within a pre defined period of time

and k is the number of tasks that have been executed successfully, meeting the GRC’s

QoS requirements throughout. n = 10 for this experiment.

8.4.2. Reliability without Constraint

In this experiment the reliability request is made as a sole QoS parameter, with no

cost constraint, C, or time constraint, T, playing a role in resource selection.

8.4.2.1. Experiment Setup

A database has been populated with a set of resources with variable reliability

information. The resources had been used to carry out 500 mock tasks in which the

failure rate has been random. This allowed the resource information to be updated

and therefore, the information associated with the resources stored within the

database represents a simulated real time information model. A single GRC submits

100 tasks with reliability requirements of 70%, 80%, 90% and 95 %.

The experiments have been carried out using a populated database of between ten

and seventy, using increments of ten after each run.

176

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.4.2.2. Results

Figure 41 illustrates the number of resource that met the GRC reliability

requirements, for each experiment:

Reliability 95% 90.00% 80% 70%

80
s
u

r 60
e

c
s 40 c
o

e
u 20

s
r

s 0 c
f

e
u

s Number of Resource available
l

0 10 20 30 40 50 60 70 80

Figure 41: Successful requests - Reliability

The number of resources meeting the request by the GRC increased when the number

of resources that are available within the RR increased and increased when the

reliability requirement requested by the GRC decreased. Overall, for a single

parameter, BGQoS was capable of locating the appropriate resources meeting the GRC

requirement of reliability. The next subsection takes into consideration the cost and

time constraints and their effect on the number of resource selected.

8.4.3. Reliability with Constraints

This experiment measures the effects of C and T on the reliability request as a QoS

parameter in the request.

8.4.3.1 Experiment Setup

A database has been populated with a set of resources with variable reliability

information. The resources had been used to carry out 500 mock tasks in which the

failure rate has been random. This allowed the resource information to be updated

and therefore, the information associated with the resource stored within the

database represents a simulated real time information model. A single GRC submits

100 tasks with reliability requirements of 80 % and different sizes illustrated in table

9.

177

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

The experiments have been carried out using a populated database of 10 to 170

resources incremented by 10 at each run. Each resource is associated with a randomly

generated price ranging from 500 to 2500 units per unit of time, and randomly

generated time constraints T ranging from 500 to 1500 time units and all the

resources are of equal computational power.

8.4.3.2. Results

Figure 42 illustrates the results obtained, representing the total number of resources

that have been returned as meeting the GRC request and within the time and cost

constraints set.

178

150

100 150-160

50

0

Deadline 1500
100-150

50-100

0-50

2 = 1000 Budget
3 = 1500 Budget

4 = 2000

Deadline 500
Budget
1 = 500 Budget

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Deadline 500
150

100

50
Deadline 500

0
500 1000 1500 2000

Cost Constraint (Budget)

Deadline 1000
200

150

100
Deadline 1000

50

0
500 1000 1500 2000

Deadline 1500
200

150

100
Deadline 1500

50

0
500 1000 1500 2000

Figure 42: Effect of Budget and Deadlines - Returned Resources

179

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

The experiment intends to simulate a real world environment such that the more

expensive the resource, the higher the level of QoS expected in return. Random

generation of resource cost, as well as time and cost constraint aim to simulate

different scenarios where these two factors make a difference in relation to the

number of resources that can be considered as candidates.

The results obtained show that there was an increase in the number of potential

resources returned with an increase in C. On the other hand, the number of candidate

resources has increased with an increasing T.

8.5. Resource Selection

Resource operations have been explained throughout this thesis. Earlier in this

chapter the overhead related to these operations has been evaluated and presented.

This section builds on the evaluation carried out in the previous sections of this

chapter. The resource selection process concludes with each resource bring assigned a

rank. The highest ranked resource set is to be selected, however, in real scenarios; this

may not be the case. Many factors such as unexpected failures, resource degradation,

dynamic availability information and policy mismanagement can result in that the top

ranked list is not selected. This section presents the simulation carried out for

evaluating this process and identifying the rank of the resources selected by the

BGQoS to execute the tasks.

8.5.1. Experiment setup

• GRPs and resources:

The experiment is set up with 9 GRPs each providing a dedicated 10 CPU cluster for

task execution. For this experiment the CPUs in terms of computational power are

equal. A QoS GRC may select the number of CPUs they require, the length of time they

require them for, a memory requirement and set a cost constraint that must not be

exceeded, while a BE GRC must rely on BGQoS BE resource allocation with a

predefined cost constraint.

180

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

• The GRC and tasks

The results and comments below are related to single QoS GRC submitting 100-1300

tasks submitting multiples of 200 tasks shown in table 9 i.e. 100, 300 ,500 ,700,…,1300

tasks. The tasks vary in size and the number of CPUs they require.

8.5.2. Results

Figure 43 shows the results that have been obtained from the experiment above.

While most successful requests have been met with resources of rank 1, there are a

significant number of resources ranked 2nd, 3rd and 4th selected, due to random

resource failures implemented within the experiment. More importantly, BGQoS has

managed to maintain successful QoS driven selection throughout, by selecting the

highest ranking, most appropriate and available resource set.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Rank 1

Rank 2

Rank 3

Rank => 4

0 500 1000 1500
Tasks Submitted

Figure 43: Rank Selected Percentage

It also shows that the BGQoS ranking criteria provide an alternative if the highest

ranked set of resources cannot be selected or is not the most preferred according to

the policy matchmaking process between the GRC and GRP, for example. BGQoS has

performed that successfully, while delivering the requested level of QoS.

181

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.6. Effect of GRC Type on Successfully Completed Tasks

This section shows the results of the simulations with the aim to evaluate the success

of a GRC request according to the GRC type and the tier they belong to and whether

they have access to global resources.

8.6.1. Evaluation Parameters

The percentage of successfully executed tasks is the metric for this experiment and

can be calculated by equation 8.7:

Successful tasks × 100 % (Equation 8.7)
Total Tasks

8.6.2. Experiment Setup

• GRCs:

Two types of GRCs are represented, QoS GRCs and BE GRCs split into a 40-60

percentage ratio. This is done in order to give BE GRCs a numerical advantage and

explore the effects of that on the task completion ratio of the more privileged GRCs.

The QoS GRC within this experiment reflects the tier A GRC. The BE GRC represents a

tier C GRC. The QoS GRC may select the number of CPUs they require, the length of

time they require them for, a memory requirement and set a cost constraint that must

not be exceeded, while the BE GRC must rely on BGQoS BE resource allocation with a

predefined cost constraint.

Each GRC submits 500 tasks in their execution request.

182

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

• Resources:

The experiments have been carried out using a populated database of 10 to 110

resources incremented by 10 at each run.

8.6.3. Results

Figure 44 illustrates the results obtained:

100%

80%

60%

Successfully Class A 40%
BE

20%

0%
0 50 100 150

Resources

Figure 44: Successful Task Percentage - Class A v BE

From Figure 44, it is noticable that while BE effort services have performed well when

the number of tasks was low, the tier A GRC was capable of achieving a higher

percentage of successful task execution according to their requirements. This is due to

better resource management, resource reservation services and reallocation services

available to the GRC of this tier. This can be expanded to very large task execution

requests, where the percentage of tasks executed will remain high and verifies the

necessity for a model that guarantees a stable rate of task execution throughout.

8.7. GRC Access Authorisation

This section presents the results of an experiment carried out in order to examine the

differences in the success rate of task completion with relation to which resources the

GRC has access to; local, partner or global.

183

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.7.1. Evaluation Metric

For this experiment, the percentage of successfully executed tasks can be calculated

by Equation 8.7.

8.7.2. Experiment Setup

• GRCs:

Two types of GRCs are represented, QoS GRCs and BE GRCs split into a 40-60

percentage ratio. This is done in order to give BE GRCs a numerical advantage and

explore the effects of that on the task completion ratio of the more privileged GRCs.

The QoS GRC within this experiment reflects the tier A GRC. The BE GRC represents a

tier C GRC. The QoS GRC may select the number of CPUs they require, the length of

time they require them for, a memory requirement and set a cost constraint that must

not be exceeded, while the BE GRC must rely on BGQoS BE resource allocation with a

predefined cost constraint.

Twenty GRCs (12 QoS GRCs and 8 BE GRCs). Each submits 10 to 1300 tasks

incremented by 10 at each run. Only QoS GRCs have access to non-local resources.

• Resources:

The experiments have been carried out using a populated database of 120 resource,

120 partner resources and 120 global resources. Each of these resources is assigned

random computational power equivalent to between 2.0 GHz and 3.2 GHz and

Memory between 256 KB and 2GB of RAM.

184

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.7.3. Results

Figure 45 illustrates the results obtained:

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100 300 500 700 900 1100 1300

local only

Local + partners

Global

Tasks Submitted

Figure 45: Successful Task Percentage - Local Access, Partner Access, Global Access

From Figure 45 it can be deduced that while there is a significant difference between

case 1 (local access only) and case 2 (local + partner) and case 3 (local + partner

+global), the difference between case 2 and case 3 is not as significant, even though

access to global resources represents a significant rise in the number of resources

available. These results further emphasise the importance of a multi-tier GRC

architecture where resource access is managed and facilitated while maintaining a

balance between access and effectiveness.

8.8. Processing Time for Different GRC Types

This section examines the differences between processing times for different types of

GRCs. Table 11 contains the results of running 10 Simulations, running 25, 50 and 75

requests of 150 tasks each with QoS request of at least 50 MIPS assigned per request.

185

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Table 11: BE v QoS

of

requests

QoS

processing

time (Tier

A)

Total MIPS

available

BE

Processing

time (Tier

C)

25 22.4 10000 117.8

50 46.56 10000 118.45

75 125.56 10000 301.64

The table clearly illustrates the difference in processing time between the two types of

GRCs and the substantial processing time gained by the QoS GRCs as the number of

tasks submitted increases. Moreover, while BE GRCs with no time constraints or time

constraints have completed their tasks, they have not interfered with the completion

of QoS GRC tasks. This successfully illustrates that BGQoS maintains the advantage for

QoS GRCs while maintaining that BE tasks are executed successfully.

For further comparison, the same experiment has been carried out against the

traditional First Come First Served (FCFS) approach. Table 12 presents the results of

running 10 Simulation.

Table 12: BGQoS v FCFS with QoS GRCs

of

requests

BGQoS

processing

time

Total

MIPS

available

FCFS

Processing

time

25 27.9 10000 122.28

50 56.118 10000 136.85

75 156.98 10000 240.1

BGQoS outperformed FCFS for all task numbers while providing QoS guarantees

successfully. However, FCFS did out perform our BE GRCs within BGQoS for the same

number of tasks and resources.

186

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.9. Effect of the Number of QoS Parameters Requested

The number of parameters submitted by the GRC with the execution request in the

QoSdescription vary. These parameters are used to locate the appropriate resources.

This section examines the effect of the number of parameters submitted on the

resource operations and success rate.

8.9.1. Experiment Setup

A database has been populated with a set of resources with variable reliability

information. The resources had been used to carry out 500 mock tasks in which the

failure rate has been random. This allowed the resource information to be updated

and therefore, the information associated with the resource stored within the

database represents a simulated real time information model. A single GRC submits

100 tasks with different sizes, explained in Table 9:

The experiments have been carried out using a populated database of 10 to 120

resource incremented by 10 at each run. Each of these resources is assigned random

computational power equivalent to one of the following values 2.0, 2.4 and 3.2 GHz

and Memory between 256 MB, 512 MB and 2GB of RAM.

• GRC requests:

The experiments ran with 1, 2, 3 and 4 QoS parameters requested by the GRC. These

required parameters were as follows:

- 1 Requirement  CPU 2.4 GHz.

- 2 Requirements CPU 2.4 GHz, RAM 512 MB

- 3 Requirements CPU 2.4 GHz, RAM 512 MB, Reliability 80%

- 4 Requirements CPU 2.4 GHz, RAM 512 MB, Reliability 80 %, Cost 350 units.

187

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.9.2. Results

The following two figures, Figure 46 and Figure 47, show the results from the two

runs of the experiments that we have performed and the successfully completed tasks

in each run:

100.00%

80.00%

60.00% # of parameters = 1

40.00% # of parameters = 2

of parameters = 3 20.00%
of parameters = 4

0.00%
0 50 100 150

Resources

Figure 46: Successful Tasks - # of Parameters Requested

100.00%

80.00%

60.00% # of parameters = 1

40.00%

20.00%

0.00%

of parameters = 2

of parameters = 3

of parameters = 4

0 50 100 150
Resources

Figure 47: Successful Tasks - # of Parameters Requested (2)

The larger the number of resource available, the higher the percentage of successful

requests that have been achieved, overall the percentage of successful requests is

illustrated in Figure 48:

188

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Successfully scheduled percentage
100%

80%

60%

40% Successfully scheduled
20% percentage

0%
0 50 100 150

Resources

Figure 48: Successfully Scheduled Percentage

In comparison, Figure 49 illustrates the results for running the same experiment using

Gridway:

100%

80%

60%

40%

20%

Successfully scheduled
percentage

Gridway

0%
0 50 100 150

Resources

Figure 49 Successfully Scheduled Percentage - v Gridway

Overall, there has been an increase of .08 % of successfully scheduled tasks using

BGQoS; this is due to a faster matchmaking process and the implementation of

resource operations that tailor to the GRCs request.

8.10. Scheduling Precision

The scheduling precision is measured as the proximity of QoSrequested in relation to

the QoSoffered. The precision is an important parameter that measures the accuracy of

BGQoS in selecting the appropriate resources. This section examines the precision and

presents the results associated.

189

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.10.1. Evaluation Metric

The scheduling precision is calculated by the equation 8.8:

QoSoffered × 100 % (Equation 8.8)
QoSrequested

8.10.2. Experiment Setup

A database has been populated with a set of resources with variable reliability

information. The resources had been used to carry out 500 mock tasks in which the

failure rate has been random. This allowed the resource information to be updated

and therefore, the information associated with the resource stored within the

database represents a simulated real time information model. A single GRC submits

100 tasks with different sizes, explained in Table 9.

The experiments have been carried out using a populated database of 10 to 120

resource incremented by 10 at each run. Each of these resources is assigned random

computational power equivalent to one of the following values 2.0, 2.4 and 3.2 GHz

and Memory between 256 MB, 512 MB and 2GB of RAM.

8.10.3. Results

Figure 50 presents the results of the experiment above.

Precision

0

0.2

0.4

0.6

0.8

1

Percision

0 20 40 60 80 100 120
Resources

Figure 50: Average percentage of QoSoffered in relation to the QoSrequested

190

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.11. Partial Offers

Section 8.10 examined the relation between the of QoSrequested in relation to the

QoSoffered. It shows that in general that there are cases where there have been a

number of resource sets that partially met the GRC requirements. They are not

selected within BGQoS and combining more than one solution has not been

implemented, however, it is part of the future work and will be implemented then.

This section presents the number of partial offers that could be retrieved and their

proximity to the requested level.

8.11.1. Results

Figure 51 presents the results from this experiment.

Number of partial offers and their
precision

10
9
8
7
6 Percent of partial
5 offers and their 4
3 precision
2
1
0

10% 20% 30% 40% 50% 60% 70% 80% 100%

Figure 51: umber of Partial Offers and their Precision

There were a number of resources capable of providing just under the requirements

set by the GRC. This may be acceptable by some GRCs and these resources can be

added to potential resources for consideration in future work. Moreover, resources

could be combined in order to achieve the requirements set by the GRC and this

combination can lead to successful task executions.

191

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.12. QoS Requirements vs Resource Utilisation

The following experiment examines the relationship between meeting the QoS

requirements and resources utilisation. The focus on resource utilisation is an

important factor in determining whether BGQoS is a viable solution that manages the

utilisation level of resource at an efficient level.

8.12.1. Evaluation Metric

Resource utilisation is a percentage within a specific period of time is calculated as:

tOiUi = × 100 tEOi

Ui is the Utilisation of Resource Ri over a period of time t. Oi
t is the actual output from

Ri and EOi
t is the estimated output from Ri over the same period of time t. None of the

resources were utilised to their full capacity in this experiment.

8.12.2. Results (1)

Table 13 includes the types of requirements requested by the GRC, the percentage of

QoS Delivery and the resource utilisation relative to each set of requirements using

the same set of resources as explained in section 8.11.

192

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Table 13: Successful QoS Deliver Percentage and Resource Utilisation
QoS Successful QoS Resource
Parameters delivery Utilisation
T Constraint +
CPUs

T Constraint +
Time
requested for
CPU
utilisation

T Constraint +
C Constraint

C Constraint +
#CPUs 91.7% 93.7%

C Constraint +
Time
requested for 89.7% 77.5%
CPU
utilisation

96.8% 93.9%

95.4% 93.7%

92.7% 89.3%

8.12.3. Experiment Setup

The experiment is setup using the workflows of two Grids; auverGrid (Jacq et al 2008)

and Grid 5000 (Grid’5000 2010). The information on both Grids is publicly available

at (The Grid Workloads Archive 2007).

The aim for BGQoS is to operate within an environment where resources fail for

different reasons as we have introduced before. Our experiments were all based on a

set of resources 𝑅1 …. 𝑅𝑑 , representing different computing resources with random

failures. Figure 52 represents the percentage (%) of failures for the first 5 resources

over a 30 day simulated period.

193

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

%

o
f

F
a
i
l
u
r
e

o
v
e
r

3
0

d
a
y
s

Days 1 -30

R 1

R2

R3

R4

R5

100
%

Figure 52: Failure over 30 days

From the Graph above it can be noticed that resource 2 was down for the duration of

the simulation, while other resources provide their service without or with little

failure over the 30 day simulated period. The information gained from this sample is

stored in the RR and updated dynamically within BGQoS to represents up-to-date,

relevant and accurate data on the state of the resources at any point. Decision making

is improved, accurate resources sets are compiled and GRC requirements and tailored

to more efficiently.

Figure 53, shows 1600 applications run over 9 resources with varying cost

constraints. The Time Constraint has remained constant throughout and is set to 20

days or 480 hours. As C grows bigger the number of applications carried out rises

until it reaches approximately 1000 applications with the loosest constraint.

The resources are made up of computational resources with processing capacities

ranging from a minimum of 2.0 GHz to a maximum of 7.4 GHz and with a memory

ranging from a minimum of 512 MB to a maximum of 8 GB.

194

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

0

200

400

600

800

1000

1200

C - 1 = 200 C - 2 = 800 C - 3 = 1500 C - 4 = 2500

R 1

R 2

R 3

R 4

R 5

R6

R7

R 8

R9

Figure 53: Resource Utilisation over 30 days

In order to portray a real environment, extra simulated execution requests have been

added in order to generate competition for resource allocation and observe resource

utilisation for all the resources accissble. Some resources executed tasks from the

main execution request, Resource 8 and 9 ran the bulk of the tasks and are the most

efficiently allocated as Figure 54 illustrate.

CPU R1
CPU R2
CPU R3
CPU R4
CPU R5
CPU R6
CPU R7
CPU R8
CPU R9

% of Resource Capacity
Allocated

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Figure 54: Allocated Resource Capacity

195

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.13. On Demand vs Advanced Reservation

This section examines the difference between requesting resources on-demand and

reserving resources in advance.

8.13.1. Evaluation Metrics

i) Execution time which is measured by the parameter:

Timeexecution

ii) Queuing time which measures the time spend in queues at resources, noting

that BGQoS employs an FCFS queuing setup:

Timequeue

8.13.2. Experimental Setup

Variable resource populations between 10 and 170 resources have been used to

populate a database. A single QoS GRC (Tier A) submits 500 tasks with varying

parameters as in the previous sections. The experiment has been run 5 times for each

number of parameters.

196

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.13.3. Results

Table 14, presents the results obtained from the experiments above.

Table 14: OD v AR

Exp# # Parameters AR AR OD OD

Timequeue Timeexecution Timequeue Timeexecution

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

681

852

942.3

685.2

854

953.2

685

833.2

943.5

698

863

946.5

673.6

852

943.5

28

377

245

34

497

247

141

473

537

171

377

292

188

245

488

605

748

852

360

335.4

704

412

405.6

530.8

414

419

563

369

486

701

197

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Figure 55 illustrates the Table 14

0

100

200

300

400

500

600

700

800

900

1,000

0 2 4 6 8 10 12 14 16

Ti
m

e

OD (Timequeue and Timeexecution) v AR (Timequeue and Timeexecution)

WT_AR

ExT_AR

WT_OD

ExT_OD

Figure 55: OD v AR

There is a small variation inTimeexecution, where there are resources that become

available, those are better suited and were not reserved initially delivering better

performance and lowering Timeexecution in some cases. However, the elimination of

waiting time for tasks with resources reserved might be beneficial to some GRCs. In

some cases, however, even with the elimination of Timequeue on-demand resource

allocation has delivered better times overall, meaning that OD resource allocation is

viable and feasible. Having said that, these results do depend on multiple factors

including: the size of the resource population, the number of GRCs and other

environmental factors.

8.14. Reallocation and Migration

Rescheduling and migration within BGQoS is carried out using a set of criteria that

depends on a tolerance ratio set by the GRC, which in the case of this experiment is at

75 %. This section examines the effect of success and completion rations with and

without reallocation. It also shows the effect of increasing the number of submitted

tasks per minute on the level of QoS delivered with reallocation.

198

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.14.1. Evaluation Metrics

Metric 1:

Average increase in successful completion according to QoS level with reallocation

with increasing number of tasks submitted per minute, measured by total number of

Tasks Completed and calculated by Equation 8.9.

T reallocation – T noreallocation × 100% (Equation 8.9)
T Total

Within this experiment, 20 simulation runs were carried out, each producing a

random generated number of tasks as the initial number, increasing the number of

tasks submitted by a specific percentage every simulated hour.

Metric 2:

Average QoS reduction with increasing the number of tasks submitted per minutes

8.14.2. Results

Table 15 shows the effect of increasing the task submission rate on the percentage of

tasks completed.

Table 15: Effect of increasing Task Submission Rate on Tasks Completed

#of tasks percentage

per minute of increase

in tasks

completed

with

reallocation

+5% 0.0

+10% 24%

+20% 12%

+30% 46%

+40% 37%

+50% 35%

+60% 11%

199

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

In all of the above cases, the number of tasks completed according to the GRC

requirements and within the constraints has increased with reallocation employed as

opposed to considering the execution as a failure when no reallocation is available.

Table 16 shows the effect of increasing the task submission rate on QoS level.

Table 16: Effect of increasing Task Submission Rate on QoS Level

#of tasks Percentage

per minute of QoS

Reduction

+5% 0.0

+10% -23%

+20% -11%

+30% -36%

+40% 1%

+50% -18%

+60% -4%

The QoS degradation associated with the increase in the number of tasks submitted

per unit time is expected because of the competition that results from a larger number

of tasks competing for the same number of resources in the available population, as

well as the availability of resources providing a lower level QoS which are selected in

order to meet the constraints submitted by the GRC. However, this degradation is

tolerable and further enhanced with resource reallocation in case of failures. At one

point an increase has been achieved, in this instance, the reallocated tasks were

executed on resources providing a higher level of QoS than the original resources on

which they would have been expected to be allocated. However, the normal situation

would be for the resources providing a high level of QoS to be reserved or not

available for running tasks, therefore it would be more difficult to achieve the same

level or a higher level of QoS with a larger task submission rate.

8.15. Violations

This section examines the number of violations and the number of successful

executions within an experiment. The purpose is to show how many violations occur

in systems, where a violation is a level of QoS that does not meet the tolerance ration

set by the GRC and how BGQoS handles these violations.

200

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.15.1. Evaluation Metrics

The following evaluation metrics were used:

• The number of requests granted without violations

• The number of violated executions

• The number of violations outside tolerance ration

• The number of requests granted without violations

• The number of violated executions

• The number of violations outside tolerance ration

8.15.2. Experiment Setup

• GRC and Task requests

A single QoS GRC(Tier A) submits 500 tasks for execution with 1, 2, 3 and 4

parameters as explained in previous section 8.9. The GRC is associated with a QoS

delivery tolerance ratio of 85%.

• GRPs

The experiment is setup of three GRPs each providing a dedicated 10 CPU cluster for

task execution. For this experiment the CPUs in terms of computational power are

equal.

• Resources

A database has been populated with a set of resources with variable reliability

information. The resources had been used to carry out 80 mock tasks in which the

failure rate has been random. This allowed the resource information to be updated

and therefore, the information associated with the resource stored within the

database represents a simulated real time information model.

201

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.15.3. Results

The results obtained from the experiment above are presented in table 17, where the

number of executions without violations, the number of violations and the violations

that required action are shown, as well as the the number of granted GRC requests.

Table 17: number of violations within and outside ratio in relation to granted requests

of

Parameters

of executions

without

violations

of violated executions # of violations outside

tolerance ration

of

requests

granted

1 14 62 9 76

2 16 57 12 73

3 10 58 16 68

4 3 52 25 55

The number of violations according to the GRC ratio was surprisingly large; however,

BGQoS has managed these violations well and performed a set of successful

reallocation operations according to ratios, which the next section examines in more

detail.

8.16. Reallocation with Ratio

This section examines the variation of ratios and parameters with reallocation

operations.

8.16.1. Evaluation Metric

The evaluation metric for this experiment is whether the tolerance ratio has been met

by the resources throughout the execution of tasks.

Migrate, if DR < 𝑇𝑅 𝑎𝑛𝑑 𝐴𝐶𝑅 < 𝐴𝑅Migration decision: �No Migration , if RDR ≥ TR or ACR ≥ CR

The value of which is compared to the ratio associated with each experiment which is

variable and specific to the experiment itself.

202

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

8.16.2. Experiment Setup

• GRC:

A single QoS GRC (Tier A) submits 500 tasks with the following requests for the

complete execution:

- Average CPU Power

- Average Memory (RAM)

- Allocated Storage

• GRPs and Resources:

12 Clusters are simulated within this experiment. 10 are CPU clusters containing

Computational resources, while 2 are Storage Clusters containing storage resources.

The resource characteristics are in table 18.

Table 18: Resource types

Type Minimum Maximum

CPU 2.4 GHz 3.8 GHz

RAM 128 MB 2048 MB

Storage 1 GB 1024 GB

8.16.3. Results

Table 19 represents the results obtained from running 15 experiments with varying

requirements on a set of resources, explained above. The table also illustrates the

number of experiments in which violations beyond the ratio have occurred:

203

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Table 19: Meeting the Ratio QoS Demand

Ex

p

Ratio

%

Average CPU

Requested

Actual

Average

CPU

Storage

Requested

Actual

Storage

Average Memory

Requested

Actual

Memory

1 97 7.4 7.1 20 19 256 256

2 94 8.3 7.9 20 19 256 256

3 95 24.2 24.5 20 19 256 256

4 98 33.7 32.5 150 180.3 1024 1024

5 95 31.3 28.2 150 178.8 1024 1024

6 95 32.5 29.9 280 148.5 1024 1280

7 93 186 182.3 200 231.2 1024 1280

8 86 71 80.2 25 23 256 128

9 70 112 115.9 25 26 256 256

10 60 2.2 2.4 25 26.3 256 256

11 55 8.3 8.9 25 25 256 256

12 95 5.3 7.2 25 25.8 256 1024

13 90 6.4 2.6 25 28.9 256 256

14 80 2.5 8.9 25 29 256 256

15 85 8.5 6.7 25 25 256 256

8.17. Further Comparison with FCFS

In this section, further comparison with FCFS is provided. The value of this

comparison is that it shows not only that BGQoS delivers a level of QoS that is

requested by the GRC but also executes tasks in an efficient manner for a large

number of tasks submitted over a long period of time. This period has been chosen as

a 50 day simulation period for this experiment.

8.17.1. Experimental Setup

• GRCs

The experiment was carried out using two sets of GRCs; the first represented thirteen

QoS GRCs (Tier A) submitting up to 2200 requests over a period of 50 days. The

second was carried out with thirteen FCFS users submitting the same number of

requests over 50 days.

204

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

• Resources

12 Clusters are simulated within this experiment. 10 are CPU clusters containing

computational resources, while 2 are Storage Clusters containing storage resources.

The resource characteristics are in Table 20.

Table 20: Resource Characteristics

Type Minimum Maximum

CPU 2.4 GHz 3.8 GHz

RAM 128 MB 2048 MB

Storage 1GB 1024 GB

8.17.2. Metric

The metric used is the number of tasks completed per day over the period of 50 days.

8.17.3. Results

Figure 56 illustrates the results obtained from both runs.

Figure 56: Comparison between BGQoS and FCFS over 50 days

The top half of Figure 56 shows the number of requests completed every day over a

50 days simulated period for BGQoS and the bottom half shows the same for FCFS. It is

clear from the figure that all GRCs completed their tasks over the required period

when BGQoS was used. This was not the case when using FCFS where there were

tasks still running at the end of the simulated period. Moreover, we can see that task

execution was more uniform and better organised under BGQoS where as task

completion appears less so using FCFS.

205

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

It can therefore be conclude that BGQoS performed its resource operations, task

execution and task completion driven by GRC requirements in an efficient manner

illustrated in this comparison with FCFS.

8.18. Analysis of the BGQoS Operation Evaluation

This chapter has examined in detail the different relevant operations of BGQoS under

different circumstances, with different parameters and within different environments

ranging from small to very large. There has been an explanation of the results in each

of the sections within this chapter and the importance of each is presented within this

section:

Overhead: There is a measured amount of overhead related to the resource operations

within BGQoS that could not be ignored. However, one of the primary goals of BGQoS

is to locate the resources that meet the requirements specified by a GRC, which means

that these resources must be identified, located, ranked and selected. The overhead is

consequently expected and within the context of the models operation could be

considered tolerable.

Constraints: The effect of Constraints has been shown clearly and the experiments

justify the need to separate them from regular QoS parameters. They are the

guidelines and measures that govern which resources are to be used, by which GRCs,

how they are used and when. This justifies the identification of constraints as a

separate set independent of QoS requirements which may depend on the constraints

given, assigned or submitted.

The number of parameters: The number of parameters has had an effect on the

operation of BGQoS and has been presented in detail within this chapter. Mainly, the

effect was on the overhead, the number of successful requests and the percentage of

tasks completed.

In general, the successful completion of requests and tasks depends on the following:

Time constraint: Increasing the time limit set for tasks to be completed increases the

possibility of successfully completing the GRC request and locating the appropriate

resources. This is due to resources being released and resources being added over a

period of time that may have not been available within a tight timeline.

206

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

Cost constraint: Like the Time Constraint, the Cost constraint expresses the budget

available for a GRC. A larger budget allows the GRC to utilise more expensive

resources that may deliver a higher level of QoS. Increasing the budget and loosening

the Cost constraint increases the possibility of successfully completing GRC requests

and enhancing the level of QoS delivered.

Resource population: The increase in the number of resource available, either due to

more resources becoming available over a period of time or resource being added and

becoming accessible, increases the probability that there exists a resource that meets

the requirements submitted by the GRC.

In contrast, failure to complete requests and tasks depends on the following:

GRC population: An increase in the number of GRCs and the requests submitted by

them to a resource population has resulted in an increase in resource utilisation and

assignments. However, it has also resulted in an increased volume of competition

between the different requests for resources and larger waiting times. In some cases,

with access the same population of resources, the requests have not been granted and

have been returned as failures.

Increase in the number of requested parameters: The increase in parameters reduces

the number of resources with the capacity to meet the GRC request. However, within

the experiments carried out we have recognised that access to resources from partner

Grids and Global resources has increased the possibility of these requests being met

and therefore still allowed the GRC to make specific requirements with more

parameters, successfully.

Access to partner and global resources: This was not a given in some experiments

where the effect of constraints was not as noticeable, or the resource population did

not produce a substantial increase in the number of successful requests and

completed tasks. Overall, it is worth noticing that multi-parameter requests are

expected to receive a considerable amount of delay, request failures and are reliant on

the Cost and Time Constraints. Once the request is accepted and a resource set is

selected, however, BGQoS has produced a substantial and positive successful

execution rate; this was further enhanced by the introduction of reallocation

according to a pre specified tolerance ratio. Moreover, in comparison with best effort

operations for a large number of submitted tasks, BGQoS has produced better

207

CHAPTER 8: COMPONENT EVALUATION OF BGQOS

performance and resource utilisation results when compared with best effort

performance and utilisation, albeit, at a high price.

Overall, the optimal operation of BGQoS seems to occur when there is a large

population of GRCs and resources, efficiently tailoring to the GRC requests using the

information on resources. Resource information has been successfully maintained up

to date using the updating mechanism attached to the databases holding the

information on resources within out model.

Finally, it is important to mention that while best effort GRCs have produced

substantially larger makespans than the QoS supported GRC tiers; they have still

managed to out perform traditional FCFC methods by using more resource

organisation and providing a higher resource utilisation rate.

8.19. Summary

This chapter has presented the experiments that have been carried out on the

components and operations of BGQoS within simulated environments. Each

experiment was tailored towards testing and validating a specific aspect of BGQoS, the

effects of different variables such as GRC types and the conditions for which BGQoS

components perform to their potential. Chapter carries on with testing BGQoS,

however, the experiment is setup to examine the operation of BGQoS as a complete

model. The combination of the two chapters provides a comprehensive set of results

that both tests the specifics and the whole model.

208

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

CHAPTER 9 EVALUATION

OF COMPLETE

OPERATION OF BGQOS

209

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

9.1. Introduction

This chapter evaluates BGQoS in the context of a holistic system experiment rather

than the evaluation of component characteristics and relationships as in chapter 8. It

presents a comprehensive experiment tailored to evaluate the complete operation of

BGQoS and investigate its success in delivering QoS according to the operational

model and employing BGQoS components and methods introduced within this thesis.

The results of the experiments are analysed in order to establish the validity of BGQoS,

its flexibility and application potential.

9.2. The Simulated Environment

Table 21 presents the components and parameters of the simulated environment. The

total numbers reflect those of real environments with real workloads. The selection of

a large number of GRCs in relation to the GRPs and the resources they provide is to

maintain a competitive environment, where resources are selected accordingly.

Two types of GRCs are represented, QoS GRCs and BE GRCs, split into a 40-60

percentage ratio. The QoS GRC within this experiment reflects the Tier A GRC we have

introduced throughout this thesis. The BE GRC represents a Tier C GRC we have

introduced throughout this thesis. Tier B has not been represented as this experiment

is designed under the assumption that that if a full set of QoS can be provided then a

reduced set can also be provided. This illustrates a better suited experiment for a

clearer picture in terms of results between a GRC with QoS capabilities and a GRC

without any. GRPs are located inside their respective Grids and are related to them.

Communication occurs by registering their resources, and resource information is

stored accordingly.

210

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

Table 21: Experimental Setup

Total number of accessible Grids 0 - 500

Total number of resource in each

Grid

50

Bandwidth 100 Mb/s

- 1 Gb/s

MIPS 2200 -

6000

RAM 256 MB -

2 GB

Task size 20

Kbytes -2

Mbytes

Total number of GRCs 600

Price per unit of time 10 - 500

GRC cost constraints 100 -

800

GRC time constraints 100 -

1500

Total number of GRPs 150

9.3. Evaluation Metrics

The evaluation metrics that have been chosen for this experiment are presented and

explained in table 22. The table also includes the description and the measurement

for each metric.

211

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

Table 22: Experimental Measurements

Metric Description Formula/Measurement

Response Time

Measures the time

required for GRCs to

receive a response to

their execution request.

𝐓𝐢𝐦𝐞𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞

Resource Utilisation Measures the resource

utilisation.

𝐭𝐎𝐢𝐔𝐢 = 𝐭𝐄𝐎𝐢

where the Ui is the

Utilisation of resource Ri

over a period of time t.
tOi is the actual output

from Ri and EOi
t is the

estimated output from

Ri over the same period

of time t.

The percentage of

successful GRC requests

Measures the efficiency of

meeting GRC requests. A

successfully met GRC

request is that which

identifies and locates the

appropriate resources

through BGQoS for a GRC

requirement

specification.

𝐒𝐮𝐜𝐜𝐞𝐬𝐬𝐟𝐮𝐥 𝐫𝐞𝐪𝐮𝐞𝐬𝐭𝐬

𝐓𝐨𝐭𝐚𝐥 𝐫𝐞𝐪𝐮𝐞𝐬𝐭𝐬

The percentage of

successfully completed

tasks

Measures the ration

between successfully

completed tasks to the

total number of tasks

submitted. The

measurement classifies a

successfully completed

task as those tasks that

have been executed to

completion according to

GRC requirements

𝐒𝐮𝐜𝐜𝐞𝐬𝐬𝐟𝐮𝐥 𝐭𝐚𝐬𝐤𝐬

𝐓𝐨𝐭𝐚𝐥 𝐓𝐚𝐬𝐤𝐬

212

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

Effects of varying

constraints

Measures the degree the

constraints can effect the

operation of BGQoS. It

also identifies the

importance of including

them and the benefits of

making them flexible.

Time Constraint ,T, and overall

time OT

OT must be less or equal to T,

where OT = TimeRop + Timeft +

Timequeue + Timeexecution +

Timemigration

and TimeRop the time to

complete resource operations.

Cost Constraint, C, and overall

Cost OC

OT must be less or equal to C,

where OC =
k∑n=1 P(t)x Timeexecution

GRC satisfaction

Measures the level of QoS

delivered in comparison

to the level requested.

The importance of which

is identify whether

BGQoS managed to

maintain a sustained level

of QoS throughout the

execution of GRC tasks.

𝐐𝐨𝐒𝐝𝐞𝐥𝐢𝐯𝐞𝐫𝐞𝐝

𝐐𝐨𝐒𝐫𝐞𝐪𝐮𝐞𝐬𝐭𝐞𝐝

The measurement is the total for

all tasks and compared with the

Tolerance ratio TR which

submitted by the GRC

213

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

9.4. Results

The results for each of the experiments are presented in this section, including

differing numbers of submitted tasks to reflect different conditions and loads.

9.4.1. Response Time

Response time has been measured with three types of ranking; i) Time minimisation

ranking ii) Cost minimisation ranking and iii) Ranking according to availability. The

following two figures illustrate the results obtained from the three experiments,

Figure 57 presents the results when 350 tasks are submitted and Figure 58 presents

the results when 1100 tasks are submitted.

0

100

200

300

50 100 150 200 250 300 350

Re
sp

on
se

 T
im

e

Cost Minimisation

Time Minimisation

Availability

Figure 57: Response time for 350 tasks

214

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

600

5
10 20 50 75

10
0

30
0

50
0

70
0

90
0

11
00

Re
sp

on
se

 T
im

e
400

Cost Minimisation
200 Time Minimisation

0 Availability

Figure 58: Response Time for 1100 tasks

9.4.2. Resource Utilisation

Resource Utilisation has been measured with three types of ranking; i) Time

minimisation ranking ii) Cost minimisation ranking and iii) Ranking according to

availability. The following two figures illustrate the results obtained from the three

experiments, Figure 59 presents the results when 350 tasks are submitted and Figure

60 presents the results when 1100 tasks are submitted. In figure 60, it is clear that

there was a significant rise in resource utilisation. This is due to a larger number of

smaller tasks being carried out, therefore utilising resources to at a higher level. This

is attributed to resources being able to provide a specific level of services over a

shorter priod of time, rendering them available for carrying out smaller tasks which

require a shorter time to execute.

215

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

50 100 150 200 250 300 350

Cost Minimisation

Time Minimisation

Availability

Figure 59: Resource Utilisation for 350 tasks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 20 75 300 700 1100

Cost Minimisation

Time Minimisation

Availability

Figure 60: Resource Utilisation for 1100 tasks

9.4.3. Percentage of successful GRC requests

The percentage of successful GRC requests has been measured with three types of

ranking; i) Time minimisation ranking ii) Cost minimisation ranking and iii) Ranking

according to availability. The following two figures illustrate the results obtained from

the three experiments, Figure 61 presents the results when 350 tasks are submitted

and Figure 62 presents the results when 700 tasks are submitted.

216

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

50 100 150 200 250 300 350

Cost Minimisation

Time Minimisation

Availability

Figure 61: Percentage of successful GRC requests for 350 tasks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 20 75 200 400 600

Cost Minimisation

Time Minimisation

Availability

Figure 62: Percentage of successful GRC requests for 700 tasks

9.4.4. Percentage of successfully completed tasks

The percentage of successfully completed tasks has been measured with three types

of ranking; i) Time minimisation ranking ii) Cost minimisation ranking and iii)

Ranking according to availability. The following two figures illustrate the results

obtained from the three experiments, Figure 63 presents the results when 350 tasks

are submitted and Figure 64 presents the results when 1100 tasks are submitted.

217

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

50 100 150 200 250 300 350

Cost Minimisation

Time Minimisation

Availability

Figure 63: Percentage of successfully completed tasks for 350 tasks

100%
90%
80%
70%
60%

Cost Minimisation 50%
40% Time Minimisation 30%
20% Availability 10%

0%

10 20 50 75

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Figure 64: Percentage of successfully completed tasks for 700 tasks

9.4.5. Effect of Varying Cost and Time Constraints

This section presents the results of varying the Cost and Time Constraints. Each of

which is presented within an experimental setup tailored for testing the effects of

varying them.

218

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

9.4.5.1. Time Constraint

In this experiment the comparison has focused the resource utilisation, in case there is

a time constraint or there is not. The time constraints have been set to 500 units,

increasing by 100 units per 100 tasks submitted.

0%

50%

100%

100 300 500 700 900 1100

Resource Utilisation
without Time Constraint

Resource Utilisation with
Time Constraint

Figure 65: Effect of Time Constraint on Resource Utilisation for 1100 tasks

9.4.5.2. Cost Constraint

In this experiment we examine the percentage tasks executed successfully for 1100

tasks submitted by a GRC. In each run the C has been set to 75 increasing by 10 for

each run to 750 units for 100 tasks. The time constraint has been set to 500 units,

increasing by 100 units per 100 tasks submitted. Figure 66 shows the results for:

• 1 Parameter + T = ∞ + C = (75 to750)

• 2 Parameters + T = (500 to 1500)

• 3 Parameters + T = (500 to 1500) + C = (75 to 750)

219

0%

50%

100%

100 300 500 700 900 1100

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

1Paramater

2 parameters

3 parameters

1Paramater

Figure 66: Tasks executed successfully on Resource Utilisation for 1100 tasks

9.4.6. GRC Satisfaction

GRC satisfaction has been measured with three types of ranking; i) Time minimisation

ranking ii) Cost minimisation ranking and iii) Ranking according to availability. The

following two figures illustrate the results obtained from the three experiments,

Figure 67 presents the results when 350 tasks are submitted and Figure 68 presents

the results when 1100 tasks are submitted. In Figure 68, the rise in GRC satisfaction is

due to a larger number of tasks being completed. This is attributed to a larger number

of smaller tasks being carried out, utilising resources that are available for shorter

periods of time, allowing a higher level of execution return and QoS delivery.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

50 100 150 200 250 300 350

Cost Minimisation

Time Minimisation

Availability

Figure 67: GRC satisfaction for 350 tasks

220

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 50 100 300 500 700

Cost Minimisation

Time Minimisation

Availability

Figure 68: GRC satisfaction for 700 tasks

9.5. Analysis

The simulated environment within this section examined the different aspects of

BGQoS. Overall, BGQoS successfully carried out the main operations in terms of

resource operations and delivering QoS to GRCs according to their requests.

Response time increased as the number of tasks submitted increased. However, this

increase is expected and still within acceptable times. Within this experiment, it

peaked at just under 400 ms for 1100 requests with time minimisation ranking

commanding the highest response time. However, using all three types of ranking, the

results have been comparable and similar. Therefore, the ranking process has

operated successfully and consistently regardless of the ranking criteria.

Resource utilisation steadily increased when 350 tasks were submitted for execution.

In fact, resource utilisation achieved relatively high percentage and BGQoS’s

distribution of tasks has performed positively. All three types of ranking performed

similarly and consistently, with resources achieving utilisation of above 80 % at the

300 tasks submitted mark.

Resource utilisation started to decrease when a large number of requests for tasks to

be executed under specific parameters were submitted. The reduction of utilisation is

due to multiple factors, including resources carrying a larger number of smaller tasks

which may not utilise the resources to their full capacity. However, the performance

was still positive, achieving a high level of utilisation throughout.

221

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

The number of successfully met requests decreased as the number of requests

increased, to a consistent pool of resources. However, the decrease of almost 20 % in

meeting requests compared to an increase of 50 % in tasks submitted presents a

positive outcome. Moreover, successful operation of BGQoS assigning the tasks to the

resources that meet the GRC requirements while facing a decrease in requests met has

fulfilled its main objective.

Until the resource population is exhausted, the decrease in the number of successfully

executed tasks occurred slowly. This is due to the successful allocation of tasks to

resources that meet their requirements, therefore fulfilling the execution requests.

However, once there is competition for the resources, when a larger number of tasks

are submitted, the decrease became more significant. This is due to current tasks

overrunning, resources failing, and, constraints not being met.

The effects of cost and time constraints were elaborated on within the last chapter.

The experiments that have been carried out within this chapter examining their

effects have been consistent with the initial examination and conclusions. In general,

the larger the time available and the budget available, the larger number of tasks that

are executed.

Overall, BGQoS has been successful in carrying out its core operations with a

consistent and positive level of operation, achieving a high percentage of successful

requests, successful executions and resource utilisation while driven by QoS

parameters submitted by the GRC.

9.6. Summary

The chapter has presented an experiment that has covered different aspects of BGQoS

under different conditions and parameters, concluding with the analysis of the results,

from which we have shown the combining that different operation evaluated perform

the required objectives and achieves a flexible high-level QoS driven model, BGQoS.

Chapter 10 presents the conclusions and the future directions of the research.

222

CHAPTER 9: EVALUATION OF COMPLETE OPERATION OF BGQOS

223

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

CHAPTER 10: SUMMARY,

CONCLUSION AND FUTURE

DIRECTION

224

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

10.1. Introduction

This chapter outlines the contributions, conclusions and summary of the thesis as well

as serving as the finale for it. This chapter is of two parts, the first discusses the work

achieved within this thesis and the second part describes the future work and

directions for the work presented.

10.2. Thesis Contributions

The thesis makes the following contributions:

• BGQoS supports a novel GRC architecture that assigns privileges to tiers instead of

specific users. This both improved performance and provided a more realistic user

model that could be implemented in business-oriented and commercial environments

and can be easily expanded for different domains. This has been complemented by a

set of tier specific interfaces and different types of requests based on different types of

templates. This has also allowed BGQoS to be redesigned for specific organisations

within multiple domains, making it operational and flexible.

• The description and implementation of GRCs, GRPs, Resources and SLA agreements

have achieved:

- Simplicity: BGQoS allows different types of descriptions and allows them to be

understandable and usable by a wide range of GRCs and allows many types of

resources to de defined and described in terms of capabilities and ownerships. The

XML based documents produced re machine and human readable accommodating the

premise that the target GRCs cannot be assumed to have knowledge of the underlying

protocols, procedures or infrastructure.

- Expressiveness: BGQoS allows GRCs to express their requirements and eliminates

confusion in terms of what they can or cannot request.

- Flexibility: BGQoS accommodates different resources, GRC requirements and features.

Moreover, it allows the components, including interfaces and descriptions to be

tailored for a specific domain or for a specific environment without affecting the

support for different types of GRCs or Resources.

225

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

- Specificity: The design of the BGQoS facilitates the identification of specific

components such as the business relationship, SLOs and additional objectives or

priorities between the different parties.

• High-level abstraction in which GRCs only focus on specifying the resource

requirements for their applications and the QoS parameters and constraints they

require without the need for technical detail specification, thus achieving a high-level

QoS driven specification model.

• QoS driven resource discovery and selection has been implemented to its intended

effect, in which the resources are selected according to the QoSdescription submitted by

the GRC. The GRC can therefore expect that the resources selected adhere to their

requirements in terms of types and meeting the level of QoS required.

• Resource advertisement has been included, within which resources can define their

capabilities and characteristics and these characteristics can be matched with GRC

requirements. Expressiveness of Resourcedescriptions associated with each resource

have been introduced in order to clearly specify resource characteristics, properties

and policies. These descriptions are stored in a specialised databases efficiently

allowing access and resource information retrieval.

• Dynamic resource characteristics are supported and have been implemented

efficiently where dynamic resource characteristics are updated automatically at

specific time intervals ensuring that the information stored relative to each resource

is based on current information and is up-to-date. This has increased the accuracy of

resource discovery and resource selection operations which use this information.

• Time and cost constraints are supported allowing the GRC full control over the time

limits and cost limits associated with their applications. Moreover, mechanisms have

been implemented in order to carry out cost or time minimisation operations if

requested by the GRC.

226

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

• A QoS model, communication organisation and agreements initialisation has also been

presented and can be expanded to support multiple domains and different types of

applications, GRCs and requests.

• Resource discovery is supported on three levels, local, partner and global. Driven by

the GRC requests and QoS specification, resource discovery employs a search

mechanism that retrieves resource information and matches them with the GRC

request in order to select the most appropriate resource for selection. The selection

process is carried out using a ranking process which is flexible, configurable and

expandable in order to accommodate different types of GRC, resources and domains.

• The resource operations are quantified where each resource is assigned to a specific

degree of matching to the requirements of the GRC, as well as a specific assigned

value, called a rank.

• Feedback operations have been implemented in order to convey relevant data on

resources, requests, task execution and level of QoS delivered back to the GRC.

• Agreement establishment, management and monitoring have been implemented in

order to meet the GRC QoS requirements and maintain that the level promised is

being delivered within specific ratio boundaries set by the GRCs.

• Recovery, reallocation and migration operations are implemented in case of violation

and error, complementing the monitoring process and guaranteeing the level of QoS

delivered, while hiding the complexities of migration and reallocation from the GRC.

This process is carried out automatically within the execution phase of an application

by BGQoS.

• Accounting and billing services have been implemented complementing the

operations above and concludes the communication process between the different

parties, applying costs, penalties and session status.

227

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

10.3. Conclusion

The novel contributions of the thesis can be summarised as the development of a

business grid QoS system which innovatively incorporates varying QoS-based tiers of

GRC and also as the extension of a simulation environment to enable experimentation

in QoS support for Grids.

BGQoS, through its support mechanisms, layered architecture, components and

operations has been successful in guaranteeing a sustained level of QoS for different

types of QoS requirements and under different conditions within a flexible model. It

has been successful in meeting the requirements of the environments for which it has

been designed. The high-level design of BGQoS which employs existing technologies

and new methods and techniques in resource discovery, selection and different levels

of QoS support through a specific QoS model, has provided a stepping stone that could

be carried forward to support the integration between the targeted domains and Grid

Computing.

BGQoS has been designed to be flexible and expandable. The implementation has

achieved the goals, objectives and operational requirements that have been specified,

and has achieved the contributions explained in the previous section of this chapter.

A simulation environment has been used in order carry out model evaluation, with a

fully functional set of components with results obtained presented in this thesis. It has

showed that, while there have been a few issues with overhead, the positives

significantly outweigh the negatives. The delivery of QoS in particular and the

complete support for the whole process initiated by the GRC request to the billing

operations have provided a platform that could be used in multiple domains and

according to each organisations specifications, policies, requirements and

infrastructure.

It is hoped that these contributions will be useful to future developers and researchers

and thus lead to improved systems in the new virtualised environments of future

business computing.

228

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

10.4. Future Work and Directions

10.4.1. Full Standardisation of Metrics and Metric Unification Support

An important area to expand on is the number of QoS requirements and the types of

requirements that could be set according to a standard method of communication and

metric unification between resource and service consumers and resource and service

providers. This would include a dynamic pricing method relative to the level of QoS

provided and adhering to different agreements set in place between different parties.

Moreover, with the reduction of overhead and improving performance there could be

a case for using real-time information on resources that is updated more frequently. In

addition, a method could be employed that brokers inform GRCs of resource

availability that they could utilise using the real-time information on resources; this

provides a more business-oriented environment and opportunity for GRPs and

provides the GRC with the opportunity of utilising available resources should they

wish to.

The availability of information and the direct distinction between the different types

of GRCs and their locality currently allows BGQoS to carry out resource selection

operations using information on global resources, however, a more frequent update

on resource information on a larger set of characteristics can allow resource

operations to be carried out much more effectively.

10.4.2. Expansion for Cloud Computing

As part of the future direction, we aim to tailor BGQoS for emerging Cloud Computing

fields and expand them to enhance the QoS support within Cloud Computing

environments. The rapid growth of these environments and their adoption by major

organisations and corporations such as Amazon has added to the significance and

importance of Cloud Computing and therefore, applying BGQoS would be beneficiary.

The elasticity and scalability characteristics of clouds means that there must be a

solution that is capable of providing the user with the ability to specify resources and

specific QoS without concern to the underlying infrastructure, keeping in line with one

229

CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION

of the main objectives of Clouds. BGQoS could provide that solution and can help in

user and request management.

10.4.3. Testing the Operation on a Real Test-Bed

Testing and evaluation for this work has been carried via simulation and within

simulated environments for multiple reasons that have been discussed in the previous

chapter. It is therefore an objective of future work to implement the methods and

strategies proposed on a real testbed.

There is a significant difference between simulated environments and real test-beds,

especially in terms of resource failures and logistical and legal considerations.

Therefore, real test-beds provide a bigger, sterner and more realistic challenge.

Moreover, any unexpected behaviour in operation within simulated environments can

be traced back easily. However, this is not the case on a real test-bed where

unexpected behaviour requires more effort to trace. Overall, a real test-bed would

provide for a challenging environment for testing the operations and successful

implementation of BGQoS.

.

230

References

Aggarwal, R., Verma, K., Miller, J. and Milnor, W. (2004) ‘Constraint Driven Web

Service Composition in METEOR-S’. Proceedings of the 2004 IEEE International

Conference on Services Computing. held 15-18 September, Shanghai, China, 23-30

Al-Ali, R., ShaikhAli, A., Rana, O. F. and Walker D. W. (2003) ‘Supporting QoS-Based

Discovery in Service-Oriented Grids’. The 17th International Symposium on Parallel

and Distributed Processing (IPDPS '03). held 22-26 April, Washington, DC, USA

Albodour, R. , James, A. Yaacob, N. and Godwin, A. (2008) ‘QoS Requirements for a

Medical Application on the Grid’. Computer Supported Cooperative Work in Design

IV. 5236/2008, 316-330, DOI: 10.1007/978-3-540-92719-8_29, 316-330

Albodour, R. , James, A. and Yaacob, N. (2010) ‘An extension of GridSim for quality of

service’. The 14th International Conference on Cooperative Work in Design. held 14-16

April in Shanghai, China, 361 - 366

AL-Fawair, M. (2009), A Model for Evolving Grid Computing Systems, PhD Thesis.

England: De Montfort University

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L. and Foster, I. (2002) ‘Data

management and transfer in high performance computational Grid environments’.

Parallel Computing Journal 28(5), 749–771

Allen, G., Goodale, T., Russell, M., Seidel, E. and Shalf, J. (2003) ‘Classifying and enabling

Grid Applications’. Grid computing: making the global infrastructure a reality, 601-614

Altair (2011) Altair's Portable Batch System [online] available from

<http://www.pbsworks.com/>

231

http://www.pbsworks.com/

Altintas, I. , Birnbaum, A. , Baldridge, K.K. , Sudholdt, W. , Miller, M. , Amoreira, C. ,

Potier, Y. and Ludaescher, B. edited by Herrero, P. , Perez, M.S. and Robles, V (2004).

‘A Framework for the Design and Reuse of Grid Workflows’. Scientific Applications of

Grid Computing: First International Workshop, SAG 2004. held 20-24 September in

Beijing, China, Revised Selected and Invited, in series Lecture Notes in Computer

Science 3, 119-132

Amazon (2011a) Amazon Elastic Compute Cloud (Amazon EC2) [online] available

from <http://aws.amazon.com/ec2/>

Amazon (2011b) Amazon S3 is storage for the Internet [online] available from

<http://aws.amazon.com/S3/>

Amin, K., Von Laszewski, G. and Mikler, A. R. (2004) ‘Toward an Architecture for Ad

Hoc Grids’. The 12th International Conference on Advanced Computing and

Communications (ADCOM 2004). held 15-18 December in Ahmedabad Gujarat, India

Anderson, D.P. (2004) ‘BOINC: a system for public-resource computing and

storage’. The Fifth IEEE/ACM International Workshop on Grid Computing. held 8

November, ISSN: 1550-5510, Print ISBN: 0-7695-2256-4, 4-10

Andrade, R. , Oliveira, I. , Fernandes, J. M. and Cunha, J. P. (2007) Multi-voxel Non-

linear fMRI Analysis - A Grid Multi-voxel Non-linear fMRI Analysis. In: IBERGRID,

Santiago de Compostela, Spain

Andrzejak, A. , Mastroianni, C. , Fragopoulou, P , Kondo, D. , Malecot, P. , Reinefeld,

A., Schütt, T. , Silaghi, G.-C. , Silva, L. M., Trunfio, P., Zeinalipour-yazti, D. and Zimeo, E.

(2008) ‘Grid Architectural Issues: State-of-the-art and Future Trends.’ CoreGRID

White Paper Number WHP-0004, available from <http://www.coregrid.net/>.

Apple (2011a) Apple Science [online] available from

<http://www.apple.com/science/>

232

http://aws.amazon.com/ec2/
http://aws.amazon.com/S3/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9495
http://www.coregrid.net/
http://www.apple.com/science/

Apple (2011b) iCloud [online] available from < http://www.apple.com/icloud/>

Baldassari, J., Finkel, D. and Toth D. (2006) ‘Slinc: A Model for Volunteer Computing’.

The 18th IASTED International Conference on Parallel and Distributed Computing and

Systems (PDCS 2006). held in Dallas, USA

Barrass, T.A. , Maroney, O. , Metson, S. , Newbold, D. , Jank, W. , Garcia-Abia, P. ,

Hernández , J. M. , Afaq, A. , Ernst, M. , Fisk, I. , Wu, Y. , Charlot, C. , Semeniouk, I. ,

Bonacorsi, D. , Fanfani, A. , Grandi, C. , DeFilippis, N. , Rabbertz, K. , Rehn, J. , Tuura, L.

and Wildish T. (2004) ‘Software Agents in Data and Workflow Management’.

Computing in High Energy and Nuclear Physics (CHEP 2004). held in Interlaken,

Switzerland

BEinGRID (2011) Business Experiments in Grid [online] available from

<http://www.beinGrid.eu/>

Berman,F., Wolski, R., Casanova, H. , Cirne, W. , Dail, H. , Faerman, M. , Figueira,

S. , Hayes, J. , Obertelli, G. , Schopf, J. , Shao, G. , Smallen, S. , Spring, N. , Su, A.

and Zagorodnov, D. (2003) ‘Adaptive computing on the Grid using AppLeS’. Parallel

and Distributed Systems 14 (4), 369 – 382

Bobroff, N. , Dasgupta, G. , Fong, L. , Liu, Y. , Viswanathan, B. , Benedetti, F. and

Wagne, J. (2008) ‘A distributed job scheduling and flow management system’. ACM

SIGOPS Operating Systems Review 42 (1), 63-70

Brandic, I. and Dustdar, S. (2011) Grid vs. Cloud - A Technology Comparison. It.

Information Technology Issue 4

Brandich, I., Venugopal, S., Mattress, M. and Bunya R. (2008) ‘Towards a Meta-

Negotiation Architecture for SLA-Aware Grid Service, Workshop on Service-Oriented

Engineering and Optimizations’. The International Conference on High Performance

Computing 2008 (HiPC2008). held 17 - 20 December in Bangalore, India

233

http://www.apple.com/icloud/
http://www.beingrid.eu/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=26889
http://www.hpl.hp.com/india/senopt08/papers/senopt08106.pdf
http://www.hpl.hp.com/india/senopt08/papers/senopt08106.pdf

Britton, D., Doyle, A., Lloyd S. (2005) ‘A Grid for Particle Physics - managing the

unmanageable’. The UK e-Science All Hands Conference, 1073 – 1077

Brock, M., Goscinski, A. (2010) ‘Grids vs. Clouds’. The 5th International Conference on

Future Information Technology. held in Busan, S. Korea, 1-6

Buccafurri, F. , Me, P.D. , Fudging, M.G. , Fernery, R. , Goy, A. , Lax, G. , Lops, P. ,

Modifier, S. , Penrice, B. , Red avid, D. , Demerara, G. and Ursine, D. (2008) ‘Analysis

of QoS in cooperative service for real time applications’. Data and Knowledge

Engineering 67(3), 463-484

Buscemi M. and Montanari U. (2011) ‘QoS negotiation in service composition’. Journal

of Logic and Algebraic Programming 80 (1), 13-24

Buyya, R., Abramson, D. and Giddy, J. (2000) ‘Nimrod/G: An Architecture For A

Resource Management And Scheduling System In A Global Computational Grid’. The

4th international conference for High Performance Computing in the Asia-Pacific

Region’. held 14-17, Beijing , China, 283-289

Buyya, R. and Bubendorfer, K. (2009) ‘The Nimrod/G Grid resource Broker for

Economics-Based Scheduling, Market-Oriented Grid and Utility Computing’. In

Market-Oriented Grid and Utility Computing : Wiley & Sons, Inc.

Buyya, R. and Murshed M. (2002) ‘GridSim: a toolkit for the modelling and simulation

of distributed resource management and scheduling for Grid computing’. Concurrency

and computation: practice and experience 14 (13), 1175–1220

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. and Brandic, I. (2009)’ Cloud Computing

and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the

5th Utility’, Future Generation Computer Systems 25(6), 599-616

234

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DBuscemi,%2520Maria%2520Grazia%26authorID%3D7004603630%26md5%3D50cc5c19d990bde5070e963136ae1d1d&_acct=C000057807&_version=1&_userid=2563821&md5=6b8fd4df1914c11d8b6ad3c3629f53ea
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DMontanari,%2520Ugo%26authorID%3D7004968272%26md5%3D0eb5dcec3d1accd2484f7cd61544952a&_acct=C000057807&_version=1&_userid=2563821&md5=828389782a7c5fd6e136dd653b9fc278
http://www.sciencedirect.com/science/journal/15678326
http://www.sciencedirect.com/science/journal/15678326
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6804
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6804
http://www.buyya.com/papers/Cloud-FGCS2009.pdf
http://www.buyya.com/papers/Cloud-FGCS2009.pdf
http://www.buyya.com/papers/Cloud-FGCS2009.pdf

Caminero, A., Rana, O. , Caminero, B. and Carrión, C. (2011) ‘Network-aware heuristics

for inter-domain meta-scheduling in Grids’. Journal of Computer and System Sciences

77 (2), 262-281

Cao, J., Jarvis, S. A., Saini, S. A. and Nudd, G. R. (2003) ‘GridFlow: Workflow

Management for Grid Computing’. The 3rd IEEE/ACM International Symposium on

Cluster Computing and the Grid’. held 12-15 May, Tokyo, Japan

Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V. and Lodygensky, O.

(2005) ‘Computing on Large Scale Distributed Systems: Xtremweb Architecture,

Programming Models, Security, Tests and Convergence with Grid’. Future Generation

Computer Science 21 (3), 417-437

Casanova, H., Legrand, A. and Quinson, M. (2008) ‘SimGrid: A Generic Framework for

Large-Scale Distributed Experiments’. Computer Modeling and Simulation, 2008.

UKSIM 2008. held 1-3 April in Cambridge, UK, 26 - 131

Chang, R. , Lin, C. and Chen, J. (2011) ‘Selecting the most fitting resource for task

execution’. Future Generation Computer Systems 27 (2), 227-231

CERN (2011) The ATLAS Experiment, CERN [online] available from

<http://atlas.ch/>

Chien, A., Calder, B., Elbert, S. and Bhatia, K. (2003) ‘Entropia: Architecture and

Performance of an Enterprise Desktop Grid System’. Journal of Parallel and

Distributed Computing 63 (5), 597-610

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S. (1999). ‘The Data

Grid: Towards an Architecture for the Distributed Management and Analysis of Large

Scientific Datasets’, Journal of Network and Computer Applications 23 (3), 187-200

China Grid (2003) IBM and China's Ministry of Education Launch 'China Grid' [online]

available from <http://www03.ibm.com/press/us/en/pressrelease/6134.wss>

235

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4488886
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4488886
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DChang,%2520Ruay-Shiung%26authorID%3D35214665700%26md5%3D9758ca1c4b262b31012155746251710e&_acct=C000057807&_version=1&_userid=2563821&md5=3fa7731a363f4b8aabc3e4fbdabee993
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLin,%2520Chun-Fu%26authorID%3D36504366600%26md5%3D3906105dc4eb37d44ec91202e6c8aa1a&_acct=C000057807&_version=1&_userid=2563821&md5=59f19d770ac43004cdf8d41249bce81b
http://www.sciencedirect.com/science/journal/0167739X
http://atlas.ch/
http://www-03.ibm.com/press/us/en/pressrelease/6134.wss

Churches, D. , Gombas, G. , Harrison, A. , Maassen, J. , Robinson, C. , Shields, M. ,

Taylor, I. and Wang I. (2006) ‘Programming Scientific and Distributed Workflow with

Triana Service’, Concurrency and Computation: Practice & Experience 18(10), 1021-

1037

Cisco (2011) Internetworking Technology Handbook (Quality of Service) [online]

available from

<http://www.cisco.com/en/US/docs/internetworking/technology/handbook/QoS.ht

ml>

CLOUDS Lab (2010) GridSim: A Toolkit for Modelling and Simulating Grid Computing

Environments GridSim Toolkit 5.0 [online] available from

<http://www.cloudbus.org/>

Cloud Computing and Distributed Systems (CLOUDS) Laboratory (2011) [online]

available from < http://www.cloudbus.org/broker/>

CMS Project, (2005) The Compact Muon Solenoid, an Experiment for the Large

Hadron Collider at CERN [online] available from <http://cms.cern.ch/>

Condor® Project [online] available from <http://www.cs.wisc.edu/condor/>

CoreGIRD (2008) The CoreGRID Network of Excellence (NoE) [online] available from

< http://www.coregrid.net/>

Costa, G. Da , Dikaiakos, M. D. and Orlando, S. (2007) ‘Nine Months in the Life of EGEE:

a Look from the South’. The 15th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems. held in Washington, DC,

USA, 281-287

236

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/QoS.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/QoS.html
http://www.cloudbus.org/
http://www.cloudbus.org/broker/
http://cms.cern.ch/
http://www.cs.wisc.edu/condor/
http://www.coregrid.net/

Crawford, C., Dias, D., Lyengar, A., Novaes, M. and Zhang, L. (2003) Commercial

Applications of Grid Computing. Published in: RC22702 [online] available from

< http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b3

60066f0d4/6d8b284209bcd48b85256cb600731d4c?OpenDocument>

Curescu, C. and Tehrani, S. (2005) ‘Time-aware Utility-based Resource Allocation in

Wireless Networks’. IEEE Transactions on Parallel and Distributed Systems 16(7),

624-636

Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C. (2001) ‘Grid information

service for distributed resource sharing’. The 10th IEEE International Symposium on

High Performance Distributed Computing (HPDC-10'01). IEEE Computer Society,

Washington, 181-184

Czajkowski, K. , Foster, I. , Karonis, N. , Kesselman, C. , Martin, S. , Smith, W. and

Tuecke, S. (1998) ‘Resource Management Architecture for Metacomputing Systems’.

IPPS/SPDP: Workshop 121 on Task Scheduling Strategies for Parallel Processing. held

30 March- 3 April, 62–82

Czajkowski, K. , Foster, I. , Karonis, N. , Martin, S. , Smith, W. and Tuecke, S. (1998) ‘A

resource Management Architecture for Metacomputing Systems’. The Workshop on

Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science

1459, 62–82.

Czajkowski, K., Foster, I., Kesselman, C., Sander, V. and Tuecke, S. (2002) edited by

Feitelson, D. G. L. Rudolph, and Schwiegelshohn U. ‘SNAP: A Protocol for Negotiating

Service Level Agreements and Coordinating resource Management in Distributed

Systems’. The 8th International Workshop on Task Scheduling Strategies for Parallel

Processing (JSSPP '02). held in London, UK, 153-183

D-Grid (2005) The German Grid Initiative [online] available from <www.d-grid.de/>

237

http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/6d8b284209bcd48b85256cb600731d4c?OpenDocument
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/6d8b284209bcd48b85256cb600731d4c?OpenDocument
http://www.d-grid.de/

Dabrowski C. (2009) ‘Reliability in Grid computing systems’ Concurrency and

Computation: Practice & Experience’. Concurrency and Computation: Practice and

Experience Special Issue 21 (8), 927–959

DataGRID (2004) The EU DataGrid project's Data Management Work Package [online]

available from <http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html>

Deelman, E. , Singh, G. , Su, M. , Blythe, J. , Gil, Y. , Kesselman, C. , Mehta, G. , Vahi, K. ,

Berriman, G. B. , Good, J. , Laity, A. , Jacob, J. C. and Katz, D. S. (2005) ‘Pegasus: A

framework for mapping complex scientific workflows onto distributed systems.

Journal of Scientific Programmig 13(3), 219-237

Deora, V., Shao, J., Gray, W. A. and Fiddian N. J. (2003) ‘A quality of service

management framework based on user expectations’. The 1st International

Conference on Service-Oriented Computing (ICSOC' 03), 104-114

Desprez, F. and Vernois, A. (2005) ‘Simultaneous scheduling of replication and

computation for bioinformatics applications on the Grid’. Challenges of Large

Applications in Distributed Environments. held in Research Triangle Park, NC, USA,

ISBN: 0-7803-9043-1

Dias de Assun, M., Buyya R., and Venugopal S. (2008) ‘InterGrid: a case for

internetworking islands of Grids’. Concurrency and Computation: Practice and

Experience 20 (8), 997-1024

Distributed and Parallel Systems Group, University of Innsbruck (2010) [online]

available from <http://dps.uibk.ac.at/projects/askalon/>

Distributed Systems Architecture Group, Universidad Complutense de Madrdid News

[online] available from <http://www.Gridway.org/doku.php?id=start>

238

http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=F.%20Desprez
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=A.%20Vernois
http://www.uibk.ac.at/
http://dps.uibk.ac.at/projects/askalon/
http://www.gridway.org/doku.php?id=start

Dogan, A. and Özgüner, F (2006) ‘Scheduling of a meta-task with QoS requirements in

heterogeneous computing systems’. Journal of Parallel and Distributed Computing

66(2), 181-196

Dong, F. and Akl S. G. (2006) ‘Scheduling Algorithms for Grid Computing: State of the

Art and Open Problems’ Technical Report No. 2006-504 Scheduling Algorithms for

Grid Computing: State of the Art and Open Problems. Report No. 2006-504

Elmroth, E., and Tordsson, J. (2005) ‘A Grid resource Broker Supporting Advance

Reservations and Benchmark-based resource Selection’. State-of-the-art in Scientific

Computing 3732, 1077–1085

EGI (2011) European Grid Infrastructure [online] available from

<http://www.egi.eu/>

EGEE (2008) An EGEE comparative study: grids and clouds-evolution or revolution?

[online] available from < http://www.informatik.hs-

mannheim.de/~baun/SEM0910/Quellen/EGEE-Grid-Cloud-v1_2.pdf>

EGEE (2010) The Enabling Grids for E-sciencE project [online] available from

< http://www.eu-egee.org/>

Erberich, S.G., Silverstein, J.C., Chervenak, A., Schuler, R, Nelson, M.D. and Kesselman, C.

(2007) ‘Globus MEDICUS - federation of DICOM medical imaging devices into

healthcare Grids’ [online] available from

< http://www.ncbi.nlm.nih.gov/pubmed/17476069>

EUROGRID (2004) Application Testbed for European GRID computing [online]

available from <http://www.eurogrid.org/>

239

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/=/=Ouml=zg=uuml=ner:F=uuml=sun.html
http://www.informatik.uni-trier.de/~ley/db/journals/jpdc/jpdc66.html#DoganO06
http://www.informatik.uni-trier.de/~ley/db/journals/jpdc/jpdc66.html#DoganO06
http://www.egi.eu/
http://www.informatik.hs-mannheim.de/~baun/SEM0910/Quellen/EGEE-Grid-Cloud-v1_2.pdf
http://www.informatik.hs-mannheim.de/~baun/SEM0910/Quellen/EGEE-Grid-Cloud-v1_2.pdf
http://www.eu-egee.org/
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Erberich%20SG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Silverstein%20JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chervenak%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schuler%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nelson%20MD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kesselman%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/17476069
http://www.eurogrid.org/

Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong,

H.. , Villazon, A. and Wieczorek, M. (2005) ‘ASKALON: A Grid Application Development

and Computing Environment’. The 6th International Workshop on Grid Computing

(Grid 2005)

FinGrid (2007) FinGrid - Financial Business Grid [online] available from

<http://www.finGrid.de/>

Fölling, A., Grimme, C., Lepping, J. and Papaspyrou A. (2010) ‘The Gain of resource

Delegation in Distributed Computing Environments’. The Proceedings of the 15th

Workshop on Task Scheduling Strategies for Parallel Processing (2010)’. held in

Atlanta, USA, 77-92

Forse.com (2011) The platform for the social interprise [online] available from

< http://www.force.com/>

Foster I. (2002) ‘What is the Grid? - a three point checklist’. GRIDtoday 1 (6), 22–25.

Foster, I. (2008) Cloud, Grid, what's in a name?’ [online] available from

<http://ianfoster.typepad.com/blog/2008/08/cloud-grid-what.html>

Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K. and Roy, A. (1999) ‘A

distributed resource management architecture that supports advance reservations

and co-allocation’. The International Workshop on Quality of Service. held 31 May – 03

June, London, UK, 27 – 36

Foster, I., Kesselman, C. and Tuecke S. (2001) ‘The Anatomy of the Grid: Enabling

Scalable Virtual Organizations’. International Journal of High Performance Computing

Applications 15 (3), 200-222

240

http://www.fingrid.de/
http://www.mendeley.com/profiles/alexander-papaspyrou/
http://www.force.com/
http://ianfoster.typepad.com/blog/2008/08/cloud-grid-what.html
http:Forse.com

Foster I., Kesselman C., Nick J., Tuecke S. (2003) ‘The Physiology of the Grid: An Open

Grid Service Architecture for Distributed Systems Integration’. Journal: Computer

Graphics Forum - CGF

Foster, I., Zhao, Y., Raicu, I. and Lu, S. (2008) ‘Cloud Computing and Grid Computing

360-Degree Compared’. IEEE Grid Computing Environments (GCE08). held in Austin,

USA, 1-10

Frost & Sullivan [online] available from <http://www.frost.com>

Fudzee, M. and Abawajy, J. (2011) ‘QoS-based adaptation service selection broker’.

Future Generation Computer Systems 27(3), 256-264

Gallard, J., Lèbre, A., Goga, O and Morin, C. (2008) ‘VMdeploy: Improving Best-Effort

Task Management in Grid’5000’, institut national de recherche en informatique et en

automatique

GangSim (2006) GangSim: A Simulator for Grid Scheduling Studies with support for

uSLAs [online] available from <http://people.cs.uchicago.edu/~cldumitr/GangSim/>

GÉANT (2011) The pan-European data network dedicated to the research and

education community [online] available from < http://www.geant.net/ >

Ghosh, S., Rajkumar, R., Hansen, J. and Lehoczky, J. (2003) ‘Scalable resource allocation

for multi-processor QoS optimization’. The 23rd International Conference on

Distributed Computing Systems. held 19-22 May, 174–183

Global Grid Forum (GGF) (2003a) Distributed resource Management Application API

Working Group (DRMAA-WG) [online] available from <http://www.drmaa.org/>

Global Grid Forum (2003b) GRAAP-WG [online] available from

< http://forge.gridforum.org/projects/graap-wg>

241

http://www.citeulike.org/group/1762/author/Foster:I
http://www.citeulike.org/group/1762/author/Kesselman:C
http://www.citeulike.org/group/1762/author/Nick:J
http://www.citeulike.org/group/1762/author/Tuecke:S
http://academic.research.microsoft.com/Journal/296/cgf-computer-graphics-forum
http://academic.research.microsoft.com/Journal/296/cgf-computer-graphics-forum
http://arxiv.org/find/cs/1/au:+Foster_I/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Zhao_Y/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Raicu_I/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Lu_S/0/1/0/all/0/1
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DMd%2520Fudzee,%2520Mohd%2520Farhan%26authorID%3D36185794000%26md5%3D582c749cf91ac9889b9b108d02509de4&_acct=C000057807&_version=1&_userid=2563821&md5=fdadbb1057496d49eb4b5bd494933802
http://people.cs.uchicago.edu/~cldumitr/GangSim/
http://www.geant.net/pages/home.aspx
http://www.drmaa.org/
http://forge.gridforum.org/projects/graap-wg
http:http://www.frost.com

GLOBUS (2011) The globus alliance [online] available from

<http://www.globus.org/toolkit>

Golconda, K.S. and Ozguner, F. (2004) ‘A comparison of static QoS based scheduling

heuristics for a meta-task with multiple QoS dimensions in heterogeneous computing’.

The 18th International Parallel and Distributed Processing Symposium. held 26-30

April.

Google (2011) Google docs [online] available from <http://docs.google.com>

GRAM (2011) Globus resource Allocation Manager (GRAM) [online] available from

<http://www.globus.org/gram/>

Grid’5000 [online] available from <https://www.Grid5000.fr>

GridEcon (2007) Grid Economics and Business Models [online] available from

<http://www.Gridecon.eu>

GridPhyN (2006) Grid Physics Network [online] available from

<http://www.griphyn.org/index.php>

GridPP (2011) UK Grid for Particle Physics [online] available from

<http://www.gridpp.ac.uk/>

Grid Workflow Archive [online] available from <http://gwa.ewi.tudelft.nl/>

GSSIM (2009) Grid Scheduling Simulator [online] available

from<http://www.gssim.org/>

242

http://www.globus.org/toolkit
http://www.globus.org/gram/
https://www.grid5000.fr/
http://www.gridecon.eu/
http://www.gridpp.ac.uk/
http://gwa.ewi.tudelft.nl/
http://www.gssim.org/
http://www.griphyn.org/index.php
http:http://docs.google.com

Guan, Y., Ghose, A. K. and Lu Z., (2006) ‘Using constraint hierarchies to support QoS-

guided service composition’. The IEEE International Conference on Web Service

(ICWS’06). held in Chicago, USA, 743–752

Hasselmeyer, P., Mersch, H., Kolle,r B. , Quyen, H.-N. and Schubert Lutz, W. (2007)

‘Implementing an SLA Negotiation Framework’. The eChallenges e2007 Conference.

held in Hague, Netherlands, 154-161

He, X., Sun, X. and Laszewski, G. (2003) ‘A QoS Guided Scheduling Algorithm for Grid

Computing’. The International Workshop on Grid and Cooperative Computing

(GCC02), 442-450

Hoheisel, A. (2004) ‘User Tools and Languages for Graph-based Grid Workflows’.

Special Issue of Concurrency and Computation: Practice and Experience 18 (10),

1101-1113

Hovestadt, M., Kao, O. , Keller, A. , Streit, A. edited by Feitelson, D. G. , Rudolph, L. and

Schwiegelshohn, U. (2003) ‘Scheduling in HPC resource management systems:

Queuing vs. planning’. The 9th International Workshop, (JSSPP 2003), 1–20

Huang, R., Casanova, H. and Chien, A.A. (2006) ‘Using Virtual Grids to Simplify

Application Scheduling’. Proceedings of the 20th international conference on Parallel

and distributed processing. held in Rhodes Island, Greece

Iamnitchi, A. and Foster, I. (2001) ‘On fully decentralized resource discovery in Grid

environments’. Proceedings of the Second International Workshop on Grid Computing

(GRID '01). held in London, UK, 51-62

IBM (2007) IBM Grid Storage [online] available from <http://www.IBM.com/Grids>

ICT (2011) Information and Communication Technologies [online] available from

<http://cordis.europa.eu/fp7/ict/>

243

http://www.ibm.com/Grids
http://cordis.europa.eu/fp7/ict/

In, J.U., Avery, P., Cavanaugh, R. and Sanjay, R. (2004) ‘Policy based scheduling for

simple quality of service in Grid computing’. The 18th international Parallel and

Distributed Processing Symposium. held in Santa Fe, New Mexico 26-April 30

IT-Tude E (2011) [online] available from < http://www.it-tude.com/>

Jacob B. (2003) ‘Grid computing: What are the key components?’ Redbooks Project,

IBM [online] available from < http://www.redbooks.ibm.com>

Jacq, N. , Salzemann, J. , Jacq, F. , Legr´e, Y. , Medernach, E. , Montagnat, J. , Maaß, A. ,

Reichstadt, M. , Schwichtenberg, H. , Sridhar, M. , Kasam, V. , Zimmermann, M. ,

Hofmann, M. and Breton, V. (2008). ‘Grid-enabled virtual screening against malaria’,

Journal of Grid Computing 6(1), 29–43

Jeffery K. G. (2007) ‘Next Generation GRIDs for environmental science’ Environmental

Modelling and Software 22(3), 281-287

Jeffery K.G., Neidecker-Lutz,B., Schubert, L., and Tsakali, K. (2010) ‘Cloud Computing:

The next big thing?’ , ERCIM News, October [online] available from <http://ercim-

news.ercim.eu/en83/keynote-cloud-computing-the-next-big-thing>

Jhs, S., Merzky, A., Fox, G. (2009) ‘Using clouds to provide gridswith higher levels

ofabstraction and explicitsupport for usage modes’, Concurrency and Computation:

Practice and Experience 21 (8), 1087-1108

Junqueira, F.P. and Marzullo, K. (2005) ‘The Virtue of Dependent Failures in Multi-

site Systems,’ HotDep2005

Kacsuk, P. and Sipos G. (2006) ‘Multi-Grid, Multi-User Workflows in the P-GRADE Grid

Portal’. Journal of Grid Computing 3(3-4), 221-238

244

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9132
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9132
http://www.it-tude.com/
http://www.redbooks.ibm.com/
http://www.informatik.uni-trier.de/~ley/db/journals/envsoft/envsoft22.html#Jeffery07
http://www.informatik.uni-trier.de/~ley/db/journals/envsoft/envsoft22.html#Jeffery07
http://ercim-news.ercim.eu/en83/keynote-cloud-computing-the-next-big-thing
http://ercim-news.ercim.eu/en83/keynote-cloud-computing-the-next-big-thing

Katchabaw, M.J., Lutfiyya, H.L. and Bauer, M.A. (1998) A quality of service

management testbed. ‘'The Proceedings of the IEEE Third International Workshop on

Systems Management’. held in Washington, DC, USA

Keahey K. and Motawi K. (2003) Technical Memorandum ANL/MCS-TM-262

Kenyon C. and Cheliotis G. edited by Nabrzyski, J. , Schopf, J. M. and J. Weglarz (2004)

’Grid resource commercialization: economic engineering and delivery scenarios’. Grid

resource management, 465-478

Kertesz, A., Kacsuk, P. K., Rodero, I., Guim, F. and Corbalan, J. (2007) ‘Meta-Brokering

requirements and research directions in state-of-the-art Grid resource Management’,

Technical Report, CoreGRID

Kim, J. , Shivle, S. , Siegel, H. , Maciejewski, A. , Braun, T. D. , Schneider, M. , Tideman, S. ,

Chitta, R. , Dilmaghani, R. B. , Joshi, R. , Kaul, A. , Sharma, A. , Sripada, S. , Vangari, P. and

Yellampalli, Siva S. (2007) ‘Dynamically mapping tasks with priorities and multiple

deadlines in a heterogeneous environment’. Journal of Parallel and Distributed

Computing 67 (2), 154-169

Krauter, K., Buyya, R. and Maheswaran M. (2002) ‘A Taxonomy and Survey of Grid

resource Management Systems for Distributed Computing’. Software: Practice and

Experience (SPE) 32(2), 135-164

Krishnamurthy, S., Sanders, W. H. and Cukier, M. (2001) ‘A Dynamic Replica Selection

Algorithm for Tolerating Timing Faults’. Proceedings of the 2001 International

Conference on Dependable Systems and Networks (DSN '01), 107-116

LCG (2011) Worldwide LHC Computing Grid [online] available
from http://lcg.web.cern.ch/LCG/

245

http://lcg.web.cern.ch/LCG/

Ledlie J., Shneidman J., Seltzer M., and Huth J. (2003) ‘Scooped Again’. The 2nd

International Workshop on Peer-to-Peer Systems (IPTPS’03). held in Berkeley, USA

Legrand, A., Marchal, L. and Supérieuredelyon, É. (2003) ‘Scheduling distributed

applications: the SimGrid simulation model’. The Third IEEE International Symposium

on Cluster Computing and the Grid (CCGrid’03), 138-145

LHC (2011) The LHC (Large Hadron Collider) [online] available from

<http://www.lhc.ac.uk/>

Li C., Li L. and Lu Z. (2005) ‘Utility driven dynamic resource allocation using

competitive markets in computational Grid’. Advances in Engineering Software 36 (6),

425-434

Li H., Cheng C., Chau K. (2007) ‘Parallel resource Co-Allocation for the Computational

Grid’. Computer Languages, Systems & Structures 33 (1), 1-10

Liu, K. , Jin, H. , Chen, J. , Liu, X. , Yuan, D. and Yang, Y (2010) ‘A Compromised-Time-

Cost Scheduling Algorithm in SwinDeW-C for Instance-Intensive Cost-Constrained

Workflows on a Cloud Computing Platform’. International Journal of High

Performance Computing Applications 24 (4), 445-456

Lovas, R. , Dzsa, G. , Kacsuk, P. , Podhorszki, N. and Drtos, D. (2004) ‘Workflow Support

for Complex Grid Applications: Integrated and Portal Solutions’. The 2nd European

Across Grids Conference. held 28-30 January in Nicosia, Cyprus

Ma, T., Yan, Q., Li,u W., Guan, D., Lee, S. (2011) ‘Grid Task Scheduling: Algorithm

Review’. IETE Tech Journal 28 (2)

MANET Charter [online] available from

<http://www.ietf.org/html.charters/manetcharter.html>

246

http://www.lhc.ac.uk/
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLi,%2520Chunlin%26authorID%3D24307222200%26md5%3D86ce01fa4ac39072f95d6af9949b52a2&_acct=C000057807&_version=1&_userid=2563821&md5=bcdf10de864db9ffb8ec137a5e27c9f9
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLi,%2520Layuan%26authorID%3D7501447847%26md5%3Da9b1f2f1f0e7cd88c9dd9930c2577062&_acct=C000057807&_version=1&_userid=2563821&md5=73b15a9e23587cabde95131cdc0b150b
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLu,%2520Zhengding%26authorID%3D7404768748%26md5%3D31d2cc07cbb1c5c2103a996009dcf37f&_acct=C000057807&_version=1&_userid=2563821&md5=db246a9789d80b74544dda8aa8474bdb
http://www.sciencedirect.com/science/journal/09659978
http://www.ietf.org/html.charters/manetcharter.html

MediGrid (2005) [online] available from <http://www.medigrid.de/index_en.html>

Menasce, D.A. and Casalicchio,E. (2004) ‘A Framework for resource allocation in Grid

computing’. The The IEEE Computer Society's 12th Annual International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems

(MASCOTS '04). held in Washington, DC, USA

MicroGrid (2003) MicroGrid: Online Simulation Tools for Grids, Distributed Systems

and the Internet [online] available from <http://www-

csag.ucsd.edu/projects/Grid/microGrid.html>

Microsoft (2011) Windows Azure Platform/Microsoft Cloud Services [online]

available from < http://www.microsoft.com/windowsazure/>

Middleton, S. E., Surridge, M., Benkner, S. and Engelbrecht, G. (2007) ‘Quality of

Service Negotiation for Commercial Medical Grid Service’. Journal of grid computing 5

(4), 429-447

Middleton, S. E., Surridge, M., Nasser, B. I. and Yang, X. (2009) Bipartite electronic SLA

as a business model to support cross-organization load management of real-time

online applications. ‘Real Time Online Interactive Applications on the Grid’

Munir, E., Li, J. and Shi, S. (2007) ‘QoS sufferage heuristic for independent job

scheduling in Grid’.Information Technology Journal 6 (8), 1166-1170

myGrid (2011) [online] available from <http://www.mygrid.org.uk/>

myGrid@EBI (2002) European Bioinformatics Institute [online] at:

<http://www.ebi.ac.uk/mygrid/>

247

http://www.medigrid.de/index_en.html
http://www-csag.ucsd.edu/projects/grid/microgrid.html
http://www-csag.ucsd.edu/projects/grid/microgrid.html
http://www.microsoft.com/windowsazure/
http://www.springerlink.com/content/?Author=S.+E.+Middleton
http://www.springerlink.com/content/?Author=M.+Surridge
http://www.springerlink.com/content/?Author=S.+Benkner
http://www.springerlink.com/content/?Author=G.+Engelbrecht
http://www.springerlink.com/content/1570-7873/
http://www.mygrid.org.uk/
http://www.ebi.ac.uk/mygrid/

Nam, D., Youn, C. , Lee, B. , Clifford G. and Healey J. (2004). ’QoS-Constrained resource

Allocation for a Grid-Based Multiple Source Electrocardiogram Application

Computational Science and Its Applications’. Lecture Notes in Computer Science

3043/2004, 352-359

Netto, M. and Buyya, B. (2010) ‘Resource Co-Allocation in Grid Computing

Environments’. Handbook of Research on P2P and Grid Systems for Service-Oriented

Computing: Models, Methodologies and Applications

NGG (2011) Next generation computing expert group [online] available

from< http://cordis.europa.eu/ist/>

NGS (2011) The UK National Grid Service [online] available from http://www.grid-

support.ac.uk/

Ninf: A Global Computing Infrastructure (2007) Bricks: A Performance Evaluation

System for Grid Computing Scheduling Algorithms [Online] available from

<http://ninf.apGrid.org/bricks/>

NOGRID FPM [online] available from <http://www.noGrid.com/>

Nou, R. and Toerres, J (2009) ‘Heterogeneous QoS resource Manager with Prediction’.

The Fifth International Conference on Autonomic and Autonomous Systems. held 20-

25 April in Valencia, Spain

Oinn, T., Addis, M. J., Ferris, J., Marvin, D. J., Greenwood, M., Carver, T. Wipat, A. and Li,

P. (2004) ‘Taverna, lessons in creating a workflow environment for the life sciences’.

Concurrency and Computation: Practice & Experience - Workflow in Grid Systems 18

(10), 1067- 1100

Papazoglou, M., Traverso, P, Dustdar, S. and Leyman, F. (2008) ‘Service-Oriented

Computing: A Research Roadmap’. International Journal of Cooperative Information

Systems 17 (2), 223–255

248

http://www.springerlink.com/content/?Author=Dong+Su+Nam
http://www.springerlink.com/content/?Author=Chan-Hyun+Youn
http://www.springerlink.com/content/?Author=Bong+Hwan+Lee
http://www.springerlink.com/content/?Author=Gari+Clifford
http://www.springerlink.com/content/?Author=Jennifer+Healey
http://www.igi-global.com/bookstore/titledetails.aspx?titleid=37249
http://www.igi-global.com/bookstore/titledetails.aspx?titleid=37249
http://cordis.europa.eu/ist/
http://www.grid-support.ac.uk/
http://www.grid-support.ac.uk/
http://ninf.apgrid.org/bricks/
http://www.nogrid.com/

Pathak, J., Treadwell, J., Kumar, R., Vitale, P. and Fraticelli, F. (2005)’ A Framework for

Dynamic Resource Management On The Grid’. Technical reports: HPL-2005-153

[online] available from < http://www.hpl.hp.com/techreports/2005/HPL-2005-

153.html>

Pautasso, C. (2004) ‘JOpera Visual Composition of Grid Service’. ERCIM News No. 59,

October 2004

Pinedo, L. (2005) ‘Planning and scheduling in manufacturing and service’, New York:

Springer Science+Business Media

Plale, B., Gannon, D., Reed, D.A., Graves, S.J., Droegemeier, K., Wilhelmson, B. and

Ramamurthy M. (2005) ‘Towards Dynamically Adaptive Weather Analysis and

Forecasting in LEAD’. The 5th International Conference on Computational Science.

held in Atlanta, GA, USA

Platform (2009) Platform Load sharing facility [online] available from

< http://www.platform.com/workload-management/high-performance-

computing/lp>

Quan, D. and Yang, L. (2009) ‘Improving the Quality of Mapping Solutions in the

System Supporting SLA-Based Workflows with Parallel Processing Technology.’ CISIS

2009, 445-450

Ren, K., Xiao, N., Song, J., Zhang, W. and Chen, T. (2006) ‘A Semantic-based

Meteorology Grid Service Registry, Discovery and Composition Model’. The Second

International Conference on Semantics, Knowledge, and Grid (SKG'06). held 1-3

November, Guilin, Guangxi, China, ISBN: 0-7695-2673-X

Rikitake, K. and Rikitake, K. (2005) ’A Study of DNS Transport Protocol for Improving

the Reliability’.Technical Report

249

http://www.hpl.hp.com/techreports/2005/HPL-2005-153.html
http://www.hpl.hp.com/techreports/2005/HPL-2005-153.html
http://www.platform.com/workload-management/high-performance-computing/lp
http://www.platform.com/workload-management/high-performance-computing/lp
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yang:Laurence_Tianruo.html
http://www.informatik.uni-trier.de/~ley/db/conf/cisis/cisis2009.html#QuanY09
http://www.informatik.uni-trier.de/~ley/db/conf/cisis/cisis2009.html#QuanY09

Ropars, T. , Jeanvoine, E. and Morin, C. (2006) ‘Providing QoS in a Grid Application

Monitoring Service’. inria-00121059, version 3

Rappa, M. (2004) ‘The utility business model and the future of computing service’.

IBM Systems Journal 43 (1), 32-42

Ross R. and Westerman G. (2004) ‘Preparing for utility computing: The role of IT

architecture and relationship management’. IBM Systems Journal 43 (1), 5-19

Rowstron A. and Druschel P. (2005) ‘Pastry: Scalable, Distributed Object Location and

Routing for Large Scale Peer-to-Peer Systems’. The 18th IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware). held in Heidelberg,

Germanyp, 329–350

Roy A. and Sander V. (2004) edited by J. Nabrzyski, J. M. Schopf, and J. Weglarz ‘GARA:

a uniform quality of service architecture’. Grid resource management, 377-394

Sakellariou, R. and Yarmolenko, V. (2008) ‘Task Scheduling on the Grid: Towards SLA-

Based Scheduling’. High Performance Computing and Grids in Action 16, 1-16

Saxena, N., Tsudik, G. and Yi, J. H. (2003) ‘Admission Control in Peer-to-Peer: Design

and Performance Evaluation’. The 1st ACM workshop on Security of ad hoc and sensor

networks, 104–113

Scale Out Softwae (2011) Distributed Data Grids for the Enterprise [online] available

from <http://www.scaleoutsoftware.com/>

Schmidt, R., Benkner, S., Brandich, I. and Engelbrecht, G. (2005) ‘Applying a

Component Model to Grid Application Service’. The Tenth International Workshop on

Component-Oriented Programming (WCOP 2005). held in Glasgow, Scotland

250

http://hal.inria.fr/index.php?action_todo=search&submit=1&s_type=advanced&search_without_file=YES&f_0=LASTNAME&p_0=is_exactly&f_1=FIRSTNAME&p_1=is_exactly&l_0=and&halsid=aflvo2v8jm12s8j4l6ah0omfu3&v_0=Ropars&v_1=Thomas
http://hal.inria.fr/index.php?action_todo=search&submit=1&s_type=advanced&search_without_file=YES&f_0=LASTNAME&p_0=is_exactly&f_1=FIRSTNAME&p_1=is_exactly&l_0=and&halsid=aflvo2v8jm12s8j4l6ah0omfu3&v_0=Jeanvoine&v_1=Emmanuel
http://hal.inria.fr/index.php?action_todo=search&submit=1&s_type=advanced&search_without_file=YES&f_0=LASTNAME&p_0=is_exactly&f_1=FIRSTNAME&p_1=is_exactly&l_0=and&halsid=aflvo2v8jm12s8j4l6ah0omfu3&v_0=Morin&v_1=Christine
http://www.scaleoutsoftware.com/

Jeffery K. G. and Neidecker-Lutz, B (2010) ‘The future of CLOUD Computing’. Report

for EC CLOUD Computing Expert Group

Selvarani, S. and Sadhasivam, D. (2010) ‘Improved job-grouping based pso algorithm

for task scheduling in grid computing’, International Journal of Engineering Science

and Technology 2(9), 201, 4687-4695

Shanten, J., and Andre, M., and Geoffrey, F. (2009) ‘Using clouds to provide gridswith

higher levels ofabstraction and explicitsupport for usage modes’, Concurrency and

Computation: Pract. Exper. 21 (8), 1087-1108

SORMA (2011) SORMA - Self-Organizing ICT resource Management. [online] available

from <http://www.im.uni-karlsruhe.de/sorma/index.htm>

Stankiewicz, R. , Cholda, P. and Jajszczyk, A. (2011) ‘QoX: What is it

really?’. Communications Magazine 49 (4), 148 - 158

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord (2001) ‘A

scalable peer-to-peer lookup service for internet applications’. The 2001 Conference

on Applications, Technologies, Architectures, and Protocols for Computer

Communications, 149-160

STFC (2011) Science and Technology Facilities Council [online] available from

<http://www.stfc.ac.uk/>

Suß, W., Jakob, W., Quinte, A. and Stucky, K.-U. (2005) ‘GORBA: A global optimising

resource broker embedded in a Grid resource management system’. The International

Conference on Parallel and Distributed Computing Systems, 19–24

Sulistio, A. , Cibej, U. , Venugopal, S., Robic, B. and Buyya R. (2007) ‘A Toolkit for

Modelling and Simulating Data Grids: An Extension to GridSim’. Concurrency and

Computation: Practice and Experience 20(13), 1591 - 1609

251

http://www.im.uni-karlsruhe.de/sorma/index.htm
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
http://www.stfc.ac.uk/

Sun (2011) Sun Grid Engine [online] available from

<http://wikis.sun.com/display/GridEngine/Home>

Sun, Y. , He, S. and Leu, J. (2007) ‘Syndicating Web Service: A QoS and user-driven

approach’. Decision Support Systems 43 (1), 243-255

Taher, L. and Khatib, H.E. (2005) ‘A framework and QoS matchmaking algorithm for

dynamic web service selection’. The Second International Conference on Innovations

in Information Technology (IIT’05). held in Dubai, United Arab Emirates

Takefusa, A., Nakada, H., Kudoh, T. and Tanaka, Y. (2010) ‘An Advance Reservation-

Based Co-allocation Algorithm for Distributed Computers and Network Bandwidth on

QoS-Guaranteed Grids’. The Proceedings of the 15th international conference on Job

scheduling strategies for parallel processing, 16-34

Taverna (2011) An open source domain independent Workflow Management [online]

available from <http://www.taverna.org.uk/

Taylor, I. (2006) ‘Triana generations, in: Scientific Workflows and Business Workflow

Standards in e-Science’. The Second IEEE International Conference on e-Science. held

in Amsterdam, Netherlands

Taylor, S., Surridge, M. and Marvin, D. (2009) ‘GRIA: Grid resources for Industrial

Applications’. IEEE International Conference on Web Services. held 6-9 July in

Southampton, UK, ISBN: 0-7695-2167-3, 402-409

Thickins G. (2003) ‘Utility Computing, The Next New IT Model’. Darwin Magazine,

April

252

http://wikis.sun.com/display/GridEngine/Home
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DHe,%2520Shaoyi%26authorID%3D15759877700%26md5%3Dc9ca937cf53ec29d18cb382bebcb37d5&_acct=C000057807&_version=1&_userid=2563821&md5=06fbad9749668fa44b5215913cc22826
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLeu,%2520Jack%2520Y.%26authorID%3D7005503241%26md5%3D88162aba7de1776cfd13e8f0eb95a175&_acct=C000057807&_version=1&_userid=2563821&md5=575e8690c23fb7a86692eed6c57cf4b8
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235878%232007%23999569998%23641610%23FLA%23&_cdi=5878&_pubType=J&view=c&_auth=y&_acct=C000057807&_version=1&_urlVersion=0&_userid=2563821&md5=be627a958c27e4ff693db9385d1295dc
http://www.taverna.org.uk/
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Steve%20Taylor
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Mike%20Surridge
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Darren%20Marvin

Traversat, B., Abdelaziz, M. and Pouyoul, E. (2003) ‘A Loosely-Consistent DHT

Rendezvous Walker.’ Sun Microsystems, Inc, Technical Report, March.

Tserpes, K., Kyriazis, D., Menychtas, A. , Varvarigou, T.A. , Silvestri, F. and Laforenza,

D. (2007) ‘An Open Architecture for QoS Information in Business Grids’. Proceedings

of CoreGRID, 37-49

UK e-Science Grid (2010) [online] available from

<http://www.rcuk.ac.uk/escience/>

Unicore (2011) Uniform Interface to Computing Resources [online] available from

<http://www.unicore.de/>

UniGrids (2006) Uniform Interface to Grid Services [online] available from

<http://www.unigrids.org/papers.html>

Vaquero, L.M., Rodero-merino, L., Caceres, J., Lindner, M. (2009) ‘A break in the clouds:

Towards a cloud definition’, Computer Communication Review 39 (1), 50-55

Venugopal, A., Buyya, R. and Winton, L. (2006)’ A Grid Service Broker for Scheduling

e-Science Applications on Global Data Grids’, Concurrency and Computation: Practice

and Experience 18 (6), 685-699

Venugopal, S., Xingchen, C. and Buyya, R. (2008) ‘A Negotiation Mechanism for

Advance resource Reservations Using the Alternate Offers Protocol’. The 16th

International Workshop on Quality of Service. held 2-4 June in Enschede, 40-49

Wieczoreka, M., Hoheisel, A. and Prodan, R. (2009) ‘Towards a general model of the

multi-criteria workflow scheduling on the Grid Marek’. Future Generation Computer

Systems 25 (3), 237-256

253

http://www.rcuk.ac.uk/escience/
http://www.unicore.de/
http://www.unigrids.org/papers.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4539655
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4539655

“WISDOM” (2005) [online] available from <http://wisdom.eu-egee.fr/>

Xia, H. , Casanova, H. and Chien, A. (1999) ‘The MicroGrid: Using Online Simulation to

Predict Application Performance in Diverse Grid Network Environments’. The 2nd

International Workshop on Challenges of Large Applications in Distributed

Environment. held in Washington, DC, USA

Xin, L., Xia, H. and Chien, A. (2004). ‘Validating and Scaling the MicroGrid: A Scientific

Instrument for Grid Dynamics.’ Journal of Grid Computing 2 (2), 141-161

Yeo, C. , de Assunção, M. , Yu,J. , Sulistio, A. , Venugopal, S. , Placek, M. and Buyya, R.

(2006) ‘Utility Computing and Global Grids’. Technical Report, GRIDS-TR-2006-7, Grid

Computing and Distributed Systems Laboratory.

Yeo, C.S., Venugopal, S. , Chu, X. and Buyya, R. (2010), ‘Autonomic metered pricing for

a utility computing service’. Future Generation Computer Systems 26 (8), 1368-1380

Yu, T. and Lin, K.J. (2005) ‘Service selection algorithms for composing complex service

with multiple QoS constraints’. The Third International Conference on Service

Oriented Computing (ICSOC’05). held in Amsterdam, the Netherlands.

Zomaya, A.Y., Ward, C. and Macey, B. (1999) ‘Genetic scheduling for parallel

processor systems: comparative studies and performance issues’. Parallel and

distributed Systems 10 (8), 795 – 812

254

http://wisdom.eu-egee.fr/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yeo:Chee_Shin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Assun=ccedil==atilde=o:Marcos_Dias_de.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Jia.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sulistio:Anthony.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Placek:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Buyya:Rajkumar.html

255

256

APPENDIX A: CODE SNIPPET

Appendix A

A.1. Introduction

The simulated environment within which BGQoS has been implemented and

evaluated is an expansion of a popular simulation toolkit, GridSim. The reasons why

GridSim has been chosen and details of the expansion and its importance to

implement BGQoS has been explained in Chapter 7. This appendix presents a portion

of this expansion, including the matchmaker and QoS Task description classes.

A.2. Matchmaker

import java.io.ObjectInputStream;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.util.Collections;

import java.util.Date;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.Map;

import java.util.Vector;

import java.util.concurrent.ConcurrentHashMap;

import java.util.concurrent.ConcurrentLinkedQueue;

import java.util.concurrent.CopyOnWriteArrayList;

import java.util.concurrent.atomic.AtomicBoolean;

import java.util.concurrent.atomic.AtomicInteger;

import java.util.concurrent.atomic.AtomicLong;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import dsm.BGQoS.BGQoSEntity;

import dsm.BGQoS.env.TaskCenterManager;

import dsm.BGQoS.env.BGQoSMediator;

import dsm.BGQoS.env.BGQoSMessage;

import dsm.BGQoS.env.BGQoSParam;

import dsm.BGQoS.env.BGQoSPlatform;

import dsm.BGQoS.env.BGQoSToolkit;

import dsm.BGQoS.ext.TaskComparator;

import dsm.BGQoS.ext.LengthComparator;

import dsm.BGQoS.model.TaskItem;

import dsm.BGQoS.model.MMResult;

import dsm.BGQoS.model.NeighborItem;

import dsm.BGQoS.model.ResourceInfo;

import dsm.BGQoS.model.TaskInfo;

257

APPENDIX A: CODE SNIPPET

import dsm.BGQoS.storage.GlobalStorage;

/**

Class MatchMaker represents the Scheduler. It receives Tasks sent from MatchMakerController, and

launches the corresponding algorithm to make the scheduling decision. Presently, implemented algorithms

include FCFS, Easy Backfilling, Flexible Backfilling, EDF, EG-EDF (previously implemented) and QoS search,

FCFS, Easy Backfilling, Flexible Backfilling, EDF, EG-EDF have been implemented by GridSim and GridSim

extensions. TaskInfo represents a Task with dynamic information. ResourceInfo represents a resource with

dynamic information.

*/

public class MatchMaker {

private String BGQoSIdentity;

private BGQoSEntity BGQoS;

/** List of separated schedules of resources */

private LinkedList scheduleList;

private int tempCount = 0;

private int tempCount2 = 0;

/** Number of already made schedulers by this MatchMaker */

private int numOfExistingSchedules = 0;

/** Total time used for schedule generation,

* i.e. time += Sum(clockAfterMakingSchedule - clockBeforeMakingSchedule) */

private double totalSchedulingTime = 0.0;

/** Clock/Time before making a single schedule*/

private double clockBeforeMakingSchedule = 0.0;

/** Clock/Time after making a scheduling */

private double clockAfterMakingSchedule = 0.0;

/** QoS list of Gridlets already moved by QoS Search, EXISTING in useSchedule() */

private LinkedList QoSGridlets = new LinkedList();

/** Total tardiness of Tasks processed by this matchMaker; checking scheduling results */

private double totalTaskTardiness = 0.0;

/** incoming Task queue */

private CopyOnWriteArrayList<String> localTaskQueue = new CopyOnWriteArrayList<String>();

private ConcurrentHashMap<String, Double> shadowTaskQueue = new ConcurrentHashMap<String,

Double>();

/** Number of Tasks waiting for scheduling decision

It will be decrease only if the Task is already sent to aresource

258

APPENDIX A: CODE SNIPPET

*/

private int numOfTaskWaitingForSchedule = 0;

/** Start time of the simulation; checking scheduling results */

private double simulationStartTime = -10.0;

/** Total Task weight: LOOP all Task (numberOfCPU for execution * Task actual CPU time) */

private double totalTaskWeight = 0.0;

/** Total time used to execute all the Tasks = execution time + I/O time + etc */

private double totalTaskResponseTime = 0.0;

private double totalTaskWaitingTime = 0.0;

/** Total weighted response time

* = (Task weight * Task response time)

* = (Task used cpu number * Task actual cpu time * Task response time) */

private double totalWeightedResponseTime = 0.0;

private double totalTaskCPUTime = 0.0;

private double totalWeightedTaskCPUTTime = 0.0;

/** Total slowdown of Tasks = Task response time / Task actual execution time */

private double totalSlowdown = 0.0;

/** Total weighted slowdown

* = (Task weight * Task slowdown)

* = (Task used cpu number * Task actual cpu time * Task slowdown)

*/

private double totalWeightedSlowdown = 0.0;

/** denotes queue/schedule strategy */

private String matchMakerPolicy = BGQoSMessage.PolicyFCFS;

/** denotes time required to select Task*/

String timeToSelectTaskText = "";

/** denotes time required to add Task into queue/schedule */

String timeToAddTaskToScheduleQueueText = "";

// --- local Task category ---

/** Task is considered as successful if Task.getStatus() == BGQoSMessage.SUCCESS */

private int numOfSuccessProcessedLocalTask = 0;

/** Task is considered as failed if:

* (1) no resource to send to, or (2) Task.getStatus() != BGQoSMessage.SUCCESS

*/

259

APPENDIX A: CODE SNIPPET

private int numOfFailedProcessedLocalTask = 0;

/** Number of Tasks submitted through submitter */

private int numOfReceivedLocalTasks = 0;

/** Number of Tasks submitted through submitter */

private int numOfReceivedPartnerTasks = 0;

/** Total number of nondelayed Tasks processed by this matchmaker; FOR checking scheduling results */

private int totalNumOfNondelayedLocalTasks = 0;

/** Total number of delayed Tasks processed by this matchmaker; FOR checking scheduling results */

private int totalNumOfDelayedLocalTasks = 0;

// --- Partner Task category ---

/** Task is considered as successful if Task.getStatus() == BGQoSMessage.SUCCESS */

private int numOfSuccessProcessedPartnerTask = 0;

/** Task is considered as failed if:

* (1) no resource to send to, or (2) Task.getStatus() != BGQoSMessage.SUCCESS

*/

private int numOfFailedProcessedPartnerTask = 0;

/** Total number of nondelayed Tasks processed by this matchmaker; FOR checking scheduling results */

private int totalNumOfNondelayedPartnerTasks = 0;

/** Total number of delayed Tasks processed by this matchmaker; FOR checking scheduling results */

private int totalNumOfDelayedPartnerTasks = 0;

private double avgQueuingTime = 0;

private static Log log = LogFactory.getLog(MatchMaker.class);

private ConcurrentHashMap<String, String> receivedTaskIdMap;

private ConcurrentHashMap<String, String> undeliveredTaskIdMap;

/**

* Creates a new instance of MatchMaker

*/

public MatchMaker(BGQoSEntity BGQoS, String localPolicy) throws Exception {

this.BGQoS = BGQoS;

this.BGQoSIdentity = BGQoS.getBGQoSIdentity();

this.scheduleList = new LinkedList();

this.matchMakerPolicy = localPolicy;

260

APPENDIX A: CODE SNIPPET

this.receivedTaskIdMap = new ConcurrentHashMap<String, String>();

this.undeliveredTaskIdMap = new ConcurrentHashMap<String, String>();

}

/**

* Once end of batch of Task processing, issued from TaskSubmitter, through ModuleController * (not

necessarily end of simulation iteration)

*/

public void caculateStatistic (double newArrivalTardiness) {

this.totalTaskTardiness = newArrivalTardiness;

double TaskUsage =

BGQoSToolkit.convertAtomicLongToDouble(this.BGQoS.getStorage().getTaskUsage());

double resUsage = this.BGQoS.getStorage().getTotalNumOfPEs().get() *

BGQoSMediator.getSystemTime();

this.BGQoS.getStorage().setResUsage(BGQoSToolkit.convertDoubleToAtomicLong(resUsage));

double resource Utilization = TaskUsage / resUsage;

this.BGQoS.getStorage().setResourceUtilization(BGQoSToolkit.convertDoubleToAtomicLong(resourceUtiliz

ation));

MMResult mmResult = new MMResult();

mmResult.setBGQoSIdentity(this.BGQoSIdentity);

mmResult.setMatchMakerPolicy(this.matchMakerPolicy);

mmResult.setTotalTaskTardiness(this.totalTaskTardiness);

mmResult.setTotalTaskWeight(this.totalTaskWeight);

mmResult.setTotalSchedulingTime(this.totalSchedulingTime);

mmResult.setResourceUptime(BGQoSMediator.getSystemTime());

mmResult.setTotalTaskResponseTime(this.totalTaskResponseTime);

mmResult.setTotalTaskWaitingTime(this.totalTaskWaitingTime);

mmResult.setTotalWeightedResponseTime(this.totalWeightedResponseTime);

mmResult.setTotalTaskCPUTime(this.totalTaskCPUTime);

mmResult.setTotalWeightedTaskCPUTTime(this.totalWeightedTaskCPUTTime);

mmResult.setTotalSlowdown(this.totalSlowdown);

mmResult.setTotalWeightedSlowdown(this.totalWeightedSlowdown);

// local Task category

mmResult.setNumOfFailedProcessedLocalTask(this.numOfFailedProcessedLocalTask);

mmResult.setNumOfReceivedLocalTasks(this.numOfReceivedLocalTasks);

mmResult.setNumOfSuccessProcessedLocalTask(this.numOfSuccessProcessedLocalTask);

mmResult.setTotalNumOfDelayedLocalTasks(this.totalNumOfDelayedLocalTasks);

mmResult.setTotalNumOfNondelayedLocalTasks(this.totalNumOfNondelayedLocalTasks);

261

APPENDIX A: CODE SNIPPET

// Partner Task category

mmResult.setNumOfFailedProcessedPartnerTask(this.numOfFailedProcessedPartnerTask);

mmResult.setNumOfReceivedPartnerTasks(this.numOfReceivedPartnerTasks);

mmResult.setNumOfSuccessProcessedPartnerTask(this.numOfSuccessProcessedPartnerTask);

mmResult.setTotalNumOfDelayedPartnerTasks(this.totalNumOfDelayedPartnerTasks);

mmResult.setTotalNumOfNondelayedPartnerTasks(this.totalNumOfNondelayedPartnerTasks);

this.BGQoS.getStorage().setMMResult(mmResult);

}

/**

access method for external invoking

**/

/**

* Info event from ModuleController: Task already sent to specific resource, which is made by

MatchMaker

*/

public void TaskAlreadySentToLocalResource() {

this.numOfTaskWaitingForSchedule--;

this.numOfExistingSchedules--;

// do another scheduling round

if(numOfExistingSchedules == 0){

this.callSchedule();

}

}

/**

* Info event from ModuleController: local Task can't be sent to specific resource (resource invalid or Id

available), which is made by MatchMaker

*/

public void localTaskNotSentToResource() {

this.numOfFailedProcessedLocalTask += 1;

}

/**

* Info event from ModuleController: Partner Task can't be sent to specific resource (resource invalid or

Id unavailable), which is made by MatchMaker

*/

public void PartnerTaskNotSentToResource() {

this.numOfFailedProcessedPartnerTask += 1;

}

/**

262

APPENDIX A: CODE SNIPPET

* Task is neither submitted to local resource nor to global resources

*/

public void TaskUndelivered (TaskInfo gi) {

if (this.undeliveredTaskIdMap.containsKey(gi.getGlobalTaskID())) {

return;

} else {

If (gi.getOriginalBGQoSId().equals(this.BGQoS.getBGQoSIdentity())) {

this.numOfReceivedLocalTasks++;

} else {

this.numOfReceivedPartnerTasks++;

}

}

}

/**

* Task submitted from ModuleController to get scheduled

* It's also the place to calculate resource "execution load and max load"

*/

public void TaskScheduled(TaskInfo gi) {

if (gi.getOriginalBGQoSId().equals(this.BGQoS.getBGQoSIdentity())) {

// Send local Task's GlobalID to the MatchMaker's TaskQueue

this.localTaskSubmitted(gi.getGlobalTaskID());

} else {

// Send Partner Task's GlobalID to the MatchMaker's TaskQueue

this.PartnerTaskSubmitted(gi.getGlobalTaskID());

}

}

private void localTaskSubmitted(String item) {

this.numOfReceivedLocalTasks++;

this.numOfTaskWaitingForSchedule++;

// add Task to queue

// Put the Task into Task queue, the Tasks in a queue would be invoked by MatchMaker's scheduling

policy

263

APPENDIX A: CODE SNIPPET

this.insertTaskToProcessingQueue(item);

// making schedule based on specific algorithms for queued Tasks

this.callSchedule();

}

private void PartnerTaskSubmitted(String item) {

this.numOfReceivedPartnerTasks++;

this.numOfTaskWaitingForSchedule++;

// add Task to queue

// Put the Task into Task queue, the Tasks in queue would be invoked by MatchMaker's scheduling

policy

this.insertTaskToProcessingQueue(item);

// making schedule based on specific algorithms for queued Tasks

this.callSchedule();

}

/**

* Insert a newly submitted Task to the MatchMaker TaskQueue,

*/

private void insertTaskToProcessingQueue(String item) {

if(this.localTaskQueue.contains(item)) {

return;

}

// determine how the Tasks are appended to queue according to adopted MatchMaker policy

if(this.matchMakerPolicy.equals(BGQoSMessage.PolicyFCFS)) {

// FCFS

this.addTaskToLocalQueue(item);

} else if(this.matchMakerPolicy.equals(BGQoSMessage.PolicyQOS)) {

// QOS, TaskQueue sorting appended

if(this.localTaskQueue.size() == 0) {

this.addTaskToLocalQueue(item);

264

APPENDIX A: CODE SNIPPET

} else {

// fetch newTask's estimated execution time (EST)

int index = -1;

TaskInfo newTaskInfo =

TaskCenterManager.getTaskInfobyTaskId(item);

double newEST = newTaskInfo.getEstimatedComputationTime();

for(int i = 0; i < this.localTaskQueue.size(); i++) {

TaskInfo currentTaskInfo =

TaskCenterManager.getTaskInfobyTaskId(this.localTaskQueue.get(i));

double currentEST =

currentTaskInfo.getEstimatedComputationTime();

if(newEST <= currentEST){

index = i;

break;

}

} // end of comparison loop

if(index == -1) {

this.addTaskToLocalQueue(item);

} else {

this.addTaskToLocalQueue(index, item);

}

}

} else if(this.matchMakerPolicy.equals(BGQoSMessage.PolicyEasyBF)) {

// FCFS-like queue for EASY Backfilling

this.addTaskToLocalQueue(item);

} else {

// FCFS queue is the default policy

this.addTaskToLocalQueue(item);

}

}

private void addTaskToLocalQueue(String TaskId) {

this.localTaskQueue.add(TaskId);

}

private void addTaskToLocalQueue(int index, String TaskId) {

this.localTaskQueue.add(index, TaskId);

265

APPENDIX A: CODE SNIPPET

}

private boolean removeTaskFromLocalQueue(String TaskId) {

GlobalStorage.test_counter_3.incrementAndGet();

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId(TaskId);

TaskCenterManager.TaskProcessing(TaskInfo.getGlobalTaskID(),

this.BGQoSIdentity, TaskInfo);

return this.localTaskQueue.remove(TaskId);

}

/**

* Estimated processing time for already queued Tasks on this node

*/

public double estimatedTimeToExecuteLocalTaskQueue() {

double estimatedTime = 0;

double load = 0;

for(String TaskId : localTaskQueue) {

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId(TaskId);

load += TaskInfo.getComputationalLength() * TaskInfo.getNumPE();

}

estimatedTime = load / this.BGQoS.getStorage().getTotalNumOfPEs().get();

return estimatedTime;

}

/**

* Estimated processing time for this node's queued *

*/

public double estimatedTimeToExecuteLocalTaskQueue(String targetTaskId) {

double estimatedTime = 0;

double load = 0;

int index = localTaskQueue.indexOf(targetTaskId);

for(int i = 0; i < index; i++) {

TaskInfo TaskInfo =

TaskCenterManager.getTaskInfobyTaskId(localTaskQueue.get(i));

load += TaskInfo.getComputationalLength() * TaskInfo.getNumPE();

266

APPENDIX A: CODE SNIPPET

}

estimatedTime = load / this.BGQoS.getStorage().getTotalNumOfPEs().get();

return estimatedTime;

}

/**

* Estimated processing time for already "promised" Tasks

*/

public double estimatedTimeToExecuteShadowTaskQueue() {

double estimatedTime = 0;

double load = 0;

Iterator <Map.Entry<String, Double>> iter = shadowTaskQueue.entrySet().iterator();

while (iter.hasNext()) {

Map.Entry<String, Double> entry = iter.next();

String TaskId = entry.getKey().trim();

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId(TaskId);

double acceptanceApproveProbability = entry.getValue().doubleValue();

load += TaskInfo.getComputationalLength() * TaskInfo.getNumPE() *

acceptanceApproveProbability *

BGQoSParam.weightOfShadowTaskQueue;

}

estimatedTime = load / this.BGQoS.getStorage().getTotalNumOfPEs().get();

return estimatedTime;

}

/**

* reserve an acceptance decision

*

* @param TaskId

* @param acceptanceApproveProbability

*/

public void appendAcceptanceDecision(String TaskId, double acceptanceApproveProbability) {

this.shadowTaskQueue.put(TaskId, new Double(acceptanceApproveProbability));

}

/**

* revoke an acceptance decision

*

267

APPENDIX A: CODE SNIPPET

* @param TaskId

*/

public void revokeAcceptanceDecision(String TaskId) {

this.shadowTaskQueue.remove(TaskId);

}

/**

* Update the average queuing time of this node

*/

public void updateQueuingTime() {

double queuingTime = 0;

double numOfTasks = 0;

double systemTime = BGQoSMediator.getSystemTime();

int sizeOfLocalTaskQueue = localTaskQueue.size();

if(sizeOfLocalTaskQueue > 0) {

for(String TaskId : localTaskQueue) {

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId (TaskId);

double queuingStartTime = TaskInfo.getQueuingStartTime();

queuingTime += systemTime - queuingStartTime;

TaskInfo.setQueuingTime(systemTime - queuingStartTime);

}

numOfTasks += localTaskQueue.size();

} else {

Vector<TaskInfo> exedTaskInfo =

TaskCenterManager.getTask_processingNode(this.BGQoSIdentity, TaskCenterManager.EXECUTED);

for(TaskInfo TaskInfo : exedTaskInfo) {

queuingTime += TaskInfo.getQueuingTime();

}

numOfTasks += exedTaskInfo.size();

}

if(numOfTasks != 0) {

this.avgQueuingTime = queuingTime / numOfTasks;

} else {

this.avgQueuingTime = 0;

}

}

268

APPENDIX A: CODE SNIPPET

/**

* Fetch one Task, which may wait long time before getting scheduled and executed, for rescheduling

processing

* @return

*/

public Vector<String> searchTasksForRescheduling() {

int sizeOfLocalTaskQueue = localTaskQueue.size();

if(sizeOfLocalTaskQueue < 1) {

return null;

}

double systemTime = BGQoSMediator.getSystemTime();

Vector<String> toRescheduleTasks = new Vector<String>();

try {

// update the this resources instant average Task queuing time

this.updateQueuingTime();

for(String TaskId : localTaskQueue) {

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId(TaskId);

// if Task's requirement beyonds resource profile

if(!check_TaskMatchResource(TaskInfo)) {

toRescheduleTasks.add(TaskId);

continue;

}

double queuingStartTime = TaskInfo.getQueuingStartTime();

double queuingTime = systemTime - queuingStartTime;

TaskInfo.setQueuingTime(queuingTime);

if(this.avgQueuingTime != 0) {

double relativeQueuingDelay = queuingTime / this.avgQueuingTime;

if(relativeQueuingDelay >=

BGQoSParam.systemReschedulingCoefficient) {

toRescheduleTasks.add(TaskId);

}

} else {

// if hosting node's avg queuing time is zero or unavailable,

269

APPENDIX A: CODE SNIPPET

// then there is no need to reschedule Tasks

}

}

For (int i = 0; i < toRescheduleTasks.size(); i++) {

for (int j = i + 1; j < toRescheduleTasks.size(); j ++) {

if

(TaskCenterManager.getTaskInfobyTaskId(toRescheduleTasks.get(i)).getQueuingTime() <

TaskCenterManager.getTaskInfobyTaskId(toRescheduleTasks.get(j)).getQueuingTime()) {

String tmpId = toRescheduleTasks.get(i);

toRescheduleTasks.set(i, toRescheduleTasks.get(j));

toRescheduleTasks.set(j, tmpId);

}

}

}

} catch (Exception e) {

e.printStackTrace();

System.exit(0);

}

return toRescheduleTasks;

}

/**

* Remove a TaskItem from the MatchMaker and re-schedule it to a remote node

* @param TaskId

* @return

*/

public synchronized boolean TaskReschedule(String TaskId) {

if(this.localTaskQueue.contains(TaskId)) {

if(TaskId.equals(this.BGQoS.getBGQoSIdentity())) {

this.numOfReceivedLocalTasks--;

} else {

this.numOfReceivedPartnerTasks--;

}

// this.receivedTaskIdMap.remove(TaskId);

270

APPENDIX A: CODE SNIPPET

this.numOfTaskWaitingForSchedule--;

return removeTaskFromLocalQueue(TaskId);

} else {

return false;

}

}

/**

* Info event from ModuleController: Task already finished by resource

*/

public void TaskFinishedConfirmation(TaskInfo gi) {

if(gi.getOriginalBGQoSId().equals(this.BGQoS.getBGQoSIdentity())) {

this.localTaskFinishedConfirmation(gi);

} else {

this.PartnerTaskFinishedConfirmation(gi);

GlobalStorage.findBGQoSById(gi.getOriginalBGQoSId()).getPartnerMonitor().TaskDelegationCompleteBy

RemoteNode(gi);

}

}

/**

* Local Task executed

* @param TaskInfo

*/

private void localTaskFinishedConfirmation(TaskInfo gi) {

if(gi.getTaskStatus() == BGQoSMessage.Task_SUCCESS) {

this.numOfSuccessProcessedLocalTask += 1;

} else {

this.numOfFailedProcessedLocalTask += 1;

}

// single Task tardiness

double TaskTardiness = gi.getTardiness();

// Task response time

// NOTICE: Task is released at "gi.getTaskStartTime()", doesn't mean the execution will start, it could

be delayed

double TaskResponse = gi.getTask().getFinishTime() - gi.getArrivalTime();

// calculate & update total weighted and normal slow down

// NOTICE: Task getAcutalCPUTime reflect how much time used by a Task (each required PE runs the

same time)

271

APPENDIX A: CODE SNIPPET

double TaskWeight = gi.getNumPE() * gi.getTask().getActualCPUTime();

double TaskSlowdown = TaskResponse / gi.getTask().getActualCPUTime();

this.totalTaskWeight += TaskWeight;

this.totalTaskResponseTime += TaskResponse;

this.totalTaskWaitingTime += TaskResponse - gi.getTask().getActualCPUTime();

this.totalWeightedResponseTime += TaskWeight * TaskResponse;

this.totalTaskCPUTime += gi.getTask().getActualCPUTime();

this.totalWeightedTaskCPUTTime += TaskWeight * gi.getTask().getActualCPUTime();

if(Double.isInfinite(TaskSlowdown)) {

// to handling unexpected errors, e.g., no Task actualCPUTime available, replace it by the mean

(averaged) of Task slowdown

// for example, after 500 Task executed, if current total slowdown is 1000,

// then the mean Task slowdown is 2, thus the totalslowdown is add-up by 2 (another mean

slowdown)

this.totalSlowdown += this.totalSlowdown /

(this.numOfSuccessProcessedLocalTask + this.numOfSuccessProcessedPartnerTask);

this.totalWeightedSlowdown += this.totalWeightedSlowdown /

(this.numOfSuccessProcessedLocalTask + this.numOfSuccessProcessedPartnerTask);

} else {

this.totalSlowdown += TaskSlowdown;

this.totalWeightedSlowdown += TaskWeight * TaskSlowdown;

}

this.BGQoS.getStorage().updateUsage(TaskWeight);

// update corresponding resource profile from the persist storage

LinkedList<ResourceInfo> localResourceInfoList = this.BGQoS.getStorage().getResourceInfoList();

for (ResourceInfo ri : localResourceInfoList){

if (gi.getTask().getResourceID() == ri.getResource().getResourceID()){

// lower the load of resource, update info about overall resource tardiness and exit cycle

ri.lowerResInExec(gi);

ri.setTotalTardinessOfFinishedTasks(ri.getTotalTardinessOfFinishedTasks() + TaskTardiness);

if(TaskTardiness <= 0.0){

ri.setNumOfPreviousFinishedNondelayedTasks(ri.getNumOfPreviousFinishedNondelayedTasks() + 1);

totalNumOfNondelayedLocalTasks++;

}else{

totalNumOfDelayedLocalTasks++;

}

break;

272

APPENDIX A: CODE SNIPPET

}

}

// some resource is probably available - try send next Task according to schedule

if(numOfExistingSchedules == 0){

this.callSchedule();

}

}

/**

* Partner Task executed

* @param TaskInfo

*/

private void PartnerTaskFinishedConfirmation(TaskInfo gi) {

if(gi.getTaskStatus() == BGQoSMessage.Task_SUCCESS) {

this.numOfSuccessProcessedPartnerTask += 1;

} else {

this.numOfFailedProcessedPartnerTask += 1;

}

// single Task tardiness

double TaskTardiness = gi.getTardiness();

// Task response time

double TaskResponse = gi.getTask().getFinishTime() - gi.getArrivalTime();

// calculate & update total weighted and normal slow down

// NOTICE: Task getAcutalCPUTime reflect how much time is used by a Task (each required PE runs the

same time)

double TaskWeight = gi.getNumPE() * gi.getTask().getActualCPUTime();

double TaskSlowdown = TaskResponse / gi.getTask().getActualCPUTime();

this.totalTaskWeight += TaskWeight;

this.totalTaskResponseTime += TaskResponse;

this.totalTaskWaitingTime += TaskResponse - gi.getTask().getActualCPUTime();

this.totalWeightedResponseTime += TaskWeight * TaskResponse;

this.totalTaskCPUTime += gi.getTask().getActualCPUTime();

this.totalWeightedTaskCPUTTime += TaskWeight * gi.getTask().getActualCPUTime();

if(Double.isInfinite(TaskSlowdown)) {

// to handling unexpected errors, e.g., no Task actualCPUTime available, replace it by the mean

(averaged) of Task slowdown

// for example, after 500 Task executed, if current total slowdown is 1000,

273

APPENDIX A: CODE SNIPPET

// then the mean Task slowdown is 2, thus the totalslowdown is add-up by 2 (another mean

slowdown)

this.totalSlowdown += this.totalSlowdown /

(this.numOfSuccessProcessedLocalTask + this.numOfSuccessProcessedPartnerTask);

this.totalWeightedSlowdown += this.totalWeightedSlowdown /

(this.numOfSuccessProcessedLocalTask + this.numOfSuccessProcessedPartnerTask);

} else {

this.totalSlowdown += TaskSlowdown;

this.totalWeightedSlowdown += TaskWeight * TaskSlowdown;

}

this.BGQoS.getStorage().updateUsage(TaskWeight);

// update corresponding resource profile from the persist storage

LinkedList<ResourceInfo> localResourceInfoList = this.BGQoS.getStorage().getResourceInfoList();

for (ResourceInfo ri : localResourceInfoList){

if (gi.getTask().getResourceID() == ri.getResource().getResourceID()){

// lower the load of resource, update info about overall resource tardiness and exit cycle

ri.lowerResInExec(gi);

ri.setTotalTardinessOfFinishedTasks(ri.getTotalTardinessOfFinishedTasks() + TaskTardiness);

if(TaskTardiness <= 0.0){

ri.setNumOfPreviousFinishedNondelayedTasks(ri.getNumOfPreviousFinishedNondelayedTasks() + 1);

totalNumOfNondelayedPartnerTasks++;

}else{

totalNumOfDelayedPartnerTasks++;

}

break;

}

}

if(numOfExistingSchedules == 0){

this.callSchedule();

}

}

/**

* When new response made, Task owner (ModuleController) will be notified

*/

private void sendResponseToTaskOwner(TaskInfo item) {

this.BGQoS.getModuleController().updateFromMatchMaker(item);

}

274

APPENDIX A: CODE SNIPPET

/**

* Starts scheduling according to prepared schedule/queue

*/

private boolean scheduleTasks(){

// pick up the corresponding local scheduling policy

if(matchMakerPolicy.equals(BGQoSMessage.PolicyExistingSchedule)){

this.numOfExistingSchedules = useSchedule();

return true;

} else if(matchMakerPolicy.equals(BGQoSMessage.PolicyFCFS)){

this.numOfExistingSchedules = useFCFS();

return true;

} else if(matchMakerPolicy.equals(BGQoSMessage.PolicyQOS)){

this.numOfExistingSchedules = useQOS();

return true;

} else if(matchMakerPolicy.equals(BGQoSMessage.PolicyEasyBF)){

numOfExistingSchedules = useEASY();

return true;

} else {

this.numOfExistingSchedules = useFCFS();

return true;

}

}

/**

* Call the existing schedule policy and record the used time

*/

private void callSchedule() {

Date d = new Date();

clockBeforeMakingSchedule = d.getTime();

// make next round schedules

scheduleTasks();

Date d2 = new Date();

clockAfterMakingSchedule = d2.getTime();

totalSchedulingTime += clockAfterMakingSchedule - clockBeforeMakingSchedule;

}

275

APPENDIX A: CODE SNIPPET

/************************

* Scheduling Policies

************************/

/**

* FCFS algorithm managing incoming Task queue

*/

private int useFCFS(){

int successSched = 0;

ResourceInfo selectedResourceInfo = null;

while(!localTaskQueue.isEmpty()){

LinkedList<ResourceInfo> localResourceInfoList = this.BGQoS.getStorage().getResourceInfoList();

// Refresh (update to latest numOfFreePE) the numOfFreVirtualPE for anticipating scheduling

process

for (ResourceInfo ri : localResourceInfoList){

ri.setNumOfVirtualFreePE(new AtomicInteger(ri.getNumOfFreePE()));

}

// Retrieve the Task from TaskQueue

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId(this.selectTaskFromQueue());

// If Task requirement exceeds resource capability, this Task cannot be scheduled this time it is set to

status FAILED directly

if((TaskInfo == null) || (!this.check_TaskMatchResource(TaskInfo))) {

TaskInfo.setTargetResourceID(-1);

removeTaskFromLocalQueue(TaskInfo.getGlobalTaskID());

this.sendResponseToTaskOwner(TaskInfo);

TaskInfo = null;

continue;

}

// IMPORTANT: selected resourceInfo MUST be reset for each to-process TaskInfo

selectedResourceInfo = null;

// FCFS: select a resource (the first candidate), which match Task's PE requirement and has the best

MIPS

for (ResourceInfo ri : localResourceInfoList){

if((ri.getNumOfVirtualFreePE().get() >= TaskInfo.getNumPE()) &&

(ri.getNumOfTotalPE() >= TaskInfo.getNumPE())) {

276

APPENDIX A: CODE SNIPPET

selectedResourceInfo = ri;

ri.setNumOfVirtualFreePE(new AtomicInteger(ri.getNumOfVirtualFreePE().get() -

TaskInfo.getNumPE()));

// resource "First Fit" selection

break;

}

}

if(selectedResourceInfo != null){

// Current Task marked to be sent to selected resource

TaskInfo.setTargetResourceID(selectedResourceInfo.getResource().getResourceID());

// Current Task removed from queue

this.removeTaskFromLocalQueue(TaskInfo.getGlobalTaskID());

// Important: resource profile notified with new Task

selectedResourceInfo.addTaskInfoInExec(TaskInfo);

// ModulerController notified with new MatchMaker decision

this.sendResponseToTaskOwner(TaskInfo);

successSched += 1;

} else {

break;

}

TaskInfo = null;

} // exit loop TaskQueue

return successSched;

}

/**

* QOS algorithm managing incoming Task queue

*/

private int useQOS(){

return this.useFCFS();

}

277

APPENDIX A: CODE SNIPPET

/**

* EasyBackfilling algorithm managing incoming Task queue

*/

private int useEASY(){

int successSched = 0;

ResourceInfo selectedResourceInfo = null;

boolean backfillingNeeded = false;

while(!localTaskQueue.isEmpty()){

LinkedList<ResourceInfo> localResourceInfoList = this.BGQoS.getStorage().getResourceInfoList();

// Refresh (update to latest numOfFreePE) the numOfFreVirtualPE for anticipating scheduling

process

for (ResourceInfo ri : localResourceInfoList){

ri.setNumOfVirtualFreePE(new AtomicInteger(ri.getNumOfFreePE()));

}

// Retrieve the Task from TaskQueue

TaskInfo TaskInfo = TaskCenterManager.getTaskInfobyTaskId(this.selectTaskFromQueue());

// If Task requirement exceeds resource capability, this Task cannot be scheduled this time it is set to

status FAILED directly

if((TaskInfo == null) || (!this.check_TaskMatchResource(TaskInfo))) {

TaskInfo.setTargetResourceID(-1);

this.removeTaskFromLocalQueue(TaskInfo.getGlobalTaskID());

this.sendResponseToTaskOwner(TaskInfo);

TaskInfo = null;

continue;

}

// Selected resourceInfo MUST be reset for each to-process TaskInfo

selectedResourceInfo = null;

// Select a resource (the top ranked candidate), which match Task's PE requirement and has the best

MIPS

for (ResourceInfo ri : localResourceInfoList){

if((ri.getNumOfVirtualFreePE().get() >= TaskInfo.getNumPE()) &&

(ri.getNumOfTotalPE() >= TaskInfo.getNumPE())) {

selectedResourceInfo = ri;

ri.setNumOfVirtualFreePE(new AtomicInteger(ri.getNumOfVirtualFreePE().get() -

278

APPENDIX A: CODE SNIPPET

TaskInfo.getNumPE()));

break;

}

}

if(selectedResourceInfo != null){

// Current Task marked to be sent to selected resource

TaskInfo.setTargetResourceID(selectedResourceInfo.getResource().getResourceID());

// Current Task removed from queue

this.removeTaskFromLocalQueue(TaskInfo.getGlobalTaskID());

// Important: resource profile notified with new Task

selectedResourceInfo.addTaskInfoInExec(TaskInfo);

this.sendResponseToTaskOwner(TaskInfo);

successSched += 1;

} else {

// Here with the first element of the queue could be executed successfully in local resource

// but the corresponding resource is not ready yet

// therefore, the TaskQueue checking will be blocked here, no matter whether another Task

inside the queue

// could be executed now, it won't invoked in FCFS

backfillingNeeded = true;

break;

}

TaskInfo = null;

} // exit loop TaskQueue

// starting backfilling phase

if(backfillingNeeded && this.localTaskQueue.size() > 1) {

String headTaskId = this.localTaskQueue.get(0);

TaskInfo headTaskInfo = TaskCenterManager.getTaskInfobyTaskId(headTaskId);

ResourceInfo reservedResourceInfo = this.findReservedResource(headTaskInfo);

// looping all other Tasks (except the first one) of MatchMaker's TaskQueue

for(int j = 1; j < this.localTaskQueue.size(); j++) {

String currentTaskId = this.localTaskQueue.get(j);

TaskInfo currentTaskInfo =

279

APPENDIX A: CODE SNIPPET

TaskCenterManager.getTaskInfobyTaskId(currentTaskId);

// jump over Tasks which will never be executed because of asking more PEs than

resource's capability

if(currentTaskInfo.getNumPE() >= reservedResourceInfo.getNumOfTotalPE()) {

continue;

}

ResourceInfo resInfo = this.findResourceBF(currentTaskInfo, headTaskInfo,

reservedResourceInfo);

if(resInfo != null){

// Current Task marked to be sent to selected resource

currentTaskInfo.setTargetResourceID(resInfo.getResource().getResourceID());

// Current Task removed from queue

this.removeTaskFromLocalQueue(currentTaskInfo.getGlobalTaskID());

// Important: resource profile notified with new Task

resInfo.addTaskInfoInExec(currentTaskInfo);

// ModulerController notified with new MatchMaker decision

this.sendResponseToTaskOwner(currentTaskInfo);

backfillingNeeded = false;

successSched += 1;

// Important: one Task has been backfilled, therefore MatchMaker's TaskQueue size is decreased

j--;

}

}

}

return successSched;

}

/**

* Auxiliary method for EASY Backfilling

*/

@SuppressWarnings("unchecked")

private ResourceInfo findResourceBF(TaskInfo newTask, TaskInfo blockedFirstTask, ResourceInfo

reservedResForBlockedFirstTask){

ResourceInfo r_cand = null;

int r_cand_speed = 0;

280

APPENDIX A: CODE SNIPPET

LinkedList localResourceInfoList = this.BGQoS.getStorage().getResourceInfoList();

for (int j=0; j < localResourceInfoList.size(); j++) {

ResourceInfo ri = (ResourceInfo) localResourceInfoList.get(j);

if(ri.getNumOfFreePE() < 1) {

continue;

}

if(ri.getNumOfFreePE() >= newTask.getNumPE() && ri.getResource().getResourceID() !=

reservedResForBlockedFirstTask.getResource().getResourceID()){

int speed = ri.getResource().getMIPSRatingOfOnePE();

if(speed >= r_cand_speed){

r_cand = ri;

r_cand_speed = speed;

}

} else if (ri.getNumOfFreePE() >= newTask.getNumPE() && ri.getResource().getResourceID() ==

reservedResForBlockedFirstTask.getResource().getResourceID()){

// precondition:

// shadow time: when enough nodes will be available for the first queued(currently blocked)

Task

// extra PE: if the first Task does not need all available PEs, the ones left over are the extra PEs

double newTaskEstimatedFinishTime = BGQoSMediator.getSystemTime() +

(newTask.getComputationalLength()/ri.getResource().getMIPSRatingOfOnePE());

double shadowTime = ri.getEarliestStartTime();

int extraPE = ri.getNumOfTotalPE() - blockedFirstTask.getNumPE();

double minPE = Math.min(ri.getNumOfFreePE(), extraPE);

//

// to determine whether a being checked Task can be fit backfilling, need to check as follows:

// Either, it requires no more than currently free PEs on this resource, and will terminate by

the shadow time

// Or, it requires no more than minimum of currently free PEs and extra PEs, namely it

requires no more than min(freePEs_onResource, extra_PE)

if(newTaskEstimatedFinishTime <= shadowTime){

// log.info("*******************\n*******************");

int speed = ri.getResource().getMIPSRatingOfOnePE();

if(speed > r_cand_speed){

r_cand = ri;

r_cand_speed = speed;

}

} else if(newTask.getNumPE() <= minPE) {

281

APPENDIX A: CODE SNIPPET

// log.info("*******************\n*******************");

int speed = ri.getResource().getMIPSRatingOfOnePE();

if(speed > r_cand_speed){

r_cand = ri;

r_cand_speed = speed;

}

}

}

}

// save the ResourceInfo List information back

this.BGQoS.getStorage().setResourceInfoList(localResourceInfoList);

return r_cand;

}

/**

* Find the reserved resource for the first Task of the queue, which is blocked therefore need backfilling (if

multi-resources on one node)

*

* Auxiliary method for EASY Backfilling

*/

@SuppressWarnings("unchecked")

private ResourceInfo findReservedResource(TaskInfo grsv){

double est = Double.MAX_VALUE;

ResourceInfo found = null;

LinkedList localResourceInfoList = this.BGQoS.getStorage().getResourceInfoList();

for (int j=0; j < localResourceInfoList.size(); j++){

ResourceInfo ri = (ResourceInfo) localResourceInfoList.get(j);

if(ri.getNumOfTotalPE() >= grsv.getNumPE()){

// find the resource with earliest start time

double ri_est = ri.getEarliestStartTimeForTaskInfo(grsv, BGQoSMediator.getSystemTime());

// select minimal EST

if(ri_est <= est){

est = ri_est;

found = ri;

}

} else {

continue; // this is not suitable machine

}

282

APPENDIX A: CODE SNIPPET

}

// save the ResourceInfo List information back

this.BGQoS.getStorage().setResourceInfoList(localResourceInfoList);

return found;

}

/**

* Select Task from the TaskQueue of MatchMaker

* @return

*/

private String selectTaskFromQueue() {

if(this.localTaskQueue.size() > 0) {

return this.localTaskQueue.get(0);

} else {

return null;

}

}

/**

* Check whether TaskInfo can be satisfied by local resources (TaskInfo)

* by receiving queries from MatchMaker itself

*/

private boolean check_TaskMatchResource(TaskInfo TaskInfo) {

if((!this.BGQoS.getBGQoSMemory().equals(TaskInfo.getTask().getMemoryRequired())) ||

(TaskInfo.getNumPE() > this.BGQoS.getStorage().getTotalNumOfPEs().get())) {

return false;

} else {

return true;

}

}

/**

* Check whether TaskInfo can be satisfied by local resources

* by receiving queries from external scheduling components, such as Controller

*

* @param TaskReliability

* @param TaskNumPE

* @return

*/

public boolean check_TaskMatchResource(String TaskReliability , int TaskNumPE) {

283

APPENDIX A: CODE SNIPPET

if((!this.BGQoS.getBGQoSReliability().equals(TaskReliability)) ||

(TaskNumPE > this.BGQoS.getStorage().getTotalNumOfPEs().get())) {

return false;

} else {

return true;

}

}

public boolean check_TaskInstantMatchResource(String TaskReliability , int TaskNumPE) {

int numFreePE = this.BGQoS.getStorage().getTotalVirtualFreePEs();

if((!this.BGQoS.getBGQoSOS().equals(TaskReliability)) || (TaskNumPE > numFreePE)) {

return false;

} else {

return true;

}

}

/**

* Check whether still available resources(PEs) for incoming Task request

*

* @param TaskInfo

* @return true IF matches!

*/

private boolean check_resourceAvailable(TaskInfo TaskInfo) {

int freePE = this.BGQoS.getStorage().getTotalNumOfPEs().get() -

this.BGQoS.getStorage().getTotalActivePEs().get();

if(freePE > TaskInfo.getNumPE()) {

return true;

} else {

return false;

}

}

/**

* Check whether still available resources(PEs) for incoming Task request

* by receiving queries from external components, such as Controller

*

* @param TaskNumPE

* @return

284

APPENDIX A: CODE SNIPPET

*/

public boolean check_resourceAvailable(int TaskNumPE) {

int freePE = this.BGQoS.getStorage().getTotalNumOfPEs().get() -

this.BGQoS.getStorage().getTotalActivePEs().get();

if(freePE > TaskNumPE) {

return true;

} else {

return false;

}

}

/**

* This method updates Task priority P_j according to Flexible Backfilling strategy.

* @param queue Incoming queue of Tasks

* @param time Current simulation time

* @deprecated

*/

private void updateTaskPriority(LinkedList queue, double time){

int bm = this.BGQoS.getStorage().getBestMachineMIPS().get();

// sort the queue according to estimated exec. time

Collections.sort(queue, new LengthComparator());

// compute new priorities

for(int i = 0; i < queue.size(); i++){

TaskInfo gi = (TaskInfo) queue.get(i);

// Aging

double age_factor = 0.01;

double p = 0.0;

double age = time - gi.getArrivalTime();

p += age_factor * age;

// Deadline

double deadline = gi.getDeadline();

double estimated = gi.getEstimatedComputationTime();

double nxtime = 0.0;

double extime = 0.0;

double k = 2.0; // reset

double bme = gi.getEstimatedComputationalMIPS();

double t = 0.0;

nxtime = estimated * (bme/bm);

extime = time + nxtime;

t = deadline - k*nxtime;

285

APPENDIX A: CODE SNIPPET

double max = 20.0;

double min = 0.1;

double a = (max - min)/(deadline - t);

//double a = 1.0; // reset

if(extime <= t) p+= min;

if(t < extime && extime <= deadline) p += a * (extime - t) + min;

if(extime > deadline) p += min;

// Wait Minimization

double boostvalue = 2.0; // reset

// get the shortest Gridlet according to "estimated" parameter

TaskInfo shortest = (TaskInfo) queue.getLast();

double minext = shortest.getEstimatedComputationTime();

p += (boostvalue * minext)/estimated;

gi.setTaskPriority(p);

}

}

/** Get number of already made schedulers by this MatchMaker */

public int getNumOfExistingSchedules() {

return numOfExistingSchedules;

}

/**

* Get total time used for making schedule generation, i.e. time =

* Sum(clockAfterMakingSchedule - clockBeforeMakingSchedule)

*/

public double getTotalSchedulingTime() {

return totalSchedulingTime;

}

/** Get total number of nondelayed Tasks processed by this matchmaker */

public int getTotalNumOfNondelayedLocalTasks() {

return totalNumOfNondelayedLocalTasks;

}

/** Get total number of delayed Tasks processed by this matchmaker */

public int getTotalNumOfDelayedLocalTasks() {

return totalNumOfDelayedLocalTasks;

}

/**

* Get number of Tasks waiting for scheduling decision It will be decrease

* only if TaskSubmiiter inform MatchMaker that the Task is already sent to

* resource

*/

286

APPENDIX A: CODE SNIPPET

public int getNumOfTaskWaitingForSchedule() {

return numOfTaskWaitingForSchedule;

}

/** Get total time used to execute all the Tasks */

public double getTotalTaskExecutionTime() {

return totalTaskResponseTime;

}

public double getTotalTaskWaitingTime() {

return this.totalTaskWaitingTime;

}

/** Get start time of the simulation */

public double getSimulationStartTime() {

return simulationStartTime;

}

/**

* Get total Task weight: LOOP all Task (numberOfCPU for execution * Task

* actual CPU time)

*/

public double getTotalTaskWeight() {

return totalTaskWeight;

}

/**

* Get total slowdown of Tasks = Task response time / Task actual execution

* time

*/

public double getTotalSlowdown() {

return totalSlowdown;

}

/**

* Get total weighted response time = (Task weight * Task response time) =

* (Task used cpu number * Task actual cpu time * Task response time)

*/

public double getTotalWeightedResponseTime() {

return totalWeightedResponseTime;

}

/**

* Get total weighted slowdown = (Task weight * Task slowdown) = (Task used cpu

* number * Task actual cpu time * Task slowdown)

*/

public double getTotalWeightedSlowdown() {

return totalWeightedSlowdown;

287

APPENDIX A: CODE SNIPPET

}

/** Get number of Tasks submitted through submitter */

public int getNumOfReceivedLocalTasks() {

return numOfReceivedLocalTasks;

}

public double getAvgQueuingTime() {

return avgQueuingTime;

}

public int sizeOfLocalTaskQueue() {

return this.localTaskQueue.size();

}

}

288

APPENDIX A: CODE SNIPPET

A.3. BGQoS Task info

package dsm.BGQoS.model;

import java.io.Serializable;

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.Map;

import java.util.Vector;

import java.util.concurrent.ConcurrentHashMap;

import java.util.concurrent.atomic.AtomicBoolean;

import java.util.concurrent.atomic.AtomicInteger;

import org.jfree.util.Log;

import dsm.BGQoS.BGQoSEntity;

import dsm.BGQoS.env.BGQoSMediator;

import dsm.BGQoS.env.BGQoSMessage;

/**

* Class SimTaskInfo<p>

* Task Owner(submitter/GRC) and MatchMaker Components.

* It uses a set / get methods to set / get information about BGQoSTask.

* It stores various information of the actual Task.

* based on original GridSim Extention by @author Dalibor Klusacek */

public class TaskInfo implements Cloneable, Serializable {

/** GRC id */

private int userID;

/** Task id */

private int TaskLocalID;

/** TaskInfo global id */

private String globalTaskID;

/** link to original Task */

private Task Task;

/** selected resource id */

private int targetResourceID;

/** computational length */

289

APPENDIX A: CODE SNIPPET

private double computationalLength;

private double TaskFinishedSoFar;

private double cost;

private double completitionFactor;

/** reliability required by the Task */

private float reliabilityRequired;

/** memory required by the Task */

private String memoryRequired;

private float availabilityRequired;

private double TaskStartTime;

/** arrival time i.e. time of Task arrival in the system */

private double arrivalTime;

private double bandwidth;

private double queuingStartTime;

/** start time of Task processing */

private double queuingEndTime;

private double queuingTime;

/** Time Constraint */

private double deadline;

/** It denotes this dynamicaly changing information: dynamicRealeaseTime = max(0.0, (arrivalTime +

TaskStartTime) - currentTime) */

private double dynamicRealeaseTime;

/** Task priority */

private double TaskPriority;

/** number of PEs to run this Task */

private int numPE;

/** estimated execution finish time */

private double expectedFinishTime;

/** estimated computational length */

private double estimatedComputationTime;

290

APPENDIX A: CODE SNIPPET

/** MIPS rating of a machine used to compute estimated comp. length */

private double estimatedComputationalMIPS;

/** Task status */

private int TaskStatus;

/** id of original BGQoS where the Task is submitted */

private String originalBGQoSId = "";

/** id of BGQoS where the Task is executed */

private String executionBGQoSId = "";

/** Task profile for Partner execution */

private ConcurrentHashMap<String,Object> PartnerTaskInfoProfile = null;

/** Task negotiation counter */

private AtomicInteger TaskNegotiationCounter = new AtomicInteger(0);

/**

* Creates a new instance of TaskInfo object based on the BGQoSTask

*/

public TaskInfo(Task Task) {

this.userID = Task.getUserID();

this.setTaskLocalID(Task.getGridletID());

this.setTaskStatus(Task.getTaskStatus());

this.setComputationalLength(Task.getTaskLength());

this.setTaskFinishedSoFar(Task.getTaskFinishedSoFar());

this.setCompletitionFactor(Task.getTaskFinishedSoFar() / Task.getTaskLength());

this.setTask(Task);

this.setreliabilityRequired(Task.getReliabilityRequired());

this.setmemoryRequired(Task.getMemoryRequired());

this.setDeadline(Task.getDeadline());

this.setTardiness(0.0);

this.setDynamicRealeaseTime(0.0);

this.setTaskPriority(Task.getTaskPriority());

this.setNumPE(Task.getNumPE());

this.setExpectedFinishTime(0);

this.setEstimatedComputationTime(Task.getEstimatedComputationTime());

this.setEstimatedComputationalMIPS(Task.getEstimatedComputationalMIPS());

this.setArrivalTime(Task.getArrivalTime());

this.setQueuingStartTime(Task.getArrivalTime());

this.setQueuingEndTime(-1);

this.setQueuingTime(BGQoSMediator.getSystemTime() - this.queuingStartTime);

this.PartnerTaskInfoProfile = new ConcurrentHashMap<String,Object>();

this.PartnerTaskInfoProfile.put(BGQoSMessage.MatchProfile_OS, Task.getOSRequired());

this.PartnerTaskInfoProfile.put(BGQoSMessage.MatchProfile_CPUCount, new

291

APPENDIX A: CODE SNIPPET

Integer(Task.getNumPE()));

// this.PartnerTaskInfoProfile.put(BGQoSMessage.MatchProfile_ExePrice, new Double(-2.0));

}

public int getUserID() {

return userID;

}

public void setUserID(int userID) {

BGQoSTask Task = this.getTask();

Task.setUserID(userID);

this.userID = userID;

this.getTask().setUserID(userID);

}

public String getOriginalBGQoSId() {

return originalBGQoSId;

}

public void setOriginalBGQoSId(String originalBGQoSId) {

this.getTask().setOriginalBGQoSId(originalBGQoSId);

this.globalTaskID = this.getTask().getGlobalTaskID();

this.originalBGQoSId = originalBGQoSId;

}

public String getExecutionBGQoSId() {

return executionBGQoSId;

}

public void setExecutionBGQoSId(String executionBGQoSId) {

this.executionBGQoSId = executionBGQoSId;

}

public int getTaskLocalID() {

return TaskLocalID;

}

public void setTaskLocalID(int TaskLocalID) {

this.TaskLocalID = TaskLocalID;

}

public int getTargetResourceID() {

return targetResourceID;

}

292

APPENDIX A: CODE SNIPPET

public void setTargetResourceID(int targetResourceID) {

this.targetResourceID = targetResourceID;

}

public int getTaskStatus() {

this.TaskStatus = getTask().getTaskStatus(); // essential for fresh information

return TaskStatus;

}

public void setTaskStatus(int TaskStatus) {

this.TaskStatus = TaskStatus;

}

public double getComputationalLength() {

return computationalLength;

}

public void setComputationalLength(double computationalLength) {

this.computationalLength = computationalLength;

}

public double getTaskFinishedSoFar() {

this.TaskFinishedSoFar = getTask().getTaskFinishedSoFar(); // essential for fresh information

return TaskFinishedSoFar;

}

public void setTaskFinishedSoFar(double TaskFinishedSoFar) {

this.TaskFinishedSoFar = TaskFinishedSoFar;

}

public double getCompletitionFactor() {

return completitionFactor;

}

public void setCompletitionFactor(double completitionFactor) {

this.completitionFactor = completitionFactor;

}

public String getReliabilityRequired() {

return reliabilityRequired;

}

public void setReliabilityRequired(Float reliabilityRequired) {

this.reliabilityRequired = reliabilityRequired;

293

APPENDIX A: CODE SNIPPET

}

public String getMemoryRequired() {

return memoryRequired;

}

public void setMemoryRequired(String memoryRequired) {

this.memoryRequired = memoryRequired;

}

public Task getTask() {

return Task;

}

public void setTask(Task Task) {

this.Task = Task;

}

public double getDeadline() {

return deadline;

}

public void setDeadline(double deadline) {

this.deadline = deadline;

}

public double getDynamicRealeaseTime() {

return dynamicRealeaseTime;

}

public void setDynamicRealeaseTime(double dynamicRealeaseTime) {

this.dynamicRealeaseTime = dynamicRealeaseTime;

}

public double getTaskPriority() {

return TaskPriority;

}

public void setTaskPriority(double TaskPriority) {

this.TaskPriority = TaskPriority;

}

public int getNumPE() {

return numPE;

}

public void setNumPE(int numPE) {

294

APPENDIX A: CODE SNIPPET

this.numPE = numPE;

}

public double getExpectedFinishTime() {

return expectedFinishTime;

}

public void setExpectedFinishTime(double expectedFinishTime) {

this.expectedFinishTime = expectedFinishTime;

}

public double getEstimatedComputationTime() {

return estimatedComputationTime;

}

public void setEstimatedComputationTime(double estimatedComputationTime) {

this.estimatedComputationTime = estimatedComputationTime;

}

public double getEstimatedComputationalMIPS() {

return estimatedComputationalMIPS;

}

public void setEstimatedComputationalMIPS(double estimatedComputationalMIPS) {

this.estimatedComputationalMIPS = estimatedComputationalMIPS;

}

/** Task negotiation counter */

public AtomicInteger getTaskNegotiationCounter() {

return TaskNegotiationCounter;

}

/** Task negotiation counter */

public void setTaskNegotiationCounter(AtomicInteger TaskNegotiationCounter) {

this.TaskNegotiationCounter = TaskNegotiationCounter;

}

public ConcurrentHashMap<String, Object> getPartnerTaskInfoProfile() {

return PartnerTaskInfoProfile;

}

public void setPartnerTaskInfoProfile(

ConcurrentHashMap<String, Object> extPartnerTaskInfoProfile) {

try {

this.PartnerTaskInfoProfile = new

ConcurrentHashMap <String,Object>();

295

APPENDIX A: CODE SNIPPET

this.PartnerTaskInfoProfile.replace(BGQoSMessage.MatchProfile_OS,

extPartnerTaskInfoProfile.get(BGQoSMessage.MatchProfile_OS));

this.PartnerTaskInfoProfile.replace(BGQoSMessage.MatchProfile_CPUCount,

extPartnerTaskInfoProfile.get(BGQoSMessage.MatchProfile_CPUCount));

} catch(Exception e) {

e.printStackTrace();

}

this.PartnerTaskInfoProfile = PartnerTaskInfoProfile;

}

/** update Task profile for Partner execution */

public void updatePartnerTaskInfoProfile(String matchProfile_OS, Integer matchProfile_CPUCount) {

this.PartnerTaskInfoProfile.replace(BGQoSMessage.MatchProfile_OS, matchProfile_OS);

this.PartnerTaskInfoProfile.replace(BGQoSMessage.MatchProfile_CPUCount, matchProfile_CPUCount);

}

public String getGlobalTaskID() {

return globalTaskID;

}

public double getArrivalTime() {

// TODO Auto-generated method stub

return this.arrivalTime;

}

public void setArrivalTime(double startTime) {

// TODO Auto-generated method stub

this.arrivalTime = startTime;

this.getTask().setArrivalTime(startTime);

}

public double getQueuingStartTime() {

return this.queuingStartTime;

}

public void setQueuingStartTime(double queuingStartTime) {

this.queuingStartTime = queuingStartTime;

}

public double getQueuingEndTime() {

return this.queuingEndTime;

}

296

APPENDIX A: CODE SNIPPET

public void setQueuingEndTime(double queuingEndTime) {

this.queuingEndTime = queuingEndTime;

}

public double getQueuingTime() {

return this.queuingTime;

}

public void setQueuingTime(double queuingTime) {

this.queuingTime = queuingTime;

}

public TaskInfo clone() {

TaskInfo TaskInfo = null;

try {

TaskInfo = (TaskInfo) super.clone();

} catch (Exception e) {

e.printStackTrace();

}

return TaskInfo;

}

297

APPENDIX A: CODE SNIPPET

298

APPENDIX B: RESULTS SNIPPET

Appendix B

B.1. Introduction

The purpose for carrying out the simulations was to verify the functionality,

feasibility, efficiency and practicality of BGQoS. While the results have been

represented in tables, graphs and figures within this thesis, the result set provides a

better sense of detail and specification. This appendix introduces a snippet of the

generated results and the level of detail they produce.

B.2. Result Snippet

Total available MIPS power = 1152.0 MIPS in 1152.0 CPUs

>>> 10 so far arrived, in queue = 1 jobs, at time = 439959

>>> 20 so far arrived, in queue = 1 jobs, at time = 443219

>>> 30 so far arrived, in queue = 9 jobs, at time = 445455

>>> 40 so far arrived, in queue = 19 jobs, at time = 445869

*** 20 so far received, in queue = 16 jobs, at time = 446370

>>> 50 so far arrived, in queue = 11 jobs, at time = 446382

*** 30 so far received, in queue = 7 jobs, at time = 446400

*** 40 so far received, in queue = 2 jobs, at time = 446451

>>> 60 so far arrived, in queue = 1 jobs, at time = 464105

>>> 70 so far arrived, in queue = 1 jobs, at time = 487569

*** 70 so far received, in queue = 1 jobs, at time = 490803

>>> 80 so far arrived, in queue = 4 jobs, at time = 492157

>>> 90 so far arrived, in queue = 1 jobs, at time = 499755

>>> 100 so far arrived, in queue = 1 jobs, at time = 504940

>>> 110 so far arrived, in queue = 2 jobs, at time = 508127

>>> 120 so far arrived, in queue = 1 jobs, at time = 515173

>>> 130 so far arrived, in queue = 1 jobs, at time = 529008

*** 130 so far received, in queue = 3 jobs, at time = 540295

>>> 140 so far arrived, in queue = 1 jobs, at time = 555806

>>> 150 so far arrived, in queue = 1 jobs, at time = 563953

>>> 160 so far arrived, in queue = 1 jobs, at time = 565617

>>> 170 so far arrived, in queue = 1 jobs, at time = 566738

*** 170 so far received, in queue = 7 jobs, at time = 578772

>>> 180 so far arrived, in queue = 5 jobs, at time = 579313

>>> 190 so far arrived, in queue = 15 jobs, at time = 581246

>>> 200 so far arrived, in queue = 25 jobs, at time = 583087

>>> 210 so far arrived, in queue = 35 jobs, at time = 584497

*** 180 so far received, in queue = 20 jobs, at time = 584885

>>> 220 so far arrived, in queue = 1 jobs, at time = 588517

>>> 230 so far arrived, in queue = 1 jobs, at time = 590032

299

APPENDIX B: RESULTS SNIPPET

>>> 240 so far arrived, in queue = 1 jobs, at time = 591381

>>> 250 so far arrived, in queue = 1 jobs, at time = 592179

>>> 260 so far arrived, in queue = 1 jobs, at time = 593139

>>> 270 so far arrived, in queue = 1 jobs, at time = 595525

>>> 280 so far arrived, in queue = 1 jobs, at time = 596510

>>> 290 so far arrived, in queue = 1 jobs, at time = 597438

>>> 300 so far arrived, in queue = 1 jobs, at time = 597907

>>> 310 so far arrived, in queue = 1 jobs, at time = 599568

>>> 320 so far arrived, in queue = 1 jobs, at time = 599670

>>> 330 so far arrived, in queue = 1 jobs, at time = 600307

>>> 340 so far arrived, in queue = 1 jobs, at time = 601716

>>> 350 so far arrived, in queue = 1 jobs, at time = 602616

>>> 360 so far arrived, in queue = 1 jobs, at time = 603434

>>> 370 so far arrived, in queue = 1 jobs, at time = 603890

>>> 380 so far arrived, in queue = 1 jobs, at time = 605367

>>> 390 so far arrived, in queue = 1 jobs, at time = 606404

>>> 400 so far arrived, in queue = 1 jobs, at time = 608195

>>> 410 so far arrived, in queue = 1 jobs, at time = 610590

>>> 420 so far arrived, in queue = 1 jobs, at time = 612444

>>> 430 so far arrived, in queue = 1 jobs, at time = 615772

>>> 440 so far arrived, in queue = 1 jobs, at time = 617228

>>> 450 so far arrived, in queue = 1 jobs, at time = 619069

>>> 460 so far arrived, in queue = 1 jobs, at time = 620251

>>> 470 so far arrived, in queue = 1 jobs, at time = 621724

>>> 480 so far arrived, in queue = 1 jobs, at time = 622336

>>> 490 so far arrived, in queue = 1 jobs, at time = 622742

>>> 500 so far arrived, in queue = 1 jobs, at time = 623972

>>> 510 so far arrived, in queue = 1 jobs, at time = 627939

>>> 520 so far arrived, in queue = 1 jobs, at time = 630612

>>> 530 so far arrived, in queue = 1 jobs, at time = 631733

>>> 540 so far arrived, in queue = 1 jobs, at time = 635496

>>> 550 so far arrived, in queue = 1 jobs, at time = 642476

>>> 560 so far arrived, in queue = 1 jobs, at time = 645154

>>> 570 so far arrived, in queue = 1 jobs, at time = 653521

>>> 580 so far arrived, in queue = 1 jobs, at time = 663541

>>> 590 so far arrived, in queue = 2 jobs, at time = 664581

>>> 600 so far arrived, in queue = 8 jobs, at time = 668960

>>> 610 so far arrived, in queue = 18 jobs, at time = 671565

>>> 620 so far arrived, in queue = 25 jobs, at time = 674685

*** 590 so far received, in queue = 25 jobs, at time = 674947

*** 600 so far received, in queue = 12 jobs, at time = 675130

*** 610 so far received, in queue = 14 jobs, at time = 678057

>>> 630 so far arrived, in queue = 15 jobs, at time = 678938

>>> 640 so far arrived, in queue = 15 jobs, at time = 684765

*** 620 so far received, in queue = 12 jobs, at time = 685116

>>> 650 so far arrived, in queue = 1 jobs, at time = 687841

*** 640 so far received, in queue = 1 jobs, at time = 688167

>>> 660 so far arrived, in queue = 3 jobs, at time = 689568

300

APPENDIX B: RESULTS SNIPPET

>>> 670 so far arrived, in queue = 4 jobs, at time = 690117

>>> 680 so far arrived, in queue = 1 jobs, at time = 691515

>>> 690 so far arrived, in queue = 1 jobs, at time = 692549

*** 680 so far received, in queue = 1 jobs, at time = 692614

>>> 700 so far arrived, in queue = 1 jobs, at time = 693450

>>> 710 so far arrived, in queue = 1 jobs, at time = 695822

>>> 720 so far arrived, in queue = 1 jobs, at time = 697522

>>> 730 so far arrived, in queue = 1 jobs, at time = 699816

>>> 740 so far arrived, in queue = 1 jobs, at time = 699833

>>> 750 so far arrived, in queue = 1 jobs, at time = 701593

>>> 760 so far arrived, in queue = 1 jobs, at time = 705443

>>> 770 so far arrived, in queue = 1 jobs, at time = 705460

>>> 780 so far arrived, in queue = 1 jobs, at time = 707721

>>> 790 so far arrived, in queue = 1 jobs, at time = 710429

>>> 800 so far arrived, in queue = 1 jobs, at time = 712658

>>> 810 so far arrived, in queue = 1 jobs, at time = 718026

>>> 820 so far arrived, in queue = 1 jobs, at time = 722912

>>> 830 so far arrived, in queue = 1 jobs, at time = 724514

>>> 840 so far arrived, in queue = 1 jobs, at time = 724920

>>> 850 so far arrived, in queue = 1 jobs, at time = 725034

>>> 860 so far arrived, in queue = 1 jobs, at time = 725741

>>> 870 so far arrived, in queue = 1 jobs, at time = 725760

>>> 880 so far arrived, in queue = 1 jobs, at time = 725777

*** 10560 so far received, in queue = 5 jobs, at time = 4234422

>>> 10590 so far arrived, in queue = 6 jobs, at time = 4234433

*** 10570 so far received, in queue = 2 jobs, at time = 4234507

>>> 10600 so far arrived, in queue = 1 jobs, at time = 4235648

>>> 10610 so far arrived, in queue = 1 jobs, at time = 4236775

>>> 10620 so far arrived, in queue = 1 jobs, at time = 4238666

>>> 10630 so far arrived, in queue = 1 jobs, at time = 4239843

>>> 10640 so far arrived, in queue = 1 jobs, at time = 4241407

*** 10630 so far received, in queue = 2 jobs, at time = 4241852

>>> 10650 so far arrived, in queue = 1 jobs, at time = 4242784

>>> 10660 so far arrived, in queue = 1 jobs, at time = 4245436

>>> 10670 so far arrived, in queue = 1 jobs, at time = 4248005

>>> 10680 so far arrived, in queue = 1 jobs, at time = 4249992

Shuting down - last Gridlet = 12000 of 12000

End of submission... 10731

Machine usage = 66.52 % (used time/avail time) failures included. 0.0 % of failures.

Weighted machine usage = 66.51 % (used MIPS/avail MIPS) failures included. 0.0 % of failures.

0 = failed; Collected = Success + Failed : 10731 = 10731+0 | non-delayed = 2464

Total sched. time = 14642.0 ms | Makespan: 4357182.008

CHECK awsd: 8.612, Check slowdown=517.742619124589 -> 5555896.045825965/10731

Shuting down the blue_12000.swf_PWALoader... with: 1269 fails

Machine usage = 66.52 % 2898366.5523888227/4357164.1256 active/avail=0.0 / 1152.

301

APPENDIX C: WORKFLOW SINPPET

Appendix C

C.1. Introduction

A portion of available information on the workflow of Grid’5000 has been used within

the evaluation. Following is a snippet of how this information is structured.

C.2. Grid ‘5000 workflow

Generated by get-clean-log.py ($Revision: 0.1$) on Tue February 20, 2007, at 09:48:14 PM

Authors: Alexandru Iosup and Mathieu Jan ({A.Iosup|M.Jan} at tudelft.nl)

The Grid Workloads Archive (http://gwa.ewi.tudelft.nl/)

External coallocated_jobs info file: Grid5000_coallocated_jobs.log

External interactive_jobs info file: Grid5000_interactive_jobs.log

External reservation_jobs info file: Grid5000_reservation_jobs.log

External sites_time info file: Grid5000_sites_time.log

External user_to_group info file: Grid5000_user_to_group.log

Grid Workloads Format:

JobId<TAB>SubmitTime<TAB>WaitTime<TAB>RunTime<TAB>NProc<TAB>AverageCPUTimeUsed<T

AB>UsedMemory<TAB>ReqNProcs<TAB>ReqTime<TAB>ReqMemory<TAB>Status<TAB>UserId<TA

B>GroupId<TAB>ExecutableId<TAB>QueueId<TAB>PartitionId<TAB>OrigSiteId<TAB>LastRunSiteId

<TAB>JobStructure<TAB>JobStructureParams<TAB>UsedNetwork<TAB>UsedLocalDiskSpace<TAB>U

sedResources<TAB>ReqPlatform<TAB>ReqNetwork<TAB>RequestedLocalDiskSpace<TAB>Requested

Resources<TAB>VirtualOrganizationId<TAB>ProjectId

0 1083658801 1 0 4 -1 -1 4 3600 -1

1 user386 group4 app34 queue0 -1 G1/site4 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 1083658849 1 19 1 -1 -1 1 3600 -1

1 user112 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 1083658875 2 10 5 -1 -1 5 3600 -1

1 user112 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

3 1083658891 5 8 90 -1 -1 90 3600 -1

1 user112 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

4 1083658911 5 19 100 -1 -1 100 3600 -1

1 user112 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

5 1083658944 1 25 1 -1 -1 1 3600 -1

0 user112 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

6 1083659210 1 6 1 -1 -1 1 3600 -1

302

http:http://gwa.ewi.tudelft.nl
http:tudelft.nl
http:get-clean-log.py

APPENDIX C: WORKFLOW SINPPET

1 user568 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

7 1083659322 1 43205 4 -1 -1 4 43200 -1

0 user386 group4 app0 queue0 -1 G1/site4 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

8 1083659636 1 5 1 -1 -1 1 3600 -1

1 user568 group6 app0 queue0 -1 G1/site6 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

9 1083660389 -1 -1 4 -1 -1 4 9000 -1

0 user267 group5 app507 queue48 -1 G1/site5 G1/site6/c1 UNITARY

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

10 1083660523 2 156 7 -1 -1 7 18000

-1 1 user569 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

11 1083660693 1 19 7 -1 -1 7 18000

-1 1 user569 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

12 1083660719 1 4 7 -1 -1 7 18000

-1 1 user569 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

13 1083660726 1 2801 7 -1 -1 7 18000

-1 1 user569 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

14 1083660777 1 1 4 -1 -1 4 3600

-1 1 user267 group5 app507 queue0 -1 G1/site5 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

15 1083660832 1 0 4 -1 -1 4 3600

-1 1 user267 group5 app507 queue0 -1 G1/site5 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

16 1083660933 1 0 4 -1 -1 4 3600

-1 1 user267 group5 app507 queue0 -1 G1/site5 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

17 1083661197 1 20992 1 -1 -1 1 36000

-1 1 user570 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

18 1083661769 1 23027 1 -1 -1 1 43200

-1 1 user571 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

19 1083661777 1 23014 1 -1 -1 1 43200

303

APPENDIX C: WORKFLOW SINPPET

-1 1 user571 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

20 1083662072 1 22216 1 -1 -1 1 28800

-1 1 user67 group2 app0 queue0 -1 G1/site2 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

21 1083663533 1 13734 10 -1 -1 10 18000

-1 0 user569 group6 app0 queue0 -1 G1/site6 G1/site6/c1

UNITARY -1 -1 -1 -1 -1 -1 -1 -1

304

APPENDIX C: WORKFLOW SINPPET

305

APPENDIX D: DATABASE

Appendix D BGQoS Database Structure

D.1. Introduction

This appendix shows aspects of the database implementation. The database

implementation served as an access point for up-to-date information , as reference

when reallocation occurs, agreement referencing and storing information on GRCs,

GRPs and Broker.

306

APPENDIX D: DATABASE

D.2. Some Relations and Tables

307

APPENDIX D: DATABASE

D.3. XML Schema Snippet

- <database name="test1 ">
- <table_structure name="agreement">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="name" Type="varchar(45)" Null="YES" Key="" Extra="" />
<field Field="template_id" Type="int(11)" Null="YES" Key="" Extra="" />
<field Field="application_id" Type="int(11)" Null="YES" Key="" Extra="" />
<field Field="grc_id" Type="int(11)" Null="YES" Key="" Extra="" />
<field Field="grp_id" Type="int(11)" Null="YES" Key="" Extra="" />
<key Table="agreement" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="agreement" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:26:22" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="agreement" />

- <table_structure name="application">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="grc_id" Type="int(11)" Null="YES" Key="" Extra="" />
<key Table="application" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="application" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:27:01" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="application" />

- <table_structure name="broker">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="address" Type="varchar(45)" Null="YES" Key="" Extra="" />
<key Table="broker" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="broker" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:27:37" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="broker" />

- <table_structure name="grc">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="name" Type="varchar(45)" Null="YES" Key="" Extra="" />
<field Field="tier" Type="int(11)" Null="YES" Key="" Extra="" />
<key Table="grc" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id" Collation="A"

Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="grc" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0" Avg_row_length="0"

Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304" Create_time="2011-
06-16 12:07:40" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="grc" />

- <table_structure name="grc_tier">
<field Field="tier" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="description" Type="varchar(45)" Null="YES" Key="" Extra="" />
<key Table="grc_tier" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="tier"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="grc_tier" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:10:55" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="grc_tier" />

- <table_structure name="grp">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="name" Type="varchar(45)" Null="YES" Key="" Extra="" />
<field Field="address" Type="varchar(45)" Null="YES" Key="" Extra="" />
<key Table="grp" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id" Collation="A"

Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="grp" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0" Avg_row_length="0"

Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304" Create_time="2011-
06-16 12:13:12" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="grp" />

- <table_structure name="permission">

308

APPENDIX D: DATABASE

<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="description" Type="varchar(45)" Null="YES" Key="" Extra="" />
<key Table="permission" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="permission" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:12:34" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="permission" />

- <table_structure name="policy">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="resource_id" Type="int(11)" Null="YES" Key="" Extra="" />
<field Field="grp_id" Type="int(11)" Null="YES" Key="" Extra="" />
<key Table="policy" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="policy" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-17 15:44:28" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="policy" />

- <table_structure name="resource">
<field Field="id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="type" Type="varchar(45)" Null="YES" Key="" Extra="" />
<field Field="domain" Type="varchar(45)" Null="YES" Key="" Extra="" />
<field Field="cpu_count" Type="double" Null="YES" Key="" Extra="" />
<field Field="cpu" Type="double" Null="YES" Key="" Extra="" />
<field Field="availability" Type="double" Null="YES" Key="" Extra="" />
<field Field="reliability" Type="double" Null="YES" Key="" Extra="" />
<field Field="memory" Type="double" Null="YES" Key="" Extra="" />
<field Field="bandwidth" Type="double" Null="YES" Key="" Extra="" />
<field Field="storage" Type="double" Null="YES" Key="" Extra="" />
<field Field="grp_id" Type="int(11)" Null="YES" Key="" Extra="" />
<key Table="resource" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="id"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<options Name="resource" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"

Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:14:22" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="resource" />

- <table_structure name="tier_permission">
<field Field="tier" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<field Field="permission_id" Type="int(11)" Null="NO" Key="PRI" Extra="" />
<key Table="tier_permission" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="tier"

Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment="" Index_comment="" />
<key Table="tier_permission" Non_unique="0" Key_name="PRIMARY" Seq_in_index="2"

Column_name="permission_id" Collation="A" Cardinality="0" Null="" Index_type="BTREE" Comment=""
Index_comment="" />

<options Name="tier_permission" Engine="InnoDB" Version="10" Row_format="Compact" Rows="0"
Avg_row_length="0" Data_length="16384" Max_data_length="0" Index_length="0" Data_free="4194304"
Create_time="2011-06-16 12:12:00" Collation="utf8_general_ci" Create_options="" Comment="" />

</table_structure>
<table_data name="tier_permission" />

</database>

309

APPENDIX D: DATABASE

Appendix E

E.1. Introduction

This appendix includes a description of the functions, inputs, outputs and conditions

for the major components of BGQoS explained in Chapter 5.

310

APPENDIX D: DATABASE

E.2. QoSdescription parser

311

APPENDIX D: DATABASE

E.3. Meta-Negotiator

312

APPENDIX D: DATABASE

E.4. Meta-Broker

313

APPENDIX D: DATABASE

E.5. Resource Discovery Component

314

APPENDIX D: DATABASE

E.6. Resource Selection Component

315

APPENDIX D: DATABASE

E.7. Scheduling Component

316

APPENDIX D: DATABASE

E.8. Rescheduler Component

317

APPENDIX D: DATABASE

E.9. Monitoring Component

318

APPENDIX D: DATABASE

E.10. Resource Management Component

319

APPENDIX D: DATABASE

E.11. Task Launcher

320

	CHAPTER 1: INTRODUCTION
	1.1. Introduction
	1.2. General Setting
	1.3. Qualities of Service (QoS), Resource Operations and Motivation
	1.4. Research Question and Contributions
	1.5. Contributions
	1.6. Methodology
	1.7. Thesis Organisation
	CHAPTER 2: BACKGROUND AND LITERATURE REVIEW
	2.
	2.1. Introduction
	2.2. Grids
	2.2.1. Grid Computing Objectives
	2.2.1.1. Resource Sharing
	2.2.1.2. Efficient Utilisation of Idle, Unused and Unallocated Resources
	2.2.1.3. Collaboration
	2.2.1.4. Large Problems, Tasks and Applications Solutions
	2.2.1.5. Storage Solution

	2.2.2. Grid Features
	2.2.3. Grid Architecture
	2.2.3.1. Fabric Layer
	2.2.3.2. Connectivity Layer
	2.2.3.3. Resource Layer
	2.2.3.4. Collective Layer
	2.2.3.5. Application layer

	2.2.4. Grid Evolution
	2.2.4.1. Stage 1: Clusters
	2.2.4.2. Stage 2: IntraGrids
	2.2.4.3. Stage 3: ExtraGrids
	2.2.4.4. Stage 4: InterGrids

	2.2.5. Grids Classification
	2.2.5.1. National Grids
	2.2.5.2. Volunteer Grids
	2.2.5.3. Project Grids
	2.2.5.4. Enterprise Grids
	2.2.5.5. Computational Grids
	2.2.5.6. Data Grids

	2.3. Grids in Europe
	2.4. Grids for the mainstream
	2.4.1. Utility Grid Computing
	2.4.2. Advantages of Utility Grid Computing
	2.4.3. Challenges of Utility Grid Computing
	2.4.4. Cloud Computing
	2.4.4.1. Types of Clouds
	2.4.4.2. Cloud characteristics
	2.4.4.3. Grids vs Clouds

	2.5. Resource Brokers and Schedulers
	2.5.1. Scheduling with QoS
	2.5.2. Definitions
	2.5.2.1. User Satisfaction Driven Scheduling
	2.5.2.2. Resource Provider Satisfaction Driven Scheduling

	2.5.3. Broker Types
	2.5.4. Scheduling Models
	2.5.5. Multi-Broker Solution
	2.5.6. Examples
	2.5.6.1. Nimrod/G
	2.5.6.2. Condor-G
	2.5.6.3. Gridbus Broker
	2.5.6.4. Gridway

	2.6. QoS
	2.6.1. QoS in Grid Computing
	2.6.2. Related Work in QoS
	2.6.3. Projects Related to Market Oriented and Commercial Grid Computing
	2.6.3.1. GridEcon
	2.6.3.2. SORMA
	2.6.3.3. FinGrid

	2.7. Summary
	CHAPTER 3: MODEL CONCEPTS AND ENVIRONMENT
	3.1. Introduction
	3.2. Commercial and Mainstream Grid Computing
	3.3. Problem Description
	3.3.1. Coordinated Resource Allocation
	3.3.2. Negotiation
	3.3.3. Co-allocation of Resources
	3.3.4. Applications
	3.3.5. QoS Guarantees

	3.4. The Model Environment
	3.4.1. Resource Discovery, Selection and Allocation

	3.5. High-Level Components
	3.5.1. GRC
	3.5.2. GRPs

	3.6. Resources
	3.6.1. Resource Properties
	Resource Description
	Resource Repositories (RR)
	Access to RR
	Multiple Tasks Arriving Simultaneously
	Updating Resource Information

	3.7. QoS Definitions
	3.7.1. QoS Resource Management
	3.7.2. Application Execution
	3.7.3. Guaranteed QoS During Execution

	3.8. Operational Flow within the BGQoS Environment
	3.9. Summary
	CHAPTER 4: QOS SUPPORT WITHIN BGQOS
	4.1. Introduction
	4.2. Overall Scenario
	4.3. High-Level Abstraction
	4.4. QoS Offer
	4.5. Communication Scenarios
	4.5.1. GRC – GRP
	4.5.2. GRC – GRPs

	4.7. Agreement Establishment
	4.7.1. Agreement Basics
	4.7.2. Agreement Components
	4.7.2.1. Party Description
	4.7.2.2. Business Relationship
	4.7.2.3. Task Description and Resource Requirements
	4.7.2.4. QoS Descriptions
	4.7.2.5. Time Constraint and Cost Constraint
	4.7.2.6. Service Level Objectives (SLOs)

	4.8. Agreement Negotiation
	4.8.1. GRC and Broker
	4.8.2. Broker and GRP
	4.8.3. Broker and Broker

	4.9. QoS Support Methods in BGQoS
	4.9.1. BGQoS Flexibility
	4.9.2. Component Separation
	4.9.3. Symmetric QoS Model
	4.9.4. Standardising Request Inputs and Metric Unification
	4.9.5. The Standardisation of the Resourcedescription

	4.10. Templates
	4.10.1. Challenges
	4.10.2. Different Types of Templates

	4.11. Summary
	CHAPTER 5: BGQOS SYSTEM COMPONENTS AND DESIGN
	5.1. Introduction
	
	.1.

	5.2. Model Layers
	5.3. Implementation Components Overview
	5.4. GRC Identification
	5.5. QoSdescription parser
	5.6. Meta-Negotiator
	5.7. Meta-Broker
	5.8. Broker
	5.8.1. GRC Commands
	Get Request Status
	5.8.2. The Resource Discovery Component (RDC)
	5.8.3. The Resource Selection Component (RSC)
	5.8.4. The Scheduling Component (SC)
	5.8.5. The Rescheduler Component (RC)

	5.9. Monitoring Component (MC)
	5.9.1. The Task Monitor (TM)
	5.9.2. The Resource Monitor (RM)
	5.9.3. The Agreement Monitor (AM)

	5.10. The Resource Management Component (RMC)
	5.10.1. The Resource Updater (RU)
	5.10.2. The Resource Communicator (RC)

	5.11. The Agreement Management Component (AMC)
	5.12. Task Launcher (TL)
	5.12.1. The Local Task Launcher (LTL)
	5.12.2. The Global Task Launcher (GTL)

	5.13. The Task Migration Component (TMC)
	5.14. The Accounting and Billing Management Component (ABC)
	5.14.1. The Accounting Manager (AM)
	5.14.2. The Billing Manager (BM)

	5.15. Summary
	CHAPTER 6: BGQOS OPERATIONS
	6.1. Introduction
	6.2. Resource QoS Capabilities
	6.3. Cost and Time Estimation
	a.
	6.3.1. Time Estimation
	6.3.2. Cost Estimation

	6.4. Phases of Execution
	6.4.1. Phase1: Information Retrieval
	6.4.2. Phase 2: Matchmaking
	6.4.3. Phase 3: Agreement
	6.4.4. Phase 4: Resource Allocation
	6.4.5. Phase 5: Monitoring and Maintaining Agreement
	6.4.6. Phase 6: Completion and Billing

	6.5. Candidate Resource Accumulation
	6.5.1. Filtering: Meeting the Constraints

	6.6. Constraints Minimisation
	6.6.1. Rank According to the Proximity to QoSdescription
	6.6.2. Combination Ranking

	6.7. Policies
	6.8. Matchmaking
	6.8.1. Multi-Tier Interface
	6.8.2. GRC Request and QoSdescription
	6.8.3. Resource Discovery
	6.8.4. Resource Selection
	6.8.5. Scheduling and Executing Tasks

	6.9. Partner and Global Access to Resources through Brokers
	6.10. Reallocation
	6.10.1. Issues to Consider
	6.10.2. Reallocation for Guaranteed QoS GRCs
	6.10.2.1. Reallocation via Ranked Lists

	6.10.3. Tolerance Ratio

	6.11. Reallocation for BE GRCs
	6.12. Summary
	CHAPTER 7: SIMULATION
	7.
	7.1. Introduction
	7.2. Motivation for Simulation
	7.3. Current Simulation Tools
	7.3.1. OptorSim
	7.3.2. SimGrid
	7.3.3. MicroGrid

	7.4. GridSim
	7.4.1. GridSim Features
	7.4.2. GridSim Architecture
	7.4.3. Entities
	7.4.4. Main GridSim Classes
	7.4.4.1. Advanced Reservation Classes

	7.5. Modification to the Original Package
	7.5.1. Tasks (Gridlets)
	7.5.2. Users
	7.5.3. Resources
	7.5.4. Scheduler and Rescheduler
	7.5.5. Databases
	7.5.6. Monitoring Tasks
	7.5.7. Agreement Properties

	7.6. Summary
	CHAPTER 8: COMPONENT EVALUATION OF BGQOS
	8.1. Introduction
	8.2. Overhead for Resource Operations
	8.3. Overhead for Different GRC Types
	8.4. Locating Resources against QoS Reliability Parameter
	8.4.2. Reliability without Constraint
	8.4.3. Reliability with Constraints

	8.5. Resource Selection
	8.6. Effect of GRC Type on Successfully Completed Tasks
	8.7. GRC Access Authorisation
	8.8. Processing Time for Different GRC Types
	8.9. Effect of the Number of QoS Parameters Requested
	8.10. Scheduling Precision
	8.11. Partial Offers
	8.12. QoS Requirements vs Resource Utilisation
	8.13. On Demand vs Advanced Reservation
	8.14. Reallocation and Migration
	8.15. Violations
	8.16. Reallocation with Ratio
	8.17. Further Comparison with FCFS
	8.18. Analysis of the BGQoS Operation Evaluation
	8.19. Summary
	CHAPTER 9 EVALUATION OF COMPLETE OPERATION OF BGQOS
	9.1. Introduction
	9.2. The Simulated Environment
	9.3. Evaluation Metrics
	9.4. Results
	9.4.1. Response Time
	9.4.2. Resource Utilisation
	9.4.3. Percentage of successful GRC requests
	9.4.4. Percentage of successfully completed tasks
	9.4.5. Effect of Varying Cost and Time Constraints
	9.4.5.1. Time Constraint
	9.4.5.2. Cost Constraint

	9.4.6. GRC Satisfaction

	9.5. Analysis
	9.6. Summary
	CHAPTER 10: SUMMARY, CONCLUSION AND FUTURE DIRECTION
	10.
	10.1. Introduction
	10.2. Thesis Contributions
	10.3. Conclusion
	10.4. Future Work and Directions
	10.4.1. Full Standardisation of Metrics and Metric Unification Support
	10.4.2. Expansion for Cloud Computing
	10.4.3. Testing the Operation on a Real Test-Bed

