
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

125,000 140M

TOP 1%154

5,000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/335287479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Chapter

Analysis of Effective Load
Balancing Techniques in
Distributed Environment
Anju Shukla, Shishir Kumar and Harikesh Singh

Abstract

Computational approaches contribute the significance role in various fields
such as medical applications, astronomy, and weather science, to perform complex
calculations in speedy manner. Today, personal computers are very powerful but
underutilized. Most of the computer resources are idle; 75% of the time and server
are often unproductive. This brings the sense of distributed computing, in which
the idea is to use the geographically distributed resources to meet the demand of
high-performance computing. The Internet facilitates users to access heterogeneous
services and run applications over a distributed environment. Due to openness and
heterogeneous nature of distributed computing, the developer must deal with sev-
eral issues like load balancing, interoperability, fault occurrence, resource selection,
and task scheduling. Load balancing is the mechanism to distribute the load among
resources optimally. The objective of this chapter is to discuss need and issues of
load balancing that evolves the research scope. Various load balancing algorithms
and scheduling methods are analyzed that are used for performance optimization of
web resources. A systematic literature with their solutions and limitations has been
presented. The chapter provides a concise narrative of the problems encountered
and dimensions for future extension.

Keywords: load balancing, resource management, resource scheduling,
load measurement, fault tolerance

1. Introduction

The performance of any web server has been affected by the web traffic usually,
and the web server makes a slow response because it gets overloaded. Due to the
increased traffic over the Internet, a web server faces challenges to serve the large
number of users with high-speed availability. Therefore, the concept of resource
confederation comes in existence. The popular Google web server works on the
same concept. It distributes the user’s query in different web servers which are
geographically distributed at various locations. Load balancing plays a vital role
in the operation of distributed and parallel computing. It partitioned the incom-
ing workload into smaller tasks that are assigned to computational resources for
concurrent execution. The load may be CPU capacity, memory size, network load,
delay, etc. The reason behind load balancing is to handle requests of multiple users
without degrading the performance of web server. Load balancer receives requests

Distributed Computing - Principles and Practices

2

from user, determines the load on available resources, and sends request to the
server which is lightly loaded. The major functions of load balancer are as follows:

• Distributes incoming traffic across multiple computational resources

• Determines resource availability and reliability for task execution

• Improves resource utilization

• Increases client satisfaction

• Provides fault tolerance and flexible framework by adding or subtracting
resources as demand occurs

Load balancing significantly improves global system performance in terms of
throughput and resource utilization. The several reasons to use LBAs are as follows:
cost optimization, fault tolerance ability, system adaptability and extensibility,
decreased response time, idle time of resources, increased throughput, reliability,
and starvation prevention [1, 2].

To incorporate these benefits, it is important to select the suitable Load
Balancing Algorithm (LBA) for web resources. LBAs can be categorized in three cat-
egories based on process origination as shown in Figure 1. Both sender-initiated and
receiver-initiated algorithms use different transfer and location policies for imple-
menting load balancing. Symmetric-initiated algorithms eliminate the preemption
condition of receiver-initiated algorithm and offer two algorithms: above-average
algorithm and adaptive algorithm. Above-average algorithm uses an acceptable
range for deciding whether a node is sender-initiated or receiver-initiated.

The second classification of LBA exists based on the current state of the system
as shown in Figure 2. Static algorithms require prior information about the system
characteristics such as processing capability, memory, number of active connec-
tions, etc., while DLB algorithms use the current status of the system to make
scheduling decisions.

1.1 Static load balancing

Static load balancing approaches use the prior information of tasks, computing
resources or processing element, and network detail as shown in Figure 3. The task
can be submitted to any processing element using two methods:

• Stateless method

• State-based method

Figure 1.
Classification based on process origination.

3

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

In stateless method, selection of a processing element (PE) is done without
having any awareness of the system environment, while in a state-based method,
selecting a PE requires information of the system condition [3]. Stateless methods
are simple to implement, but it provides one-to-one interaction between the client
and server at a time as shown in Figure 4.

Figure 5 represents the stateful load balancing method; the load balancer keeps
track for all the sessions, and decisions are taken based on server load. Various state-
less techniques exist for selecting the processing element such as RR-LBA, weighted
round robin (WRR)-LBA, and random allocation algorithm [3]. However, these
algorithms have limited scope due to the dynamic nature of distributed environment.

1.2 Dynamic load balancing

It varies from the SLB algorithms in which clients’ requests are distributed
among available resources at run time. The LB assigns the request based on the
dynamic information collected from all the resources as shown in Figure 6.

Figure 2.
Classification based on system state.

Figure 3.
Static load balancing.

Figure 4.
Stateless static load balancing.

Figure 5.
Stateful static load balancing.

Distributed Computing - Principles and Practices

4

DLB algorithms can be classified in two categories—distributed and non-
distributed. In distributed DLB, all computing resources are equally responsible
for balancing the load. The responsibility of load balancing is shared among all
the resources. But in non-distributed algorithms, each resource performs inde-
pendently to accomplish the common goal. Generally, distributed DLB algorithms
generated more message overhead than non-distributed DLB due to its interaction
with all the resources.

Distributed algorithms perform better in fault conditions as it degrades only the
sectional of the system instead of global system performance. Non-distributed algo-
rithms are further classified into two categories—centralized and semi-centralized.
In centralized algorithm, a central server is responsible for executing load balancing
algorithm. In semi-centralized, servers are arranged in clusters, and load balancing
within the cluster is managed centrally.

2. Challenges of load balancing

The load balancer implements several load balancing algorithms to determine
the suitable resource. However it faces several issues while distributing the load
across available resources. Several major issues with their respective solutions are
presented in the next section.

2.1 Increased web traffic

Over the last few years, the web traffic is increased very rapidly due to numer-
ous registered websites and online transactions. As the numbers of requests are
increased, the response of server becomes slow due to the limited number of
open connections. The requests are added to the overall processing capability
of resources. When incoming requests go beyond the capability of the resource,
a resource crashes or fault occurs. Several authors analyzed and suggested the
solution to resolve the issue. The first solution is the server upgradation in which
requests are handled by a more powerful server for a while. But, scalability, inter-
ruption, and maintenance issues are associated with this solution. Another solution
is the outsourcing in which requests are sent to another suitable server for speedy
response. But this approach is costly and has limited control over the QoS issues.
Chen et al. [4] suggested that the web page size and number of users both affect the
system response time.

The most favorable solution is to use the multiple servers with an efficient load
balancer which balances the load among servers. The performances of these servers
are analyzed through queueing models or waiting line models. Broadly, two types
of load balancing models are used to analyze the web server performance. Each
approach has its benefits, applications, and limitations.

Figure 6.
Dynamic load balancing.

5

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

2.1.1 Centralized queueing model for load balancing

In this mechanism, homogeneous servers with finite buffer sizes are used as
shown in Figure 7. The load balancer receives request from the user and redirects
the request among servers using one of these routing policy:

• Random policy

• RR policy

• Shortest queue policy

Zhang and Fan [5] compared these policies in terms of rejection rate and system
response time. They analyzed that these algorithms perform well when traffic is
light. But when web traffic becomes high, shortest queue policy performs better
than random and RR policy. The number of rejections in RR and random policy is
increased as the traffic increases. Singh and Kumar [6] presented a queueing algo-
rithm for measuring the overloading and serving capacity of server in distributed
load balancing environment. The algorithm performs better in both homogeneous
and heterogeneous environment than the remaining capacity (RC) and server
content based queue (QSC) algorithms.

2.1.2 Distributed queueing model for load balancing

These mechanisms address the network latency issue also, which avoids network
congestion. The queueing models follow certain arrival and distribution rules to
distribute the requests. Zhang and Fan [5] suggested that distributed queueing
models perform well in heavy traffic conditions. Routing decisions are taken on the
basis of queue length differences of web servers. The collected information is used
in traffic distribution for improving the performance of web servers. Singh and
Kumar [7] suggested that task completion time directly affects the queue length of
the web server. They presented a model based on the ratio factor of the task’s aver-
age completion time. The model is compared with the model presented by Birdwell
et al. [8], and it performs better for two performance metrics: average queue length
and average waiting time of web servers.

Li et al. [9] analyzed network delay and presented a delay controlled load
balancing approach for improving network performance. However, the approach
has limited applicability and is suitable for stable path states.

2.2 Resource selection and task allocation

Many researchers have addressed the problem of resource selection and task
allocation for the fair perspective of load balancing. It is the responsibility of load
balancer to map resource and task before actual execution as shown in Figure 8.

Figure 7.
Centralized queueing model.

Distributed Computing - Principles and Practices

6

The resource management consists of two major functions: resource provision-
ing and resource monitoring. In resource provisioning, the user submits task to
the broker with various predefined QoS constraints. The broker is responsible to
find the suitable resource for task execution. The resource scheduling is all about
mapping and execution of task on the appropriate resource as shown in Figure 9.
Various types of resources that need to be managed are shown in Figure 10.

Hao et al. [10] categorized the resource in three categories—underloaded,
normal loaded, and overloaded. The scheduler assigns the task to underloaded or
normal-loaded resources only. Chang et al. [11] categorized the resources into L
discrete levels for selecting the fittest resource for task execution. Arabnejad and
Barbosa [12] presented a budget-based task scheduling and calculated the worthi-
ness of all the resources for resource selection.

Naik et al. [13] presented a value function to select a resource for task execution.
A value function is calculated using completion ratio and historic information of a
resource. For minimizing the data transfer between the resources, Cheng et al. [14]

Figure 10.
Types of resources.

Figure 8.
Task and resource allocation model.

Figure 9.
Resource management classifications.

7

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

used a hypergraph which identifies task and data dependency. Tasks that use similar
data are assigned to the same resource to decrease the cost indirectly. AbdElrouf
et al. [15] used a genetic algorithm for producing chromosomes. A fitness function
is used for generating chromosomes. Individuals who have higher fitness value will
only proceed for further chromosome reproduction.

Murugesan and Chellappan [16] suggested deadline and budget-based resource
selection method for divisible workloads. The method assigns the appropriate
resource in terms of cost from the list of available resources. Shah et al. [17] also
claimed a linear programming-based resource allocation method for divisible
workloads. The job is categorized in appropriate sizes to allocate on available
resources. Singh and Kumar [18] improved the resource selection method presented
by Singhal et al. [19] by determining the task workload and resource availability,
respectively. Ang et al. [20] introduced a resource allocation mechanism by consid-
ering the requirement of user as well as service provider.

Various researchers suggested numerous techniques for heterogeneous task
allocation [21–24]. Adhikari et al. [25] presented a task assignment mechanism that
provides reduced makespan and execution cost in cloud environment. They have used
Bat algorithm for selecting the suitable cluster with faster convergence. Raman et al.
[26] provide improvements of traditional round robin (RR) task scheduling which
performs well when all the resources have equal serving capacity. In heterogeneous
environment, it does not provide prominent results. Therefore, a weight is assigned to
each server which represents the priority of selecting a server. The algorithm per-
forms well in distributing the load more efficiently then RR scheduling algorithm.

Pham and Huh [27] analyzed the cloud-fog environment and presented a
task scheduling algorithm. The suggestion behind the presented algorithm is the
association between fog nodes and cloud nodes to decrease the makespan and price
of cloud resources. If the computation is not feasible on fog node, then tasks are
executed on cloud node. Several constraints like deadline and budget can enhance
the algorithm efficiency and applicability.

Wu [28] presented a task scheduling for embedded systems to enhance the
performance of real applications in CloudIoT paradigm. These approaches are
used in real-time networks where time constraints are strictly followed. The
algorithm increases the scheduling success rate of real-time task on heterogeneous
web servers. Moschakis and Karatza [29] analyzed the workload generated by IoT
devices and scheduled them on multi cloud-based system. The least loaded server is
selected by global dispatcher for scheduling IoT jobs.

Grandinetti et al. [30] presented an offline mathematical formula to improve
task scheduling and average waiting time. Xu et al. [31] presented a task schedul-
ing algorithm which determines crossover and mutation operations for mapping
between tasks and resources. Kamalinia and Ghaffari [32] addressed the task sched-
uling as an NP complete problem. They also used a genetic algorithm to design task
scheduling problem to improve makespan and resource efficiency. The presented
scheduling algorithm reduces the communication cost among processors by using
meta-heuristic methods.

2.3 Load measurement

The load measurement is very important and crucial activity in distributed
environment. Various load balancing algorithms determine resource load condition
before real implementation of task. Various performance metrics like fault toler-
ance, waiting time, response time, etc. can effectively be optimized by measuring
the current load of a resource. Many authors addressed this issue and presented
various resource provisioning techniques for effective distribution of incoming load.

Distributed Computing - Principles and Practices

8

Patel and Tripathy [33] categorized the resources in three categories: under-
loaded, normal-loaded, and overloaded to manage the load of available resources.
Before assigning a task to a resource, the scheduler checks the current load of each
resource and selects the underloaded or normal-loaded resource for task execution.
Task length, processing element capacity, and deadline constraints are the factors
that are considered to determine the current load of each resource. If a resource
becomes overloaded, the unfinished tasks are shifted to another suitable resource
for completing their execution. Checkpoint mechanism is used to save and resume
the task state which greatly decreases the average response time and task resubmis-
sion time and improves the system throughput.

Liu et al. [34] advised that resource provisioning techniques may balance the
resource load effectively. They presented peer load balance provision compares the
demand and resource capacity by considering requirement of both customer and
service provider. The presented mechanism reduced the cost and average response
time than other existing methods.

Rathore and Chana [35] determined a dynamic threshold value based on
standard deviation for load balancing and job migration. For job migration, the
resources are categorized and the average load of each cluster is compared with pro-
cessing element’s threshold value. For load balancing, tasks are selected randomly
either from underloaded or overloaded resource collection.

Kaushik and Vidyarthi [36] consider various parameters for effective job sched-
uling and resource allocation. The presented model selects the best cluster in terms
of increased system reliability and reduced energy consumption and balances the
system load efficiently. The customer can prioritize their choices to select the suit-
able cluster for task execution. An effective approach for determining job migration
overhead can increase the model adaptability in real scenarios.

2.4 Cost optimization

Load balancing algorithm maps task to various heterogeneous resources based
on predefined objectives. The major objective of load balancer is to optimize task
completion time, resource cost, and its utilization. Several authors addressed the
cost issue and provide possible solutions for its optimization.

Garg and Singh [37] suggested an adaptive workflow scheduling (AWS) by
considering resource cost and communication cost between task and resources. Due
to heterogeneous nature of resources, final cost is calculated periodically. Chaisiri
et al. [38] analyzed the resource provisioning phases and suggested that reservation
method provides reduced cost than on demand methods. Broadly, there are three
stages in resource provisioning:

• Resource reservation

• Resource expanding

• Resource on demand

In the first stage, the cloud broker arranged the resources in advance without
experiencing the customer requirement. In the second phase, the customer require-
ment and resource cost are comprehended, and the resource overutilization or unde-
rutilization is identified. If customer requirement is greater than reserved resources,
the broker could request for additional resources on pay-per-use basis. Here, the on
demand phase started. In on demand phase, the customer must know the appropri-
ate future requirement which is difficult to estimate in cloud environment.

9

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

Singh and Kumar [39] presented a cost optimization method based on pro-
cess activity. Processing cost and waiting time are determined by using activity
time, resource utilization, and variability factor to check the method efficiency.
Bittencourt and Madeira [40] presented a cost optimization method for hybrid
cloud. The clouds can be categorized in three categories based on resource avail-
ability: public cloud, private cloud, and hybrid cloud. A user can use the services
of public cloud by using pay-per-use method. Private clouds belong to individuals
and offer free variety of services. In hybrid cloud, resources from public cloud are
aggregated as per requirement. Bittencourt and Madeira [40] identified the method
for appropriate resource.

Cao et al. [41] analyzed that each task is different from each other in cloud
environment. They suggested an activity-based task scheduling approach for task
reduction. The presented algorithm performs well than traditional task assignment
approaches in terms of cost reduction.

Efficient resource provisioning plays a vital role in reducing the cost of task
execution. Suresh and Varatharajan [42] presented a particle swarm optimization
(PSO)-based resource provisioning algorithm. PSO is adopted to select the appro-
priate resource for cost optimization. Three performance metrics task execution
time, memory usage, and cost are evaluated and compared with other existing
methods. The simulation result shows that the presented PSO-based algorithm
provides minimum execution time and memory usage with least cost than other
state-of-the-art methods.

Salehan et al. [43] suggested auction-based resource allocation to meet the
requirement of the customer and service provider. At the time of scheduling,
resources are assigned to users that have highest bids. The algorithm provides high-
est profit and satisfies both the customers and service providers for multiple criteria
than other existing methods. Nezarat and Dastghaibyfard [44] map the resource
allocation mechanism to economic-based supply and demand problem which
provides better functionality with 17% profit with other existing methods.

Netjinda et al. [45] suggested a task scheduling for workflow applications.
These workflow applications consist of dependent task with deadline constraints.
The aim is to select the least cost cloud resource through PSO for workflow-based
task execution. The effective task scheduling decreases the execution time which
directly affects the final cost. By considering communication overhead, the model
effectiveness and applicability can be increased in real cloud environment.

Chunlin and Layuan [46] presented a resource provisioning method for mobile
clients. The mobile devices greatly depend on cloud resources for accessing data and
performing operations. The aim is to select the optimal resource at least cost. The ser-
vice provider executes the tasks on appropriate resources to get the maximum profit.

2.5 Fault tolerance

Fault tolerance is a mechanism that provides the estimated quality results even
in the presence of faults. A system with its components and services can consider
reliable only if it has fault tolerance capability. Therefore, fault tolerance issue has
got a noticeable attention by the research community over the last decades [47].

Fault tolerance techniques can be categorized into two: proactive and reactive.
Proactive techniques are prevention techniques that determine the controlled state
for fault tolerance before they occur. The systems are continuously monitored
for fault estimation. Proactive fault tolerance can be implemented in three ways:
self-healing, preemption migration, and system rejuvenation. In self-healing,
fault recovery procedures are periodically applied for autonomous recovery. In
preemptive migration, the tasks are shifted from fault probable resource to another

Distributed Computing - Principles and Practices

10

resource. System rejuvenation is the mechanism in which periodic backups are
taken for cleaning and removing errors from the system.

Another category is the reactive approaches that deal with faults after their
occurrence. Reactive fault tolerance can also be implemented in three ways: job
replication, job migration, and checkpoint. In job replication, several instances
or copies of the same task make available on different resources. If one instance
fails, task is executed on another instance. In job migration, tasks are migrated to
another suitable resource for completing its execution. In checkpoint, task states are
periodically saved and restarted from the last saved state instead of from the very
beginning [47]. Several authors suggested fault tolerance mechanism and recovery
solutions to resolve the issue.

Patel et al. [48] addressed resource failure issues and presented a checkpoint
based recovery mechanism for task execution. If task does not complete its execu-
tion within deadline, then another suitable resource is selected for completing its
execution. Before transferring it to another suitable resource, task state is saved
and resumed for further execution through checkpoint. This results in reduced
execution time, response time, and improved throughput than other existing
methods.

Generally checkpoint increases the execution time that directly affects the
execution cost. Egwutuoha et al. [49] use the process of redundant technique to
reduce the task execution time. The presented technique is pretty good and reduces
up to 40% checkpoint overhead. Choi et al. [50] identify the malicious users to
provide fault tolerance scheduling in cloud environment. Any user which only use
cloud services and reject other requests is treated as malicious user. The reputation
is calculated to determine the malicious users. The work can be implemented to
improve network reliability and task execution time in cloud paradigm.

Mei et al. [51] suggested that replication-based fault tolerance approaches waste
lots of resources and also compromise with makespan. To resolve the issue, Mei
et al. [51] presented fault tolerance scheduling mechanism that ensures successful
completion of task execution. The limitation of replication is avoided by reschedul-
ing the task for further execution. If scheduler identifies the failure, it reassigns task
to another suitable resource and saves the wastage of resources. This mechanism
reduces resource consumption and task execution time. However, costs are pre-
sumed for implementing scheduling, which limits the model applicability in real
scenario.

Nazir et al. [52] use fault index for maintaining the history of resources. Fault
index is determined based on successful and unsuccessful task completion on
particular resource. Based on fault index value, grid broker replicates the task that
can be used when fault occurs. Budget and time constraints are also considered
at the time of task scheduling. The presented mechanism satisfies various QoS
requirement, increases the reliability, and performs consistent in the existence of
fault also.

Qureshi et al. [53] combined two fault tolerance techniques to inherit the favor-
able aspects. They perform hybridization of alternate task with retry and check-
point mechanism and evaluate various performance metrics. The simulation result
shows that alternate task with checkpoint mechanism performs better and improves
system throughput than other existing methods.

Cloud facilitates the storage and access heterogeneous data in a distributed
remote network. Due to dynamicity, network congestion and system faults are key
factors for fault occurrence. Preventing the network from congestion and selection
of suitable servers can avoid the fault conditions. Tamilvizhi and Parvathavarthini
[54] suggested the concept of square matrix multiplication to manage the network
traffic and avoid network congestion. The resource monitor predicts the fault

11

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

conditions and uses migration policies to avoid system failure. The presented fault
tolerance mechanism provides reduced cost with less energy consumption.

Garg and Singh [55] observed various fault conditions and suggested a fault
tolerance-based task scheduling algorithm in grid environment. A genetic algo-
rithm is used to determine the resource capacity for task scheduling. The presented
approach increased system reliability and reduced task execution time in grid
environment.

2.6 Interoperability issue

Interoperability refers efficient migration and integration of heterogeneous
applications and data to get the seamless services across domains. Various distrib-
uted applications exist to provide millions of services that differ in the services they
offered:

• Distributed computing is a collection of various heterogeneous components
that are located at remote locations, which coordinate with each other by
message passing. Each component or processor has its own memory. It is a kind
of parallel computing in which a task is split into subtasks to run on multiple
components simultaneously.

• Grid computing is a network of computer resources that are connected to solve
a complex problem. Each resource is loosely linked and runs independent task
to achieve a common goal. Grid computing may be classified on the basis of
scale and functionality. On the basis of scale, grid computing may be classified
into two categories (Table 1), i.e., cluster grid and enterprise grid. Cluster
means a group of similar kind of entities. So cluster grid provides services to
the group or departmental level. Another type is enterprise grid that provides
to share resources within the enterprise.

• Cloud computing provides on demand computer resources such as storage or
computational resources without direct involvement of users. It has effective
data management and computing framework for executing task in parallel to
improve various QoS metrics.

• Fog computing is the extension of cloud computing which consists of multiple
fog nodes that are directly connected to the physical devices. The difference
between both technologies is that cloud is a centralized system while fog is
distributed but decentralized system.

S. no Classification

criteria

Types of grid Characteristics

1 Scale Cluster Computational services are limited to a group or a

department

Enterprise Provides services within an enterprise

2 Functionality Global Comprises of collection of cluster grid

Computational Acts as an integrated processing resource

Data Coordinate and manage database information

which is located at remote locations

Table 1.
Classification of grid.

Distributed Computing - Principles and Practices

12

• CloudIoT is an innovative trend which connects and manages millions of
devices in very cost-effective manners that are dispersed globally. Cloud can
profit by IoT to deal with real-world things by sharing the pool of highly
computational resources rather than having local servers or personal devices to
handle applications [56, 57].

Various authors analyzed the interoperability issues that are briefly presented
with their respective solutions. Aazam et al. [58] focused on analyzed two comple-
mentary technologies: cloud computing and IoT. Various challenges and integration
issues of CloudIoT framework are discussed. Data analysis, service provisioning,
and storage are the future dimensions to improve the performance of CloudIoT
model.

Botta et al. [59] also analyzed the integration issues of cloud and IoT. Both the
technologies are analyzed separately based on applications, technology, issues,
and challenges. The details of existing platforms and projects are presented that
are currently implementing CloudIoT. Standardization, address resolution, multi-
networking, and developments of APIs are some future directions to provide full
potential to CloudIoT framework. Khodkari et al. [60] present the significance and
requirement of CloudIoT paradigm. They presented complementary aspects of
cloud computing and IoT and assure the QoS by evaluating the integrity require-
ment of both the technologies.

Bonomi et al. [61] analyzed characteristics, services, and applications of fog
computing. They determined the importance of collaboration of fog and cloud and
address that some applications need both cloud globalization and fog localization
like big data and analytics.

2.7 QoS issues

The user submits the tasks with various QoS constraints (cost execution time,
energy consumption, delay, etc.) to improve the performance in distributed envi-
ronment. Researchers addressed several QoS issues and provide the solutions for
meeting the objective. Aron and Chana [62] observed various QoS issues and iden-
tified four issues, i.e., cost, reliability, security, and time, for resource provisioning
in grid environment. Service-level agreement (SLA) reduced the complexity of
resource provisioning by maintaining up-to-date information of all the resources.
The presented approach performs better in terms of resource utilization, cost, and
customer satisfaction.

Popularity of cloud computing increased burden on distributed data centers.
These data centers consumes excessive amount of energy to provide services and
fulfill consumer satisfaction. Horri et al. [63] identified overloaded and under-
loaded servers and shift load from overloaded to underloaded resources. This makes
a trade-off between energy consumption and SLA. HoseinyFarahabady et al. [64]
suggested an objective function to reduce cost and performance improvement for
resource allocation mechanism. Two test cases are considered: tasks with known
running time and tasks with unknown running time. They listed Monte Carlo
method to determine the task’s unknown values.

3. Summary

A web server system used several load balancing techniques for distributing
its load among available web resources. In this chapter, several load balancing issues
have been identified for managing the web resources in distributed environment.

13

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

Author details

Anju Shukla, Shishir Kumar* and Harikesh Singh
Department of Computer Science and Engineering, Jaypee University of
Engineering and Technology, Guna, MP, India

*Address all correspondence to: dr.shishir@yahoo.com

Detailed description of existing approaches, strength, limitation, and future scope
has been analyzed and an adequate radiance has been thrown to these techniques.
On the basis of abovementioned issues, several future dimensions have been identi-
fied that will be beneficial for the research community to achieve various objectives:

• Development of a resource allocation model which considers resource as well
as task characteristics to optimize various QoS metrics

• Development of a fault tolerance load balancing model for partial executed
tasks due to resource failure and construction of a resource selection policy for
task execution

• Analysis of contextual relationship among CloudIoT issues and optimization
through effective scheduling

• Development of an execution time prediction model for efficient resource
provisioning, selection, and scheduling

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

14

Distributed Computing - Principles and Practices

[1] Alakeel AM. A guide to dynamic
load balancing in distributed computer
systems. International Journal of
Computer Science and Information
Security. 2010;10(6):153-160

[2] Khan RZ, Ali MF. An efficient
diffusion load balancing algorithm
in distributed system. International
Journal of Information Technology and
Computer Science. 2014;6(8):65-71

[3] Kumar B, Richhariya V. Load
Balancing of Web Server System Using
Service Queue Length. M.tech Scholar
(CSE) Bhopal. Vol. 5(5). 2014. Available
from: http://www.ijetae.com/files/
Volume4Issue5/IJETAE_0514_14.pdf

[4] Chen C, Bai Y, Chung C,
Peng H. Performance measurement
and queueing analysis of web servers
with a variation of webpage size.
In: Proceedings of the International
Conference on Computer Applications
and Network Security. 2011. pp. 170-174

[5] Zhang Z, Fan W. Web server
load balancing: A queueing analysis.
European Journal of Operational
Research. 2008;186(2):681-693

[6] Singh H, Kumar S. WSQ: Web
server queueing algorithm for dynamic
load balancing. Wireless Personal
Communications. 2015a;80(1):229-245

[7] Singh H, Kumar S. Analysis &
minimization of the effect of delay on
load balancing for efficient web server
queueing model. International Journal
of System Dynamics Applications.
2014;3(4):1-16

[8] Birdwell JD, Chiasson J, Tang Z,
Abdallah C, Hayat MM, Wang T. Dynamic
time delay models for load balancing.
Part I: Deterministic models. In:
Advances in Time-Delay Systems.
Berlin, Heidelberg: Springer; 2004.
pp. 355-370

[9] Li M, Nishiyama H, Kato N,
Mizutani K, Akashi O, Takahara A. On
the fast-convergence of delay-based load
balancing over multipaths for dynamic
traffic environments. In: International
Conference on Wireless Communications
and Signal Processing. 2013. pp. 1-6

[10] Hao Y, Liu G, Wen N. An enhanced
load balancing mechanism based on
deadline control on GridSim. Future
Generation Computer Systems.
2012;28(4):657-665

[11] Chang RS, Lin CF, Chen JJ. Selecting
the most fitting resource for task
execution. Future Generation Computer
Systems. 2011;27(2):227-231

[12] Arabnejad H, Barbosa JG. A budget
constrained scheduling algorithm for
workflow applications. Journal of Grid
Computing. 2014;12(4):665-679

[13] Naik KJ, Jagan A, Narayana NS. A
novel algorithm for fault tolerant
job scheduling and load balancing
in grid computing environment. In:
International Conference on Green
Computing and Internet of Things.
2015. pp. 1113-1118

[14] Cheng B, Guan X, Wu H. A
hypergraph based task scheduling
strategy for massive parallel spatial data
processing on master-slave platforms.
In: 23rd International Conference on
Geoinformatics. 2015. pp. 1-5

[15] AbdElrouf W, Yousif A,
Bashir MB. High exploitation genetic
algorithm for job scheduling on grid
computing. International Journal of
Grid and Distributed Computing.
2016;9(3):221-228

[16] Murugesan G, Chellappan C. An
economic allocation of resources for
divisible workloads in grid computing
paradigm. European Journal of
Scientific Research. 2011;65(3):434-443

References

15

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

[17] Shah SNM, Mahmood AKB,
Oxley A. Modified least cost method
for grid resource allocation. In:
International Conference on Cyber-
Enabled Distributed Computing and
Knowledge Discovery. 2010. pp. 218-225

[18] Singh H, Kumar S. Optimized
resource allocation mechanism for
web server grid. In: IEEE UP Section
Conference on Electrical Computer and
Electronics. 2015. pp. 1-6

[19] Singhal S, Kumar M, Kant K. An
economic allocation of resources in
grid environment. In: International
Conference on Information Systems and
Computer Networks. 2013. pp. 185-190

[20] Ang TF, Por LY, Liew CS. Dynamic
pricing scheme for resource allocation
in multi-cloud environment. Malaysian
Journal of Computer Science. 2017;30(1):
1-17

[21] Arunarani AR, Manjula D,
Sugumaran V. Task scheduling
techniques in cloud computing: A
literature survey. Future Generation
Computer Systems. 2019;91:407-415

[22] Chinnathambi S, Santhanam A,
Rajarathinam J, Senthilkumar M.
Scheduling and checkpointing
optimization algorithm for Byzantine
fault tolerance in cloud clusters. Cluster
Computing. 2019;22(6):14637-14650

[23] Zhang Z. Resource selection method
based on service capability in cloud
manufacturing. International Journal of
Internet Manufacturing and Services.
2018;5(2-3):169-183

[24] Zhu LN, Li PH, Yang X, Shen GJ,
Zhao YW. EE-RJMTFN: A novel
manufacturing risk evaluation method
for alternative resource selection in
cloud manufacturing. Concurrent
Engineering. 2019;27(1):3-13

[25] Adhikari M, Nandy S, Amgoth T.
Meta heuristic-based task deployment

mechanism for load balancing in
IaaS cloud. Journal of Network and
Computer Applications. 2019;128:64-77

[26] Raman K, Subramanyam A,
Rao AA. Comparative analysis of
distributed web server system load
balancing algorithms using qualitative
parameters. VSRD International Journal
of Computer Science and Information
Technology. 2011;8:592-600

[27] Pham XQ , Huh EN. Towards task
scheduling in a cloud-fog computing
system. In: 18th Asia-Pacific Network
Operations and Management
Symposium. 2016. pp. 1-4

[28] Wu DH. Task optimization
scheduling algorithm in embedded
system based on internet of things.
Applied Mechanics and Materials.
2014;513:2398-2402

[29] Moschakis IA, Karatza HD. Towards
scheduling for Internet of Things
applications on clouds: A simulated
annealing approach. Concurrency and
Computation: Practice and Experience.
2015;27(8):1886-1899

[30] Grandinetti L, Pisacane O,
Sheikhalishahi M. An approximate—
Constraint method for a multi-objective
job scheduling in the cloud. Future
Generation Computer Systems.
2013;29(8):1901-1908

[31] Xu Y, Li K, Hu J, Li K. A genetic
algorithm for task scheduling on
heterogeneous computing systems using
multiple priority queues. Information
Sciences. 2014;270:255-287

[32] Kamalinia A, Ghaffari A. Hybrid
task scheduling method for cloud
computing by genetic and DE
algorithms. Wireless Personal
Communications. 2017;97(4):6301-6323

[33] Patel DK, Tripathy C. An
improved approach for load balancing
among heterogeneous resources in

Distributed Computing - Principles and Practices

16

computational grids. Engineering with
Computers. 2015;31(4):825-839

[34] Liu L, Mei H, Xie B. Towards
a multi-QoS human-centric cloud
computing load balance resource
allocation method. The Journal of
Supercomputing. 2016;72(7):2488-2501

[35] Rathore N, Chana I. Variable
threshold-based hierarchical load
balancing technique in grid. Engineering
with Computers. 2015;31(3):597-615

[36] Kaushik A, Vidyarthi DP. An
energy-efficient reliable grid scheduling
model using NSGA-II. Engineering with
Computers. 2016;32(3):355-376

[37] Garg R, Singh AK. Adaptive
workflow scheduling in grid
computing based on dynamic resource
availability. Engineering Science and
Technology an International Journal.
2015;18(2):256-269

[38] Chaisiri S, Lee BS, Niyato D.
Optimization of resource provisioning
cost in cloud computing. IEEE
Transactions on Services Computing.
2012;5(2):164-177

[39] Singh H, Kumar S. Resource
cost optimization for dynamic load
balancing on web server system.
International Journal of Distributed and
Cloud Computing. 2014;2(1):7-18

[40] Bittencourt LF, Madeira ERM.
HCOC: A cost optimization algorithm
for workflow scheduling in hybrid
clouds. Journal of Internet Services and
Applications. 2011;2(3):207-227

[41] Cao Q , Wei ZB, Gong WM. An
optimized algorithm for task scheduling
based on activity based costing in
cloud computing. In: 3rd International
Conference on Bioinformatics and
Biomedical Engineering. 2009. pp. 1-3

[42] Suresh A, Varatharajan R.
Competent resource provisioning

and distribution techniques for cloud
computing environment. Cluster
Computing. 2017:1-8

[43] Salehan A, Deldari H,
Abrishami S. An online valuation-
based sealed winner-bid auction game
for resource allocation and pricing in
clouds. The Journal of Supercomputing.
2017;73(11):4868-4905

[44] Nezarat A, Dastghaibyfard G. A
game theoretical model for profit
maximization resource allocation in
cloud environment with budget and
deadline constraints. The Journal of
Supercomputing. 2016;72(12):4737-4770

[45] Netjinda N, Sirinaovakul B,
Achalakul T. Cost optimal scheduling
in IaaS for dependent workload
with particle swarm optimization.
The Journal of Supercomputing.
2014;68(3):1579-1603

[46] Chunlin L, Layuan L. Cost and
energy aware service provisioning
for mobile client in cloud computing
environment. The Journal of
Supercomputing. 2015;71(4):1196-1223

[47] Hasan M, Goraya MS. Fault
tolerance in cloud computing
environment: A systematic survey.
Computers in Industry. 2018;99:156-172

[48] Patel DK, Tripathy D,
Tripathy C. An improved load-balancing
mechanism based on deadline failure
recovery on GridSim. Engineering with
Computers. 2016;32(2):173-188

[49] Egwutuoha IP, Chen S, Levy D,
Selic B. A fault tolerance framework
for high performance computing in
cloud. In: 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid
Computing. 2012. pp. 709-710

[50] Choi S, Chung K, Yu H. Fault
tolerance and QoS scheduling using
CAN in mobile social cloud computing.
Cluster Computing. 2014;17(3):911-926

17

Analysis of Effective Load Balancing Techniques in Distributed Environment
DOI: http://dx.doi.org/10.5772/intechopen.91460

[51] Mei J, Li K, Zhou X, Li K. Fault-
tolerant dynamic rescheduling
for heterogeneous computing
systems. Journal of Grid Computing.
2015;13(4):507-525

[52] Nazir B, Qureshi K, Manuel P.
Replication based fault tolerant job
scheduling strategy for economy driven
grid. The Journal of Supercomputing.
2015;62(2):855-873

[53] Qureshi K, Khan FG, Manuel P,
Nazir B. A hybrid fault tolerance
technique in grid computing system.
The Journal of Supercomputing.
2011;56(1):106-128

[54] Tamilvizhi T, Parvathavarthini B. A
novel method for adaptive fault
tolerance during load balancing in
cloud computing. Cluster Computing.
2017:1-14

[55] Garg R, Singh AK. Fault tolerant
task scheduling on computational grid
using checkpointing under transient
faults. Arabian Journal for Science and
Engineering. 2014;39(12):8775-8791

[56] Singh S, Chana I. A survey on
resource scheduling in cloud computing:
Issues and challenges. Journal of Grid
Computing. 2016;14(2):217-264

[57] Yassa S, Chelouah R, Kadima H,
Granado B. Multi-objective approach
for energy-aware workflow scheduling
in cloud computing environments. The
Scientific World Journal. 2013:1-13

[58] Aazam M, Khan I, Alsaffar AA,
Huh EN. Cloud of things: Integrating
Internet of Things and cloud computing
and the issues involved. In: Proceedings
of 2014 11th International Bhurban
Conference on Applied Sciences &
Technology (IBCAST) Islamabad,
Pakistan. 2014. pp. 414-419

[59] Botta A, De Donato W, Persico V,
Pescapé A. Integration of cloud
computing and internet of things: A

survey. Future Generation Computer
Systems. 2016;56:684-700

[60] Khodkari H, Maghrebi SG,
Branch R. Necessity of the integration
Internet of Things and cloud services
with quality of service assurance
approach. Bulletin de la Société
Royale des Sciences de Liège.
2016;85(1):434-445

[61] Bonomi F, Milito R, Zhu J,
Addepalli S. Fog computing and its role
in the internet of things. In: Proceedings
of the First Edition of the MCC
Workshop on Mobile Cloud Computing.
2012. pp. 13-16

[62] Aron R, Chana I. Formal QoS
policy based grid resource provisioning
framework. Journal of Grid Computing.
2012;10(2):249-264

[63] Horri A, Mozafari MS,
Dastghaibyfard G. Novel resource
allocation algorithms to performance
and energy efficiency in cloud
computing. The Journal of
Supercomputing. 2014;69(3):1445-1461

[64] HoseinyFarahabady M, Lee YC,
Zomaya AY. Randomized approximation
scheme for resource allocation in
hybrid-cloud environment. The Journal
of Supercomputing. 2014;69(2):576-592

