
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

A TUNABLE WORKFLOW SCHEDULING
ALGORITHM BASED ON PARTICLE
SWARM OPTIMIZATION FOR CLOUD
COMPUTING
Kai Wu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Wu, Kai, "A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE SWARM OPTIMIZATION FOR
CLOUD COMPUTING" (2014). Master's Projects. 358.
DOI: https://doi.org/10.31979/etd.wy2s-568v
https://scholarworks.sjsu.edu/etd_projects/358

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/358?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE

SWARM OPTIMIZATION FOR CLOUD COMPUTING

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Kai Wu

April 2014

ii	
	

© 2014

Kai Wu

ALL RIGHTS RESERVED

iii	
	

The Writing Project Committee Approves the Project Titled

A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE

SWARM OPTIMIZATION FOR CLOUD COMPUTING

By

Kai Wu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

APRIL 2014

Dr. Melody Moh Department of Computer Science

 Dr. Teng Moh Department of Computer Science

 Dr. Somik Raha SmartOrg. INC

iv	
	

ABSTRACT

A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE

SWARM OPTIMIZATION FOR CLOUD COMPUTING

By Kai Wu

 Cloud computing provides a pool of virtualized computing resources and

adopts pay-per-use model. Schedulers for cloud computing make decision on how to

allocate tasks of workflow to those virtualized computing resources. In this report, I

present a flexible particle swarm optimization (PSO) based scheduling algorithm to

minimize both total cost and makespan. Experiment is conducted by varying

computation of tasks, number of particles and weight values of cost and makespan in

fitness function. The results show that the proposed algorithm achieves both low cost and

makespan. In addition, it is adjustable according to different QoS constraints.

v	
	 	

TABLE OF CONTENTS

1.0 Introduction…………………………………………..………….………………….... 1

2.0 Workflow Scheduling Problem……………………………………………...……….. 4

2.1Scheduling Problem……………………………………………………………4

2.2 Scheduling Problem in Cloud Computing…………………………………….4

3.0 Scheduling Problem Formulation…………………..………………...…………….... 7

4.0 Particle Swarm Optimization-based Scheduling Algorithm……………………....... 11

4.1 Swarm Intelligence…………………………………………………….…….11

4.2 PSO-based Scheduling Algorithm……………………………………….…..12

5.0 CloudSim Simulation Environment………………………………………………….18

5.1 CloudSim Overview……..………………………………………..………….18

5.2 CloudSim Architecture………………………………………………………18

6.0 Implementation and Experiment Result………………………..……………………23

6.1 PSO Algorithm Implementation……………………………………….…….23

6.2 Experiment Setup………………………..…………………..……………….24

6.3 Experiment Result……………………………………………………………27

6.3.1 The Effect of the Number of Particles…………………………..……..27

6.3.2 The Cost Performance………………………………………………….29

6.3.3 The Makespan Performance…………………………………..……….30

6.3.4 Load Balance Performance…………………………………………….31

6.3.5 Tuning the Weight Value…………………………………….……….32

vi	
	

6.3.6 Transform Makespan to Cost……..………………………….……….34

7.0 Complexity Analysis…………………………………………….……..…...………37

8.0 Conclusion…………………………………………………………………………..38

vii	
	

LIST OF FIGURES

Figure 1. Cloud workflow submission……………………………………………….……………6

Figure 2. A workflow example with 9 tasks………………………………………….……………7

Figure 3. A sample particle…………….................…………………………………..….…….... 14

Figure 4. SimJava layer……………………………………………………………………….… 19

Figure 5. GridSim layer…..…………………………………..………………………………..…19

Figure 6. CloudSim layer.……………………………….…..……………………...…………... 20

Figure 7. User Code Layer...............…………………………………….…………………….... 22

Figure 8. Class diagram of PSO scheduling……………………………………………….….… 23

Figure 9. Experimental datacenter infrastructure………………………………………….….… 24

Figure 10. Experimental workflow.…..……………….………….……………………..…..……26

Figure 11. Cost of algorithm 1 and algorithm 4 for different number of particle…….……….… 28

Figure 12. Makespan of algorithm 1 and algorithm 4 for different number of particles…...….…28

Figure 13. Cost comparison of four algorithms for different MI………………………..…….… 30

Figure 14. Makespan comparison of four algorithms for different MI……………….……..……31

Figure 15. Load balance comparison of four algorithms for different MI……..………….….… 32

Figure 16. Cost of algorithm 4 for different weight value…..………………………….…...……33

viii	
	

Figure 17. Makespan of algorithm 4 for different weight value…..……………….………….….33

Figure 18. Linear time-cost transform function…………………………………..….……..……34

Figure 19. None-linear time-cost transform function……..……………………………….….… 35

Figure 20	 Makespan comparison between linear and none-linear transform function.…...…...…36

Figure 21. Cost comparison between linear and none-linear transform function………….….….36

Figure 22	 Makespan comparison of six fitness functions.…...………………………………...…37

Figure 23. Cost comparison of six fitness functions …………………………………...….….….37

ix	
	

LIST OF TABLE

Table 1. Notations used in formulations (7 - 10)…………………………………………………13

Table 2. Co	 PSO algorithm……………………………………………………….………………14

Table 3. Sorting Algorithm………………………………………………………………….……16

Table 4. Transfer cost (cents/MB) between each VM……………………………………………25

Table 5. MIPS and execution cost of each VM…………………………………………..………25

Table 5. Algorithm complexity………………………………………….………………..………37

1	
	

1.0 INTRODUCTION

Cloud computing is a emerging technology derived from distributed computing. It

provides a pool of abstracted, virtualized resources, including computing power, storage,

platforms and software applications over the Internet based on users’ demand [1]. Due to

its many benefits such as elastic, scalable resource provision and cost-effectiveness, cloud

computing has been accepted by more and more users.

Cloud computing offers a great variety of services. Based on the level of services,

there are three categories generally. They are Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), and Software as a Service (SaaS). IaaS puts servers, storage, networks,

and data center fabrics together as demanded by users. Cloud users can then install

operating system and deploy their own applications on the cloud. PaaS, on the other hand,

provides middleware, database and development tools. It enables users to deploy

applications onto a virtualized cloud platform [2]. Finally, in SaaS the complete operating

environment, along with applications, management, and user interfaces, are provided to

cloud users [3]. Since all cloud services can be access by subscription and run with a pay-

per-use model, cloud computing leverages many attractive features to users, including low

cost and simple management.

There are many technical challenges faced by cloud providers, such as maintaining

high utilization while delivering services that are low cost, short delay, and dynamic

deployable. It is critical for cloud providers to maintain an optimal workflow scheduling

and management system to meet these challenges.

2	
	

A workflow is formed by a logical sequence of interdependent tasks decomposed

from applications [4]. A cloud workflow system is vital for supporting large-scale e-

science and e-business applications [5]. Workflow scheduling component plays a key role

in a workflow management system. The scheduler decides which resources will be used,

as well as which tasks will be executed on each of these resources, and allocate tasks to

the resources. The workflow scheduling problem, like general scheduling problems, is

NP-complete. Workflow scheduling algorithms often utilize heuristics and meta-

heuristics, including soft computing techniques, to obtain approximated solutions.

In this report, I adopt a workflow scheduling strategy using Particle Swarm

Optimization (PSO). PSO, an applied soft computing method developed by Kennedy and

Eberhart [6], is one of the most advance evolutionary algorithms driven from nature. PSO

approximates an optimal solution by iteratively improving a group of candidate solutions,

called particles. Each particle is modified iteratively by the best information from both the

individual and the entire group. By collecting the cumulative intelligence of whole group,

the group is expected to move toward the most optimal solutions. PSO works well on most

global optimal problems [6, 7]. In addition it is simple, effective, and of low

computational cost.

Makespan and cost are two key performance measurement criteria assigned by cloud

users and considered by workflow schedulers [8-15]. Makespan is the time from the

beginning till the completion of the sequence of tasks in a workflow. Different application

schedulers may use different policies with different objectives. Some algorithms are

designed to achieve minimum cost [9, 12, 14] while others strives for minimum makespan

3	
	

[13] or for load balance [14]. Most existing algorithms focus on achieving a single optimal

criterion [12-14].

In this report, a workflow scheduling strategy to attain a combined minimal cost and

minimal makespan is introduced. Moreover, the objective is adjustable between minimal

cost and minimal makespan, able to satisfy users’ various quality of services (QoS)

requirements.

The main contributions of this project are:

1. A model for a mapping between tasks and resources is formulated,

achieving a tunable objective between cost and makespan.

2. A PSO-based heuristics is presented to realize the optimal mapping for the

tunable objective.

3. The heuristics is further improved by addressing bottleneck tasks and thus

reduces the makespan even more.

4. While most PSO papers simply use a fixed particle number in their

experiments, the effect of the number of particles in the PSO performance is studied.

4	
	

2.0 Workflow Scheduling Problem

2.1 Scheduling Problem

Scheduling problem is how to allocate tasks with limited resources to achieve some

pre-set goals. The "task", "machine", "resources" in scheduling problem are abstract

concepts. However, they actually represent extremely wide range of practical objects.

During the past few decades, People have done a lot of research on the scheduling

problem that has received wide attention from applied mathematics, operations research,

engineering and other fields. The linear computation, dynamic programming algorithm

and decision analysis in operations research have been widely used to study scheduling

problem.

2.2 Scheduling Problem in the Cloud

The goal of cloud computing scheduling is to achieve the optimal scheduling

submitted by the user, It should try to improve the overall throughput of cloud computing

systems with Specific objectives include the optimal makespan, quality of service,(QoS),

load balance, economic principles and so on.

Optimal makespan: Makespan is a very important and common goal in task

scheduling. Users usually hope that their tasks can be completed as soon as possible.

Optimal makespan is the common goal of both cloud provider and clients.

QoS: Scheduling system must guarantee the QoS specified by the users. On the one

side, it needs to improve the efficiency of resources based on application characteristics

in order to ensure the efficiency and accuracy of customers. On the other side, it should

select and redirect resources dynamically based on users' status changes to meet the user's

5	
	

economy and satisfaction. So the goal is not only to protect users but also helpful for the

long-term sustainable development of cloud computing.

Load balancing： Since the number of computers in the cloud computing

platform is very large. In additional, the complex composition and different

heterogeneous cloud computing platform make load balancing in current could

challenging.

Economic principles: Economic is a key factoring in scheduling of cloud

computing because of ultra large scale and pay-per-use business model. Market driven

cloud users and providers can have mutual benefits from a efficient scheduling system.

Since cloud services require great amount of control and manage resources, a good

workflow scheduling is important to manage jobs and tasks. Workflow scheduling plays

a key role in the workflow management system[4]. Figure 1 illustrates the cloud

workflow scheduling. After submitting workflow by a client, a broker or scheduler is

used to run the scheduling algorithm so that the system can start to make decision. In

cloud-based infrastructure, the physical machines are virtualized into unified resources

called virtual machines (VMs). The scheduler decides which resources (VMs) will be

used, as well as which tasks will be executed on each of these resources. It allocates

workflow tasks to suitable virtual machine so that the process of computation can be

executed to satisfy QoS constraints specified by users such as deadline and cost. This

QoS-based optimization aims to minimizing execution cost or make execution time as

short as possible and a specified budget.

6	
	

Figure 1. Cloud workflow submission

7	
	

3.0 Scheduling Problem Formulation

In the following, I adopt the general model and notation used by existing works on

PSO-based scheduling [14, 15]. A workflow is usually represented by a Directed Acyclic

Graph (DAG), and denoted by 𝐺 = (𝑉,𝐸). The set of nodes 𝑉 = {𝑇!,… ,𝑇!} represents

the tasks in the workflow applications, and n is the total number of tasks in the workflow.

The arcs 𝐸 = 𝑑!" 1 ≤ 𝑖, 𝑗 ≤ 𝑛 denotes the data dependencies among the tasks. An arc,

𝑑!" = (𝑇! ,𝑇!) ∈ 𝐸, implies that 𝑇! transfers data to 𝑇!. In this relationship, 𝑇! is the parent

task of 𝑇!, and 𝑇! is the child of 𝑇!. The child task cannot be executed without receiving

data transferred from all of its parents. Fig. 1 shows a workflow example of 8

interdependent tasks. Note that any single task can have one or more children (except for

the bottom nodes), and any single task can have one or more parents (except for the top

node).

Suppose there are a total of 𝑚 resources in the cloud environment. The resources

can be denoted as 𝑅 = {𝑅!,… ,𝑅!}. All the resources are interconnected with each other

so that they can transfer data among each other. The scheduling problem is to find an

optimal mapping 𝑀 between tasks and resources according to some optimization

objective. As mentioned before, cost is a common objective that is more concerned by

user; makespan is another objective that is critical for scheduling.

8	
	

	

Figure 2. A workflow example with 8 tasks

In the following, I formulate several optimization objectives. Let

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛!"!#$(𝑀) denote the makespan of the workflow with respect to the mapping 𝑀:

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛!"!#$ 𝑀 = 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑡𝑎𝑠𝑘 −

𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑎𝑠𝑘. (1)

The makespan of a workflow is the time duration from the process of first task till

finishing all tasks. Since a workflow consists of interdependent tasks, both execution time

and transfer time need to be considered.

Next, let 𝐶𝑜𝑠𝑡!"!#(𝑅!) and 𝐶𝑜𝑠𝑡!"#$%(𝑅!) be the execution and transfer costs of

resource 𝑅!, respectively. 𝐶𝑜𝑠𝑡!"!#$(𝑅!) denotes the total cost of resource 𝑅!:

9	
	

𝐶𝑜𝑠𝑡!"!#$ 𝑅! = 𝐶𝑜𝑠𝑡!"!# 𝑅! + 𝐶𝑜𝑠𝑡!"#$% 𝑅!

 1 ≤ 𝑖 ≤ 𝑚. (2)

Let 𝐶𝑜𝑠𝑡!"!#$(𝑀) denote the total cost of processing workflow w.r.t the mapping 𝑀:

𝐶𝑜𝑠𝑡!"!#$ 𝑀 = 𝐶𝑜𝑠𝑡!"!#$ 𝑅!!
!!! . (3)

For the objective of minimizing the cost while balancing the load [14], the fitness

function is given as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛! = 𝑀𝑎𝑥(𝐶𝑜𝑠𝑡!"!#$ 𝑅!),

 1 ≤ 𝑖 ≤ 𝑚. (4)

The objective is to minimize 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛!. The reason for not using the total

cost of all the resources is to prevent from mapping all the tasks to a single, least-cost

resource.

For the objective of optimizing makespan (such as the work by Zhang et al [13]), the

fitness function can be defined as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛! = 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛!"!#$ 𝑀 . (5)

The objective is to minimize 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛!.

10	
	

In this project I propose an objective of minimizing the weighted sum of total cost

and makespan; the fitness function can then be defined as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛! = 𝛼 𝐶𝑜𝑠𝑡!"!#$ 𝑀 +

 1− 𝛼 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛!"!#$ 𝑀 , 0 ≤ 𝛼 < 1, (6)

where 𝛼 is the weight given to the total cost and 1− 𝛼 is the weight given to

makespan. This fitness function can be easily tuned by changing the value 𝛼 to satisfy the

various QoS requirements including budget constraints. Again the objective is to minimize

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛!.

11	
	

4.0 Scheduling Algorithm Based on PSO

4.1 Swarm Intelligence

The concept of swarm intelligence stems from observing the behaviors of social

groups of organisms bees, ants, geese, fish and other species. Strictly, swarm intelligence

is an artificial intelligence model inspired by groups of organisms in nature. These kinds

of intelligent patterns need relative number of intelligent individuals to achieve certain

types of problem solving capabilities. As intelligent individuals, in generally, without the

feedback information from community, the way it is in the solution space travel is .

Intelligent individuals can reflect an overall optimization features from entire intelligent

group.

Swarm intelligence should follow five rules: Proximity Principle, Quality Principle,

Principle of Diverse Response, Stability Principle and Adaptability Principle. Following

these five rules does not mean that each individual is quite complicated. The fact is

precisely the opposite. The core of swarm intelligence is a group consists of a large

amount of simple individuals that can achieve more complex functions through simple

cooperation between each other.

Swarm intelligence research has two main algorithms: Ant Colony Algorithm

(ACO) and Particle Swarm Optimization (PSO).

In the recent years, ACO algorithms have been successfully applied to a number of

discrete and continuous optimization problem such as QAP problems, network routing

and scheduling problem. ACO algorithm is relatively mature. Since the PSO algorithm

was proposed, it has obtained a lot of attention from domestic and foreign scholars in

12	
	

related fields. The PSO algorithm has a wide range of applying requirements and the

development potential.

4.2 PSO Based Scheduling Algorithm

I present a scheduling heuristic optimizing the cost and makespan of workflow

using the mapping solution computed by particle swarm optimization based algorithm.

PSO is one of the latest evolutionary algorithms inspired by the social behavior of fish

schooling or bird flocking [6]. The particle corresponds to an individual bird or fish

searching in a natural space. In the PSO algorithm, each particle represents a possible

solution. The flock or swarm of particles is randomly generated initially [16]. Each

particle has its own position in the space and a fitness value, and has the velocity to

determine the speed and direction it flies. A group of candidate solutions (particles)

moves around in the search space based on the particles’ updated position and velocity so

that the PSO algorithm can get a optimized solution.

Particles in the search process update themselves by tracking two best-known

positions. One best-known position known as local best position is the individual best-

known position in terms of fitness value reached so far by the particle itself. Another

best-known position known as global best position is the best position in the entire

population. Suppose the number of particles is 𝑁. The velocity and position of each

particle are calculated by formulations (7) and (8)

𝑣!!!! = 𝜔𝑣!! + 𝑐!𝑟! 𝑝!! − 𝑥!! + 𝑐!𝑟! 𝑝!! − 𝑥!! 1 ≤ 𝑖 ≤ 𝑁, (7)

𝑥!!!! = 𝑥!! + 𝑣!!!! 1 ≤ 𝑖 ≤ 𝑁, (8)

13	
	

𝑝!! = 𝐵𝑒𝑠𝑡(𝑥!! , 𝑝!!!!) 1 ≤ 𝑖 ≤ 𝑁, (9)

𝑝!! = 𝐵𝑒𝑠𝑡(𝑝!! ,… , 𝑝!!), (10)

where, the notations in (7-10) are listed in Table 1. Particle’s best position is calculated

by the fitness function through (9) and (10). The velocity is calculated by three factors

each iteration. They are current velocity, local best position and global best position. The

position is updated according to its current position and updated velocity. These ensure

the particles search around the local and global best positions and converge to a global

best position in the limited iteration.

Table 1 Notations used in formulations (7 - 10)

Notation Description

𝑣!!!!	 Velocity of particle 𝑖 at iteration 𝑘 + 1

𝑣!! 	 Velocity of particle 𝑖 at iteration 𝑘

𝑥!!!!	 Position of particle 𝑖 at iteration 𝑘 + 1

𝑥!! 	 Position of particle 𝑖 at iteration 𝑘

𝑝!! Best position of particle 𝑖 so far at iteration 𝑘

𝑝!! Best position of all particle𝑠 so far at iteration 𝑘

𝜔 Inertial weight

𝑐!, 𝑐! acceleration coefficients (positive constants)

14	
	

𝑟!, 𝑟!	 Random numbers in [0,1]

In the workflow scheduling problem, the particle represents a mapping between

resource and task. The dimension of a particle is how many tasks the workflow has. In

Figure 2, one possible particle for the mapping between 5 resources and 8 tasks is

illustrated. The evaluation of each particle is performed based on fitness function. Section

3 gives three fitness functions corresponding to different optimization objectives.

Figure 3. A sample particle.

Table 2 lists the steps of PSO algorithm. The initial step is to initialize each particle’s

position and velocity randomly. If iteration criterion is not met, the algorithm repeatedly

does the following: firstly calculate each particle’s fitness value by using the fitness

function given in (6), and then update its local best position using (9); calculate global

best position using (10); for each particle, update its velocity and position using (7) and

(8). Finally, the global best position is the optimal mapping solution.

Table 2 PSO algorithm

1: Initialize particles’ position and velocity randomly.

2: While stopping criterion is not satisfied do

15	
	

3: For each particle do

4: Calculate its fitness value using fitness function.

5: Update its local best position.

6: End For

7: Update global best position.

8: For each particle do

9: Update its velocity and position.

10: End For

11: End While

12: Return global best position.

After computing the mapping using PSO, the scheduling algorithm dispatches the

ready tasks into the resources. Ready task is defined as the one that have received the

data transferred from all its parent tasks. Since all of the ready tasks assigned to one

specific resource are independent, I then sort the ready tasks in each VM resource

dynamically to further improve makespan. Two factors are considered to sort the ready

tasks. One is that I schedule the bottleneck tasks with the most descendants first. Another

factor is that I set the task that has the shortest execution time to the highest priority and

execute this task first.

I enhance the existing PSO algorithm in two respects. First, in the existing PSO

algorithm, the fitness function (shown in Eq. 6) for optimizing the mapping between

tasks and resources only considers the maximum VM’s total cost. This might lead to

16	
	

unevenly distribution of resources and some low cost resources might need to execute

much more tasks than the high cost resources. Therefore, the makespan for the total

workflow might be much longer. In order to solve this problem, we change the fitness

function that considers both makespan and total cost. The total cost of the whole

workflow is calculated by Eq. 10. I define the fitness function (shown in Eq. 11) as the

sum of weighted total cost and weighted makespan,

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 𝑀 = 𝐶!"!#$ (𝑀)! ∀𝑗 ∈ 𝑃 (10)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑤!𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 𝑀 + 𝑤!𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑀) ∀𝑀 (11)

where 𝑤! and 𝑤! are the weight of cost and makespan. Then I aim to minimize the

sum of weighted total cost and weighted makespan. This can ensure algorithm obtain the

mapping with both low cost and low makespan.

Secondly, in the existing algorithm after I dispatch the ready tasks into the

resources, the tasks are executed in FCFS mode. However, it is not the most efficient way

to execute the tasks. All of the ready tasks that are assigned to one specific resource are

independent. So I can sort the ready tasks in each VM resource. I consider two factors to

sort the ready tasks. One is that I schedule the bottleneck tasks whose descendants are the

most first. Another factor is that I set the task with the shortest execution time to the

highest priority and execute this task first. The sorting algorithm can be described in

Table 3

Table 3 Sorting algorithm

1: For each resource do

17	
	

2: For all ready tasks in resource

3: Sort tasks in decreasing order of the number of all descendants.

4: For ready tasks which have the same number of descendants

5: Sort tasks in increasing order of execution time.

18	
	

5.0 CloudSim Simulation Environment

5.1 CloudSim Overview

CloudSim is a simulation package library developed on the top of SimJava that can

run on both Windows and Linux platforms. CloudSim inherits from GridSim

programming model so that it can support research and development of cloud computing,

and provide the following new features: (1) supporting the modeling and simulation of

large-scale cloud computing infrastructure; (2) supporting a self-contained data centers,

service agents, scheduling and platform allocation strategy. CloudSim also includes some

unique features. Firstly, It provides virtualization engine that is designed to help users to

create and manage multiple data centers and collaborative virtualization services;

Secondly, at the time of allocating virtualized services and processing cores, it has the

flexibility to switch between time-share and space-share. CloudSim platform helps

accelerate the development of cloud computing algorithms and methods.

5.2 CloudSim Architecture

In architecture, CloudSim emulator uses a hierarchical organization, which consists

of four levels. From the bottom up, they are the SimJava, GridSim, CloudSim, and user

code. The bottommost is a discrete event simulation engine SimJava, which is

responsible for the implementation of the core functions of high-level simulation

framework, such as: query and processing events, build system components (services,

clients, data centers, agents and virtual machines), the communication between different

components and the analog clock management.

19	
	

Figure 4. SimJava layer

GridSim is on the top of SimJava, which supports for high-level software

components and models a plurality of grid infrastructure including networks and network

traffic documents, such as resource-based grid component, data sets, load testing and

information services.

Figure 5. GridSim layer

CloudSim executes in the next layer, which extends the core functionality provided

by GridSim. CloudSim layer provides virtual data center management interfaces

20	
	

including virtual machine, RAM, disk storage and bandwidth. It manages core entity

(such as VM, clients, data centers, applications) in the simulation process.

Figure 6. CloudSim Layer

Virtualization layer executes applications on the cloud environment. Virtual

machines are running in a client VM and other shared resources. VM management has

the ability to define a series of related operations related to VM: to host provides VM,

VM is created, VM destruction, VM consolidation.

Cloudlet class represents cloud-based application services such as content

distribution, social networks and data center deployments. Each application component

has a pre-set instruction length (inherited from the Gridlet components of GridSim), and

21	
	

the amount of data transfers (including prefetching and after taking) to ensure the

successful accommodation of this application.

Cloud resource layer: Cloud related core infrastructure services are modeled by the

data center, which is used to handle service requests, and requested to perform these

services in a VM.

VM Provisioned: assigning VM to the client based on the specific application. This

component can help providing VM provisioning policy according to certain optimization

rule (user-centric or system-centric).

CPU Allocation: the process of allocating processing cores is accomplished on a

client distributor for each client component. Both the number of process cores and

allocated computation capacity in each virtual machine will effect this strategy. In

additional, Memory Allocation, Storage Allocation, and Bandwidth Allocation have the

similar functionalities.

The topmost layer is users’ code that is shown in Figure 7. Based on the study of

the platform, users can create their own classes, methods, and member variables to

achieve specific experiments.

22	
	

Figure 7. User Code layer

23	
	

6.0 Implementation and Experiment Result

6.1 PSO Algorithm Implementation

I use the JSwarm[17] package to conduct the simulation in PSO. The PSO class

(shown in Figure 8) aggregates Swarm class that also has Particle and FitnessFunction

class. Swarm, Particle and FitnessFunction are in JSwarm package. Then I define our

own PSOParticle class for PSO scheduling algorithm that extends the Particle class. For

FitnessFunction class, I extend it to three different fitness function classes, which are

PSOFitnessFunctionCost, PSOFitnessFunctionMakespan, and

PSOFitnessFunctionCostAnd-Makespan, respectively. PSOFitnessFunctionCost class

only minimizes the maximum value of VM’s total cost. PSOFitnessFunctionMakespan

class only minimizes the makespan. PSOFitnessFunctionCost-AndMakespan class

minimizes the sum of the weighted total cost and weighted makespan, and the weight can

be modified by users.

Figure 8. Class diagram of PSO scheduling

24	
	

6.2 Experiment Setup

For evaluating the performance of the scheduling algorithm, CloudSim 3.0 is used

to configure cloud environment and simulate the execution of workflow. The data center

that I use in the simulation (shown in Fig. 9) consists of one switch and four hosts each

having two VMs. They are constructed by cloud-based interface provided by CloudSim.

Figure 9. Experimental datacenter infrastructure

The bandwidth of each port of switch is different from each other. The allocation of

VMs to hosts uses the default FCFS algorithm in CloudSim. For each VM on the same

host, time-shared policy is used so that two VMs in one host can run concurrently. For

each task on the same VM, I use space-shared policy so that tasks in one VM are

executed sequentially. I modify the inner code of CloudSim to enable sorting ready tasks

in each VM. The millions of instructions per second (MIPS) and execution cost of each

VM is specified in Table 3, and data transfer cost between different VMs is shown in

Table 4. In my cloud service price model, I take Amazon EC2’s pricing policy for

25	
	

reference and vary the execution unit price and data transfer unit price based on two

essential rules.

Table 4 Transfer cost (cents/MB) between each VM

VMID 0 1 2 3 4 5 6 7
0 0 0.17 0. 20 0.20 0.21 0.21 0.18 0.18
1 0.17 0 0.20 0.20 0.21 0.21 0.18 0.18
2 0.20 0.20 0 0.17 0.22 0.22 0.19 0.19
3 0.20 0.20 0.17 0 0.22 0.22 0.19 0.19
4 0.21 0.21 0.22 0.22 0 0.17 0.20 0.20
5 0.21 0.21 0.22 0.22 0.17 0 0.20 0.20
6 0.18 0.18 0.19 0.19 0.20 0.20 0 0.17
7 0.18 0.18 0.19 0.19 0.20 0.20 0.17 0

Table 5 MIPS and execution cost of each VM

VMID MIPS Execution cost
(cents/MI)

0 1.011 0.03361
1 1.004 0.03333
2 1.013 0.03444
3 1.000 0.03278
4 0.990 0.03111
5 1.043 0.03528
6 1.023 0.03472
7 0.998 0.03167

Firstly, the execution cost of one task is in proportion to the task’s millions of

instructions MI and MIPS of VM where the task is executed. Secondly, the data transfer

cost is in proportion to the data size and the bandwidth between VMs where the data are

transferred. Fig. 9 shows the workflow with 96 tasks used in experiment. Each task has

its own MI and there are several data transfers in megabyte (MB) between tasks.

26	
	

Figure 10. Experimental workflow

In the experiment, I test four algorithms. Algorithm 1, 2, and 3 are the scheduling

algorithms using fitness function 1, 2, 3, respectively. The proposed algorithm called

Algorithm 4 is Algorithm 3 added with sorting part. Since the makespan and cost are in

different order of magnitudes, these two values need to be normalized in fitness function

3. All the experimental results are the average of 30 independent executions. For PSO, the

number of iterations is 100.

6.3 Experiment result

6.3.1 The Effect of the Number of Particles

27	
	

Reference [18] mentioned that the number of particles could influence the resulting

performance by a varying amount, depending on the problem being optimized. Therefore,

I first conduct the experiments by varying the number of particles. Fig. 10 shows the cost

of Algorithm 1 and Algorithm 4 in which the weights of cost and makespan are the same.

As the number of particles increases, the cost of both algorithms decreases. The makespan

trend of Algorithm 2 and Algorithm 4 is shown in Fig. 11. The makespan of Algorithm 2

decreases along with the increasing number of particles, while makespan of Algorithm 4

fluctuates. From these two figures, I can observe that for Algorithm 1 and Algorithm 2 in

which only one parameter is optimized, the more the number of particle is, the better the

solution can be found. Whereas there are two parameters optimized in Algorithm 4, and

the increased number of particles cannot guarantee that both cost and makespan decrease.

28	
	

Figure 11. Cost of algorithm 1 and algorithm 4 for different number of particles.

Figure 12. Makespan of algorithm 1 and algorithm 4 for different number of particles.

6.3.2 The Cost Performance

I vary the tasks’ MI by multiplying different proportion values and compare cost,

makespan and load balance of four algorithms respectively. The numbers of particles in

four algorithms are all 500. In Algorithm 3 and 4, the weights of cost and makespan are all

0.5. Fig. 13 shows the comparison of total cost of these four algorithms. I can observe that

the cost of Algorithm 3 and Algorithm 4 are very close and are lower than Algorithm 1

and Algorithm 2, while the cost of Algorithm 2 is the highest. This result is reasonable

because Algorithm 1 only minimizes the maximum value of resource’s cost instead of

minimizing the total cost. Therefore, it cannot obtain the lowest total cost. If it minimizes

the total cost, then the lowest cost resource might have the most tasks to execute and there

29	
	

is almost no data transfer cost. However this might lead to very large makespan. For the

Algorithm 2, it only considers minimizing makespan without considering cost, therefore it

has the highest total cost. For Algorithm 3 and Algorithm 4, they consider the total cost

instead of the maximum value of resource’s cost as in Algorithm 1, therefore they can get

the lowest cost. Although Algorithm 4 adds sorting parting to Algorithm 3, it doesn’t

change the total cost, thus the total cost of these two algorithms are very close.

30	
	

Figure 13. Cost comparison of four algorithms for different MI

6.3.3 The Makespan Performance

The makespan comparison of four algorithms is shown in Fig. 14. I can observe that

Algorithm 1 has the highest makespan while Algorithm 2 obtains the lowest makespan

because Algorithm 2 is designed to minimize the makespan while Algorithm 1 only takes

into account the cost. Since Algorithm 3 and Algorithm 4 both consider the makespan and

total cost, they obtain the medium value between Algorithm 1 and Algorithm 2. In

addition, Algorithm 4 uses sorting mechanism to further lower the makespan.

31	
	

Figure 14. Makespan comparison of four algorithms for different MI

6.3.4 Load Balance Performance

I also compare the load balance of resources of these four algorithms. Fig. 15 shows

the average and standard deviation of number of tasks on VMs. The standard deviation is

calculated as

(!!!!)!!
!!!

!!!
 , (11)

where m denotes the number of resources (VMs), N! denotes the number of tasks

assigned into the jth VM, and N denotes the average number of tasks on VMs. In my

experiment, N equals to 12. The smaller the standard deviation is, the more average the

32	
	

load distribution of tasks is. I can observe that Algorithm 1 achieves the most balanced

load among four algorithms.

Figure 15. Load balance comparison of four algorithms for different MI

6.3.5 Tuning the Wight Value

In the proposed algorithm 4, the weight values for cost and makespan can be tuned.

Fig. 16 and 17 show the cost and makespan results by varying weight values. As the

weight placed on optimization of cost increases, the cost decreases while the makespan

increases. These results show that my algorithm tunes the cost and makespan well

according to different expected weight. Therefore, this algorithm is applicable to different

QoS constraints.

33	
	

Figure 16. Cost of algorithm 4 for different weight value.

Figure 17. Makespan of algorithm 4 for different weight value.

34	
	

6.3.6 Transform Makespan to Cost

Different users have different demands for the optimization goal. The weight in the

fitness function 3&4 can be tuned to meet their request. However, it is not intuitive and

measureable on the first hand. Time is the money. Timing is very important in the

business environment. Getting the workflow sooner may represent more users’

satisfaction or occupying the market sooner. In the fitness function, we can transfer the

makespan(time) into cost(money) by a user specified transform function. I provided two

transform function samples. The linear transform function is shown in Figure. 18, which

suits for the majority of users. The none-linear function is shown in Figure. 19, which

suits for the time sensitive users. They can gain much more profit by executing the

workflow quicker.

Figure 18. Linear time-cost transform function

35	
	

Figure 19. None-linear time-cost transform function

Based on the transform function, the new fitness function is shown in equation. 12

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛! = 𝐶𝑜𝑠𝑡!"!#$ 𝑀 + 𝑓!"#$%&'"((𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛!"!#$ 𝑀)

(12)

By using this fitness function, the experiment result is shown in Figure. 20 & 21. The

linear time-cost transform function plays more emphasis on the optimizing resource cost.

Therefore, The cost result of linear function is lower than the none-linear function. On the

makespan side, with the same makespan, the none-linear function has much higher time

cost, so it results in a better makespan optimization. In the real use case, each user can

specify their own time-cost transform function based on their situation in order to reach a

customized optimization goal

36	
	

Figure 20. Makespan comparison between linear and none-linear transform function

Figure 21. Cost comparison between linear and none-linear transform function

Next, I compare these two algorithms to the four algorithms I proposed previously.

We can see the result in Figure. 22 & 23. Using linear transform function can optimize

the resource cost as good as algorithm 3 and algorithm 4. On the high workload, using

none-linear transform function can optimize the makesapn even better than the algorithm

37	
	

2. In conclusion, the users can obtain a good optimized result by using a suitable time-

cost transform function.

Figure 22. Cost comparison of six fitness functions

Figure 23. Makespan comparison of six fitness functions

38	
	

7.0 Complexity Analysis

While Algorithms 3 and 4 perform better than Algorithms 1 and 2 in terms of

combined cost and makespan, as shown above, we analyze and compare the time

complexity of the four algorithms. Let N be the number of particles, L be the number of

iterations, n be the number of tasks, and e be the number of edges in the DAG (i.e., the

number of data transfers needed among tasks) in the PSO algorithm. The time complexity

of the four algorithms is summarized in Table VI. Clearly the four algorithms have

comparable complexities. Algorithm 4, which improves over Algorithm 3, does not need a

larger time complexity.

Table 6 Algorithm complexity

Algorithm 1 2 3 4
Fitness
function

O (n2) O (e) ≤
O (n2)

O (n2 + e) = O (n2) O (n2 + e)
= O (n2)

For N
particles

O (Nn2) O (Ne) ≤
O (Nn2)

O (Nn2) O (Nn2)

For L
iterations

O(LNn2) O(LNe)≤
O (LNn2)

O (LNn2) O (LNn2)

Bottleneck
reduction

N.A. N.A. N.A. O(LNn2+nlogn)
= O (LNn2)

39	
	

8.0 Conclusion

The existing PSO scheduling only considers minimizing the maximum value of

VM’s cost that cannot obtain the lowest cost and makespan. Therefore, I propose the

enhanced algorithm which takes into account both total cost and makespan. We

implement PSO scheduling algorithm based on three different fitness functions. From

experimental results, I conclude that the enhanced algorithm obtains the best result in

terms of total cost. For makespan, the result of enhanced algorithm is close to that of the

algorithm that only minimizes the makespan. Then I add two sorting strategies to the

enhanced algorithm. The experimental results show that by adding sorting part into the

algorithm the makespan can be reduced even further.

40	
	

REFERENCES

[1] I. Foster, Z. Yong, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-

degree compared,” Proc. computing environments workshop, pp. 1-10, 2008.

[2] K. Hwang, J. J. Dongarra, and G. C. Fox, Distributed and cloud computing: from

parallel processing to the internet of things. Elsevier, Morgan Kaufmann, 2012.

[3] B. Sosinsky, Cloud computing bible. Wiley, 2011.

[4] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. da Fonseca, “Scheduling in hybrid

clouds,” IEEE Communications Magazine, vol. 50, no. 9, pp. 48-55, 2012.

[5] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented hierarchical

scheduling strategy in cloud workflow systems,” Journal of Supercomputing, 2011.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE International

Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.

[7] D. Bratton and J. Kennedy, "Defining a Standard for Particle Swarm Optimization,"

Proc. Swarm Intelligence Symposium, pp. 120-127, 2007.

[8] K. Liu, Y. Yang, J. Chen, X. Liu, D. Yuan and H. Jin, “A compromised-time-cost

scheduling algorithm in SwinDeW-C for instance-intensive cost-constrained

workflows on cloud computing platform,” International Journal of High Performance

Computing Applications, vol. 24, no.4, pp. 445-456, 2010.

[9] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization algorithm for

workflow scheduling in hybrid clouds,” Journal of Internet Services and Applications,

vol. 2, no. 3, pp. 207-27, 2011.

41	
	

[10] M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple QoS constrained scheduling strategy

of multiple workflows for cloud computing,” Proc. IEEE International Symposium on

Parallel and Distributed Processing with Applications, pp. 629-634, 2009.

[11] J. Yu and R. Buyya, “Scheduling scientific workflow applications with deadline and

budget constraints using genetic algorithms,” Scientific Programming, vol. 14, nos.

3/4, pp. 217-230, 2006.

[12] J. Yu and R. Buyya, “A budget constrained scheduling of workflow applications on

utility grids using genetic algorithms”, Proc. Workshop on Workflows in Support of

Large-Scale Science, pp. 1-10, 2006.

[13] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang. “A task scheduling algorithm based

on pso for grid computing,” International Journal of Computational Intelligence

Research, vol. 4, no.1, pp. 37-43, 2008.

[14] S. Pandey, L. Wu, S. M. Guru, R. Buyya, “A particle swarm optimization-based

heuristic for scheduling workflow applications in cloud computing environments,”

Proc. 24th IEEE International Conference on Advanced Information Networking and

Applications (AINA), pp.400-407, 2010.

[15] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle swarm optimization for

cloud workflow scheduling,” Proc. International Conference on Computational

Intelligence and Security, pp.184-188, Dec. 2010.

[16] P. Yin, S. Yu, and Y. Wang, “A hybrid particle swarm optimization algorithm for

optimal task assignment in distributed systems,” Computer Standards and Interfaces,

vol. 28, no. 4, pp. 441-450, 2006.

42	
	

[17] P. Cingolani. (2005, June 20). JSwarm-PSO [Online]. Available: http://jswarm-

pso.sourceforge.net/

[18] D. Bratton and J. Kennedy, "Defining a Standard for Particle Swarm Optimization,"

Proc. Swarm Intelligence Symposium, pp. 120-127, 2007.

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE SWARM OPTIMIZATION FOR CLOUD COMPUTING
	Kai Wu
	Recommended Citation

	Microsoft Word - kai_wu.docx

