
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

AN ENHANCED ANT COLONY SYSTEM ALGORITHM FOR
DYNAMIC FAULT TOLERANCE IN GRID COMPUTING

SAUFI BIN BUKHARI

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA

2020

i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the University Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purposes may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

Abstrak

Toleransi sesar di dalam pengkomputeran grid membolehkan sistem terus beroperasi
walaupun kegagalan berlaku. Kebanyakan algoritma toleransi sesar memfokus kepada
teknik pengendalian kegagalan seperti pemprosesan semua kerja, semakan titik,
pereplikaan kerja, penalti, dan pemindahan kerja. Sistem koloni semut (ACS), salah
satu variasi pengoptimuman koloni semut (ACO), adalah salah satu algoritma yang
baik untuk toleransi sesar disebabkan kebolehannya menyesuaikan diri dengan
masalah pengoptimuman kombinatorik statik dan dinamik. Walau bagaimanapun,
algoritma ACS tidak mengambil kira kecergasan sumber ketika menjadualkan kerja
sekaligus menyebabkan pengimbanan beban yang tidak cekap dan kadar kejayaan
pelaksanaan yang rendah. Kajian ini mencadangkan toleransi sesar ACS secara
dinamik dengan penggantungan (DAFTS) di dalam pengkomputeran grid yang
memfokus kepada penyediaan teknik toleransi sesar yang efektif untuk menambahbaik
kadar kejayaan pelaksanaan dan pengimbangan beban. Algoritma yang telah
dicadangkan terdiri daripada kadar evaporasi secara dinamik, proses penjadualan
berdasarkan kecergasan sumber, pengemaskinian feromon yang dipertingkat dengan
faktor kepercayaan dan penggantungan, dan pemprosesan semula menggunakan
semakan titik. Rangka kerja kajian merangkumi empat fasa iaitu mengenalpasti teknik
toleransi sesar yang akan digunakan, meningkatkan proses penugasan sumber dan
penjadualan kerja, menambahbaik algoritma toleransi sesar dan menilai kecekapan
algoritma yang dicadangkan. Algoritma yang dicadangkan telah dibangunkan di dalam
persekitaran simulasi grid yang dikenali sebagai GridSim dan dinilai dengan algoritma
toleransi sesar yang lain seperti ACO berdasarkan kepercayaan, ACO toleransi sesar,
ACO tanpa toleransi sesar, dan ACO dengan toleransi sesar dari segi masa pelaksanaan
keseluruhan, purata latensi, purata masa pelaksanaan, daya pemprosesan, kadar
kejayaan pelaksanaan, dan pengimbangan beban. Keputusan eksperimen
menunjukkan algoritma yang dicadang berjaya mencapai prestasi yang baik dalam
kebanyakan aspek, dan kedua terbaik dari segi pengimbangan beban. DAFTS telah
mencapai kenaikan yang terendah pada masa pelaksanaan, purata pelaksanaan dan
purata latensi masing-masing sebanyak 7%, 11% dan 5%, dan penurunan daya
pemprosesan dan kadar kejayaan yang terendah masing-masing sebanyak 6.49% dan
9% apabila kadar kegagalan semakin meningkat. DAFTS juga telah mencapai kadar
kenaikan yang paling rendah pada masa pelaksanaan, purata masa pelaksanaan dan
purata latensi masing-masing sebanyak 5.8, 8.5 dan 8.7 kali, dan kenaikan yang
tertinggi pada daya pemprosesan dan kadar kejayaan tertinggi masing-masing
sebanyak 72.9% dan 93.7% apabila bilangan kerja semakin bertambah. Algoritma
yang dicadangkan dapat menyelesaikan masalah pengimbangan beban secara lebih
efektif dan meningkatkan kadar kejayaan pelaksanaan di dalam sistem teragih yang
terdedah kepada kegagalan.

Kata Kunci: Penjadualan grid, Toleransi sesar, Pemprosesan semula kerja, Titik
semak kerja, Sistem koloni semut.

iii

Abstract

Fault tolerance in grid computing allows the system to continue operate despite
occurrence of failure. Most fault tolerance algorithms focus on fault handling
techniques such as task reprocessing, checkpointing, task replication, penalty, and task
migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is
one of the promising algorithms for fault tolerance due to its ability to adapt to both
static and dynamic combinatorial optimization problems. However, ACS algorithm
does not consider the resource fitness during task scheduling which leads to poor load
balancing and lower execution success rate. This research proposes dynamic ACS fault
tolerance with suspension (DAFTS) in grid computing that focuses on providing
effective fault tolerance techniques to improve the execution success rate and load
balancing. The proposed algorithm consists of dynamic evaporation rate, resource
fitness-based scheduling process, enhanced pheromone update with trust factor and
suspension, and checkpoint-based task reprocessing. The research framework consists
of four phases which are identifying fault tolerance techniques, enhancing resource
assignment and job scheduling, improving fault tolerance algorithm and, evaluating
the performance of the proposed algorithm. The proposed algorithm was developed in
a simulated grid environment called GridSim and evaluated against other fault
tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without
fault tolerance and ACO with fault tolerance in terms of total execution time, average
latency, average makespan, throughput, execution success rate and load balancing.
Experimental results showed that the proposed algorithm achieved the best
performance in most aspects, and second best in terms of load balancing. The DAFTS
achieved the smallest increase on execution time, average makespan and average
latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and
execution success rate by 6.49% and 9% respectively as the failure rate increases. The
DAFTS also achieved the smallest increment on execution time, average makespan
and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on
throughput and highest execution success rate by 72.9% and 93.7% respectively as the
number of jobs increases. The proposed algorithm can effectively overcome load
balancing problems and increase execution success rates in distributed systems that
are prone to faults.

Keywords: Grid computing, Scheduling optimization, Fault tolerance, Load
balancing, Ant colony system.

iv

Acknowledgement

Alhamdulillah, with all the blessing from Allah and invaluable contribution from

countless people, this thesis is finally completed.

Firstly, I would like to express my sincere gratitude to my main supervisor, Prof. Dr.

Ku Ruhana Binti Ku Mahamud, for all the guidance and support since the beginning

of this journey. Being supervised by her will become one of the best experiences in

my life. I would like to also appreciate my second supervisor, Prof. Dr. Hiroaki

Morino, who has provided ideas and thoughts, and treated me with hospitality during

exchange programs in Tokyo. For sure, I am so indebted to them.

Secondly, thanks to the love of my life, Dr. Husna Binti Jamal Abdul Nasir, who has

been supporting me physically and mentally throughout this journey. Without her, I

do not think I will be able to achieve this. I would like to also express special dedication

to my beloved kids, Danish Adni, Daniel Adib and Daris Adel for being so patience

and understanding. Not forgetting my late father, Bukhari Bin Husin who returned to

The Creator on August 17, 2020, and my beloved mother, Saudah Binti Ahmad,

without them, I will never be who I am right now.

Finally, I would like to express my appreciation to parents in law, siblings, relatives,

friends, co-workers and managers in Intel Microelectronics that have supported me

directly or indirectly. I apologize that I am unable to name every single person, but

certainly each of them deserves my utmost appreciation.

Thank you.

v

Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract ... iii

Acknowledgement... iv

Table of Contents ... v

List of Tables... viii

List of Figures ... ix

List of Abbreviations... xi

CHAPTER ONE .. 1

1.1 Background ... 9

1.2 Problem Statement .. 14

1.3 Research Objectives .. 16

1.4 Significance of the Research ... 17

1.5 Scope and Limitations of the Research ... 18

1.6 Structure of the Thesis .. 19

CHAPTER TWO ... 21

2.1 Grid Computing .. 21

2.1.1 Grid Computing versus Cloud Computing .. 24

2.1.2 Job Scheduling and Load Balancing in Grid Computing 27

2.1.3 Issues and Limitations of the Scheduling and Load Balancing in Grid

Computing .. 35

2.1.4 Grid Computing Simulation Tools ... 38

2.2 Fault Tolerance ... 41

2.2.1 Fault Tolerance in Grid Computing ... 42

2.2.2 Issues and Limitations of Fault Tolerance in Grid Computing 53

2.3 Ant Colony Optimization .. 57

2.3.1 ACO-based Scheduling and Load Balancing in Grid Computing 64

2.3.2 ACO-based Grid Fault Tolerance .. 69

2.4 Summary ... 77

CHAPTER THREE ... 81

3.1 Research Framework .. 81

3.1.1 Fault Tolerance Techniques Identification... 84

vi

3.1.2 Resource Assignment and Job Scheduling Enhancement 84

3.1.3 Fault Tolerance Algorithm Improvement .. 85

3.1.4 Performance Evaluation of the Proposed Algorithm 85

3.2 Grid Simulation Model ... 87

3.2.1 GridSim Architecture ... 88

3.2.2 System Model .. 89

3.2.3 Application Model ... 89

3.3 Simulation Design and Evaluation Methodology ... 90

3.4 Performance Evaluation Metrics ... 94

3.5 Load Balancing Measurement for Fault Tolerance Algorithm 96

3.6 Summary ... 98

CHAPTER FOUR .. 100

4.1 Dynamic ACS-based Fault Tolerance with Suspension 100

4.1.1 Initial Pheromone Value Calculation ... 103

4.1.2 Resource Selection Process .. 103

4.1.3 Fault Tolerance Mechanism ... 104

4.1.4 Flowchart of DAFTS ... 106

4.2 Load Balancing Using Dynamic Scheduling with Checkpointing 109

4.3 Temporary Resource Suspension .. 115

4.4 DAFTS Algorithm .. 118

4.5 Summary ... 120

CHAPTER FIVE .. 123

5.1 Experimental Design ... 123

5.2 DAFTS Parameter Tuning .. 124

5.2.1 Dynamic Evaporation Rate versus Fixed Evaporation Rate 124

5.2.2 Incentive and Penalty Factor .. 128

5.2.3 Implementation of Suspension Technique ... 133

5.3 Results and Analysis ... 137

5.3.1 Effectiveness of DAFTS to Different Rates of Failure 137

5.3.2 Effectiveness of DAFTS to Different Numbers of Tasks 145

5.4 Summary ... 152

CHAPTER SIX .. 154

6.1 Relationship Between Framework, Algorithm Design and Experiment........... 154

6.2 Summary of Experimental Result ... 156

vii

CHAPTER SEVEN .. 160

7.1 Contribution of the Research .. 161

7.2 Future Work .. 164

REFERENCES ... 165

viii

List of Tables

Table 1.1: Type of NP-complete problems.. 8-9

Table 2.1: High level comparison between grid computing and cloud computing...26

Table 2.2: Summary of literature related to job scheduling and load balancing in

grid... 37-38

Table 2.3: Summary of literatures related to fault tolerance in grid.................... 55-57

Table 2.4: Summary of key characteristics for various ACO variants......................63

Table 2.5: Summary of ACO-based fault tolerance in grid76-77

Table 2.6: Summary of performance evaluation metrics for fault tolerance algorithms

in grid ... 78-80

Table 3.1: Standard execution parameters...92

Table 3.2: Specific execution parameters..93

Table 3.3: List of performance metrics for all experiments.................................. 93-94

Table 5.1: Simulation parameters for evaporation rate validation 125

Table 5.2: Simulation parameters for incentive and penalty values optimization...129

Table 5.3: Incentive and penalty values optimization for load balancing...............130

Table 5.4: Incentive and penalty values optimization for execution success rate ...131

Table 5.5: Side-by-side comparison of top three figures in Table 5.3 and Table

5.4..132

Table 5.6: Simulation parameters for resource suspension validation.............133-134

Table 5.7: Simulation parameters for the effect of different numbers failure

rates.. 137-138

Table 5.8: Simulation parameters for the effect of different numbers of tasks.......145

Table 6.1: Summary of experiments to validate the performance between 0% and 50%

failure rate...157

Table 6.2: Summary of experiments to validate the performance between 1000 jobs

and 10000 jobs...158-159

ix

List of Figures

Figure 1.1: General flow of job scheduling, load balancing and fault tolerance...... 12

Figure 2.1: Grid protocol architecture vs. Internet protocol architecture 22

Figure 2.2: High level architecture diagram of grid system......................................23

Figure 2.3: Grids and clouds overview... 25

Figure 2.4: Basic architecture of fault tolerance system in grid computing.............. 43

Figure 2.5: Ants behavior in foraging process.. 58

Figure 3.1: Research framework of DAFTS... 83

Figure 4.1: Phases of DAFTS ...102

Figure 4.2: Sequence diagram of happy flow scheduling process..........................104

Figure 4.3: Sequence diagram of fault tolerance process 106

Figure 4.4: Flowchart of DAFTS..107

Figure 4.5: Initial state of single task splitted into multiple small tasks flows through

checkpoint manager ..112

Figure 4.6: Small task submitted to assigned resource and replica saved in the

memory ...112

Figure 4.7: Small task failed to be processed by assigned resource 113

Figure 4.8: Replica is retrieved and submitted to alternative resource...................113

Figure 4.9: Replica is removed after successful processing 114

Figure 4.10: DAFTS algorithm...120

Figure 5.1: Comparison between static and dynamic evaporation rate in terms of load

balancing for 100 resources with 1000, 3000 and 5000 tasks.................................126

Figure 5.2: Comparison between static and dynamic evaporation rate in terms of

execution success rate for 100 resources with 1000, 3000 and 5000 tasks.............127

Figure 5.3: Comparison between static and dynamic evaporation rate in terms of

execution time for 100 resources with 1000, 3000 and 5000 tasks.........................128

Figure 5.4: Comparison between no suspension and with suspension in terms of

execution time for small, medium and large sized tasks...134

Figure 5.5: Comparison between no suspension and with suspension in terms of

execution success rate for small, medium and large sized tasks.............................135

Figure 5.6: Comparison between no suspension and with suspension in terms of load

balancing for small, medium and large sized tasks...136

x

Figure 5.7: Results of execution time for ACOwFT, ACO, TACO, FTACO and

DAFTS..139

Figure 5.8: Results of throughput for ACOwFT, ACO, TACO, FTACO and

DAFTS..140

Figure 5.9: Results of average makespan per gridlet for ACOwFT, ACO, TACO,

FTACO and DAFTS...141

Figure 5.10: Results of average latency per gridlet for ACOwFT, ACO, TACO,

FTACO and DAFTS...142

Figure 5.11: Results of load balancing for ACOwFT, ACO, TACO, FTACO and

DAFTS..143

Figure 5.12: Results of success rate for ACOwFT, ACO, TACO, FTACO and

DAFTS..144

Figure 5.13: Results of execution time for ACOwFT, ACO, TACO, FTACO and

DAFTS for different number of tasks...146

Figure 5.14: Results of throughput for ACOwFT, ACO, TACO, FTACO and DAFTS

for different number of tasks...147

Figure 5.15: Results of average makespan for ACOwFT, ACO, TACO, FTACO and

DAFTS for different number of tasks...148

Figure 5.16: Results of average latency for ACOwFT, ACO, TACO, FTACO and

DAFTS for different number of tasks...149

Figure 5.17: Results of load balancing standard deviation for ACOwFT, ACO,

TACO, FTACO and DAFTS for different number of tasks...................................150

Figure 5.18: Results of execution success rate for ACOwFT, ACO, TACO, FTACO

and DAFTS for different number of tasks..151

xi

List of Abbreviations

B/S Bytes per second

GIS Grid information service

MI Million instructions

MIPS Million instructions per second

NP Non polynomial

PE Processing element

PV Pheromone value

1

CHAPTER ONE

INTRODUCTION

Grid computing emerged from meta-computing in the mid-1990s with the introduction

of middleware to serve as a wide area infrastructure to support diverse online

processing and data intensive applications (Foster & Kesselman, 2004; Moallem,

2009; Sotiriadis, Bessis, Xhafa, & Antonopoulos, 2012; Wang, Jie, & Chen, 2018).

During that time, several systems were developed to support scientific applications

such as Globus Toolkit (Foster & Kesselman, 1997; Severance, 2014), Storage

Resource Broker (Baru, Moore, Rajasekar, & Wan, 1998; Hsu et al., 2014), Legion

(Grimshaw, Ferrari, Knabe & Humprey, 1999; Rubab, Hassan, Mahmood & Shah,

2015) and Condor-G (Frey, Tannenbaum, Livny, Foster & Tuecke, 2002; Ashraf &

Mazher, 2013). To further improve the functionality and standardization of grid

computing technology, the Global Grid Forum was established in 1998 as an

international community and standards organization which is responsible for

controlling the standards to be developed and to run multiple standardization activities

(Moallem, 2009). Later, in 2002, the Open Grid Services Architecture was officially

established as a standard community that developed the Globus Toolkit 3.0 and 3.2

based on the Open Grid Services Infrastructure and, most recently, introduction of the

Globus Toolkit 4.0 (Talia, 2002; Kim, Kim & Weissman, 2014).

Grid computing is the collection of computer resources located in different locations

that work together to complete assigned tasks. Grid computing has been widely used

in solving challenging problems in real world situations such as video analysis

(Zorrilla et al., 2017), protein folding (Natrajan et al., 2004; Dill & MacCallum, 2014),

2

hydrology modelling (Lecca et al., 2011), natural disasters simulation (Pajorova &

Hluchý, 2012; Yuan, 2016) and bioinformatics (Merelli, 2019). The main reasons for

deploying grid computing are to introduce a system that is scalable, simple to use,

autonomic and able to deal with faults (Qureshi, Khan, Manuel & Nazir, 2011).

Grid computing can be further classified into data grid, service grid and computational

grid (Azeez & Haque, 2011; Muthu & Kumar, 2017). A data grid is mainly used for

storing large data sets which will be segmented and stored in different storage locations

(Bansod, Virk, & Raval, 2018). A service grid is generally used for maintaining the

services, analyzing resources, scheduling tasks and security (Madi, Yusof, Tahir, Zaini

& Hassan, 2017). Last, the computational grid, which consists of a highly distributed

environment and dynamic in nature, uses collective resources to solve a single

computational problem (Shah, Mahmood, Rubab & Hassan, 2016). The computational

grid, which is based on dynamically distributed resources and large scale sharing,

presents a tremendous amount of low cost computational power (Yan, Wang, Wang &

Chang, 2009; Patel & Sharma, 2019). In other words, maximum computational power

can be achieved with minimal cost to execute heavily loaded tasks in addition to the

reliability and efficiency without the need for dedicated resources. Due to the

heterogeneous nature of computing resources within the grid computing environment,

effective resource management needs to be present in order to ensure maximum

utilization of grid computing capabilities.

The grid computing system consists of several main components which are user

interface, security, workload management, scheduler, data management and resource

management. The user interface acts as a virtual wall between complexities of the grid

3

computing system and end users. When it involves user interaction, security should be

involved to support authentication, authorization, data encryption and data validation.

Jobs and resources that are managed by workload management are passive entities

which will not run unless being instructed. To start the process of giving instruction to

either entity, the broker service needs to identify jobs and resources before execution.

Then, the scheduler will schedule jobs and resources for execution. The next step,

which is to facilitate the execution by assigning jobs to suitable resources, validates

the status and retrieves the results which, after completion, will be handled by the job

and resource management component. Finally, the actual data transfer from one

destination to another will be managed by the data management component

(Bienkowski, 2018).

Job and resource management are part of the main components that need to be

considered in order to administer all submitted jobs and available resources

(Venkatesan, Ramalakshmi, & Latha, 2018). Unlike resource management in

traditional computing systems where resource managers have full control of a

resource, grid resource management is focused on managing and provisioning

independently owned and administered resources; this is very complicated due to the

heterogeneity of each resource (Foster & Kesselman, 2004; Patel & Sharma; 2018).

There are various issues in grid resource management such as resource discovery,

resource scheduling, resource monitoring, resources inventory, resource provisioning,

load balancing, fault tolerance, autonomic capabilities and service level management

systems (Li, Xie, Qi, Luo, & Xie, 2011; Idris, Ezugwu, Junaidu & Adewumi, 2017;

Darmawan & Aradea, 2019). Job scheduling focuses on applying effective scheduling

decision based on defined parameters such as required computation power, time to

4

complete computation, current load and capacity, size of job with main objectives to

minimize execution time and maximize throughput (Yadav, Jindal & Singh, 2013).

Job scheduling is also directly related to load balancing as it ensures fair jobs

distribution among available resources, maximizes throughput, reduces latency and

avoids stagnation (Patni, Aswal, Agarwal & Rastogi, 2015). Fault tolerance is crucial

to be considered since, in distributed systems, specifically grid computing, faults are

unavoidable due to the heterogeneous nature of resources that might have different

fitness and reliability (Souli-Jbali, Hidri, & Ayed, 2019; Khaldi, Rebbah, Meftah &

Debakla, 2020).

Job scheduling can be further classified as static and dynamic scheduling (Moallem,

2009; Balasangameshwara & Raju, 2012). In static scheduling, jobs and resources

assignment is done before the execution begins by using all the known information

and the whole execution will be based on pre-defined parameters. However, this is not

the case in a real grid computing system because parameters may change from time to

time based on previous execution results, occurrence of failures, stability of the

environment and priority of tasks. This is where dynamic scheduling plays an

important role in making scheduling decisions during runtime. Thus, jobs and

resources assignment will be completed efficiently by considering the most up-to-date

information during runtime which may result in better performance as compared to

static scheduling.

Load balancing is to improve the distribution of jobs to available resources to

maximize resource utilization. Few criteria are being used to determine the load of

resources which include load of processor, latency, communication overhead, memory

5

usage and node priority (Vaghela, 2014). There are several common steps in load

balancing algorithms which include load monitoring, synchronization, rebalancing

criteria and job migration (Rathore & Chana, 2014). These steps also exist in fault

tolerance algorithms to mitigate resource failures by migrating failed jobs to

alternative resources. Thus, it is important to consider the load balancing aspect as well

in the fault tolerance to ensure that the system can run optimally since both are

mutually inclusive.

In typical distributed computing systems that involve parallel computation such as

grid, cluster and cloud computing, there are many shared resources to process

submitted jobs; it is, therefore, common for failure to happen during job processing.

Many types of failure can occur, such as network failure, packet loss and corruption,

physical failure to the central processing unit, hard drive and storage drive in the

processing machine, user termination, service and protocol failure, software failure

and processing failure (Rakheja, Kaur & Rkheja, 2014; Savyanavar & Ghorpade,

2019). Out of the most common types of failure, it is possible to resolve network and

processing failures in real time through utilization of a proper fault tolerance strategy.

If failure happens in the processing machine, users will experience delay in execution

time (Amoon, 2012; Aliyu, Mohammed, Abdulmumin, Adamu & Jauro, 2020). This

is because submitted jobs cannot be processed effectively and resources will not be

released to process subsequent jobs in the queue. As a result, stagnation will occur

where the throughput will be greatly decreased or totally stalled due to limited

resources available to process jobs in the queue. Therefore, fault tolerance is the main

requirement of distributed system (Krasovec & Filipcic, 2019).

6

Generally, fault tolerance can be categorized as static and dynamic (Xu, Cai, He &

Tang, 2019). Static fault prevention assumes that all the information, including the

jobs’ and resources’ characteristics, and success or failure state, are known in advance.

However, in a distributed computing environment such as a grid, this technique is not

relevant because the environment itself is dynamic in nature (Balasangameshwara &

Raju, 2012; Liu & Guo, 2019). The most suitable technique is dynamic fault

prevention which relies on run time state information to make the decision. This means

that the fault prevention mechanism will not be executed until the fault is detected.

Furthermore, the type of fault will also be considered in order to decide whether to

reprocess the job using the same resource or migrate to another resource.

The most common fault tolerance techniques consist of checkpoint recovery and job

replication (Garg & Singh, 2011; Altameem, 2013; Bougeret, Casanova, Robert,

Vivien & Zaidouni, 2014; Ebenezer, Rajsingh, & Kaliaperumal, 2019). Checkpoint

recovery relies on the record of the last saved state which is stored temporarily and can

be a reprocess point in the presence of failure. The job reprocessing does not need to

be restarted from the beginning, it can start at the last saved state. This approach gives

significant time saving to reprocess failed jobs (Rathore, 2017; Garba et al., 2020).

Another technique is job replication which is the action to submit duplicate jobs to

multiple resources with the assumption that if one execution fails, the results of

execution from another resource can be used. However, this approach requires very

high technical considerations because it may potentially overload the entire system

(Singh, 2016).

7

There are also other fault tolerance techniques such as job migration (Qureshi, Khan,

Manuel & Nazir, 2011; Prashar, Nancy & Kumar, 2014), job retry (Wenming,

Zhenrong & Peizhi, 2009; Rathore & Chana, 2015; Idris et al., 2017) and penalty

(Keerthika & Kasthuri, 2011; Sharma, Sharma & Dalal, 2014; Kurochkin & Gerk,

2018). Job migration is essential in dynamic scheduling as it allows a failed job to be

submitted to other resources to reduce the possibility of another failure and allow the

failed resource to recover. Job retry is performed by submitting the original job or the

last saved job to the execution queue to undergo the standard scheduling process. Job

retry is considered as critical as it ensures the failed job can be reprocessed until

completion. Penalty is a technique used to penalize the occurrence of failure, either to

the resource, or to the path that leads to the resource so that they become less desirable

during the job scheduling process.

Fault tolerance has been widely implemented in various distributed computing systems

(Kumar & Pathak, 2018; Chinnathambi, Santhanam, Rajarathinam & Senthilkumar,

2019). The resilient distributed dataset is one example of a fault tolerance strategy

implemented in cluster computing applications. The general framework proposed is to

log the transformations used to build a dataset which provides enough information for

a quick recovery process in case of partition loss (Zaharia et al., 2012). A fault

tolerance load balancing algorithm, proposed by Balasangameshwara and Raju (2012),

is an example of fault tolerance application in grid computing which first backs up the

job before discovering potential resources to process it. Then, the fault manager will

detect or monitor the fault and apply a rescheduling policy for a job stored in the

primary backup to another resource in the presence of fault.

8

Fault tolerance, scheduling and load balancing are defined as Nondeterministic

Polynomial (NP)-complete problem (Glaßer, Pavan & Travers, 2009) which means

that there is no exact algorithm that can solve them in a polynomial time (Blum & Roli,

2003; Pooranian, Shojafar, Abawajy & Singhal, 2013). Table 1.1 shows different types

of NP-complete problems that are grouped by the type of problem such as scheduling,

routing, assignment, subset problems and others. In grid computing specifically,

several types of NP-complete problems such as job scheduling, load balancing and

fault tolerance are to be tackled together to improve the system’s functionality and

performance.

Table 1.1

Type of NP-complete problems

NP-Complete Problem

Routing Scheduling Assignment Subset Others

Network

Routing
Job Scheduling

Course

Timetabling

Multiple

Knapsack
Load Balancing

Travelling

Salesman

Problem

Project

Scheduling

Quadramatic

Algorithm
Set Covering

Constraint

Satisfaction

Sequential

Ordering

Total Weighted

Tardiness

Graph

Coloring

Digital Image

Habitats

Vehicle

Routing
Flow Shop Protein Folding

Query Routing Fault tolerance

 Bus Stop

9

Bin Packing

and Cutting

Stocks

Note. Adapted from Nasir (2020).

The most popular way to solve these problems is to use approximate or metaheuristic

algorithms such as GA (Werner, 2011; Sajedi & Rabiee, 2014; Kapil, Chawla, &

Ansari, 2016; Younis & Yang, 2018), simulated annealing (Lin & Vincent, 2012;

Vincent, Redi, Hidayat, & Wibowo, 2017), Tabu Search (TS) (Kong, Shen, Chen,

Wang & Song, 2010; Glover & Laguna, 2013; Lai, Demirag, & Leung, 2016) and,

recently, ACO (Ku-Mahamud & Alobaedy, 2012; Martin, Cervantes, Saez, & Isasi,

2020). GA, SA, TS and ACO are some of the local search algorithms used to search a

solution space by moving one solution to another and constructing the best solution

for scheduling and the load balancing algorithm. A feasible solution is quickly

produced by using these methods, but it will not come close to the optimal solution.

The solution produced by one metaheuristic algorithm can also be improved by

applying other metaheuristic or non-heuristic algorithms to obtain a better solution.

1.1 Background

Job scheduling is an important process in grid computing to effectively identify

suitable resources to process jobs submitted by the user. Job scheduling is classified

into two categories which are static scheduling and dynamic scheduling (Yadav, Jindal

& Singh, 2013). In static scheduling, the resource assignment is performed before the

execution while in dynamic scheduling, the scheduling decision can be performed

during execution. The dynamic scheduling scheme performs prediction based on

10

historical records (Kaur & Aggarwal, 2013). It is often enhanced to provide fault

tolerance capability as it allows the system to adapt with dynamic environment as well

as making scheduling decision during execution.

Fault tolerance in the grid consists of three main strategies: fault detection or

identification, fault prediction and fault recovery. Fault detection or identification

generally means detecting the type of fault when it occurs before mitigating it with the

most suitable solution. On the other hand, fault prediction entails predicting the

probability of faults occurring based on historical data and applying a suitable

scheduling policy to reduce fault probability. Last but not least, fault recovery consists

of several popular techniques such as job replication (space-sharing) and

checkpointing (time-sharing) (Altameem, 2013). The advantage of job replication is

that it does not require re-computation because each job has several simultaneous

copies assigned to different resources; therefore, if one fails, the other can still be

processed (Vansa, 2019). However, this technique is not very effective because a copy

of a job is considered as an individual execution and may potentially congest the job

queue. Another technique is checkpointing which requires the state of the running task

to be stored at defined checkpoints and if the job fails the execution will restart from

the last saved state instead of from the beginning. However, the drawback is that

having too many checkpoints may lead to runtime overheads (Idris et al., 2017; Garba

et al., 2020).

In addition to fault tolerance, load balancing is also important since the majority of

fault tolerance algorithms focus on fault strategies rather than load balancing. Load

balancing is categorized into two types: static and dynamic. In static load balancing,

11

information about jobs and resources is known prior to initialization and the scheduling

results are obtained even before all the jobs are executed (Prajapati, Rathod & Khanna,

2015). On the other hand, dynamic load balancing is preferred since it uses runtime

state information to make decisions and its decentralized parameters provide better

scalability and fault tolerance (Sharma & Dalal, 2014). Load balancing can also be

incorporated with job migration in order to solve load balancing problems and provide

fault tolerance by using the checkpoint technique (Rathore & Chana, 2015). Without

proper load balancing, stagnation may occur because the computational time of the

processed job is high. Stagnation may also occur when all jobs are assigned to the same

resources which, consequently, leads to the resources having high workloads. Thus, it

is critical to effectively utilize all resources to minimize stagnation problems in grid

computing.

Figure 1.1 depicts the general flow of job scheduling, fault tolerance and load

balancing. When jobs are submitted, job scheduling will take place to determine the

suitable resources to accept the jobs. During this process, indirectly the load balancing

is already being considered as the resource load is checked before assigning the jobs.

During execution, fault tolerance process will be invoked upon failure and the job

scheduling will be re-invoked to perform another round of scheduling to assign failed

jobs to alternative resources. It can be concluded that job scheduling, load balancing

and fault tolerance are mutually inclusive in heterogenous and dynamic nature of grid

environment (Balasangameshwara, 2014).

12

Figure 1.1. General flow of job scheduling, load balancing and fault tolerance

The ACO algorithm is used because it can be easily adapted to solve both static and

dynamic combinatorial optimization problems (Lorpunmanee, Sap, Abdullah &

Chompoo-inwai, 2007; Ku-Mahamud & Alobaedy, 2012; Goyal & Singh, 2012;

Ankita & Sahana, 2019) because it is designed to find unknown optimal solution where

the pheromone values are associated with solution components (Blum, 2005). ACO is

flexible and can be modified and combined with other nature inspired swarm

intelligence approaches such as Intelligent Water Drop in order to speed up optimal

scheduling in addition to minimizing makespan, balancing the load and utilizing

resources efficiently (Mathiyalagan, Sivanamdam & Saranya, 2013). Another study

that combined ACO with other algorithms was proposed by Modiri, Analoui and

Jabbehdari (2011) where their proposed algorithm combines the ACO algorithm and

Directed Acyclic Graph (DAG) method in order to cater both for load balancing and

fault tolerance aspects.

Job
Submission

Job
Scheduling

Load
Balancing

Fault
Tolerance

13

There are many variations of the ACO algorithm such as Ant System, Ant Colony

System (ACS), Max-Min Ant System (MMAS), Rank-based Ant System and Elitist

Ant System (Dorigo & Stützle, 2004). Ant colony optimization has been successfully

applied to solve many routing problems such as the network routing problem (Ye &

Mohamadian, 2014; Yang, Ping, Aijaz, & Aghvami, 2018), vehicle routing problem

(Tan, Lee, Majid, & Seow, 2012; Kuo & Zulvia, 2017), travelling salesman problem

(Holzinger et al.; 2016; Gülcü, Mahi, Baykan, & Kodaz, 2018), sequential ordering

routing problem (Gambardella, Montemanni, & Weyland, 2012; Ezzat, 2013;

Skinderowicz, 2017) and query routing problem (Santillán, Reyes, Conde, Schaeffer

& Valdez, 2010; Hanane & Fouzia, 2014). ACO has also been successfully applied in

fault tolerance (Idris et al., 2017) which has resulted in better load balancing in the

presence of failure.

The ACS is considered as one of most widely used ACO variants for solving NP-

complete problems (Schyns, 2015; Nasir, Ku-Mahamud, & Kamioka, 2017; Liu et al.,

2018). The ACS consists of two main mechanisms: exploration and exploitation.

Exploration relies on the transition probability between nodes while exploitation

chooses the node with the highest pheromone to reduce calculation time as well as

ensure reliable path selection. In addition to both mechanisms, local pheromone update

is also introduced in the ACS on top of the global pheromone update to increase

pheromone intensity of the best solution so far in order for the exploitation mechanism

to work. Thus, it is important to balance between exploration and exploitation so that

the solution is not too biased or not too random to provide the most optimal solution.

14

This research aims to enhance ACS algorithm for dynamic fault tolerance in grid

computing to overcome both fault and load balancing problems. The proposed

algorithm extended the ACS scheduling algorithm combined with the checkpoint and

suspension techniques to provide efficient scheduling in faulty environments.

Checkpointing was adapted and adopted from Prashar, Nancy and Kumar (2014) in

order to save the state of execution based on certain intervals so that reprocessing can

start from the last saved state instead of from the beginning. The suspension technique

was inspired from the trust mechanism proposed by Wenming et al. (2009) in which

resources are rewarded or penalized based on execution status. In this research, the

trust mechanism is further combined with the suspension technique because it is

possible that a recently failed resource may still have high levels of pheromone that

will cause it to be reassigned without undergoing the recovery process.

1.2 Problem Statement

The process of identifying resource failure or faults in dynamic grid computing is

complicated due to its distributed and heterogeneous nature (Ku-Mahamud, Din &

Nasir, 2011; Haider & Nazir, 2016). In typical fault tolerance algorithms, the

scheduling and rescheduling process often considers the resource load when assigning

jobs but not the execution history or fitness of resources. This may lead to uncertain

success rate as resources with low load could have high possibility of failure. For

instance, Idris et al. (2017) proposed an improved ACO algorithm with fault tolerance

in the grid by considering the resource load when assigning jobs to minimize

processing time and increase throughput. However, resource load alone does not

indicate the fitness of the resource which could lead to lower execution success rate.

15

Load balancing is often considered during scheduling process to fairly control the

distribution of jobs to available resources to maximize resource utilization (Khan,

2017; Sheikh, Nagaraju & Shahid, 2018). However, typical fault tolerance algorithms

do not possess effective the load balancing technique due to main objectives to

maximize success rate and throughput (Idris et al., 2017). There are also algorithms

that have considered the load balancing aspect but disregarded the execution success

rate such as algorithms proposed by Prashar et al. (2014), Rajab and Kabalan (2016)

and Garba et al. (2020). Without considering the load balancing in faulty environment,

resource utilization will be poor and may lead to stagnation as some resources will be

overloaded with high number of jobs. For example, fault tolerance algorithm proposed

by Prashar et al. (2014) applied effective mitigation technique called resubmission

based on checkpoint but did not consider the load balancing aspect. In addition, Garba

et al. (2020) proposed a fault tolerance algorithm that dynamically controlled the

checkpoint interval to improve makespan, throughput and turnaround time but did not

consider the load balancing aspect.

Temporary resource isolation in the presence of failure is essential to penalize and

suspend resources that failed to complete execution (Wenming et al., 2009). This

aspect has not been the main focus in fault tolerance algorithms as the main objective

is to reprocess failed jobs to alternative resources. As a result, resources that recently

failed to complete execution may still be assigned with majority of jobs and eventually

lead to higher possibility of another failure. Thus, it is important to temporarily isolate

recently failed resources so that it can undergo recovery process and complete the

remaining jobs in the queue. One example is tentative ACO algorithm which was

proposed by Sharma et al. (2014) that considered load balancing by applying an

16

encouragement and punishment argument based on execution status but did not

include the strategy to reprocess the failed job.

Due to all these limitations, improvement of ACS-based fault tolerance algorithms is

essential in order to extend the capability of both fault tolerance and load balancing

aspects to effectively overcome load balancing problems, minimize execution time and

latency, and maximize throughput and execution success rates in the presence of

failures. This leads to several research questions as follows:

1. What are the effective fault tolerance techniques that can be enhanced to

consider the load balancing aspects?

2. How can the resource fitness and trust factors be considered in the fault tolerance

management?

3. How can the ant-based fault tolerance algorithm be improved to provide fault

tolerance and load balancing aspects?

4. How effective is the proposed algorithm to cater for fault tolerance and load

balancing in grid environments?

1.3 Research Objectives

The main objective of this research is to develop an enhanced ACS-based algorithm

for dynamic fault management in grid computing which can assign jobs to suitable

resources, identify failures and ways to mitigate them, resubmit jobs to other available

resources whenever required, apply penalties and suspend failed resources temporarily

to avoid being assigned to the next execution cycle, overcome stagnation, minimize

17

computational time and balance the load of entire resources in the grid environment

on every execution.

Specific objectives of the research are:

1. To investigate fault tolerance techniques that can be enhanced in the context of

load balancing.

2. To develop an ant-based fault tolerance algorithm that considers resource fitness,

apply temporary suspension, and control pheromone assigned to resources.

3. To develop an improved ant-based fault tolerance algorithm that considers both

fault tolerance and load balancing aspects.

4. To evaluate the improved ant-based fault tolerance algorithm in simulated grid

computing environment.

1.4 Significance of the Research

Grid computing is emerging as a new computing paradigm to solve challenging

applications in engineering, science and economics. As a consequence, grid

architecture has to consider managing distributed, heterogeneous and dynamically

available resources in efficient ways. Therefore, the management of resources and

failures is crucial in grid computing environments so that every component of the

whole execution process works flawlessly (Azeez & Haque, 2011; Rathore & Chana,

2014).

The outcome of this research contributes to a new variant of ACO algorithm with fault

tolerance capability using checkpoint-based job resubmission to other resources. This

18

capability is to ensure that the failed job will be executed completely from the last

saved state (Prashar, Nancy & Kumar, 2014). In addition to that, the resource

suspension technique which was inspired from penalty application allows a recently

failed resource to recover (Wenming et al., 2009). The aspect of load balancing and

scheduling are improved which would enhance the basic approach of the ACO

algorithm by dynamically reducing faults using effective and reliable method. At the

same time, it tries to balance the load of entire resources to ensure fair distribution and

execution of jobs to overcome stagnation in the presence of faults. Eventually, it is

possible to implement the proposed algorithm in other types of distributed computing

system such as cloud computing, wireless sensor networks and cluster computing.

1.5 Scope and Limitations of the Research

This study focuses on improvement of the ACO algorithm by developing a new fault

tolerance algorithm called Dynamic Ant Colony System-based Fault Tolerance with

Suspension (DAFTS) that can overcome stagnation problems and offer fault tolerance

measures in grid computing. The focus is on improving the way ants search the best

resources in processing jobs and identify failures by using a fault detection approach

and, at the same time, trying to dynamically apply fault recovery techniques. The

proposed algorithm is based on the Ant Colony System (ACS) algorithm to improve

the scheduling and pheromone update for fault prevention measures and the load

balancing process. The dynamic fault tolerance workflow was used to experiment in a

simulation environment called GridSim by using both dynamic and static

characteristics to simulate various scenarios and conditions.

19

The limitation of the research is the experiments were done in simulated grid

computing environment called GridSim which is designed to provide close to actual

functionality as the real grid computing environment. In real environment, the DAFTS

might not behave the same way as in simulated environment due to unknown factors

but the difference in its behavior will not be so significance. Another limitation of the

research is the DAFTS is based on single ACO and is experimented by defining

parameters for each batch of execution. Each execution represents one session in

which the grid users submitted the jobs in real grid environment.

Even though grid computing has been available for many years, improvement can be

further explored in order to make it relevant to the constantly changing computing

world. Fault tolerance in grids is the main improvement to be explored in this study in

addition to improving load balancing. Looking at the concept of the load balancing

algorithm, it is definitely possible to also use the same concept to handle failure either

by introducing a separate algorithm just to handle failure or integrate both fault

tolerance and the load balancing algorithm to simplify the architecture as well as to

allow the new algorithm to be implemented in existing load balancing algorithms

applied in real applications. ACO has been selected since it gives flexibility to combine

with other algorithms and is proven to be one of the most reliable algorithms to handle

load balancing in grid computing.

1.6 Structure of the Thesis

The structure of this thesis is as follows. In Chapter 2, an overview of grid computing

that covers job scheduling and load balancing, fault tolerance in grid computing and

20

ACO that covers scheduling, load balancing and fault tolerance are discussed. In

addition, issues and limitations are also elaborated upon.

Chapter 3 covers the framework and methodology used to realize the objectives of

DAFTS in grid computing, followed by the simulation model, simulation design and

evaluation methodology and performance evaluation metrics

Chapter 4 presents, in detail, the proposed DAFTS algorithm which includes the load

balancing technique using dynamic scheduling with checkpoint and resource

suspension. Furthermore, the pseudocode of the DAFTS is also presented.

Experimental design and parameters tuning of the DAFTS algorithm are covered in

Chapter 5. Then, the performance of the proposed algorithm is compared with the other

four algorithms by measuring the effect of different failure rates and different numbers

of tasks in terms of execution time, throughput, makespan, latency, load balancing and

execution success rate.

Chapter 6 is dedicated for detailed discussion on Chapter 3, Chapter 4 and Chapter 5

and relationship between key contributions of each chapter. Finally, Chapter 7

discusses the contributions of the research and highlights future research directions.

21

CHAPTER TWO

LITERATURE REVIEW

This chapter presents the review of research that has been carried out in the areas of

grid computing and ACO. The overview of grid computing is discussed in Section 2.1

which covers previous works related to grid scheduling and load balancing. Section

2.2 further elaborates fault tolerance, including techniques that are applied in the grid

environment. Section 2.3 explains in detail about ACO and its applications such as

scheduling, load balancing and fault tolerance in grid computing, followed by Section

2.4 that summarizes this chapter.

2.1 Grid Computing

Grid computing is a high performance computational system that consists of

decentralized distributed resources connected by a network that offers cost effective

high performance computing capability and allows a more cooperation and

collaboration between resources to achieve common objectives. Grid computing is

deployed within the standard Internet protocol architecture, specifically at the

application, transport, Internet and link layers (Foster, Kesselman & Tuecke, 2001;

Hwang, Dongarra & Fox, 2012; Basu, 2016).

As illustrated in Figure 2.1, majority of grid computing layers within the grid protocol

architecture such as collective layer, resource layer and connectivity layer are located

at the same level as application layer in Internet protocol architecture (Nassiry &

Kardan, 2009; Kamra & Chugh, 2011). Collective layer deals with collaborative

operations between shareable resources while resource layer covers actions related to

22

network parts such as negotiation, initiation and monitoring. All the associated

protocols, communication and authentication are placed under connectivity layer. Last

but not least is the fabric layer in which all shareable resources are placed (Seelwal,

2014; Ankita & Shana, 2018).

Figure 2.1. Grid protocol architecture vs. Internet protocol architecture

Resources in grid computing are combined from different locations to form a super

virtual computer to solve large and complex tasks (Levitin, Xing, Johnson & Dai,

2018). Individual users can access several computing resources such as data,

applications, storage, and processors without knowing the locations of each resource.

The grid resource broker is a key element in grid computing that is responsible for

identifying and matching suitable resources from multiple administrative domains to

process a submitted job (Kaushik & Vidyarthi, 2018). As shown in Figure 2.2, the grid

Application

Collective

Resource

Connectivity

Fabric

Application

Transport

Internet

Link

G
ri

d
P

ro
to

co
l A

rc
hi

te
ct

ur
e

In
te

rn
et

 P
ro

to
co

l A
rc

hi
te

ct
ur

e

23

resource broker is connected to the users and resources. It is responsible for managing

scheduling, load balancing, and faults.

Figure 2.2. High level architecture diagram of grid system

Resources in grid computing systems are not under central control, where they can

enter and leave the system at any time (Meo, Messina, Domenico & Sarné, 2015). An

effective resource management system is needed to manage the grid computing

system. Resource management is a central component of a grid computing system and

is responsible for managing submitted jobs and available grid resources which includes

resources allocation, assignment, authorization, assurance and authentication to

process submitted jobs (Sharma & Bawa, 2008; Qureshi et al., 2014).

Shared grid host

Shared grid host

Shared grid host

Grid resource broker

Grid resource
Grid resource

Grid resource

Grid resource

End user Admin User

24

Main problems being solved in grid computing are directly aligned with problems in

distributed systems where multiple computing capabilities are connected through

networks to perform coordinated computations. These problems include scheduling

(Jiang & Chen, 2015; Rathore, 2015; Alkhanak, Lee, Rezaei & Parizi, 2016; Maipan-

uku, Konjaang & Baba, 2016; Sathish & Reddy, 2017; Younis & Yang, 2017; Mahato,

Sandhu, Singh & Kaushal, 2019; Eng, Muhammed, Mohamed & Hasan, 2020), load

balancing (El-Zoghdy & Alaa, 2015; Patni & Aswal, 2015; Naik, Jagan & Narayana,

2015; Rathore, 2015; Idris et al., 2017; Omer & Abdalla, 2018; Mahato et al., 2019;

Garba et al., 2020), resource allocation (Satish & Reddy, 2018; Krasovec & Filipcic,

2019; Shukla, Kumar & Singh, 2018) and fault tolerance (Singh & Bawa, 2016;

Abdullah, Ali & Haikal, 2017; Haider & Nazir, 2017; Idris et al., 2017; Goswami &

Das, 2018; Ahuja & Banga, 2019; Garba et al., 2020. A good grid management system

should consider scheduling, load balancing and fault tolerance to ensure the

optimization and efficiency that are important in a dynamic environment that performs

intensive computations.

2.1.1 Grid Computing versus Cloud Computing

Grid computing and cloud computing are not a completely new concept. While cloud

computing is becoming a popular paradigm, it does not overtake the importance of

grid computing paradigm. Generally, cloud computing is specialized in scalability,

services, economic and configurability (Sharma, 2013). Cloud computing overlaps

with many distributed computing technologies such as grid computing and cluster

computing. Cloud is built within the web service architecture where it is more focused

on service orientation applications. Figure 2.3 clearly illustrates the overlapping of grid

25

computing and cloud computing within the distributed systems (Foster, Zhao, Raicu

& Lu, 2008).

Figure 2.3. Grids and clouds overview

Grid is the backbone of cloud when it emerged from the grid in the modern context in

the early 2000’s. Cloud can support a grid environment in addition to non-grid

environments such as Web 2.0. In other words, grid system can run on cloud system,

but cloud system cannot run on grid system (Obali & Topcu, 2015). Detailed

comparison between grid computing and cloud computing is listed in Table 2.1. It can

be seen that grid computing is designed to provide high performance computing

capability with high throughput and low latency which are difficult to achieve in cloud

due to shared resources by multiple users demanding different services and reliance

on Internet speed and latency.

Supercomputers

Grids

Clusters

Clouds

Web 2.0

Distributed Systems

26

Table 2.1

High level comparison between grid computing and cloud computing

 Grid Computing Cloud Computing

Business model Quota basis Consumption basis

Architecture Resource sharing Virtualization

Resource

management
Batch-scheduled compute model

Shared by all users at the

same time

Programming

model
Parallel programming models Web services APIs

Application

model

Supports many applications

ranging from high performance

computing to high throughput

computing

Unable to effectively

support applications that

require fast and low

latency network

interconnects

Security model

Decentralized and each grid site

has its own administration

domain and operation autonomy

Centralized and managed

by the same organization

Both grid and cloud offer resource sharing in which cloud uses virtualization

infrastructure such as virtual services and virtual machines, and grid uses allocation of

large cluster of resources which may be located in the same or different geographical

location. In terms of the cost of resource usage, grid uses quota mechanism in which

the users or community have certain amount of service units they can spend within a

certain time periods while cloud offers flexible costing mechanism which means that

the users pay for the services they subscribe (Alkhanak et al., 2016). There are many

challenges in cloud computing such as scheduling, load balancing, resource

27

management, quality of service and workload management (Kumar & Kumar, 2019).

On the other hand, grid computing has challenges such as job arrival rate, resource

utilization, job migration, communication cost and fault tolerance (Khan, Nazir, Khan,

Shamshirband & Chronopoulos, 2017).

Krasovec and Filipcic (2019) proposed a model that enhanced grid computing by

integrating with public cloud to overcome the complexity and scalability of grid

computing system. The proposed model focuses on leveraging cloud infrastructure as

a service to support grid computing architecture in improving resource utilization

whereby the jobs can be submitted to physical grid resources or to virtual resources in

cloud server. This architecture reduces the full dependency on grid resources by

allocating some jobs to virtual resources to achieve the same objective with possibly

lesser computing power. In this model, the architecture of grid computing is still being

preserved while extending its capability to allow user customization, better resource

provisioning and scalability. Despite the popularity of cloud computing, grid

computing has become significantly important in scientific research projects that

require high performance computing capability to cope with increasing demand of

computational power (Merelli, 2019).

2.1.2 Job Scheduling and Load Balancing in Grid Computing

Scheduling is one of the main components in the grid service that must be optimized

in order to maximize the throughput, minimize processing time and balance the

workload of the entire resources. In a grid computing system, resources are distributed

throughout a large scale area and each resource has dynamic characteristics and

computing capabilities to process submitted jobs (Feng, Weiwei & Xiaomin, 2018).

28

On the other hand, each job has different characteristics that need to be considered

such as job length, size of input and output, deadline and priorities. Due to all these

considerations, a good scheduling algorithm should strongly consider the dynamic

characteristics of jobs and resources in order to produce the most optimized scheduling

process.

There are many algorithms proposed to effectively solve grid scheduling problems.

The Priority-based Task Scheduling Algorithm (P-TSA) was proposed by Sun, Zhu,

Su, Jiao and Li (2010) to solve scheduling and load balancing problems in grid

computing systems with the main focus on minimizing the makespan of processing

jobs and maximizing the utilization of resources in grid computing. In the proposed

algorithm, all jobs are sorted by the priority values where jobs are classified as a

predecessor job (parent job) and successor job (child job). In this case, the successor

job cannot be scheduled until the predecessor job is completed. Subsequently, jobs will

be sorted according to their estimated completion time (ECT) where the lowest ECT

has the highest priority. The sorted tasks then travel through resource machines to

record the completion time of each resource machine; the resource machine with the

lowest completion time will be selected for scheduling. Experimental results showed

that P-TSA has a better performance on the aspect of makespan and resource

utilization compared to the other two algorithms by using a random DAG and DAG of

molecular code. However, the proposed algorithm only considered the estimated

accomplishment time of jobs and estimated completion time of resources but not the

characteristics of jobs and resource machines such as bandwidth, job size and historical

record of processing state.

29

The study by Kong et al. (2010) proposed a dynamic grid scheduling algorithm on self

adaptive TS to solve scheduling problems in grid computing by reducing the makespan

of the processing jobs. The scheduling process in the proposed algorithm was divided

into partial scheduling and batch scheduling where information on every partial

scheduling based on the Min-Min algorithm is stored in a Tabu list to be used as a

simple searching method for these solutions in future search processes. The length of

the Tabu list must be considered because if it is too large, it will consume a lot of

storage space and require high computation power. Thus, dynamic Tabu length

adjustment is implemented in order to produce the ideal length based on the ratio of

scheduling time and batch size. In contrast, the scheduling results are not ideal if the

Tabu list is too short. The performance of the proposed algorithm was compared to the

Min-Min algorithm, Max-Min algorithm and Sufferage algorithm (Siegel & Ali, 2000;

Braun et al., 2001). Experimental results showed that the proposed Tabu search

algorithm performed better in terms of makespan as compared to the other algorithms.

However, scheduling alone is not sufficient in order to provide reliable distributed

processing. Thus, it is essential to also consider load balancing and fault tolerance

aspects.

Hybridization between Cuckoo Search (CS) and Genetic Algorithm (GA) for job

scheduling in grid computing was introduced by Sajedi and Rabiee (2014) to minimize

the completion time and prevent trap in a local minimum. It is claimed that GA suffers

from long processing time to perform required test to obtain optimal parameters, and

this disadvantage is covered by the advantages of CS which has faster convergence

and has the ability to avoid local minimum. The first stage involves generating a

population of Cuckoo eggs that have greatest change for further growth. This

30

population will undergo mutation and crossover during the second stage to produce

new population which is also optimal solution. The experimental results showed that

the proposed hybrid algorithm achieved the lowest completion time when compared

with CS and GA. It was assumed that all machines are always available and jobs do

not have time constraint to be completely processed, and these facts could become

factors that the proposed algorithm may not work efficiently when interruption

happens.

Adaptive workflow scheduling that involves initial static scheduling, resource

monitoring and rescheduling was proposed by Garg and Singh (2015) with objective

to minimize execution time. Before the scheduling begins, set of available resources

and loads are identified, and this process is continuously executed to update the list of

available resources. Then, DAG will be used to perform initial static scheduling to

map the workflow task to suitable resources and the scheduling results will be

submitted to the execution manager for further submission to the resources. On the

other hand, the resource monitor periodically checks for abnormalities such as load

increment or new resources available. These events will be exchanged with workflow

task scheduler which will then decide whether to reschedule the workflow task to other

resources or do nothing. Despite the performance of the proposed algorithm in terms

of minimizing the execution time, it did not consider the dynamic resource availability

on the executing task which could lead to the inability to perform rescheduling when

the resource executing current task unexpected becomes unavailable.

Sheikh, Shahid and Nagaraju (2017) proposed a dynamic task scheduling strategy

through enhancement of task level parallelism to minimize the makespan. The first

31

phase of the proposed algorithm is to divide task into multiple subtasks within the

maximum task limit. In the second phase, each subtask which is also treated as

individual task, will be submitted to available resources dynamically in parallel

manner until all the subtasks for a specific task are completely executed. The next task

submitted by the user must wait for the current task to be completely processed before

it can undergo the splitting and submitting phases. The results showed that the

proposed algorithm achieved significant reduction of makespan. It is clear that

parallelism can significantly reduce the processing time of a large task but the

condition where the next task must wait for the current task to be completely executed

is quite risky especially when some subtasks of the current task failed to complete and

eventually increase the latency of the next tasks to be executed.

Younis and Yang (2018) proposed two hybrid metaheuristic scheduling algorithms in

reducing the makespan of the scheduling process in grid computing. The makespan

value is used as a benchmark where the small makespan value indicates the high

utilization of the available resources. In this research work, the traditional Variable

Neighborhood Search (VNS) has been improved by introducing four new structures

which are penalty-based move, penalty-based swap, longest max to min move, and

random max to min move, based on the concepts of transfer and move of assigned jobs

to or from the selected resources. The first proposed scheduling algorithm combines

ACO and VNS while the other algorithm combines GA and VNS. The proposed ACO-

VNS algorithm finds the best resources by using the free earlier value when calculating

the heuristic function along with the pheromone value. Then, the solution found by the

local best ant will be improved by using the improved VNS structures. The second

proposed scheduling algorithm combines GA and VNS where the improved VNS

32

structures deployed as a mutation operator in the GA algorithm encourage the

exploration of the search space in minimizing the makespan. Experimental results

showed that GA-VNS has the lowest makespan followed by ACO-VNS when

compared to the other scheduling algorithm. However, neither algorithm considered

the failure problem and only evaluated in terms of makespan instead of other

performance metrics such as throughput and success rate.

One of the most challenging problems in resource management is load balancing. Load

balancing is important to consider since it ensures fair job distribution across all

available resources (Rathore & Chana, 2014; Khan, Nazir, Khan, Shamshirband &

Chronopoulos, 2017). It ensures all submitted jobs are distributed equally to each

resource, minimizes the execution time of each job and maximizes resource utilization.

To be specific, this is done by minimizing the difference between heaviest loaded node

and lightest node. As a result, stagnation problems can be effectively resolved as the

probability of a resource being overloaded with jobs while the others remain idle is

minimized through the load balancing policy. Furthermore, the load balancing should

be self-adaptive to automatically adjust with dynamism and heterogeneity of the

resources (Darmawan & Aradea, 2018).

There are many proposed algorithms that take into consideration load balancing along

with scheduling problems in grid computing. For instance, the heuristic-based load

balancing technique by using ACO was proposed by Sharma, Sharma and Dalal

(2014). By using the ACO algorithm, a job will be assigned to the resource that has

the highest transition probability during scheduling. After the execution is done,

regardless of whether it is a success or failure, the pheromone intensity of the current

33

resource will be updated. Throughout this approach, a resource that recently completed

its processing will have less pheromone which will directly control the value of

transition probability during the scheduling process. In the end, other resources will

also have the possibility to be chosen to process the remaining list of jobs instead of

simply one or a few powerful resources. The proposed algorithm was evaluated against

the random resource selection algorithm and the results achieved lower execution cost

and time. However, despite considering the load balancing aspect, it was not measured

thoroughly in the experimental results.

Batch mode scheduling strategy was proposed by Maipan-uku, Konjaang and Baba

(2016) with the aim to reduce makespan, increase resource utilization and balance the

load. Before the scheduling process begins, all tasks are sorted in ascending order

which means that task with lowest expected completion time will be placed in front of

the queue. Then, the average completion time will be collected from all available tasks

and whichever tasks that have expected completion time greater than average

completion time will be scheduled first, followed by the tasks that have expected

completion time equal or lower than average completion time. The proposed algorithm

was compared with Min-Min algorithm that considers tasks with minimum expected

completion time which assign the tasks to resources that yield minimum completion

time. Results showed that it achieved lower makespan, higher average resource

utilization and load balancing. In spite of the good performance, the algorithm works

well when failure is not part of the consideration but when it is being considered, the

expected completion time alone is not enough to ensure effective scheduling in faulty

system.

34

Khan (2017) proposed an effective load balancing and dynamic group scheduling that

used resources partitioning to reduce job processing time and increase resource

utilization. All resources are group into several partitions in which each partition has

one super node and several resources. Super node of each partition controls the job

pool and communicate with other super nodes from different partition to exchange

information while resources within the partition can only communicate with each other

and the super node. In terms of dynamic jobs allocation, linear programming model is

used to estimate the execution time of each combination of jobs and resources before

the job can be submitted to the respective resource within a specific partition. The

proposed algorithm was compared with first come first serve and ACO algorithms and

results showed that it achieved lower processing time and higher resource utilization.

Notwithstanding the results, it was not specified whether the resources that reside

within a partition can be re-assigned to another partition which this could lead to

imbalance fitness of partitions when one partition might have, and whether super node

can be changed from time to time depending on its load.

Dynamic load balancing with advanced reservation was proposed by Sheikh, Nagaraju

and Shahid (2018) to minimize task waiting time and load imbalance by considering

the resource load prior to allocating the task. The advanced reservation is performed

by first checking the resource availability and running time to execute the tasks. At

certain time intervals, running time will be added into the load share queue as a

reference to decide which resource is overloaded or underloaded. On the other hand,

whenever the task is executed partially or completely, the amount of executed length

will be deducted from the load share queue which will indicate that the resource is

ready to receive more tasks. The proposed algorithm resulted in higher load balancing

35

and lower makespan and claimed to be suitable for applications that require minimal

task waiting time but not turnaround time.

Abdullah, Ali and Haikal (2019) proposed TOPSIS-based multi-criteria and

hierarchical load balancing to effectively improve the load balancing in computational

grid environments. The n-level architecture model has leaf level, intermediate level

and root level which are interconnected hierarchically, and static or dynamic

information of all resources within this model are stored in a global information

system. The jobs are assumed to be generated from one local resource and will be

prioritized by the local scheduler for local processing. If the job cannot be completed

locally within a time constraint, it will be routed to the global scheduler which

distributes the job to other resources that can execute within a time constraint inside

the global cluster. In terms of fault tolerance capability, it was noted that the non urgent

job will be routed to faulty resources and is expected to fail to undergo the rescheduling

process to a better resource. It was also highlighted that the proposed algorithm should

be coupled with fault tolerance techniques such as a checkpoint-based resubmission

process to be more effective. Their proposed algorithm resulted in lower average

completion time, higher throughput and maximum load balancing when compared

with minimum completion time (MCT) and user demand aware grid scheduling

models.

2.1.3 Issues and Limitations of the Scheduling and Load Balancing in Grid

Computing

Scheduling is definitely one of the main components in the grid environment. Effective

scheduling ensures that each job is assigned to the best resource. Most related works

36

often consider job processing time. However, in order to provide reliable and accurate

scheduling, it is important to consider other job and resource characteristics such as

size, current load, current bandwidth, availability and so on.

Furthermore, the scheduling process simply assigns jobs to suitable resources without

balancing the load. If, out of all available resources, there is only one best resource

detected by the scheduling policy, the same resource will be assigned with jobs

continuously while the other resources will remain idle (Rathore & Chana, 2014).

Therefore, it is definitely crucial to also incorporate load balancing with job scheduling

in order to avoid stagnation and provide fair resource utilization. Load balancing

ensures that if the load of a resource is not within a normal state, the resource will have

low probability to be chosen during the scheduling process.

Another issue that should be considered during the scheduling process is resource

availability. It is possible that the resource information in the grid information service

(GIS) is not up-to-date and may lead to the scheduler performing a bad scheduling

decision when the resource is temporarily unavailable. Increasing the frequency of

information update in GIS could be the solution but this will increase system

overheads. In addition, checking the resource availability before submitting the job is

another good approach to reduce the possibility of unavailable resources being

assigned to jobs (Sheikh, Nagaraju & Shahid, 2018).

Table 2.2 summarizes the work related to job scheduling and load balancing in grid

computing in terms of the main objectives and open issues. It can be seen that

minimizing makespan is the most common objective as it indicates how quick an

37

individual task can be executed completely. The least common objective is load

balancing because in a system without faults, the scheduling process that would

indirectly consider load balancing can be performed easily due to the fact that each

individual resource has more predicted capabilities and fitness. However, in a system

with faults, resource capabilities and fitness are unpredictable and may change from

time to time. Majority of fault tolerance algorithms focus on reducing faults and often,

this requires jobs to be submitted to fit resources and eventually leads to unfair jobs

distribution and poor resource utilization.

Table 2.2

Summary of literature related to job scheduling and load balancing in grid

Authors Objective Drawback

Kong et al. (2010)
Reduce the makespan of the

processing jobs

Does not consider load

balancing

Sun et al. (2010)

Minimize the makespan of

processing jobs and maximize

the utilization of resources

Does not consider bandwidth,

job size and historical record of

processing state

Sajedi & Rabiee

(2014)

Minimize completion time

and avoid local minimum

Unable to work efficiently when

interruption happens

Garg & Singh

(2015)
Minimize execution time

Did not consider dynamic

changes to the resource

availability on executing task

Sheikh, Shahid &

Nagaraju (2017)
Reduce makespan

Dependency of next task to the

previous task execution may

lead to latency

Younis & Yang

(2018)

Reduce the makespan of the

scheduling process

Does not consider throughput

and load balancing

38

Sharma, Sharma

& Dalal (2014)

Reduce the average execution

time and cost of the tasks

Considers load balancing but

not validated in the

experimental results

Maipan-uku,

Konjaang & Baba

(2016)

Reduce makespan, increase

resource utilization and load

balancing

Reliance on expected

completion time along is not

sufficient in faulty system

Khan (2017)

Reduce the processing time

and increases resource

utilization

Resource within partition cannot

be moved to other partition and

lack of dynamic super node

nomination

Sheikh, Nagaraju

& Shahid (2018)

Load measurement before task

execution to efficiently

distribute load prior to task

execution

Suitable for system that needs

minimum waiting time but not

turnaround time

Abdullah, Ali &

Haikal (2019)

Load measurement before task

execution to efficiently

distribute load prior to task

execution

Does not consider failures

2.1.4 Grid Computing Simulation Tools

Grid computing simulations tools are developed to overcome the challenges to deploy

real grid environment which is costly and involves complicated infrastructure setup.

In addition to that, the real infrastructure has limitations such as low scalability and

reconfiguration possibility, and is inflexible to support hardware components and

topology changes. There are several grid simulations tools available such as

MicroGrid, Bricks, SimGrid, GangSim and GridSim (Mollamotalebi, Maghami &

Ismail, 2013). In addition to that, there are several popular grid simulation tools based

39

on the number citations in descending order which are GridSim, SimGrid, OptorSim

and GangSim (Prajapati & Shah, 2015).

MicroGrid was introduced by Song et al. (2000) to allow establishment and evaluation

of grid computing middleware, applications and services. It allows repetitive and

controlled scientific experiments which run on virtual resources that are heterogenous

physically. The MicroGrid is modeled to support applications developed using Globus

toolkit, but it requires significantly huge amount of time to execution experiments as

applications run on emulated resources (Buyya & Murshed, 2002). MicroGrid was

used by Xia, Dail, Casanova and Chien (2004), Liu, Xia and Chien (2004), and Xhafa,

Carretero, Barolli and Durresi (2007).

Bricks was developed by Takefusa, Matsuoka and Nakada (1999) to support

performance evaluation of scheduling schemes in computing environments such as

grid and cluster. It allows simulation of computing systems behaviors that include

scheduling, network topologies and processing plans. Its architecture is designed in

such a way that components are replaceable when needed to accommodate various

evaluations. Generally, it consists of two main units which are grid computing

environment and scheduling unit. Client, network and server are part of grid computing

environment, while applications and services such as database, monitoring, predictor

and scheduler are part of scheduling unit. Bricks was used by Takefusa, Casanova,

Matsuoka and Berman (2001).

Gangsim was an enhancement of Ganglia monitoring toolkit that incorporates

instances of virtual organization with simulated components developed by Dumitrescu

40

and Foster (2005). It focuses on simulating policy driven management infrastructure

such as the number of CPUs and their time, network bandwidth and disk space. It

supports capturing realistic grids behavior at high level, and not detailed behaviors of

scheduler and jobs. Due to its immaturity, it was not implemented in the actual research

experiments.

SimGrid toolkit was firstly introduced by Casanova (2001) to allow simulation of

computing application scheduling in heterogenous and dynamic grid environment

more realistically. It was also proven to generate a more correct and accurate

simulation results. Computing resources are treated as independent resources without

a need for interconnection topology which allows simulation of wide range of

computing environments as the users have flexibility to specify their topology

requirements. According to Prajapati and Shah (2015), SimGrid was the second most

popular grid simulation tool based on the number of citations by researchers. SimGrid

was implemented by Lebre, Legrand, Suter and Veyre (2015), Hirofuchi, Lebre and

Pouilloux (2015), Brennand, Duarte and Silva (2016), and Fanfakhri, Yousif and

Alwan (2017).

GridSim is an open source platform developed by Buyya and Murshed (2002) which

has almost the same features as SimGrid in terms of ability to model heterogenous

resources in addition to extensible information system that can store and query

properties of the resources for designing resource discovery system. It allows

simultaneous tasks execution to the same resource and supports both static and

dynamic schedulers. The GridSim has a layered architecture where each layer has

specific functions. One notable component of GridSim is the grid resource broker

41

which is responsible to receive submitted tasks and apply scheduling policies. Each

user is connected to an instance broker, and all submitted tasks will go through the

broker instead of direct access to the resources. Based on analysis performed by

Prajapati and Shah (2015), GridSim is the most popular grid simulation tool due to

highest citation counts and implementation in recent works such as Idris et al. (2017),

Shukla, Kumar and Singh (2018), Garba et al. (2020), and Eng et al. (2020).

Based on the list of grid simulation tool, GridSim is widely used by researchers in

simulating their works due to its architecture that is close to the actual grid

environment and flexibility to support wide range of simulation experiments. In

addition to that, it is not only used for simulating grid environment, but also other

application domains such as high performance computing (Eleliemy, Mohammed &

Ciorba, 2016), cluster computing (Gabaldon, Guirado, Lerida, & Planes, 2016) and

autonomous driving simulator (Trasnea et al., 2019).

2.2 Fault Tolerance

Fault tolerance is a method to keep the system working optimally even if any of its

components are in a faulty status. A good fault tolerance system must deal with the

availability, safety, reliability, and maintainability factors (Smith, 2017). The system

must be available and ready to serve the user in the given time and at the same time

can be reliable to work constantly over a long period of time with minimal disruption.

A good fault tolerance system also has a high maintainability system and can deal with

system failure without affecting the quality of the outputs.

42

2.2.1 Fault Tolerance in Grid Computing

Fault tolerance is the ability of a system to perform its function correctly even in the

presence of failure (Garg & Singh, 2011). Fault tolerance management is the process

to identify and handle failures in grid computing (Farid & Hussain, 2017). This process

includes identifying available failures and supporting reliable execution in the

presence of failures (Keerthika & Kasthuri, 2012). In grid computing systems, there

are dynamically changing conditions where resource performance changes from time

to time, a resource may become unavailable without any notification and network

connections become unreliable. Thus, it is important to define proper fault tolerance

strategies and techniques to be used in designing the most reliable fault tolerance

algorithm.

Fault tolerance is one of the important issues highlighted in the distributed system.

Distributed systems such as grid computing and cloud computing use multiple

resources that are connected by a network to provide a high performance computing

capability that cannot be achieved by a single computer. One of the main concerns in

ensuring the performance of a distributed system is the way it handles the failure of

one or multiple resources in real time. An efficient fault tolerance system can detect

the faults and has the ability to recover from them without causing fatal failure to the

system that requires user intervention.

In grid computing specifically, fault tolerance system must be able to adapt with

dynamic changes of the resources and executing jobs so that appropriate actions can

be taken to ensure all the jobs can be completely reprocessed despite the presence of

faults (Alzboon, Arif, & Mahmuddin, 2016). In addition to that, a good fault tolerance

43

system must have the ability to apply heuristic learning to improve the scheduling

decision and jobs reassignment. As illustrated in Figure 2.4, the fault tolerance system

in grid computing consists of five basic components which are shared grid host,

scheduler, GIS, fault handler and grid resource broker. Shared grid host provides user

interface for the grid user to submit jobs and retrieve the results. The scheduler is

responsible to perform allocation decision based on user requirements. On the other

hand, GIS contains information of all available resources such as processing element

(PE) rating, number of PE per machine, and number of machines per resource.

Figure 2.4. Basic architecture of fault tolerance system in grid computing

The main component of fault tolerance is the fault handler which is responsible for

detecting and mitigating failures by initiating fault tolerance techniques. Last but not

Grid Scheduler
Fault Handler Shared Grid

Host

GIS

Grid Resource
Broker

R1 R2 R3 ... Rn

A
pp

lic
at

io
n

R
es

ul
ts

Q
ue

ry

R
es

ou
rc

es
 L

is
t

Results

Application

Notify

Update

44

the least is the grid resource broker that groups and manages all the resources which

may or may not reside in the same physical locations to take up submitted jobs. Section

2.2.1 discusses in detail the existing fault tolerance strategies applied in grid computing

systems.

One of the most common fault tolerance strategies is fault detection which leverages

fail signal or acceptance test in order to detect failures (Balasangameshwara & Raju,

2012). Once detected, a proper mitigation plan will be executed as defined by the user.

In dynamic environments, early error detection is very suitable to implement as error

detection is done prior to submitting jobs to resources. In case any abnormalities are

detected in a chosen resource, a migration plan will be executed by assigning another

suitable resource to process a particular job (Rakheja, Kaur & Rkheja, 2014). This

process will be repeated in each cycle, eventually reducing the possibility of error by

assigning the job to the most reliable resource. Early detection is also related to fault

prevention in which it is used to prevent faults and avoid the possibility of

malfunctioning of resources. This process is often being applied during the scheduling

and execution process. However, fault prevention techniques should be applied

carefully to avoid overheads caused by excessive preventive measures which will

eventually lead to inefficiency of the grid environment (Balpande & Shrawankar,

2014).

In addition to detection and prevention, a recovery strategy must be applied because

all jobs are meant to be processed completely. Recovery refers to the process of

recovering failed jobs so that they are completely processed in the end and also

recovering failed resources so that they will be back online and fully functioning. Retry

45

and alternate resource techniques are commonly applied in recovery mode due to their

simplicity. Qureshi et al. (2011) proposed a hybrid fault tolerance technique that is

based on a combination of a simple alternate task with retry technique and task level

checkpoint technique in which it inherits the best characteristics of both techniques.

When the task fails for the first time, alternate task with retry technique will be invoked

which means that the same task will be resubmitted using different execution

characteristics. If the alternate task fails, the checkpoint manager would record the

checkpoint before resubmitting the failed alternate task to the same resource. If the

resubmitted alternate task fails for a second time, the system will resubmit the

remaining incomplete task from the last checkpoint to another resource. The

comparison was done between alternate task with retry and alternate task with

checkpoint and the results showed that the checkpoint technique increases throughput

and reduces turnaround time significantly. Regardless of the positive results from the

experiment, the proposed algorithm does not seem to consider balancing the load of

the entire system and applying the resource suspension technique which is important

in order to avoid resources with a bad historical record to be assigned in the next

execution.

Fault tolerance time to release scheduling algorithm, which is based on transmission

time and fault rate, was proposed by Keerthika and Kasthuri (2011). This algorithm

considers user deadline and executes the job within an expected deadline by assigning

it to the most suitable resource. The time to release (TTR) is calculated for each job

and resource combination. By comparing the value of TTR against the expected

deadline, the job will only be submitted to the resource that has a TTR lower than the

expected deadline. This ensures that the resource is capable of processing the job

46

which eventually increases the hit rate or successful rate. However, this algorithm did

not address the action needed to be taken during job processing failure which is very

important because every job is meant to be processed successfully in the end.

Additionally, it is also possible for the pool of resources to have a TTR of more than

the expected deadline of all jobs due to limited bandwidth, limited processing machine

and so on. Thus, it should be further extended to support dynamic scheduling which is

aligned to the nature of the grid environment.

The Fault Tolerance Min-Min policy, proposed by Keerthika and Kasthuri (2012), is

proven to perform better with less makespan in the presence of failure and increases

the number of successfully completed tasks. Makespan is the total time taken to

completely process a set of jobs. Based on this algorithm, Keerthika and Kasthuri

(2013) further improved its functionality by proposing the Bicriteria Scheduling

Algorithm (BSA) which considers user satisfaction with a proactive fault tolerance

method to reduce makespan, achieve better hit rate and higher user satisfaction. The

BSA algorithm first constructs several matrices of jobs and resources such as expected

time to compute, communication time and total completion time. Then, the failure rate

of each resource will be calculated by dividing the total number of failed tasks with

the total number of submitted tasks. The failure rate will be used to determine the best

resource to execute the next task in the queue. Finally, the update will be carried out

on the matrix by removing the completed task from the list. The results showed that

the proposed BSA achieved a better hit rate and makespan than the Fault Tolerance

Min-Min algorithm. Even though the proposed algorithm is effective in increasing the

hit rate, it does not seem to have control over load balancing which means that

resources with the lowest failure rate will potentially be overloaded. Furthermore, the

47

proposed algorithm can be further extended by considering resource load and resource

availability to improve its efficiency in scheduling and fault tolerance.

Application checkpointing with replication in the grid was proposed by Bawa and

Singh (2012) to tackle the problem where a failed job needs to be re-executed from the

beginning in the presence of failure which would increase execution time significantly.

The proposed algorithm consists of managers and executers. The manager acts as a

central point which keeps track of available executers through heart beat signal as well

as storing checkpoint data. In addition, the replication manager is also present which

will replicate checkpoint data from the initial manager. In contrast, executers will first

determine whether checkpoint data exist in the database after it receives the job or

thread from the manager. If data exist, checkpoint data will be restored, and execution

will start from a previously saved checkpoint, or else execution will start from the

beginning. In case of any failure that is causing checkpoint data to become corrupted,

it can also be restored from the replication manager. Even though the proposed

algorithm works effectively in a faulty environment, it creates a checkpoint overhead

in the fault free environment as well as undertaking small tasks execution which means

that the execution time may increase as the initial execution has to undergo all pre-

execution processes before being executed.

Balasangameshwara and Raju (2012) proposed a fault tolerance load balancing

algorithm to minimize response time and optimize node utilization. The submitted job

will go through the local grid scheduler which replicates the job and discovers potential

resources before sending it to the load balancing decision maker. The decision maker

will decide whether to process the job locally or remotely. Regardless of local or

48

remote execution, the job will be forwarded to the fault detector which evaluates the

availability of any proposed resource and if the proposed resource is not available, a

failure message will be triggered to the fault manager which will activate the replicated

job in the grid scheduler to undergo the rescheduling process. The grid scheduler uses

a threshold which is calculated based on the load and demand for resources to decide

which resources to assign to process the job. The drawback of this proposed algorithm

is that the job will be rescheduled from its initial state which will lead to longer

execution time if it fails continuously.

The fault tolerance checkpointing system, proposed by Amoon (2013), considers the

resource failure rate and average failure time to define the checkpoint interval for each

job. In this system, resources will first be sorted based on response time, failure rate,

and average failure time and then job assignment will be performed based on the sorted

list. In the proposed algorithm, a failed job will be restarted from the last saved state

which avoids time waste in reprocessing the failed job from the beginning. This

process is handled by the checkpoint server that stores the snapshot of a partially

completed job and checkpoint handler that is responsible to dispatch the job and

retrieve checkpoints from the checkpoint server. Results showed that the proposed

algorithm achieves higher throughput, lower turnaround time and lower failure

tendency with a significantly low number of checkpoints. Instead of considering the

load balancing, the scheduling process in the proposed algorithm is biased towards fit

resources which would lead to unfit resources and never getting the job assigned.

Rathore (2015) proposed priority-based scheduling with load balancing using fuzzy

rules to increase resource utilization and decrease task execution time. Each task will

49

be assigned a priority based on length and input file size. The task priority can be static

which will be kept for the entire life, or dynamic which may be changed by the

scheduler from time to time. In addition to defining the task priority, resources are

grouped into three groups whereby each group is set to be assigned with a specific task

priority. During execution, the grid scheduler will check the availability of resources

before assigning a task to ensure no case will arise where an unavailable resource is

assigned to a task. However, the scenario where the resource fails to complete the task

processing but still shows as an available status is not considered. This may lead to

unfit resources being assigned to tasks even though the resource’s availability is not

equivalent to its fitness which will eventually lead to an increase in execution failure

despite having good load balancing.

Rathore and Chana (2015) proposed a threshold-based hierarchical load balancing

technique in grids by categorizing the load into several categories such as underload,

overload, light load and normal load. Each category has its threshold value defined by

the load deviation dynamically. This is referenced by the grid scheduler to distribute

the job according to the load and perform job migration from an overloaded node to a

lightly loaded node and underloaded node using the random selection strategy. The

selection of resource is based on whichever resource has the minimum load. In terms

of failure handling, a backup will be created by the local grid scheduler for each

submitted job which is saved in a remote grid scheduler before node searching is

initiated. Whenever failure happens, the fault manager will activate the backup by

sending a signal to the remote grid scheduler to re-queue the backup into the local grid

scheduler. The proposed algorithm results in lower response time, higher resource

allocation efficiency, and lower communication overhead and makespan. Despite good

50

results, the fault tolerance approach was not validated in the experiments and the

backup activation approach requires more time as the failed job will be reprocessed

from the initial state.

Singh and Bawa (2016) proposed the proactive fault tolerance algorithm for job

scheduling that proactively focuses on preventing failure rather than curing it. Each

resource will have its own performance index that is calculated based on historical

information, workload, availability, response time, mean time to failure and mean time

between failures. The performance index indicates the fitness of a resource and will be

used as a reference during the scheduling process. In terms of fault tolerance

capability, checkpoints will be captured on every 30% completion of every task.

During the execution, the monitoring agent will continuously validate the performance

index of executing resources against the threshold and, if it exceeds the threshold, the

task may be shifted to other resources based on calculated shifting costs. The proposed

algorithm was validated against a post-active heuristics algorithm and the results

showed that it produced slightly lower execution time, lower faults rate and lower

execution cost. Despite the promising results, the proposed algorithm does not employ

the reactive action to reschedule tasks that failed during execution.

Failure aware scheduling algorithm based on incremental checkpoint scheme was

proposed by Singh (2016) to overcome the checkpoint overhead without affecting the

system performance. The scheduling process considers the resource performance as

well as failure rate to generate its capacity. Based on the capacity which may change

from time to time, the tasks that are sorted in decreasing order based on load will be

assigned accordingly. In terms of fault tolerance, full checkpoints are coupled with

51

incremental checkpoints that only capture the change from the last incremental

checkpoint. Using this method, checkpoint overhead can be reduced as the

reprocessing of failed task will happen from the last incremental checkpoint instead of

from the last full checkpoint. On the other hand, by reducing the number of full

checkpoints, the system memory can be reallocated for other purposes. The results

showed that the proposed algorithm achieved better average response time when

compared with speed only scheduling algorithm. Nevertheless, the experiments were

conducted using small number of tasks and it is not entirely proven that the proposed

algorithm is effective in processing large number of tasks.

Haider and Nazir (2017) proposed a hybrid fault tolerance scheme based on proactive

and reactive approaches as employed in existing fault tolerance mechanisms. The

resource selection process is performed using a proactive technique while a reactive

technique will be initiated for handling faults. The proactive technique starts with

resource filtration based on location, availability and reliability and is followed by

identification of optimal resources using GA based optimal resource identification. On

the other hand, the reactive technique consists of failure prediction that detects possible

failure based on hardware temperature and failure detection that receives information

from the failure prediction component and from the hardware. The standard checkpoint

interval is set to every 25% of job completion and will be reduced accordingly (every

5% of job completion) based on information from the failure prediction component.

Failed jobs will be resubmitted from the last checkpoint maintained by the checkpoint

manager with minimized recovery time. The results showed that the proposed

algorithm has higher throughput, lower average waiting time, average turnaround time

and better efficiency (cost, energy and time). Despite the promising performance, the

52

implementation of direct resource filtration could cause resources that do not meet the

criteria to never be assigned to jobs and, eventually, lead to poor load balancing.

Hierarchical organization model for computational grid that offers grid scheduling,

load balancing and fault tolerance was proposed by Abdullah, Ali and Haikal (2017)

to introduce self repairing n-try dynamic hierarchical grid model for scheduling and

replication of master resource on its child for load balancing. All the resources are

organized in hierarchical form with multiple levels such as root level, intermediate

level that consists of clusters, and leaf level that consists of community or child of

individual cluster. Jobs submitted by the users locally will be executed by their own

resource but it that cannot be completed within the time limit, the job will be submitted

to the global scheduler which will assign the job to suitable resource within the cluster

or within the community. In terms of fault tolerance, any failed resource will be

replaced by its replica which is any of its child resource so that the hierarchical

structure of all resource can be maintained. Results showed that the proposed

algorithm achieved lowest average completion time and communication overhead, and

highest tree stability ratio. Notwithstanding the performance of the proposed

algorithm, the focus is to overcome resource failure rather than job failure.

Fault tolerance nearest deadline first scheduled was proposed by Goswami and Das

(2018) to provide periodical runtime backup to support job reprocessing from the last

backup point to other alternative resources. This approach has the same concept as

resubmission using checkpoint, which is commonly used in fault tolerance algorithms.

Resources are grouped into the categories of underutilized, less loaded and overloaded

which are used by the broker to define resource ranking. Each individual job carries

53

parameters that are referenced by the broker to find matching or higher capacity

resources to process the job even during the reprocessing phase. The proposed

algorithm is claimed to save resubmission time as well as execution time. However,

the experiments were done using three clients, two resources and one broker which is

considered very small scale and insufficient to conclude its performance for large scale

infrastructures.

The resubmission-based fault tolerance approach for jobs scheduling was proposed by

Ahuja and Banga (2019) that uses a replica-based approach to overcome the limitation

of the checkpoint approach that incurs overhead and time wastage. Before getting

assigned to respective resources, a task will be divided into several subtasks by the

subtask generator and managed by the subtask manager within GIS. Each subtask will

be processed independently and in parallel. During failure, each subtask will be

resubmitted to a different resource from the initial state instead of using the checkpoint

approach. It is claimed that this approach saves a lot of time and reduces overhead

which will eventually lead to better performance. Despite the promising approach, the

experiments were done using s small number of tasks and resources and did not

consider the load balancing of the system which is crucial in preventing stagnation.

2.2.2 Issues and Limitations of Fault Tolerance in Grid Computing

Faults will lead to errors that cause failure. In other words, preventing faults may

reduce system failure as system failure is more difficult to deal with without human

intervention. There are several techniques in identifying faults which include the push

model, pull model, probability-based techniques and neural network-based

approaches. Open issues related to fault tolerance include errors, failures and faults

54

detection and handling. These issues can be addressed via several strategies such as

the effective fault identification technique, use of fault tolerance scheduling technique

to perform resource allocation, logging problems for further analysis and improvement

to better predict failures and impact to the system performance, and use of the hybrid

fault tolerance technique that combines the best characteristics of multiple algorithms

(Haider & Nazir, 2016).

Reducing makespan, execution time, and resubmission time, as well as increasing

success rate have been key objectives in fault tolerance. All these can be achieved by

having the most effective fault tolerance algorithm, single or hybrid, that can overcome

fault in less possible complexity to avoid overhead to the system. At the same time,

other internal aspects such as resubmission or re-execution strategies, reliability of the

checkpoint manager, optimal resource determination, and reoccurrence of failure

prevention should not be neglected. For instance, recently failed resources should not

be reassigned with jobs as the same failure could continue to happen because the

resource is no longer fit. The checkpoint manager must be reliable in order to ensure

that the checkpoint information or stored processed jobs will not be corrupted or may

lead to overheads (Ahuja & Banga, 2019). Discrepancies to checkpoint information or

saved jobs may lead to bad outputs and could be even more difficult to fix.

Checkpoint technique is effective in reducing the reprocessing time when a job fails

to be processed completely. However, having too frequent checkpoint records may

lead to runtime overhead and eventually increases the makespan (Garba et al., 2020).

On the other hand, not having enough checkpoint records may reduce the benefit of

having a checkpoint technique as the amount of time saving is not so significant. Thus,

55

it is important to properly control the amount of checkpoints to obtain full benefits and

improve the system performance in the presence of faults.

Another important issue in fault tolerance is load balancing. Typically, load balancing

is being disregarded due to the primary focus on applying fault tolerance techniques.

Ultimately, the system may be good at handling faults but inefficient in ensuring load

balancing in the presence of faults. Thus, resource determination during initialization

or resubmission should also consider the fitness or execution history of each resource

in addition to the current load in order to tackle both fault handling and load balancing

(Idris et al., 2017).

Table 2.3 summarizes the works related to fault tolerance in grid computing in terms

of the main objectives and open issues. Most of the fault tolerance algorithms do not

consider the load balancing aspect as there is a big trade-off between achieving good

load balancing and minimizing makespan. To achieve the minimum makespan, tasks

should be distributed to the fit resources and, often, this method would reduce the

utilization of resources. On the other hand, to achieve good load balancing, both fit

and unfit resources should be assigned with tasks based on their capacities and

execution history to increase resource utilization.

Table 2.3

Summary of literatures related to fault tolerance in grid

Authors Objective Drawback

Qureshi et al.

(2011)

Increase throughput and

reduce turnaround time

Does not consider load balancing

and resource execution history

56

Keerthika &

Kasthuri (2011)
Increase hit rate

Does not address the situation

where most or all resources have

time TTR than expected deadline

Balasangamesh

wara & Raju

(2012)

Minimize response time

and optimize node

utilization

Failed jobs rescheduled from the

initial state

Bawa & Singh

(2012)
Reduce execution time

System overhead due to

implementation of checkpointing

and replication

Amoon (2013)

Increase throughput, lower

turnaround time and lower

failure tendency with

significantly low number of

checkpoints

Bias towards fit resource, does

not consider load balancing

Keerthika &

Kasthuri (2013)

Reduce makespan, better

hit rate and user

satisfaction

Does not consider load and

resource availability

Rathore (2015)

Increase resource

utilization and decrease

execution time

Does not consider resource fitness

Rathore &

Chana (2015)

Reduce communication

overhead and makespan,

and increase resource

allocation efficiency

Job backup at local resource may

increase memory overhead

Singh (2016)
Reduce checkpoints

overhead

Validated on small number of

tasks but not large number of

tasks

Singh & Bawa

(2016)

Prevent failure rather than

cure

Does not employ the reactive

action to reschedule tasks that

failed

57

Abdullah, Ali &

Haikal (2017)

Overcome resource failure

using resource replication

technique

Focus on resource failure rather

than job failure

Haider & Nazir

(2017)

Reduce cost, energy and

time
Does not consider load balancing

Goswami & Das

(2018)

Save resubmission time

and execution time

Applicable only to small scale

system

Ahuja & Banga

(2019)

Overcome the limitation of

checkpoint approach that

incurs overhead and time

wastage

Does not consider load balancing

2.3 Ant Colony Optimization

Years ago, researchers started to investigate the behavior of real ants such as foraging

and nest construction. For instance, a double bridge experiment which was conducted

by Goss, Aron, Deneubourg and Pasteels (1989) to investigate the foraging behavior

of real ants. Ants move in a continuous path from nest to food source as shown in

Figure 2.5 (a). When there is an obstacle, as shown in Figure 2.5 (b), ants will randomly

decide to turn right or left without knowing which direction has the shortest path, as

shown in Figure 2.5 (c). It is known that whenever an ant traverses, it will deposit a

chemical substance called pheromone that evaporates at a certain rate along the way.

By assuming that each ant moves at the same speed and takes the same route to return

to the nest, the shortest path will have more pheromone proportionally with the number

of traversed ants. The level of pheromone on each path will be an attraction factor for

incoming ants and the optimal path will be introduced after a certain cycle, as shown

in Figure 2.5 (d).

58

Figure 2.5. Ants behavior in foraging process (Perretto & Lopez, 2005)

ACO is a biologically inspired algorithm that provides an adaptive concept for solving

optimization problems and designing metaheuristics algorithm (Dorigo & Stützle,

2004; Ferdaus, Murshed, Calheiros & Buyya, 2014). This algorithm is based on an

evolutionary approach where the best solution is searched by a group of ants that work

together within the colony. The complete solution is built by combining all the

individual solutions of each ant which, in another term is known as pheromone deposit,

on a chosen solution or path. The strength of pheromone is used by other ants as a

reference to choose the most optimized path. An ant will first search for the path by

using a probabilistic decision rule that considers the pheromone left on a specific trail

over the total pheromone left on all trails. The probability will be relatively controlled

by the amount of pheromone and distance between job and resource. The amount of

pheromone will continue increasing whenever the trail is chosen by an ant, making it

more attractive to the next ant (Ankita & Sahana, 2019). Typically, the evaporation

rate is a constant value defined before the execution. However, constant value is not

suitable to be used in a dynamic environment where execution parameters may change

from time to time. Thus, it is essential to dynamically define the evaporation rate so

that it will not be too high or too low. The adaptive evaporation rate formula was

59

proposed by Mavrovouniotis and Yang (2013). If stagnation occurs, the evaporation

rate should be increased so that the high intensity of the pheromone trail can be

eliminated and eventually will increase exploration. In contrast, if there is no

stagnation, the evaporation rate should be decreased gradually so that the optimal

solution can last longer.

The concept of solution construction by combining individual solutions is the key

criteria for ACO to be widely adopted and adapted in solving job scheduling, load

balancing and fault tolerance algorithm in dynamic grid environment (Idris et al.,

2017). The ACO itself is dynamic in nature because it is designed to work in dynamic

environments (Chowdhury et al., 2019). For instance, in job scheduling problem, ACO

is typically used to improve the scheduling decision by considering the size of jobs,

capacity of resources and distance between both (Ku-Mahamud & Nasir, 2010; Tiwari

& Vidyarthi, 2016). In load balancing aspect, the pheromone trail is an important value

to indicate the desirability of constructed paths or resources. According to ACO

concept, the higher the pheromone value, the more desirable the path or resource is.

This indication is often used to determine potential congestion or stagnation in the

system to invoke necessary action to avoid such events (Karimpour, Khayyambashi &

Movahhedinia, 2016; Mahato et al., 2019). In terms of fault tolerance, the same

concept used to solve job scheduling and load balancing problems is further extended

to consider additional aspects to improve fault tolerance capability. This includes the

pheromone value that indicates the resource fitness and job scheduling decision during

reprocessing stage (Prashar et al., 2014; Rajab & Kabalan, 2016).

60

The Ant System (AS) was the first member of well-known ACO algorithms proposed

by Dorigo, Maniezzo and Colorni (1991), Dorigo et al. (1991) and Dorigo (1992) with

the aim to search for the optimal path from the graph constructed based on ants’

behavior to seek for a path between colony and food source. The AS was also applied

in the Traveling Salesman Problem algorithm proposed by Dorigo and Gambardella

(1997a, 1997b). AS consists of three different versions such as ant-density, ant-

quantity and ant-cycle. The ants update the pheromone directly when they move from

one city to another in ant-density and and-quantity. However, in ant-cycle, the

pheromone update is only applied when all the ants completed the tours. Generally,

AS consists of two main phases which are solution construction and pheromone

update. In solution construction phase, probabilistic decision rule based on pheromone

and heuristic values is used to decide the next node that the ants should visit. Then, the

unvisited arcs will undergo pheromone evaporation to reduce their attraction factor for

the next ants while he visited trails will undergo pheromone update or deposition to

increase the attraction factor for the next ants. In the end, an optimal trail will be

constructed from source node to the destination node. In short, ants would construct

the solution and only follow the pheromone update process which resulted in a

dramatic decrease in performance when the size of test instances increased.

The first known improvement of AS is called Elitist strategy for Ant System (EAS)

which was introduced by Dorigo et al. (1991, 1996). The improvement was done in

terms of providing additional reinforcement to the arcs belonging to the global best

tours on top of the standard operations of AS. In other words, the global best tours will

receive additional pheromone deposit by the best-so-far ant in every iteration even if

61

the trail is yet to be visited. The main aim of EAS is to allow the ants to find better

tour with lower number of iterations.

Another improvement of AS is called rank-based ant system (ASrank) which was

introduced by Bullnheimer, Hart, and Straub (1999). In ASrank, each ant is sorted and

ranked according to its tour length and the quantity of pheromone to be deposited is

weighed according to the rank whereby the shorter the length, the higher amount of

pheromone will be deposited. As in EAS, the best-so-far ant will be given priority to

deposit more pheromone during iteration. In additional to that, only the best ranked

ants and the ant that produces the best-so-far tour are allowed to deposit the

pheromone. Both ASrank and EAS produced significant improvement over AS with

ASrank achieved slightly better performance than EAS.

To extend the capability of the AS algorithm, Dorigo and Gambardella (1997a, 1997b)

proposed the ACS. First, the proposed algorithm uses a more aggressive action choice

rule when compared to the AS. Then, it adds the pheromone to arcs that belong to the

global best solution and, lastly, it reduces some of the pheromone from the arc upon

usage of the chosen path. In terms of the pheromone update process, only the global

best ant is allowed to add pheromone after each iteration and the update is applied to

the global best path only. This process is known as the global updating rule which

reduces the probability of an already visited path being chosen by the next ant in order

to increase the exploration probability for a yet to be visited path. However, there are

cases where iteration-best solution is also implemented in the ACS.

62

In ACS, the movement of ants from one node to another is performed using two basic

rules which are pseudorandom proportional rule based on exploitation mechanism and

exploration mechanism based on probability distribution rule as in AS. The desirability

of ants to choose either rule is controlled using fixed variable which is controlled by

the user. There are two types of pheromone update introduced in ACS which are local

pheromone update and global pheromone update. The local pheromone update is

applied when the ant moves from one node to another to reduce the pheromone

intensity of the visited arcs by using evaporation concept. This approach is used to

reduce the attraction factor of visited arcs to increase the exploration of the next ants.

On the other hand, the global pheromone update is applied by the best-ant-so-far to

increase the pheromone intensity of the global best path. This action is essential to

increase the attraction factor of the arcs for the next ants that select exploitation

mechanism to perform the tour (Alobaedy, 2015).

Typically, the ACS focuses on the global-best solution which might lead to poor

quality solutions found by ants. To overcome this possibility, Max-Min Ant System

(MMAS) was introduced in order to exploit the iteration-best solution while

maintaining other criteria set by the ACS (Stützle & Hoos, 2000). This means that each

iteration could have a different best solution or similar best solution from previous

iterations. Meanwhile, in the ACS, the best solution from previous iterations will be

adopted by the new iteration. Additionally, the trail limit is also set within a defined

range so that no path has too high or too low a pheromone value. Even though MMAS

produced better results when compared with the ACS in certain implementations, the

range definition will not be used in the proposed algorithm since the load balancing

component will ensure that no resource will ever have too high or low a pheromone

63

value. However, often, ACO consists of a mixture of the AS, ACS and MMAS in order

to tackle specific problems. For example, a pheromone update technique could be

derived from the ACS while the probabilistic decision rule could be derived from the

AS.

Each ACO variants have similarities and differences which are introduced to overcome

the disadvantages of previous variants. Table 2.4 summarizes the key differences of

each variant.

Table 2.4

Summary of key characteristics for various ACO variants

ACO Variant Key Characteristic

AS
 Each individual ant deposits the pheromone on visited arcs

during the tour

EAS
 Additional reinforcement for best-so-far ant to deposit more

pheromone to the arcs

ASrank

 Pheromone deposit is controlled based on the rank of tour length

for each ant and only best-so-far ant can update significantly

large pheromone

ACS

 Focus on search experience with global pheromone update and

local pheromone update that can be controlled to increase the

exploitation or exploration

MMAS

 In addition to exploiting the best tour found, range of

pheromone is defined to limit the pheromone evaporation to go

below the minimum limit and pheromone will be reinitialized

once the stagnation is detected

64

Over the years, ACO has evolved throughout many variants to overcome the

limitations of predecessor AS algorithm. Despite many variants of ACO, ACS has

been the variant adapted and improved widely by the researchers to cater different

application domains and problems such as routing, scheduling, load balancing and

fault tolerance. Often, researchers used the term ACO more commonly as the proposed

ant-based algorithms consist of combination of multiple variants or only parts of the

original variant are adopted and adapted. However, there are also researchers that

specifically used the name of the variant as the originality of the variant is fully adopted

and adapted with improvements. Despite the inconsistencies in the term, the concept

of ACO is still the core of the algorithm.

2.3.1 ACO-based Scheduling and Load Balancing in Grid Computing

ACO-based scheduling and load balancing has been widely implemented in distributed

systems such as grids (Bagherzadeh & MadadyarAdeh, 2009; Sharma, Sharma &

Dalal, 2014; Prashar et al., 2014; Idris et al., 2017; Kumar & Vengatesan, 2019), cloud

(Nishant et al., 2012; Chen & Long, 2019) and cluster (Llanes et al., 2016). The main

objectives of scheduling and load balancing in various distributed systems are

relatively similar but, in each system, there are specific considerations such as the

resource load or capacity in grid, type of resources in cloud, and interaction between

cluster heads or within the cluster itself. The adaptability of ACO to consider these

specific considerations is one of the main reasons why it remains one of the promising

algorithms that can be further enhanced.

Bagherzadeh and MadadyarAdeh (2009) proposed an improved ant algorithm for

static grid scheduling with the aim to minimize jobs processing time and balance entire

65

resources in grid computing systems. Every single ant will have its own job to resource

the matrix which is also known as the scheduling list. Then, a minimization function

will be applied before a probabilistic decision formula is calculated to update the

pheromone trail for each job and resource pair. Ultimately, the best solution will be

identified. The proposed algorithm was experimented and compared with

Opportunistic Load Balancing, Minimum Execution Time, MCT, Switching

Algorithm, K-Percent Best, MinMin, MaxMin, MaxStd, Dupplex, and previous ACO

algorithm and the results showed that it performed better in terms of minimizing

makespan. Alternatively, improved ACO was also claimed to have good load

balancing among machines and can be further enhanced by incorporating local search.

Enhanced heuristic function in ACS was proposed by Ku-Mahamud and Alobaedy

(2012) to solve stagnation problem in grid computing system. The proposed algorithm

differs from the traditional ACS where the new heuristic function is introduced to

either increase or reduce the heuristic value based on the quality of the best-so-far

solution. The heuristic value will be updated only once on each edge if it is part of the

best-so-far edge. The heuristic value update is performed after the global update

process that is based on the best-so-far solution is applied after the ant has constructed

the solution. The enhancement was claimed to be able to eliminate stagnation problem

if the heuristic value is updated multiple times. The improved ACS showed good

results when compared with the traditional ACS in terms of makespan and resource

utilization.

Improved Auto-Controlled Ant Colony Optimization (IAC-ACO) was proposed by

Tiwari and Vidyarthi (2016) to achieve faster convergence of the solution and increase

66

the probability of exploitation around the best ant. IAC-ACO introduces the lazy ant

component in balancing convergence and diversification during the searching process.

The lazy ant is mutated from the best ant which carries some information that helps to

reduce the effort required to construct new path. According to the authors, the lazy

ants copy 80% of the path constructed by the best ants. The auto-control mechanism

has also been introduced by IAC-ACO to update the heuristic information after each

allocation of the task in adapting and updating the changes in the grid system. IAC-

ACO showed good performance when compared to the previous auto-controlled ant

colony optimization algorithm in terms of computational time.

Load balancing using the ACO and Max-Min technique was proposed by Karimpour,

Khayyambashi and Movahhedinia (2016) to prevent stagnation in grid computing

systems. The resource manager identifies the best resource based on pheromone value

that is stored in the matrix. Once the best resource is identified, global pheromone

update will be performed to renew the status of all resources. On top of pheromone-

based resource identification, the pheromone value is validated against the threshold

to prevent it from decreasing below the minimum limit or increasing beyond the

maximum limit. This method increases resource utilization and eventually leads to

lower possibility of stagnation during execution. The proposed algorithm was

validated with other algorithms in terms of execution time and response time and

results showed that it outperformed all the algorithms in both aspects. Despite the

promising performance, it was not validated in terms of load balancing aspect.

Hajoui, Bouattane, Youssfi and Illoussamen (2018) proposed a fuzzy hybrid

scheduling algorithm by hybridizing Q-learning and ACO algorithms. There are two

67

phases being performed in the proposed algorithm, the first phase utilizes the ACO to

perform parallel searches on optimal network links between jobs dispatcher and

resources. Once the network link is identified, pheromone will be deposited by the

ants. At the same time, jobs dispatchers will also reward or penalize resources based

on their condition, powerful or weak, and these values will become the input for Q-

learning calculation in the second phase. Q-learning is used to schedule jobs to suitable

resources through calculated Q for each machine in which the machine with highest Q

is selected to receive jobs. The proposed algorithm was compared with single ACO

and Q-learning algorithm in terms of the performance ratio against the load balancing

theoretic and it achieved the lowest ratio. However, the experiments were done on

small number of resources and jobs, and it was not shown that the proposed algorithm

can perform optimally when dealing with a more complex and heterogenous tasks.

Arora and Mehta (2018) proposed resource and task scheduling by combining ACO

and round robin scheduling to improve resource management in grid computing. The

initial scheduling process is performed using a round robin process that uses time

quanta which is tied to each job to handle user requests. Jobs will be assigned to

resources to be processed; if processing is not completed within the allocated time, the

remaining incomplete job will undergo another round of round robin process. This

process will continue until all the jobs are completely processed. The round robin

process is simple in nature, leading to less overheard during the scheduling process.

Once all the jobs execution is completed, the ACO process will take place to update

the pheromone of each resource for the next batch of execution. The proposed

algorithm was validated against the non-heuristic load balancing algorithm and the

results showed that it achieved lower execution time and resource costing.

68

Notwithstanding the performance, the experiments were carried out on small number

of resources and jobs, and may not be efficient when processing large jobs that are

prone to unexpected delays which will eventually lead to frequent incomplete

processing within the allocated time.

Mahato et al. (2019) proposed a hybrid swarm intelligence algorithm known as load

balanced transaction scheduling based on CS-ACO in solving the scheduling and load

balancing problem in grid computing. The proposed algorithm first applies CS

algorithm to find the optimal assignment of nodes to one of the clusters by considering

the load. The cluster with minimum cost will be selected as the best cluster to undergo

the steps in ACO algorithm to perform the load balancing which includes solution

construction by ants, pheromone update and daemon actions. Combination of these

two algorithms can control the distribution of jobs in the system. Experimental results

showed that the proposed algorithm outperformed other algorithms in terms of

throughput, makespan, miss ratio and load balancing speedup. However, by focusing

on balancing the load on specific cluster, the resource utilization is being disregarded

despite the solution would lead to the lowest makespan.

The trust-based resource selection approach based on ACO was proposed by Kumar

and Vengatesan (2019) to overcome the local optima problem of ACO. The trust factor

is incorporated in the heuristic information to determine the weight of attraction of

each resource which will influence the amount of pheromone deposited by the

pheromone updating rule at a particular resource. At first, the solution construction is

performed using ACO until convergence happens. When convergence happens, a

population of fireflies will be spawned and the fitness of all fireflies will be evaluated

69

and ranked accordingly. This process will continue until maximum iteration is found

which will produce the optimal result. The proposed algorithm resulted in a slight

decrease of makespan and performance improvement. Since the proposed algorithm

takes output of one algorithm as input for another algorithm, overhead may occur due

to intensive solution construction performed by two algorithms consecutively.

Based on the related works discussed, many researchers have used the ACO approach

in solving scheduling problems. The initial pheromone value is used to define the

fitness of resources while the pheromone update mechanism is used to balance the load

to overcome stagnation. Further exploration is needed in order to incorporate effective

scheduling, load balancing and fault tolerance using the ACO approach, in grid

computing specifically.

2.3.2 ACO-based Grid Fault Tolerance

Trust-based ant colony optimization (TACO) for grid resource scheduling was

proposed by Wenming et al. (2009) whose research aimed to minimize the completion

of jobs, balance all the workload on available resources and, at the same time,

introduce the resource-oriented trust mechanism to handle the resource failure

problem. The initial pheromone value for resource selection process considers the

characteristics of each resource such as number of processors, processing power,

communication capability, disc capacity and trustworthiness of resources. The

trustworthiness factor depends upon the job processing status where the

trustworthiness factor will increase if the job successfully processes the submitted job

and vice versa if the job processing fails. The resource with high trustworthiness value

will be selected to process the submitted job. In terms of action to be taken after job

70

processing failure, the rescheduling mechanism was proposed where the grid system

will re-append a failed job into the job queue to be processed by other available

resources. Local and global pheromone updates are also included in this algorithm to

solve load balancing problems. Experimental results showed that the proposed

algorithm performed better in terms of completion time and number of successful

processing jobs when compared with Min-Min algorithm. However, the proposed

algorithm did not consider the characteristics of submitted jobs during the resource

selection process and the trustworthiness means that there is a possibility that the same

resource will be chosen in the next cycle if its initial pheromone value remains high as

compared to other resources which could eventually expose the next execution cycle

to failure. However, this problem could be addressed by extending the trustworthiness

determination to also consider resource suspension so that the resource can be marked

as unavailable for a defined cycle to allow it to go through the recovery process such

as rebooting and cache clearance. Furthermore, the performance of the proposed

algorithm was not compared with the traditional ACO algorithm, thus making it

difficult to validate the effect of proposed steps against the traditional ACO algorithm.

A study by Modiri et al. (2011) proposed a new algorithm to manage fault in grid

computing by combining the ACO algorithm and DAG. By using the DAG method,

all tasks are sorted by their dependency which means that the offspring task may not

begin its work until the parent task is completely executed. All the sorted tasks will go

through the resource allocation process using ACO where ants will try to find the

optimal path for each combination of task and resource. Once the resource allocation

is done, tasks will be executed according to their sorted order. The local and global

pheromone update techniques were used to balance the system load. The proposed

71

algorithm was compared with the Heterogeneous Earliest Finish Time and Critical

Path on a Processor algorithms and the results showed that the execution time is

significantly improved in addition to better task distribution to all resources. Even

though the proposed algorithm tried to increase fault tolerance throughout effective

resource allocation, it does not cover the recovery process when a fault occurs.

Effective fault tolerance should consider minimizing the occurrence of faults as well

as ways to ensure failed tasks are also executed completely.

Hybrid ACO with GA was proposed by Mandloi and Gupta (2013) in order to

overcome the uncontrolled nature of the metaheuristic of ACO which could degrade

the performance of grid allocation. GA is used to choose whether to increase or

decrease pheromone update parameters in ACO. At first, ants will randomly select

resources to be assigned into subsets. Then, each subset will be evaluated to find the

lowest estimated error, following which it will be sorted in an ascending order. The

best subset will be used to execute tasks in each iteration and the pheromone trail for

the chosen subset will be updated in each iteration. Resources within the best subset

will have a high chance of being selected in the subsets of the next iteration. The

experimental results showed that the proposed algorithm increases the job completion

rate and reduces the job failure rate as compared to traditional ACO and particle swarm

optimization. However, the proposed algorithm can be further upgraded by

considering the load balancing aspect and the way to handle job failure when it

happens.

The tentative Ant Colony algorithm was proposed by Sharma, Sharma and Dalal

(2014). Typically, ACO focuses on pheromone updates at the path the ants traverse.

72

However, the proposed algorithm focuses on pheromone updates at the resource in

which the update is done based on the task’s execution status. If the execution is

completed successfully, an encouragement argument will increase the pheromone

value which will give the resource a higher possibility to be chosen by the next ant.

However, if the execution fails, a punishment argument will decrease the pheromone

value making it less desirable for the next ant to choose. Both encouragement and

punishment arguments will ensure the best resource is assigned to execute a specific

task. Results showed that the proposed algorithm performed better in terms of low

processing time and low processing cost when compared with the random resource

allocation algorithm. Nevertheless, it does not include a strategy to resubmit or

reprocess failed tasks even though it checks for execution status.

Fault tolerance ACO (FTACO) using the checkpoint in grid computing was proposed

by Prashar et al. (2014) to solve fault and load balancing problems by finding the

optimal resource as well as detecting the occurrence of failure during job execution.

At first, threshold level of nodes is declared which will be used to control the load of

resources. The selection of nodes is based on the resource load whereby if the load is

lower than the threshold level, the resource will be assigned with tasks and the

execution will be managed by the checkpoint manager. A component called the fault

index manager, which is connected to the checkpoint manager, is introduced to record

the failure history that is used as a reference in the next job assignment. Fault index

will be decreased upon job completion or increased upon job failure. In addition to the

checkpoint manager, part of execution outputs or known as checkpoints are stored in

checkpoint server which are retrievable upon failure. When failure occurs, failed tasks

will be rescheduled to alternative optimal resources using the checkpoint technique

73

from the last saved state instead of from the beginning. In terms of the load balancing

aspect, tasks will have a higher possibility of being assigned to resources with a low

workload. The workload is indicated by the pheromone value of each resource which

will continuously be updated in every checkpoint call. Although the proposed

algorithm looks promising, it is simply a conceptual algorithm which has not been

developed and validated to prove its claimed performance.

The ant-based dynamic load balancing algorithm was proposed by Rajab and Kabalan

(2016) in which lower and upper thresholds were introduced to determine the load

status on resources. In the proposed algorithm, the pheromone is associated with the

resource instead of the path, as in traditional ACO. The task assignment process

considers the resource with the highest pheromone value to be assigned with the task,

followed by pheromone decrease once the task is allocated. When the task execution

is successful, the pheromone will be increased and if the task execution is not

successful, the task will be added back into the task queue. After the task execution is

done, regardless of success or failure, the imbalance of load in resources will be

checked to determine whether tasks should be migrated to an underloaded resource or

retained at the current resource. The proposed algorithm outperformed randomized

algorithm in terms of execution cost and makespan. Despite having the mechanism to

balance the load, the proposed algorithm only considered each task as a single task

whereby if it fails, it will be reprocessed from the initial state which could lead to

longer makespan should the same task keep failing due to system instability.

An improved ACO algorithm with fault tolerance (ACOwFT) was proposed by Idris

et al. (2017) that combines checkpoint and resubmission techniques. At first, the jobs

74

are submitted to the scheduler handler which is responsible to get the list of available

resources from GIS using gridlet dispatcher and get current load from the resources

pool. At the same time, fault index that is maintained by the fault index handler during

execution is also retrieved and information is forwarded to the gridlet dispatcher. Once

resource information is available, resources load and fault index are will be used to

identify which resource is ready to be assigned with jobs. Once identified, jobs will be

submitted to the checkpoint handler. The checkpoint handler works closely with a fault

index handler to determine the resource failure rate to control the checkpoint interval

and the number of checkpoints, which is claimed to minimize job processing time and

increase throughput. The checkpoint handler interacts with a scheduler to perform

unconditional job scheduling that includes both initial submission and resubmission

after failure. ACOwFT was inspired from ACO without fault tolerance by Moallem

(2009) in which it was reimplemented with additional fault injection mechanism for

validation purpose. In reimplemented ACO without fault tolerance algorithm, the

faults are injected and standard rescheduling process which is based on the resource

load will be invoked without checkpoint mechanism. When compared with ACO

without a fault tolerance algorithm (ACO), the results showed that the proposed

algorithm reduces makespan, increases throughput and average turnaround time.

Despite having good performance, the consideration of resource load alone is believed

not to be an effective method to determine the resource fitness and may lead to a higher

chance of execution failure.

Garba et al. (2020) proposed an enhanced checkpointing system that dynamically

controls the checkpoint interval based on failure rate, response time and number of

checkpoints per individual job. The proposed algorithm was enhanced from Idris et al.

75

(2017) in terms of replicating checkpoint states to other resources in addition to having

dynamic checkpoint intervals calculation. The benefit of replicating checkpoint states

to other resources is that whenever the checkpoint manager fails to retrieve the

checkpoint state from the failed resource, it can be retrieved from other resources. The

results showed that the proposed algorithm achieved improvements in terms of

makespan, throughput and turnaround time when compared with Idris et al. (2017).

However, it was noted that the replication technique requires more efficient memory

management to allocate or deallocate replicas together with a higher cost to deploy

and maintain the system, and the load balancing aspect was not considered and

validated in the experiments.

Based on all the related works reviewed, ACO is considered as a potential algorithm

in grid computing to solve fault problems. Several approaches have been identified to

provide fault tolerance such as checkpointing, job resubmission, resource

trustworthiness amongst others. However, out of all approaches, job resubmission with

resource trustworthiness and suspension seems to be an approach that can be further

explored to improve the fault tolerance aspect without disregarding the performance

as well as being able to adapt to dynamic grid environments.

Table 2.5 shows the summary of ACO-based fault tolerance algorithms. Algorithms

proposed by Modiri et al. (2011), Mandloi and Gupta (2013) and Sharma, Sharma and

Dalal (2014) only applied fault avoidance technique by reducing the possibility of

faults through improved scheduling process which is claimed to directly control the

fault in the system. On the other hand, algorithms proposed by Wenming et al. (2009),

Prashar et al. (2014), Rajab and Kabalan (2016), Idris et al. (2017) and Garba et al.

76

(2020) possess several fault tolerance techniques that do not simply focus on the

scheduling process but, also, the techniques to handle faults during runtime. The

application of fault tolerance techniques is important as it ensures that the system can

still operate in faulty conditions with minimal impact to the jobs submitted by the user.

Techniques such as job migration and job retry are the most popular techniques as it

allows failed job to be resubmitted to the queue for reprocessing until all the jobs are

completely processed.

Table 2.5

Summary of ACO-based fault tolerance in grid

Author
Proposed
Algorithm

Additional
Issues
Addressed

Fault Tolerance Technique

F
au

lt
A

vo
id

an
ce

Jo
b

M
ig

ra
ti

on

C
he

ck
po

in
ti

ng

Jo
b

R
et

ry

Jo
b

R
ep

li
ca

ti
on

P
en

al
ty

/I
nc

en
ti

ve

R
es

ou
rc

e
S

us
pe

ns
io

n

Wenming et al.
(2009)

TACO
Scheduling and
load balancing

√ X X √ X √ X

Modiri et al.
(2011)

ACO algorithm and
DAG method

Scheduling and
load balancing

√ X X X X X X

Mandloi & Gupta
(2013)

Hybrid ACO with
GA

Scheduling √ X X X X X X

Sharma, Sharma
& Dalal (2014)

Tentative ACO Scheduling √ X X X X √ X

Prashar et al.
(2014)

FTACO Load balancing √ √ √ X X X X

Rajab & Kabalan
(2016)

Ant based dynamic
load balancing
algorithm

Scheduling and
load balancing

√ √ X √ X √ X

77

Idris et al. (2017)
An improved ACO
algorithm with fault
tolerance

Scheduling and
load balancing

√ √ √ √ X X X

Garba et al.
(2020)

Enhanced
checkpointing
system with
replication

Scheduling and
load balancing

√ √ √ √ √ X X

2.4 Summary

Grid computing is an important application domain due to its primary focus on data

processing which is critical and requires robust system. The most recent application

domain such as cloud computing emerged from the grid computing but with primary

focus on providing services such as data sharing, storage, software as a service,

platform as a service and infrastructure as a service, that also includes high

performance computing offered by the grid computing system. In order to solve

failures in grid computing, many researchers have proposed fault management

algorithms which consider the processing time of each job and utilization of each

resource. Based on the previous research conducted, ACO is proven to be the most

promising algorithm that has been successfully used in solving scheduling, load

balancing and fault problems in grid computing. Nevertheless, there remain areas of

improvement in terms of rescheduling and job migration algorithms in addition to

balancing the load using ACO techniques such as initial pheromone value calculation,

and local and global pheromone update.

Regardless, in any application domain, fault tolerance algorithms have typically

evolved from scheduling algorithms in which the scheduling process is further

extended to adapt to the faulty environment. There are several important aspects in

scheduling algorithms that should be considered when extending the capability to

78

provide fault tolerance such as execution time, throughput, load balancing and latency.

Thus, it is important to consider these aspects in fault tolerance algorithms in addition

to execution success rate so that the scheduling process can perform at close to optimal

level despite overhead caused by the fault tolerance capabilities. Table 2.6 shows the

list of performance evaluation metrics used in previous works related to job

scheduling, load balancing and fault tolerance in grid computing.

Table 2.6

Summary of performance evaluation metrics for fault tolerance algorithms in grid

Author Proposed Algorithm

Performance Evaluation Metric

Jo
b

C
om

pl
et

io
n

T
im

e
/

E
xe

cu
ti

on
 T

im
e

Su
cc

es
s

R
at

e
/ F

ai
lu

re

R
at

e

Pr
oc

es
si

ng
 C

os
t

T
hr

ou
gh

pu
t

T
ur

na
ro

un
d

T
im

e
/

M
ak

es
pa

n

L
at

en
cy

R
es

ou
rc

e
U

ti
liz

at
io

n
/

L
oa

d
B

al
an

ci
ng

Wenming et al. (2009) TACO √ √

Modiri et al. (2011)
ACO algorithm and
DAG method

√

Qureshi et al. (2011)
Hybrid fault tolerance
techniques

 √ √ √

Keerthika & Kasthuri
(2011)

Fault tolerance time to
release

 √

Balasangameshwara &
Raju (2012)

Fault tolerance hybrid
load balancing strategy

√ √ √

Bawa & Singh (2012)

Application
checkpointing based
fault tolerance
technique

√

79

Amoon (2013)
Fault tolerance
checkpointing system

√ √ √

Keerthika & Kasthuri
(2013)

BSA √ √

Mandloi & Gupta
(2013)

Hybrid ACO with GA √

Sharma, Sharma &
Dalal (2014)

Tentative ACO √ √

Rathore (2015)
Priority-based
scheduling with load
balancing

√ √ √

Rathore & Chana
(2015)

Threshold-based
hierarchical load
balancing technique

 √ √ √

Rajab & Kabalan
(2016)

Ant based dynamic
load balancing
algorithm

√ √

Singh (2016)

Failure aware
scheduling algorithm
based on incremental
checkpoint scheme

 √

Singh & Bawa (2016)
Proactive fault
tolerance algorithm for
job scheduling

√ √ √

Abdullah, Ali &
Haikal (2017)

Hierarchical
organization model for
computational grid

√ √

Haider & Nazir (2017)

Hybrid fault tolerance
scheme based on
proactive and reactive
approaches

 √ √ √ √

Idris et al. (2017)
An improved ACO
algorithm with fault
tolerance

√ √ √

Goswami & Das
(2018)

Fault tolerance nearest
deadline first
scheduled

√ √

80

Ahuja & Banga (2019)

Resubmission-based
fault tolerance
approach for jobs
scheduling

√ √

Garba et al. (2020)
Enhanced
checkpointing system
with replication

√ √ √

As shown in the table, job completion time or execution time is mostly used to validate

the performance of fault tolerance algorithms, and followed by turnaround time or

makespan, latency, success or failure rate and throughput. The details of each

performance metrics validated in this research are presented in Chapter 3.

81

CHAPTER THREE

FRAMEWORK AND METHODOLOGY

This chapter covers the framework and methodology that have been used throughout

the research process for Dynamic ACS-based Fault Tolerance with Suspension

(DAFTS) algorithm. It starts with Section 3.1 which illustrates the proposed research

framework. This section also explains in detail about the methods used in each research

stage and expected outputs respectively. Section 3.2 discusses the grid simulation

model which includes the architecture of grid computing, system model and

application model. Then, the evaluation methodology is covered in Section 3.3 and

followed by the performance metrics used in validating the proposed algorithm which

are covered in Section 3.4 and 3.5. Lastly, Section 3.6 summarizes the whole

framework and methodology.

3.1 Research Framework

There are four main phases in conducting this research which is based on the

experimental research framework. The first phase is to investigate and identify the

fault tolerance techniques to be used in the DAFTS. This phase is the most critical to

identify the suitable fault tolerance techniques such as job resubmission using

checkpoint and resource suspension. Secondly, resource assignment and job

scheduling are further enhanced to dynamically consider evaporation rate, resource

execution history as well as current pheromone intensity. The third phase is the fault

tolerance algorithm improvement which combines the output of the first and second

phases, and improvement to the ACS formulae to cater the fault tolerance capability.

The last phase is the performance evaluation in which the benchmark algorithms are

82

identified and reimplemented in the same simulation platform, performance metrics

are identified, experiments are carried out and results are analyzed. This framework is

used because it covers all the required steps to propose a new fault tolerance algorithm,

and is easy to use in solving scheduling, load balancing and fault problems in grid

computing. Evaluation of the newly proposed algorithm, as adopted by most

researchers, was done in a simulated environment called GridSim. Simulation allows

users to define parameters and test different scenarios and conditions easily.

Simulation also allows other algorithms to be developed in the same testbed

environment and executed using standard parameters for a more unbiased evaluation.

The results are compared against other algorithms for the same set of performance

metrics. This methodology was used by Keerthika and Kasthuri (2011, 2012, 2013),

Mandloi and Gupta (2013), Rathore and Chana (2015), Rajab and Kabalan (2016), and

Idris et al. (2017).

The research framework of DAFTS in grid computing is presented in Figure 3.1. There

are four main phases that drive the implementation of this research which consist of

determining the designing fault tolerance techniques identification, resource and job

scheduling enhancement, fault tolerance algorithm improvement, and performance

evaluation of the proposed fault tolerance algorithm.

83

Figure 3.1. Research framework of DAFTS

Phase Method Outcome

Fault tolerance
techniques
identification

Investigate existing fault
tolerance techniques

Determine
characteristics and
parameters

Fault tolerance
techniques to be
used with key
parameters and
characteristics

Resource
assignment and
job scheduling
enhancement

Improve resource
assignment and job
scheduling

Enhanced ACS-
based resource
assignment and
job scheduling
with load
balancing

Fault tolerance
algorithm
improvement

Formulate dynamic
evaporation rate
calculation

Design ACS-based fault
tolerance algorithm

Improve ACS-based
formulae

Enhanced ACS-
based fault
tolerance
algorithm

Performance
evaluation of the
proposed
algorithm

Design experiments and
scenarios

Determine and
implement benchmark
algorithms

Conduct experiments
and perform analysis on
the results

Results and
detailed analysis
on the
performance

Determine performance
metrics

84

3.1.1 Fault Tolerance Techniques Identification

Fault tolerance techniques are identified from the list of existing techniques. These

techniques include job replication, checkpointing, job resubmission, alternate task,

alternate resource, penalty and suspension. After careful consideration and review

from previous studies, the job resubmission technique with checkpoint is selected in

order to be combined with the penalty and resource suspension technique. Then,

applicable parameters and characteristics of chosen techniques are identified in order

to be considered in the enhancement phases. The main outcomes of this phase are the

fault tolerance techniques applied in the proposed algorithm and their parameters as

well as characteristics.

3.1.2 Resource Assignment and Job Scheduling Enhancement

The resource assignment and job scheduling process are enhanced using the dynamic

evaporation rate. The dynamic evaporation rate is formulated based on the number of

jobs and resources to assign the most optimal evaporation rate which would improve

the load balancing aspect. In addition to that, the selection of optimal resources is

formulated to consider the highest pheromone and resource availability indicator to

ensure that fit resources are utilized to process more jobs as compared to unfit

resources. The outcome of this phase is the improved resource assignment and job

scheduling that caters the load balancing aspect by having a more controlled resource

selection that would not submit new jobs to the suspended resources to reduce the

possibility of another failure and to allow the remaining tasks in the resource queue to

complete.

Suhairy Hashim
Note
None set by Suhairy Hashim

Suhairy Hashim
Note
None set by Suhairy Hashim

Suhairy Hashim
Note
Cancelled set by Suhairy Hashim

Suhairy Hashim
Note
Cancelled set by Suhairy Hashim

Suhairy Hashim
Note
Unmarked set by Suhairy Hashim

Suhairy Hashim
Note
Unmarked set by Suhairy Hashim

85

3.1.3 Fault Tolerance Algorithm Improvement

The first part of the improvement is to apply all the techniques identified in the first

phase and improvement on the resource assignment and job scheduling in the second

phase. The second part is to improve the ACS formulae, specifically on the local

pheromone update to consider additional aspects such as resource execution history

and trust factors. This improvement is essential to better control the pheromone

deposited or evaporated at the resource which eventually represents the resource

fitness for the ants to perform resource selection during initial state or during

reprocessing state. The outcome of this phase is the enhanced ACS-based fault

tolerance algorithm that applied suitable techniques with improvement on ACS

formulae to not only focus on resource assignment, job scheduling and load balancing,

but also on the fault tolerance capability.

3.1.4 Performance Evaluation of the Proposed Algorithm

The proposed algorithm is designed and coded using Java programming language and

simulated using GridSim. Experiments and scenarios are designed in order to

effectively evaluate the performance of the proposed algorithm against a benchmark

algorithm. The results are analyzed to further evaluate improvements in performance

and will be reported in the form of diagrams, tables and detailed elaborations.

Several experimental scenarios are conducted such as to measure the effect of the

dynamic evaporation rate, incentive and penalty factors and temporary resource

suspension. In the experiments, different basic parameters are changed such as failure

rate, number of tasks, size of individual tasks, and number of resources. In terms of

86

benchmarking with other algorithms, several measurements are considered such as

execution time, latency, throughput, success rate and load balancing. All the

parameters and execution characteristics are similar or close to similar as used by other

algorithms. This method ensures that the comparison is done fairly and accurately.

Several approaches are used in order to obtain execution results from other algorithms.

Firstly, the results are obtained throughout simulation of other algorithms. In order to

achieve this, a source code or compiled application needs to be available. Secondly, if

it is not possible to have the source code or compiled application, the results are

obtained from written sources such as a journal or other forms of reliable publications.

The last method, which is the least preferred, is to manually code the algorithm based

on its pseudocode and execute it. However, this method is very risky because there are

conditions or components that may differ with the actual source code or application

developed by the original authors which may eventually produce inaccurate or wrong

results. Regardless of the method to replicate the implementation of other algorithms,

the written source codes are validated against the original results presented in the

original works in terms of the value and pattern of the output in table or graph.

Before the experiments to compare with other algorithms are conducted, the parameter

tuning experiments were conducted to fine tune the proposed algorithm in terms of

effectiveness of dynamic evaporation rate as compared to static evaporation rate, the

optimal values for incentive and penalty which are part of trust factor, and

effectiveness of suspension technique over without suspension. These experiments are

meant to proof that the proposed techniques will improve the performance and also to

identify the optimal trust factor which may vary when the proposed algorithm is

implemented in different simulation environment, real system and application domain.

87

The first set of experiments to compare with different algorithms is to validate the

effectiveness of the proposed algorithm to adapt with different rates of failure. This is

achieved by setting the expected success rate based on pseudorandom algorithm to

generate initial resource fitness and failure probability during execution. It is expected

that the higher the probability of failure, the lower the execution success rate and

throughput, and higher average makespan, average latency and execution time, and

reduced load balancing.

The second set of experiments to compare with different algorithms is to validate the

how the proposed algorithm behaves when the number of tasks is increased. The

increase of number of tasks can also mean that the longer time needed to completely

execute all the tasks. Typically, in metaheuristic algorithms, the longer the time to

construct the solution, the better the solution will be, and this experiment is dedicated

to test out the assumption. It is expected that the increase of the number of tasks will

lead to higher execution time, throughput, average makespan, average latency and

execution success rate, and better load balancing.

3.2 Grid Simulation Model

Grid simulation toolkit is designed to provide a comprehensive virtual grid platform.

In typical grid simulation environment, system and application are the two main

components being utilized to cater different experimental scenarios while the basic

architecture of the grid system is preserved.

88

3.2.1 GridSim Architecture

Grid computing generally consists of several main components which are

interconnected through Internet and reside in different locations. Due to this fact, grid

simulation tools are introduced to allow developers or researchers to develop, test and

perform analysis to further improve the environment through new or improved

architecture, algorithms, policies and strategies. It is also quite impossible for

standalone developers and researchers to be able to own a complete grid computing

environment that is managed by multiple parties, involve multiple users and hosted in

multiple locations.

The GridSim platform is categorized into several layers for simulating grid

environment. The first layer focuses on application, user, inputs and results. Second

layer consists of grid resource brokers or schedulers which is responsible to manage

the jobs submitted by the user from the first layer. The third layer is where the GridSim

toolkit provides all the necessary components to be used for the simulations such as

application modeling, resource entities, information services, job management,

resource allocation and statistics. The fourth layer consists of event simulation

infrastructure that leverages SimJava or Distributed SimJava which is a discreate event

simulation library based on Java. The last layer is the collection of virtual machines

such as personal computers, workstations, shared memory multiprocessors, clusters

and distributed resources (Buyya & Murshed, 2002).

89

3.2.2 System Model

In the grid computing environment, a set of resources are connected via different

communication networks with different speeds. Each resource may have one or

multiple numbers of machines and each machine may have single or multiple

processing elements. The speed of processor or computational power is defined by the

number of cycles per unit time. As the processors in each machine can be

heterogeneous, they may have different processing power and fitness.

In the experiments that were conducted, each resource is assumed to consist of one

machine and each machine may have one or several processors. The processors in the

same or different machines consist of different processing power. A machine in the

grid system may also have a local user that uses the machine for other computations.

From that point, at any one time, a machine may have a background workload

associated with it. This will affect the computational time of the tasks assigned. In

order to solve this problem, the GridSim toolkit provides users with the ability to

define the background workload according to historical and statistical information for

each machine. Each resource has a background load associated that is taken from the

average load that the resource has experienced at similar times (such as weekends or

working days).

3.2.3 Application Model

In order to develop an application model, it is assumed that the applications which are

being run or the tasks which are submitted to the grid system consists of a set of

independent tasks with no particular order of execution. The tasks that are submitted

90

consist of different computational times, so that each job also requires a different data

transmission time and computation time for completion. The length of each job is

presented in MIPS and each job has different input and output size requirements. Tasks

in the grid computing system can be classified into one of two categories which consist

of a computationally intensive or data intensive task. This research focuses on

computationally intensive tasks as it is more common in today’s real life applications

and the waste of computational power of resources is costlier than their memory

(Moallem, 2009). Intensive tasks come in two forms consisting of several tasks with

extremely large size or many small tasks that are submitted at the same time. The

number of available resources keeps changing throughout the simulation process to

replicate the real condition where some resources are not available, or their conditions

are not fit to accept new tasks, temporarily.

3.3 Simulation Design and Evaluation Methodology

The proposed algorithm is evaluated in a Java based simulation environment known

as GridSim toolkit that provides components for simulating and modeling

heterogenous grid environments such as a broker, scheduler, topology, resources, GIS

and simulation kernel. The Gridsim toolkit was chosen by many researchers (Patel,

Tripathy, & Tripathy, 2016; Ismail et al., 2017) to simulate and evaluate their research

because it supports modeling of heterogeneous types of resources and resources can

be modeled as space shared or time shared mode.

Application that runs in Gridsim toolkit can be simulated with different parallel

applications which can be central processing unit or input/output intensive and at the

same time can be heterogeneous. The toolkit itself does not have any limit to the

91

number of jobs that can be simulated and allows simultaneous execution. Both static

and dynamic schedulers are supported by Gridsim toolkit and network speed between

resources can be determined during initialization or hardcoded in the source code.

Statistics of all operations are recordable and can be analyzed using Gridsim statistics

analysis methods which can be further presented in a more interactive form using

Microsoft Excel.

There are a several standard steps suggested by Gridsim team (Buyya & Murshed,

2002) in order to simulate a grid scheduling algorithm using Gridsim toolkit.

i. Create resources with different capabilities and configurations such as PE

rating, number of PE per machine number of machines per resource, and pre-

defined fitness rating

ii. Create a number of Gridlets (jobs/tasks) with defined parameters such as

length, size of input and output

iii. Create a user entity that creates and interacts with the grid resource broker

entity to coordinate execution experiment, and also with GIS and resource

entities for submitting and receiving processed Gridlets

iv. Implement a grid resource broker entity that performs application scheduling

on resources which is part of the allocation policy build in the application

package that interacts closely with resource information in the GIS

Before the evaluation with other algorithms is performed, parameter tuning

experiments are performed by validating the effect of the dynamic evaporation rate,

incentive and penalty, and suspension technique in order to obtain the most optimal

92

parameters. Once the optimal parameters are obtained, the algorithms that are used to

evaluate with the proposed algorithm such as TACO (Wenming et al., 2009), FTACO

(Prashar et al., 2014), ACO and ACOwFT (Idris et al., 2017) are implemented in the

same simulation environment so that thorough experiments can be performed. Each

algorithm is executed using the same set of execution parameters for better consistency

and an average of 10 executions is undertaken to obtain the final results for each

scenario. The standard execution parameters include the following, as listed in Table

3.1.

Table 3.1

Standard execution parameters

Parameters Description

No. of resources Number of available resources

No. of tasks Number of tasks to be executed

PE rating
Processing elements rating in millions instruction per
seconds (MIPS)

Bandwidth Network bandwidth

No. of machines /
resources

Number of machines per resource

PE per machine Number of processing elements per machine

Gridlet length Job length submitted to GIS

File size Input file size

Output size Output file size

In addition to standard execution parameters, each scenario has specific parameters

which are controlled statically or dynamically. Specific parameters for all

experimental scenarios are listed in Table 3.2.

93

Table 3.2

Specific execution parameters

Scenarios Parameters

Dynamic vs. fixed evaporation rate Evaporation rate activated or disabled

Incentive and penalty factor Incentive and penalty range

With and without suspension
Suspension indicator activated or
disabled

Comparison on different failure rates Initial resource fitness range

Comparison on different number of
tasks Number of tasks range

The list of performance metrics for all experiments listed in Table 3.2 are listed in

Table 3.3.

Table 3.3

List of performance metrics for all experiments

Scenarios Performance Metrics

Dynamic vs. fixed evaporation rate Load balancing

Execution success rate

Execution time

Incentive and penalty factor Load balancing

Execution success rate

With and without suspension Execution time

Execution success rate

Load balancing

94

Comparison on different failure rates Execution time

Throughput

Average makespan

Average latency

Load balancing

Execution success rate

Comparison on different number of tasks Execution time

Throughput

Average makespan

Average latency

Load balancing

Execution success rate

3.4 Performance Evaluation Metrics

Performance evaluation metrics are chosen based on common metrics used by

researchers in evaluating the effectiveness of the grid scheduling algorithm. Makespan

(execution time), throughput and turnaround time are adopted from Idris et al. (2017).

Average latency and the execution success rate are adopted from Moallem (2009), and

load balancing standard deviation for the fault tolerance algorithm is introduced in this

research work based on the concept to calculate load balancing by Sheikh, Nagaraju

and Shahid (2018).

Makespan or execution time is measured from the moment the first task is submitted

to the system, SubmissionTime1 to undergo the scheduling and execution process until

the last task i, CompletionTimen, is completely processed as shown in equation (3.1).

Execution time indicates how efficiently the system can process all the tasks in the

95

queue and is directly related to the throughput, average latency and average turnaround

time.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 − 𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒 (3.1)

For efficiency, throughput is used to measure the performance of the fault tolerance

system (Khan et al., 2010; Ezugwu et al., 2013; Idris et al., 2017). It defines the number

of tasks that can be completed per unit time. The higher the throughput, the more

efficient the system is. Throughput (equation 3.2) is calculated by dividing the total

number of tasks, n, with the total time taken to completely process all tasks.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (3.2)

On the other hand, average turnaround time is used to measure the average time taken

by the system to process each individual job. Similar to execution time, the lower the

average makespan, the less time is needed to process all tasks. As shown in equation

(3.3), it is measured by summing the execution time for each individual task and

dividing the result by the total number of tasks n.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑𝑇𝑖𝑚𝑒 =
∑

 (3.3)

Average latency is also important to measure the waiting time for each job before being

processed by the assigned resource. Lower latency indicates that the system is capable

of utilizing all the resources while controlling the idle time for each job. As depicted

in equation (3.4), total latency for all tasks is divided by the total number of tasks n.

96

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑

 (3.4)

The ultimate aim for a fault tolerance system is to preserve the execution success rate.

Execution success rate is the percentage of completed tasks over the total tasks

submitted. The execution success rate (equation 3.5) calculates the total number of

successful checkpoints, CPsuccess over the total number of recorded checkpoints

(CPfailed + CPsuccess).

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
∑

∑
 (3.5)

The higher the execution success rate, the better the system. However, the execution

success rate needs to be coupled with load balancing to prevent stagnation or

imbalanced resource utilization which will eventually lead to inefficient use of

resources.

3.5 Load Balancing Measurement for Fault Tolerance Algorithm

The last performance metric is the load balancing which is newly proposed to measure

the effectiveness of resource assignment and jobs scheduling to balance the load

distribution in the presence of faults. The load balancing is measured by using standard

deviation of the actual against the expected jobs assigned to all available resources in

the presence of faults. The standard deviation indicates the difference between the

actual outcome versus the mean expected outcome. To calculate the load balancing

standard deviation, a population standard deviation formula is used as a base formula

97

where the value to be subtracted from mean is the percentage of total tasks processed

by a resource and the mean is the resource fitness rate. Equation (3.6) calculates the

difference between total tasks processed and fitness rate for each resource to measure

the effectiveness of load balancing aspect.

𝜎 =
∑()

 (3.6)

where Xi is the percentage of total tasks executed by resource i, μi is the fitness rate of

resource i and N is the total number of resources. The lower the standard deviation, the

better the load balancing the resource has. For a more accurate measurement, the

processing capability of each resource should be identical while the task and output

size should be within an acceptable range. The proposed formula is suitable to measure

the load balancing at the end of simulation for fault tolerance algorithms, but is not

intended to measure the load balancing during runtime.

The proposed load balancing standard deviation measurement is not limited to be used

in validating ACO-based fault tolerance algorithm in grid computing environment, but

it can also be used to measure the load balancing of both non-fault tolerance and fault

tolerance algorithms that are not based on ACO and in other application domains as

well. However, the aspect being considered may differ such as consideration of load

balancing to the routing path, number of jobs assigned to cluster, node selection to

perform hop-to-hop packet delivery and type of jobs and resources.

98

3.6 Summary

The proposed research framework for dynamic ACS-based fault tolerance with

suspension consists of four main phases which include to investigate suitable fault

tolerance techniques, propose the enhancement to the resource assignment and jobs

scheduling that includes dynamic evaporation rate, improve fault tolerance algorithm

and ACS-based formulae, and validate the performance of the proposed algorithm.

Firstly, the investigation phase involves reviewing existing fault tolerance techniques

such as job resubmission based on checkpoint, job replication, resource suspension,

trust factors and job migration. Techniques that are the most effective are selected to

be applied in the proposed fault tolerance algorithm.

Second phase involves introduction of dynamic evaporation rate calculation that is

based on the number of jobs and resources, and enhancement to the resource

assignment and jobs scheduling process which involves consideration of additional

aspects such as resource availability indicator and optimized pheromone value based

on trust factors and resource fitness.

In the third phase, the techniques identified in the first phase are integrated with the

enhancement from the second phase in the ACS-based fault tolerance algorithm.

Existing local pheromone update formula is also enhanced to consider trust factors and

resource fitness to improve the way the pheromone is deposited to the resource. All

these contribute to the new variant of ACS algorithm for dynamic fault tolerance in

grid computing which consists of three main processes: initial pheromone value

99

calculation, resource selection process and fault tolerance mechanism. Initial

pheromone update is responsible to predict the best resource to process a specific job.

This ensures that a job does not go through random assignment which would lead to

inefficient use of execution time. The second process is resource selection where it

considers the resource availability flag which is also known as the quarantine state of

a specific resource. This ensures that the next job in the queue will not be submitted to

a recently failed resource and, eventually, allows the resource to recover. The last

process is the fault tolerance mechanism which will resubmit the failed job using a

checkpoint technique to other available resources, apply a pheromone update and

activate the resource availability flag should the resource fail to process the submitted

job successfully. After that, the recovered resource will be put back into the list of

available resources that are ready to be assigned to jobs.

The last phase covers the evaluation of the proposed algorithms against the benchmark

algorithms. Before the evaluation can be conducted, the experiments and scenarios are

designed based on previous studies including the performance metrics. Then, the

benchmark algorithms are identified and reimplemented in the same simulation

environment as the proposed algorithm based on pseudocode, flowcharts, formulae

and architecture design by the original authors. This ensures that the validation is

performed fairly and systematically to increase the validity of the results.

100

CHAPTER FOUR

DYNAMIC ANT COLONY SYSTEM-BASED FAULT

TOLERANCE WITH SUSPENSION ALGORITHM

This chapter presents the fundamental design and architecture of the proposed

algorithm called Dynamic ACS-based Fault Tolerance with Suspension (DAFTS).

Two main aspects are introduced which consist of scheduling and fault tolerance

capability. In terms of scheduling, the algorithm considers the execution history during

the pheromone update process to influence the desirability of selecting a resource. In

terms of fault tolerance capability, resubmission based on checkpoint and resource

suspension is applied to ensure all failed tasks can be reprocessed successfully, thereby

increasing the success rate. The DAFTS workflow is covered in Section 4.1 and load

balancing using dynamic scheduling is elaborated upon in Section 4.2. Resource

suspension capability is explained in Section 4.3. Section 4.4 covers the pseudocode

of DAFTS and concluding remarks are presented in Section 4.5.

4.1 Dynamic ACS-based Fault Tolerance with Suspension

DAFTS is inspired by the concept of an ant searching for the optimal path to the most

suitable resource to assign tasks. In typical grid task scheduling, the ant searches for

resources with high pheromone value out of all the available resources. In addition to

the pheromone, the load of the resource is also one of the criteria used by the ant to

search for the optimal resources to assign submitted task. The pheromone update will

be performed upon task assignment to a particular resource and the resource will be

released once task execution is completed.

101

This basic concept is further extended for ants to have the ability to perform the

researching process during the resubmission process. In addition, the pheromone

update technique is further improved as a mechanism to penalize unfit resources so

that they become less attractive and to reward fit resources so that they have better

possibilities to be assigned with tasks. This approach is expected to reduce the

possibility of failure as the task assignment will focus on fit resources instead of unfit

resources.

Figure 4.1 illustrates the phases of DAFTS based grid task scheduling with fault

tolerance extension as highlighted. DAFTS differs from typical ACO-based fault

tolerance algorithm in terms of the application of local pheromone update process and

resource suspension technique. For each task, an ant will be generated to perform

resource selection based on the resource pheromone value. The initial pheromone value

will first be calculated to determine the state of all resources before the first task in

queue can be submitted. Selection of the resource will be based on the amount of

pheromone value either from the initial pheromone calculation or pheromone update

process. Once a resource is assigned with a task, a global pheromone update will be

applied by the ant to reduce the amount of pheromone.

102

Figure 4.1. Phases of DAFTS

Each task will be divided into several checkpoints which will be executed in sequence

to preserve the authenticity of the output. In each failed checkpoint or complete task

execution, the local pheromone update will be applied to reduce or increase the

pheromone intensity based on execution history before releasing the resource for the

next execution. In case of any failure during execution, the last checkpoint will be

resubmitted to another suitable resource and the resource that just failed will be

suspended temporarily.

DAFTS is developed in GridSim simulation environment as it provides a close to actual

platform without the need to deploy physical resources and involve actual users in

carrying out the experiments. Due to complexity of large scale distributed systems,

sophisticated simulation tools is demanded to help on analysis and fine tune the

algorithm before being applied in the actual environment. In addition to that, it provides

flexibility to the developers to modify the parameters and behaviors of various

For each
task in
queue

Calculate the
initial

pheromone
value for all

available
resources

Select the best
resource that is

available and has
the highest

pheromone value

If failure happens, stop the task
processing, suspend the resource,

retrieve last saved state, and
resubmit to other resource from

the last saved state

Update the
pheromone

value for the
selected

resource as
soon as the

task
processing

is
completed
or stopped

Release the
resource for

next execution

103

components in the simulation environment to cater different hypothetical problems

(Buyya & Murshed, 2002).

4.1.1 Initial Pheromone Value Calculation

Initial pheromone value is calculated after the job is submitted to the grid system. The

calculation considers jobs characteristics, resources capacity, estimated transmission

time and execution time of the job when assigned to the resource. A higher pheromone

value indicates a higher reliability of the resource to process submitted jobs within an

estimated time and a lower possibility of job processing failure. Eventually, the initial

pheromone value will become the resource pheromone value after the pheromone

update.

4.1.2 Resource Selection Process

The selection of the best resource is based on the availability of the resource which is

controlled by an availability flag and the highest pheromone value. The zero

availability flag indicates that the resource is being suspended temporarily and will not

be chosen to process the submitted job. Pheromone value is the key parameter that

defines resource fitness. The higher the value, the better the fitness. By considering all

these, the selected resource will have the lowest possibility to cause an error and will,

thereby, lead to optimization in the grid system. Furthermore, a recently failed resource

will have the lowest possibility to be chosen in the next iteration before it goes through

the recovery process. Further elaboration on resource selection process that considers

both scheduling and load balancing is covered in Section 4.2.

104

Figure 4.2 illustrates the sequence diagram of the happy flow scheduling process in

the proposed algorithm. The grid broker is the source of ant generated for each

individual task. This ant is responsible to find the optimal resource in the GIS that

stores all information about the resources, current execution state, and checkpoints.

Once the optimal resource is identified, a global pheromone update is applied to reduce

the pheromone intensity so that it becomes less attractive to the next ant. The task in

the queue will be submitted to the identified resource for processing and, once

completed, local pheromone update will be applied to either increase or decrease the

pheromone of the resource. Once the task is completely processed, the ant will be

terminated.

Ant GIS Optimal Resource

findOptimalResource()

returnOptimalResource()

forwardJob()

globalPheromoneUpdate()

Grid Broker

generateAnt()

returnInfo()

processingStatus()

localPheromoneUpdate()

localPheromoneUpdate()

terminateAnt()

Figure 4.2. Sequence diagram of happy flow scheduling process

4.1.3 Fault Tolerance Mechanism

The fault tolerance mechanism includes the ability of the system to record the

checkpoint information at defined intervals, resubmit a failed job from the last saved

state to the job queue, apply a pheromone update and activate the availability flag

105

(suspension). When failure happens, the job’s execution will be terminated, and the

resource will be suspended temporarily for the recovery process. The resource

availability flag will continue to be activated after a certain iteration to allow the

recovery process and will be reset after meeting the threshold value. All these steps

ensure that the resource that failed has time to recover and processing failure could be

minimized by temporarily quarantining the resource. Ultimately, the hit rate or job

completion rate will be increased even in the presence of processing failure.

Figure 4.3 shows the detailed steps of the fault tolerance scheme in the proposed

algorithm. For each task execution, the status of execution will continuously be

validated, checkpoint calls will be made, and local pheromone update will be applied

based on the status of execution at a point in time. If a task is not completely processed,

the remaining task will continue to be executed. Typically, each task execution may

take time due to its size, and it is common for failure to happen. When failure happens,

the resource that failed to execute the task will undergo a local pheromone update

process that invokes the suspension function to temporarily suspend the resource while

reducing the pheromone value so that the resource becomes less attractive to the next

ant. The resubmission process will be initiated, the last saved checkpoint will be called

and put back into the execution queue to undergo the standard scheduling process to

find another optimal resource to continue execution until completion. Once task

execution is completed, the ant will be terminated. Further explanation on suspension

technique is covered in Section 4.3.

106

Job Queue Grid Broker Ant

initialization()
generateAnt()

GIS

findOptimalResource()
returnOptimalResource()

returnInfo()
fetchJob()

forwardJob()
processingStatus()

globalPheromoneUpdate()

localPheromoneUpdate()
localPheromoneUpdate()

returnJob()

returnAck()

initiateResubmission()
findOptimalResource()

returnOptimalResource()

returnInfo()
globalPheromoneUpdate()

retrieveLastSavedState()

snapshotCurrentState()

alt

[jobCompletelyProcessed = true]

[processingStatus = failed]

loop

[jobCompletelyProcessed = false]

terminateAnt()

Optimal Resource

Figure 4.3. Sequence diagram of fault tolerance process

4.1.4 Flowchart of DAFTS

Figure 4.4 illustrates the flowchart of DAFTS with the key contributions of this

research bolded. It is the backbone of DAFTS algorithm proposed in this research.

Before the first task in the queue can be submitted, evaporation rate will be calculated

based on the number of tasks and resources as part of first contribution of this research,

and followed by the initial pheromone value to determine the state of all resources.

Then, an ant will be generated for each submitted task in the queue to perform resource

searching based on pheromone values. The submitted tasks may consists of initially

submitted task or task that undergoes rescheduling process. Resource selection will be

performed based on the pheromone levels, either from the initial pheromone

calculation or the pheromone update process. Once the task is assigned to any resource,

107

the ant will apply a global pheromone update to reduce the amount of pheromone so

that the resource becomes less attractive for the next ant. Each assigned task will be

divided into several time-based checkpoints recorded during execution.

Yes

START

Calculate initial pheromone
value for each combination of

task and resource

For each task in queue, ant
checks for the best resource

with highest pheromone

Is job completed?

STOP

Task execution by the
best resource

Are all tasks
completed?

Save checkpoint
information

Apply global
pheromone update

No

No

Yes

Apply local
pheromone update

Increase resource
success count

Is task failed?
No

Retrieve
checkpoint
information

Yes

Resubmit failed
job from the last

saved state

Apply local
pheromone update

Increase resource
failure count

Increase resource
success count

Apply local
pheromone update

Initiate temporary
resource

suspension

Deactivate
resource

availability
indicator

Calculate evaporation rate based
on number of tasks and

resources

Figure 4.4. Flowchart of DAFTS

In the event of failure, the scheduler will retrieve the checkpoint of failed task from

the checkpoint manager and resource failure count will be increased. After that, the

108

second contribution of this research which is temporary suspension indicator will be

invoked to avoid the resource that failed to undergo recovery process or complete the

remaining task in its queue. This process is meant to reduce the possibility of another

failure by not assigning new task to recently failed resource temporarily and increase

resource utilization by assigning new task to alternative resource. The retrieved task

will repeat the rescheduling process and will be assigned to an alternative resource after

which a local pheromone update with penalty will be applied to the resource that failed to

reduce pheromone intensity, third contribution of this research.

In the event of partially successful task execution, the information about successfully

completed task will be saved and the checkpoint replica will be removed, and resource

success count will be increased. Then, the local pheromone update with incentive will

be applied to the resource to increase the pheromone as part of the third contribution of

this research. The same resource will continue to execute the remaining part of the task

before getting released to process brand new task.

Last but not the least, in the event of complete task execution, the same local pheromone

update process will be performed to increase the pheromone intensity to indicate that the

resource is fit to receive more new tasks. The whole process will continue until all the

submitted tasks are completely processed which means that no task will be left out even

in the presence of failures.

109

4.2 Load Balancing Using Dynamic Scheduling with Checkpointing

During the initial task submission, each resource should have pre-defined parameters

such as processor speed, current load, bandwidth and number of processing elements.

All these parameters will be used to calculate the initial pheromone value (PVrj) for

each combination of resource r and task j. The initial pheromone value formula is

given by the following equation (4.1):

𝑃𝑉 = +
()

 (4.1)

where Sj is the size and Cj is the required computation power of a given task j,

bandwidthj is the available bandwidth of resource r, MIPSr is the processor speed, and

loadr is the current load at resource r. Note that the initial pheromone value is assigned

during initialization but, subsequently, it is considered as a resource pheromone value.

The tasks to be processed may come by batch which means that reinitialization will be

performed to feed the recently arrived tasks into the current queue. Since the initial

pheromone value is calculated for each combination of resource and task, this

information is stored in a PVmatrix as follows (4.2):

𝑃𝑉 =

⎣
⎢
⎢
⎡

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 ,

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 ,

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 ,

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , ⎦
⎥
⎥
⎤
 (4.2)

where n is total number of tasks and m is total number of resources. PVmatrix is a logical

form of grid topology whereby an ant would move from one index to another to find

110

the best resource for task assignment. It is assumed that all the resources are

interconnected which means that if the task if assigned to a specific resource, it can be

migrated to all other available resources. Each row in PVmatrix represents the list of

possible tasks for resource r while each column represents the list of possible resources

for task j. The largest pheromone value in each column will be considered by the ants

as the most fit resource and the task will be forwarded to the resource with the highest

pheromone for processing. As soon as the task is assigned, the pheromone value in the

PVmatrix will be updated by the global pheromone update (4.3) to reduce the amount of

pheromones assigned to the current resource, so that it becomes less attractive by the

next ant and leads to the exploration of other resources. τrj is the amount of pheromones

on the resource, while ∆τrj is 1/Lbest, where Lbest denotes the length of global best tour

or otherwise (no global best tour found), ∆τrj=0.

𝜏 = (1 − 𝜌) ∙ 𝜏 + 𝜌 ∙ ∆𝜏 (4.3)

ρ is the evaporation rate that is dynamically controlled by using the following formula

(4.4) with m and n as the total number of resources and tasks respectively:

𝜌 = (4.4)

Task assignment will continue while the previously assigned task is being executed.

However, if the execution is not successful, the task will be resubmitted from the last

saved checkpoint to another suitable resource. On the other hand, the checkpoint

information will be recorded during the execution for each task being executed and

111

this information is also used to update the execution history table for each resource.

The checkpoint mechanism is applied by splitting a big task into several small tasks

which will be submitted sequentially. In DAFTS, the checkpoint interval is set to 5

splits per individual task. This can be adjusted according to the size of task, the bigger

the task, the higher number of checkpoint interval will be. When the task is submitted

to a specific resource, the checkpoint manager will be responsible to control the feed

of every small task by keeping a replica before submitting it to the identified resource

and if failure status is received, the small task submitted previously will be resubmitted

to the other resource. And if the success status is received from the executing resource,

the small task will be removed from the queue.

As shown in Figure 4.5, a large task T1 is divided into 5 small tasks. Based on the

information received from the scheduler, the checkpoint manager will set its parameter

to assigned T1 to resource B. Then, as in Figure 4.6, the last small task T1e will be

fetched by the checkpoint manager to be submitted to resource B. Before the

submission begins, a replica will be created and saved in checkpoint manager’s

memory. On the other hand, Figure 4.7 shows the event of processing failure by

resource A and Figure 4.8 shows that the replica of task T1e is resubmitted to resource

A and followed by Figure 4.9 that shows the replica is removed when it is completely

processed.

112

Figure 4.5. Initial state of single task splitted into multiple small tasks flows through
checkpoint manager

Figure 4.6. Small task submitted to assigned resource and replica saved in the memory

T1a T1b T1c T1d T1e

Checkpoint
Manager

Single task splitted into 5 small tasks

Resource A

Resource B
Assigned resource

T1a T1b T1c T1d

T1e

Checkpoint
Manager

Resource A

Resource B
T1e submitted to

resource B
T1e

Replica of T1e

113

Figure 4.7. Small task failed to be processed by assigned resource

Figure 4.8. Replica is retrieved and submitted to alternative resource

T1a T1b T1c T1d

T1e

Checkpoint
Manager

Resource A

Resource B
T1e failed to be

processed by
resource B

T1e

Replica of T1e

T1a T1b T1c T1d

T1e Checkpoint
Manager

Resource A

Resource B
T1e resubmitted to

resource A

T1e

Replica of T1e

114

Figure 4.9. Replica is removed after successful processing

In every checkpoint, another round of local pheromone update (4.5) will be applied to

reduce more pheromone values by considering the execution history to influence the

increment or reduction of pheromones; the success status would increase the

pheromones, while the failure status would reduce more pheromones.

𝜏 = (1 − 𝜌) ∙ 𝜏 + [𝜌 ∙ 𝜏 (𝑅)] (4.5)

τ0 is the initial pheromone value of resource r, τrj is the current pheromone intensity

for resource r and task j, T is the trust factor defined by either task completion (T =

1.5) or task failure (T = 1.0) while RH (i) is the average weighted execution history of

resource r and calculated by (4.6):

𝑅 (𝑖) =
𝑅 (𝑖) = , 𝑖 = 0

(1 − 𝛼) ∙ 𝑅 (𝑖) + 𝛼 ∙ 𝑅 (𝑖 − 1), 𝑖 > 0
 (4.6)

T1a T1b T1c T1d

Checkpoint
Manager

Resource A

Resource B

T1e completely
processed

T1e

Replica of T1e is removed

115

where RT(i) is the total execution history of resource r at take i, CPsuccess indicates the

current successful checkpoint call, and CPfailed is the current failed checkpoint, at

resource r respectively. For each resource r, i is initially set to 0 and will be

incremented by 1 for each local pheromone update process, RH(i-1) is the previously

recorded execution history and α is the degree of weighting decrease set to 0.5. The

execution history (also known as resource fitness) will be used to control the quantity

of pheromones to be evaporated, or strengthened, at a respective resource which

eventually helps the following ants to identify the best resources during task

assignment; the better the execution history, the higher the number of tasks assigned.

The execution history (defined as resource fitness) is extended to the existing local

pheromone update formula and will be used to influence pheromone evaporation or

deposition in each resource based on execution status. The better the execution history,

the lower the evaporation of the pheromone. This approach is expected to effectively

balance the load assigned to each resource so that the resources with good execution

history will be assigned with more jobs as compared to resources with bad execution

history.

4.3 Temporary Resource Suspension

As covered in Section 4.1, execution history is equivalent to resource fitness where it

gives the success probability of a particular resource. Eventually, resource fitness RH(i)

will be used to determine the current failure rate (FR) as follows (4.7):

𝐹𝑅 = 1 − 𝑅 (𝑖) (4.7)

116

After the failure rate is determined, effective failure rate (EFR) will be determined by

using failure rate (FR) and failure indicator (F). The failure indicator is controlled by

the broker where the value will be either 0 (success) or 1 (failure). EFR is given by

(4.8):

𝐸𝐹𝑅 = 𝐹 × 𝐹𝑅 (4.8)

The formula for resource suspension (RS) is as follows (4.9):

𝑅𝑆 = 𝐸𝐹𝑅 ×
∑

∑
 (4.9)

where i is the number of tasks and j is the number of resources. Suspension value

represents the number of cycles a resource should be suspended and will be

decremented by 1 in every processing cycle until the count reaches 0. Suspension count

is directly influenced by the ratio of jobs over resources to limit the possible suspension

count that a resource can undergo. For example, if there are 100 jobs with 10 resources

available, the ratio of jobs over a resource is 10 and suspension should not exceed this

ratio. Otherwise, the resource will never be assigned after failure.

Resource suspension (RS) will be stored as resource information and used to control

the resource availability indicator (RAI) using the following logic:

 If RS = 0, then RAI = 1

 Else (RS > 0), then RAI = 0

RAI will be combined with resource pheromone value taken from the PVmatrix to decide

which is the resource having a high pheromone value and RAI = 1. Should the resource

117

have the highest pheromone value but RAI = 0, using a multiplication formula between

the pheromone value and RAI, the calculated pheromone value will become 0. The

calculated pheromone value is controlled by RAI and it will not be applied directly in

the PVmatrix. In a nutshell, the purpose of having more pheromone deduction (penalty)

and resource suspension in the occurrence of failure is to allow a failed resource to

undergo a recovery process that includes reboot, cache clearance, network restart and

manual recovery.

Assume that there are 3 jobs (T1, T2, T3) and 3 resources (R1, R2, R3). This

combination would create a matrix of 3 x 3 mapped with mocked up pheromone values

as shown below.

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=
0.5 0.61 0.9
0.3 0.6 0.7
0.1 0.5 0.67

Then, assume that R3 has recently failed and RAI = 0. When ant tries to search for the

resource to process T1, it will result to the effective pheromone value for R3 equivalent

to 0 due to multiplication of actual pheromone with RAI = 0. This will lead to the ant

selecting R2 because of it has the highest pheromone value.

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=
0.5 0.61 0
0.3 0.6 0.7
0.1 0.5 0.67

118

After R2 is selected to process T1, it will undergo global pheromone update process

which will reduce its pheromone to encourage ants to select other resource for next

task in queue.

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=
0.5 0.49 0.9
0.3 0.41 0.7
0.1 0.4 0.67

After the T1 is completely processed, the affected row will be removed from the

PVmatrix. The PVmatrix will continue to be updated as the new batch of jobs submitted to

the grid system.

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=
0.5 0.49 0.9
0.3 0.41 0.7
0.1 0.4 0.67

4.4 DAFTS Algorithm

The algorithm starts with initialization process where all the static and dynamic

simulation parameters are initialized to form pool of resources and tasks as well as

basic components within the simulation environments such as grid resource broker,

scheduler, topology, resources, GIS and simulation kernel. Once initialized, initial

pheromone value will be calculated using Equation 4.1 which eventually produces

pheromone level of each combination of tasks and resources. It is assumed that at this

point, the tasks are already submitted by the user and available in execution queue.

The grid broker will spawn an ant for each task in the execution queue to identify the

resource with highest pheromone level in PVmatrix and will submit the task to the

119

identified resource. Once identified, pheromone level will be reduced using global

pheromone update (Equation 4.3) to increase utilization of other available resources.

Throughout the execution process, checkpoints will be recorded by the checkpoint

manager that exists in the grid resource broker and will be restored back upon failure

to be submitted to other resources. Each failure or success will be recorded in GIS and

local pheromone update (Equation 4.5) will be applied to either increase the

pheromone intensity upon success or decrease the pheromone intensity upon failure.

In the event of failure, resource suspension will also be invoked to temporarily suspend

the failed resource to prevent it from being assigned with new tasks temporarily.

Finally, once all tasks in execution queue are completely executed, the algorithm will

be terminated. Figure 4.10 represents the pseudocode of the proposed DAFTS

algorithm where the research contributions are bolded accordingly.

120

Figure 4.10. DAFTS algorithm

4.5 Summary

The first contribution in DAFTS algorithm is the dynamic evaporation rate calculation

which calculates based on the number of tasks and resources. The calculation will be

performed every time new batch of tasks is submitted into the grid system. This

Step 1: Get number of resources

Step 2: Get number of tasks

Step 3: Calculate evaporation rate based on number of tasks and resources (dynamic

evaporation rate)

Step 4: For each resource, get resource identification, bandwidth, MIPS and load

Step 5: For each task, get task identification and task size

Step 6: For each combination of resource and job combination, calculate initial pheromone

value and store into pv_matrix array

Step 7: For each task in queue, create an Ant to search for optimal resource in pv_matrix array

7.1: Multiply pheromone with resource availability indicator constant

7.2: Get highest calculated pheromone

7.3: Assign task to the resource

7.4: Apply global pheromone update to the resource

Step 8: While task execution is not complete

8.1: If part of task is completed

8.1.1: Increase resource success count

8.1.2: Apply local pheromone update with incentive (trust factor)

8.1.3: Remove task replica from checkpoint manager

8.2: If part of task is failed

8.2.1: Increase resource failure count

8.2.2: Apply local pheromone update with penalty (trust factor)

8.2.3: Retrieve task replica from checkpoint manager

8.2.4: Change resource availability indicator to 0 (temporary

suspension)

8.2.5: Resubmit retrieved task to the queue (Step 7)

8.3: If task execution is completed

8.3.1: Apply local pheromone update with incentive (trust factor)

8.3.2: Release resource

Step 9: If all tasks completely executed, terminate the algorithm

121

ensures that the evaporation rate is properly controlled so that it will not be too quick

or too slow which will eventually lead to poor pheromone control.

The second contribution of DAFTS is the enhanced local pheromone update to

consider trust factor which is determined by the status of task execution and resource

execution history to provide better control of pheromone to the resource which will

eventually represent the resource fitness during scheduling process by the Ant. The

trust factor in the enhanced local pheromone update is based on identified constant to

either increase the pheromone upon successful task execution or reduce the pheromone

upon execution failure. The enhanced local pheromone update is called when part of

the task is successfully executed, part of the task is failed, and the full length of

individual task is completely executed.

The third contribution of DAFTS is the introduction of temporary resource suspension

to temporarily prevent resource that failed to execute the task from getting new tasks

from the queue. This is essential to allow it to recover at least complete the execution

of other parallel execution in the resource. The suspension is controlled based on the

resource fitness which means that if the resource is fit, the suspension will be released

quicker than the resource that is not fit. This ensures that fit resources, despite failing

to execute the task, can continue to be utilized to receive new tasks. The amount of

suspension can be controlled by changing the decrement factor (defaulted to 1 per

processing cycle) to higher value to quicken the suspension release or lower value to

slow down the suspension release.

122

All the listed contributions are incorporated in DAFTS which provide improved

scheduling process by considering the resource fitness and resource availability

indicator and enhanced local pheromone update process that considers trust factors and

resource execution history. In addition to that, effective fault tolerance techniques are

applied which are task resubmission based on checkpoint to eliminate the need to

reprocess failed task from the beginning which will eventually reduce the execution

time, reduce average makespan, reduce average latency, increase throughput, increase

execution success rate and improve load balancing.

123

CHAPTER FIVE

EXPERIMENTAL RESULT

This chapter presents the experimental results of the DAFTS algorithm compared with

other algorithms in terms of execution time, throughput, average latency, average

turnaround time, execution success rate and load balancing. Section 5.1 covers the

experimental design and followed by the parameter tuning experiments in Section 5.2.

The experimental results and analysis are presented in Section 5.3 for two main

scenarios which are different rates of failures and different numbers of tasks. Lastly,

the summary of the chapter is presented in Section 5.4.

5.1 Experimental Design

Experiments are divided into two parts whereby the first part is used to tune the specific

parameters of the proposed algorithm to achieve the most optimal results. The

complete parameter tuning experiments cover several scenarios in order to find the

optimal constants and parameters in the proposed algorithm is presented in Section

5.2. This includes the validation of static and dynamic evaporation rate, incentive and

penalty factor and comparison between suspension and non-suspension.

The second part of experiments covers the thorough comparison with TACO

(Wenming et al., 2009), FTACO (Prashar et al., 2014), ACO and ACOwFT (Idris et

al., 2017) as presented in Section 5.3. The first scenario is to measure the effectiveness

of DAFTS using different failure rates in terms of execution time, throughput, average

makespan, average latency, load balancing and execution success rate. The second

scenario is to measure the effectiveness of DAFTS using different numbers of tasks in

124

terms of execution time, execution success rate and load balancing. For each scenario,

the average of 10 executions is taken as the final results to preserve the consistency

and validity of the results.

5.2 DAFTS Parameter Tuning

Before comparison with another algorithm can be performed, it is essential to tune the

parameters of DAFTS algorithm so that it can achieve optimal performance.

Parameters tuning is also important in adjusting the preference of an algorithm. For

instance, it is possible to increase the execution success rate by assigning tasks to fit

resources and not utilizing unfit resources, but the drawback will be poor resource

utilization or load balancing. It is also possible to reduce overhead by not

implementing fault tolerance techniques such as checkpoint and suspension, but this

will lead to an increase in execution time.

5.2.1 Dynamic Evaporation Rate versus Fixed Evaporation Rate

Evaporation rate is an important parameter in the pheromone update formula whereby

the higher the evaporation rate, the faster the rate of pheromone evaporation. In

contrast, a lower evaporation rate results in a slower rate of pheromone evaporation.

According to the experiment, a fixed evaporation rate is not effective in controlling the

load balancing as it does not consider the number of tasks and resources. A fixed

evaporation rate is suitable in a system that does not have faults and has predicted or

well-timed tasks submission. This is the reason why the dynamic evaporation rate is

proposed which considers the number of tasks and resources to control the rate of

pheromone evaporation so that the load balancing, success rate and execution time

125

aspects are improved. In addition to that, in the actual application, tasks may come by

batch and resources count may increase or decrease at different timings. Thus, it is

important to dynamically reevaluate the current situation and adjust the evaporation

rate accordingly to ensure the system can operate at optimum level at any time.

The experiment was conducted using the parameters shown in Table 5.1 in which the

number of tasks is changed to measure the effectiveness of dynamic evaporation rate,

the failure percentage is set to 50%.

Table 5.1

Simulation parameters for evaporation rate validation

Parameters Values

No. of resources 100

No. of tasks 1000 / 3000 / 5000

PE rating 50 MIPS

Bandwidth 5000 B/S

No. of machine / resource 1

PE per machine 2

Gridlet length 200000 MI

File size 100 + (10-40%)

Output size 250 + (10-50%)

As shown in Figure 5.1, regardless of the number of tasks, the dynamic evaporation

rate has a lower load balancing standard deviation which means that the task

distribution is done more effectively than the static evaporation rate. The results

126

suggest that by dynamically assigning the evaporation rate based on the number of

resources and tasks, the task distribution will be more balanced and eventually lead to

better resource utilization.

Figure 5.1. Comparison between static and dynamic evaporation rate in terms of load
balancing for 100 resources with 1000, 3000 and 5000 tasks

In addition to measuring load balancing, the execution rate should also be considered

to complement load balancing. This is because load balancing focuses on task

distribution rather than resource execution history. It is still possible that good load

balancing can be achieved but with lower execution success rate. The comparison of

execution success rate between static and dynamic evaporation is presented in Figure

5.2. In the proposed algorithm, since the resource fitness is considered during task

assignment, both load balancing and execution success rate aspects are preserved. For

all scenarios, the dynamic evaporation rate produced a higher execution success rate

as compared to static evaporation rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 3000 5000

St
an

da
rd

 D
ev

ia
tio

n

Number of Tasks

Static Dynamic

127

Figure 5.2. Comparison between static and dynamic evaporation rate in terms of
execution success rate for 100 resources with 1000, 3000 and 5000 tasks

Last but not least, the execution time, which is influenced by the execution success

rate. As depicted in Figure 5.3, in all scenarios, the dynamic evaporation rate resulted

in lower execution time as compared to static evaporation rate. The results prove that

by complementing between load balancing and execution success rate, the system can

achieve a lower execution time. The difference of execution success rate between static

and dynamic increases along with the number of tasks incremented. This trend

suggests that the larger the ratio of resources and tasks, the better the improvement of

execution success rate when the dynamic evaporation rate is applied. There are other

aspects that influence the execution time such as latency and average makespan that

are indirectly covered by the execution time in this experiment.

70

75

80

85

90

95

100

1000 3000 5000

Pe
rc

en
ta

ge
 (%

)

Number of Tasks

Static Dynamic

128

Figure 5.3. Comparison between static and dynamic evaporation rate in terms of
execution time for 100 resources with 1000, 3000 and 5000 tasks

Different numbers of tasks require different values of evaporation rates in which large

numbers of tasks need slower evaporation rates as compared to small numbers of tasks

that require faster evaporation rates. In real situations, there will be different numbers

of tasks submitted to the grid broker to the system at different times or schedules. Thus,

it is important for the system to have the capability to control the ideal evaporation rate

to support execution with effective load balancing control. Adjustment of the

evaporation rate can be performed per batch of assigned tasks or at a defined time

interval by considering the current tasks and resources available at that time to ensure

that the system can operate as optimum level.

5.2.2 Incentive and Penalty Factor

Incentive and penalty or also known as trust factor is proposed to influence the

pheromone update process by allowing a more flexible controlling mechanism.

20000

40000

60000

80000

100000

120000

140000

160000

1000 3000 5000

Ti
m

e
(M

ill
is

ec
on

ds
)

Number of Tasks

Static Dynamic

129

Without an optimal incentive and penalty value, load balancing will be affected as the

algorithm would focus on the most fit resources rather than distributing the tasks to all

available resources based on their fitness. The optimal values are used to assign

variable T in (Equation 4.5) so that successful execution will increase the pheromone

of a resource, and failure will decrease the pheromone so that the resource will have

lesser possibility to be assigned with tasks in following iterations. In this experiment,

the optimal values for incentive and penalty are identified based on iterative executions

for each combination of incentive ranging from 1 to n and penalty ranging from 1 to

0. To measure the optimal values, the experiment was conducted using the parameters

shown in Table 5.2.

Table 5.2

Simulation parameters for incentive and penalty values optimization

Parameters Values

No. of resources 100

No. of tasks 5000

PE rating 50 MIPS

Bandwidth 5000 B/S

No. of machine / resource 1

PE per machine 2

Gridlet length 200000 MI

File size 100 + (10-40%)

Output size 250 + (10-50%)

Incentive Range [1, 2]

Penalty Range [0, 1]

130

A slight difference in the incentive or penalty value provides differences in terms of

execution success rate and load balancing. As shown in Table 5.3, the bottom three

load balancing values are obtained when the incentive values are 1.3, 1.4 and 1.5 while

the penalty value is 1.0.

Table 5.3

Incentive and penalty values optimization for load balancing

Incentive

 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

P
en

al
ty

1.0 0.652 0.077 0.068 0.048 0.047 0.047 0.055 0.063 0.067 0.073 0.097

0.9 0.713 0.703 0.704 0.682 0.702 0.705 0.707 0.707 0.702 0.699 0.709

0.8 0.703 0.702 0.703 0.703 0.704 0.711 0.711 0.714 0.718 0.722 0.725

0.7 0.691 0.686 0.687 0.688 0.690 0.694 0.709 0.714 0.718 0.722 0.727

0.6 0.704 0.724 0.717 0.681 0.674 0.691 0.710 0.712 0.715 0.717 0.719

0.5 0.722 0.709 0.709 0.709 0.709 0.728 0.723 0.723 0.723 0.723 0.723

0.4 0.730 0.698 0.712 0.714 0.716 0.718 0.719 0.721 0.723 0.725 0.727

0.3 0.702 0.706 0.716 0.717 0.718 0.720 0.721 0.722 0.723 0.725 0.726

0.2 0.728 0.692 0.694 0.695 0.696 0.710 0.718 0.718 0.719 0.719 0.719

0.1 0.737 0.748 0.740 0.733 0.726 0.719 0.719 0.720 0.720 0.720 0.722

0 0.716 0.714 0.715 0.716 0.718 0.727 0.719 0.721 0.722 0.724 0.725

On the other hand, the top three execution success rates are obtained when incentive

values are 1.0, 1.4 and 1.5 while the penalty value is 1.0 as listed in Table 5.4. It can

be concluded that to achieve the highest execution success rate, the values of incentive

and penalty should be 1.0 for both.

131

Table 5.4

Incentive and penalty values optimization for execution success rate

 Incentive

 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

P
en

al
ty

1.0 94.40 91.65 92.12 92.43 92.70 93.65 91.80 91.53 91.27 91.01 90.75

0.9 82.71 81.09 70.77 72.06 77.22 78.80 77.39 76.65 75.56 73.14 72.72

0.8 81.93 79.98 67.56 70.78 73.92 76.86 75.12 74.98 74.70 73.14 72.78

0.7 80.10 78.72 67.00 68.90 70.27 74.87 72.69 69.87 68.57 68.50 67.19

0.6 79.81 78.26 66.45 67.59 68.26 72.64 72.58 69.12 68.44 68.30 66.96

0.5 78.51 77.07 65.89 66.23 66.90 71.92 72.26 68.82 68.14 68.00 66.67

0.4 77.45 76.10 65.33 66.28 66.94 70.70 71.26 67.87 67.20 67.06 65.75

0.3 76.40 75.12 64.78 64.96 65.61 68.41 68.59 65.33 64.68 64.55 63.29

0.2 75.35 74.15 64.22 63.66 64.30 65.68 65.53 62.41 61.79 61.66 60.46

0.1 74.29 73.17 63.66 63.65 64.29 64.25 65.30 62.19 61.58 61.46 60.25

0 73.24 72.20 63.11 62.34 62.97 63.39 62.52 59.55 58.96 58.84 58.66

This result suggests that when both incentive and penalty are set to 1.0, fit resources

are likely to be assigned with the majority of tasks which would lead to stagnation

where some resources are heavily loaded. However, the drawback in this situation is

that the load balancing of the system will be the worst. Even though the success rate

is one of the key criteria in task processing, load balancing is even more important in

ensuring that task distribution is undertaken fairly to increase resource utilization.

Thus, in the experiments that compare the performance of the proposed DAFTS

algorithm with other algorithms, the values of incentive and penalty are set to 1.5 and

132

1.0 respectively as shown in Table 5.5 where the second highest execution success rate

and lowest load balancing standard deviation are achieved.

Table 5.5

Side-by-side comparison of top three figures in Table 5.3 and Table 5.4

Reference

Table

Table 5.3 Table 5.4

 Incentive

 1.0 1.4 1.5 1.3 1.4 1.5

P
en

al
ty

1.0 94.40 92.70 93.65 0.048 0.047 0.047

Incentive and penalty values are assigned as power factors in the pheromone update

formula which is very sensitive but effective in manipulating the preference of the

algorithm on whether to focus on execution rate but disregard load balancing, or to

achieve slightly lower execution success rate but with good load balancing. This value

is applied in the local pheromone update formula explained in (Equation 4.5).

The trust factor denoted with T controls the outcome of the calculation. When T ≤ 1,

the calculated value will be reduced and if T > 1, the calculated value will be increased.

This behavior represents the increase or decrease of pheromone. When T is too small,

the decrease of pheromone to the failed resource will be too much and may lead to the

resource not getting assigned with task gain. On the other hand, if T is too large, the

rapid increase of pheromone may cause fit resources to potentially be assigned with

too many tasks, eventually leading to poor load balancing. It is also possible to

manipulate the trust factor to achieve specific preference such as to achieve the highest

133

execution success rate without considering the load balancing, or to maximize the

resource utilization without the need to achieve highest execution success rate.

5.2.3 Implementation of Suspension Technique

Suspension is proposed to temporarily pause a recently failed resource to allow it to

recover and reduce the possibility of another round of failure. The resource suspension

considers the initial ratio of tasks to be assigned to each resource and current fitness

rate. This experiment is carried out to measure the effectiveness of the suspension as

compared to without suspension technique. Execution time, success rate and load

balancing are measured to find out whether the proposed suspension technique is

effective in optimizing the performance of the DAFTS algorithm. The size of each task

is also changed to represent small (50000 MI), medium (200000 MI) and large

(1000000 MI). The parameters used in this experiment are presented in Table 5.6. It is

hypothesized that the larger the size of tasks, the more effective the checkpointing and

resource suspension techniques will be.

Table 5.6

Simulation parameters for resource suspension validation

Parameters Values

No. of resources 100

No. of tasks 5000

PE rating 50 MIPS

Bandwidth 5000 B/S

No. of machine / resource 1

134

PE per machine 2

Gridlet length 50000 / 200000 / 1000000 MI

File size 100 + (10-40%)

Output size 250 + (10-50%)

Resource suspension is meant to reduce the possibility of another failure should the

recently failed resource being assigned with task and allowing the resource to recover

in actual implementation. As presented in Figure 5.4, there is a slight reduction to

execution time when the suspension technique is enabled with small, medium and

large size of tasks. Despite the slight difference in this experiment, when the size is so

large in the actual implementation, the difference will be more significant in improving

the performance of the system.

Figure 5.4. Comparison between no suspension and with suspension in terms of
execution time for small, medium and large sized tasks

20000

120000

220000

320000

420000

520000

620000

720000

820000

50000 200000 1000000

Ti
m

e
(M

ill
ise

co
nd

s)

Size of Tasks (MI)

No Suspension With Suspension

135

Execution time is directly influenced by the execution success rate as shown in Figure

5.5. The success rate, when the suspension technique is enabled, is higher for all the

scenarios as compared to without suspension. It is proven that by temporarily isolating

the recently failed resources from being assigned with new tasks, the possibility of

failure is also reduced.

Figure 5.5. Comparison between no suspension and with suspension in terms of
execution success rate for small, medium and large sized tasks

In addition to preserving the execution success rate, the load balancing aspect is also

considered to ensure that the task distribution is done fairly to avoid bottlenecks.

Figure 5.6 depicts that load balancing is further improved when the suspension

technique is enabled for all scenarios. The lower the load balancing standard deviation,

the better load balancing the system has achieved. This reduction is very significant

for small and large sized tasks.

85

86

87

88

89

90

91

92

93

94

95

50000 200000 1000000

Ra
te

 (%
)

Size of Tasks (MI)

No Suspension With Suspension

136

Figure 5.6. Comparison between no suspension and with suspension in terms of load
balancing for small, medium and large sized tasks

Temporary suspension provides significant improvement in terms of execution time,

execution success rate and load balancing standard deviation. Suspension allows the

resource to recover itself by preventing it from getting new load or by user intervention

in real applications. In some cases, resources that are constantly overloaded will have

higher possibility to fail and by reducing the load may eventually allow it to recover

by itself. The length of suspension may vary depending on the number of available

resources and the number of tasks to be processed. It is important to set the optimal

suspension length so that it will not cause bottlenecks in the task queue which may

affect the latency of the system. It is also possible to incorporate a local task queue

layered just before the resource so that it can control the flow of queued tasks into each

resource during the suspension process to avoid task corruption.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

50000 200000 1000000

St
an

da
rd

 D
ev

ia
tio

n

Size of Tasks (MI)

No Suspension With Suspension

137

5.3 Results and Analysis

The comprehensive experiments consist of two parts: using different rates of failure

between 0% up to 50%; and, using different numbers of tasks ranging between 1000

and 10000. In both parts, all the algorithms are compared thoroughly to validate

specific performance metrics. The proposed DAFTS algorithm is compared with

TACO (Wenming et al., 2009), FTACO (Prashar et al., 2014), ACO and ACOwFT

(Idris et al., 2017) which are re-implemented in GridSim. Each algorithm is executed

10 times for each scenario or interval and the average is taken for a more precise

measurement.

5.3.1 Effectiveness of DAFTS to Different Rates of Failure

To validate the performance of the proposed DAFTS algorithm in the presence of

failure, a pseudorandom algorithm is used to randomly assign resource fitness within

a defined range. In this case, the range of resource fitness is defined between 50% to

100% as used by Amoon (2012) and all other resource and task parameters are adopted

from Idris et al. (2017), as shown in Table 5.7, except for resource fitness. For more

accurate measurement, each resource is set to have the same PE rating, bandwidth,

number of machines and PE per machine.

Table 5.7

Simulation parameters for the effect of different numbers failure rates

Parameters Values

No. of resources 100

No. of tasks 5000

138

PE rating 50 MIPS

Bandwidth 5000 B/S

No. of machine / resource 1

PE per machine 2

Gridlet length 200000 MI

File size 100 + (10-40%)

Output size 250 + (10-50%)

Resource fitness 50% - 100% (10% interval)

Note. Adapted from Idris et al. (2017).

Execution time is measured from the moment the first task is submitted to the system

to undergo scheduling and execution process until all tasks are completely processed.

As shown in Figure 5.7, the execution time for DAFTS, ACOwFT and FTACO is

incremented gradually as compared to TACO and ACO with rapid increment along a

with percentage of fault ranges. This suggests that the checkpoint technique provides

significant improvement in terms of execution time as failed tasks do not need to be

reprocessed from the initial state. In real implementation, the size of each task is big

and requires time to execute. For example, using a non-checkpoint technique, a task

that requires one hour to be completely processed may require 1.5 hours to complete

if it failed at 50% progress. However, if using the checkpoint technique, the same task

may require one hour and several minutes with the assumption that the additional

minutes are used to retrieve and reschedule the last saved state into the execution

queue.

139

Figure 5.7. Results of execution time for ACOwFT, ACO, TACO, FTACO and
DAFTS

For efficiency, throughput is used to measure the performance of the fault tolerance

system and calculated by dividing the total number of tasks with total time taken to

completely process all tasks. Figure 5.8 shows that DAFTS has the highest throughput

while ACOwFT and FTACO have slightly lower throughput. The algorithms with the

least throughput are ACO and TACO with more than 50% reduction as compared to

the highest throughput algorithms. Since throughput measures the number of tasks

completed per unit of time, it is directly influenced by the total execution time. The

higher the execution time, the lower the throughput. Thus, one of the ultimate aims of

the proposed DAFTS algorithm is to lower the execution time as much as possible in

the presence of failure.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0% 10% 20% 30% 40% 50%

Ti
m

e
(M

ill
is

ec
on

ds
)

Error Percentage

ACOwFT ACO TACO FTACO DAFTS

140

Figure 5.8. Results of throughput for ACOwFT, ACO, TACO, FTACO and DAFTS

Average makespan per gridlet is also considered as average execution time per

individual task. In Figure 5.9, ACO has the most average makespan per gridlet

followed by TACO with the second highest average makespan. ACOwFT and FTACO

have relatively similar performances while DAFTS has the lowest average makespan

per gridlet. Average makespan is also related to the total execution time and influenced

by the checkpoint technique that allows each failed task to be executed from the last

saved state instead of from the beginning. The results also show that consideration of

resource execution history with checkpoint technique is effective in reducing the time

to process each individual task.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0% 10% 20% 30% 40% 50%

Th
ro

ug
hp

ut

Error Percentage

ACOwFT ACO TACO FTACO DAFTS

141

Figure 5.9. Results of average makespan per gridlet for ACOwFT, ACO, TACO,
FTACO and DAFTS

Average latency per gridlet measures the waiting time for each gridlet to be processed

by an assigned resource. As depicted in Figure 5.10, DAFTS has the lowest average

latency followed by ACOwFT and FTACO with second lowest average latency. Both

ACO and TACO have the most average latency due to lack of a checkpoint technique

that allows a failed task to be reprocessed from the last saved state. The trend of the

graph in Figure 5.10 is almost identical to Figure 5.9; this suggests that average

makespan and latency have dependency on each other. The results also prove that bias

task assignment to only fit resources without proper control can make the waiting

queue longer for the resources even though this can improve execution success rate.

Thus, it is important to control task assignment based on resource fitness so that the

0

50000

100000

150000

200000

250000

0% 10% 20% 30% 40% 50%

Ti
m

e
(M

ill
is

ec
on

ds
)

Error Percentage

ACOwFT ACO TACO FTACO DAFTS

142

resources with low fitness will still be assigned with the least number of tasks instead

of no task at all.

Figure 5.10. Results of average latency per gridlet for ACOwFT, ACO, TACO,
FTACO and DAFTS

Load balancing is essential to measure how well the task distribution is performed.

This is measured by calculating the standard deviation of initially assigned fitness rate

and actual ratio of total processed tasks. As shown in Figure 5.11, ACOwFT has the

lowest standard deviation followed by DAFTS with a slightly higher load balancing

standard deviation. ACOwFT considers the load of the resource while DAFTS

considers the pheromone to balance the task assignment. Even though both FTACO

and TACO use pheromone to assign the task, due to a fixed evaporation rate being

used, the value of the pheromone cannot be controlled effectively and eventually leads

0

50000

100000

150000

200000

250000

0% 10% 20% 30% 40% 50%

Ti
m

e
(M

ill
is

ec
on

ds
)

Error Percentage

ACOwFT ACO TACO FTACO DAFTS

143

to inconsistency of pheromone level in all resources. In addition, consideration of

execution history is effective in determining how fit the resource is in balancing the

load. The closer the standard deviation to 0, the better the load balancing. In other

words, without even knowing how fit a specific resource is, initially, the proposed

algorithm is able to apply heuristic capability to determine the fitness based on

execution history while preserving resource utilization.

Figure 5.11. Results of load balancing for ACOwFT, ACO, TACO, FTACO and
DAFTS

In any fault tolerance system, the ultimate aim is to maintain the execution success rate

without disregarding the performance. Figure 5.12 shows that DAFTS has the highest

execution success rate followed by TACO. This is because task assignment based on

resource fitness reduces the possibility of execution failure. Furthermore, the results

prove that task assignment based on resource load is not very effective in reducing the

0

0.1

0.2

0.3

0.4

0.5

0.6

0% 10% 20% 30% 40% 50%

St
an

da
rd

 D
ev

ia
tio

n

Error Percentage

ACOwFT ACO TACO FTACO DAFTS

144

possibility of failure even though it can balance the load effectively. Despite ACOwFT

having slightly better load balancing as compared to DAFTS, the proposed algorithm

gives a better success rate which is more favorable in the presence of faults.

Figure 5.12. Results of success rate for ACOwFT, ACO, TACO, FTACO and DAFTS

Overall, DAFTS produced better performance as compared with the other algorithms

especially ACOwFT. In terms load balancing, ACOwFT achieved slightly better

performance than DAFTS due to direct consideration of the resource load when

assigning tasks. However, in terms of execution time, throughput, latency, makespan

and execution success rate, DAFTS outperformed the other algorithms significantly.

Thus, it can be concluded that the consideration of resource load would definitely lead

to the best load balancing. However, consideration of other factors such as execution

history is also favorable in improving the overall performance of the fault tolerance

algorithm.

75

80

85

90

95

100

0% 10% 20% 30% 40% 50%

Ra
te

 (%
)

Error Percentage

ACOwFT ACO TACO FTACO DAFTS

145

5.3.2 Effectiveness of DAFTS to Different Numbers of Tasks

To further validate the effect of the number of tasks to the performance of all

algorithms, an additional experiment is conducted by using different the number of

tasks from 1000 to 10000 and resource fitness is distributed between 50% to 100%.

The results for each scenario are taken from an average of 10 executions for more

consistent results. Table 5.8 summarizes the parameters used where all the parameters

except for number of tasks and range of resource fitness are adopted from Idris et al.

(2017).

Table 5.8

Simulation parameters for the effect of different numbers of tasks

Parameters Values

No. of resources 100

No. of tasks 1000 – 10000

PE rating 50 MIPS

Bandwidth 5000 B/S

No. of machine / resource 1

PE per machine 2

Gridlet length 200000 MI

File size 100 + (10-40%)

Output size 250 + (10-50%)

Range of resource fitness 50% - 100% (randomized)

Note. Adapted from Idris et al. (2017).

146

Figure 5.13 shows the effect to the execution time when the number of individual tasks

is increased. It can be seen that the execution time increases along with the increase in

the number of tasks. However, the increment rate for DAFTS, ACOwFT and FTACO

is relatively similar as compared to ACO and TACO that do not employ a checkpoint

technique. This result suggests that as the number of tasks increases, the effectiveness

of the checkpoint technique, as employed in DAFST, ACOwFT and FTACO, will

become more significant.

Figure 5.13. Results of execution time for ACOwFT, ACO, TACO, FTACO and
DAFTS for different number of tasks

The results of throughput for different number of tasks are shown in Figure 5.14. The

throughput is influenced by the number of completed tasks over the execution time.

As shown in Figure 5.13, DAFTS achieved the lowest execution time and this is

aligned in the throughput results whereby DAFTS outperformed the other algorithms.

It is also noted that ant-based algorithms including DAFTS will achieve optimal

0

200000

400000

600000

800000

1000000

1200000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(M

ill
is

ec
on

ds
)

Number of Tasks

ACOwFT ACO TACO FTACO DAFTS

147

throughput at certain intervals. This also means that even if the number of tasks is

further increased, the throughput will be stagnant since the close to optimal solution is

achieved.

Figure 5.14. Results of throughput for ACOwFT, ACO, TACO, FTACO and DAFTS
for different number of tasks

The effects of increasing the number of tasks to average makespan and average latency

are depicted in Figure 5.15 and Figure 5.16 respectively. Both performance metrics

are directly related to the execution time, thus, the pattern of the graphs are almost

identical. It can be seen that DAFTS outperformed the other algorithms in terms of

makespan and latency as the task scheduling is done with intention to reduce the

number of possible failure by properly assigning the tasks to resources based on fitness

rather than load. It can also be noted that the lack of checkpoint technique seems to

have major effect to the makespan and latency due to the failed task needs to be

reprocessed from the beginning and eventually increases the wait time for the task in

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut

Number of Tasks

Throughput

ACOwFT ACO TACO FTACO DAFTS

148

queue and task processing time which considers the processing time including when it

failed until each individual task is completely processed.

Figure 5.15. Results of average makespan for ACOwFT, ACO, TACO, FTACO and
DAFTS for different number of tasks

0

100000

200000

300000

400000

500000

600000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(M

ill
is

ec
on

ds
)

Number of Tasks

Average Makespan

ACOwFT ACO TACO FTACO DAFTS

149

Figure 5.16. Results of average latency for ACOwFT, ACO, TACO, FTACO and
DAFTS for different number of tasks

The effect of the number of tasks to the load balancing represented by the standard

deviation is shown in Figure 5.17. ACOwFT achieved the lowest load balancing

standard deviation followed by DAFTS and ACO. On the other hand, FTACO and

TACO have a significantly large load balancing standard deviation. The consideration

of resource load or execution history is effective in balancing the task assignment

process despite the increase of the number of tasks. Similar to the results in Figure

5.14, load balancing standard deviation will be stagnant at some point and the

algorithm is able to adapt with the stability and consistency of the system. This result

suggests that in real application, the heuristic information will be carried forward, thus

ensuring the subsequent task assignment process happens optimally.

0

100000

200000

300000

400000

500000

600000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(M

ill
is

ec
on

ds
)

Numbe

Average Latency

ACOwFT ACO TACO FTACO DAFTS

150

Figure 5.17. Results of load balancing standard deviation for ACOwFT, ACO, TACO,
FTACO and DAFTS for different number of tasks

Last, but not the least, is Figure 5.18 which depicts the effect of the number of tasks to

the execution success rate. As shown in the results, the execution success rate increases

gradually along with the increase in the number of tasks. This behavior is driven by

the heuristic information established during the task assignment process in which it

will be far from the optimal solution in the beginning but become closer to optimal

solution in the later stage. In alignment with the results in Figure 5.14 and Figure 5.17,

DAFTS has the highest execution success rate compared to all other algorithms. It is

expected that, at some point, the execution success rate will be stagnant for all

algorithms regardless of the number of tasks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

St
an

da
rd

 D
ev

ia
tio

n

Number of Tasks

ACOwFT ACO TACO FTACO DAFTS

151

Figure 5.18. Results of execution success rate for ACOwFT, ACO, TACO, FTACO
and DAFTS for different number of tasks

An increase in the number of tasks does impact the execution time gradually. However,

in terms of execution success rate and load balancing, the increase provides the time

needed for the algorithm to achieve the optimal task assignment scheme. Overall,

DAFTS achieved the lowest execution time and success rate while ACOwFT with the

lowest load balancing standard deviation. Despite the best performance in terms of

load balancing, the performance of DAFTS is not that significant as compared to

ACOwFT. Thus, it can be concluded that DAFTS achieves the best overall

performance due to its execution success rate being significantly higher than

ACOwFT.

75

80

85

90

95

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pe
rc

en
ta

ge
 (%

)

Number of Tasks

ACOwFT ACO TACO FTACO DAFTS

152

5.4 Summary

In this chapter, comprehensive experiments were undertaken to determine the specific

approaches and optimal parameters to be used by DAFTS to achieve optimal

performance. According to the first part of the experiment, implementation of a

dynamic evaporation rate and suspension provided slightly better performance as

compared to the DAFTS without both approaches. Additionally, the optimal incentive

value is 1.5 while the penalty value is 1.0 to achieve the best load balancing with

slightly less execution success rate. All these techniques and optimal values are used

in the experiments to compare with the other algorithms.

The next experiments were conducted to validate the performance the DAFTS

algorithm compared with the other algorithms in terms of execution time, throughput,

latency, makespan, execution success rate and load balancing in which the failure rate

was changed accordingly. The results suggest that DAFTS achieved the best overall

performance despite slightly higher load balancing standard deviation than ACOwFT.

However, in terms of execution time, throughput, average makespan, average latency

and execution success rate, DAFTS outperformed ACOwFT. Considering the

outperformance of DAFTS as compared to slightly higher load balancing standard

deviation by ACOwFT, it can be concluded that DAFTS achieved the best overall

performance. The results also suggest that all the algorithms that employ the

checkpoint technique achieved significantly better performance than those without the

checkpoint technique. This outcome is driven by the fact that checkpoint technique

eliminates the need to reprocess the failed task from the beginning and eventually lead

to lower execution time, lower average makespan, lower average latency, higher

throughput and higher execution success rate.

153

The last experiments were conducted to investigate the effect of tasks’ count to the

performance of all algorithms in terms of execution time, throughput, average

makespan, average latency, load balancing standard deviation and execution success

rate. The results suggest that the execution time is directly influenced by the increase

of the number of tasks while the throughput, load balancing standard deviation and

execution success rate are not directly influenced by the execution time. In fact, the

increase in the number of tasks gives more time for the algorithm to achieve the

optimal task assignment scheme in which, at some point, the performance will be

stagnant despite the increase in the number of tasks. In alignment with the experiment

to compare on different rates of failure, DAFTS outperformed the other algorithms in

terms of execution time, throughput, average makespan, average latency and execution

success rate. In terms of load balancing standard deviation, it achieved slightly higher

as compared to ACOwFT that achieved the best. This is influenced by the method used

in ACOwFT that considers the resource load during task assignment but in DAFTS,

resource fitness and suspension indicator are considered during task assignment

process.

Overall, it can be concluded that the proposed DAFTS algorithm has achieved the best

performance in terms of execution time, throughput, average makespan, average

latency and execution success rate when compared with ACOwFT, ACO, FTACO and

TACO. It also achieved insignificantly higher load balancing standard deviation when

compared with ACOwFT.

154

CHAPTER SIX

DISCUSSION

This chapter is dedicated to discuss what have been covered in Chapter 3, Chapter 4

and Chapter 5, and the relationship between all the chapters from the beginning of

defining the framework that was used to drive the research process until the getting

the results from the designed experiments. Section 6.1 covers relationship between

research framework, core design of DAFTS algorithm and associated experiment.

Lastly, Section 6.2 summarizes the experimental results.

6.1 Relationship Between Framework, Algorithm Design and Experiment

The research framework in Figure 3.1 in Chapter 3 is designed with phases and

methods to align with outcomes that directly related with defined research problems

and objectives. As part of fault tolerance techniques identification phase, thorough

analysis and review were done on recent works related to fault tolerance in distributed

system. The finding is the job reprocessing based on checkpoint and trust factors are

the most effective techniques to be applied in DAFTS to ensure that all the failed jobs

will be completely processed, the reprocessing is performed from the last saved state

instead of from the beginning, and application of trust factors to control the desirability

of ants to assign jobs to available resources.

Before the fault tolerance techniques can be incorporated into the DAFTS, the core of

the ACS algorithm that focuses on resource assignment and job scheduling is being

further enhanced to optimize the performance. The optimization consists of enhancing

evaporation rate calculation based on the number of jobs and number of resources, and

155

considering the resource availability indicator. The detailed design of these

enhancements is covered in Section 4.2. As depicted in Figure 4.10 in Chapter 4, the

dynamic evaporation rate is integrated as soon as the number of jobs and resources are

identified in Step 3. Then, the resource availability indicator is being considered to

obtain suitable resources as in Step 7.1. Typically, ACO algorithms use fixed

evaporation rate which is 0.5 but, in this research, dynamic evaporation rate seems to

provide significant improvement over fixed evaporation rate in terms of load

balancing, success rate and execution time as presented in Section 5.2.1.

After the improvement of resource assignment and job scheduling process, the

improved ACS algorithm is integrated with fault tolerance techniques which are job

resubmission to alternative resources based on checkpoint and trust factors that consist

of incentive or penalty, and temporary resource suspension. These are presented in

Figure 4.10 in Chapter 4, Step 8. The detailed design of temporary resource suspension

is explained in Section 4.3. In terms of job resubmission based on checkpoint, the

enhanced job scheduling that refers to the resource pheromone will be re-invoked to

process remaining checkpoints and jobs. The checkpoint mechanism is also part of the

components in the fault tolerance to temporarily store job replicas or checkpoints

which will be retrieved back during job reprocessing. As is Section 5.2.2, experiments

were done to identify the optimal values for trust factors that consists of 1.5 for

incentive and 1.0 for penalty. This constant is used to influence the increase or decrease

of resource pheromone based on execution status during local pheromone update

process (Step 8.1.2, Step 8.2.2 and Step 8.3.1). In addition to trust factors, resource

availability indicator is being toggled to 0 with calculated suspension amount when

the job execution has failed (Step 8.2.4). The calculated suspension will evaporate

156

slowly and will toggle back the resource availability indicator to 1 once evaporated

completely. The experiments to verify the effectiveness of temporary resource

suspension is covered in Section 5.2.3. It can be seen that by applying temporary

resource suspension, the DAFTS algorithm achieved improvement in terms of

execution time, success rate and load balancing.

The outcome of resource assignment and job scheduling enhancement, and fault

tolerance algorithm improvements are finally integrated to form the final DAFTS

algorithm. With optimal values for trust factors, and proven techniques such as

dynamic evaporation rate and temporary resource suspension, the experiments were

carried out to validate the performance against other benchmark algorithms which are

TACO (Wenming et al., 2009), FTACO (Prashar et al., 2014), ACO and ACOwFT

(Idris et al., 2017) in terms of execution time, success rate, throughput, latency,

makespan and load balancing. All the performance metrics used are elaborated in

Section 3.4 and Section 3.5. All the benchmarks algorithms were reimplemented in the

same simulation environment as DAFTS to ensure fair comparison is performed as

presented in Section 5.3.1 and Section 5.3.2.

6.2 Summary of Experimental Result

Two sets of thorough experiments were carried out which are to validate the

effectiveness of DAFTS to different rates of failure (Section 5.3.1) and to validate the

effectiveness of DAFTS to different numbers of tasks (Section 5.3.2). In the first set

of the experiments, the failure rate is being changed within the range of 50% to 100%

as it is expected that the higher the possibility of failure, the lower the performance of

157

the algorithm. Table 6.1 shows the summary of performance reduction difference

between 0% and 50% failure rate.

Table 6.1

Summary of experiments to validate the performance between 0% and 50% failure

rate

 Performance Metrics

Algorithm

E
xe

cu
ti

on
 T

im
e

(%
)

T
hr

ou
gh

pu
t (

%
)

A
ve

ra
ge

 M
ak

es
pa

n
(%

)

A
ve

ra
ge

 L
at

en
cy

 (
%

)

L
oa

d
B

al
an

ci
ng

 S
ta

nd
ar

d
D

ev
ia

tio
n

(D
if

fe
re

nc
e)

S
uc

ce
ss

 R
at

e
(%

)

ACO ↑ 216% ↓ 68.3% ↑ 123% ↑ 112% ↑ 0.099 ↓ 20%

TACO ↑ 106% ↓ 50.5% ↑ 73% ↑ 65% ↑ 0.516 ↓ 11%

FTACO ↑ 24% ↓ 16.0% ↑ 24% ↑ 18% ↑ 0.373 ↓ 15%

ACOwFT ↑ 20% ↓ 16.9% ↑ 22% ↑ 16% ↑ 0.019 ↓ 17%

DAFTS ↑ 7% ↓ 6.49% ↑ 11% ↑ 5% ↑ 0.067 ↓ 9%

As shown in Table 6.1, DAFTS has the lowest percentage change in terms of execution

time, throughput, average makespan, average latency and success rate. This indicates

that despite the increase of failure rate, the impact of performance is the lowest among

all other algorithms as the ants are able to avoid potential failure through consideration

of resource fitness. However, ACOwFT has the lowest load balancing standard

deviation difference and followed by DAFTS with second lowest. This shows that by

considering the resource load or fitness, the load balancing can be preserved. It can

158

also be seen that checkpoint technique implemented in DAFTS, ACOwFT and

FTACO significantly reduces the performance degradation on execution time, average

makespan and average latency as compared to ACO and TACO that do not implement

checkpoint technique. This is because the checkpoint technique allows the failed job

to be reprocessed from the last saved state instead of from the initial state. This

technique is crucial when the system is dealing with large job size.

The second set of experiments were conducted to measure the effect on performance

when the number of jobs is increased while maintaining the same number of resources

(100 resources). Table 6.2 summarizes the result of experiments to validate the effect

on performance between 1000 jobs and 10000 jobs.

Table 6.2

Summary of experiments to validate the performance between 1000 jobs and 10000

jobs

 Performance Metrics

Algorithm

E
xe

cu
ti

on
 T

im
e

(I
nc

re
m

en
t M

ul
ti

pl
ie

r)

T
hr

ou
gh

pu
t

(I
nc

re
m

en
t %

)

A
ve

ra
ge

 M
ak

es
pa

n
(I

nc
re

m
en

t M
ul

ti
pl

ie
r)

A
ve

ra
ge

 L
at

en
cy

(I

nc
re

m
en

t M
ul

ti
pl

ie
r)

L
oa

d
B

al
an

ci
ng

 S
ta

nd
ar

d
D

ev
ia

ti
on

Su
cc

es
s

R
at

e
(%

)

ACO ↑ 11.3 ↓ 11.8% ↑ 15.1 ↑ 15.46 0.20 → 0.06 81.0 → 84.4

TACO ↑ 7.35 ↑ 36% ↑ 9.3 ↑ 9.49 0.32 → 0.54 83.2 → 92.7

FTACO ↑ 6.51 ↑ 53.7% ↑ 9.26 ↑ 9.39 0.36 → 0.68 88.0 → 89.7

159

ACOwFT ↑ 6.7 ↑ 48.7% ↑ 9.2 ↑ 9.43 0.11 → 0.02 84.2 → 86.3

DAFTS ↑ 5.8 ↑ 72.9% ↑ 8.5 ↑ 8.7 0.14 → 0.05 86.2 → 93.7

As shown in Table 6.2, DAFTS has the lowest increment in terms of execution time,

average makespan and average latency. In terms of throughput and success rate,

DAFTS achieves highest increment. However, in terms of load balancing standard

deviation, ACOwFT has the lowest standard deviation and followed by DAFTS. It is

clear that when considering the resource load or fitness, the fault tolerance algorithm

can improve load balancing due to longer execution time and higher number of

iterations that allow ants to produce better scheduling decision. For algorithms that do

not consider the resource load such as TACO and FTACO, the load balancing will

become unstable as the number of jobs increases. In addition, the application of trust

factors as part of pheromone update process in DAFTS and TACO produces the best

execution success rate as the unfit resources are punished to reduce the possibility of

getting jobs while fit resources are rewarded to increase the possibility of getting more

jobs.

In summary, the consideration of resource load leads to the best load balancing and

consideration of resource fitness seems to produce good load balancing as well in the

presence of faults. Furthermore, trust factors that leads to the highest execution success

rate. Application of jobs resubmission based on checkpoint technique resulted to lower

execution time, average makespan and average latency.

160

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

DAFTS, as another variant of the ACS-based fault tolerance algorithm, offers the

possibility of enhancing the job resubmission process in the presence of faults using

task checkpoint and resource suspension techniques. The main aims being to improve

the load balancing as well as to increase execution success rate.

Four research questions have been considered and answered by four research

objectives corresponding to these questions. The main objective of the research was to

develop an improved ACS-based fault tolerance algorithm that can overcome faults by

rescheduling a failed task from the last saved checkpoint to another fit resource. To

achieve this, the resource fitness is being considered and temporary resource

suspension is applied to a recently failed resource to avoid being assigned with another

task and in order to undergo the recovery process. In addition to resource fitness, the

application of an ACS-based scheduling technique provides better control for the task

scheduling process so that it will result in better load balancing in the presence of

faults.

The first specific objective was to investigate effective fault tolerance techniques to be

applied in DAFTS by considering the objectives of each technique to overcome related

problems. The second objective was to improve the ACS-based algorithm to consider

the resource fitness during scheduling process, apply temporary suspension to avoid

resources that recently failed from getting new tasks, and integrate the trust factors

during the pheromone update process. The third objective was to develop the improved

161

algorithm that considers both fault tolerance and load balancing aspects. Last but not

the least objective was to evaluate the improved algorithm in simulated grid computing

environment by reimplementing benchmark algorithms in the same platform as the

DAFTS algorithm.

7.1 Contribution of the Research

The main contribution of this research is the new variant of ACS that provides fault

tolerance capability that is based on the way ants search for fit resources to process

tasks in a queue, update the pheromone intensity, use of checkpoint technique for task

resubmission, search for alternative resources during the task resubmission process,

suspend the recently failed resources, and balance the load through fitness-based

resource assignment. Within optimal or alternative resources identification, resource

execution history is being considered which is represented by the amount of available

pheromone. During the pheromone update process, the status of task processing

influences the pheromone deposit or evaporation and suspension is defined to

temporarily suspend a resource that fails to support task processing. On the other hand,

the fault tolerance scheme is coupled with a checkpoint-based resubmission technique

to effectively reduce the task reprocessing time should the task fail in the middle of

processing.

DAFTS has been proven to effectively reduce execution time, makespan, and latency

as well as increase the throughput and execution success rate. The checkpoint-based

resubmission technique ensures that the failed task can be reprocessed from the last

saved stated instead of from the beginning. Each individual task will be broken down

into several checkpoints based on its size. It is important to control the amount of

162

checkpoint calls as an excessive amount may lead to overheads, whereas too few may

lead to longer execution times.

DAFTS is equipped with an improved global and local pheromone update which has

adopted and adapted the original pheromone update concept from the ACS algorithm.

In DAFTS, the global pheromone update is adopted from the original ACS to prevent

stagnation. The contribution on this aspect is the enhanced local pheromone update

that considers the resource fitness and trust factors to either increase when the resource

has successfully executed a task or decrease when the resource fails to execute a task.

This action leads to better execution success rate as fit and unfit resources can be easily

identified based on the pheromone value.

DAFTS aims to improve load balancing in the presence of faults by using an improved

pheromone update technique that considers the dynamic evaporation rate, the resource

fitness as well as task processing status when updating the pheromone. Typically,

resources that are fit are being over-utilized to preserve the execution success rate of

executing tasks. But in DAFTS, it also considers resources that are not fit by assigning

small number of tasks and should these small number of tasks fail, standard recovery

process will be initiated. Throughout the experiments, DAFTS achieved second best

load balancing as compared to ACOwFT that achieved the best load balancing. This

is due to the fact that ACOwFT considers the resource load when assigning tasks which

directly influences the load balancing. However, the drawback of considering the

resource load only is the reduction of execution success rate. The resource load only

indicates what is being processed by resources, but not the status of processing. It is

163

possible that resources with low load are not fit which may lead to higher possibility

of failure as proven in the experimental results.

Additionally, the task assignment process is improved so that ants consider both the

pheromone value and resource availability indicator to find the optimal resources. In

typical ant-based scheduling algorithm, pheromone is one of the key criteria in

determining which resource to be selected for task assignment. In DAFTS, resource

availability indicator is also being considered because recently failed resources will be

suspended temporarily, and this indicator will prevent them from being loaded with

more tasks. Experimental results showed that this method increases both execution

success rate and resource utilization.

Additional contribution includes the proposed formula to measure the load balancing

standard deviation for system with faults which is useful in measuring the load

balancing of fault tolerance algorithms during experimentations. The proposed

formula is meant to measure the deviation of the actual against the expected tasks

assignment count to a specific resource. It is designed to be usable in other application

domains as well to measure the effectiveness of a fault tolerance algorithm in

preserving the load balancing when applying the initial task assignment and

reassignment after failure.

Last but not the least is the contribution to the grid computing where the DAFTS

algorithm has been designed to work effectively in grid computing to optimize the

system in the presence of failures. The contribution is mainly on the new variant of

fault tolerance algorithm rather than the architecture of the grid computing.

164

7.2 Future Work

Grid computing is now being deployed as a subsystem within larger distributed

systems such as cloud, cluster and high performance computing which consists of

many heterogeneous devices that provide not only processing capability but, also,

storage, analytics, artificial intelligence, user interfacing and many more. Future works

may include the implementation of DAFTS algorithm in a larger distributed system

that is able to provide fault tolerance based on the function of each device and type of

failure to improve the efficiency and reliability of the system in performing a required

task or function and balance the load.

Another future work could focus on the application of the DAFTS algorithm in other

application domains such as the travelling salesman problem, wireless sensor network

optimization, timetable and workload scheduling. With the proven results as presented

in this research, it is expected that the application of the proposed scheme with minor

modifications in other application domains may improve certain aspects such as

scheduling, routing and load balancing.

In addition to future works in grid computing and other application domains, potential

future work could be on the ACS algorithm to handle simultaneous on-the-fly

executions with different characteristics and priorities. This is possible through

applying multiple ACS algorithm simultaneously with self-adaptive parameters

adjustment on ACO formulae.

165

REFERENCES

Abdullah, A. M., Ali, A. A., & Haikal, A. Y. (2017). Reliable and efficient hierarchical

organization model for computational grid. Journal of Parallel and Distributed

Computing, 104, 191-205.

Abdullah, A. M., Ali, A. A., & Haikal, A. Y. (2019). A reliable, TOPSIS-based multi-

criteria, and hierarchical load balancing method for computational grid. Cluster

Computing, 22(84), 1-22.

Ahuja, R., & Banga, A. (2019). Resubmission based fault tolerance approach to

schedule jobs in grid environment. EAI Endorsed Transactions on Energy Web

and Information Technologies, 6(24), 1-8.

Alzboon, M. S., Arif, A. S., & Mahmuddin, M. (2016). Towards self-resource

discovery and selection models in grid computing. ARPN Journal of

Engineering and Applied Sciences, 11(10), 6269-6274.

Aliyu, G., Mohammed, A., Abdulmumin, I., Adamu, S., & Jauro, F. (2020). Improving

grid computing performance by optimally reducing checkpointing effect.

arXiv, abs/2001.00884.

Alkhanak, E. N., Lee, S. P., Rezaei, R., Parizi, R. M. (2016). Cost optimization

approaches for scientific workflow scheduling in cloud and grid computing: A

review, classifications, and open issues. The Journal of Systems and Software,

113(2016), 1-26.

166

Alobaedy, M. M. T. (2015). Hybrid ant colony system algorithm for static and dynamic

job scheduling in grid computing (Doctoral dissertation). Retrieved from

Universiti Utara Malaysia Electronic Theses and Dissertation [eTheses].

Altameem, T. (2013). Fault tolerance techniques in grid computing systems.

International Journal of Computer Science and Information Technologies,

4(6), 858-862.

Amoon, M. (2012). A fault tolerant scheduling system based on checkpointing for

computational grids. International Journal of Advanced Science and

Technology, 48, 115-124.

Amoon, M. (2013). A job checkpointing system for computational grids. Central

European Journal of Computer Science, 3(1), 17-26.

Ankita, & Sahana, S. K. (2018). A survey on grid schedulers. In V. Nath, & J. K.

Mandal (Eds.), Nanoeletronics, Circuits and Communication Systems (pp. 269-

279). Singapore: Springer.

Ankita, & Sahana, S. K. (2019). An automated parameter tuning method for ant colony

optimization for scheduling jobs in grid environment. International Journal of

Intelligent Systems and Applications, 3, 11-21.

Arora, R., & Mehta, A. (2018). Resource and task allocation scheduling in distributing

system for optimizing execution time, International Research Journal of

Engineering and Technology, 5(9), 354-360.

167

Ashraf, I., & Mazher, N. (2013). An approach to implement matchmaking in Condor-

G. In International Conference on Information and Communication

Technology Trends (pp. 200-202). Karachi: FUUAST.

Azeez, I., A., & Haque, S. (2011). Resource management in grid computing: A review.

Greener Journal of Science, Engineering and Technology, 2(1), 24-31.

Bagherzadeh, J., & MadadyarAdeh, M. (2009). An improved ant algorithm for grid

scheduling problem. In 14th International CSI Conference (pp. 323-328).

Tehran: IEEE.

Balasangameshwara, J., & Raju, N. (2012). A hybrid policy for fault tolerant load

balancing in grid computing environments. Journal of Network and Computer

Applications, 35(1), 412-422.

Balpande, M., & Shrawankar, U. (2014). Robust fault tolerance job scheduling

approach in grid environment. In International Conference on Circuits,

Systems, Communication and Information Technology Applications (pp. 259-

264). Mumbai: IEEE.

Bansod, R., Virk, R., & Raval, M. (2018). Low latency, high throughput trade

surveillance system using in-memory data grid. In Proceedings of the 12th

ACM International Conference on Distributed and Event-based Systems (pp.

250-253). Hamilton: ACM.

Baru, C., Moore, R., Rajasekar, A., & Wan, M. (1998). The SDSC storage resource

broker. In Proceedings of the 1998 Conference of the Centre for Advanced

Studies on Collaborative Research (pp. 1-12). Ontario: IBM.

168

Basu, S. K. (2016). Paradigm and issues. Parallel and Distributed Computing:

Architectures and Algorithms (pp. 322-352). Delhi: PHI Learning Private

Limited.

Bawa, R. K., & Singh, R. K. R. (2012). Application checkpointing in grid environment

with improved checkpoint reliability through replication. In Third

International Conference on Computing, Communication and Networking

Technologies (pp. 1-6). Coimbatore: IEEE.

Bienkowski, A. T. (2018). Resource brokering in grid computing. (Master’s thesis,

The University of Western Ontario, Canada).

Retrieved from

https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=6964&context=etd

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of

Life Reviews, 2(4), 353-373.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. Journal of ACM Computing Surveys, 35(3), 268-

308.

Bougeret, M., Casanova, H., Robert, Y., Vivien, F., & Zaidouni, D. (2014). Using

group replication for resilience on exascale systems. International Journal of

High Performance Computing Applications, 28(2), 210-224.

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I.,

Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., & Freund, R. F. (2001).

A comparison of eleven static heuristics for mapping a class of independent

169

tasks onto heterogeneous distributed computing systems. Journal of Parallel

and Distributed Computing, 61(6), 810-837.

Brennand, C. A. R. L., Duarte, J. M., Silva, A. P. (2016). SimGrid: A simulator of

network monitoring topologies for peer-to-peer based computational grids. In

8th IEEE Latin-American Conference on Communications (pp. 1-6). Medellin:

IEEE.

Bullnheimer, B., Hart, R. F., & Straub, C. (1999). A New Rank-Based Version of the

Ant System: A Computational Study. Central European Journal of Operations

Research and Economics, 7(1), 25-38.

Buyya, R., & Murshed, M. (2002). Gridsim: A toolkit for the modeling and simulation

of distributed resource management and scheduling for grid computing.

Concurrency and computation: practice and experience, 14, 1175-1220.

Casanova, H. (2001). Simgrid: A toolkit for the simulation of application scheduling.

In Proceedings First IEEE/ACM International Symposium on Cluster

Computing and the Grid (pp. 430-437). Brisbane: IEEE.

Chinnathambi, S., Santhanam, A., Rajarathinam, J., & Senthilkumar, M. (2019).

Scheduling and checkpointing optimization algorithm for Byzantine fault

tolerance in cloud clusters. Cluster Computing, 22(6), 14637-14650.

Chen, X., & Long, D. (2019). Task scheduling og cloud computing using integrated

particle swarm algorithm and ant colony algorithm. Cluster Computing, 22(2),

2761-2769.

170

Chowdhury, S., Marufuzzaman, M., Tunc, H., Bian, L., & Bullington, W. (2019). A

modified Ant Colony Optimization algorithm to solve a dynamic traveling

salesman problem: A case study with drones for wildlife surveillance. Journal

of Computational Design and Engineering, 6(3), 368-386.

Darmawan, I., & Aradea (2018). Self-adaptive load balancing system for grid

computing. Atlantic Highlights in Engineering, 2, 43-47.

Dorigo, M. (1992). Optimization, learning and natural algorithms (Doctoral

dissertation, Politecnico di Milano).

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT

Press.

Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the travelling salesman

problem. Biosystems, 43(2), 73-81.

Dorigo, M., & Gambardella, L. M. (1997b). Ant colony system: A cooperative

learning approach to the travelling salesman problem. IEEE Transactions on

Evolutionary Computation, 1(1), 53–66.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The Ant System: An autocatalytic

optimizing process (Technical Report No. 91-016). Milano: Dipartimento di

Elettronica, Politecnico di Milano.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a

Colony of Cooperating Agents. Journal of IEEE Transactions on Systems,

Man, and Cybernetics-Part B, Cybernetics, 26(1), 29–41

171

Dill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on.

Science, 338(6110), 1042-1046.

Dumitrescu, C. L., & Foster, I. (2005). GangSim: A simulator for grid scheduling

studies. In IEEE International Symposium on Cluster Computing and the Grid

(pp. 1151-1158). Cardiff: IEEE.

Ebenezer, A. S., Rajsingh, E. B., & Kaliaperumal, B. (2019). A novel proactive health

aware fault tolerant (HAFT) scheduler for computational grid based on

resource failure data analytics. International Journal of Computers and

Applications, 41(5), 367-377.

Eleliemy, A., Mohammed, A., & Ciorba, F. M. (2016). Simulating batch and

application level scheduling using GridSim and SimGrid. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis (pp. 1-2). Salt Lake City: ACM Digital Library.

El-Zoghdy, S. F., & Alaa, E. (2015). A threshold-based load balancing algorithm for

grid computing systems. Journal of High Speed Networks, 21(4), 237-257.

Eng, K., Muhammed, A., Mohamed, M. A., & Hasan, S. (2020). A hybrid heuristic of

variable neighbourhood descent and great deluge algorithm for efficient task

scheduling in grid computing. European Journal of Operational Research, 1,

75-86.

Ezzat, A. (2013). Ant colony optimization approaches for the sequential ordering

problem. (Master’s thesis, The American University in Cairo, Egypt).

Retrieved from

https://pdfs.semanticscholar.org/cdae/d2c3123da91791681255

172

4ac5f40b67bf85ee.pdf

Fanfakhri, A. B. M., Yousif, A. Y., & Alwan, E. (2017). Multi-objective optimization

of grid computing for performance, energy and cost. Kurdistan Journal of

Applied Research, 2(3), 74-79.

Farid, S., & Hussain, M. (2017). Fault tolerance techniques in cloud and distributed

computing: A review. Technical Journal, 22(IV), 56-67.

Feng, L., Weiwei, G., & Xiaomin, Z. (2018). Network resource management and

scheduling in grid computing. In 2018 International Conference on Robots &

Intelligent System (pp. 207-210). Changsha: IEEE.

Ferdaus, M. H., Murshed, M., Calheiros, R. N., & Buyya, R. (2014). Virtual machine

consolidation in cloud data centers using ACO metaheuristic. In F. Silva, I.

Dutra, & V. S. Costa (Eds.), Euro-Par 2014 Parallel Processing (pp. 306-317).

Porto: Springer International Publishing.

Foster, I., & Kesselman, C. (1997). Globus: A metacomputing infrastructure toolkit.

International Journal of High Performance Computing Applications, 11(2),

115-128.

Foster, I., & Kesselman, C. (2004). The grid in a nutshell. In J. Nabryski, J. M. Schopf,

& J. Weglarz (Eds.), Grid resource management (pp. 3-13). Boston, MA:

Springer US.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid: Enabling

scalable virtual organizations. The International Journal of High Performance

Computing Applications, 15(3), 200-222.

173

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid computing

360-degree compared. In 2008 Grid Computing Environments Workshop (pp.

1-10). Austin, TX: IEEE.

Frey, J., Tannenbaum, T., Livny, M., Foster, I., & Tuecke, S. (2002). Condor-G: A

computation management agent for multi-institutional grids. Journal of Cluster

Computing, 5(3), 237-246.

Gabaldon, E., Guirado, F., Lerida, J. L., Planes, J. (2016). Particle swarm optimization

scheduling for energy saving in cluster computing heterogenous environments.

In 4th International Conference on Future Internet of Things and Cloud

Workshops (pp. 321-325). Vienna: IEEE.

Gambardella, L. M., Montemanni, R., & Weyland, D. (2012). An enhanced ant colony

system for the sequential ordering problem. In Operations Research

Proceedings 2011 (pp. 355-360). Zurich: Springer.

Garba, A., Kana, A. F. D., Abdullahi, M., Abdulmumin, I., Adamu, S., & Jauro, F.

(2020). Improving grid computing performance by optimally reducing

checkpointing effect. arXiv preprint arXiv:2001.00884.

Garg, R., & Singh, A. K. (2011). Fault tolerance in grid computing: State of the art

and open issues. International Journal of Computer Science and Engineering

Survey, 2(1), 88-97.

Garg, R., & Singh, A. K. (2015). Adaptive workflow scheduling in grid computing

based on dynamic resource availability. Engineering Science and Technology,

an International Journal, 18(2), 256-269.

174

Glaßer, C., Pavan, A., & Travers, S. (2009). The fault tolerance of NP-hard problems.

In A. H. Dediu, A. M. Ionescu, & C. Martin-Vide (Eds.), Language and

Automata Theory and Applications (pp. 374-385). Springer Berlin Heidelberg.

doi:10.1007/978-3-642-00982-2_32

Glover, F., & Laguna, M. (2013). Tabu Search∗. In P. M. Pardalos, D. Z. Du, & R. L.

Graham (Eds.), Handbook of Combinatorial Optimization (pp. 3261-3362).

Springer New York.

Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized

shortcuts in the argentine ant. Naturwissenschaften, 76, 579-581.

Goswami, S., & Das, A. (2018). Achieving guaranteed service with fault-tolerant

resources in grid. Information and Communication Technology, In Advances

in Intelligent Systems and Computing (pp. 189-196). Springer.

Goyal, S. K., & Singh, M. (2012). Adaptive and dynamic load balancing in grid using

ant colony optimization. International Journal of Engineering and Technology,

4(4), 167-174.

Grimshaw, A., Ferrari, A., Knabe, F., & Humphrey, M. (1999). Wide area computing:

resource sharing on a large scale. Computer, 32(5), 29-37.

Guharoy, R., Sur, S., Rakshit, S., Kumar, S., Ahmed, A., Chakborty, S., ... &

Srivastava, M. (2017). A theoretical and detail approach on grid computing a

review on grid computing applications. In 2017 8th Annual Industrial

Automation and Electromechanical Engineering Conference (pp. 142-146).

Jaipur: IEEE.

175

Gülcü, S., Mahi, M., Ömer, K. B., & Kodaz, H. (2018). A parallel cooperative hybrid

method based on ant colony optimization and 3-Opt algorithm for solving

traveling salesman problem. Soft Computing, 22(5), 1669-1685.

Haider, S., & Nazir, B. (2016). Fault tolerance in computational grids: Perspectives,

challenges, and issues. SpringerPlus 5, 1991(2016), 1-20.

Haider, S., & Nazir, B. (2017). Dynamic and adaptive fault tolerant scheduling with

QoS consideration in computational grid. IEEE Access, 5, 7853-7873.

Hanane, H., & Fouzia, B. (2014). Improving resource discovery and query routing in

peer-to-peer data sharing systems using gossip style and ACO algorithm. In

The Ninth International Conference on Systems and Networks

Communications (pp. 99-106). Nice: IARIA.

Hajoui, Y., Bouattane, O., Youssfi, M., & Illoussamen, E. (2018). New hybrid task

scheduling algorithm with fuzzy logic controller in grid computing.

International Journal of Advanced Computer Science and Applications, 9(8),

547-554.

Hirofuchi, T., Lebre, A., & Pouilloux, L. (2015). SimGrid VM: Virtual machine

support for a simulation framework of distributed systems. IEEE Transactions

on Cloud Computing, 6(1), 221-234.

Holzinger, A., Plass, M., Holzinger, K., Crisan, G. C., Pintea, C. M., & Palade, V.

(2016). Towards interactive machine learning (IML): Applying ant colony

algorithms to solve the traveling salesman problem with the human-in-the-loop

approach. In IFIP International Cross Domain Conference and Workshop (pp.

81-95). Salzburg: Springer.

176

Hsu, T. S., Wei, H. W., Huang, Y. P., Chen, T. Y., Yeh, T. T., Sun, M. J., Cheng, Y.

C., & Shih, W. K. (2014). A digital archive data preservation management

system using IRODS architecture. In International Conference

on Computational Science and Computational Intelligence (pp. 281-284).

Nevada: IEEE.

Hwang, K., Dongarra, J., & Fox, G. C. (2012). Grid computing systems and resource

management. Distributed and Cloud Computing: From parallel processing to

the internet of things (pp. 415-473). Waltham, MA: Morgan Kaufmann.

Idris, H., Ezugwu, A. E., Junaidu, S. B., Adewumi, A. O. (2017). An improved ant

colony optimization algorithm with fault tolerance for job scheduling in grid

computing systems. PLOS ONE, 12(5), 1-24.

Imad, E. F., Rachid, S., & El Koutbi, M. (2017). International Journal of Wireless and

Mobile Computing, 12(2), 154-165.

Ismail, S. A., Ngadi, M., Sharif, J. M., & Kama, M. N. (2017). Authentication

mechanisms in a control grid computing environment using identity based

identification (IBI). Advanced Science Letters, 23(6), 5506-5510.

Jiang, Y., & Chen, W. (2015). Task scheduling for grid computing systems using a

genetic algorithm. The Journal of Supercomputing, 71, 1357–1377.

Kamra, V., & Chugh, A. (2011). TCP/IP security protocol suite for grid computing

architecture. In A. Mantri, S. Nandi, G. Kumar, & S. Kumar (Eds.), High

Performance Architecture and Grid Computing: International Conference on

High Performance Architecture and Grid Computing (pp. 30-35). Chandigarh:

Springer.

177

Kapil, S., Chawla, M., & Ansari, M. D. (2016). On K-means data clustering algorithm

with genetic algorithm. In 2016 Fourth International Conference on Parallel,

Distributed and Grid Computing (pp. 202-206). Waknaghat: IEEE.

Karimpour, R., Khayyambashi, M. R., & Movahhedinia, N. (2016). Load balancing in

grid computing using ant colony algorithm and max-min technique. Malaysian

Journal of Computer Science, 29(3), 196-202.

Kaur, P., & Aggarwal, D. (2013). Analysis of fault tolerance on grid computing in real

time approach. International Journal of Scientific & Engineering Research,

4(11), 817-821.

Kaushik, A., & Vidyarthi, D. P. (2018). A model for resource management in

computational grid using sequential auction and bargaining procurement.

Cluster Computing, 21(3), 1457-1477.

Keerthika, P., & Kasthuri, N. (2011). A new proactive fault tolerant approach for

scheduling in computational grid. In Proceedings on International Conference

on Web Services Computing (pp. 55-59). IJCA.

Keerthika, P., & Kasthuri, N. (2012). An efficient fault tolerant scheduling approach

for computational grid. American Journal of Applied Sciences, 9(12), 2046-

2051.

Keerthika, P., & Kasthuri, N. (2013). An efficient grid scheduling algorithm with fault

tolerance and user satisfaction. Mathematical Problems in Engineering, 2013,

1-9.

178

Khaldi, M., Rebbah, M., Meftah, B., & Debakla, M. (2020). Fault tolerance in grid

computing by resource clustering. International Journal of Internet

Technology and Secured Transactions, 10(1-2), 120-142.

Khan, F. (2017). Novel architecture for effective load balancing and dynamic group

scheduling in grid computing topology. In 2017 International Conference on

Circuits Power and Computing Technologies (pp. 1-7). Kollam: IEEE.

Khan, S., Nazir, B., Khan, I. A., Shamshirband, S., & Chronopoulos, A. T. (2017).

Load balancing in grid computing: Taxonomy, trends and opportunities.

Journal of Network and Computer Applications, 88(2017), 99-111.

Kim, S., Kim, J., & Weissman, J. B. (2014). A Security-enabled grid system for

MINDS distributed data mining. Journal of Grid Computing, 12(3), 521-542.

Krasovec, B., & Filipcic, A. (2019). Enhancing the grid with cloud computing. Journal

of Grid Computing, 17, 119-135.

Kumar, A., & Pathak, H. (2018). Fault tolerant resource management scheme for

computational grids. In International Conference on Intelligent Data

Communication Technologies and Internet of Things (pp. 472-481). Cham:

Springer.

Kumar, E. S., & Vengatesan, K. (2019). Trust based resource selection with

optimization technique. Cluster Computing, 22, 207-213.

Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in

cloud computing: A survey. ACM Computing Surveys, 51(6), 120:1-120:35.

179

Kuo, R. J., & Zulvia, F. E. (2017). Hybrid genetic ant colony optimization algorithm

for capacitated vehicle routing problem with fuzzy demand — A case study on

garbage collection system. In 4th International Conference on Industrial

Engineering and Applications (pp. 244-248). Nagoya: IEEE.

Kurochkin, I. I., & Gerk, E. A. (2018). Modeling of task scheduling in desktop grid

systems at the initial stage of development. In Proceedings of the VIII

International Conference “Distributed Computing and Grid-technologies in

Science and Education” (pp. 293-297). Dubna: CEUR-WS.

Ku-Mahamud, K. R., & Alobaedy, M. M. (2012). New heuristic function in ant colony

system for job scheduling in grid computing. In N. Mastorakis, E. Zaitseva, D.

Randjelovic, K. K. F. Yuen, C. G. Carstea, S. Capusneanu, & A. Larion (Eds.),

Mathematical Methods for Information Science and Economics (pp. 47-52).

Montreux: WSEAS.

Ku-Mahamud, K. R., Din, A. M., & Nasir, H. J. A. (2011). Enhancement of ant colony

optimization for grid load balancing. European Journal of Scientific

Research, 64(1), 42-50.

Ku-Mahamud, K. R., & Nasir, H. J. A. (2010). Ant colony optimization for job

scheduling in grid computing. In Fourth Asia Conference on

Mathematical/Analytical Modelling and Computer Simulation (pp. 40-45).

Bornea: IEEE.

Kong, X., Shen, H., Chen, X., Wang, C., & Song, C. (2010). Dynamic grid scheduling

algorithm based on self-adaptive Tabu Search. In International Conference on

Computer Design and Applications (Vol. 2, pp. V2-271 - V2-274).

180

Lai, D. S., Demirag, O. C., & Leung, J. M. (2016). A tabu search heuristic for the

heterogeneous vehicle routing problem on a multigraph. Transportation

Research Part E: Logistics and Transportation Review, 86, 32-52.

Lebre, A., Legrand, A., Suter, F., & Veyre, P. (2015). Adding storage simulation

capacities to the simgrid toolkit: Concepts, models, and API. In 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(pp. 251-260). Shenzhen: IEEE.

Lecca, G., Petitdidier, M., Hluchy, L., Ivanovic, M., Kussul, N., Ray, N., & Thieron,

V. (2011). Grid computing technology for hydrological applications. Journal

of Hydrology, 403(1-2), 186-199.

Levitin, G., Xing, L., Johnson, B. W., & Dai, Y. (2018). Optimization of dynamic spot-

checking for collusion tolerance in grid computing. Future Generation

Computer Systems, 86, 30-38.

Li, F. F., Xie, G., Qi, D. Y., Luo, F., & Xie, D. Q. (2011). Research on novel fuzzy

and intelligent resource management in grid computing. In W. Hu (Ed.),

Electronics and Signal Processing (pp. 1-7). Nanchang: Springer Berlin

Heidelberg.

Lin, S. W., & Vincent, F. Y. (2012). A simulated annealing heuristic for the team

orienteering problem with time windows. European Journal of Operational

Research, 217(1), 94-107.

Liu, F., & Guo, W. (2019). Optimized min-min dynamic task scheduling algorithm in

grid computing. In International Conference on Applications and Techniques

in Cyber Security and Intelligence (pp. 745-752). Cham: Springer.

181

Liu, X., Xia, H., & Chien, A. A. (2004). Validating and scaling the MicroGrid: A

scientific instrument for grid dynamics. Journal of Grid Computing, 2, 141-

161.

Liu, X. F., Zhan, Z. H., Deng. J. D., Li, Y., Gu, T., & Zhang, J. (2018). An energy

efficient ant colony system for virtual machine placement in cloud computing,

IEEE Transactions on Evolutionary Computation, 22(1), 113-128.

Llanes, A., Cecilia, J. M., Sánchez, A., García, J. M., Amos, M., & Ujaldón, M. (2016).

Dynamic load balancing on heterogenous clusters for parallel ant colony

optimization. Cluster Computin, 19(1), 1-11.

Lorpunmanee, S., Sap, M. N., Abdullah, A. H., & Chompoo-inwai, C. (2007). An ant

colony optimization for dynamic job scheduling in grid environment.

International Journal of Computer and Information Science and Engineering,

1(4), 207-214.

Madi, M. K., Yusof, Y., Tahir, H. M., Zaini, K. M., & Hassan, S. (2017). Replica

maintenance strategy for data grid. Journal of Telecommunication, Electronic

and Computer Engineering, 9(1-2), 47-51.

Mahato, D. P., Sandhu, J. K., Singh, N. P., Kaushal, V. (2019). Cuckoo Search-Ant

Colony Optimization based scheduling in grid computing. On scheduling

transaction in grid computing using cuckoo search-ant colony optimization

considering load. Cluster Computing, 1-22.

Maipan-uku, J. Y., Konjaang, J. K., & Baba, A. I. (2016). New batch mode scheduling

strategy for grid computing system. International Journal of Engineering and

Technology, 8(2), 1314-1323.

182

Mandloi, S., & Gupta, H. (2013). Adaptive job scheduling for computational grid

based on ant colony optimization with genetic parameter selection.

International Journal of Advanced Computer Research, 3(9), 66-71.

Martin, E., Cervantes, A., Saez, Y., & Isasi, P. (2020). IACS-HCSP: Improved ant

colony optimization for large-scale home care scheduling problems. Expert

Systems with Applications, 142, 112994.

Mathiyalagan, P., Sivanandam, S. N., & Saranya, K. S. (2013). Hybridization of

modified ant colony optimization and intelligent water drops algorithm for job

scheduling in computational grid. ICTACT Journal on Soft Computing, 4(1),

651-655.

Mavrovouniotis, M., & Yang, S. (2013). Adapting the pheromone evaporation rate in

dynamic routing problems. In A. I. Esparcia-Alcázar (Ed.), Applications of

Evolutionary Computation (pp. 606-615). Berlin: Springer Berlin Heidelberg.

Mavrovouniotis, M., & Yang, S. (2014). Ant colony optimization with self-adaptive

evaporation rate in dynamic environments. In 2014 IEEE Symposium on

Computational Intelligence in Dynamic and Uncertain Environments (pp. 1-

8). Orlando: IEEE.

Meo, P. D., Messina, F., Domenico, R., Sarné, G. M. L. (2015). Improving grid nodes

coalitions by using reputation. Intelligent Distributed Computing VIII, 137-

146.

Merelli, I. (2019). Infrastructure for high-performance computing: Grids and grid

computing. Encyclopedia of Bioinformatics and Computational Biology, 1,

230-235.

183

Moallem, A. (2009). Using swarm intelligence for distributed job scheduling on the

grid. (Master’s thesis, University of Saskatchewan, Canada). Retrieved from

http://ecommons.usask.ca/bitstream/handle/10388/etd-04132009-

123250/thesis.pdf

Modiri, V., Analoui, M., & Jabbehdari, S. (2011). Fault tolerance in grid using ant

colony optimization and directed acyclic graph. International Journal of Grid

Computing and Applications, 2(1), 14-26.

Mollamotalebi, M., Maghami, R., & Ismail, A. S. (2013). Grid and cloud simulation

tools. International Journal of Networks and Communications, 3(2), 45-52.

Muthu, T. S., & Kumar, K. R. (2017). Hybrid predictive approach for replica

replacement in data grid. In 2017 4th International Conference on Advanced

Computing and Communication Systems (pp. 1-5). Coimbatore: IEEE.

Naik, K. J., Jagan, A., Narayana, N. S. (2015). A novel algorithm for fault tolerant job

Scheduling and load balancing in grid computing environment. In 2015

International Conference on Green Computing and Internet of Things (pp.

1113-1118. Noide: IEEE.

Nasir, H. J. A. (2020). Hybridization of enhanced ant colony system and tabu search

algorithm for packet routing in wireless sensor network (Doctoral dissertation).

Retrieved from Universiti Utara Malaysia Electronic Theses and Dissertation

[eTheses].

Nasir, H. J. A., & Ku-Mahamud, K. R., & Kamioka, E. (2017). Ant colony

optimization approaches in wireless sensor network: Performance evaluation.

Journal of Computer Science, 13(6), 153-164.

184

Nassiry, A., & Kardan, A. (2009). Grid learning; computer grids joins to e-learning.

World Academy of Science, Engineering and Technology, 3, 250-254.

Natrajan, A., Crowley, M., Wilkins‐Diehr, N., Humphrey, M. A., Fox, A. D.,

Grimshaw, A. S., & Brooks, C. L. (2004). Studying protein folding on the grid:

Experiences using CHARMM on NPACI resources under

Legion. Concurrency and Computation: Practice and Experience, 16(4), 385-

397.

Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K. P., Nitin, N., & Rastogi, R.

(2012). Load balancing of nodes in cloud using ant colony optimization. In

UKSim 14th International Conference on Modelling and Simulation (pp. 3-8).

Cambridge: IEEE.

Obali, M., & Topcu, A. E. (2015). Comparison of cluster, grid and cloud computing

using three different approaches. In 2015 23nd Signal Processing and

Communications Applications Conference (pp. 1-4). Malatya: IEEE.

Omer, K., & Abdalla, G. M. T. (2018). Dynamic algorithms replication using grid

computing. In 2018 International Conference on Computer, Control, Electrical,

and Electronics Engineering (pp. 1-6). Khartoum: IEEE.

Pajorova, E., & Hluchý, L. (2012). Visualization the Natural Disasters Simulations

Results Based on Grid and Cloud Computing. In S. J. Miah (Ed.), Emerging

Informatics – Innovative Concepts and Applications (pp. 85-100). InTech.

Patel, D. K., Tripathy, D., & Tripathy, C. (2016). An improved load-balancing

mechanism based on deadline failure recovery on GridSim. Engineering with

Computers, 32(2), 173-188.

185

Patel, S. K., & Sharma, A. K. (2018). Optimization of dynamic resource scheduling

algorithm in grid computing environment. International Journal of Computer

Sciences and Engineering, 6(3), 20-26.

Patel, S. K., & Sharma, A. K. (2019). Improved PSO based job scheduling algorithm

for resource management in grid computing. International Journal of

Advanced Technology and Engineering Exploration, 6(54), 152-161.

Patni, J. C., & Aswal, M. S. (2015). Distributed load balancing model for grid

computing environment. In 2015 1st International Conference on Next

Generation Computing Technologies (pp. 123-126). Dehradun: IEEE.

Perretto, M., & Lopes, H. S. (2005). Reconstruction of phylogenetic trees using the

ant colony optimization paradigm. Genetics and Molecular Research, 4(3),

581-589.

Pooranian, Z., Shojafar, M., Abawajy, J., H., & Singhal, M. (2013). GLOA: A new job

scheduling algorithm for grid computing. International Journal of Artificial

Intelligence and Interactive Multimedia, 2(1), 59-64.

Prajapati, H. B., & Shah, V. A. (2015). Analysis perspective views of grid simulation

tools. Journal of Grid Computing, 13, 177-213.

Prajapati, R., Rathod, D., & Khanna, S. (2017). Comparison of static and dynamic load

balancing in grid computing. International Journal for Technological

Research in Engineering, 2(7), 1337-1340.

Prajapati, H. B., & Shah, V. A. (2015). Analysis perspective views of grid simulation

tools. Journal of Grid Computing, 13, 177-213.

186

Prashar, T., Nancy, & Kumar, D. (2014). Fault tolerant ACO using checkpoint in grid

computing. International Journal of Computer Applications, 98(10), 44-49.

Qureshi, K., Khan, F. G., Manuel, P., & Nazir, B. (2011). A hybrid fault tolerance

technique in grid computing system. Journal of Supercomputing, 56(1), 106-

128.

Qureshi, M. B., Dehnavi, M. M., Min-Allah, N., Qureshi, M. S., Hussain, H., Rentifis,

I., Tziritas, N., Loukopoulos, T., Khan, S. U., Xu, C., Zomaya, A. Y. (2014).

Survey on grid resource allocation mechanisms. Journal of Grid Computing,

12(2), 399-441.

Rajab, H., & Kabalan, K. (2016). A dynamic load balancing algorithm for

computational grid using ant colony optimization. Indian Journal of Science

and Technology, 9(21), 1-7.

Rakheja, D., Kaur, P., & Rkheja, A. (2014). Performance evaluation of resource

scheduling and fault tolerance in grid. International Journal of Computer and

Communication System Engineering, 1(1), 15-19.

Rathore, N. (2015). Efficient agent based priority scheduling and load balancing using

fuzzy logic in grid computing. i-manager’s Journal on Computer Science, 3(3),

7-18.

Rathore, N. (2017). Checkpointing: Fault tolerance mechanism. i-manager’s Journal

on Cloud Computing, 4(1), 28-35.

187

Rathore, N., & Chana, I. (2014). Load balancing and job migration techniques in grid:

A survey of recent trends. Wireless Personal Communications, 79(3), 2089-

2125.

Rathore, N., & Chana, I. (2015). Variable threshold based hierarchical load balancing

technique in grid. Engineering with Computers, 31(3), 597-615.

Rubab, S., Hassan, M. F., Mahmood, A. K., & Shah, N. M. (2015). Grid computing in

light of resource management systems: A survey. Journal of Basic and Applied

Scientific Research, 5(5), 33-43.

Sajedi, H., & Rabiee, M. (2014). A metaheuristic algorithm for job scheduling in grid

computing. International Journal of Modern Education and Computer Science,

5, 52-59.

Santillán, C. G., Reyes, L. C., Conde, E. M., Schaeffer, E., & Valdez, G.C. (2010). A

self-adaptive ant colony system for semantic query routing problem in P2P

networks, Computación y Sistemas, 13(4), 433-448.

Sathish, K., & Reddy, A. R. M. (2017). Workflow scheduling in grid computing

environment using a hybrid gaaco approach. Journal of The Institution of

Engineers (India): Series B, 98(1), 121-128.

Satish, K., & Reddy, A. R. M. (2018). Resource allocation in grid computing

environment using genetic–auction based algorithm. International Journal of

Grid and High Performance Computing, 10(1), 1-15.

188

Savyanavar, A. S., & Ghorpade, V. R. (2019). Application checkpointing technique

for self-healing from failures in mobile grid computing. International Journal

of Grid and High Performance Computing, 11(2), 50-62.

Schyns, M. (2015). An ant colony system for responsive dynamic vehicle routing,

European Journal of Operational Research, 245(3), 704-718.

Severance, C. (2014). Ian Foster and the Globus Project. Computer, 47(11), 10-11.

Seelwal, P. (2014). Layered mapping of cloud architecture with grid architecture.

International Journal of Computer Science and Mobile Computing, 3(4), 335-

339.

Shah, S. N. M., Mahmood, A. K., Rubab, S., & Hassan, M. F. (2016). Experimental

performance analysis of job scheduling algorithms on computational grid using

real workload traces. In 1st EAI International Conference on Computer Science

and Engineering. Penang: EAI.

Sharma, P. (2013). Grid computing vs. cloud computing. International Journal of

Information and Computation Technology, 3(6), 557-582.

Sharma, A., & Bawa, S. (2008). Comparative analysis of resource discovery

approaches in grid computing. Journal of Computers, 3(5), 60-64.

Sharma, D., & Dalal, S. (2014). Evaluating heuristic based load balancing algorithm

through ant colony optimization. International Journal of Recent Research

Aspects, 1(2), 5-9.

189

Sharma, D., Sharma, K., & Dalal, S. (2014). Optimized load balancing in grid

computing using tentative ant colony algorithm. International Journal of

Recent Research Aspects, 1(1), 35-39.

Sheikh, S., Shahid, M., & Nagaraju, A. (2017). A novel dynamic task scheduling

strategy for computational grid. In 2017 International Conference on

Intelligent Communication and Computational Techniques (pp. 102-107).

Jaipur: IEEE.

Sheikh, S., Nagaraju, A., & Shahid, M. (2018). Dynamic load balancing with advanced

reservation of resources for computational grid. In P. K. Pattnaik, S. S.

Rautaray, & J. Nayak (Eds.), Progress in Computing, Analytics and

Networking, (pp. 501-510). Singapore: Springer Singapore.

Shukla, Kumar and Singh (2018). An improved resource allocation model for grid

computing environment. International Journal of Intelligent Engineering and

Systems, 12(1), 104-113.

Siegel, J., & Ali, S. (2000). Techniques for mapping tasks to machines in

heterogeneous computing systems. Journal of Systems Architecture, 46(8),

627-639.

Singh, M. (2016). Incremental checkpoint based failure-aware scheduling algorithm

in grid computing. In 2016 International Conference on Computing,

Communication and Automation (pp. 772-778). Noida: IEEE.

Singh, S., & Bawa, R. K. (2016). Proactive fault tolerance algorithm for job scheduling

computational grid. International Journal of Grid and Distributed Computing,

9(3), 134-144.

190

Skinderowicz, R. (2017). An improved ant colony system for the sequential ordering

problem. Computers & Operations Research, 86, 1-17.

Smith, D. J. (2017). Reliability, maintainability and risk: practical methods for

engineers. Butterworth-Heinemann.

Song, H. J., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X., Taura, K., & Chien, A.

(2000). The MicroGrid: A scientific tool for modeling computational grids. In

Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (pp. 1-

22). Dallas: IEEE.

Sotiriadis, S., Bessis, N., Xhafa, F., & Antonopoulos, N. (2012). From meta-

computing to interoperable infrastructures: A review of meta-schedulers for

HPC, grid and cloud. In IEEE 26th International Conference on Advanced

Information Networking and Applications (pp. 874-883). Fukuoka: IEEE.

Souli-Jbali, R., Hidri, M. S., & Ayed, R. B. (2019). Impact of replica placement-based

clustering on fault tolerance in grid computing. International Journal of Web

Engineering and Technology, 14(2), 151-177.

Stützle, T & Hoos, H. H. (2000). Max-min ant system. Future Generation Computer

Systems, 16(8), 889-914.

Sun, W., Zhu, Y., Su, Z., Jiao, D., & Li, M. (2010). A priority-based task scheduling

algorithm in grid. In Third International Symposium on Parallel Architectures,

Algorithms and Programming (pp. 311-315). Dalian: IEEE.

Takefusa, A., Casanova, H., Matsuoka, S., & Berman F. (2001) A study of deadline

scheduling for client-server systems on the computational grid. In Proceedings

191

10th IEEE International Symposium on High Performance Distributed

Computing (pp. 406-415). San Francisco: IEEE.

Takefusa, A., Matsuoka S., & Nakada, H. (1999). Overview of a performance

evaluation system for global computing scheduling algorithm. In 8th IEEE

International Symposium on High Performance Distributing Computing (pp.

97-104). Redondo Beach: IEEE.

Talia, D. (2002). The open grid services architecture: Where the grid meets the web.

IEEE Internet Computing, 6(6), 67-71.

Tan, W. F., Lee, L. S., Majid, Z. A., & Seow, H. V. (2012). Ant colony optimization

for capacitated vehicle routing problem. Journal of Computer Science, 8(6),

846-852.

Tiwari, P. K., & Vidyarthi, D. P. (2016). Improved auto control ant colony

optimization using lazy ant approach for grid scheduling problem. Future

Generation Computer Systems, 60(2016), 78-89.

Trasnea, B., Marina, L. A., Vasilcoi, A., Pozna, C. R., & Grigorescu, S. M. (2019).

GridSim: A vehicle kinematics engine for deep neuroevolutionary control in

autonomous driving. In Third IEEE International Conference on Robotic

Computing (pp. 443-444). Naples: IEEE.

Vaghela, D. (2014). An advanced approach on load balancing in grid computing. arXiv

preprint arXiv:1409.3651.

Vansa, R. (2019). U.S. Patent No. 10,496,618. Washington, DC: U.S. Patent and

Trademark Office.

192

Venkatesan, R., Ramalakshmi, K., & Latha, D. (2018). Review on Various

Approaches for Resource Management and Job Scheduling in Grid

Environment. Journal of Computational and Theoretical Nanoscience, 15(9-

10), 2682-2688.

Vincent, F. Y., Redi, A. P., Hidayat, Y. A., & Wibowo, O. J. (2017). A simulated

annealing heuristic for the hybrid vehicle routing problem. Applied Soft

Computing, 53, 119-132.

Wang, L., Jie, W., & Chen, J. (2018). Grid computing: infrastructure, service, and

applications. CRC Press.

Wenming, H., Zhenrong, D., & Peizhi, W. (2009). Trust-based ant colony optimization

for grid resource scheduling. In Third International conference on Genetic and

Evolutionary Computing (pp. 288-292). Guilin: IEEE.

Werner, F. (2011). Genetic algorithms for shop scheduling problems: A survey.

Preprint 11(31), 1-66.

Xhafa, F., Carretero, J., Barolli, L., & Durresi, A. (2007). Requirements for an event-

based simulation package grid systems. Journal of Interconnection Networks,

8(2), 163-178.

Xia, H., Dail, H., Casanova, H., & Chien, A. A. (2004). The microgrid: Using online

simulation to predict application performance in diverse grid network

environments. In Proceedings of the Second International Workshop on

Challenges of Large Applications in Distributed Environments (pp. 52-61).

Honolulu: IEEE.

193

Xu, J., Cai, D., He, J., & Tang, F. (2019). A fault-tolerant routing strategy with graceful

performance degradation for fat-tree topology supercomputer. In 2019 IEEE

21st International Conference on High Performance Computing and

Communications; IEEE 17th International Conference on Smart City; IEEE

5th International Conference on Data Science and Systems (pp. 405-412).

Zhangjiajie: IEEE.

Yadav, K., Jindal, D., & Singh, R. (2013). Job scheduling in grid computing.

International Journal of Computer Applications, 69(22), 13-16.

Yan, K. Q., Wang, S. S., Wang, S. C., & Chang, C. P. (2009). Towards a hybrid load

balancing policy in grid computing system. Expert Systems with Applications,

36(10), 12054-12064.

Yang, Z., Ping, S., Aijaz, A., & Aghvami, A. H. (2018). A global optimization-based

routing protocol for cognitive-radio-enabled smart grid AMI networks. IEEE

Systems Journal, 12(1), 1015-1023.

Ye, Z., & Mohamadian, H. (2014). Adaptive clustering based dynamic routing of

wireless sensor networks via generalized ant colony optimization. IERI

Procedia, 10, 2-10.

Younis, M. T., & Yang, S. (2017). Genetic algorithm for independent job scheduling

in grid computing. MENDEL, 23(1), 65-72.

Younis, M. T., & Yang, S. (2018). Hybrid meta-heuristic algorithms for independent

job scheduling in grid computing. Applied Soft Computing, 72, 498-517.

194

Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., & Zeng, B. (2016). Robust

optimization-based resilient distribution network planning against natural

disasters. IEEE Transactions on Smart Grid, 7(6), 2817-2826.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.

J., Shenker, S., & Stoica, I. (2012). Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing (Technical Report No.

UCB/EECS-2011-82). California: USENIX Association Berkeley.

Zorrilla, M., Flórez, J., Lafuente, A., Martin, A., Montalban, J., Olaizola, I. G., &

Tamayo, I. (2017). SaW: Video Analysis in Social Media with Web-Based

Mobile Grid Computing. IEEE Transactions on Mobile Computing, 17(6),

1442-1455.

	FRONT MATTER
	COPYRIGHT PAGE
	FRONT PAGE
	CERTIFICATION
	Permission to Use
	Abstrak
	Acknowledgement
	Table of Contents
	List of Abbreviations

	MAIN PAGE
	CHAPTER ONE INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Significance of the Research
	1.5 Scope and Limitations of the Research
	1.6 Structure of the Thesis

	CHAPTER TWO LITERATURE REVIEW
	2.1 Grid Computing
	2.1.1 Grid Computing versus Cloud Computing
	2.1.2 Job Scheduling and Load Balancing in Grid Computing
	2.1.3 Issues and Limitations of the Scheduling and Load Balancing in GridComputing
	2.1.4 Grid Computing Simulation Tools

	2.2 Fault Tolerance
	2.2.1 Fault Tolerance in Grid Computing
	2.2.2 Issues and Limitations of Fault Tolerance in Grid Computing

	2.3 Ant Colony Optimization
	2.3.1 ACO-based Scheduling and Load Balancing in Grid Computing
	2.3.2 ACO-based Grid Fault Tolerance

	2.4 Summary

	CHAPTER THREE FRAMEWORK AND METHODOLOGY
	3.1 Research Framework
	3.1.1 Fault Tolerance Techniques Identification
	3.1.2 Resource Assignment and Job Scheduling Enhancement
	3.1.3 Fault Tolerance Algorithm Improvement
	3.1.4 Performance Evaluation of the Proposed Algorithm

	3.2 Grid Simulation Model
	3.2.1 GridSim Architecture
	3.2.2 System Model
	3.2.3 Application Model

	3.3 Simulation Design and Evaluation Methodology
	3.4 Performance Evaluation Metrics
	3.5 Load Balancing Measurement for Fault Tolerance Algorithm
	3.6 Summary

	CHAPTER FOUR DYNAMIC ANT COLONY SYSTEM-BASED FAULTTOLERANCE WITH SUSPENSION ALGORITHM
	4.1 Dynamic ACS-based Fault Tolerance with Suspension
	4.1.1 Initial Pheromone Value Calculation
	4.1.2 Resource Selection Process
	4.1.3 Fault Tolerance Mechanism
	4.1.4 Flowchart of DAFTS

	4.2 Load Balancing Using Dynamic Scheduling with Checkpointing
	4.3 Temporary Resource Suspension
	4.4 DAFTS Algorithm
	4.5 Summary

	CHAPTER FIVE EXPERIMENTAL RESULT
	5.1 Experimental Design
	5.2 DAFTS Parameter Tuning
	5.2.1 Dynamic Evaporation Rate versus Fixed Evaporation Rate
	5.2.2 Incentive and Penalty Factor
	5.2.3 Implementation of Suspension Technique

	5.3 Results and Analysis
	5.3.1 Effectiveness of DAFTS to Different Rates of Failure
	5.3.2 Effectiveness of DAFTS to Different Numbers of Tasks

	5.4 Summary

	CHAPTER SIX DISCUSSION
	6.1 Relationship Between Framework, Algorithm Design and Experiment
	6.2 Summary of Experimental Result

	CHAPTER SEVEN CONCLUSION AND FUTURE WORK
	7.1 Contribution of the Research
	7.2 Future Work

	REFERENCES

