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Abstrak 

Toleransi sesar di dalam pengkomputeran grid membolehkan sistem terus beroperasi 
walaupun kegagalan berlaku. Kebanyakan algoritma toleransi sesar memfokus kepada 
teknik pengendalian kegagalan seperti pemprosesan semua kerja, semakan titik, 
pereplikaan kerja, penalti, dan pemindahan kerja. Sistem koloni semut (ACS), salah 
satu variasi pengoptimuman koloni semut (ACO), adalah salah satu algoritma yang 
baik untuk toleransi sesar disebabkan kebolehannya menyesuaikan diri dengan 
masalah pengoptimuman kombinatorik statik dan dinamik. Walau bagaimanapun, 
algoritma ACS tidak mengambil kira kecergasan sumber ketika menjadualkan kerja 
sekaligus menyebabkan pengimbanan beban yang tidak cekap dan kadar kejayaan 
pelaksanaan yang rendah. Kajian ini mencadangkan toleransi sesar ACS secara 
dinamik dengan penggantungan (DAFTS) di dalam pengkomputeran grid yang 
memfokus kepada penyediaan teknik toleransi sesar yang efektif untuk menambahbaik 
kadar kejayaan pelaksanaan dan pengimbangan beban. Algoritma yang telah 
dicadangkan terdiri daripada kadar evaporasi secara dinamik, proses penjadualan 
berdasarkan kecergasan sumber, pengemaskinian feromon yang dipertingkat dengan 
faktor kepercayaan dan penggantungan, dan pemprosesan semula menggunakan 
semakan titik. Rangka kerja kajian merangkumi empat fasa iaitu mengenalpasti teknik 
toleransi sesar yang akan digunakan, meningkatkan proses penugasan sumber dan 
penjadualan kerja, menambahbaik algoritma toleransi sesar dan menilai kecekapan 
algoritma yang dicadangkan. Algoritma yang dicadangkan telah dibangunkan di dalam 
persekitaran simulasi grid yang dikenali sebagai GridSim dan dinilai dengan algoritma 
toleransi sesar yang lain seperti ACO berdasarkan kepercayaan, ACO toleransi sesar, 
ACO tanpa toleransi sesar, dan ACO dengan toleransi sesar dari segi masa pelaksanaan 
keseluruhan, purata latensi, purata masa pelaksanaan, daya pemprosesan, kadar 
kejayaan pelaksanaan, dan pengimbangan beban. Keputusan eksperimen 
menunjukkan algoritma yang dicadang berjaya mencapai prestasi yang baik dalam 
kebanyakan aspek, dan kedua terbaik dari segi pengimbangan beban. DAFTS telah 
mencapai kenaikan yang terendah pada masa pelaksanaan, purata pelaksanaan dan 
purata latensi masing-masing sebanyak 7%, 11% dan 5%, dan penurunan daya 
pemprosesan dan kadar kejayaan yang terendah masing-masing sebanyak 6.49% dan 
9% apabila kadar kegagalan semakin meningkat. DAFTS juga telah mencapai kadar 
kenaikan yang paling rendah pada masa pelaksanaan, purata masa pelaksanaan dan 
purata latensi masing-masing sebanyak 5.8, 8.5 dan 8.7 kali, dan kenaikan yang 
tertinggi pada daya pemprosesan dan kadar kejayaan tertinggi masing-masing 
sebanyak 72.9% dan 93.7% apabila bilangan kerja semakin bertambah. Algoritma 
yang dicadangkan dapat menyelesaikan masalah pengimbangan beban secara lebih 
efektif dan meningkatkan kadar kejayaan pelaksanaan di dalam sistem teragih yang 
terdedah kepada kegagalan. 
 
 
Kata Kunci: Penjadualan grid, Toleransi sesar, Pemprosesan semula kerja, Titik 
semak kerja, Sistem koloni semut. 
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Abstract 

Fault tolerance in grid computing allows the system to continue operate despite 
occurrence of failure. Most fault tolerance algorithms focus on fault handling 
techniques such as task reprocessing, checkpointing, task replication, penalty, and task 
migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is 
one of the promising algorithms for fault tolerance due to its ability to adapt to both 
static and dynamic combinatorial optimization problems. However, ACS algorithm 
does not consider the resource fitness during task scheduling which leads to poor load 
balancing and lower execution success rate. This research proposes dynamic ACS fault 
tolerance with suspension (DAFTS) in grid computing that focuses on providing 
effective fault tolerance techniques to improve the execution success rate and load 
balancing. The proposed algorithm consists of dynamic evaporation rate, resource 
fitness-based scheduling process, enhanced pheromone update with trust factor and 
suspension, and checkpoint-based task reprocessing. The research framework consists 
of four phases which are identifying fault tolerance techniques, enhancing resource 
assignment and job scheduling, improving fault tolerance algorithm and, evaluating 
the performance of the proposed algorithm. The proposed algorithm was developed in 
a simulated grid environment called GridSim and evaluated against other fault 
tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without 
fault tolerance and ACO with fault tolerance in terms of total execution time, average 
latency, average makespan, throughput, execution success rate and load balancing. 
Experimental results showed that the proposed algorithm achieved the best 
performance in most aspects, and second best in terms of load balancing. The DAFTS 
achieved the smallest increase on execution time, average makespan and average 
latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and 
execution success rate by 6.49% and 9% respectively as the failure rate increases. The 
DAFTS also achieved the smallest increment on execution time, average makespan 
and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on 
throughput and highest execution success rate by 72.9% and 93.7% respectively as the 
number of jobs increases. The proposed algorithm can effectively overcome load 
balancing problems and increase execution success rates in distributed systems that 
are prone to faults. 
 
 
Keywords: Grid computing, Scheduling optimization, Fault tolerance, Load 
balancing, Ant colony system. 
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CHAPTER ONE 

INTRODUCTION 

Grid computing emerged from meta-computing in the mid-1990s with the introduction 

of middleware to serve as a wide area infrastructure to support diverse online 

processing and data intensive applications (Foster & Kesselman, 2004; Moallem, 

2009; Sotiriadis, Bessis, Xhafa, & Antonopoulos, 2012; Wang, Jie, & Chen, 2018). 

During that time, several systems were developed to support scientific applications 

such as Globus Toolkit (Foster & Kesselman, 1997; Severance, 2014), Storage 

Resource Broker (Baru, Moore, Rajasekar, & Wan, 1998; Hsu et al., 2014), Legion 

(Grimshaw, Ferrari, Knabe & Humprey, 1999; Rubab, Hassan, Mahmood & Shah, 

2015) and Condor-G (Frey, Tannenbaum, Livny, Foster & Tuecke, 2002; Ashraf & 

Mazher, 2013). To further improve the functionality and standardization of grid 

computing technology, the Global Grid Forum was established in 1998 as an 

international community and standards organization which is responsible for 

controlling the standards to be developed and to run multiple standardization activities 

(Moallem, 2009). Later, in 2002, the Open Grid Services Architecture was officially 

established as a standard community that developed the Globus Toolkit 3.0 and 3.2 

based on the Open Grid Services Infrastructure and, most recently, introduction of the 

Globus Toolkit 4.0 (Talia, 2002; Kim, Kim & Weissman, 2014).  

 

Grid computing is the collection of computer resources located in different locations 

that work together to complete assigned tasks. Grid computing has been widely used 

in solving challenging problems in real world situations such as video analysis 

(Zorrilla et al., 2017), protein folding (Natrajan et al., 2004; Dill & MacCallum, 2014), 
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hydrology modelling (Lecca et al., 2011), natural disasters simulation (Pajorova & 

Hluchý, 2012; Yuan, 2016) and bioinformatics (Merelli, 2019). The main reasons for 

deploying grid computing are to introduce a system that is scalable, simple to use, 

autonomic and able to deal with faults (Qureshi, Khan, Manuel & Nazir, 2011).  

 

Grid computing can be further classified into data grid, service grid and computational 

grid (Azeez & Haque, 2011; Muthu & Kumar, 2017). A data grid is mainly used for 

storing large data sets which will be segmented and stored in different storage locations 

(Bansod, Virk, & Raval, 2018). A service grid is generally used for maintaining the 

services, analyzing resources, scheduling tasks and security (Madi, Yusof, Tahir, Zaini 

& Hassan, 2017). Last, the computational grid, which consists of a highly distributed 

environment and dynamic in nature, uses collective resources to solve a single 

computational problem (Shah, Mahmood, Rubab & Hassan, 2016). The computational 

grid, which is based on dynamically distributed resources and large scale sharing, 

presents a tremendous amount of low cost computational power (Yan, Wang, Wang & 

Chang, 2009; Patel & Sharma, 2019). In other words, maximum computational power 

can be achieved with minimal cost to execute heavily loaded tasks in addition to the 

reliability and efficiency without the need for dedicated resources. Due to the 

heterogeneous nature of computing resources within the grid computing environment, 

effective resource management needs to be present in order to ensure maximum 

utilization of grid computing capabilities.  

 

The grid computing system consists of several main components which are user 

interface, security, workload management, scheduler, data management and resource 

management. The user interface acts as a virtual wall between complexities of the grid 
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computing system and end users. When it involves user interaction, security should be 

involved to support authentication, authorization, data encryption and data validation. 

Jobs and resources that are managed by workload management are passive entities 

which will not run unless being instructed. To start the process of giving instruction to 

either entity, the broker service needs to identify jobs and resources before execution. 

Then, the scheduler will schedule jobs and resources for execution. The next step, 

which is to facilitate the execution by assigning jobs to suitable resources, validates 

the status and retrieves the results which, after completion, will be handled by the job 

and resource management component. Finally, the actual data transfer from one 

destination to another will be managed by the data management component 

(Bienkowski, 2018). 

 

Job and resource management are part of the main components that need to be 

considered in order to administer all submitted jobs and available resources 

(Venkatesan, Ramalakshmi, & Latha, 2018). Unlike resource management in 

traditional computing systems where resource managers have full control of a 

resource, grid resource management is focused on managing and provisioning 

independently owned and administered resources; this is very complicated due to the 

heterogeneity of each resource (Foster & Kesselman, 2004; Patel & Sharma; 2018). 

There are various issues in grid resource management such as resource discovery, 

resource scheduling, resource monitoring, resources inventory, resource provisioning, 

load balancing, fault tolerance, autonomic capabilities and service level management 

systems (Li, Xie, Qi, Luo, & Xie, 2011; Idris, Ezugwu, Junaidu & Adewumi, 2017; 

Darmawan & Aradea, 2019). Job scheduling focuses on applying effective scheduling 

decision based on defined parameters such as required computation power, time to 
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complete computation, current load and capacity, size of job with main objectives to 

minimize execution time and maximize throughput (Yadav, Jindal & Singh, 2013). 

Job scheduling is also directly related to load balancing as it ensures fair jobs 

distribution among available resources, maximizes throughput, reduces latency and 

avoids stagnation (Patni, Aswal, Agarwal & Rastogi, 2015). Fault tolerance is crucial 

to be considered since, in distributed systems, specifically grid computing, faults are 

unavoidable due to the heterogeneous nature of resources that might have different 

fitness and reliability (Souli-Jbali, Hidri, & Ayed, 2019; Khaldi, Rebbah, Meftah & 

Debakla, 2020). 

 

Job scheduling can be further classified as static and dynamic scheduling (Moallem, 

2009; Balasangameshwara & Raju, 2012). In static scheduling, jobs and resources 

assignment is done before the execution begins by using all the known information 

and the whole execution will be based on pre-defined parameters. However, this is not 

the case in a real grid computing system because parameters may change from time to 

time based on previous execution results, occurrence of failures, stability of the 

environment and priority of tasks. This is where dynamic scheduling plays an 

important role in making scheduling decisions during runtime. Thus, jobs and 

resources assignment will be completed efficiently by considering the most up-to-date 

information during runtime which may result in better performance as compared to 

static scheduling. 

 

Load balancing is to improve the distribution of jobs to available resources to 

maximize resource utilization. Few criteria are being used to determine the load of 

resources which include load of processor, latency, communication overhead, memory 
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usage and node priority (Vaghela, 2014). There are several common steps in load 

balancing algorithms which include load monitoring, synchronization, rebalancing 

criteria and job migration (Rathore & Chana, 2014). These steps also exist in fault 

tolerance algorithms to mitigate resource failures by migrating failed jobs to 

alternative resources. Thus, it is important to consider the load balancing aspect as well 

in the fault tolerance to ensure that the system can run optimally since both are 

mutually inclusive. 

 

In typical distributed computing systems that involve parallel computation such as 

grid, cluster and cloud computing, there are many shared resources to process 

submitted jobs; it is, therefore, common for failure to happen during job processing. 

Many types of failure can occur, such as network failure, packet loss and corruption, 

physical failure to the central processing unit, hard drive and storage drive in the 

processing machine, user termination, service and protocol failure, software failure 

and processing failure (Rakheja, Kaur & Rkheja, 2014; Savyanavar & Ghorpade, 

2019). Out of the most common types of failure, it is possible to resolve network and 

processing failures in real time through utilization of a proper fault tolerance strategy. 

If failure happens in the processing machine, users will experience delay in execution 

time (Amoon, 2012; Aliyu, Mohammed, Abdulmumin, Adamu & Jauro, 2020). This 

is because submitted jobs cannot be processed effectively and resources will not be 

released to process subsequent jobs in the queue. As a result, stagnation will occur 

where the throughput will be greatly decreased or totally stalled due to limited 

resources available to process jobs in the queue. Therefore, fault tolerance is the main 

requirement of distributed system (Krasovec & Filipcic, 2019). 
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Generally, fault tolerance can be categorized as static and dynamic (Xu, Cai, He & 

Tang, 2019). Static fault prevention assumes that all the information, including the 

jobs’ and resources’ characteristics, and success or failure state, are known in advance. 

However, in a distributed computing environment such as a grid, this technique is not 

relevant because the environment itself is dynamic in nature (Balasangameshwara & 

Raju, 2012; Liu & Guo, 2019). The most suitable technique is dynamic fault 

prevention which relies on run time state information to make the decision. This means 

that the fault prevention mechanism will not be executed until the fault is detected. 

Furthermore, the type of fault will also be considered in order to decide whether to 

reprocess the job using the same resource or migrate to another resource. 

 

The most common fault tolerance techniques consist of checkpoint recovery and job 

replication (Garg & Singh, 2011; Altameem, 2013; Bougeret, Casanova, Robert, 

Vivien & Zaidouni, 2014; Ebenezer, Rajsingh, & Kaliaperumal, 2019). Checkpoint 

recovery relies on the record of the last saved state which is stored temporarily and can 

be a reprocess point in the presence of failure. The job reprocessing does not need to 

be restarted from the beginning, it can start at the last saved state. This approach gives 

significant time saving to reprocess failed jobs (Rathore, 2017; Garba et al., 2020). 

Another technique is job replication which is the action to submit duplicate jobs to 

multiple resources with the assumption that if one execution fails, the results of 

execution from another resource can be used. However, this approach requires very 

high technical considerations because it may potentially overload the entire system 

(Singh, 2016).  
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There are also other fault tolerance techniques such as job migration (Qureshi, Khan, 

Manuel & Nazir, 2011; Prashar, Nancy & Kumar, 2014), job retry (Wenming, 

Zhenrong & Peizhi, 2009; Rathore & Chana, 2015; Idris et al., 2017) and penalty 

(Keerthika & Kasthuri, 2011; Sharma, Sharma & Dalal, 2014; Kurochkin & Gerk, 

2018). Job migration is essential in dynamic scheduling as it allows a failed job to be 

submitted to other resources to reduce the possibility of another failure and allow the 

failed resource to recover. Job retry is performed by submitting the original job or the 

last saved job to the execution queue to undergo the standard scheduling process. Job 

retry is considered as critical as it ensures the failed job can be reprocessed until 

completion. Penalty is a technique used to penalize the occurrence of failure, either to 

the resource, or to the path that leads to the resource so that they become less desirable 

during the job scheduling process. 

 

Fault tolerance has been widely implemented in various distributed computing systems 

(Kumar & Pathak, 2018; Chinnathambi, Santhanam, Rajarathinam & Senthilkumar, 

2019). The resilient distributed dataset is one example of a fault tolerance strategy 

implemented in cluster computing applications. The general framework proposed is to 

log the transformations used to build a dataset which provides enough information for 

a quick recovery process in case of partition loss (Zaharia et al., 2012). A fault 

tolerance load balancing algorithm, proposed by Balasangameshwara and Raju (2012), 

is an example of fault tolerance application in grid computing which first backs up the 

job before discovering potential resources to process it. Then, the fault manager will 

detect or monitor the fault and apply a rescheduling policy for a job stored in the 

primary backup to another resource in the presence of fault. 
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Fault tolerance, scheduling and load balancing are defined as Nondeterministic 

Polynomial (NP)-complete problem (Glaßer, Pavan & Travers, 2009) which means 

that there is no exact algorithm that can solve them in a polynomial time (Blum & Roli, 

2003; Pooranian, Shojafar, Abawajy & Singhal, 2013). Table 1.1 shows different types 

of NP-complete problems that are grouped by the type of problem such as scheduling, 

routing, assignment, subset problems and others. In grid computing specifically, 

several types of NP-complete problems such as job scheduling, load balancing and 

fault tolerance are to be tackled together to improve the system’s functionality and 

performance.  

 

Table 1.1 

Type of NP-complete problems 

NP-Complete Problem 

Routing Scheduling Assignment Subset Others 

Network 

Routing 
Job Scheduling 

Course 

Timetabling 

Multiple 

Knapsack 
Load Balancing 

Travelling 

Salesman 

Problem 

Project 

Scheduling 

Quadramatic 

Algorithm 
Set Covering 

Constraint 

Satisfaction 

Sequential 

Ordering 

Total Weighted 

Tardiness 

Graph 

Coloring 
 

Digital Image 

Habitats 

Vehicle 

Routing 
Flow Shop   Protein Folding 

Query Routing    Fault tolerance 

    Bus Stop 
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Bin Packing 

and Cutting 

Stocks 

 
Note. Adapted from Nasir (2020). 

 

The most popular way to solve these problems is to use approximate or metaheuristic 

algorithms such as GA (Werner, 2011; Sajedi & Rabiee, 2014; Kapil, Chawla, & 

Ansari, 2016; Younis & Yang, 2018), simulated annealing (Lin & Vincent, 2012; 

Vincent, Redi, Hidayat, & Wibowo, 2017), Tabu Search (TS) (Kong, Shen, Chen, 

Wang & Song, 2010; Glover & Laguna, 2013; Lai, Demirag, & Leung, 2016) and, 

recently, ACO (Ku-Mahamud & Alobaedy, 2012; Martin, Cervantes, Saez, & Isasi, 

2020). GA, SA, TS and ACO are some of the local search algorithms used to search a 

solution space by moving one solution to another and constructing the best solution 

for scheduling and the load balancing algorithm. A feasible solution is quickly 

produced by using these methods, but it will not come close to the optimal solution. 

The solution produced by one metaheuristic algorithm can also be improved by 

applying other metaheuristic or non-heuristic algorithms to obtain a better solution. 

 

1.1 Background 

Job scheduling is an important process in grid computing to effectively identify 

suitable resources to process jobs submitted by the user. Job scheduling is classified 

into two categories which are static scheduling and dynamic scheduling (Yadav, Jindal 

& Singh, 2013). In static scheduling, the resource assignment is performed before the 

execution while in dynamic scheduling, the scheduling decision can be performed 

during execution. The dynamic scheduling scheme performs prediction based on 
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historical records (Kaur & Aggarwal, 2013). It is often enhanced to provide fault 

tolerance capability as it allows the system to adapt with dynamic environment as well 

as making scheduling decision during execution. 

 

Fault tolerance in the grid consists of three main strategies: fault detection or 

identification, fault prediction and fault recovery. Fault detection or identification 

generally means detecting the type of fault when it occurs before mitigating it with the 

most suitable solution. On the other hand, fault prediction entails predicting the 

probability of faults occurring based on historical data and applying a suitable 

scheduling policy to reduce fault probability. Last but not least, fault recovery consists 

of several popular techniques such as job replication (space-sharing) and 

checkpointing (time-sharing) (Altameem, 2013). The advantage of job replication is 

that it does not require re-computation because each job has several simultaneous 

copies assigned to different resources; therefore, if one fails, the other can still be 

processed (Vansa, 2019). However, this technique is not very effective because a copy 

of a job is considered as an individual execution and may potentially congest the job 

queue. Another technique is checkpointing which requires the state of the running task 

to be stored at defined checkpoints and if the job fails the execution will restart from 

the last saved state instead of from the beginning. However, the drawback is that 

having too many checkpoints may lead to runtime overheads (Idris et al., 2017; Garba 

et al., 2020). 

 

In addition to fault tolerance, load balancing is also important since the majority of 

fault tolerance algorithms focus on fault strategies rather than load balancing. Load 

balancing is categorized into two types: static and dynamic. In static load balancing, 
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information about jobs and resources is known prior to initialization and the scheduling 

results are obtained even before all the jobs are executed (Prajapati, Rathod & Khanna, 

2015). On the other hand, dynamic load balancing is preferred since it uses runtime 

state information to make decisions and its decentralized parameters provide better 

scalability and fault tolerance (Sharma & Dalal, 2014). Load balancing can also be 

incorporated with job migration in order to solve load balancing problems and provide 

fault tolerance by using the checkpoint technique (Rathore & Chana, 2015). Without 

proper load balancing, stagnation may occur because the computational time of the 

processed job is high. Stagnation may also occur when all jobs are assigned to the same 

resources which, consequently, leads to the resources having high workloads. Thus, it 

is critical to effectively utilize all resources to minimize stagnation problems in grid 

computing.  

 

Figure 1.1 depicts the general flow of job scheduling, fault tolerance and load 

balancing. When jobs are submitted, job scheduling will take place to determine the 

suitable resources to accept the jobs. During this process, indirectly the load balancing 

is already being considered as the resource load is checked before assigning the jobs. 

During execution, fault tolerance process will be invoked upon failure and the job 

scheduling will be re-invoked to perform another round of scheduling to assign failed 

jobs to alternative resources. It can be concluded that job scheduling, load balancing 

and fault tolerance are mutually inclusive in heterogenous and dynamic nature of grid 

environment (Balasangameshwara, 2014). 
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Figure 1.1. General flow of job scheduling, load balancing and fault tolerance 

 

The ACO algorithm is used because it can be easily adapted to solve both static and 

dynamic combinatorial optimization problems (Lorpunmanee, Sap, Abdullah & 

Chompoo-inwai, 2007; Ku-Mahamud & Alobaedy, 2012; Goyal & Singh, 2012; 

Ankita & Sahana, 2019) because it is designed to find unknown optimal solution where 

the pheromone values are associated with solution components (Blum, 2005). ACO is 

flexible and can be modified and combined with other nature inspired swarm 

intelligence approaches such as Intelligent Water Drop in order to speed up optimal 

scheduling in addition to minimizing makespan, balancing the load and utilizing 

resources efficiently (Mathiyalagan, Sivanamdam & Saranya, 2013). Another study 

that combined ACO with other algorithms was proposed by Modiri, Analoui and 

Jabbehdari (2011) where their proposed algorithm combines the ACO algorithm and 

Directed Acyclic Graph (DAG) method in order to cater both for load balancing and 

fault tolerance aspects.  

 

Job 
Submission 

Job 
Scheduling 

Load 
Balancing 

Fault 
Tolerance 
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There are many variations of the ACO algorithm such as Ant System, Ant Colony 

System (ACS), Max-Min Ant System (MMAS), Rank-based Ant System and Elitist 

Ant System (Dorigo & Stützle, 2004). Ant colony optimization has been successfully 

applied to solve many routing problems such as the network routing problem (Ye & 

Mohamadian, 2014; Yang, Ping, Aijaz, & Aghvami, 2018), vehicle routing problem 

(Tan, Lee, Majid, & Seow, 2012; Kuo & Zulvia, 2017), travelling salesman problem 

(Holzinger et al.; 2016; Gülcü, Mahi, Baykan, & Kodaz, 2018), sequential ordering 

routing problem (Gambardella, Montemanni, & Weyland, 2012; Ezzat, 2013; 

Skinderowicz, 2017) and query routing problem (Santillán, Reyes, Conde, Schaeffer 

& Valdez, 2010; Hanane & Fouzia, 2014). ACO has also been successfully applied in 

fault tolerance (Idris et al., 2017) which has resulted in better load balancing in the 

presence of failure. 

 

The ACS is considered as one of most widely used ACO variants for solving NP-

complete problems (Schyns, 2015; Nasir, Ku-Mahamud, & Kamioka, 2017; Liu et al., 

2018). The ACS consists of two main mechanisms: exploration and exploitation. 

Exploration relies on the transition probability between nodes while exploitation 

chooses the node with the highest pheromone to reduce calculation time as well as 

ensure reliable path selection. In addition to both mechanisms, local pheromone update 

is also introduced in the ACS on top of the global pheromone update to increase 

pheromone intensity of the best solution so far in order for the exploitation mechanism 

to work. Thus, it is important to balance between exploration and exploitation so that 

the solution is not too biased or not too random to provide the most optimal solution. 
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This research aims to enhance ACS algorithm for dynamic fault tolerance in grid 

computing to overcome both fault and load balancing problems. The proposed 

algorithm extended the ACS scheduling algorithm combined with the checkpoint and 

suspension techniques to provide efficient scheduling in faulty environments. 

Checkpointing was adapted and adopted from Prashar, Nancy and Kumar (2014) in 

order to save the state of execution based on certain intervals so that reprocessing can 

start from the last saved state instead of from the beginning. The suspension technique 

was inspired from the trust mechanism proposed by Wenming et al. (2009) in which 

resources are rewarded or penalized based on execution status. In this research, the 

trust mechanism is further combined with the suspension technique because it is 

possible that a recently failed resource may still have high levels of pheromone that 

will cause it to be reassigned without undergoing the recovery process. 

 

1.2 Problem Statement 

The process of identifying resource failure or faults in dynamic grid computing is 

complicated due to its distributed and heterogeneous nature (Ku-Mahamud, Din & 

Nasir, 2011; Haider & Nazir, 2016). In typical fault tolerance algorithms, the 

scheduling and rescheduling process often considers the resource load when assigning 

jobs but not the execution history or fitness of resources. This may lead to uncertain 

success rate as resources with low load could have high possibility of failure. For 

instance, Idris et al. (2017) proposed an improved ACO algorithm with fault tolerance 

in the grid by considering the resource load when assigning jobs to minimize 

processing time and increase throughput. However, resource load alone does not 

indicate the fitness of the resource which could lead to lower execution success rate.  

 



 

15 
 

Load balancing is often considered during scheduling process to fairly control the 

distribution of jobs to available resources to maximize resource utilization (Khan, 

2017; Sheikh, Nagaraju & Shahid, 2018). However, typical fault tolerance algorithms 

do not possess effective the load balancing technique due to main objectives to 

maximize success rate and throughput (Idris et al., 2017). There are also algorithms 

that have considered the load balancing aspect but disregarded the execution success 

rate such as algorithms proposed by Prashar et al. (2014), Rajab and Kabalan (2016) 

and Garba et al. (2020). Without considering the load balancing in faulty environment, 

resource utilization will be poor and may lead to stagnation as some resources will be 

overloaded with high number of jobs. For example, fault tolerance algorithm proposed 

by Prashar et al. (2014) applied effective mitigation technique called resubmission 

based on checkpoint but did not consider the load balancing aspect. In addition, Garba 

et al. (2020) proposed a fault tolerance algorithm that dynamically controlled the 

checkpoint interval to improve makespan, throughput and turnaround time but did not 

consider the load balancing aspect. 

 

Temporary resource isolation in the presence of failure is essential to penalize and 

suspend resources that failed to complete execution (Wenming et al., 2009). This 

aspect has not been the main focus in fault tolerance algorithms as the main objective 

is to reprocess failed jobs to alternative resources. As a result, resources that recently 

failed to complete execution may still be assigned with majority of jobs and eventually 

lead to higher possibility of another failure. Thus, it is important to temporarily isolate 

recently failed resources so that it can undergo recovery process and complete the 

remaining jobs in the queue. One example is tentative ACO algorithm which was 

proposed by Sharma et al. (2014) that considered load balancing by applying an 



 

16 
 

encouragement and punishment argument based on execution status but did not 

include the strategy to reprocess the failed job. 

 

Due to all these limitations, improvement of ACS-based fault tolerance algorithms is 

essential in order to extend the capability of both fault tolerance and load balancing 

aspects to effectively overcome load balancing problems, minimize execution time and 

latency, and maximize throughput and execution success rates in the presence of 

failures. This leads to several research questions as follows: 

1. What are the effective fault tolerance techniques that can be enhanced to 

consider the load balancing aspects? 

2. How can the resource fitness and trust factors be considered in the fault tolerance 

management? 

3. How can the ant-based fault tolerance algorithm be improved to provide fault 

tolerance and load balancing aspects? 

4. How effective is the proposed algorithm to cater for fault tolerance and load 

balancing in grid environments? 

 

1.3 Research Objectives 

The main objective of this research is to develop an enhanced ACS-based algorithm 

for dynamic fault management in grid computing which can assign jobs to suitable 

resources, identify failures and ways to mitigate them, resubmit jobs to other available 

resources whenever required, apply penalties and suspend failed resources temporarily 

to avoid being assigned to the next execution cycle, overcome stagnation, minimize 
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computational time and balance the load of entire resources in the grid environment 

on every execution. 

 

Specific objectives of the research are: 

1. To investigate fault tolerance techniques that can be enhanced in the context of 

load balancing. 

2. To develop an ant-based fault tolerance algorithm that considers resource fitness, 

apply temporary suspension, and control pheromone assigned to resources. 

3. To develop an improved ant-based fault tolerance algorithm that considers both 

fault tolerance and load balancing aspects. 

4. To evaluate the improved ant-based fault tolerance algorithm in simulated grid 

computing environment. 

 

1.4 Significance of the Research 

Grid computing is emerging as a new computing paradigm to solve challenging 

applications in engineering, science and economics. As a consequence, grid 

architecture has to consider managing distributed, heterogeneous and dynamically 

available resources in efficient ways. Therefore, the management of resources and 

failures is crucial in grid computing environments so that every component of the 

whole execution process works flawlessly (Azeez & Haque, 2011; Rathore & Chana, 

2014).  

 

The outcome of this research contributes to a new variant of ACO algorithm with fault 

tolerance capability using checkpoint-based job resubmission to other resources. This 
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capability is to ensure that the failed job will be executed completely from the last 

saved state (Prashar, Nancy & Kumar, 2014). In addition to that, the resource 

suspension technique which was inspired from penalty application allows a recently 

failed resource to recover (Wenming et al., 2009). The aspect of load balancing and 

scheduling are improved which would enhance the basic approach of the ACO 

algorithm by dynamically reducing faults using effective and reliable method. At the 

same time, it tries to balance the load of entire resources to ensure fair distribution and 

execution of jobs to overcome stagnation in the presence of faults. Eventually, it is 

possible to implement the proposed algorithm in other types of distributed computing 

system such as cloud computing, wireless sensor networks and cluster computing. 

 

1.5 Scope and Limitations of the Research 

This study focuses on improvement of the ACO algorithm by developing a new fault 

tolerance algorithm called Dynamic Ant Colony System-based Fault Tolerance with 

Suspension (DAFTS) that can overcome stagnation problems and offer fault tolerance 

measures in grid computing. The focus is on improving the way ants search the best 

resources in processing jobs and identify failures by using a fault detection approach 

and, at the same time, trying to dynamically apply fault recovery techniques. The 

proposed algorithm is based on the Ant Colony System (ACS) algorithm to improve 

the scheduling and pheromone update for fault prevention measures and the load 

balancing process. The dynamic fault tolerance workflow was used to experiment in a 

simulation environment called GridSim by using both dynamic and static 

characteristics to simulate various scenarios and conditions. 
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The limitation of the research is the experiments were done in simulated grid 

computing environment called GridSim which is designed to provide close to actual 

functionality as the real grid computing environment. In real environment, the DAFTS 

might not behave the same way as in simulated environment due to unknown factors 

but the difference in its behavior will not be so significance. Another limitation of the 

research is the DAFTS is based on single ACO and is experimented by defining 

parameters for each batch of execution. Each execution represents one session in 

which the grid users submitted the jobs in real grid environment. 

 

Even though grid computing has been available for many years, improvement can be 

further explored in order to make it relevant to the constantly changing computing 

world. Fault tolerance in grids is the main improvement to be explored in this study in 

addition to improving load balancing. Looking at the concept of the load balancing 

algorithm, it is definitely possible to also use the same concept to handle failure either 

by introducing a separate algorithm just to handle failure or integrate both fault 

tolerance and the load balancing algorithm to simplify the architecture as well as to 

allow the new algorithm to be implemented in existing load balancing algorithms 

applied in real applications. ACO has been selected since it gives flexibility to combine 

with other algorithms and is proven to be one of the most reliable algorithms to handle 

load balancing in grid computing. 

 

1.6 Structure of the Thesis 

The structure of this thesis is as follows. In Chapter 2, an overview of grid computing 

that covers job scheduling and load balancing, fault tolerance in grid computing and 
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ACO that covers scheduling, load balancing and fault tolerance are discussed. In 

addition, issues and limitations are also elaborated upon. 

  

Chapter 3 covers the framework and methodology used to realize the objectives of 

DAFTS in grid computing, followed by the simulation model, simulation design and 

evaluation methodology and performance evaluation metrics 

 

Chapter 4 presents, in detail, the proposed DAFTS algorithm which includes the load 

balancing technique using dynamic scheduling with checkpoint and resource 

suspension. Furthermore, the pseudocode of the DAFTS is also presented. 

 

Experimental design and parameters tuning of the DAFTS algorithm are covered in 

Chapter 5. Then, the performance of the proposed algorithm is compared with the other 

four algorithms by measuring the effect of different failure rates and different numbers 

of tasks in terms of execution time, throughput, makespan, latency, load balancing and 

execution success rate. 

 

Chapter 6 is dedicated for detailed discussion on Chapter 3, Chapter 4 and Chapter 5 

and relationship between key contributions of each chapter. Finally, Chapter 7 

discusses the contributions of the research and highlights future research directions. 

 

 

 



 

21 
 

CHAPTER TWO 

LITERATURE REVIEW 

This chapter presents the review of research that has been carried out in the areas of 

grid computing and ACO. The overview of grid computing is discussed in Section 2.1 

which covers previous works related to grid scheduling and load balancing. Section 

2.2 further elaborates fault tolerance, including techniques that are applied in the grid 

environment. Section 2.3 explains in detail about ACO and its applications such as 

scheduling, load balancing and fault tolerance in grid computing, followed by Section 

2.4 that summarizes this chapter. 

 

2.1 Grid Computing 

Grid computing is a high performance computational system that consists of 

decentralized distributed resources connected by a network that offers cost effective 

high performance computing capability and allows a more cooperation and 

collaboration between resources to achieve common objectives. Grid computing is 

deployed within the standard Internet protocol architecture, specifically at the 

application, transport, Internet and link layers (Foster, Kesselman & Tuecke, 2001; 

Hwang, Dongarra & Fox, 2012; Basu, 2016). 

 

As illustrated in Figure 2.1, majority of grid computing layers within the grid protocol 

architecture such as collective layer, resource layer and connectivity layer are located 

at the same level as application layer in Internet protocol architecture (Nassiry & 

Kardan, 2009; Kamra & Chugh, 2011). Collective layer deals with collaborative 

operations between shareable resources while resource layer covers actions related to 
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network parts such as negotiation, initiation and monitoring. All the associated 

protocols, communication and authentication are placed under connectivity layer. Last 

but not least is the fabric layer in which all shareable resources are placed (Seelwal, 

2014; Ankita & Shana, 2018). 

 

 

Figure 2.1. Grid protocol architecture vs. Internet protocol architecture 

 

Resources in grid computing are combined from different locations to form a super 

virtual computer to solve large and complex tasks (Levitin, Xing, Johnson & Dai, 

2018). Individual users can access several computing resources such as data, 

applications, storage, and processors without knowing the locations of each resource. 

The grid resource broker is a key element in grid computing that is responsible for 

identifying and matching suitable resources from multiple administrative domains to 

process a submitted job (Kaushik & Vidyarthi, 2018). As shown in Figure 2.2, the grid 
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resource broker is connected to the users and resources. It is responsible for managing 

scheduling, load balancing, and faults. 

 

 

Figure 2.2. High level architecture diagram of grid system 

 

Resources in grid computing systems are not under central control, where they can 

enter and leave the system at any time (Meo, Messina, Domenico & Sarné, 2015). An 

effective resource management system is needed to manage the grid computing 

system. Resource management is a central component of a grid computing system and 

is responsible for managing submitted jobs and available grid resources which includes 

resources allocation, assignment, authorization, assurance and authentication to 

process submitted jobs (Sharma & Bawa, 2008; Qureshi et al., 2014).  
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Main problems being solved in grid computing are directly aligned with problems in 

distributed systems where multiple computing capabilities are connected through 

networks to perform coordinated computations. These problems include scheduling 

(Jiang & Chen, 2015; Rathore, 2015; Alkhanak, Lee, Rezaei & Parizi, 2016; Maipan-

uku, Konjaang & Baba, 2016; Sathish & Reddy, 2017; Younis & Yang, 2017; Mahato, 

Sandhu, Singh & Kaushal, 2019; Eng, Muhammed, Mohamed & Hasan, 2020), load 

balancing (El-Zoghdy & Alaa, 2015; Patni & Aswal, 2015; Naik, Jagan & Narayana, 

2015; Rathore, 2015; Idris et al., 2017; Omer & Abdalla, 2018; Mahato et al., 2019; 

Garba et al., 2020), resource allocation (Satish & Reddy, 2018; Krasovec & Filipcic, 

2019; Shukla, Kumar & Singh, 2018) and fault tolerance (Singh & Bawa, 2016; 

Abdullah, Ali & Haikal, 2017; Haider & Nazir, 2017; Idris et al., 2017; Goswami & 

Das, 2018; Ahuja & Banga, 2019; Garba et al., 2020. A good grid management system 

should consider scheduling, load balancing and fault tolerance to ensure the 

optimization and efficiency that are important in a dynamic environment that performs 

intensive computations. 

 

2.1.1 Grid Computing versus Cloud Computing 

Grid computing and cloud computing are not a completely new concept. While cloud 

computing is becoming a popular paradigm, it does not overtake the importance of 

grid computing paradigm. Generally, cloud computing is specialized in scalability, 

services, economic and configurability (Sharma, 2013). Cloud computing overlaps 

with many distributed computing technologies such as grid computing and cluster 

computing. Cloud is built within the web service architecture where it is more focused 

on service orientation applications. Figure 2.3 clearly illustrates the overlapping of grid 
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computing and cloud computing within the distributed systems (Foster, Zhao, Raicu 

& Lu, 2008). 

 

Figure 2.3. Grids and clouds overview 

 

Grid is the backbone of cloud when it emerged from the grid in the modern context in 

the early 2000’s. Cloud can support a grid environment in addition to non-grid 

environments such as Web 2.0. In other words, grid system can run on cloud system, 

but cloud system cannot run on grid system (Obali & Topcu, 2015). Detailed 

comparison between grid computing and cloud computing is listed in Table 2.1. It can 

be seen that grid computing is designed to provide high performance computing 

capability with high throughput and low latency which are difficult to achieve in cloud 

due to shared resources by multiple users demanding different services and reliance 

on Internet speed and latency. 
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Table 2.1 

High level comparison between grid computing and cloud computing 

 Grid Computing Cloud Computing 

Business model Quota basis Consumption basis 

Architecture Resource sharing Virtualization 

Resource 

management 
Batch-scheduled compute model 

Shared by all users at the 

same time 

Programming 

model 
Parallel programming models Web services APIs 

Application 

model 

Supports many applications 

ranging from high performance 

computing to high throughput 

computing 

Unable to effectively 

support applications that 

require fast and low 

latency network 

interconnects 

Security model 

Decentralized and each grid site 

has its own administration 

domain and operation autonomy 

Centralized and managed 

by the same organization 

 

Both grid and cloud offer resource sharing in which cloud uses virtualization 

infrastructure such as virtual services and virtual machines, and grid uses allocation of 

large cluster of resources which may be located in the same or different geographical 

location. In terms of the cost of resource usage, grid uses quota mechanism in which 

the users or community have certain amount of service units they can spend within a 

certain time periods while cloud offers flexible costing mechanism which means that 

the users pay for the services they subscribe (Alkhanak et al., 2016). There are many 

challenges in cloud computing such as scheduling, load balancing, resource 
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management, quality of service and workload management (Kumar & Kumar, 2019). 

On the other hand, grid computing has challenges such as job arrival rate, resource 

utilization, job migration, communication cost and fault tolerance (Khan, Nazir, Khan, 

Shamshirband & Chronopoulos, 2017). 

 

Krasovec and Filipcic (2019) proposed a model that enhanced grid computing by 

integrating with public cloud to overcome the complexity and scalability of grid 

computing system. The proposed model focuses on leveraging cloud infrastructure as 

a service to support grid computing architecture in improving resource utilization 

whereby the jobs can be submitted to physical grid resources or to virtual resources in 

cloud server. This architecture reduces the full dependency on grid resources by 

allocating some jobs to virtual resources to achieve the same objective with possibly 

lesser computing power. In this model, the architecture of grid computing is still being 

preserved while extending its capability to allow user customization, better resource 

provisioning and scalability. Despite the popularity of cloud computing, grid 

computing has become significantly important in scientific research projects that 

require high performance computing capability to cope with increasing demand of 

computational power (Merelli, 2019). 

 

2.1.2 Job Scheduling and Load Balancing in Grid Computing 

Scheduling is one of the main components in the grid service that must be optimized 

in order to maximize the throughput, minimize processing time and balance the 

workload of the entire resources. In a grid computing system, resources are distributed 

throughout a large scale area and each resource has dynamic characteristics and 

computing capabilities to process submitted jobs (Feng, Weiwei & Xiaomin, 2018). 
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On the other hand, each job has different characteristics that need to be considered 

such as job length, size of input and output, deadline and priorities. Due to all these 

considerations, a good scheduling algorithm should strongly consider the dynamic 

characteristics of jobs and resources in order to produce the most optimized scheduling 

process. 

 

There are many algorithms proposed to effectively solve grid scheduling problems. 

The Priority-based Task Scheduling Algorithm (P-TSA) was proposed by Sun, Zhu, 

Su, Jiao and Li (2010) to solve scheduling and load balancing problems in grid 

computing systems with the main focus on minimizing the makespan of processing 

jobs and maximizing the utilization of resources in grid computing. In the proposed 

algorithm, all jobs are sorted by the priority values where jobs are classified as a 

predecessor job (parent job) and successor job (child job). In this case, the successor 

job cannot be scheduled until the predecessor job is completed. Subsequently, jobs will 

be sorted according to their estimated completion time (ECT) where the lowest ECT 

has the highest priority. The sorted tasks then travel through resource machines to 

record the completion time of each resource machine; the resource machine with the 

lowest completion time will be selected for scheduling. Experimental results showed 

that P-TSA has a better performance on the aspect of makespan and resource 

utilization compared to the other two algorithms by using a random DAG and DAG of 

molecular code. However, the proposed algorithm only considered the estimated 

accomplishment time of jobs and estimated completion time of resources but not the 

characteristics of jobs and resource machines such as bandwidth, job size and historical 

record of processing state. 
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The study by Kong et al. (2010) proposed a dynamic grid scheduling algorithm on self 

adaptive TS to solve scheduling problems in grid computing by reducing the makespan 

of the processing jobs. The scheduling process in the proposed algorithm was divided 

into partial scheduling and batch scheduling where information on every partial 

scheduling based on the Min-Min algorithm is stored in a Tabu list to be used as a 

simple searching method for these solutions in future search processes. The length of 

the Tabu list must be considered because if it is too large, it will consume a lot of 

storage space and require high computation power. Thus, dynamic Tabu length 

adjustment is implemented in order to produce the ideal length based on the ratio of 

scheduling time and batch size. In contrast, the scheduling results are not ideal if the 

Tabu list is too short. The performance of the proposed algorithm was compared to the 

Min-Min algorithm, Max-Min algorithm and Sufferage algorithm (Siegel & Ali, 2000; 

Braun et al., 2001). Experimental results showed that the proposed Tabu search 

algorithm performed better in terms of makespan as compared to the other algorithms. 

However, scheduling alone is not sufficient in order to provide reliable distributed 

processing. Thus, it is essential to also consider load balancing and fault tolerance 

aspects. 

 

Hybridization between Cuckoo Search (CS) and Genetic Algorithm (GA) for job 

scheduling in grid computing was introduced by Sajedi and Rabiee (2014) to minimize 

the completion time and prevent trap in a local minimum. It is claimed that GA suffers 

from long processing time to perform required test to obtain optimal parameters, and 

this disadvantage is covered by the advantages of CS which has faster convergence 

and has the ability to avoid local minimum. The first stage involves generating a 

population of Cuckoo eggs that have greatest change for further growth. This 
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population will undergo mutation and crossover during the second stage to produce 

new population which is also optimal solution. The experimental results showed that 

the proposed hybrid algorithm achieved the lowest completion time when compared 

with CS and GA. It was assumed that all machines are always available and jobs do 

not have time constraint to be completely processed, and these facts could become 

factors that the proposed algorithm may not work efficiently when interruption 

happens.  

 

Adaptive workflow scheduling that involves initial static scheduling, resource 

monitoring and rescheduling was proposed by Garg and Singh (2015) with objective 

to minimize execution time. Before the scheduling begins, set of available resources 

and loads are identified, and this process is continuously executed to update the list of 

available resources. Then, DAG will be used to perform initial static scheduling to 

map the workflow task to suitable resources and the scheduling results will be 

submitted to the execution manager for further submission to the resources. On the 

other hand, the resource monitor periodically checks for abnormalities such as load 

increment or new resources available. These events will be exchanged with workflow 

task scheduler which will then decide whether to reschedule the workflow task to other 

resources or do nothing. Despite the performance of the proposed algorithm in terms 

of minimizing the execution time, it did not consider the dynamic resource availability 

on the executing task which could lead to the inability to perform rescheduling when 

the resource executing current task unexpected becomes unavailable. 

 

Sheikh, Shahid and Nagaraju (2017) proposed a dynamic task scheduling strategy 

through enhancement of task level parallelism to minimize the makespan. The first 
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phase of the proposed algorithm is to divide task into multiple subtasks within the 

maximum task limit. In the second phase, each subtask which is also treated as 

individual task, will be submitted to available resources dynamically in parallel 

manner until all the subtasks for a specific task are completely executed. The next task 

submitted by the user must wait for the current task to be completely processed before 

it can undergo the splitting and submitting phases. The results showed that the 

proposed algorithm achieved significant reduction of makespan. It is clear that 

parallelism can significantly reduce the processing time of a large task but the 

condition where the next task must wait for the current task to be completely executed 

is quite risky especially when some subtasks of the current task failed to complete and 

eventually increase the latency of the next tasks to be executed. 

 

Younis and Yang (2018) proposed two hybrid metaheuristic scheduling algorithms in 

reducing the makespan of the scheduling process in grid computing. The makespan 

value is used as a benchmark where the small makespan value indicates the high 

utilization of the available resources. In this research work, the traditional Variable 

Neighborhood Search (VNS) has been improved by introducing four new structures 

which are penalty-based move, penalty-based swap, longest max to min move, and 

random max to min move, based on the concepts of transfer and move of assigned jobs 

to or from the selected resources. The first proposed scheduling algorithm combines 

ACO and VNS while the other algorithm combines GA and VNS. The proposed ACO-

VNS algorithm finds the best resources by using the free earlier value when calculating 

the heuristic function along with the pheromone value. Then, the solution found by the 

local best ant will be improved by using the improved VNS structures. The second 

proposed scheduling algorithm combines GA and VNS where the improved VNS 
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structures deployed as a mutation operator in the GA algorithm encourage the 

exploration of the search space in minimizing the makespan. Experimental results 

showed that GA-VNS has the lowest makespan followed by ACO-VNS when 

compared to the other scheduling algorithm. However, neither algorithm considered 

the failure problem and only evaluated in terms of makespan instead of other 

performance metrics such as throughput and success rate.  

 

One of the most challenging problems in resource management is load balancing. Load 

balancing is important to consider since it ensures fair job distribution across all 

available resources (Rathore & Chana, 2014; Khan, Nazir, Khan, Shamshirband & 

Chronopoulos, 2017). It ensures all submitted jobs are distributed equally to each 

resource, minimizes the execution time of each job and maximizes resource utilization. 

To be specific, this is done by minimizing the difference between heaviest loaded node 

and lightest node. As a result, stagnation problems can be effectively resolved as the 

probability of a resource being overloaded with jobs while the others remain idle is 

minimized through the load balancing policy. Furthermore, the load balancing should 

be self-adaptive to automatically adjust with dynamism and heterogeneity of the 

resources (Darmawan & Aradea, 2018). 

 

There are many proposed algorithms that take into consideration load balancing along 

with scheduling problems in grid computing. For instance, the heuristic-based load 

balancing technique by using ACO was proposed by Sharma, Sharma and Dalal 

(2014). By using the ACO algorithm, a job will be assigned to the resource that has 

the highest transition probability during scheduling. After the execution is done, 

regardless of whether it is a success or failure, the pheromone intensity of the current 
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resource will be updated. Throughout this approach, a resource that recently completed 

its processing will have less pheromone which will directly control the value of 

transition probability during the scheduling process. In the end, other resources will 

also have the possibility to be chosen to process the remaining list of jobs instead of 

simply one or a few powerful resources. The proposed algorithm was evaluated against 

the random resource selection algorithm and the results achieved lower execution cost 

and time. However, despite considering the load balancing aspect, it was not measured 

thoroughly in the experimental results.  

 

Batch mode scheduling strategy was proposed by Maipan-uku, Konjaang and Baba 

(2016) with the aim to reduce makespan, increase resource utilization and balance the 

load. Before the scheduling process begins, all tasks are sorted in ascending order 

which means that task with lowest expected completion time will be placed in front of 

the queue. Then, the average completion time will be collected from all available tasks 

and whichever tasks that have expected completion time greater than average 

completion time will be scheduled first, followed by the tasks that have expected 

completion time equal or lower than average completion time. The proposed algorithm 

was compared with Min-Min algorithm that considers tasks with minimum expected 

completion time which assign the tasks to resources that yield minimum completion 

time. Results showed that it achieved lower makespan, higher average resource 

utilization and load balancing. In spite of the good performance, the algorithm works 

well when failure is not part of the consideration but when it is being considered, the 

expected completion time alone is not enough to ensure effective scheduling in faulty 

system. 
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Khan (2017) proposed an effective load balancing and dynamic group scheduling that 

used resources partitioning to reduce job processing time and increase resource 

utilization. All resources are group into several partitions in which each partition has 

one super node and several resources. Super node of each partition controls the job 

pool and communicate with other super nodes from different partition to exchange 

information while resources within the partition can only communicate with each other 

and the super node. In terms of dynamic jobs allocation, linear programming model is 

used to estimate the execution time of each combination of jobs and resources before 

the job can be submitted to the respective resource within a specific partition. The 

proposed algorithm was compared with first come first serve and ACO algorithms and 

results showed that it achieved lower processing time and higher resource utilization. 

Notwithstanding the results, it was not specified whether the resources that reside 

within a partition can be re-assigned to another partition which this could lead to 

imbalance fitness of partitions when one partition might have, and whether super node 

can be changed from time to time depending on its load. 

 

Dynamic load balancing with advanced reservation was proposed by Sheikh, Nagaraju 

and Shahid (2018) to minimize task waiting time and load imbalance by considering 

the resource load prior to allocating the task. The advanced reservation is performed 

by first checking the resource availability and running time to execute the tasks. At 

certain time intervals, running time will be added into the load share queue as a 

reference to decide which resource is overloaded or underloaded. On the other hand, 

whenever the task is executed partially or completely, the amount of executed length 

will be deducted from the load share queue which will indicate that the resource is 

ready to receive more tasks. The proposed algorithm resulted in higher load balancing 
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and lower makespan and claimed to be suitable for applications that require minimal 

task waiting time but not turnaround time. 

 

Abdullah, Ali and Haikal (2019) proposed TOPSIS-based multi-criteria and 

hierarchical load balancing to effectively improve the load balancing in computational 

grid environments. The n-level architecture model has leaf level, intermediate level 

and root level which are interconnected hierarchically, and static or dynamic 

information of all resources within this model are stored in a global information 

system. The jobs are assumed to be generated from one local resource and will be 

prioritized by the local scheduler for local processing. If the job cannot be completed 

locally within a time constraint, it will be routed to the global scheduler which 

distributes the job to other resources that can execute within a time constraint inside 

the global cluster. In terms of fault tolerance capability, it was noted that the non urgent 

job will be routed to faulty resources and is expected to fail to undergo the rescheduling 

process to a better resource. It was also highlighted that the proposed algorithm should 

be coupled with fault tolerance techniques such as a checkpoint-based resubmission 

process to be more effective. Their proposed algorithm resulted in lower average 

completion time, higher throughput and maximum load balancing when compared 

with minimum completion time (MCT) and user demand aware grid scheduling 

models.  

 

2.1.3 Issues and Limitations of the Scheduling and Load Balancing in Grid 

Computing 

Scheduling is definitely one of the main components in the grid environment. Effective 

scheduling ensures that each job is assigned to the best resource. Most related works 
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often consider job processing time. However, in order to provide reliable and accurate 

scheduling, it is important to consider other job and resource characteristics such as 

size, current load, current bandwidth, availability and so on.  

 

Furthermore, the scheduling process simply assigns jobs to suitable resources without 

balancing the load. If, out of all available resources, there is only one best resource 

detected by the scheduling policy, the same resource will be assigned with jobs 

continuously while the other resources will remain idle (Rathore & Chana, 2014). 

Therefore, it is definitely crucial to also incorporate load balancing with job scheduling 

in order to avoid stagnation and provide fair resource utilization. Load balancing 

ensures that if the load of a resource is not within a normal state, the resource will have 

low probability to be chosen during the scheduling process. 

 

Another issue that should be considered during the scheduling process is resource 

availability. It is possible that the resource information in the grid information service 

(GIS) is not up-to-date and may lead to the scheduler performing a bad scheduling 

decision when the resource is temporarily unavailable. Increasing the frequency of 

information update in GIS could be the solution but this will increase system 

overheads. In addition, checking the resource availability before submitting the job is 

another good approach to reduce the possibility of unavailable resources being 

assigned to jobs (Sheikh, Nagaraju & Shahid, 2018). 

 

Table 2.2 summarizes the work related to job scheduling and load balancing in grid 

computing in terms of the main objectives and open issues. It can be seen that 

minimizing makespan is the most common objective as it indicates how quick an 
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individual task can be executed completely. The least common objective is load 

balancing because in a system without faults, the scheduling process that would 

indirectly consider load balancing can be performed easily due to the fact that each 

individual resource has more predicted capabilities and fitness. However, in a system 

with faults, resource capabilities and fitness are unpredictable and may change from 

time to time. Majority of fault tolerance algorithms focus on reducing faults and often, 

this requires jobs to be submitted to fit resources and eventually leads to unfair jobs 

distribution and poor resource utilization. 

 

Table 2.2 

Summary of literature related to job scheduling and load balancing in grid 

Authors Objective Drawback 

Kong et al. (2010) 
Reduce the makespan of the 

processing jobs 

Does not consider load 

balancing 

Sun et al. (2010) 

Minimize the makespan of 

processing jobs and maximize 

the utilization of resources 

Does not consider bandwidth, 

job size and historical record of 

processing state 

Sajedi & Rabiee 

(2014) 

Minimize completion time 

and avoid local minimum  

Unable to work efficiently when 

interruption happens 

Garg & Singh 

(2015) 
Minimize execution time 

Did not consider dynamic 

changes to the resource 

availability on executing task 

Sheikh, Shahid & 

Nagaraju (2017) 
Reduce makespan 

Dependency of next task to the 

previous task execution may 

lead to latency 

Younis & Yang 

(2018) 

Reduce the makespan of the 

scheduling process 

Does not consider throughput 

and load balancing 
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Sharma, Sharma 

& Dalal (2014) 

Reduce the average execution 

time and cost of the tasks 

Considers load balancing but 

not validated in the 

experimental results 

Maipan-uku, 

Konjaang & Baba 

(2016) 

Reduce makespan, increase 

resource utilization and load 

balancing 

Reliance on expected 

completion time along is not 

sufficient in faulty system 

Khan (2017) 

Reduce the processing time 

and increases resource 

utilization 

Resource within partition cannot 

be moved to other partition and 

lack of dynamic super node 

nomination 

Sheikh, Nagaraju 

& Shahid (2018) 

Load measurement before task 

execution to efficiently 

distribute load prior to task 

execution 

Suitable for system that needs 

minimum waiting time but not 

turnaround time 

Abdullah, Ali & 

Haikal (2019) 

Load measurement before task 

execution to efficiently 

distribute load prior to task 

execution 

Does not consider failures 

 

2.1.4 Grid Computing Simulation Tools 

Grid computing simulations tools are developed to overcome the challenges to deploy 

real grid environment which is costly and involves complicated infrastructure setup. 

In addition to that, the real infrastructure has limitations such as low scalability and 

reconfiguration possibility, and is inflexible to support hardware components and 

topology changes. There are several grid simulations tools available such as 

MicroGrid, Bricks, SimGrid, GangSim and GridSim (Mollamotalebi, Maghami & 

Ismail, 2013). In addition to that, there are several popular grid simulation tools based 
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on the number citations in descending order which are GridSim, SimGrid, OptorSim 

and GangSim (Prajapati & Shah, 2015). 

 

MicroGrid was introduced by Song et al. (2000) to allow establishment and evaluation 

of grid computing middleware, applications and services. It allows repetitive and 

controlled scientific experiments which run on virtual resources that are heterogenous 

physically. The MicroGrid is modeled to support applications developed using Globus 

toolkit, but it requires significantly huge amount of time to execution experiments as 

applications run on emulated resources (Buyya & Murshed, 2002). MicroGrid was 

used by Xia, Dail, Casanova and Chien (2004), Liu, Xia and Chien (2004), and Xhafa, 

Carretero, Barolli and Durresi (2007). 

 

Bricks was developed by Takefusa, Matsuoka and Nakada (1999) to support 

performance evaluation of scheduling schemes in computing environments such as 

grid and cluster. It allows simulation of computing systems behaviors that include 

scheduling, network topologies and processing plans. Its architecture is designed in 

such a way that components are replaceable when needed to accommodate various 

evaluations. Generally, it consists of two main units which are grid computing 

environment and scheduling unit. Client, network and server are part of grid computing 

environment, while applications and services such as database, monitoring, predictor 

and scheduler are part of scheduling unit. Bricks was used by Takefusa, Casanova, 

Matsuoka and Berman (2001). 

 

Gangsim was an enhancement of Ganglia monitoring toolkit that incorporates 

instances of virtual organization with simulated components developed by Dumitrescu 
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and Foster (2005). It focuses on simulating policy driven management infrastructure 

such as the number of CPUs and their time, network bandwidth and disk space. It 

supports capturing realistic grids behavior at high level, and not detailed behaviors of 

scheduler and jobs. Due to its immaturity, it was not implemented in the actual research 

experiments. 

 

SimGrid toolkit was firstly introduced by Casanova (2001) to allow simulation of 

computing application scheduling in heterogenous and dynamic grid environment 

more realistically. It was also proven to generate a more correct and accurate 

simulation results. Computing resources are treated as independent resources without 

a need for interconnection topology which allows simulation of wide range of 

computing environments as the users have flexibility to specify their topology 

requirements. According to Prajapati and Shah (2015), SimGrid was the second most 

popular grid simulation tool based on the number of citations by researchers. SimGrid 

was implemented by Lebre, Legrand, Suter and Veyre (2015), Hirofuchi, Lebre and 

Pouilloux (2015), Brennand, Duarte and Silva (2016), and Fanfakhri, Yousif and 

Alwan (2017). 

 

GridSim is an open source platform developed by Buyya and Murshed (2002) which 

has almost the same features as SimGrid in terms of ability to model heterogenous 

resources in addition to extensible information system that can store and query 

properties of the resources for designing resource discovery system. It allows 

simultaneous tasks execution to the same resource and supports both static and 

dynamic schedulers. The GridSim has a layered architecture where each layer has 

specific functions. One notable component of GridSim is the grid resource broker 
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which is responsible to receive submitted tasks and apply scheduling policies. Each 

user is connected to an instance broker, and all submitted tasks will go through the 

broker instead of direct access to the resources. Based on analysis performed by 

Prajapati and Shah (2015), GridSim is the most popular grid simulation tool due to 

highest citation counts and implementation in recent works such as Idris et al. (2017), 

Shukla, Kumar and Singh (2018), Garba et al. (2020), and Eng et al. (2020). 

 

Based on the list of grid simulation tool, GridSim is widely used by researchers in 

simulating their works due to its architecture that is close to the actual grid 

environment and flexibility to support wide range of simulation experiments. In 

addition to that, it is not only used for simulating grid environment, but also other 

application domains such as high performance computing (Eleliemy, Mohammed & 

Ciorba, 2016), cluster computing (Gabaldon, Guirado, Lerida, & Planes, 2016) and 

autonomous driving simulator (Trasnea et al., 2019). 

 

2.2 Fault Tolerance 

Fault tolerance is a method to keep the system working optimally even if any of its 

components are in a faulty status. A good fault tolerance system must deal with the 

availability, safety, reliability, and maintainability factors (Smith, 2017). The system 

must be available and ready to serve the user in the given time and at the same time 

can be reliable to work constantly over a long period of time with minimal disruption. 

A good fault tolerance system also has a high maintainability system and can deal with 

system failure without affecting the quality of the outputs. 
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2.2.1 Fault Tolerance in Grid Computing 

Fault tolerance is the ability of a system to perform its function correctly even in the 

presence of failure (Garg & Singh, 2011). Fault tolerance management is the process 

to identify and handle failures in grid computing (Farid & Hussain, 2017). This process 

includes identifying available failures and supporting reliable execution in the 

presence of failures (Keerthika & Kasthuri, 2012). In grid computing systems, there 

are dynamically changing conditions where resource performance changes from time 

to time, a resource may become unavailable without any notification and network 

connections become unreliable. Thus, it is important to define proper fault tolerance 

strategies and techniques to be used in designing the most reliable fault tolerance 

algorithm. 

 

Fault tolerance is one of the important issues highlighted in the distributed system. 

Distributed systems such as grid computing and cloud computing use multiple 

resources that are connected by a network to provide a high performance computing 

capability that cannot be achieved by a single computer. One of the main concerns in 

ensuring the performance of a distributed system is the way it handles the failure of 

one or multiple resources in real time. An efficient fault tolerance system can detect 

the faults and has the ability to recover from them without causing fatal failure to the 

system that requires user intervention. 

 

In grid computing specifically, fault tolerance system must be able to adapt with 

dynamic changes of the resources and executing jobs so that appropriate actions can 

be taken to ensure all the jobs can be completely reprocessed despite the presence of 

faults (Alzboon, Arif, & Mahmuddin, 2016). In addition to that, a good fault tolerance 
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system must have the ability to apply heuristic learning to improve the scheduling 

decision and jobs reassignment. As illustrated in Figure 2.4, the fault tolerance system 

in grid computing consists of five basic components which are shared grid host, 

scheduler, GIS, fault handler and grid resource broker. Shared grid host provides user 

interface for the grid user to submit jobs and retrieve the results. The scheduler is 

responsible to perform allocation decision based on user requirements. On the other 

hand, GIS contains information of all available resources such as processing element 

(PE) rating, number of PE per machine, and number of machines per resource.  

 

 

Figure 2.4. Basic architecture of fault tolerance system in grid computing 

 

The main component of fault tolerance is the fault handler which is responsible for 

detecting and mitigating failures by initiating fault tolerance techniques. Last but not 
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the least is the grid resource broker that groups and manages all the resources which 

may or may not reside in the same physical locations to take up submitted jobs. Section 

2.2.1 discusses in detail the existing fault tolerance strategies applied in grid computing 

systems. 

 

One of the most common fault tolerance strategies is fault detection which leverages 

fail signal or acceptance test in order to detect failures (Balasangameshwara & Raju, 

2012). Once detected, a proper mitigation plan will be executed as defined by the user. 

In dynamic environments, early error detection is very suitable to implement as error 

detection is done prior to submitting jobs to resources. In case any abnormalities are 

detected in a chosen resource, a migration plan will be executed by assigning another 

suitable resource to process a particular job (Rakheja, Kaur & Rkheja, 2014). This 

process will be repeated in each cycle, eventually reducing the possibility of error by 

assigning the job to the most reliable resource. Early detection is also related to fault 

prevention in which it is used to prevent faults and avoid the possibility of 

malfunctioning of resources. This process is often being applied during the scheduling 

and execution process. However, fault prevention techniques should be applied 

carefully to avoid overheads caused by excessive preventive measures which will 

eventually lead to inefficiency of the grid environment (Balpande & Shrawankar, 

2014). 

 

In addition to detection and prevention, a recovery strategy must be applied because 

all jobs are meant to be processed completely. Recovery refers to the process of 

recovering failed jobs so that they are completely processed in the end and also 

recovering failed resources so that they will be back online and fully functioning. Retry 
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and alternate resource techniques are commonly applied in recovery mode due to their 

simplicity. Qureshi et al. (2011) proposed a hybrid fault tolerance technique that is 

based on a combination of a simple alternate task with retry technique and task level 

checkpoint technique in which it inherits the best characteristics of both techniques. 

When the task fails for the first time, alternate task with retry technique will be invoked 

which means that the same task will be resubmitted using different execution 

characteristics. If the alternate task fails, the checkpoint manager would record the 

checkpoint before resubmitting the failed alternate task to the same resource. If the 

resubmitted alternate task fails for a second time, the system will resubmit the 

remaining incomplete task from the last checkpoint to another resource. The 

comparison was done between alternate task with retry and alternate task with 

checkpoint and the results showed that the checkpoint technique increases throughput 

and reduces turnaround time significantly. Regardless of the positive results from the 

experiment, the proposed algorithm does not seem to consider balancing the load of 

the entire system and applying the resource suspension technique which is important 

in order to avoid resources with a bad historical record to be assigned in the next 

execution. 

 

Fault tolerance time to release scheduling algorithm, which is based on transmission 

time and fault rate, was proposed by Keerthika and Kasthuri (2011). This algorithm 

considers user deadline and executes the job within an expected deadline by assigning 

it to the most suitable resource. The time to release (TTR) is calculated for each job 

and resource combination. By comparing the value of TTR against the expected 

deadline, the job will only be submitted to the resource that has a TTR lower than the 

expected deadline. This ensures that the resource is capable of processing the job 
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which eventually increases the hit rate or successful rate. However, this algorithm did 

not address the action needed to be taken during job processing failure which is very 

important because every job is meant to be processed successfully in the end. 

Additionally, it is also possible for the pool of resources to have a TTR of more than 

the expected deadline of all jobs due to limited bandwidth, limited processing machine 

and so on. Thus, it should be further extended to support dynamic scheduling which is 

aligned to the nature of the grid environment. 

 

The Fault Tolerance Min-Min policy, proposed by Keerthika and Kasthuri (2012), is 

proven to perform better with less makespan in the presence of failure and increases 

the number of successfully completed tasks. Makespan is the total time taken to 

completely process a set of jobs. Based on this algorithm, Keerthika and Kasthuri 

(2013) further improved its functionality by proposing the Bicriteria Scheduling 

Algorithm (BSA) which considers user satisfaction with a proactive fault tolerance 

method to reduce makespan, achieve better hit rate and higher user satisfaction. The 

BSA algorithm first constructs several matrices of jobs and resources such as expected 

time to compute, communication time and total completion time. Then, the failure rate 

of each resource will be calculated by dividing the total number of failed tasks with 

the total number of submitted tasks. The failure rate will be used to determine the best 

resource to execute the next task in the queue. Finally, the update will be carried out 

on the matrix by removing the completed task from the list. The results showed that 

the proposed BSA achieved a better hit rate and makespan than the Fault Tolerance 

Min-Min algorithm. Even though the proposed algorithm is effective in increasing the 

hit rate, it does not seem to have control over load balancing which means that 

resources with the lowest failure rate will potentially be overloaded. Furthermore, the 
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proposed algorithm can be further extended by considering resource load and resource 

availability to improve its efficiency in scheduling and fault tolerance. 

 

Application checkpointing with replication in the grid was proposed by Bawa and 

Singh (2012) to tackle the problem where a failed job needs to be re-executed from the 

beginning in the presence of failure which would increase execution time significantly. 

The proposed algorithm consists of managers and executers. The manager acts as a 

central point which keeps track of available executers through heart beat signal as well 

as storing checkpoint data. In addition, the replication manager is also present which 

will replicate checkpoint data from the initial manager. In contrast, executers will first 

determine whether checkpoint data exist in the database after it receives the job or 

thread from the manager. If data exist, checkpoint data will be restored, and execution 

will start from a previously saved checkpoint, or else execution will start from the 

beginning. In case of any failure that is causing checkpoint data to become corrupted, 

it can also be restored from the replication manager. Even though the proposed 

algorithm works effectively in a faulty environment, it creates a checkpoint overhead 

in the fault free environment as well as undertaking small tasks execution which means 

that the execution time may increase as the initial execution has to undergo all pre-

execution processes before being executed.  

 

Balasangameshwara and Raju (2012) proposed a fault tolerance load balancing 

algorithm to minimize response time and optimize node utilization. The submitted job 

will go through the local grid scheduler which replicates the job and discovers potential 

resources before sending it to the load balancing decision maker. The decision maker 

will decide whether to process the job locally or remotely. Regardless of local or 
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remote execution, the job will be forwarded to the fault detector which evaluates the 

availability of any proposed resource and if the proposed resource is not available, a 

failure message will be triggered to the fault manager which will activate the replicated 

job in the grid scheduler to undergo the rescheduling process. The grid scheduler uses 

a threshold which is calculated based on the load and demand for resources to decide 

which resources to assign to process the job. The drawback of this proposed algorithm 

is that the job will be rescheduled from its initial state which will lead to longer 

execution time if it fails continuously. 

  

The fault tolerance checkpointing system, proposed by Amoon (2013), considers the 

resource failure rate and average failure time to define the checkpoint interval for each 

job. In this system, resources will first be sorted based on response time, failure rate, 

and average failure time and then job assignment will be performed based on the sorted 

list. In the proposed algorithm, a failed job will be restarted from the last saved state 

which avoids time waste in reprocessing the failed job from the beginning. This 

process is handled by the checkpoint server that stores the snapshot of a partially 

completed job and checkpoint handler that is responsible to dispatch the job and 

retrieve checkpoints from the checkpoint server. Results showed that the proposed 

algorithm achieves higher throughput, lower turnaround time and lower failure 

tendency with a significantly low number of checkpoints. Instead of considering the 

load balancing, the scheduling process in the proposed algorithm is biased towards fit 

resources which would lead to unfit resources and never getting the job assigned. 

 

Rathore (2015) proposed priority-based scheduling with load balancing using fuzzy 

rules to increase resource utilization and decrease task execution time. Each task will 



 

49 
 

be assigned a priority based on length and input file size. The task priority can be static 

which will be kept for the entire life, or dynamic which may be changed by the 

scheduler from time to time. In addition to defining the task priority, resources are 

grouped into three groups whereby each group is set to be assigned with a specific task 

priority. During execution, the grid scheduler will check the availability of resources 

before assigning a task to ensure no case will arise where an unavailable resource is 

assigned to a task. However, the scenario where the resource fails to complete the task 

processing but still shows as an available status is not considered. This may lead to 

unfit resources being assigned to tasks even though the resource’s availability is not 

equivalent to its fitness which will eventually lead to an increase in execution failure 

despite having good load balancing. 

 

Rathore and Chana (2015) proposed a threshold-based hierarchical load balancing 

technique in grids by categorizing the load into several categories such as underload, 

overload, light load and normal load. Each category has its threshold value defined by 

the load deviation dynamically. This is referenced by the grid scheduler to distribute 

the job according to the load and perform job migration from an overloaded node to a 

lightly loaded node and underloaded node using the random selection strategy. The 

selection of resource is based on whichever resource has the minimum load. In terms 

of failure handling, a backup will be created by the local grid scheduler for each 

submitted job which is saved in a remote grid scheduler before node searching is 

initiated. Whenever failure happens, the fault manager will activate the backup by 

sending a signal to the remote grid scheduler to re-queue the backup into the local grid 

scheduler. The proposed algorithm results in lower response time, higher resource 

allocation efficiency, and lower communication overhead and makespan. Despite good 
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results, the fault tolerance approach was not validated in the experiments and the 

backup activation approach requires more time as the failed job will be reprocessed 

from the initial state. 

 

Singh and Bawa (2016) proposed the proactive fault tolerance algorithm for job 

scheduling that proactively focuses on preventing failure rather than curing it. Each 

resource will have its own performance index that is calculated based on historical 

information, workload, availability, response time, mean time to failure and mean time 

between failures. The performance index indicates the fitness of a resource and will be 

used as a reference during the scheduling process. In terms of fault tolerance 

capability, checkpoints will be captured on every 30% completion of every task. 

During the execution, the monitoring agent will continuously validate the performance 

index of executing resources against the threshold and, if it exceeds the threshold, the 

task may be shifted to other resources based on calculated shifting costs. The proposed 

algorithm was validated against a post-active heuristics algorithm and the results 

showed that it produced slightly lower execution time, lower faults rate and lower 

execution cost. Despite the promising results, the proposed algorithm does not employ 

the reactive action to reschedule tasks that failed during execution. 

 

Failure aware scheduling algorithm based on incremental checkpoint scheme was 

proposed by Singh (2016) to overcome the checkpoint overhead without affecting the 

system performance. The scheduling process considers the resource performance as 

well as failure rate to generate its capacity. Based on the capacity which may change 

from time to time, the tasks that are sorted in decreasing order based on load will be 

assigned accordingly. In terms of fault tolerance, full checkpoints are coupled with 
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incremental checkpoints that only capture the change from the last incremental 

checkpoint. Using this method, checkpoint overhead can be reduced as the 

reprocessing of failed task will happen from the last incremental checkpoint instead of 

from the last full checkpoint. On the other hand, by reducing the number of full 

checkpoints, the system memory can be reallocated for other purposes. The results 

showed that the proposed algorithm achieved better average response time when 

compared with speed only scheduling algorithm. Nevertheless, the experiments were 

conducted using small number of tasks and it is not entirely proven that the proposed 

algorithm is effective in processing large number of tasks. 

 

Haider and Nazir (2017) proposed a hybrid fault tolerance scheme based on proactive 

and reactive approaches as employed in existing fault tolerance mechanisms. The 

resource selection process is performed using a proactive technique while a reactive 

technique will be initiated for handling faults. The proactive technique starts with 

resource filtration based on location, availability and reliability and is followed by 

identification of optimal resources using GA based optimal resource identification. On 

the other hand, the reactive technique consists of failure prediction that detects possible 

failure based on hardware temperature and failure detection that receives information 

from the failure prediction component and from the hardware. The standard checkpoint 

interval is set to every 25% of job completion and will be reduced accordingly (every 

5% of job completion) based on information from the failure prediction component. 

Failed jobs will be resubmitted from the last checkpoint maintained by the checkpoint 

manager with minimized recovery time. The results showed that the proposed 

algorithm has higher throughput, lower average waiting time, average turnaround time 

and better efficiency (cost, energy and time). Despite the promising performance, the 
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implementation of direct resource filtration could cause resources that do not meet the 

criteria to never be assigned to jobs and, eventually, lead to poor load balancing. 

 

Hierarchical organization model for computational grid that offers grid scheduling, 

load balancing and fault tolerance was proposed by Abdullah, Ali and Haikal (2017) 

to introduce self repairing n-try dynamic hierarchical grid model for scheduling and 

replication of master resource on its child for load balancing. All the resources are 

organized in hierarchical form with multiple levels such as root level, intermediate 

level that consists of clusters, and leaf level that consists of community or child of 

individual cluster. Jobs submitted by the users locally will be executed by their own 

resource but it that cannot be completed within the time limit, the job will be submitted 

to the global scheduler which will assign the job to suitable resource within the cluster 

or within the community. In terms of fault tolerance, any failed resource will be 

replaced by its replica which is any of its child resource so that the hierarchical 

structure of all resource can be maintained. Results showed that the proposed 

algorithm achieved lowest average completion time and communication overhead, and 

highest tree stability ratio. Notwithstanding the performance of the proposed 

algorithm, the focus is to overcome resource failure rather than job failure. 

 

Fault tolerance nearest deadline first scheduled was proposed by Goswami and Das 

(2018) to provide periodical runtime backup to support job reprocessing from the last 

backup point to other alternative resources. This approach has the same concept as 

resubmission using checkpoint, which is commonly used in fault tolerance algorithms. 

Resources are grouped into the categories of underutilized, less loaded and overloaded 

which are used by the broker to define resource ranking. Each individual job carries 
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parameters that are referenced by the broker to find matching or higher capacity 

resources to process the job even during the reprocessing phase. The proposed 

algorithm is claimed to save resubmission time as well as execution time. However, 

the experiments were done using three clients, two resources and one broker which is 

considered very small scale and insufficient to conclude its performance for large scale 

infrastructures. 

 

The resubmission-based fault tolerance approach for jobs scheduling was proposed by 

Ahuja and Banga (2019) that uses a replica-based approach to overcome the limitation 

of the checkpoint approach that incurs overhead and time wastage. Before getting 

assigned to respective resources, a task will be divided into several subtasks by the 

subtask generator and managed by the subtask manager within GIS. Each subtask will 

be processed independently and in parallel. During failure, each subtask will be 

resubmitted to a different resource from the initial state instead of using the checkpoint 

approach. It is claimed that this approach saves a lot of time and reduces overhead 

which will eventually lead to better performance. Despite the promising approach, the 

experiments were done using s small number of tasks and resources and did not 

consider the load balancing of the system which is crucial in preventing stagnation. 

 

2.2.2 Issues and Limitations of Fault Tolerance in Grid Computing 

Faults will lead to errors that cause failure. In other words, preventing faults may 

reduce system failure as system failure is more difficult to deal with without human 

intervention. There are several techniques in identifying faults which include the push 

model, pull model, probability-based techniques and neural network-based 

approaches. Open issues related to fault tolerance include errors, failures and faults 
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detection and handling. These issues can be addressed via several strategies such as 

the effective fault identification technique, use of fault tolerance scheduling technique 

to perform resource allocation, logging problems for further analysis and improvement 

to better predict failures and impact to the system performance, and use of the hybrid 

fault tolerance technique that combines the best characteristics of multiple algorithms 

(Haider & Nazir, 2016).  

 

Reducing makespan, execution time, and resubmission time, as well as increasing 

success rate have been key objectives in fault tolerance. All these can be achieved by 

having the most effective fault tolerance algorithm, single or hybrid, that can overcome 

fault in less possible complexity to avoid overhead to the system. At the same time, 

other internal aspects such as resubmission or re-execution strategies, reliability of the 

checkpoint manager, optimal resource determination, and reoccurrence of failure 

prevention should not be neglected. For instance, recently failed resources should not 

be reassigned with jobs as the same failure could continue to happen because the 

resource is no longer fit. The checkpoint manager must be reliable in order to ensure 

that the checkpoint information or stored processed jobs will not be corrupted or may 

lead to overheads (Ahuja & Banga, 2019). Discrepancies to checkpoint information or 

saved jobs may lead to bad outputs and could be even more difficult to fix.  

 

Checkpoint technique is effective in reducing the reprocessing time when a job fails 

to be processed completely. However, having too frequent checkpoint records may 

lead to runtime overhead and eventually increases the makespan (Garba et al., 2020). 

On the other hand, not having enough checkpoint records may reduce the benefit of 

having a checkpoint technique as the amount of time saving is not so significant. Thus, 
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it is important to properly control the amount of checkpoints to obtain full benefits and 

improve the system performance in the presence of faults. 

 

Another important issue in fault tolerance is load balancing. Typically, load balancing 

is being disregarded due to the primary focus on applying fault tolerance techniques. 

Ultimately, the system may be good at handling faults but inefficient in ensuring load 

balancing in the presence of faults. Thus, resource determination during initialization 

or resubmission should also consider the fitness or execution history of each resource 

in addition to the current load in order to tackle both fault handling and load balancing 

(Idris et al., 2017). 

 

Table 2.3 summarizes the works related to fault tolerance in grid computing in terms 

of the main objectives and open issues. Most of the fault tolerance algorithms do not 

consider the load balancing aspect as there is a big trade-off between achieving good 

load balancing and minimizing makespan. To achieve the minimum makespan, tasks 

should be distributed to the fit resources and, often, this method would reduce the 

utilization of resources. On the other hand, to achieve good load balancing, both fit 

and unfit resources should be assigned with tasks based on their capacities and 

execution history to increase resource utilization. 

 

Table 2.3 

Summary of literatures related to fault tolerance in grid 

Authors Objective Drawback 

Qureshi et al. 

(2011) 

Increase throughput and 

reduce turnaround time 

Does not consider load balancing 

and resource execution history 
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Keerthika & 

Kasthuri (2011) 
Increase hit rate  

Does not address the situation 

where most or all resources have 

time TTR than expected deadline 

Balasangamesh

wara & Raju 

(2012) 

Minimize response time 

and optimize node 

utilization 

Failed jobs rescheduled from the 

initial state 

Bawa & Singh 

(2012) 
Reduce execution time 

System overhead due to 

implementation of checkpointing 

and replication 

Amoon (2013) 

Increase throughput, lower 

turnaround time and lower 

failure tendency with 

significantly low number of 

checkpoints 

Bias towards fit resource, does 

not consider load balancing 

Keerthika & 

Kasthuri (2013) 

Reduce makespan, better 

hit rate and user 

satisfaction 

Does not consider load and 

resource availability 

Rathore (2015) 

Increase resource 

utilization and decrease 

execution time 

Does not consider resource fitness 

Rathore & 

Chana (2015) 

Reduce communication 

overhead and makespan, 

and increase resource 

allocation efficiency 

Job backup at local resource may 

increase memory overhead 

Singh (2016) 
Reduce checkpoints 

overhead  

Validated on small number of 

tasks but not large number of 

tasks 

Singh & Bawa 

(2016) 

Prevent failure rather than 

cure  

Does not employ the reactive 

action to reschedule tasks that 

failed 
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Abdullah, Ali & 

Haikal (2017) 

Overcome resource failure 

using resource replication 

technique  

Focus on resource failure rather 

than job failure 

Haider & Nazir 

(2017) 

Reduce cost, energy and 

time 
Does not consider load balancing 

Goswami & Das 

(2018) 

Save resubmission time 

and execution time 

Applicable only to small scale 

system 

Ahuja & Banga 

(2019) 

Overcome the limitation of 

checkpoint approach that 

incurs overhead and time 

wastage 

Does not consider load balancing 

 

2.3 Ant Colony Optimization 

Years ago, researchers started to investigate the behavior of real ants such as foraging 

and nest construction. For instance, a double bridge experiment which was conducted 

by Goss, Aron, Deneubourg and Pasteels (1989) to investigate the foraging behavior 

of real ants. Ants move in a continuous path from nest to food source as shown in 

Figure 2.5 (a). When there is an obstacle, as shown in Figure 2.5 (b), ants will randomly 

decide to turn right or left without knowing which direction has the shortest path, as 

shown in Figure 2.5 (c). It is known that whenever an ant traverses, it will deposit a 

chemical substance called pheromone that evaporates at a certain rate along the way. 

By assuming that each ant moves at the same speed and takes the same route to return 

to the nest, the shortest path will have more pheromone proportionally with the number 

of traversed ants. The level of pheromone on each path will be an attraction factor for 

incoming ants and the optimal path will be introduced after a certain cycle, as shown 

in Figure 2.5 (d). 
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Figure 2.5. Ants behavior in foraging process (Perretto & Lopez, 2005) 

 

ACO is a biologically inspired algorithm that provides an adaptive concept for solving 

optimization problems and designing metaheuristics algorithm (Dorigo & Stützle, 

2004; Ferdaus, Murshed, Calheiros & Buyya, 2014). This algorithm is based on an 

evolutionary approach where the best solution is searched by a group of ants that work 

together within the colony. The complete solution is built by combining all the 

individual solutions of each ant which, in another term is known as pheromone deposit, 

on a chosen solution or path. The strength of pheromone is used by other ants as a 

reference to choose the most optimized path. An ant will first search for the path by 

using a probabilistic decision rule that considers the pheromone left on a specific trail 

over the total pheromone left on all trails. The probability will be relatively controlled 

by the amount of pheromone and distance between job and resource. The amount of 

pheromone will continue increasing whenever the trail is chosen by an ant, making it 

more attractive to the next ant (Ankita & Sahana, 2019). Typically, the evaporation 

rate is a constant value defined before the execution. However, constant value is not 

suitable to be used in a dynamic environment where execution parameters may change 

from time to time. Thus, it is essential to dynamically define the evaporation rate so 

that it will not be too high or too low. The adaptive evaporation rate formula was 
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proposed by Mavrovouniotis and Yang (2013). If stagnation occurs, the evaporation 

rate should be increased so that the high intensity of the pheromone trail can be 

eliminated and eventually will increase exploration. In contrast, if there is no 

stagnation, the evaporation rate should be decreased gradually so that the optimal 

solution can last longer. 

 

The concept of solution construction by combining individual solutions is the key 

criteria for ACO to be widely adopted and adapted in solving job scheduling, load 

balancing and fault tolerance algorithm in dynamic grid environment (Idris et al., 

2017). The ACO itself is dynamic in nature because it is designed to work in dynamic 

environments (Chowdhury et al., 2019). For instance, in job scheduling problem, ACO 

is typically used to improve the scheduling decision by considering the size of jobs, 

capacity of resources and distance between both (Ku-Mahamud & Nasir, 2010; Tiwari 

& Vidyarthi, 2016). In load balancing aspect, the pheromone trail is an important value 

to indicate the desirability of constructed paths or resources. According to ACO 

concept, the higher the pheromone value, the more desirable the path or resource is. 

This indication is often used to determine potential congestion or stagnation in the 

system to invoke necessary action to avoid such events (Karimpour, Khayyambashi & 

Movahhedinia, 2016; Mahato et al., 2019). In terms of fault tolerance, the same 

concept used to solve job scheduling and load balancing problems is further extended 

to consider additional aspects to improve fault tolerance capability. This includes the 

pheromone value that indicates the resource fitness and job scheduling decision during 

reprocessing stage (Prashar et al., 2014; Rajab & Kabalan, 2016). 
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The Ant System (AS) was the first member of well-known ACO algorithms proposed 

by Dorigo, Maniezzo and Colorni (1991), Dorigo et al. (1991) and Dorigo (1992) with 

the aim to search for the optimal path from the graph constructed based on ants’ 

behavior to seek for a path between colony and food source. The AS was also applied 

in the Traveling Salesman Problem algorithm proposed by Dorigo and Gambardella 

(1997a, 1997b). AS consists of three different versions such as ant-density, ant-

quantity and ant-cycle. The ants update the pheromone directly when they move from 

one city to another in ant-density and and-quantity. However, in ant-cycle, the 

pheromone update is only applied when all the ants completed the tours. Generally, 

AS consists of two main phases which are solution construction and pheromone 

update. In solution construction phase, probabilistic decision rule based on pheromone 

and heuristic values is used to decide the next node that the ants should visit. Then, the 

unvisited arcs will undergo pheromone evaporation to reduce their attraction factor for 

the next ants while he visited trails will undergo pheromone update or deposition to 

increase the attraction factor for the next ants. In the end, an optimal trail will be 

constructed from source node to the destination node. In short, ants would construct 

the solution and only follow the pheromone update process which resulted in a 

dramatic decrease in performance when the size of test instances increased.  

 

The first known improvement of AS is called Elitist strategy for Ant System (EAS) 

which was introduced by Dorigo et al. (1991, 1996). The improvement was done in 

terms of providing additional reinforcement to the arcs belonging to the global best 

tours on top of the standard operations of AS. In other words, the global best tours will 

receive additional pheromone deposit by the best-so-far ant in every iteration even if 
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the trail is yet to be visited. The main aim of EAS is to allow the ants to find better 

tour with lower number of iterations. 

 

Another improvement of AS is called rank-based ant system (ASrank) which was 

introduced by Bullnheimer, Hart, and Straub (1999). In ASrank, each ant is sorted and 

ranked according to its tour length and the quantity of pheromone to be deposited is 

weighed according to the rank whereby the shorter the length, the higher amount of 

pheromone will be deposited. As in EAS, the best-so-far ant will be given priority to 

deposit more pheromone during iteration. In additional to that, only the best ranked 

ants and the ant that produces the best-so-far tour are allowed to deposit the 

pheromone. Both ASrank and EAS produced significant improvement over AS with 

ASrank achieved slightly better performance than EAS. 

 

To extend the capability of the AS algorithm, Dorigo and Gambardella (1997a, 1997b) 

proposed the ACS. First, the proposed algorithm uses a more aggressive action choice 

rule when compared to the AS. Then, it adds the pheromone to arcs that belong to the 

global best solution and, lastly, it reduces some of the pheromone from the arc upon 

usage of the chosen path. In terms of the pheromone update process, only the global 

best ant is allowed to add pheromone after each iteration and the update is applied to 

the global best path only. This process is known as the global updating rule which 

reduces the probability of an already visited path being chosen by the next ant in order 

to increase the exploration probability for a yet to be visited path. However, there are 

cases where iteration-best solution is also implemented in the ACS. 
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In ACS, the movement of ants from one node to another is performed using two basic 

rules which are pseudorandom proportional rule based on exploitation mechanism and 

exploration mechanism based on probability distribution rule as in AS. The desirability 

of ants to choose either rule is controlled using fixed variable which is controlled by 

the user. There are two types of pheromone update introduced in ACS which are local 

pheromone update and global pheromone update. The local pheromone update is 

applied when the ant moves from one node to another to reduce the pheromone 

intensity of the visited arcs by using evaporation concept. This approach is used to 

reduce the attraction factor of visited arcs to increase the exploration of the next ants. 

On the other hand, the global pheromone update is applied by the best-ant-so-far to 

increase the pheromone intensity of the global best path. This action is essential to 

increase the attraction factor of the arcs for the next ants that select exploitation 

mechanism to perform the tour (Alobaedy, 2015).  

 

Typically, the ACS focuses on the global-best solution which might lead to poor 

quality solutions found by ants. To overcome this possibility, Max-Min Ant System 

(MMAS) was introduced in order to exploit the iteration-best solution while 

maintaining other criteria set by the ACS (Stützle & Hoos, 2000). This means that each 

iteration could have a different best solution or similar best solution from previous 

iterations. Meanwhile, in the ACS, the best solution from previous iterations will be 

adopted by the new iteration. Additionally, the trail limit is also set within a defined 

range so that no path has too high or too low a pheromone value. Even though MMAS 

produced better results when compared with the ACS in certain implementations, the 

range definition will not be used in the proposed algorithm since the load balancing 

component will ensure that no resource will ever have too high or low a pheromone 
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value. However, often, ACO consists of a mixture of the AS, ACS and MMAS in order 

to tackle specific problems. For example, a pheromone update technique could be 

derived from the ACS while the probabilistic decision rule could be derived from the 

AS. 

 

Each ACO variants have similarities and differences which are introduced to overcome 

the disadvantages of previous variants. Table 2.4 summarizes the key differences of 

each variant. 

 

Table 2.4 

Summary of key characteristics for various ACO variants 

ACO Variant  Key Characteristic 

AS 
 Each individual ant deposits the pheromone on visited arcs 

during the tour 

EAS 
 Additional reinforcement for best-so-far ant to deposit more 

pheromone to the arcs 

ASrank 

 Pheromone deposit is controlled based on the rank of tour length 

for each ant and only best-so-far ant can update significantly 

large pheromone 

ACS 

 Focus on search experience with global pheromone update and 

local pheromone update that can be controlled to increase the 

exploitation or exploration 

MMAS 

 In addition to exploiting the best tour found, range of 

pheromone is defined to limit the pheromone evaporation to go 

below the minimum limit and pheromone will be reinitialized 

once the stagnation is detected 

 



 

64 
 

Over the years, ACO has evolved throughout many variants to overcome the 

limitations of predecessor AS algorithm. Despite many variants of ACO, ACS has 

been the variant adapted and improved widely by the researchers to cater different 

application domains and problems such as routing, scheduling, load balancing and 

fault tolerance. Often, researchers used the term ACO more commonly as the proposed 

ant-based algorithms consist of combination of multiple variants or only parts of the 

original variant are adopted and adapted. However, there are also researchers that 

specifically used the name of the variant as the originality of the variant is fully adopted 

and adapted with improvements. Despite the inconsistencies in the term, the concept 

of ACO is still the core of the algorithm. 

 

2.3.1 ACO-based Scheduling and Load Balancing in Grid Computing 

ACO-based scheduling and load balancing has been widely implemented in distributed 

systems such as grids (Bagherzadeh & MadadyarAdeh, 2009; Sharma, Sharma & 

Dalal, 2014; Prashar et al., 2014; Idris et al., 2017; Kumar & Vengatesan, 2019), cloud 

(Nishant et al., 2012; Chen & Long, 2019) and cluster (Llanes et al., 2016). The main 

objectives of scheduling and load balancing in various distributed systems are 

relatively similar but, in each system, there are specific considerations such as the 

resource load or capacity in grid, type of resources in cloud, and interaction between 

cluster heads or within the cluster itself. The adaptability of ACO to consider these 

specific considerations is one of the main reasons why it remains one of the promising 

algorithms that can be further enhanced. 

 

Bagherzadeh and MadadyarAdeh (2009) proposed an improved ant algorithm for 

static grid scheduling with the aim to minimize jobs processing time and balance entire 



 

65 
 

resources in grid computing systems. Every single ant will have its own job to resource 

the matrix which is also known as the scheduling list. Then, a minimization function 

will be applied before a probabilistic decision formula is calculated to update the 

pheromone trail for each job and resource pair. Ultimately, the best solution will be 

identified. The proposed algorithm was experimented and compared with 

Opportunistic Load Balancing, Minimum Execution Time, MCT, Switching 

Algorithm, K-Percent Best, MinMin, MaxMin, MaxStd, Dupplex, and previous ACO 

algorithm and the results showed that it performed better in terms of minimizing 

makespan. Alternatively, improved ACO was also claimed to have good load 

balancing among machines and can be further enhanced by incorporating local search. 

 

Enhanced heuristic function in ACS was proposed by Ku-Mahamud and Alobaedy 

(2012) to solve stagnation problem in grid computing system. The proposed algorithm 

differs from the traditional ACS where the new heuristic function is introduced to 

either increase or reduce the heuristic value based on the quality of the best-so-far 

solution. The heuristic value will be updated only once on each edge if it is part of the 

best-so-far edge. The heuristic value update is performed after the global update 

process that is based on the best-so-far solution is applied after the ant has constructed 

the solution. The enhancement was claimed to be able to eliminate stagnation problem 

if the heuristic value is updated multiple times. The improved ACS showed good 

results when compared with the traditional ACS in terms of makespan and resource 

utilization. 

 

Improved Auto-Controlled Ant Colony Optimization (IAC-ACO) was proposed by 

Tiwari and Vidyarthi (2016) to achieve faster convergence of the solution and increase 
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the probability of exploitation around the best ant. IAC-ACO introduces the lazy ant 

component in balancing convergence and diversification during the searching process. 

The lazy ant is mutated from the best ant which carries some information that helps to 

reduce the effort required to construct new path. According to the authors, the lazy 

ants copy 80% of the path constructed by the best ants. The auto-control mechanism 

has also been introduced by IAC-ACO to update the heuristic information after each 

allocation of the task in adapting and updating the changes in the grid system. IAC-

ACO showed good performance when compared to the previous auto-controlled ant 

colony optimization algorithm in terms of computational time.  

 

Load balancing using the ACO and Max-Min technique was proposed by Karimpour, 

Khayyambashi and Movahhedinia (2016) to prevent stagnation in grid computing 

systems. The resource manager identifies the best resource based on pheromone value 

that is stored in the matrix. Once the best resource is identified, global pheromone 

update will be performed to renew the status of all resources. On top of pheromone-

based resource identification, the pheromone value is validated against the threshold 

to prevent it from decreasing below the minimum limit or increasing beyond the 

maximum limit. This method increases resource utilization and eventually leads to 

lower possibility of stagnation during execution. The proposed algorithm was 

validated with other algorithms in terms of execution time and response time and 

results showed that it outperformed all the algorithms in both aspects. Despite the 

promising performance, it was not validated in terms of load balancing aspect. 

 

Hajoui, Bouattane, Youssfi and Illoussamen (2018) proposed a fuzzy hybrid 

scheduling algorithm by hybridizing Q-learning and ACO algorithms. There are two 
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phases being performed in the proposed algorithm, the first phase utilizes the ACO to 

perform parallel searches on optimal network links between jobs dispatcher and 

resources. Once the network link is identified, pheromone will be deposited by the 

ants. At the same time, jobs dispatchers will also reward or penalize resources based 

on their condition, powerful or weak, and these values will become the input for Q-

learning calculation in the second phase. Q-learning is used to schedule jobs to suitable 

resources through calculated Q for each machine in which the machine with highest Q 

is selected to receive jobs. The proposed algorithm was compared with single ACO 

and Q-learning algorithm in terms of the performance ratio against the load balancing 

theoretic and it achieved the lowest ratio. However, the experiments were done on 

small number of resources and jobs, and it was not shown that the proposed algorithm 

can perform optimally when dealing with a more complex and heterogenous tasks.  

 

Arora and Mehta (2018) proposed resource and task scheduling by combining ACO 

and round robin scheduling to improve resource management in grid computing. The 

initial scheduling process is performed using a round robin process that uses time 

quanta which is tied to each job to handle user requests. Jobs will be assigned to 

resources to be processed; if processing is not completed within the allocated time, the 

remaining incomplete job will undergo another round of round robin process. This 

process will continue until all the jobs are completely processed. The round robin 

process is simple in nature, leading to less overheard during the scheduling process. 

Once all the jobs execution is completed, the ACO process will take place to update 

the pheromone of each resource for the next batch of execution. The proposed 

algorithm was validated against the non-heuristic load balancing algorithm and the 

results showed that it achieved lower execution time and resource costing. 
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Notwithstanding the performance, the experiments were carried out on small number 

of resources and jobs, and may not be efficient when processing large jobs that are 

prone to unexpected delays which will eventually lead to frequent incomplete 

processing within the allocated time. 

 

Mahato et al. (2019) proposed a hybrid swarm intelligence algorithm known as load 

balanced transaction scheduling based on CS-ACO in solving the scheduling and load 

balancing problem in grid computing. The proposed algorithm first applies CS 

algorithm to find the optimal assignment of nodes to one of the clusters by considering 

the load. The cluster with minimum cost will be selected as the best cluster to undergo 

the steps in ACO algorithm to perform the load balancing which includes solution 

construction by ants, pheromone update and daemon actions. Combination of these 

two algorithms can control the distribution of jobs in the system. Experimental results 

showed that the proposed algorithm outperformed other algorithms in terms of 

throughput, makespan, miss ratio and load balancing speedup. However, by focusing 

on balancing the load on specific cluster, the resource utilization is being disregarded 

despite the solution would lead to the lowest makespan. 

 

The trust-based resource selection approach based on ACO was proposed by Kumar 

and Vengatesan (2019) to overcome the local optima problem of ACO. The trust factor 

is incorporated in the heuristic information to determine the weight of attraction of 

each resource which will influence the amount of pheromone deposited by the 

pheromone updating rule at a particular resource. At first, the solution construction is 

performed using ACO until convergence happens. When convergence happens, a 

population of fireflies will be spawned and the fitness of all fireflies will be evaluated 
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and ranked accordingly. This process will continue until maximum iteration is found 

which will produce the optimal result. The proposed algorithm resulted in a slight 

decrease of makespan and performance improvement. Since the proposed algorithm 

takes output of one algorithm as input for another algorithm, overhead may occur due 

to intensive solution construction performed by two algorithms consecutively. 

 

Based on the related works discussed, many researchers have used the ACO approach 

in solving scheduling problems. The initial pheromone value is used to define the 

fitness of resources while the pheromone update mechanism is used to balance the load 

to overcome stagnation. Further exploration is needed in order to incorporate effective 

scheduling, load balancing and fault tolerance using the ACO approach, in grid 

computing specifically. 

 

2.3.2 ACO-based Grid Fault Tolerance 

Trust-based ant colony optimization (TACO) for grid resource scheduling was 

proposed by Wenming et al. (2009) whose research aimed to minimize the completion 

of jobs, balance all the workload on available resources and, at the same time, 

introduce the resource-oriented trust mechanism to handle the resource failure 

problem. The initial pheromone value for resource selection process considers the 

characteristics of each resource such as number of processors, processing power, 

communication capability, disc capacity and trustworthiness of resources. The 

trustworthiness factor depends upon the job processing status where the 

trustworthiness factor will increase if the job successfully processes the submitted job 

and vice versa if the job processing fails. The resource with high trustworthiness value 

will be selected to process the submitted job. In terms of action to be taken after job 
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processing failure, the rescheduling mechanism was proposed where the grid system 

will re-append a failed job into the job queue to be processed by other available 

resources. Local and global pheromone updates are also included in this algorithm to 

solve load balancing problems. Experimental results showed that the proposed 

algorithm performed better in terms of completion time and number of successful 

processing jobs when compared with Min-Min algorithm. However, the proposed 

algorithm did not consider the characteristics of submitted jobs during the resource 

selection process and the trustworthiness means that there is a possibility that the same 

resource will be chosen in the next cycle if its initial pheromone value remains high as 

compared to other resources which could eventually expose the next execution cycle 

to failure. However, this problem could be addressed by extending the trustworthiness 

determination to also consider resource suspension so that the resource can be marked 

as unavailable for a defined cycle to allow it to go through the recovery process such 

as rebooting and cache clearance. Furthermore, the performance of the proposed 

algorithm was not compared with the traditional ACO algorithm, thus making it 

difficult to validate the effect of proposed steps against the traditional ACO algorithm. 

 

A study by Modiri et al. (2011) proposed a new algorithm to manage fault in grid 

computing by combining the ACO algorithm and DAG. By using the DAG method, 

all tasks are sorted by their dependency which means that the offspring task may not 

begin its work until the parent task is completely executed. All the sorted tasks will go 

through the resource allocation process using ACO where ants will try to find the 

optimal path for each combination of task and resource. Once the resource allocation 

is done, tasks will be executed according to their sorted order. The local and global 

pheromone update techniques were used to balance the system load. The proposed 
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algorithm was compared with the Heterogeneous Earliest Finish Time and Critical 

Path on a Processor algorithms and the results showed that the execution time is 

significantly improved in addition to better task distribution to all resources. Even 

though the proposed algorithm tried to increase fault tolerance throughout effective 

resource allocation, it does not cover the recovery process when a fault occurs. 

Effective fault tolerance should consider minimizing the occurrence of faults as well 

as ways to ensure failed tasks are also executed completely.  

 

Hybrid ACO with GA was proposed by Mandloi and Gupta (2013) in order to 

overcome the uncontrolled nature of the metaheuristic of ACO which could degrade 

the performance of grid allocation. GA is used to choose whether to increase or 

decrease pheromone update parameters in ACO. At first, ants will randomly select 

resources to be assigned into subsets. Then, each subset will be evaluated to find the 

lowest estimated error, following which it will be sorted in an ascending order. The 

best subset will be used to execute tasks in each iteration and the pheromone trail for 

the chosen subset will be updated in each iteration. Resources within the best subset 

will have a high chance of being selected in the subsets of the next iteration. The 

experimental results showed that the proposed algorithm increases the job completion 

rate and reduces the job failure rate as compared to traditional ACO and particle swarm 

optimization. However, the proposed algorithm can be further upgraded by 

considering the load balancing aspect and the way to handle job failure when it 

happens. 

 

The tentative Ant Colony algorithm was proposed by Sharma, Sharma and Dalal 

(2014). Typically, ACO focuses on pheromone updates at the path the ants traverse. 
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However, the proposed algorithm focuses on pheromone updates at the resource in 

which the update is done based on the task’s execution status. If the execution is 

completed successfully, an encouragement argument will increase the pheromone 

value which will give the resource a higher possibility to be chosen by the next ant. 

However, if the execution fails, a punishment argument will decrease the pheromone 

value making it less desirable for the next ant to choose. Both encouragement and 

punishment arguments will ensure the best resource is assigned to execute a specific 

task. Results showed that the proposed algorithm performed better in terms of low 

processing time and low processing cost when compared with the random resource 

allocation algorithm. Nevertheless, it does not include a strategy to resubmit or 

reprocess failed tasks even though it checks for execution status. 

 

Fault tolerance ACO (FTACO) using the checkpoint in grid computing was proposed 

by Prashar et al. (2014) to solve fault and load balancing problems by finding the 

optimal resource as well as detecting the occurrence of failure during job execution. 

At first, threshold level of nodes is declared which will be used to control the load of 

resources. The selection of nodes is based on the resource load whereby if the load is 

lower than the threshold level, the resource will be assigned with tasks and the 

execution will be managed by the checkpoint manager. A component called the fault 

index manager, which is connected to the checkpoint manager, is introduced to record 

the failure history that is used as a reference in the next job assignment. Fault index 

will be decreased upon job completion or increased upon job failure. In addition to the 

checkpoint manager, part of execution outputs or known as checkpoints are stored in 

checkpoint server which are retrievable upon failure. When failure occurs, failed tasks 

will be rescheduled to alternative optimal resources using the checkpoint technique 
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from the last saved state instead of from the beginning. In terms of the load balancing 

aspect, tasks will have a higher possibility of being assigned to resources with a low 

workload. The workload is indicated by the pheromone value of each resource which 

will continuously be updated in every checkpoint call. Although the proposed 

algorithm looks promising, it is simply a conceptual algorithm which has not been 

developed and validated to prove its claimed performance. 

 

The ant-based dynamic load balancing algorithm was proposed by Rajab and Kabalan 

(2016) in which lower and upper thresholds were introduced to determine the load 

status on resources. In the proposed algorithm, the pheromone is associated with the 

resource instead of the path, as in traditional ACO. The task assignment process 

considers the resource with the highest pheromone value to be assigned with the task, 

followed by pheromone decrease once the task is allocated. When the task execution 

is successful, the pheromone will be increased and if the task execution is not 

successful, the task will be added back into the task queue. After the task execution is 

done, regardless of success or failure, the imbalance of load in resources will be 

checked to determine whether tasks should be migrated to an underloaded resource or 

retained at the current resource. The proposed algorithm outperformed randomized 

algorithm in terms of execution cost and makespan. Despite having the mechanism to 

balance the load, the proposed algorithm only considered each task as a single task 

whereby if it fails, it will be reprocessed from the initial state which could lead to 

longer makespan should the same task keep failing due to system instability.  

 

An improved ACO algorithm with fault tolerance (ACOwFT) was proposed by Idris 

et al. (2017) that combines checkpoint and resubmission techniques. At first, the jobs 
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are submitted to the scheduler handler which is responsible to get the list of available 

resources from GIS using gridlet dispatcher and get current load from the resources 

pool. At the same time, fault index that is maintained by the fault index handler during 

execution is also retrieved and information is forwarded to the gridlet dispatcher. Once 

resource information is available, resources load and fault index are will be used to 

identify which resource is ready to be assigned with jobs. Once identified, jobs will be 

submitted to the checkpoint handler. The checkpoint handler works closely with a fault 

index handler to determine the resource failure rate to control the checkpoint interval 

and the number of checkpoints, which is claimed to minimize job processing time and 

increase throughput. The checkpoint handler interacts with a scheduler to perform 

unconditional job scheduling that includes both initial submission and resubmission 

after failure. ACOwFT was inspired from ACO without fault tolerance by Moallem 

(2009) in which it was reimplemented with additional fault injection mechanism for 

validation purpose. In reimplemented ACO without fault tolerance algorithm, the 

faults are injected and standard rescheduling process which is based on the resource 

load will be invoked without checkpoint mechanism. When compared with ACO 

without a fault tolerance algorithm (ACO), the results showed that the proposed 

algorithm reduces makespan, increases throughput and average turnaround time. 

Despite having good performance, the consideration of resource load alone is believed 

not to be an effective method to determine the resource fitness and may lead to a higher 

chance of execution failure. 

 

Garba et al. (2020) proposed an enhanced checkpointing system that dynamically 

controls the checkpoint interval based on failure rate, response time and number of 

checkpoints per individual job. The proposed algorithm was enhanced from Idris et al. 
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(2017) in terms of replicating checkpoint states to other resources in addition to having 

dynamic checkpoint intervals calculation. The benefit of replicating checkpoint states 

to other resources is that whenever the checkpoint manager fails to retrieve the 

checkpoint state from the failed resource, it can be retrieved from other resources. The 

results showed that the proposed algorithm achieved improvements in terms of 

makespan, throughput and turnaround time when compared with Idris et al. (2017). 

However, it was noted that the replication technique requires more efficient memory 

management to allocate or deallocate replicas together with a higher cost to deploy 

and maintain the system, and the load balancing aspect was not considered and 

validated in the experiments. 

 

Based on all the related works reviewed, ACO is considered as a potential algorithm 

in grid computing to solve fault problems. Several approaches have been identified to 

provide fault tolerance such as checkpointing, job resubmission, resource 

trustworthiness amongst others. However, out of all approaches, job resubmission with 

resource trustworthiness and suspension seems to be an approach that can be further 

explored to improve the fault tolerance aspect without disregarding the performance 

as well as being able to adapt to dynamic grid environments. 

 

Table 2.5 shows the summary of ACO-based fault tolerance algorithms. Algorithms 

proposed by Modiri et al. (2011), Mandloi and Gupta (2013) and Sharma, Sharma and 

Dalal (2014) only applied fault avoidance technique by reducing the possibility of 

faults through improved scheduling process which is claimed to directly control the 

fault in the system. On the other hand, algorithms proposed by Wenming et al. (2009), 

Prashar et al. (2014), Rajab and Kabalan (2016), Idris et al. (2017) and Garba et al. 
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(2020) possess several fault tolerance techniques that do not simply focus on the 

scheduling process but, also, the techniques to handle faults during runtime. The 

application of fault tolerance techniques is important as it ensures that the system can 

still operate in faulty conditions with minimal impact to the jobs submitted by the user. 

Techniques such as job migration and job retry are the most popular techniques as it 

allows failed job to be resubmitted to the queue for reprocessing until all the jobs are 

completely processed.  

 

Table 2.5 

Summary of ACO-based fault tolerance in grid 

Author 
Proposed 
Algorithm 
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Issues 
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Fault Tolerance Technique 
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Wenming et al. 
(2009) 

TACO 
Scheduling and 
load balancing 

√ X X √ X √ X 

Modiri et al. 
(2011) 

ACO algorithm and 
DAG method 

Scheduling and 
load balancing 

√ X X X X X X 

Mandloi & Gupta 
(2013) 

Hybrid ACO with 
GA  

Scheduling √ X X X X X X 

Sharma, Sharma 
& Dalal (2014) 

Tentative ACO Scheduling √ X X X X √ X 

Prashar et al. 
(2014) 

FTACO Load balancing √ √ √ X X X X 

Rajab & Kabalan 
(2016) 

Ant based dynamic 
load balancing 
algorithm 

Scheduling and 
load balancing 

√ √ X √ X √ X 
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Idris et al. (2017) 
An improved ACO 
algorithm with fault 
tolerance 

Scheduling and 
load balancing 

√ √ √ √ X X X 

Garba et al. 
(2020) 

Enhanced 
checkpointing 
system with 
replication 

Scheduling and 
load balancing 

√ √ √ √ √ X X 

 

2.4 Summary 

Grid computing is an important application domain due to its primary focus on data 

processing which is critical and requires robust system. The most recent application 

domain such as cloud computing emerged from the grid computing but with primary 

focus on providing services such as data sharing, storage, software as a service, 

platform as a service and infrastructure as a service, that also includes high 

performance computing offered by the grid computing system. In order to solve 

failures in grid computing, many researchers have proposed fault management 

algorithms which consider the processing time of each job and utilization of each 

resource. Based on the previous research conducted, ACO is proven to be the most 

promising algorithm that has been successfully used in solving scheduling, load 

balancing and fault problems in grid computing. Nevertheless, there remain areas of 

improvement in terms of rescheduling and job migration algorithms in addition to 

balancing the load using ACO techniques such as initial pheromone value calculation, 

and local and global pheromone update. 

 

Regardless, in any application domain, fault tolerance algorithms have typically 

evolved from scheduling algorithms in which the scheduling process is further 

extended to adapt to the faulty environment. There are several important aspects in 

scheduling algorithms that should be considered when extending the capability to 
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provide fault tolerance such as execution time, throughput, load balancing and latency. 

Thus, it is important to consider these aspects in fault tolerance algorithms in addition 

to execution success rate so that the scheduling process can perform at close to optimal 

level despite overhead caused by the fault tolerance capabilities. Table 2.6 shows the 

list of performance evaluation metrics used in previous works related to job 

scheduling, load balancing and fault tolerance in grid computing.  

 

Table 2.6 

Summary of performance evaluation metrics for fault tolerance algorithms in grid 

Author Proposed Algorithm 

Performance Evaluation Metric 
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Wenming et al. (2009) TACO √ √      

Modiri et al. (2011) 
ACO algorithm and 
DAG method 

√       

Qureshi et al. (2011) 
Hybrid fault tolerance 
techniques 

   √ √ √  

Keerthika & Kasthuri 
(2011) 

Fault tolerance time to 
release 

 √      

Balasangameshwara & 
Raju (2012) 

Fault tolerance hybrid 
load balancing strategy 

√     √ √ 

Bawa & Singh (2012) 

Application 
checkpointing based 
fault tolerance 
technique 

√       
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Amoon (2013) 
Fault tolerance 
checkpointing system 

√ √  √    

Keerthika & Kasthuri 
(2013) 

BSA  √   √   

Mandloi & Gupta 
(2013) 

Hybrid ACO with GA   √      

Sharma, Sharma & 
Dalal (2014) 

Tentative ACO √  √     

Rathore (2015) 
Priority-based 
scheduling with load 
balancing 

√  √    √ 

Rathore & Chana 
(2015) 

Threshold-based 
hierarchical load 
balancing technique 

    √ √ √ 

Rajab & Kabalan 
(2016) 

Ant based dynamic 
load balancing 
algorithm 

√  √     

Singh (2016) 

Failure aware 
scheduling algorithm 
based on incremental 
checkpoint scheme 

     √  

Singh & Bawa (2016) 
Proactive fault 
tolerance algorithm for 
job scheduling 

√ √ √     

Abdullah, Ali & 
Haikal (2017) 

Hierarchical 
organization model for 
computational grid 

√     √  

Haider & Nazir (2017) 

Hybrid fault tolerance 
scheme based on 
proactive and reactive 
approaches 

  √ √ √ √  

Idris et al. (2017) 
An improved ACO 
algorithm with fault 
tolerance 

√   √ √   

Goswami & Das 
(2018) 

Fault tolerance nearest 
deadline first 
scheduled 

√    √   
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Ahuja & Banga (2019) 

Resubmission-based 
fault tolerance 
approach for jobs 
scheduling 

√     √  

Garba et al. (2020) 
Enhanced 
checkpointing system 
with replication 

√   √ √   

 

As shown in the table, job completion time or execution time is mostly used to validate 

the performance of fault tolerance algorithms, and followed by turnaround time or 

makespan, latency, success or failure rate and throughput. The details of each 

performance metrics validated in this research are presented in Chapter 3.
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CHAPTER THREE 

FRAMEWORK AND METHODOLOGY 

This chapter covers the framework and methodology that have been used throughout 

the research process for Dynamic ACS-based Fault Tolerance with Suspension 

(DAFTS) algorithm. It starts with Section 3.1 which illustrates the proposed research 

framework. This section also explains in detail about the methods used in each research 

stage and expected outputs respectively. Section 3.2 discusses the grid simulation 

model which includes the architecture of grid computing, system model and 

application model. Then, the evaluation methodology is covered in Section 3.3 and 

followed by the performance metrics used in validating the proposed algorithm which 

are covered in Section 3.4 and 3.5. Lastly, Section 3.6 summarizes the whole 

framework and methodology.  

 

3.1 Research Framework 

There are four main phases in conducting this research which is based on the 

experimental research framework. The first phase is to investigate and identify the 

fault tolerance techniques to be used in the DAFTS. This phase is the most critical to 

identify the suitable fault tolerance techniques such as job resubmission using 

checkpoint and resource suspension. Secondly, resource assignment and job 

scheduling are further enhanced to dynamically consider evaporation rate, resource 

execution history as well as current pheromone intensity. The third phase is the fault 

tolerance algorithm improvement which combines the output of the first and second 

phases, and improvement to the ACS formulae to cater the fault tolerance capability. 

The last phase is the performance evaluation in which the benchmark algorithms are 
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identified and reimplemented in the same simulation platform, performance metrics 

are identified, experiments are carried out and results are analyzed. This framework is 

used because it covers all the required steps to propose a new fault tolerance algorithm, 

and is easy to use in solving scheduling, load balancing and fault problems in grid 

computing. Evaluation of the newly proposed algorithm, as adopted by most 

researchers, was done in a simulated environment called GridSim. Simulation allows 

users to define parameters and test different scenarios and conditions easily. 

Simulation also allows other algorithms to be developed in the same testbed 

environment and executed using standard parameters for a more unbiased evaluation. 

The results are compared against other algorithms for the same set of performance 

metrics. This methodology was used by Keerthika and Kasthuri (2011, 2012, 2013), 

Mandloi and Gupta (2013), Rathore and Chana (2015), Rajab and Kabalan (2016), and 

Idris et al. (2017). 

 

The research framework of DAFTS in grid computing is presented in Figure 3.1. There 

are four main phases that drive the implementation of this research which consist of 

determining the designing fault tolerance techniques identification, resource and job 

scheduling enhancement, fault tolerance algorithm improvement, and performance 

evaluation of the proposed fault tolerance algorithm. 
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Figure 3.1. Research framework of DAFTS 

  

  

 

Phase Method Outcome 

Fault tolerance 
techniques 
identification 

Investigate existing fault 
tolerance techniques 

Determine 
characteristics and 
parameters  

Fault tolerance 
techniques to be 
used with key 
parameters and 
characteristics 

Resource 
assignment and 
job scheduling 
enhancement 

  
Improve resource 
assignment and job 
scheduling 

Enhanced ACS-
based resource 
assignment and 
job scheduling 
with load 
balancing 

Fault tolerance 
algorithm 
improvement 

Formulate dynamic 
evaporation rate 
calculation 

Design ACS-based fault 
tolerance algorithm 

Improve ACS-based 
formulae 

Enhanced ACS-
based fault 
tolerance 
algorithm 

Performance 
evaluation of the 
proposed 
algorithm 

Design experiments and 
scenarios 

Determine and 
implement benchmark 
algorithms 

Conduct experiments 
and perform analysis on 
the results 

Results and 
detailed analysis 
on the 
performance  

Determine performance 
metrics 
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3.1.1 Fault Tolerance Techniques Identification 

Fault tolerance techniques are identified from the list of existing techniques. These 

techniques include job replication, checkpointing, job resubmission, alternate task, 

alternate resource, penalty and suspension. After careful consideration and review 

from previous studies, the job resubmission technique with checkpoint is selected in 

order to be combined with the penalty and resource suspension technique. Then, 

applicable parameters and characteristics of chosen techniques are identified in order 

to be considered in the enhancement phases. The main outcomes of this phase are the 

fault tolerance techniques applied in the proposed algorithm and their parameters as 

well as characteristics. 

 

3.1.2 Resource Assignment and Job Scheduling Enhancement 

The resource assignment and job scheduling process are enhanced using the dynamic 

evaporation rate. The dynamic evaporation rate is formulated based on the number of 

jobs and resources to assign the most optimal evaporation rate which would improve 

the load balancing aspect. In addition to that, the selection of optimal resources is 

formulated to consider the highest pheromone and resource availability indicator to 

ensure that fit resources are utilized to process more jobs as compared to unfit 

resources. The outcome of this phase is the improved resource assignment and job 

scheduling that caters the load balancing aspect by having a more controlled resource 

selection that would not submit new jobs to the suspended resources to reduce the 

possibility of another failure and to allow the remaining tasks in the resource queue to 

complete. 

Suhairy Hashim
Note
None set by Suhairy Hashim

Suhairy Hashim
Note
None set by Suhairy Hashim

Suhairy Hashim
Note
Cancelled set by Suhairy Hashim

Suhairy Hashim
Note
Cancelled set by Suhairy Hashim

Suhairy Hashim
Note
Unmarked set by Suhairy Hashim

Suhairy Hashim
Note
Unmarked set by Suhairy Hashim
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3.1.3 Fault Tolerance Algorithm Improvement 

The first part of the improvement is to apply all the techniques identified in the first 

phase and improvement on the resource assignment and job scheduling in the second 

phase. The second part is to improve the ACS formulae, specifically on the local 

pheromone update to consider additional aspects such as resource execution history 

and trust factors. This improvement is essential to better control the pheromone 

deposited or evaporated at the resource which eventually represents the resource 

fitness for the ants to perform resource selection during initial state or during 

reprocessing state. The outcome of this phase is the enhanced ACS-based fault 

tolerance algorithm that applied suitable techniques with improvement on ACS 

formulae to not only focus on resource assignment, job scheduling and load balancing, 

but also on the fault tolerance capability. 

 

3.1.4 Performance Evaluation of the Proposed Algorithm 

The proposed algorithm is designed and coded using Java programming language and 

simulated using GridSim. Experiments and scenarios are designed in order to 

effectively evaluate the performance of the proposed algorithm against a benchmark 

algorithm. The results are analyzed to further evaluate improvements in performance 

and will be reported in the form of diagrams, tables and detailed elaborations. 

 

Several experimental scenarios are conducted such as to measure the effect of the 

dynamic evaporation rate, incentive and penalty factors and temporary resource 

suspension. In the experiments, different basic parameters are changed such as failure 

rate, number of tasks, size of individual tasks, and number of resources. In terms of 
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benchmarking with other algorithms, several measurements are considered such as 

execution time, latency, throughput, success rate and load balancing. All the 

parameters and execution characteristics are similar or close to similar as used by other 

algorithms. This method ensures that the comparison is done fairly and accurately. 

Several approaches are used in order to obtain execution results from other algorithms. 

Firstly, the results are obtained throughout simulation of other algorithms. In order to 

achieve this, a source code or compiled application needs to be available. Secondly, if 

it is not possible to have the source code or compiled application, the results are 

obtained from written sources such as a journal or other forms of reliable publications. 

The last method, which is the least preferred, is to manually code the algorithm based 

on its pseudocode and execute it. However, this method is very risky because there are 

conditions or components that may differ with the actual source code or application 

developed by the original authors which may eventually produce inaccurate or wrong 

results. Regardless of the method to replicate the implementation of other algorithms, 

the written source codes are validated against the original results presented in the 

original works in terms of the value and pattern of the output in table or graph. 

 

Before the experiments to compare with other algorithms are conducted, the parameter 

tuning experiments were conducted to fine tune the proposed algorithm in terms of 

effectiveness of dynamic evaporation rate as compared to static evaporation rate, the 

optimal values for incentive and penalty which are part of trust factor, and 

effectiveness of suspension technique over without suspension. These experiments are 

meant to proof that the proposed techniques will improve the performance and also to 

identify the optimal trust factor which may vary when the proposed algorithm is 

implemented in different simulation environment, real system and application domain.  
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The first set of experiments to compare with different algorithms is to validate the 

effectiveness of the proposed algorithm to adapt with different rates of failure. This is 

achieved by setting the expected success rate based on pseudorandom algorithm to 

generate initial resource fitness and failure probability during execution. It is expected 

that the higher the probability of failure, the lower the execution success rate and 

throughput, and higher average makespan, average latency and execution time, and 

reduced load balancing. 

 

The second set of experiments to compare with different algorithms is to validate the 

how the proposed algorithm behaves when the number of tasks is increased. The 

increase of number of tasks can also mean that the longer time needed to completely 

execute all the tasks. Typically, in metaheuristic algorithms, the longer the time to 

construct the solution, the better the solution will be, and this experiment is dedicated 

to test out the assumption. It is expected that the increase of the number of tasks will 

lead to higher execution time, throughput, average makespan, average latency and 

execution success rate, and better load balancing. 

 

3.2 Grid Simulation Model 

Grid simulation toolkit is designed to provide a comprehensive virtual grid platform. 

In typical grid simulation environment, system and application are the two main 

components being utilized to cater different experimental scenarios while the basic 

architecture of the grid system is preserved. 
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3.2.1 GridSim Architecture 

Grid computing generally consists of several main components which are 

interconnected through Internet and reside in different locations. Due to this fact, grid 

simulation tools are introduced to allow developers or researchers to develop, test and 

perform analysis to further improve the environment through new or improved 

architecture, algorithms, policies and strategies. It is also quite impossible for 

standalone developers and researchers to be able to own a complete grid computing 

environment that is managed by multiple parties, involve multiple users and hosted in 

multiple locations. 

 

The GridSim platform is categorized into several layers for simulating grid 

environment. The first layer focuses on application, user, inputs and results. Second 

layer consists of grid resource brokers or schedulers which is responsible to manage 

the jobs submitted by the user from the first layer. The third layer is where the GridSim 

toolkit provides all the necessary components to be used for the simulations such as 

application modeling, resource entities, information services, job management, 

resource allocation and statistics. The fourth layer consists of event simulation 

infrastructure that leverages SimJava or Distributed SimJava which is a discreate event 

simulation library based on Java. The last layer is the collection of virtual machines 

such as personal computers, workstations, shared memory multiprocessors, clusters 

and distributed resources (Buyya & Murshed, 2002). 
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3.2.2 System Model 

In the grid computing environment, a set of resources are connected via different 

communication networks with different speeds. Each resource may have one or 

multiple numbers of machines and each machine may have single or multiple 

processing elements. The speed of processor or computational power is defined by the 

number of cycles per unit time. As the processors in each machine can be 

heterogeneous, they may have different processing power and fitness.  

 

In the experiments that were conducted, each resource is assumed to consist of one 

machine and each machine may have one or several processors. The processors in the 

same or different machines consist of different processing power. A machine in the 

grid system may also have a local user that uses the machine for other computations. 

From that point, at any one time, a machine may have a background workload 

associated with it. This will affect the computational time of the tasks assigned. In 

order to solve this problem, the GridSim toolkit provides users with the ability to 

define the background workload according to historical and statistical information for 

each machine. Each resource has a background load associated that is taken from the 

average load that the resource has experienced at similar times (such as weekends or 

working days). 

 

3.2.3 Application Model 

In order to develop an application model, it is assumed that the applications which are 

being run or the tasks which are submitted to the grid system consists of a set of 

independent tasks with no particular order of execution. The tasks that are submitted 
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consist of different computational times, so that each job also requires a different data 

transmission time and computation time for completion. The length of each job is 

presented in MIPS and each job has different input and output size requirements. Tasks 

in the grid computing system can be classified into one of two categories which consist 

of a computationally intensive or data intensive task. This research focuses on 

computationally intensive tasks as it is more common in today’s real life applications 

and the waste of computational power of resources is costlier than their memory 

(Moallem, 2009). Intensive tasks come in two forms consisting of several tasks with 

extremely large size or many small tasks that are submitted at the same time. The 

number of available resources keeps changing throughout the simulation process to 

replicate the real condition where some resources are not available, or their conditions 

are not fit to accept new tasks, temporarily. 

 

3.3 Simulation Design and Evaluation Methodology 

The proposed algorithm is evaluated in a Java based simulation environment known 

as GridSim toolkit that provides components for simulating and modeling 

heterogenous grid environments such as a broker, scheduler, topology, resources, GIS 

and simulation kernel. The Gridsim toolkit was chosen by many researchers (Patel, 

Tripathy, & Tripathy, 2016; Ismail et al., 2017) to simulate and evaluate their research 

because it supports modeling of heterogeneous types of resources and resources can 

be modeled as space shared or time shared mode.  

 

Application that runs in Gridsim toolkit can be simulated with different parallel 

applications which can be central processing unit or input/output intensive and at the 

same time can be heterogeneous. The toolkit itself does not have any limit to the 
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number of jobs that can be simulated and allows simultaneous execution. Both static 

and dynamic schedulers are supported by Gridsim toolkit and network speed between 

resources can be determined during initialization or hardcoded in the source code. 

Statistics of all operations are recordable and can be analyzed using Gridsim statistics 

analysis methods which can be further presented in a more interactive form using 

Microsoft Excel. 

 

There are a several standard steps suggested by Gridsim team (Buyya & Murshed, 

2002) in order to simulate a grid scheduling algorithm using Gridsim toolkit.  

i. Create resources with different capabilities and configurations such as PE 

rating, number of PE per machine number of machines per resource, and pre-

defined fitness rating 

ii. Create a number of Gridlets (jobs/tasks) with defined parameters such as 

length, size of input and output 

iii. Create a user entity that creates and interacts with the grid resource broker 

entity to coordinate execution experiment, and also with GIS and resource 

entities for submitting and receiving processed Gridlets  

iv. Implement a grid resource broker entity that performs application scheduling 

on resources which is part of the allocation policy build in the application 

package that interacts closely with resource information in the GIS 

 

Before the evaluation with other algorithms is performed, parameter tuning 

experiments are performed by validating the effect of the dynamic evaporation rate, 

incentive and penalty, and suspension technique in order to obtain the most optimal 
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parameters. Once the optimal parameters are obtained, the algorithms that are used to 

evaluate with the proposed algorithm such as TACO (Wenming et al., 2009), FTACO 

(Prashar et al., 2014), ACO and ACOwFT (Idris et al., 2017) are implemented in the 

same simulation environment so that thorough experiments can be performed. Each 

algorithm is executed using the same set of execution parameters for better consistency 

and an average of 10 executions is undertaken to obtain the final results for each 

scenario. The standard execution parameters include the following, as listed in Table 

3.1. 

 

Table 3.1 

Standard execution parameters 

Parameters Description 

No. of resources Number of available resources 

No. of tasks Number of tasks to be executed 

PE rating 
Processing elements rating in millions instruction per 
seconds (MIPS) 

Bandwidth Network bandwidth 

No. of machines / 
resources 

Number of machines per resource 

PE per machine Number of processing elements per machine 

Gridlet length Job length submitted to GIS 

File size Input file size 

Output size Output file size  

 

In addition to standard execution parameters, each scenario has specific parameters 

which are controlled statically or dynamically. Specific parameters for all 

experimental scenarios are listed in Table 3.2. 
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Table 3.2 

Specific execution parameters 

Scenarios Parameters 

Dynamic vs. fixed evaporation rate Evaporation rate activated or disabled 

Incentive and penalty factor Incentive and penalty range 

With and without suspension 
Suspension indicator activated or 
disabled 

Comparison on different failure rates Initial resource fitness range 

Comparison on different number of 
tasks Number of tasks range 

 

The list of performance metrics for all experiments listed in Table 3.2 are listed in 

Table 3.3. 

 

Table 3.3 

List of performance metrics for all experiments 

Scenarios Performance Metrics 

Dynamic vs. fixed evaporation rate Load balancing 

Execution success rate 

Execution time 

Incentive and penalty factor Load balancing 

Execution success rate 

With and without suspension Execution time 

Execution success rate 

Load balancing 

 
 



 

94 
 

Comparison on different failure rates Execution time 

Throughput 

Average makespan 

Average latency 

Load balancing  

Execution success rate 

Comparison on different number of tasks Execution time 

Throughput 

Average makespan 

Average latency 

Load balancing 

Execution success rate 

 

3.4 Performance Evaluation Metrics 

Performance evaluation metrics are chosen based on common metrics used by 

researchers in evaluating the effectiveness of the grid scheduling algorithm. Makespan 

(execution time), throughput and turnaround time are adopted from Idris et al. (2017). 

Average latency and the execution success rate are adopted from Moallem (2009), and 

load balancing standard deviation for the fault tolerance algorithm is introduced in this 

research work based on the concept to calculate load balancing by Sheikh, Nagaraju 

and Shahid (2018). 

 

Makespan or execution time is measured from the moment the first task is submitted 

to the system, SubmissionTime1 to undergo the scheduling and execution process until 

the last task i, CompletionTimen, is completely processed as shown in equation (3.1). 

Execution time indicates how efficiently the system can process all the tasks in the 
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queue and is directly related to the throughput, average latency and average turnaround 

time.  

 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 − 𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒   (3.1) 

 

For efficiency, throughput is used to measure the performance of the fault tolerance 

system (Khan et al., 2010; Ezugwu et al., 2013; Idris et al., 2017). It defines the number 

of tasks that can be completed per unit time. The higher the throughput, the more 

efficient the system is. Throughput (equation 3.2) is calculated by dividing the total 

number of tasks, n, with the total time taken to completely process all tasks.  

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =    (3.2) 

 

On the other hand, average turnaround time is used to measure the average time taken 

by the system to process each individual job. Similar to execution time, the lower the 

average makespan, the less time is needed to process all tasks. As shown in equation 

(3.3), it is measured by summing the execution time for each individual task and 

dividing the result by the total number of tasks n. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑𝑇𝑖𝑚𝑒 =
∑

  (3.3) 

 

Average latency is also important to measure the waiting time for each job before being 

processed by the assigned resource. Lower latency indicates that the system is capable 

of utilizing all the resources while controlling the idle time for each job. As depicted 

in equation (3.4), total latency for all tasks is divided by the total number of tasks n. 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑

  (3.4) 

 

The ultimate aim for a fault tolerance system is to preserve the execution success rate. 

Execution success rate is the percentage of completed tasks over the total tasks 

submitted. The execution success rate (equation 3.5) calculates the total number of 

successful checkpoints, CPsuccess over the total number of recorded checkpoints 

(CPfailed + CPsuccess). 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
∑

∑
    (3.5) 

 

The higher the execution success rate, the better the system. However, the execution 

success rate needs to be coupled with load balancing to prevent stagnation or 

imbalanced resource utilization which will eventually lead to inefficient use of 

resources. 

 

3.5 Load Balancing Measurement for Fault Tolerance Algorithm 

The last performance metric is the load balancing which is newly proposed to measure 

the effectiveness of resource assignment and jobs scheduling to balance the load 

distribution in the presence of faults. The load balancing is measured by using standard 

deviation of the actual against the expected jobs assigned to all available resources in 

the presence of faults. The standard deviation indicates the difference between the 

actual outcome versus the mean expected outcome. To calculate the load balancing 

standard deviation, a population standard deviation formula is used as a base formula 
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where the value to be subtracted from mean is the percentage of total tasks processed 

by a resource and the mean is the resource fitness rate. Equation (3.6) calculates the 

difference between total tasks processed and fitness rate for each resource to measure 

the effectiveness of load balancing aspect.  

 

𝜎 =
∑( )

                               (3.6) 

 

where Xi is the percentage of total tasks executed by resource i, μi is the fitness rate of 

resource i and N is the total number of resources. The lower the standard deviation, the 

better the load balancing the resource has. For a more accurate measurement, the 

processing capability of each resource should be identical while the task and output 

size should be within an acceptable range. The proposed formula is suitable to measure 

the load balancing at the end of simulation for fault tolerance algorithms, but is not 

intended to measure the load balancing during runtime. 

 

The proposed load balancing standard deviation measurement is not limited to be used 

in validating ACO-based fault tolerance algorithm in grid computing environment, but 

it can also be used to measure the load balancing of both non-fault tolerance and fault 

tolerance algorithms that are not based on ACO and in other application domains as 

well. However, the aspect being considered may differ such as consideration of load 

balancing to the routing path, number of jobs assigned to cluster, node selection to 

perform hop-to-hop packet delivery and type of jobs and resources. 
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3.6 Summary 

The proposed research framework for dynamic ACS-based fault tolerance with 

suspension consists of four main phases which include to investigate suitable fault 

tolerance techniques, propose the enhancement to the resource assignment and jobs 

scheduling that includes dynamic evaporation rate, improve fault tolerance algorithm 

and ACS-based formulae, and validate the performance of the proposed algorithm. 

 

Firstly, the investigation phase involves reviewing existing fault tolerance techniques 

such as job resubmission based on checkpoint, job replication, resource suspension, 

trust factors and job migration. Techniques that are the most effective are selected to 

be applied in the proposed fault tolerance algorithm. 

 

Second phase involves introduction of dynamic evaporation rate calculation that is 

based on the number of jobs and resources, and enhancement to the resource 

assignment and jobs scheduling process which involves consideration of additional 

aspects such as resource availability indicator and optimized pheromone value based 

on trust factors and resource fitness.  

 

In the third phase, the techniques identified in the first phase are integrated with the 

enhancement from the second phase in the ACS-based fault tolerance algorithm. 

Existing local pheromone update formula is also enhanced to consider trust factors and 

resource fitness to improve the way the pheromone is deposited to the resource. All 

these contribute to the new variant of ACS algorithm for dynamic fault tolerance in 

grid computing which consists of three main processes: initial pheromone value 
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calculation, resource selection process and fault tolerance mechanism. Initial 

pheromone update is responsible to predict the best resource to process a specific job. 

This ensures that a job does not go through random assignment which would lead to 

inefficient use of execution time. The second process is resource selection where it 

considers the resource availability flag which is also known as the quarantine state of 

a specific resource. This ensures that the next job in the queue will not be submitted to 

a recently failed resource and, eventually, allows the resource to recover. The last 

process is the fault tolerance mechanism which will resubmit the failed job using a 

checkpoint technique to other available resources, apply a pheromone update and 

activate the resource availability flag should the resource fail to process the submitted 

job successfully. After that, the recovered resource will be put back into the list of 

available resources that are ready to be assigned to jobs. 

 

The last phase covers the evaluation of the proposed algorithms against the benchmark 

algorithms. Before the evaluation can be conducted, the experiments and scenarios are 

designed based on previous studies including the performance metrics. Then, the 

benchmark algorithms are identified and reimplemented in the same simulation 

environment as the proposed algorithm based on pseudocode, flowcharts, formulae 

and architecture design by the original authors. This ensures that the validation is 

performed fairly and systematically to increase the validity of the results.  
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CHAPTER FOUR 

DYNAMIC ANT COLONY SYSTEM-BASED FAULT 

TOLERANCE WITH SUSPENSION ALGORITHM 

This chapter presents the fundamental design and architecture of the proposed 

algorithm called Dynamic ACS-based Fault Tolerance with Suspension (DAFTS). 

Two main aspects are introduced which consist of scheduling and fault tolerance 

capability. In terms of scheduling, the algorithm considers the execution history during 

the pheromone update process to influence the desirability of selecting a resource. In 

terms of fault tolerance capability, resubmission based on checkpoint and resource 

suspension is applied to ensure all failed tasks can be reprocessed successfully, thereby 

increasing the success rate. The DAFTS workflow is covered in Section 4.1 and load 

balancing using dynamic scheduling is elaborated upon in Section 4.2. Resource 

suspension capability is explained in Section 4.3. Section 4.4 covers the pseudocode 

of DAFTS and concluding remarks are presented in Section 4.5. 

 

4.1 Dynamic ACS-based Fault Tolerance with Suspension 

DAFTS is inspired by the concept of an ant searching for the optimal path to the most 

suitable resource to assign tasks. In typical grid task scheduling, the ant searches for 

resources with high pheromone value out of all the available resources. In addition to 

the pheromone, the load of the resource is also one of the criteria used by the ant to 

search for the optimal resources to assign submitted task. The pheromone update will 

be performed upon task assignment to a particular resource and the resource will be 

released once task execution is completed. 
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This basic concept is further extended for ants to have the ability to perform the 

researching process during the resubmission process. In addition, the pheromone 

update technique is further improved as a mechanism to penalize unfit resources so 

that they become less attractive and to reward fit resources so that they have better 

possibilities to be assigned with tasks. This approach is expected to reduce the 

possibility of failure as the task assignment will focus on fit resources instead of unfit 

resources. 

 

Figure 4.1 illustrates the phases of DAFTS based grid task scheduling with fault 

tolerance extension as highlighted. DAFTS differs from typical ACO-based fault 

tolerance algorithm in terms of the application of local pheromone update process and 

resource suspension technique. For each task, an ant will be generated to perform 

resource selection based on the resource pheromone value. The initial pheromone value 

will first be calculated to determine the state of all resources before the first task in 

queue can be submitted. Selection of the resource will be based on the amount of 

pheromone value either from the initial pheromone calculation or pheromone update 

process. Once a resource is assigned with a task, a global pheromone update will be 

applied by the ant to reduce the amount of pheromone. 
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Figure 4.1. Phases of DAFTS 
 

Each task will be divided into several checkpoints which will be executed in sequence 

to preserve the authenticity of the output. In each failed checkpoint or complete task 

execution, the local pheromone update will be applied to reduce or increase the 

pheromone intensity based on execution history before releasing the resource for the 

next execution. In case of any failure during execution, the last checkpoint will be 

resubmitted to another suitable resource and the resource that just failed will be 

suspended temporarily. 

 

DAFTS is developed in GridSim simulation environment as it provides a close to actual 

platform without the need to deploy physical resources and involve actual users in 

carrying out the experiments. Due to complexity of large scale distributed systems, 

sophisticated simulation tools is demanded to help on analysis and fine tune the 

algorithm before being applied in the actual environment. In addition to that, it provides 

flexibility to the developers to modify the parameters and behaviors of various 
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components in the simulation environment to cater different hypothetical problems 

(Buyya & Murshed, 2002). 

 

4.1.1 Initial Pheromone Value Calculation 

Initial pheromone value is calculated after the job is submitted to the grid system. The 

calculation considers jobs characteristics, resources capacity, estimated transmission 

time and execution time of the job when assigned to the resource. A higher pheromone 

value indicates a higher reliability of the resource to process submitted jobs within an 

estimated time and a lower possibility of job processing failure. Eventually, the initial 

pheromone value will become the resource pheromone value after the pheromone 

update. 

 

4.1.2 Resource Selection Process 

The selection of the best resource is based on the availability of the resource which is 

controlled by an availability flag and the highest pheromone value. The zero 

availability flag indicates that the resource is being suspended temporarily and will not 

be chosen to process the submitted job. Pheromone value is the key parameter that 

defines resource fitness. The higher the value, the better the fitness. By considering all 

these, the selected resource will have the lowest possibility to cause an error and will, 

thereby, lead to optimization in the grid system. Furthermore, a recently failed resource 

will have the lowest possibility to be chosen in the next iteration before it goes through 

the recovery process. Further elaboration on resource selection process that considers 

both scheduling and load balancing is covered in Section 4.2. 
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Figure 4.2 illustrates the sequence diagram of the happy flow scheduling process in 

the proposed algorithm. The grid broker is the source of ant generated for each 

individual task. This ant is responsible to find the optimal resource in the GIS that 

stores all information about the resources, current execution state, and checkpoints. 

Once the optimal resource is identified, a global pheromone update is applied to reduce 

the pheromone intensity so that it becomes less attractive to the next ant. The task in 

the queue will be submitted to the identified resource for processing and, once 

completed, local pheromone update will be applied to either increase or decrease the 

pheromone of the resource. Once the task is completely processed, the ant will be 

terminated.  

 

Ant GIS Optimal Resource

findOptimalResource()

returnOptimalResource()

forwardJob()

globalPheromoneUpdate()

Grid Broker

generateAnt()

returnInfo()

processingStatus()

localPheromoneUpdate()

localPheromoneUpdate()

terminateAnt()

 

Figure 4.2. Sequence diagram of happy flow scheduling process 

 

4.1.3 Fault Tolerance Mechanism 

The fault tolerance mechanism includes the ability of the system to record the 

checkpoint information at defined intervals, resubmit a failed job from the last saved 

state to the job queue, apply a pheromone update and activate the availability flag 
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(suspension). When failure happens, the job’s execution will be terminated, and the 

resource will be suspended temporarily for the recovery process. The resource 

availability flag will continue to be activated after a certain iteration to allow the 

recovery process and will be reset after meeting the threshold value. All these steps 

ensure that the resource that failed has time to recover and processing failure could be 

minimized by temporarily quarantining the resource. Ultimately, the hit rate or job 

completion rate will be increased even in the presence of processing failure. 

 

Figure 4.3 shows the detailed steps of the fault tolerance scheme in the proposed 

algorithm. For each task execution, the status of execution will continuously be 

validated, checkpoint calls will be made, and local pheromone update will be applied 

based on the status of execution at a point in time. If a task is not completely processed, 

the remaining task will continue to be executed. Typically, each task execution may 

take time due to its size, and it is common for failure to happen. When failure happens, 

the resource that failed to execute the task will undergo a local pheromone update 

process that invokes the suspension function to temporarily suspend the resource while 

reducing the pheromone value so that the resource becomes less attractive to the next 

ant. The resubmission process will be initiated, the last saved checkpoint will be called 

and put back into the execution queue to undergo the standard scheduling process to 

find another optimal resource to continue execution until completion. Once task 

execution is completed, the ant will be terminated. Further explanation on suspension 

technique is covered in Section 4.3. 
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Job Queue Grid Broker Ant
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generateAnt()
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Figure 4.3. Sequence diagram of fault tolerance process 

 

4.1.4 Flowchart of DAFTS 

Figure 4.4 illustrates the flowchart of DAFTS with the key contributions of this 

research bolded. It is the backbone of DAFTS algorithm proposed in this research. 

Before the first task in the queue can be submitted, evaporation rate will be calculated 

based on the number of tasks and resources as part of first contribution of this research, 

and followed by the initial pheromone value to determine the state of all resources. 

Then, an ant will be generated for each submitted task in the queue to perform resource 

searching based on pheromone values. The submitted tasks may consists of initially 

submitted task or task that undergoes rescheduling process. Resource selection will be 

performed based on the pheromone levels, either from the initial pheromone 

calculation or the pheromone update process. Once the task is assigned to any resource, 
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the ant will apply a global pheromone update to reduce the amount of pheromone so 

that the resource becomes less attractive for the next ant. Each assigned task will be 

divided into several time-based checkpoints recorded during execution.  

 

Yes

START

Calculate initial pheromone 
value for each combination of 

task and resource

For each task in queue, ant 
checks for the best resource 

with highest pheromone

Is job completed?

STOP

Task execution by the 
best resource

Are all tasks 
completed?

Save checkpoint 
information

Apply global 
pheromone update

No

No

Yes

Apply local 
pheromone update

Increase resource 
success count

Is task failed?
No

Retrieve 
checkpoint 
information

Yes

Resubmit failed 
job from the last 

saved state

Apply local 
pheromone update

Increase resource 
failure count

Increase resource 
success count

Apply local 
pheromone update

Initiate temporary 
resource 

suspension

Deactivate 
resource 

availability 
indicator

Calculate evaporation rate based 
on number of tasks and 

resources

 

Figure 4.4. Flowchart of DAFTS 

 

In the event of failure, the scheduler will retrieve the checkpoint of failed task from 

the checkpoint manager and resource failure count will be increased. After that, the 
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second contribution of this research which is temporary suspension indicator will be 

invoked to avoid the resource that failed to undergo recovery process or complete the 

remaining task in its queue. This process is meant to reduce the possibility of another 

failure by not assigning new task to recently failed resource temporarily and increase 

resource utilization by assigning new task to alternative resource. The retrieved task 

will repeat the rescheduling process and will be assigned to an alternative resource after 

which a local pheromone update with penalty will be applied to the resource that failed to 

reduce pheromone intensity, third contribution of this research.  

 

In the event of partially successful task execution, the information about successfully 

completed task will be saved and the checkpoint replica will be removed, and resource 

success count will be increased. Then, the local pheromone update with incentive will 

be applied to the resource to increase the pheromone as part of the third contribution of 

this research. The same resource will continue to execute the remaining part of the task 

before getting released to process brand new task. 

 

Last but not the least, in the event of complete task execution, the same local pheromone 

update process will be performed to increase the pheromone intensity to indicate that the 

resource is fit to receive more new tasks. The whole process will continue until all the 

submitted tasks are completely processed which means that no task will be left out even 

in the presence of failures. 
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4.2 Load Balancing Using Dynamic Scheduling with Checkpointing 

During the initial task submission, each resource should have pre-defined parameters 

such as processor speed, current load, bandwidth and number of processing elements. 

All these parameters will be used to calculate the initial pheromone value (PVrj) for 

each combination of resource r and task j. The initial pheromone value formula is 

given by the following equation (4.1): 

 

𝑃𝑉 =  +
( )

  (4.1) 

 

where Sj is the size and Cj is the required computation power of a given task j, 

bandwidthj is the available bandwidth of resource r, MIPSr is the processor speed, and 

loadr is the current load at resource r. Note that the initial pheromone value is assigned 

during initialization but, subsequently, it is considered as a resource pheromone value. 

The tasks to be processed may come by batch which means that reinitialization will be 

performed to feed the recently arrived tasks into the current queue. Since the initial 

pheromone value is calculated for each combination of resource and task, this 

information is stored in a PVmatrix as follows (4.2): 

 

𝑃𝑉 =

⎣
⎢
⎢
⎡

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 ,

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 ,

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 ,

𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , 𝑃𝑉 , ⎦
⎥
⎥
⎤
  (4.2) 

 

where n is total number of tasks and m is total number of resources. PVmatrix is a logical 

form of grid topology whereby an ant would move from one index to another to find 
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the best resource for task assignment. It is assumed that all the resources are 

interconnected which means that if the task if assigned to a specific resource, it can be 

migrated to all other available resources. Each row in PVmatrix represents the list of 

possible tasks for resource r while each column represents the list of possible resources 

for task j. The largest pheromone value in each column will be considered by the ants 

as the most fit resource and the task will be forwarded to the resource with the highest 

pheromone for processing. As soon as the task is assigned, the pheromone value in the 

PVmatrix will be updated by the global pheromone update (4.3) to reduce the amount of 

pheromones assigned to the current resource, so that it becomes less attractive by the 

next ant and leads to the exploration of other resources. τrj is the amount of pheromones 

on the resource, while ∆τrj  is 1/Lbest, where Lbest denotes the length of global best tour 

or otherwise (no global best tour found), ∆τrj=0. 

 

𝜏 = (1 − 𝜌) ∙ 𝜏 + 𝜌 ∙ ∆𝜏    (4.3) 

 

ρ is the evaporation rate that is dynamically controlled by using the following formula 

(4.4) with m and n as the total number of resources and tasks respectively: 

 

𝜌 =          (4.4) 

 

Task assignment will continue while the previously assigned task is being executed. 

However, if the execution is not successful, the task will be resubmitted from the last 

saved checkpoint to another suitable resource. On the other hand, the checkpoint 

information will be recorded during the execution for each task being executed and 
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this information is also used to update the execution history table for each resource. 

The checkpoint mechanism is applied by splitting a big task into several small tasks 

which will be submitted sequentially. In DAFTS, the checkpoint interval is set to 5 

splits per individual task. This can be adjusted according to the size of task, the bigger 

the task, the higher number of checkpoint interval will be. When the task is submitted 

to a specific resource, the checkpoint manager will be responsible to control the feed 

of every small task by keeping a replica before submitting it to the identified resource 

and if failure status is received, the small task submitted previously will be resubmitted 

to the other resource. And if the success status is received from the executing resource, 

the small task will be removed from the queue.  

 

As shown in Figure 4.5, a large task T1 is divided into 5 small tasks. Based on the 

information received from the scheduler, the checkpoint manager will set its parameter 

to assigned T1 to resource B. Then, as in Figure 4.6, the last small task T1e will be 

fetched by the checkpoint manager to be submitted to resource B. Before the 

submission begins, a replica will be created and saved in checkpoint manager’s 

memory. On the other hand, Figure 4.7 shows the event of processing failure by 

resource A and Figure 4.8 shows that the replica of task T1e is resubmitted to resource 

A and followed by Figure 4.9 that shows the replica is removed when it is completely 

processed. 
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Figure 4.5. Initial state of single task splitted into multiple small tasks flows through 
checkpoint manager 
 

 

Figure 4.6. Small task submitted to assigned resource and replica saved in the memory 
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Figure 4.7. Small task failed to be processed by assigned resource 

 

 

Figure 4.8. Replica is retrieved and submitted to alternative resource 
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Figure 4.9. Replica is removed after successful processing 

 

In every checkpoint, another round of local pheromone update (4.5) will be applied to 

reduce more pheromone values by considering the execution history to influence the 

increment or reduction of pheromones; the success status would increase the 

pheromones, while the failure status would reduce more pheromones. 

 

𝜏 = (1 − 𝜌) ∙ 𝜏 + [𝜌 ∙ 𝜏 (𝑅 )]     (4.5) 

 

τ0 is the initial pheromone value of resource r, τrj is the current pheromone intensity 

for resource r and task j, T is the trust factor defined by either task completion (T = 

1.5) or task failure (T = 1.0) while RH (i) is the average weighted execution history of 

resource r and calculated by (4.6): 

 

𝑅 (𝑖) =
𝑅 (𝑖) = , 𝑖 = 0

(1 − 𝛼) ∙ 𝑅 (𝑖) + 𝛼 ∙ 𝑅 (𝑖 − 1), 𝑖 > 0
   (4.6) 
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where RT(i) is the total execution history of resource r at take i, CPsuccess indicates the 

current successful checkpoint call, and CPfailed is the current failed checkpoint, at 

resource r respectively. For each resource r, i is initially set to 0 and will be 

incremented by 1 for each local pheromone update process, RH(i-1) is the previously 

recorded execution history and α is the degree of weighting decrease set to 0.5. The 

execution history (also known as resource fitness) will be used to control the quantity 

of pheromones to be evaporated, or strengthened, at a respective resource which 

eventually helps the following ants to identify the best resources during task 

assignment; the better the execution history, the higher the number of tasks assigned.  

 

The execution history (defined as resource fitness) is extended to the existing local 

pheromone update formula and will be used to influence pheromone evaporation or 

deposition in each resource based on execution status. The better the execution history, 

the lower the evaporation of the pheromone. This approach is expected to effectively 

balance the load assigned to each resource so that the resources with good execution 

history will be assigned with more jobs as compared to resources with bad execution 

history.  

 

4.3 Temporary Resource Suspension 

As covered in Section 4.1, execution history is equivalent to resource fitness where it 

gives the success probability of a particular resource. Eventually, resource fitness RH(i) 

will be used to determine the current failure rate (FR) as follows (4.7): 

 

𝐹𝑅 = 1 − 𝑅 (𝑖)    (4.7) 
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After the failure rate is determined, effective failure rate (EFR) will be determined by 

using failure rate (FR) and failure indicator (F). The failure indicator is controlled by 

the broker where the value will be either 0 (success) or 1 (failure). EFR is given by 

(4.8): 

𝐸𝐹𝑅 = 𝐹 × 𝐹𝑅    (4.8) 

 

The formula for resource suspension (RS) is as follows (4.9): 

 

𝑅𝑆 = 𝐸𝐹𝑅 ×
∑

∑
    (4.9) 

 

where i is the number of tasks and j is the number of resources. Suspension value 

represents the number of cycles a resource should be suspended and will be 

decremented by 1 in every processing cycle until the count reaches 0. Suspension count 

is directly influenced by the ratio of jobs over resources to limit the possible suspension 

count that a resource can undergo. For example, if there are 100 jobs with 10 resources 

available, the ratio of jobs over a resource is 10 and suspension should not exceed this 

ratio. Otherwise, the resource will never be assigned after failure. 

 

Resource suspension (RS) will be stored as resource information and used to control 

the resource availability indicator (RAI) using the following logic: 

 If RS = 0, then RAI = 1 

 Else (RS > 0), then RAI = 0 

 

RAI will be combined with resource pheromone value taken from the PVmatrix to decide 

which is the resource having a high pheromone value and RAI = 1. Should the resource 



 

117 
 

have the highest pheromone value but RAI = 0, using a multiplication formula between 

the pheromone value and RAI, the calculated pheromone value will become 0. The 

calculated pheromone value is controlled by RAI and it will not be applied directly in 

the PVmatrix. In a nutshell, the purpose of having more pheromone deduction (penalty) 

and resource suspension in the occurrence of failure is to allow a failed resource to 

undergo a recovery process that includes reboot, cache clearance, network restart and 

manual recovery.  

 

Assume that there are 3 jobs (T1, T2, T3) and 3 resources (R1, R2, R3). This 

combination would create a matrix of 3 x 3 mapped with mocked up pheromone values 

as shown below. 

 

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=  
0.5 0.61 0.9
0.3 0.6 0.7
0.1 0.5 0.67

 

 

Then, assume that R3 has recently failed and RAI = 0. When ant tries to search for the 

resource to process T1, it will result to the effective pheromone value for R3 equivalent 

to 0 due to multiplication of actual pheromone with RAI = 0. This will lead to the ant 

selecting R2 because of it has the highest pheromone value.  

 

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=  
0.5 0.61 0
0.3 0.6 0.7
0.1 0.5 0.67
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After R2 is selected to process T1, it will undergo global pheromone update process 

which will reduce its pheromone to encourage ants to select other resource for next 

task in queue. 

 

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=  
0.5 0.49 0.9
0.3 0.41 0.7
0.1 0.4 0.67

 

 

After the T1 is completely processed, the affected row will be removed from the 

PVmatrix. The PVmatrix will continue to be updated as the new batch of jobs submitted to 

the grid system. 

 

𝑃𝑉 =
𝑅1, 𝑇1 𝑅2, 𝑇1 𝑅3, 𝑇1
𝑅1, 𝑇2 𝑅2, 𝑇2 𝑅3, 𝑇2
𝑅1, 𝑇3 𝑅2, 𝑇3 𝑅3, 𝑇3

=  
0.5 0.49 0.9
0.3 0.41 0.7
0.1 0.4 0.67

 

 

4.4 DAFTS Algorithm 

The algorithm starts with initialization process where all the static and dynamic 

simulation parameters are initialized to form pool of resources and tasks as well as 

basic components within the simulation environments such as grid resource broker, 

scheduler, topology, resources, GIS and simulation kernel. Once initialized, initial 

pheromone value will be calculated using Equation 4.1 which eventually produces 

pheromone level of each combination of tasks and resources. It is assumed that at this 

point, the tasks are already submitted by the user and available in execution queue. 

The grid broker will spawn an ant for each task in the execution queue to identify the 

resource with highest pheromone level in PVmatrix and will submit the task to the 
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identified resource. Once identified, pheromone level will be reduced using global 

pheromone update (Equation 4.3) to increase utilization of other available resources. 

Throughout the execution process, checkpoints will be recorded by the checkpoint 

manager that exists in the grid resource broker and will be restored back upon failure 

to be submitted to other resources. Each failure or success will be recorded in GIS and 

local pheromone update (Equation 4.5) will be applied to either increase the 

pheromone intensity upon success or decrease the pheromone intensity upon failure. 

In the event of failure, resource suspension will also be invoked to temporarily suspend 

the failed resource to prevent it from being assigned with new tasks temporarily. 

Finally, once all tasks in execution queue are completely executed, the algorithm will 

be terminated. Figure 4.10 represents the pseudocode of the proposed DAFTS 

algorithm where the research contributions are bolded accordingly. 
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Figure 4.10. DAFTS algorithm 

 

4.5 Summary 

The first contribution in DAFTS algorithm is the dynamic evaporation rate calculation 

which calculates based on the number of tasks and resources. The calculation will be 

performed every time new batch of tasks is submitted into the grid system. This 

Step 1: Get number of resources 

Step 2: Get number of tasks 

Step 3: Calculate evaporation rate based on number of tasks and resources (dynamic 

evaporation rate) 

Step 4: For each resource, get resource identification, bandwidth, MIPS and load 

Step 5: For each task, get task identification and task size 

Step 6: For each combination of resource and job combination, calculate initial pheromone 

value and store into pv_matrix array 

Step 7: For each task in queue, create an Ant to search for optimal resource in pv_matrix array 

7.1: Multiply pheromone with resource availability indicator constant 

7.2: Get highest calculated pheromone 

7.3: Assign task to the resource 

7.4: Apply global pheromone update to the resource 

Step 8: While task execution is not complete 

8.1: If part of task is completed 

8.1.1: Increase resource success count 

8.1.2: Apply local pheromone update with incentive (trust factor) 

8.1.3: Remove task replica from checkpoint manager 

8.2: If part of task is failed 

8.2.1: Increase resource failure count 

8.2.2: Apply local pheromone update with penalty (trust factor) 

8.2.3: Retrieve task replica from checkpoint manager 

8.2.4: Change resource availability indicator to 0 (temporary 

suspension) 

8.2.5: Resubmit retrieved task to the queue (Step 7) 

8.3: If task execution is completed 

8.3.1: Apply local pheromone update with incentive (trust factor) 

8.3.2: Release resource 

Step 9: If all tasks completely executed, terminate the algorithm 
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ensures that the evaporation rate is properly controlled so that it will not be too quick 

or too slow which will eventually lead to poor pheromone control.  

 

The second contribution of DAFTS is the enhanced local pheromone update to 

consider trust factor which is determined by the status of task execution and resource 

execution history to provide better control of pheromone to the resource which will 

eventually represent the resource fitness during scheduling process by the Ant. The 

trust factor in the enhanced local pheromone update is based on identified constant to 

either increase the pheromone upon successful task execution or reduce the pheromone 

upon execution failure. The enhanced local pheromone update is called when part of 

the task is successfully executed, part of the task is failed, and the full length of 

individual task is completely executed. 

 

The third contribution of DAFTS is the introduction of temporary resource suspension 

to temporarily prevent resource that failed to execute the task from getting new tasks 

from the queue. This is essential to allow it to recover at least complete the execution 

of other parallel execution in the resource. The suspension is controlled based on the 

resource fitness which means that if the resource is fit, the suspension will be released 

quicker than the resource that is not fit. This ensures that fit resources, despite failing 

to execute the task, can continue to be utilized to receive new tasks. The amount of 

suspension can be controlled by changing the decrement factor (defaulted to 1 per 

processing cycle) to higher value to quicken the suspension release or lower value to 

slow down the suspension release. 
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All the listed contributions are incorporated in DAFTS which provide improved 

scheduling process by considering the resource fitness and resource availability 

indicator and enhanced local pheromone update process that considers trust factors and 

resource execution history. In addition to that, effective fault tolerance techniques are 

applied which are task resubmission based on checkpoint to eliminate the need to 

reprocess failed task from the beginning which will eventually reduce the execution 

time, reduce average makespan, reduce average latency, increase throughput, increase 

execution success rate and improve load balancing. 
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CHAPTER FIVE 

EXPERIMENTAL RESULT 

This chapter presents the experimental results of the DAFTS algorithm compared with 

other algorithms in terms of execution time, throughput, average latency, average 

turnaround time, execution success rate and load balancing. Section 5.1 covers the 

experimental design and followed by the parameter tuning experiments in Section 5.2. 

The experimental results and analysis are presented in Section 5.3 for two main 

scenarios which are different rates of failures and different numbers of tasks. Lastly, 

the summary of the chapter is presented in Section 5.4. 

 

5.1 Experimental Design 

Experiments are divided into two parts whereby the first part is used to tune the specific 

parameters of the proposed algorithm to achieve the most optimal results. The 

complete parameter tuning experiments cover several scenarios in order to find the 

optimal constants and parameters in the proposed algorithm is presented in Section 

5.2. This includes the validation of static and dynamic evaporation rate, incentive and 

penalty factor and comparison between suspension and non-suspension.  

 

The second part of experiments covers the thorough comparison with TACO 

(Wenming et al., 2009), FTACO (Prashar et al., 2014), ACO and ACOwFT (Idris et 

al., 2017) as presented in Section 5.3. The first scenario is to measure the effectiveness 

of DAFTS using different failure rates in terms of execution time, throughput, average 

makespan, average latency, load balancing and execution success rate. The second 

scenario is to measure the effectiveness of DAFTS using different numbers of tasks in 



 

124 
 

terms of execution time, execution success rate and load balancing. For each scenario, 

the average of 10 executions is taken as the final results to preserve the consistency 

and validity of the results. 

 

5.2 DAFTS Parameter Tuning 

Before comparison with another algorithm can be performed, it is essential to tune the 

parameters of DAFTS algorithm so that it can achieve optimal performance. 

Parameters tuning is also important in adjusting the preference of an algorithm. For 

instance, it is possible to increase the execution success rate by assigning tasks to fit 

resources and not utilizing unfit resources, but the drawback will be poor resource 

utilization or load balancing. It is also possible to reduce overhead by not 

implementing fault tolerance techniques such as checkpoint and suspension, but this 

will lead to an increase in execution time. 

 

5.2.1 Dynamic Evaporation Rate versus Fixed Evaporation Rate 

Evaporation rate is an important parameter in the pheromone update formula whereby 

the higher the evaporation rate, the faster the rate of pheromone evaporation. In 

contrast, a lower evaporation rate results in a slower rate of pheromone evaporation. 

According to the experiment, a fixed evaporation rate is not effective in controlling the 

load balancing as it does not consider the number of tasks and resources. A fixed 

evaporation rate is suitable in a system that does not have faults and has predicted or 

well-timed tasks submission. This is the reason why the dynamic evaporation rate is 

proposed which considers the number of tasks and resources to control the rate of 

pheromone evaporation so that the load balancing, success rate and execution time 
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aspects are improved. In addition to that, in the actual application, tasks may come by 

batch and resources count may increase or decrease at different timings. Thus, it is 

important to dynamically reevaluate the current situation and adjust the evaporation 

rate accordingly to ensure the system can operate at optimum level at any time.  

 

The experiment was conducted using the parameters shown in Table 5.1 in which the 

number of tasks is changed to measure the effectiveness of dynamic evaporation rate, 

the failure percentage is set to 50%. 

 

Table 5.1 

Simulation parameters for evaporation rate validation 

Parameters Values 

No. of resources 100 

No. of tasks 1000 / 3000 / 5000 

PE rating 50 MIPS 

Bandwidth 5000 B/S 

No. of machine / resource 1 

PE per machine 2 

Gridlet length 200000 MI 

File size 100 + (10-40%) 

Output size 250 + (10-50%) 

 

As shown in Figure 5.1, regardless of the number of tasks, the dynamic evaporation 

rate has a lower load balancing standard deviation which means that the task 

distribution is done more effectively than the static evaporation rate. The results 
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suggest that by dynamically assigning the evaporation rate based on the number of 

resources and tasks, the task distribution will be more balanced and eventually lead to 

better resource utilization.  

 

Figure 5.1. Comparison between static and dynamic evaporation rate in terms of load 
balancing for 100 resources with 1000, 3000 and 5000 tasks 
 

In addition to measuring load balancing, the execution rate should also be considered 

to complement load balancing. This is because load balancing focuses on task 

distribution rather than resource execution history. It is still possible that good load 

balancing can be achieved but with lower execution success rate. The comparison of 

execution success rate between static and dynamic evaporation is presented in Figure 

5.2. In the proposed algorithm, since the resource fitness is considered during task 

assignment, both load balancing and execution success rate aspects are preserved. For 

all scenarios, the dynamic evaporation rate produced a higher execution success rate 

as compared to static evaporation rate. 
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Figure 5.2. Comparison between static and dynamic evaporation rate in terms of 
execution success rate for 100 resources with 1000, 3000 and 5000 tasks 

 

Last but not least, the execution time, which is influenced by the execution success 

rate. As depicted in Figure 5.3, in all scenarios, the dynamic evaporation rate resulted 

in lower execution time as compared to static evaporation rate. The results prove that 

by complementing between load balancing and execution success rate, the system can 

achieve a lower execution time. The difference of execution success rate between static 

and dynamic increases along with the number of tasks incremented. This trend 

suggests that the larger the ratio of resources and tasks, the better the improvement of 

execution success rate when the dynamic evaporation rate is applied. There are other 

aspects that influence the execution time such as latency and average makespan that 

are indirectly covered by the execution time in this experiment. 
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Figure 5.3. Comparison between static and dynamic evaporation rate in terms of 
execution time for 100 resources with 1000, 3000 and 5000 tasks 
 

Different numbers of tasks require different values of evaporation rates in which large 

numbers of tasks need slower evaporation rates as compared to small numbers of tasks 

that require faster evaporation rates. In real situations, there will be different numbers 

of tasks submitted to the grid broker to the system at different times or schedules. Thus, 

it is important for the system to have the capability to control the ideal evaporation rate 

to support execution with effective load balancing control. Adjustment of the 

evaporation rate can be performed per batch of assigned tasks or at a defined time 

interval by considering the current tasks and resources available at that time to ensure 

that the system can operate as optimum level. 

 

5.2.2 Incentive and Penalty Factor 

Incentive and penalty or also known as trust factor is proposed to influence the 

pheromone update process by allowing a more flexible controlling mechanism. 
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Without an optimal incentive and penalty value, load balancing will be affected as the 

algorithm would focus on the most fit resources rather than distributing the tasks to all 

available resources based on their fitness. The optimal values are used to assign 

variable T in (Equation 4.5) so that successful execution will increase the pheromone 

of a resource, and failure will decrease the pheromone so that the resource will have 

lesser possibility to be assigned with tasks in following iterations. In this experiment, 

the optimal values for incentive and penalty are identified based on iterative executions 

for each combination of incentive ranging from 1 to n and penalty ranging from 1 to 

0. To measure the optimal values, the experiment was conducted using the parameters 

shown in Table 5.2. 

 

Table 5.2 

Simulation parameters for incentive and penalty values optimization 

Parameters Values 

No. of resources 100 

No. of tasks 5000 

PE rating 50 MIPS 

Bandwidth 5000 B/S 

No. of machine / resource 1 

PE per machine 2 

Gridlet length 200000 MI 

File size 100 + (10-40%) 

Output size 250 + (10-50%) 

Incentive Range [1, 2] 

Penalty Range [0, 1] 
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A slight difference in the incentive or penalty value provides differences in terms of 

execution success rate and load balancing. As shown in Table 5.3, the bottom three 

load balancing values are obtained when the incentive values are 1.3, 1.4 and 1.5 while 

the penalty value is 1.0.  

 

Table 5.3 

Incentive and penalty values optimization for load balancing 

  
Incentive 

  1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

P
en

al
ty

 

1.0 0.652 0.077 0.068 0.048 0.047 0.047 0.055 0.063 0.067 0.073 0.097 

0.9 0.713 0.703 0.704 0.682 0.702 0.705 0.707 0.707 0.702 0.699 0.709 

0.8 0.703 0.702 0.703 0.703 0.704 0.711 0.711 0.714 0.718 0.722 0.725 

0.7 0.691 0.686 0.687 0.688 0.690 0.694 0.709 0.714 0.718 0.722 0.727 

0.6 0.704 0.724 0.717 0.681 0.674 0.691 0.710 0.712 0.715 0.717 0.719 

0.5 0.722 0.709 0.709 0.709 0.709 0.728 0.723 0.723 0.723 0.723 0.723 

0.4 0.730 0.698 0.712 0.714 0.716 0.718 0.719 0.721 0.723 0.725 0.727 

0.3 0.702 0.706 0.716 0.717 0.718 0.720 0.721 0.722 0.723 0.725 0.726 

0.2 0.728 0.692 0.694 0.695 0.696 0.710 0.718 0.718 0.719 0.719 0.719 

0.1 0.737 0.748 0.740 0.733 0.726 0.719 0.719 0.720 0.720 0.720 0.722 

0 0.716 0.714 0.715 0.716 0.718 0.727 0.719 0.721 0.722 0.724 0.725 

 

On the other hand, the top three execution success rates are obtained when incentive 

values are 1.0, 1.4 and 1.5 while the penalty value is 1.0 as listed in Table 5.4. It can 

be concluded that to achieve the highest execution success rate, the values of incentive 

and penalty should be 1.0 for both.  
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Table 5.4 

Incentive and penalty values optimization for execution success rate 

  Incentive 

  1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

P
en

al
ty

 

1.0 94.40 91.65 92.12 92.43 92.70 93.65 91.80 91.53 91.27 91.01 90.75 

0.9 82.71 81.09 70.77 72.06 77.22 78.80 77.39 76.65 75.56 73.14 72.72 

0.8 81.93 79.98 67.56 70.78 73.92 76.86 75.12 74.98 74.70 73.14 72.78 

0.7 80.10 78.72 67.00 68.90 70.27 74.87 72.69 69.87 68.57 68.50 67.19 

0.6 79.81 78.26 66.45 67.59 68.26 72.64 72.58 69.12 68.44 68.30 66.96 

0.5 78.51 77.07 65.89 66.23 66.90 71.92 72.26 68.82 68.14 68.00 66.67 

0.4 77.45 76.10 65.33 66.28 66.94 70.70 71.26 67.87 67.20 67.06 65.75 

0.3 76.40 75.12 64.78 64.96 65.61 68.41 68.59 65.33 64.68 64.55 63.29 

0.2 75.35 74.15 64.22 63.66 64.30 65.68 65.53 62.41 61.79 61.66 60.46 

0.1 74.29 73.17 63.66 63.65 64.29 64.25 65.30 62.19 61.58 61.46 60.25 

0 73.24 72.20 63.11 62.34 62.97 63.39 62.52 59.55 58.96 58.84 58.66 

 

This result suggests that when both incentive and penalty are set to 1.0, fit resources 

are likely to be assigned with the majority of tasks which would lead to stagnation 

where some resources are heavily loaded. However, the drawback in this situation is 

that the load balancing of the system will be the worst. Even though the success rate 

is one of the key criteria in task processing, load balancing is even more important in 

ensuring that task distribution is undertaken fairly to increase resource utilization. 

Thus, in the experiments that compare the performance of the proposed DAFTS 

algorithm with other algorithms, the values of incentive and penalty are set to 1.5 and 
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1.0 respectively as shown in Table 5.5 where the second highest execution success rate 

and lowest load balancing standard deviation are achieved. 

 

Table 5.5 

Side-by-side comparison of top three figures in Table 5.3 and Table 5.4 

Reference 

Table 

Table 5.3 Table 5.4 

 Incentive 

 

 1.0 1.4 1.5 1.3 1.4 1.5 

P
en

al
ty

 

1.0 94.40 92.70 93.65 0.048 0.047 0.047 

 

Incentive and penalty values are assigned as power factors in the pheromone update 

formula which is very sensitive but effective in manipulating the preference of the 

algorithm on whether to focus on execution rate but disregard load balancing, or to 

achieve slightly lower execution success rate but with good load balancing. This value 

is applied in the local pheromone update formula explained in (Equation 4.5). 

 

The trust factor denoted with T controls the outcome of the calculation. When T ≤ 1, 

the calculated value will be reduced and if T > 1, the calculated value will be increased. 

This behavior represents the increase or decrease of pheromone. When T is too small, 

the decrease of pheromone to the failed resource will be too much and may lead to the 

resource not getting assigned with task gain. On the other hand, if T is too large, the 

rapid increase of pheromone may cause fit resources to potentially be assigned with 

too many tasks, eventually leading to poor load balancing. It is also possible to 

manipulate the trust factor to achieve specific preference such as to achieve the highest 
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execution success rate without considering the load balancing, or to maximize the 

resource utilization without the need to achieve highest execution success rate.  

 

5.2.3 Implementation of Suspension Technique 

Suspension is proposed to temporarily pause a recently failed resource to allow it to 

recover and reduce the possibility of another round of failure. The resource suspension 

considers the initial ratio of tasks to be assigned to each resource and current fitness 

rate. This experiment is carried out to measure the effectiveness of the suspension as 

compared to without suspension technique. Execution time, success rate and load 

balancing are measured to find out whether the proposed suspension technique is 

effective in optimizing the performance of the DAFTS algorithm. The size of each task 

is also changed to represent small (50000 MI), medium (200000 MI) and large 

(1000000 MI). The parameters used in this experiment are presented in Table 5.6. It is 

hypothesized that the larger the size of tasks, the more effective the checkpointing and 

resource suspension techniques will be. 

 

Table 5.6 

Simulation parameters for resource suspension validation 

Parameters Values 

No. of resources 100 

No. of tasks 5000 

PE rating 50 MIPS 

Bandwidth 5000 B/S 

No. of machine / resource 1 
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PE per machine 2 

Gridlet length 50000 / 200000 / 1000000 MI 

File size 100 + (10-40%) 

Output size 250 + (10-50%) 

 

Resource suspension is meant to reduce the possibility of another failure should the 

recently failed resource being assigned with task and allowing the resource to recover 

in actual implementation. As presented in Figure 5.4, there is a slight reduction to 

execution time when the suspension technique is enabled with small, medium and 

large size of tasks. Despite the slight difference in this experiment, when the size is so 

large in the actual implementation, the difference will be more significant in improving 

the performance of the system. 

 

  

Figure 5.4. Comparison between no suspension and with suspension in terms of 
execution time for small, medium and large sized tasks 
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Execution time is directly influenced by the execution success rate as shown in Figure 

5.5. The success rate, when the suspension technique is enabled, is higher for all the 

scenarios as compared to without suspension. It is proven that by temporarily isolating 

the recently failed resources from being assigned with new tasks, the possibility of 

failure is also reduced. 

 

 

Figure 5.5. Comparison between no suspension and with suspension in terms of 
execution success rate for small, medium and large sized tasks 
 

In addition to preserving the execution success rate, the load balancing aspect is also 

considered to ensure that the task distribution is done fairly to avoid bottlenecks. 

Figure 5.6 depicts that load balancing is further improved when the suspension 
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the better load balancing the system has achieved. This reduction is very significant 
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Figure 5.6. Comparison between no suspension and with suspension in terms of load 
balancing for small, medium and large sized tasks 
 

Temporary suspension provides significant improvement in terms of execution time, 

execution success rate and load balancing standard deviation. Suspension allows the 

resource to recover itself by preventing it from getting new load or by user intervention 
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by itself. The length of suspension may vary depending on the number of available 

resources and the number of tasks to be processed. It is important to set the optimal 
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5.3 Results and Analysis 

The comprehensive experiments consist of two parts: using different rates of failure 

between 0% up to 50%; and, using different numbers of tasks ranging between 1000 

and 10000. In both parts, all the algorithms are compared thoroughly to validate 

specific performance metrics. The proposed DAFTS algorithm is compared with 

TACO (Wenming et al., 2009), FTACO (Prashar et al., 2014), ACO and ACOwFT 

(Idris et al., 2017) which are re-implemented in GridSim. Each algorithm is executed 

10 times for each scenario or interval and the average is taken for a more precise 

measurement. 

 

5.3.1 Effectiveness of DAFTS to Different Rates of Failure 

To validate the performance of the proposed DAFTS algorithm in the presence of 

failure, a pseudorandom algorithm is used to randomly assign resource fitness within 

a defined range. In this case, the range of resource fitness is defined between 50% to 

100% as used by Amoon (2012) and all other resource and task parameters are adopted 

from Idris et al. (2017), as shown in Table 5.7, except for resource fitness. For more 

accurate measurement, each resource is set to have the same PE rating, bandwidth, 

number of machines and PE per machine. 

 

Table 5.7 

Simulation parameters for the effect of different numbers failure rates 

Parameters Values 

No. of resources 100 

No. of tasks 5000 
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PE rating 50 MIPS 

Bandwidth 5000 B/S 

No. of machine / resource 1 

PE per machine 2 

Gridlet length 200000 MI 

File size 100 + (10-40%) 

Output size 250 + (10-50%) 

Resource fitness 50% - 100% (10% interval)  

 

Note. Adapted from Idris et al. (2017). 

 

Execution time is measured from the moment the first task is submitted to the system 

to undergo scheduling and execution process until all tasks are completely processed. 

As shown in Figure 5.7, the execution time for DAFTS, ACOwFT and FTACO is 

incremented gradually as compared to TACO and ACO with rapid increment along a 

with percentage of fault ranges. This suggests that the checkpoint technique provides 

significant improvement in terms of execution time as failed tasks do not need to be 

reprocessed from the initial state. In real implementation, the size of each task is big 

and requires time to execute. For example, using a non-checkpoint technique, a task 

that requires one hour to be completely processed may require 1.5 hours to complete 

if it failed at 50% progress. However, if using the checkpoint technique, the same task 

may require one hour and several minutes with the assumption that the additional 

minutes are used to retrieve and reschedule the last saved state into the execution 

queue. 
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Figure 5.7. Results of execution time for ACOwFT, ACO, TACO, FTACO and 
DAFTS 
 

For efficiency, throughput is used to measure the performance of the fault tolerance 

system and calculated by dividing the total number of tasks with total time taken to 

completely process all tasks. Figure 5.8 shows that DAFTS has the highest throughput 

while ACOwFT and FTACO have slightly lower throughput. The algorithms with the 

least throughput are ACO and TACO with more than 50% reduction as compared to 

the highest throughput algorithms. Since throughput measures the number of tasks 

completed per unit of time, it is directly influenced by the total execution time. The 
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Figure 5.8. Results of throughput for ACOwFT, ACO, TACO, FTACO and DAFTS 

 

Average makespan per gridlet is also considered as average execution time per 
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Figure 5.9. Results of average makespan per gridlet for ACOwFT, ACO, TACO, 
FTACO and DAFTS 
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resources with low fitness will still be assigned with the least number of tasks instead 

of no task at all. 

 

 

Figure 5.10. Results of average latency per gridlet for ACOwFT, ACO, TACO, 
FTACO and DAFTS 
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to inconsistency of pheromone level in all resources. In addition, consideration of 

execution history is effective in determining how fit the resource is in balancing the 

load. The closer the standard deviation to 0, the better the load balancing. In other 

words, without even knowing how fit a specific resource is, initially, the proposed 

algorithm is able to apply heuristic capability to determine the fitness based on 

execution history while preserving resource utilization. 

 

 

Figure 5.11. Results of load balancing for ACOwFT, ACO, TACO, FTACO and 
DAFTS 
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possibility of failure even though it can balance the load effectively. Despite ACOwFT 

having slightly better load balancing as compared to DAFTS, the proposed algorithm 

gives a better success rate which is more favorable in the presence of faults. 

 

 

Figure 5.12. Results of success rate for ACOwFT, ACO, TACO, FTACO and DAFTS 
 

Overall, DAFTS produced better performance as compared with the other algorithms 

especially ACOwFT. In terms load balancing, ACOwFT achieved slightly better 
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and execution success rate, DAFTS outperformed the other algorithms significantly. 
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5.3.2 Effectiveness of DAFTS to Different Numbers of Tasks 

To further validate the effect of the number of tasks to the performance of all 

algorithms, an additional experiment is conducted by using different the number of 

tasks from 1000 to 10000 and resource fitness is distributed between 50% to 100%. 

The results for each scenario are taken from an average of 10 executions for more 

consistent results. Table 5.8 summarizes the parameters used where all the parameters 

except for number of tasks and range of resource fitness are adopted from Idris et al. 

(2017). 

 

Table 5.8 

Simulation parameters for the effect of different numbers of tasks 

Parameters Values 

No. of resources 100 

No. of tasks 1000 – 10000 

PE rating 50 MIPS 

Bandwidth 5000 B/S 

No. of machine / resource 1 

PE per machine 2 

Gridlet length 200000 MI 

File size 100 + (10-40%) 

Output size 250 + (10-50%) 

Range of resource fitness 50% - 100% (randomized) 

 

Note. Adapted from Idris et al. (2017). 
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Figure 5.13 shows the effect to the execution time when the number of individual tasks 

is increased. It can be seen that the execution time increases along with the increase in 

the number of tasks. However, the increment rate for DAFTS, ACOwFT and FTACO 

is relatively similar as compared to ACO and TACO that do not employ a checkpoint 

technique. This result suggests that as the number of tasks increases, the effectiveness 

of the checkpoint technique, as employed in DAFST, ACOwFT and FTACO, will 

become more significant. 

 

 

Figure 5.13. Results of execution time for ACOwFT, ACO, TACO, FTACO and 
DAFTS for different number of tasks 
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throughput at certain intervals. This also means that even if the number of tasks is 

further increased, the throughput will be stagnant since the close to optimal solution is 

achieved. 

 

Figure 5.14. Results of throughput for ACOwFT, ACO, TACO, FTACO and DAFTS 
for different number of tasks 
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queue and task processing time which considers the processing time including when it 

failed until each individual task is completely processed. 

 

 

Figure 5.15. Results of average makespan for ACOwFT, ACO, TACO, FTACO and 
DAFTS for different number of tasks 
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Figure 5.16. Results of average latency for ACOwFT, ACO, TACO, FTACO and 
DAFTS for different number of tasks 
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Figure 5.17. Results of load balancing standard deviation for ACOwFT, ACO, TACO, 
FTACO and DAFTS for different number of tasks 
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Figure 5.18. Results of execution success rate for ACOwFT, ACO, TACO, FTACO 
and DAFTS for different number of tasks 
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5.4 Summary 

In this chapter, comprehensive experiments were undertaken to determine the specific 

approaches and optimal parameters to be used by DAFTS to achieve optimal 

performance. According to the first part of the experiment, implementation of a 

dynamic evaporation rate and suspension provided slightly better performance as 

compared to the DAFTS without both approaches. Additionally, the optimal incentive 

value is 1.5 while the penalty value is 1.0 to achieve the best load balancing with 

slightly less execution success rate. All these techniques and optimal values are used 

in the experiments to compare with the other algorithms. 

 

The next experiments were conducted to validate the performance the DAFTS 

algorithm compared with the other algorithms in terms of execution time, throughput, 

latency, makespan, execution success rate and load balancing in which the failure rate 

was changed accordingly. The results suggest that DAFTS achieved the best overall 

performance despite slightly higher load balancing standard deviation than ACOwFT. 

However, in terms of execution time, throughput, average makespan, average latency 

and execution success rate, DAFTS outperformed ACOwFT. Considering the 

outperformance of DAFTS as compared to slightly higher load balancing standard 

deviation by ACOwFT, it can be concluded that DAFTS achieved the best overall 

performance. The results also suggest that all the algorithms that employ the 

checkpoint technique achieved significantly better performance than those without the 

checkpoint technique. This outcome is driven by the fact that checkpoint technique 

eliminates the need to reprocess the failed task from the beginning and eventually lead 

to lower execution time, lower average makespan, lower average latency, higher 

throughput and higher execution success rate. 
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The last experiments were conducted to investigate the effect of tasks’ count to the 

performance of all algorithms in terms of execution time, throughput, average 

makespan, average latency, load balancing standard deviation and execution success 

rate. The results suggest that the execution time is directly influenced by the increase 

of the number of tasks while the throughput, load balancing standard deviation and 

execution success rate are not directly influenced by the execution time. In fact, the 

increase in the number of tasks gives more time for the algorithm to achieve the 

optimal task assignment scheme in which, at some point, the performance will be 

stagnant despite the increase in the number of tasks. In alignment with the experiment 

to compare on different rates of failure, DAFTS outperformed the other algorithms in 

terms of execution time, throughput, average makespan, average latency and execution 

success rate. In terms of load balancing standard deviation, it achieved slightly higher 

as compared to ACOwFT that achieved the best. This is influenced by the method used 

in ACOwFT that considers the resource load during task assignment but in DAFTS, 

resource fitness and suspension indicator are considered during task assignment 

process. 

 

Overall, it can be concluded that the proposed DAFTS algorithm has achieved the best 

performance in terms of execution time, throughput, average makespan, average 

latency and execution success rate when compared with ACOwFT, ACO, FTACO and 

TACO. It also achieved insignificantly higher load balancing standard deviation when 

compared with ACOwFT. 
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CHAPTER SIX 

DISCUSSION 

This chapter is dedicated to discuss what have been covered in Chapter 3, Chapter 4 

and Chapter 5, and the relationship between all the chapters from the beginning of 

defining the framework that was used to drive the research process until the getting 

the results from the designed experiments. Section 6.1 covers relationship between 

research framework, core design of DAFTS algorithm and associated experiment. 

Lastly, Section 6.2 summarizes the experimental results. 

 

6.1 Relationship Between Framework, Algorithm Design and Experiment 

The research framework in Figure 3.1 in Chapter 3 is designed with phases and 

methods to align with outcomes that directly related with defined research problems 

and objectives. As part of fault tolerance techniques identification phase, thorough 

analysis and review were done on recent works related to fault tolerance in distributed 

system. The finding is the job reprocessing based on checkpoint and trust factors are 

the most effective techniques to be applied in DAFTS to ensure that all the failed jobs 

will be completely processed, the reprocessing is performed from the last saved state 

instead of from the beginning, and application of trust factors to control the desirability 

of ants to assign jobs to available resources. 

 

Before the fault tolerance techniques can be incorporated into the DAFTS, the core of 

the ACS algorithm that focuses on resource assignment and job scheduling is being 

further enhanced to optimize the performance. The optimization consists of enhancing 

evaporation rate calculation based on the number of jobs and number of resources, and 
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considering the resource availability indicator. The detailed design of these 

enhancements is covered in Section 4.2. As depicted in Figure 4.10 in Chapter 4, the 

dynamic evaporation rate is integrated as soon as the number of jobs and resources are 

identified in Step 3. Then, the resource availability indicator is being considered to 

obtain suitable resources as in Step 7.1. Typically, ACO algorithms use fixed 

evaporation rate which is 0.5 but, in this research, dynamic evaporation rate seems to 

provide significant improvement over fixed evaporation rate in terms of load 

balancing, success rate and execution time as presented in Section 5.2.1. 

 

After the improvement of resource assignment and job scheduling process, the 

improved ACS algorithm is integrated with fault tolerance techniques which are job 

resubmission to alternative resources based on checkpoint and trust factors that consist 

of incentive or penalty, and temporary resource suspension. These are presented in 

Figure 4.10 in Chapter 4, Step 8. The detailed design of temporary resource suspension 

is explained in Section 4.3. In terms of job resubmission based on checkpoint, the 

enhanced job scheduling that refers to the resource pheromone will be re-invoked to 

process remaining checkpoints and jobs. The checkpoint mechanism is also part of the 

components in the fault tolerance to temporarily store job replicas or checkpoints 

which will be retrieved back during job reprocessing. As is Section 5.2.2, experiments 

were done to identify the optimal values for trust factors that consists of 1.5 for 

incentive and 1.0 for penalty. This constant is used to influence the increase or decrease 

of resource pheromone based on execution status during local pheromone update 

process (Step 8.1.2, Step 8.2.2 and Step 8.3.1). In addition to trust factors, resource 

availability indicator is being toggled to 0 with calculated suspension amount when 

the job execution has failed (Step 8.2.4). The calculated suspension will evaporate 
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slowly and will toggle back the resource availability indicator to 1 once evaporated 

completely. The experiments to verify the effectiveness of temporary resource 

suspension is covered in Section 5.2.3. It can be seen that by applying temporary 

resource suspension, the DAFTS algorithm achieved improvement in terms of 

execution time, success rate and load balancing. 

 

The outcome of resource assignment and job scheduling enhancement, and fault 

tolerance algorithm improvements are finally integrated to form the final DAFTS 

algorithm. With optimal values for trust factors, and proven techniques such as 

dynamic evaporation rate and temporary resource suspension, the experiments were 

carried out to validate the performance against other benchmark algorithms which are 

TACO (Wenming et al., 2009), FTACO (Prashar et al., 2014), ACO and ACOwFT 

(Idris et al., 2017) in terms of execution time, success rate, throughput, latency, 

makespan and load balancing. All the performance metrics used are elaborated in 

Section 3.4 and Section 3.5. All the benchmarks algorithms were reimplemented in the 

same simulation environment as DAFTS to ensure fair comparison is performed as 

presented in Section 5.3.1 and Section 5.3.2. 

 

6.2 Summary of Experimental Result 

Two sets of thorough experiments were carried out which are to validate the 

effectiveness of DAFTS to different rates of failure (Section 5.3.1) and to validate the 

effectiveness of DAFTS to different numbers of tasks (Section 5.3.2). In the first set 

of the experiments, the failure rate is being changed within the range of 50% to 100% 

as it is expected that the higher the possibility of failure, the lower the performance of 
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the algorithm. Table 6.1 shows the summary of performance reduction difference 

between 0% and 50% failure rate. 

 

Table 6.1 

Summary of experiments to validate the performance between 0% and 50% failure 

rate 
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ACO ↑ 216%  ↓ 68.3% ↑ 123%  ↑ 112%  ↑ 0.099 ↓ 20% 

TACO ↑ 106%  ↓ 50.5% ↑ 73%  ↑ 65%  ↑ 0.516 ↓ 11% 

FTACO ↑ 24%  ↓ 16.0% ↑ 24%  ↑ 18%  ↑ 0.373 ↓ 15% 

ACOwFT ↑ 20%  ↓ 16.9% ↑ 22%  ↑ 16%  ↑ 0.019 ↓ 17% 

DAFTS ↑ 7%  ↓ 6.49% ↑ 11%  ↑ 5%  ↑ 0.067 ↓ 9% 

 

As shown in Table 6.1, DAFTS has the lowest percentage change in terms of execution 

time, throughput, average makespan, average latency and success rate. This indicates 

that despite the increase of failure rate, the impact of performance is the lowest among 

all other algorithms as the ants are able to avoid potential failure through consideration 

of resource fitness. However, ACOwFT has the lowest load balancing standard 

deviation difference and followed by DAFTS with second lowest. This shows that by 

considering the resource load or fitness, the load balancing can be preserved. It can 
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also be seen that checkpoint technique implemented in DAFTS, ACOwFT and 

FTACO significantly reduces the performance degradation on execution time, average 

makespan and average latency as compared to ACO and TACO that do not implement 

checkpoint technique. This is because the checkpoint technique allows the failed job 

to be reprocessed from the last saved state instead of from the initial state. This 

technique is crucial when the system is dealing with large job size. 

 

The second set of experiments were conducted to measure the effect on performance 

when the number of jobs is increased while maintaining the same number of resources 

(100 resources). Table 6.2 summarizes the result of experiments to validate the effect 

on performance between 1000 jobs and 10000 jobs. 

 

Table 6.2 

Summary of experiments to validate the performance between 1000 jobs and 10000 

jobs 
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ACO ↑ 11.3  ↓ 11.8% ↑ 15.1  ↑ 15.46  0.20 → 0.06 81.0 → 84.4 

TACO ↑ 7.35  ↑ 36% ↑ 9.3  ↑ 9.49  0.32 → 0.54 83.2 → 92.7 

FTACO ↑ 6.51  ↑ 53.7% ↑ 9.26  ↑ 9.39  0.36 → 0.68 88.0 → 89.7 
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ACOwFT ↑ 6.7  ↑ 48.7% ↑ 9.2  ↑ 9.43  0.11 → 0.02 84.2 → 86.3 

DAFTS ↑ 5.8  ↑ 72.9% ↑ 8.5  ↑ 8.7  0.14 → 0.05 86.2 → 93.7 

 

As shown in Table 6.2, DAFTS has the lowest increment in terms of execution time, 

average makespan and average latency. In terms of throughput and success rate, 

DAFTS achieves highest increment. However, in terms of load balancing standard 

deviation, ACOwFT has the lowest standard deviation and followed by DAFTS. It is 

clear that when considering the resource load or fitness, the fault tolerance algorithm 

can improve load balancing due to longer execution time and higher number of 

iterations that allow ants to produce better scheduling decision. For algorithms that do 

not consider the resource load such as TACO and FTACO, the load balancing will 

become unstable as the number of jobs increases. In addition, the application of trust 

factors as part of pheromone update process in DAFTS and TACO produces the best 

execution success rate as the unfit resources are punished to reduce the possibility of 

getting jobs while fit resources are rewarded to increase the possibility of getting more 

jobs. 

 

In summary, the consideration of resource load leads to the best load balancing and 

consideration of resource fitness seems to produce good load balancing as well in the 

presence of faults. Furthermore, trust factors that leads to the highest execution success 

rate. Application of jobs resubmission based on checkpoint technique resulted to lower 

execution time, average makespan and average latency. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

DAFTS, as another variant of the ACS-based fault tolerance algorithm, offers the 

possibility of enhancing the job resubmission process in the presence of faults using 

task checkpoint and resource suspension techniques. The main aims being to improve 

the load balancing as well as to increase execution success rate. 

 

Four research questions have been considered and answered by four research 

objectives corresponding to these questions. The main objective of the research was to 

develop an improved ACS-based fault tolerance algorithm that can overcome faults by 

rescheduling a failed task from the last saved checkpoint to another fit resource. To 

achieve this, the resource fitness is being considered and temporary resource 

suspension is applied to a recently failed resource to avoid being assigned with another 

task and in order to undergo the recovery process. In addition to resource fitness, the 

application of an ACS-based scheduling technique provides better control for the task 

scheduling process so that it will result in better load balancing in the presence of 

faults. 

 

The first specific objective was to investigate effective fault tolerance techniques to be 

applied in DAFTS by considering the objectives of each technique to overcome related 

problems. The second objective was to improve the ACS-based algorithm to consider 

the resource fitness during scheduling process, apply temporary suspension to avoid 

resources that recently failed from getting new tasks, and integrate the trust factors 

during the pheromone update process. The third objective was to develop the improved 
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algorithm that considers both fault tolerance and load balancing aspects. Last but not 

the least objective was to evaluate the improved algorithm in simulated grid computing 

environment by reimplementing benchmark algorithms in the same platform as the 

DAFTS algorithm. 

 

7.1 Contribution of the Research 

The main contribution of this research is the new variant of ACS that provides fault 

tolerance capability that is based on the way ants search for fit resources to process 

tasks in a queue, update the pheromone intensity, use of checkpoint technique for task 

resubmission, search for alternative resources during the task resubmission process, 

suspend the recently failed resources, and balance the load through fitness-based 

resource assignment. Within optimal or alternative resources identification, resource 

execution history is being considered which is represented by the amount of available 

pheromone. During the pheromone update process, the status of task processing 

influences the pheromone deposit or evaporation and suspension is defined to 

temporarily suspend a resource that fails to support task processing. On the other hand, 

the fault tolerance scheme is coupled with a checkpoint-based resubmission technique 

to effectively reduce the task reprocessing time should the task fail in the middle of 

processing. 

 

DAFTS has been proven to effectively reduce execution time, makespan, and latency 

as well as increase the throughput and execution success rate. The checkpoint-based 

resubmission technique ensures that the failed task can be reprocessed from the last 

saved stated instead of from the beginning. Each individual task will be broken down 

into several checkpoints based on its size. It is important to control the amount of 
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checkpoint calls as an excessive amount may lead to overheads, whereas too few may 

lead to longer execution times. 

 

DAFTS is equipped with an improved global and local pheromone update which has 

adopted and adapted the original pheromone update concept from the ACS algorithm. 

In DAFTS, the global pheromone update is adopted from the original ACS to prevent 

stagnation. The contribution on this aspect is the enhanced local pheromone update 

that considers the resource fitness and trust factors to either increase when the resource 

has successfully executed a task or decrease when the resource fails to execute a task. 

This action leads to better execution success rate as fit and unfit resources can be easily 

identified based on the pheromone value. 

 

DAFTS aims to improve load balancing in the presence of faults by using an improved 

pheromone update technique that considers the dynamic evaporation rate, the resource 

fitness as well as task processing status when updating the pheromone. Typically, 

resources that are fit are being over-utilized to preserve the execution success rate of 

executing tasks. But in DAFTS, it also considers resources that are not fit by assigning 

small number of tasks and should these small number of tasks fail, standard recovery 

process will be initiated. Throughout the experiments, DAFTS achieved second best 

load balancing as compared to ACOwFT that achieved the best load balancing. This 

is due to the fact that ACOwFT considers the resource load when assigning tasks which 

directly influences the load balancing. However, the drawback of considering the 

resource load only is the reduction of execution success rate. The resource load only 

indicates what is being processed by resources, but not the status of processing. It is 
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possible that resources with low load are not fit which may lead to higher possibility 

of failure as proven in the experimental results. 

 

Additionally, the task assignment process is improved so that ants consider both the 

pheromone value and resource availability indicator to find the optimal resources. In 

typical ant-based scheduling algorithm, pheromone is one of the key criteria in 

determining which resource to be selected for task assignment. In DAFTS, resource 

availability indicator is also being considered because recently failed resources will be 

suspended temporarily, and this indicator will prevent them from being loaded with 

more tasks. Experimental results showed that this method increases both execution 

success rate and resource utilization. 

 

Additional contribution includes the proposed formula to measure the load balancing 

standard deviation for system with faults which is useful in measuring the load 

balancing of fault tolerance algorithms during experimentations. The proposed 

formula is meant to measure the deviation of the actual against the expected tasks 

assignment count to a specific resource. It is designed to be usable in other application 

domains as well to measure the effectiveness of a fault tolerance algorithm in 

preserving the load balancing when applying the initial task assignment and 

reassignment after failure. 

 

Last but not the least is the contribution to the grid computing where the DAFTS 

algorithm has been designed to work effectively in grid computing to optimize the 

system in the presence of failures. The contribution is mainly on the new variant of 

fault tolerance algorithm rather than the architecture of the grid computing.  
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7.2 Future Work 

Grid computing is now being deployed as a subsystem within larger distributed 

systems such as cloud, cluster and high performance computing which consists of 

many heterogeneous devices that provide not only processing capability but, also, 

storage, analytics, artificial intelligence, user interfacing and many more. Future works 

may include the implementation of DAFTS algorithm in a larger distributed system 

that is able to provide fault tolerance based on the function of each device and type of 

failure to improve the efficiency and reliability of the system in performing a required 

task or function and balance the load. 

 

Another future work could focus on the application of the DAFTS algorithm in other 

application domains such as the travelling salesman problem, wireless sensor network 

optimization, timetable and workload scheduling. With the proven results as presented 

in this research, it is expected that the application of the proposed scheme with minor 

modifications in other application domains may improve certain aspects such as 

scheduling, routing and load balancing. 

 

In addition to future works in grid computing and other application domains, potential 

future work could be on the ACS algorithm to handle simultaneous on-the-fly 

executions with different characteristics and priorities. This is possible through 

applying multiple ACS algorithm simultaneously with self-adaptive parameters 

adjustment on ACO formulae. 
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