9 research outputs found

    An Enhanced Features Extractor for a Portfolio of Constraint Solvers

    Get PDF
    Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques

    SUNNY-CP and the MiniZinc Challenge

    Get PDF
    In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the MiniZinc Challenge---the annual international competition for CP solvers---where it won two gold medals in 2015 and 2016. Under consideration in Theory and Practice of Logic Programming (TPLP)Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    An Extensive Evaluation of Portfolio Approaches for Constraint Satisfaction Problems

    Get PDF
    In the context of Constraint Programming, a portfolio approach exploits the complementary strengths of a portfolio of different constraint solvers. The goal is to predict and run the best solver(s) of the portfolio for solving a new, unseen problem. In this work we reproduce, simulate, and evaluate the performance of different portfolio approaches on extensive benchmarks of Constraint Satisfaction Problems. Empirical results clearly show the benefits of portfolio solvers in terms of both solved instances and solving time

    SUNNY-CP: a Portfolio Solver for Constraint Programming

    Get PDF
    In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the last MiniZinc Challenge —the annual international competition for CP solvers— where it won a gold medal

    SUNNY: a Lazy Portfolio Approach for Constraint Solving

    Get PDF
    *** To appear in Theory and Practice of Logic Programming (TPLP) *** Within the context of constraint solving, a portfolio approach allows one to exploit the synergy between different solvers in order to create a globally better solver. In this paper we present SUNNY: a simple and flexible algorithm that takes advantage of a portfolio of constraint solvers in order to compute --- without learning an explicit model --- a schedule of them for solving a given Constraint Satisfaction Problem (CSP). Motivated by the performance reached by SUNNY vs. different simulations of other state of the art approaches, we developed sunny-csp, an effective portfolio solver that exploits the underlying SUNNY algorithm in order to solve a given CSP. Empirical tests conducted on exhaustive benchmarks of MiniZinc models show that the actual performance of SUNNY conforms to the predictions. This is encouraging both for improving the power of CSP portfolio solvers and for trying to export them to fields such as Answer Set Programming and Constraint Logic Programming

    An Extensive Evaluation of Portfolio Approaches for Constraint Satisfaction Problems

    Get PDF
    International audienceIn the context of Constraint Programming, a portfolio approach exploits the complementary strengths of a portfolio of different constraint solvers. The goal is to predict and run the best solver(s) of the portfolio for solving a new, unseen problem. In this work we reproduce, simulate, and evaluate the performance of different portfolio approaches on extensive benchmarks of Constraint Satisfaction Problems. Empirical results clearly show the benefits of portfolio solvers in terms of both solved instances and solving time

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    SUNNY-CP : a Sequential CP Portfolio Solver

    Get PDF
    International audienceThe Constraint Programming (CP) paradigm allows to model and solve Constraint Satisfaction / Optimization Problems (CSPs / COPs). A CP Portfolio Solver is a particular constraint solver that takes advantage of a portfolio of different CP solvers in order to solve a given problem by properly exploiting Algorithm Selection techniques. In this work we present sunny-cp: a CP portfolio for solving both CSPs and COPs that turned out to be competitive also in the MiniZinc Challenge, the reference competition for CP solvers

    Automated streamliner portfolios for constraint satisfaction problems

    Get PDF
    Funding: This work is supported by the EPSRC grants EP/P015638/1 and EP/P026842/1, and Nguyen Dang is a Leverhulme Early Career Fellow. We used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial problems. Solving a problem proceeds in two distinct phases: modelling and solving. Effective modelling has a huge impact on the performance of the solving process. Even with the advance of modern automated modelling tools, search spaces involved can be so vast that problems can still be difficult to solve. To further constrain the model, a more aggressive step that can be taken is the addition of streamliner constraints, which are not guaranteed to be sound but are designed to focus effort on a highly restricted but promising portion of the search space. Previously, producing effective streamlined models was a manual, difficult and time-consuming task. This paper presents a completely automated process to the generation, search and selection of streamliner portfolios to produce a substantial reduction in search effort across a diverse range of problems. The results demonstrate a marked improvement in performance for both Chuffed, a CP solver with clause learning, and lingeling, a modern SAT solver.Publisher PDFPeer reviewe
    corecore