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Abstract  —  In  the  context  of  Constraint  Programming,  a
portfolio  approach  exploits  the  complementary  strengths  of  a
portfolio  of different  constraint  solvers.  The goal  is  to predict
and  run  the  best  solver(s)  of  the  portfolio  for solving  a  new,
unseen  problem.  In  this  work  we  reproduce,  simulate,  and
evaluate  the  performance  of  different  portfolio  approaches  on
extensive  benchmarks  of  Constraint  Satisfaction  Problems.
Empirical results clearly show the benefits of portfolio solvers in
terms of both solved instances and solving time. 

Keywords  —  Algorithm  Selection,  Algorithm  Portfolios,
Constraint Programming, Constraint Satisfaction Problems.

I.INTRODUCTION

n  the  context  of  Constraint  Programming (CP)  [40]  a
portfolio  approach  [13,17]  combines  m  >  1 different

solvers  S1,  …, Sm to get  a globally better  solver, dubbed a
portfolio solver.  When a new, unseen problem  p comes, the
portfolio solver seeks to predict and run the best constituent
solver(s)  Si1  

,  …,  Sik 
(with  1  ≤ ij  ≤  m for  j  = 1,  …, k) for

solving p. Portfolio approaches can be seen as instances of the
Algorithm Selection problem [39] where, as reported by [25],
the algorithm  selection is performed case-by-case according
to the problem to solve.

I

Portfolio solvers have proven to be very efficient, especially
for  solving  the  Boolean  satisfiability  (SAT)  problem.  For
instance,  the SAT portfolio solvers 3S [21] and  CSHC [30]
won gold  medals  in  the  SAT Competition  2011 and  2013,
while  SATZilla  [53]  won  the  SAT  Challenge  2012.
Unfortunately, in  the  CP field  fewer  portfolio  solvers  have
been proposed. In this regard, worth mentioning are CPHydra
[35] that won the International Constraint Solver Competition
2008  [49]  and  sunny-cp [5]  that  won  the  MiniZinc
Challenge 2015 [48]. This witnesses that portfolio approaches
can  be  effective  also  in  the  CP domain  [6],  and  that  the
research in this field is not merely theoretical: many real life
applications  might  take  advantage  of  portfolio  solvers  for
solving  daily  life  problems  such  as,  for  example,  task
scheduling or resource allocation problems [1, 36].
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With the aim of deepening the study of portfolio solving in
the CP field, in this paper we extend the research initiated by
[2] by presenting a more recent and exhaustive evaluation of
portfolio  approaches  for  solving  Constraint  Satisfaction
Problems (CSPs).  Improvements  are  manifold:  we evaluate
more  recent  solvers,  more  features,  we  fully  support  the
MiniZinc language [33], and we use a larger dataset of CSP
instances. The obtained results are encouraging and confirm
the effectiveness of portfolio solvers in terms of both solved
instances and solving time. 

Unfortunately, due to the difficulties in using and adapting
to the CSP domain some approaches originally designed for
SAT,  most  of  the  portfolio  solvers  we  tested  have  been
reimplemented  as  faithfully as  possible.  Hence,  the  goal  of
this  paper  is  not  to present  a  (possibly unfair)  competition
between  portfolio  solvers.  We want  instead  to  shed  further
light  on  CSP portfolio  approaches  by means  of  empirical
evaluations.  In  this  regard,  we submitted  the  data  and  the
results we computed to the Algorithm Selection library [9], an
open-access  library  providing  a  standardized  format  for
representing,  evaluating,  and  comparing  different  portfolio
approaches  without  the  effort  of  rebuilding  all  the
experimental environment. 

Paper structure. Section 2 gives some background notions
on CSP portfolio solvers. Section 3 explains the experimental
methodology, while Section 4 describes the obtained results.
In  Section  5  we  report  the  related  literature  and  the
concluding remarks.

II.BACKGROUND

A  Constraint  Satisfaction  Problem (CSP)  is  a  triple
⟨X , D ,C ⟩ consisting of a set of variables X each of which

associated with a domain Dx∈D of values that x∈X could

take, and a set of constraints  C defining all  the admissible
assignments of values to variables [27]. The goal is normally
to find a solution, i.e., a variable assignment satisfying all the
constraints  of  the  problem,  by using  a  suitable  constraint
solver.  In  this  context,  a  portfolio  solver can  be seen  as  a
meta-solver consisting of  m > 1 different solvers  S1, …, Sm.
When  a  new, unseen  CSP instance  p comes,  the  portfolio
solver seeks to predict and run the best constituent solver(s)
for  solving  p.  In  the  rest  of  the  section  we  give  a  brief
overview  of  the  main  ingredients  characterizing  a  CSP
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portfolio solver,  namely:  the dataset  of CSPs used to make
(and test) predictions, the solvers of the portfolio, the features
characterizing  each  CSP, and  the  selection  algorithms  used
for deciding the solver(s) to run on a given CSP. 

A. Dataset, Solvers and Features 

In  order  to  build  and  test  a  good  portfolio  approach  it  is
fundamental to gather an adequate dataset of CSPs. The data
sample  should  capture  a  significant  variety  of  problems
encoded in  the  same language.  Although  nowadays the  CP
community  has  not  yet  agreed  on  a  standard  modelling
language,  MiniZinc [33]  is  probably  the  most  used  and
supported  language  to  model  CP  problems.  However,  the
biggest existing dataset of CSPs we aware is the one used in
the 2008 International Constraint Solver Competition (ICSC)
[49].  These  instances  are  encoded  in  the  XML-based
language XCSP [41]. In [2] an empirical evaluation on such a
dataset  was  conducted.  Here  we  take  a  step  forward  by
exploiting  the  xcsp2mzn [3]  compiler  we  developed  for
converting XCSP to MiniZinc. This allowed us to use a bigger
benchmark of 8600 CSPs: 6944 instances of ICSC converted
by xcsp2mzn, and 1656 native MiniZinc instances coming
from  the  MiniZinc  1.6  benchmarks  and  the  MiniZinc
Challenge 2012. 

A  portfolio  solver  contains  a  number  of  different
constituent  solvers  that  clearly  should  be  as  effective  as
possible. However, the individual performance of a solver is
not  the  only  key  to  success:  what  really  matters  is  the
contribution of a solver to the portfolio performance [51]. For
this reason, increasing the number of constituent solvers does
not  necessarily  mean  increasing  the  performance  of  a
portfolio. Conversely, having too many candidates solvers can
make  the  solvers  prediction  inefficient  and  especially
inaccurate. In this work we consider (subsets of) a collection
of 11 different solvers that attended the MiniZinc Challenge,
namely:  BProlog,  Fzn2smt,  CPX,  G12/FD,  G12/LazyFD,
G12/CBC,  Gecode,  iZplus,  MinisatID,  Mistral,  and  OR-
Tools. 

Usually  portfolio  solvers  decide  the  solver(s)  to  run
according to a set of features extracted from the instance to
solve. Features are specific attributes characterizing a given
problem instance,  and  are  clearly of paramount  importance
for the success of a portfolio approach [39]. Features can be
divided in  static (computed off-line according to the problem
specification)  and  dynamic  (computed  at  runtime  by
monitoring  the  problem  resolution).  In  this  paper  we used
mzn2feat [3] to extract a set of 155 features (144 static, 11
dynamic) from a MiniZinc instance.  For more details about
such features we refer the interested reader to [3]. 

B. Algorithm Selection 

There  are  several  ways  to  select  one  or  more  constituent
solver(s) for solving a given instance. A primary distinction
can be done between the approaches that require training and
the so-called lazy approaches [25] that do not need it. For the
former, the training  phase is usually performed off-line and
empirical  evidences prove that  a  good training  can  lead  to
very good  performance  (e.g.,  see  [50,21,31,30]).  However,

avoiding  the  training  phase can  be clearly advantageous in
terms  of simplicity and  flexibility:  new information  can  be
used  to  improve  the  predictions  without  rebuilding  the
prediction model. For this reasons some lazy approaches have
been proposed in the literature (e.g., see [35,37,34,11,43,4]).
A further  distinction  can  be made between algorithms  that
run  just  one  solver  and  those  that  schedule  more  solvers.
These may have some practical advantages since they reduce
the risk of choosing a wrong solver. Furthermore, scheduling
more  solvers  enables  the  communication  of  potentially
relevant information such as bounds [6] or nogoods [23]. 

In this work we considered different selectors disparate in
their  nature.  We implemented and adapted them to the CSP
domain  trying  to be as faithful  as possible to their  original
concept. In  particular,  we compared the performance of off-
the-shelf  Machine Learning (shortly, ML) classifiers against
some  well-known  portfolio  approaches,  namely:  CPHydra
[35], ISAC [22], 3S [21], SATzilla [50], and SUNNY [4]. In
the following we provide a brief overview of such approaches.

Off-the-shelf (OTS) are selectors that  rely on off-the-shelf
ML classification algorithms to predict the best solver to run
for a given instance. Thanks to WEKA [14] we implemented
a number of well-known OTS selectors based on well-know
classifiers,  namely:  IBk (k-Nearest  Neighbours),  J48 (4.5
decision  trees),  PART (PART decision  lists),  RF (Random
Forests), and SMO (Support Vector Machines). 

CPHydra  [35]  is  the  first  general  CSP  portfolio  solver
proposed in the literature.  It  uses a  k-Nearest Neighbour (k-
NN) algorithm  for  computing  a  schedule  of its  constituent
solvers according to the k-neighbours runtimes. The schedule
is  computed  by  solving  a  generalization  of  a  knapsack
problem. CPHydra won the ICSC 2008. 

ISAC [22]  is  a  configuration  tool that  aims  at  optimally
configuring a highly parametrized algorithm. In this work we
use  the  ISAC  ``Pure Solver  Portfolio"  approach  following
what done by [31] in the SAT field. The training instances are
clustered and the solver that solves the most instances in the
cluster closer to the instance to be solved is selected. 

3S  [21]  is  a  SAT solver  conjugating  a  fixed-time  static
solver  schedule  (computed  off-line)  with  the  dynamic
selection  of one long-running  solver.  This  solver  is  chosen
with a  k-NN algorithm and is eventually executed after  the
static schedule. 3S was the best dynamic portfolio in the SAT
Competition 2011. 

SATzilla [52] is a SAT solver relying on runtime prediction
models.  Its  last  version [51] uses a weighted random forest
approach  provided  with  a  cost-sensitive  loss  function  for
punishing  misclassifications  in  direct  proportion  to  their
performance impact. SATzilla won the SAT Challenge 2012. 

SUNNY [4]  is  a  lazy algorithm  portfolio  using  a  k-NN
algorithm  for  selecting  a  sub-portfolio  of  solvers  to  run.
Solvers are scheduled according to their  performance in the
neighbourhood.  sunny-cp [5],  a  parallel  portfolio  solver
built on top of the SUNNY algorithm [4], won the MiniZinc
Challenge 2015.
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III. METHODOLOGY

In  this  section  we  explain  the  methodology  used  for
conducting the experiments.  Following what is usually done
by most of the approaches, we first removed all the constant
features and we scaled all the non-constant ones in the range
[-1, 1], ending up with a reduced set of 114 features. Fixed a
timeout of T = 1800 seconds,1 we then filtered the dataset of
the 8600 CSPs mentioned  in  Section II-A by removing  the
``easiest''  instances  (i.e.,  those  solved  when  computing  the
dynamic  features)  and  the  ``hardest''  ones  (i.e.,  those  for
which the feature extraction required more than  T/2 = 900
seconds).  We discarded  the  easiest  since  if  an  instance  is
already solved during  the feature extraction,  then  no solver
prediction is needed. The hardest ones were instead discarded
since  if  the  extraction  takes  more  than  T/2 seconds,  then
recompiling the MiniZinc model into FlatZinc (a step needed
to  run  the  solvers)  would  take  at  least  other  T/2  seconds,
therefore  consuming  all  the  time  slot  available.  The  final
dataset  ∆  on  which  we  conducted  the  experiments  was
constituted by 4642 MiniZinc instances (3538 from ICSC, 6
from MiniZinc Challenge 2012, and 1098 from MiniZinc 1.6
benchmarks). 

We ran all the 11 solvers listed in Section II-A on each of
the 4642 instances of ∆, thus solving 51062 CSPs.2 We ran all
of the  solvers  with  their  default  parameters,  their  specific
FlatZinc redefinitions, and keeping track of their performance
within  the  timeout  T.  We then  built  ten  portfolios  ∏m  of
different  size  m = 2,  …, 11 where  ∏m  is the  portfolio with
cardinality  m maximizing the number of solved instances in
∆ (we used the average solving time for breaking ties). Unlike
other approaches, following [2], we decided to keep in  ∆ the
944 CSPs not solvable by any solver. We took this decision
since these instances could affect the behavior of a portfolio
approach. For example, SUNNY allocates to a predesignated
backup solver an amount of time proportional to the instances
of the k-neighborhood that no solver can solve.

The  single  solvers  performance are  listed in  Fig.  1.  The
Single  Best  Solver (SBS) of the portfolio is MinisatID [10]

1 The same timeout used in the ICSC (the timeout of MiniZinc Challenge is
lower).

2 We used Intel Dual-Core 2.93GHz computers with 2  GB of RAM and
Ubuntu operating system. 

since it solves the greatest number of instances. Each of the
portfolio  approaches  described  in  Section  II-B  has  been
simulated  and  evaluated  using  a  5-repeated  5-fold  cross
validation  [8].  We  evaluated  the  performance  of  each
approach  in  terms  of  Average  Solving  Time (AST)3 and
Percentage of Solved Instances (PSI) within T seconds. 

IV. RESULTS

This section presents the obtained results. In addition to the
SBS and the portfolio approaches,  we add to the evaluation
the  Virtual  Best  Solver (VBS)  baseline.  The  VBS  is  an
``oracle''  solver  always  selecting  the  best  solver  of  the
portfolio for any given  instance.  For all  the  reimplemented
approaches (i.e.,  ISAC, 3S, and SATzilla)  we use the '-like'
suffix.  For the OTS approaches we tried different techniques
like  oversampling,  parameters  tuning,  meta-classifiers,  and
feature selection. The best results were obtained by RF (with
250 decision trees) and SMO (with a RBF kernel and the C, γ
parameters set to 29  and 2–-8 respectively).  In  the rest  of the
section, for better viewing, we report only their performance
among  all  the  OTS  variants  we experimented.  For  all  the
approaches relying on  k-NN algorithm we fixed  k = 10 and
used the Euclidean distance metric. 

Fig.  2a shows the Percentage of Solved Instances for the
aforementioned  approaches.  All  of  them  have  good
performance.  As  already  observed  by  [2],  3S-like  and
SATzilla-like are better than the best OTS approaches, which
in  turn  solve more instances than  ISAC-like and  CPHydra.
We do not notice the performance deterioration observed by
[2] when increasing the portfolio size: the addition of a new
solver is almost always beneficial, or at least not so harmful.
Being the methodology of the experiments  basically the same
of [2], we deem that  such a behavior is due to the different
nature of the dataset, the features, and the solvers we used in
this evaluation.

 The peak  performances are  reached by 3S-like (77.23%
with 11 solvers) and SUNNY (77.69% with 10 solvers) while
in  this  case SATzilla-like is  slightly worse (75.85% with  9
solvers).  Fig.  2b  depicts  the  performance  of  3S-like  and
SUNNY only,  together  with  the  SBS  and  the  VBS.  It  is
immediately visible the  performance difference between the
best  portfolio  approaches  and  the  SBS,  which  solves  just
51.62%  of the  instances.  In  particular,  SUNNY is  able  to
close up to 92.95% of the gap between the SBS and the VBS.

3 If a (portfolio) solver can not solve an instance in T seconds, its solving time
is set to T. This choice is also adopted in the MiniZinc Challenge, while in other
contexts (e.g., SAT competitions) a penalization of  10  T seconds is given
(PAR10 score). 

3

Figure 1: Total number of solved instances for 
each solver of the portfolio.



Fig. 3a shows the Average Solving Time for each approach.
As also noted by [2] the AST is highly anti-correlated with
the  PSI  for  all  the  approaches  except  CPHydra.  3S-like
however is slower if compared to its performance in the work
by [2]. A plausible explanation is that  CPHydra and 3S-like
do not employ any heuristic for sorting the selected solvers.
Let us explain this with a simple example. Let us suppose that
a solver  S1 solves a given CSP in 10 seconds, while another
solver  S2 fails  to  solve  it.  Now  consider  two  portfolio
approaches  P1 and  P2. P1 schedules  S1 for  the  first  900
seconds,  and  then  S2 for  the  remaining  900  seconds.
Symmetrically, P2 schedules  S2 for 900 seconds and then  S1

for the  remaining  time.  Despite  both  P1 and  P2 solves the
CSP –-so the different schedules do not influence the PSI– the
solving time of P1 will be 10 seconds, while the one of P2 will
be 910 seconds.  Clearly, this  difference might  have a great
influence on the AST.

3S-like  is  better  than  CPHydra  since  it  solves  more
instances and schedules the solvers in a reduced time window
(T/10  =  180 seconds).  Conversely,  the  heuristic  used  by
SUNNY  (which  sorts  the  selected  solvers  by  increasing

solving  time  in  the  k-neighbourhood)  is  fruitful  in  this
context.  SATzilla-like  is  not  far  from  SUNNY, confirming
that  it  can minimize the AST more than  3S-like,  even if it
solves less instances. Also in this case the difference with the
SBS is remarkable (see Fig. 3b). The best AST performance is
reached  by SUNNY (568.84  seconds)  which  by using  10
solvers  is able to close the 77.52% of the gap between the
SBS and the VBS. The strong anti-correlation between AST
and PSI is confirmed by the low Pearson coefficient (about –
0.79).  There is instead a linear  correlation between the PSI
and the AST of CPHydra. Nonetheless, its worst performance
(884.81 seconds) is however better than the one of the SBS.
For  better  viewing,  Table  1  and  Table  2  report  the  actual
values of PSI and AST respectively.

(a)

(b)

Figure 2: PSI performance.

(a)

(b)

Figure 3: AST performance.
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 Reproducibility The problem of effectively reproducing and
comparing  different  approaches  is  a  well-known  issue  that
also affected this  work. Indeed,  some of the approaches we
tested were not  publicly available or  extremely hard  to use
and adapt when available. There are several different ways to
adapt  an  approach  to CSP, and  many other  solver  selectors
exists.  Clearly,  comparing  them  all  is  a  daunting  task.  To
address this problem, the Algorithm Selection Library (ASlib)
[9]  has  been  recently  introduced.  ASlib  provides  a
standardized  format  for  representing  very  heterogeneous
portfolio  scenarios  with  the  aim  of effectively sharing  and
comparing different approaches. 

Unfortunately, at  the  time we conducted  the  experiments
the ASlib had not been developed yet. We then submitted to
ASlib the data and the results described in this paper 4, hoping
that this will foster the creation of further and better portfolio
approaches for the CSP field.  Furthermore,  the source code

4  The scenario is available at: 
https://github.com/coseal/aslib_data/tree/master/CSP
-MZN-2013.

we developed for conducting the experiments is available at:
http://www.cs.unibo.it/~amadini/csp_portfolio.zip

V. CONCLUSIONS

In  this  paper  we  presented  an  empirical  analysis  of
different  portfolio  approaches  for  solving  Constraint
Satisfaction  Problems  (CSPs).  We simulated  and  evaluated
different  approaches  on  extensive  benchmarks  of  CSPs
encoded  in  MiniZinc  language.  The  obtained  results  are
encouraging  and  confirm  the  effectiveness of CSP portfolio
solvers in terms of both solved instances and solving time. 

Since the impossibility of using the original code, most of
the  approaches  have  been  reimplemented  trying  to  be  as
faithful  as  possible.  However,  for  making  our  experiments
reproducible  and  comparable,  we submitted  the  evaluation
scenario  to  the  Algorithm  Selection  library  [9].  Indeed,  in
addition to the approaches evaluated in this paper, a plethora
of other CSP portfolio approaches have been proposed in the
literature  [32,12,46,18,2].  For  more  comprehensive  surveys

5

Table 1: PSI values.
No. Solvers SBS VBS RF SMO SATzilla 3S ISAC CPHydra SUNNY

2 51.62 69.22 66.84 68.35 68.63 68.9 66.7 67.38 68.69
3 51.62 76.45 73.01 73.13 74.15 75.71 72.43 71.78 75.13
4 51.62 77.68 73.43 73.4 74.69 76.32 72.65 72.12 76.07
5 51.62 78.67 73.45 73.45 75.07 76.61 72.64 72.34 76.77
6 51.62 79.1 73.83 73.73 75.42 76.89 72.79 72.43 77.11
7 51.62 79.36 73.99 73.93 75.49 76.95 72.48 72.67 77.28
8 51.62 79.53 74.24 74.01 75.79 77.21 72.67 73.21 77.66
9 51.62 79.6 74.21 74.05 75.85 77.17 72.73 73.18 77.65
10 51.62 79.66 74.18 74.06 75.84 77.23 72.77 73.15 77.69
11 51.62 79.66 74.2 74.09 75.84 77.23 72.68 72.98 77.69

MIN 51.62 69.22 66.84 68.35 68.63 68.9 66.7 67.38 68.69
MAX 51.62 79.66 74.24 74.09 75.85 77.23 72.79 73.21 77.69
AVG 51.62 77.9 73.14 73.22 74.68 76.02 72.05 72.12 76.17

Table 2: AST values.
No. Solvers SBS VBS RF SMO SATzilla 3S ISAC CPHydra SUNNY

2 950.91 639.36 725.12 703.85 696.53 731.54 737.21 780.5 703.39
3 950.91 521.23 627.35 625.96 609.81 666.06 664.79 855.24 601.78
4 950.91 494.77 619.35 622.61 599.94 654.8 660.3 853.04 589.41
5 950.91 481.04 624.61 627.17 600.32 648.65 666.9 885.84 584.2
6 950.91 473.47 618.08 622.54 593.55 642.83 664.55 886.39 578.4
7 950.91 469.18 615.43 619.72 592.3 641.8 667.57 886.35 577.54
8 950.91 462.17 608.54 614.11 583.1 636.47 662.57 883.89 569.7
9 950.91 459.25 607.28 612.15 580.43 636.09 661.39 884.75 569.51
10 950.91 458.12 607.63 611.96 580.35 634.72 659.54 884.19 568.84
11 950.91 458.03 607.68 611.68 580.3 634.83 662.27 884.81 569.3

MIN 950.91 458.03 607.28 611.68 580.3 634.72 659.54 780.5 568.84
MAX 950.91 639.36 725.12 703.85 696.53 731.54 737.21 886.39 703.39
AVG 950.91 491.66 626.11 627.17 601.66 652.78 670.71 868.5 591.21

http://www.cs.unibo.it/~amadini/csp_portfolio.zip


about algorithm selection and runtime prediction we refer the
interested reader to [25,45,20]. 

The possible extensions of this  work are manifold.  From
the CSP point of view, the gap with SAT portfolio solvers is
still pronounced. An immediate research direction is therefore
to encourage the construction,  the experimentation,  and  the
dissemination of effective and portable CSP portfolio solvers
by devising new techniques and strategies. Moreover, even if
in  this  work we focused only on sequential  approaches,  the
multi-solver  nature  of  portfolios  naturally  leads  to  the
parallelization of the solvers execution [29,24,42,16,5]. 

A well-known problem concerns the selection of the most
informative features for removing redundant information and
improving  the  prediction  accuracy  [19,26].  Reducing  the
training times [47] and exploiting incoming knowledge [28]
are  also  promising  directions  for  having  more  dynamic
portfolios. Finally, we remark that portfolio approaches can
be  successfully  applied  in  the  most  disparate  domains.
Besides SAT and CSP fields, successful portfolio solvers have
been  developed  also  for  Answer-Set  Programming  (ASP)
[15], Quantified Boolean Formula (QBF) [38], Planning [44],
Constraint Optimization Problems (COPs) [6]. 
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