
HAL Id: hal-01336684
https://hal.inria.fr/hal-01336684

Submitted on 23 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Extensive Evaluation of Portfolio Approaches for
Constraint Satisfaction Problems

Roberto Amadini, Maurizio Gabbrielli, Jacopo Mauro

To cite this version:
Roberto Amadini, Maurizio Gabbrielli, Jacopo Mauro. An Extensive Evaluation of Portfolio Ap-
proaches for Constraint Satisfaction Problems. International Journal of Interactive Multimedia and
Artificial Intelligence, UNIR, 2016. �hal-01336684�

https://hal.inria.fr/hal-01336684
https://hal.archives-ouvertes.fr

International Journal of Artificial Intelligence and Interactive Multimedia, vol. 1, Nº 1.

Abstract — In the context of Constraint Programming, a
portfolio approach exploits the complementary strengths of a
portfolio of different constraint solvers. The goal is to predict
and run the best solver(s) of the portfolio for solving a new,
unseen problem. In this work we reproduce, simulate, and
evaluate the performance of different portfolio approaches on
extensive benchmarks of Constraint Satisfaction Problems.
Empirical results clearly show the benefits of portfolio solvers in
terms of both solved instances and solving time.

Keywords — Algorithm Selection, Algorithm Portfolios,
Constraint Programming, Constraint Satisfaction Problems.

I.INTRODUCTION

n the context of Constraint Programming (CP) [40] a
portfolio approach [13,17] combines m > 1 different

solvers S1, …, Sm to get a globally better solver, dubbed a
portfolio solver. When a new, unseen problem p comes, the
portfolio solver seeks to predict and run the best constituent
solver(s) Si1

, …, Sik
(with 1 ≤ ij ≤ m for j = 1, …, k) for

solving p. Portfolio approaches can be seen as instances of the
Algorithm Selection problem [39] where, as reported by [25],
the algorithm selection is performed case-by-case according
to the problem to solve.

I

Portfolio solvers have proven to be very efficient, especially
for solving the Boolean satisfiability (SAT) problem. For
instance, the SAT portfolio solvers 3S [21] and CSHC [30]
won gold medals in the SAT Competition 2011 and 2013,
while SATZilla [53] won the SAT Challenge 2012.
Unfortunately, in the CP field fewer portfolio solvers have
been proposed. In this regard, worth mentioning are CPHydra
[35] that won the International Constraint Solver Competition
2008 [49] and sunny-cp [5] that won the MiniZinc
Challenge 2015 [48]. This witnesses that portfolio approaches
can be effective also in the CP domain [6], and that the
research in this field is not merely theoretical: many real life
applications might take advantage of portfolio solvers for
solving daily life problems such as, for example, task
scheduling or resource allocation problems [1, 36].

Manuscript received ...
R. Amadini is with the Department of Computing and Information Systems,

University of Melbourne, Australia.
M. Gabbrielli is with the Department of Computer Science and

Engineering, University of Bologna, Italy, and with INRIA, team FOCUS.
J. Mauro is with the Department of Informatics, University of Oslo, Norway.

With the aim of deepening the study of portfolio solving in
the CP field, in this paper we extend the research initiated by
[2] by presenting a more recent and exhaustive evaluation of
portfolio approaches for solving Constraint Satisfaction
Problems (CSPs). Improvements are manifold: we evaluate
more recent solvers, more features, we fully support the
MiniZinc language [33], and we use a larger dataset of CSP
instances. The obtained results are encouraging and confirm
the effectiveness of portfolio solvers in terms of both solved
instances and solving time.

Unfortunately, due to the difficulties in using and adapting
to the CSP domain some approaches originally designed for
SAT, most of the portfolio solvers we tested have been
reimplemented as faithfully as possible. Hence, the goal of
this paper is not to present a (possibly unfair) competition
between portfolio solvers. We want instead to shed further
light on CSP portfolio approaches by means of empirical
evaluations. In this regard, we submitted the data and the
results we computed to the Algorithm Selection library [9], an
open-access library providing a standardized format for
representing, evaluating, and comparing different portfolio
approaches without the effort of rebuilding all the
experimental environment.

Paper structure. Section 2 gives some background notions
on CSP portfolio solvers. Section 3 explains the experimental
methodology, while Section 4 describes the obtained results.
In Section 5 we report the related literature and the
concluding remarks.

II.BACKGROUND

A Constraint Satisfaction Problem (CSP) is a triple
⟨X , D ,C ⟩ consisting of a set of variables X each of which

associated with a domain Dx∈D of values that x∈X could

take, and a set of constraints C defining all the admissible
assignments of values to variables [27]. The goal is normally
to find a solution, i.e., a variable assignment satisfying all the
constraints of the problem, by using a suitable constraint
solver. In this context, a portfolio solver can be seen as a
meta-solver consisting of m > 1 different solvers S1, …, Sm.
When a new, unseen CSP instance p comes, the portfolio
solver seeks to predict and run the best constituent solver(s)
for solving p. In the rest of the section we give a brief
overview of the main ingredients characterizing a CSP

An Extensive Evaluation of
Portfolio Approaches for

Constraint Satisfaction Problems

Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro

1

portfolio solver, namely: the dataset of CSPs used to make
(and test) predictions, the solvers of the portfolio, the features
characterizing each CSP, and the selection algorithms used
for deciding the solver(s) to run on a given CSP.

A. Dataset, Solvers and Features

In order to build and test a good portfolio approach it is
fundamental to gather an adequate dataset of CSPs. The data
sample should capture a significant variety of problems
encoded in the same language. Although nowadays the CP
community has not yet agreed on a standard modelling
language, MiniZinc [33] is probably the most used and
supported language to model CP problems. However, the
biggest existing dataset of CSPs we aware is the one used in
the 2008 International Constraint Solver Competition (ICSC)
[49]. These instances are encoded in the XML-based
language XCSP [41]. In [2] an empirical evaluation on such a
dataset was conducted. Here we take a step forward by
exploiting the xcsp2mzn [3] compiler we developed for
converting XCSP to MiniZinc. This allowed us to use a bigger
benchmark of 8600 CSPs: 6944 instances of ICSC converted
by xcsp2mzn, and 1656 native MiniZinc instances coming
from the MiniZinc 1.6 benchmarks and the MiniZinc
Challenge 2012.

A portfolio solver contains a number of different
constituent solvers that clearly should be as effective as
possible. However, the individual performance of a solver is
not the only key to success: what really matters is the
contribution of a solver to the portfolio performance [51]. For
this reason, increasing the number of constituent solvers does
not necessarily mean increasing the performance of a
portfolio. Conversely, having too many candidates solvers can
make the solvers prediction inefficient and especially
inaccurate. In this work we consider (subsets of) a collection
of 11 different solvers that attended the MiniZinc Challenge,
namely: BProlog, Fzn2smt, CPX, G12/FD, G12/LazyFD,
G12/CBC, Gecode, iZplus, MinisatID, Mistral, and OR-
Tools.

Usually portfolio solvers decide the solver(s) to run
according to a set of features extracted from the instance to
solve. Features are specific attributes characterizing a given
problem instance, and are clearly of paramount importance
for the success of a portfolio approach [39]. Features can be
divided in static (computed off-line according to the problem
specification) and dynamic (computed at runtime by
monitoring the problem resolution). In this paper we used
mzn2feat [3] to extract a set of 155 features (144 static, 11
dynamic) from a MiniZinc instance. For more details about
such features we refer the interested reader to [3].

B. Algorithm Selection

There are several ways to select one or more constituent
solver(s) for solving a given instance. A primary distinction
can be done between the approaches that require training and
the so-called lazy approaches [25] that do not need it. For the
former, the training phase is usually performed off-line and
empirical evidences prove that a good training can lead to
very good performance (e.g., see [50,21,31,30]). However,

avoiding the training phase can be clearly advantageous in
terms of simplicity and flexibility: new information can be
used to improve the predictions without rebuilding the
prediction model. For this reasons some lazy approaches have
been proposed in the literature (e.g., see [35,37,34,11,43,4]).
A further distinction can be made between algorithms that
run just one solver and those that schedule more solvers.
These may have some practical advantages since they reduce
the risk of choosing a wrong solver. Furthermore, scheduling
more solvers enables the communication of potentially
relevant information such as bounds [6] or nogoods [23].

In this work we considered different selectors disparate in
their nature. We implemented and adapted them to the CSP
domain trying to be as faithful as possible to their original
concept. In particular, we compared the performance of off-
the-shelf Machine Learning (shortly, ML) classifiers against
some well-known portfolio approaches, namely: CPHydra
[35], ISAC [22], 3S [21], SATzilla [50], and SUNNY [4]. In
the following we provide a brief overview of such approaches.

Off-the-shelf (OTS) are selectors that rely on off-the-shelf
ML classification algorithms to predict the best solver to run
for a given instance. Thanks to WEKA [14] we implemented
a number of well-known OTS selectors based on well-know
classifiers, namely: IBk (k-Nearest Neighbours), J48 (4.5
decision trees), PART (PART decision lists), RF (Random
Forests), and SMO (Support Vector Machines).

CPHydra [35] is the first general CSP portfolio solver
proposed in the literature. It uses a k-Nearest Neighbour (k-
NN) algorithm for computing a schedule of its constituent
solvers according to the k-neighbours runtimes. The schedule
is computed by solving a generalization of a knapsack
problem. CPHydra won the ICSC 2008.

ISAC [22] is a configuration tool that aims at optimally
configuring a highly parametrized algorithm. In this work we
use the ISAC ``Pure Solver Portfolio" approach following
what done by [31] in the SAT field. The training instances are
clustered and the solver that solves the most instances in the
cluster closer to the instance to be solved is selected.

3S [21] is a SAT solver conjugating a fixed-time static
solver schedule (computed off-line) with the dynamic
selection of one long-running solver. This solver is chosen
with a k-NN algorithm and is eventually executed after the
static schedule. 3S was the best dynamic portfolio in the SAT
Competition 2011.

SATzilla [52] is a SAT solver relying on runtime prediction
models. Its last version [51] uses a weighted random forest
approach provided with a cost-sensitive loss function for
punishing misclassifications in direct proportion to their
performance impact. SATzilla won the SAT Challenge 2012.

SUNNY [4] is a lazy algorithm portfolio using a k-NN
algorithm for selecting a sub-portfolio of solvers to run.
Solvers are scheduled according to their performance in the
neighbourhood. sunny-cp [5], a parallel portfolio solver
built on top of the SUNNY algorithm [4], won the MiniZinc
Challenge 2015.

International Journal of Artificial Intelligence and Interactive Multimedia, vol. 1, Nº 1.

III. METHODOLOGY

In this section we explain the methodology used for
conducting the experiments. Following what is usually done
by most of the approaches, we first removed all the constant
features and we scaled all the non-constant ones in the range
[-1, 1], ending up with a reduced set of 114 features. Fixed a
timeout of T = 1800 seconds,1 we then filtered the dataset of
the 8600 CSPs mentioned in Section II-A by removing the
``easiest'' instances (i.e., those solved when computing the
dynamic features) and the ``hardest'' ones (i.e., those for
which the feature extraction required more than T/2 = 900
seconds). We discarded the easiest since if an instance is
already solved during the feature extraction, then no solver
prediction is needed. The hardest ones were instead discarded
since if the extraction takes more than T/2 seconds, then
recompiling the MiniZinc model into FlatZinc (a step needed
to run the solvers) would take at least other T/2 seconds,
therefore consuming all the time slot available. The final
dataset ∆ on which we conducted the experiments was
constituted by 4642 MiniZinc instances (3538 from ICSC, 6
from MiniZinc Challenge 2012, and 1098 from MiniZinc 1.6
benchmarks).

We ran all the 11 solvers listed in Section II-A on each of
the 4642 instances of ∆, thus solving 51062 CSPs.2 We ran all
of the solvers with their default parameters, their specific
FlatZinc redefinitions, and keeping track of their performance
within the timeout T. We then built ten portfolios ∏m of
different size m = 2, …, 11 where ∏m is the portfolio with
cardinality m maximizing the number of solved instances in
∆ (we used the average solving time for breaking ties). Unlike
other approaches, following [2], we decided to keep in ∆ the
944 CSPs not solvable by any solver. We took this decision
since these instances could affect the behavior of a portfolio
approach. For example, SUNNY allocates to a predesignated
backup solver an amount of time proportional to the instances
of the k-neighborhood that no solver can solve.

The single solvers performance are listed in Fig. 1. The
Single Best Solver (SBS) of the portfolio is MinisatID [10]

1 The same timeout used in the ICSC (the timeout of MiniZinc Challenge is
lower).

2 We used Intel Dual-Core 2.93GHz computers with 2 GB of RAM and
Ubuntu operating system.

since it solves the greatest number of instances. Each of the
portfolio approaches described in Section II-B has been
simulated and evaluated using a 5-repeated 5-fold cross
validation [8]. We evaluated the performance of each
approach in terms of Average Solving Time (AST)3 and
Percentage of Solved Instances (PSI) within T seconds.

IV. RESULTS

This section presents the obtained results. In addition to the
SBS and the portfolio approaches, we add to the evaluation
the Virtual Best Solver (VBS) baseline. The VBS is an
``oracle'' solver always selecting the best solver of the
portfolio for any given instance. For all the reimplemented
approaches (i.e., ISAC, 3S, and SATzilla) we use the '-like'
suffix. For the OTS approaches we tried different techniques
like oversampling, parameters tuning, meta-classifiers, and
feature selection. The best results were obtained by RF (with
250 decision trees) and SMO (with a RBF kernel and the C, γ
parameters set to 29 and 2–-8 respectively). In the rest of the
section, for better viewing, we report only their performance
among all the OTS variants we experimented. For all the
approaches relying on k-NN algorithm we fixed k = 10 and
used the Euclidean distance metric.

Fig. 2a shows the Percentage of Solved Instances for the
aforementioned approaches. All of them have good
performance. As already observed by [2], 3S-like and
SATzilla-like are better than the best OTS approaches, which
in turn solve more instances than ISAC-like and CPHydra.
We do not notice the performance deterioration observed by
[2] when increasing the portfolio size: the addition of a new
solver is almost always beneficial, or at least not so harmful.
Being the methodology of the experiments basically the same
of [2], we deem that such a behavior is due to the different
nature of the dataset, the features, and the solvers we used in
this evaluation.

 The peak performances are reached by 3S-like (77.23%
with 11 solvers) and SUNNY (77.69% with 10 solvers) while
in this case SATzilla-like is slightly worse (75.85% with 9
solvers). Fig. 2b depicts the performance of 3S-like and
SUNNY only, together with the SBS and the VBS. It is
immediately visible the performance difference between the
best portfolio approaches and the SBS, which solves just
51.62% of the instances. In particular, SUNNY is able to
close up to 92.95% of the gap between the SBS and the VBS.

3 If a (portfolio) solver can not solve an instance in T seconds, its solving time
is set to T. This choice is also adopted in the MiniZinc Challenge, while in other
contexts (e.g., SAT competitions) a penalization of 10 T seconds is given
(PAR10 score).

3

Figure 1: Total number of solved instances for
each solver of the portfolio.

Fig. 3a shows the Average Solving Time for each approach.
As also noted by [2] the AST is highly anti-correlated with
the PSI for all the approaches except CPHydra. 3S-like
however is slower if compared to its performance in the work
by [2]. A plausible explanation is that CPHydra and 3S-like
do not employ any heuristic for sorting the selected solvers.
Let us explain this with a simple example. Let us suppose that
a solver S1 solves a given CSP in 10 seconds, while another
solver S2 fails to solve it. Now consider two portfolio
approaches P1 and P2. P1 schedules S1 for the first 900
seconds, and then S2 for the remaining 900 seconds.
Symmetrically, P2 schedules S2 for 900 seconds and then S1

for the remaining time. Despite both P1 and P2 solves the
CSP –-so the different schedules do not influence the PSI– the
solving time of P1 will be 10 seconds, while the one of P2 will
be 910 seconds. Clearly, this difference might have a great
influence on the AST.

3S-like is better than CPHydra since it solves more
instances and schedules the solvers in a reduced time window
(T/10 = 180 seconds). Conversely, the heuristic used by
SUNNY (which sorts the selected solvers by increasing

solving time in the k-neighbourhood) is fruitful in this
context. SATzilla-like is not far from SUNNY, confirming
that it can minimize the AST more than 3S-like, even if it
solves less instances. Also in this case the difference with the
SBS is remarkable (see Fig. 3b). The best AST performance is
reached by SUNNY (568.84 seconds) which by using 10
solvers is able to close the 77.52% of the gap between the
SBS and the VBS. The strong anti-correlation between AST
and PSI is confirmed by the low Pearson coefficient (about –
0.79). There is instead a linear correlation between the PSI
and the AST of CPHydra. Nonetheless, its worst performance
(884.81 seconds) is however better than the one of the SBS.
For better viewing, Table 1 and Table 2 report the actual
values of PSI and AST respectively.

(a)

(b)

Figure 2: PSI performance.

(a)

(b)

Figure 3: AST performance.

International Journal of Artificial Intelligence and Interactive Multimedia, vol. 1, Nº 1.

 Reproducibility The problem of effectively reproducing and
comparing different approaches is a well-known issue that
also affected this work. Indeed, some of the approaches we
tested were not publicly available or extremely hard to use
and adapt when available. There are several different ways to
adapt an approach to CSP, and many other solver selectors
exists. Clearly, comparing them all is a daunting task. To
address this problem, the Algorithm Selection Library (ASlib)
[9] has been recently introduced. ASlib provides a
standardized format for representing very heterogeneous
portfolio scenarios with the aim of effectively sharing and
comparing different approaches.

Unfortunately, at the time we conducted the experiments
the ASlib had not been developed yet. We then submitted to
ASlib the data and the results described in this paper 4, hoping
that this will foster the creation of further and better portfolio
approaches for the CSP field. Furthermore, the source code

4 The scenario is available at:
https://github.com/coseal/aslib_data/tree/master/CSP
-MZN-2013.

we developed for conducting the experiments is available at:
http://www.cs.unibo.it/~amadini/csp_portfolio.zip

V. CONCLUSIONS

In this paper we presented an empirical analysis of
different portfolio approaches for solving Constraint
Satisfaction Problems (CSPs). We simulated and evaluated
different approaches on extensive benchmarks of CSPs
encoded in MiniZinc language. The obtained results are
encouraging and confirm the effectiveness of CSP portfolio
solvers in terms of both solved instances and solving time.

Since the impossibility of using the original code, most of
the approaches have been reimplemented trying to be as
faithful as possible. However, for making our experiments
reproducible and comparable, we submitted the evaluation
scenario to the Algorithm Selection library [9]. Indeed, in
addition to the approaches evaluated in this paper, a plethora
of other CSP portfolio approaches have been proposed in the
literature [32,12,46,18,2]. For more comprehensive surveys

5

Table 1: PSI values.
No. Solvers SBS VBS RF SMO SATzilla 3S ISAC CPHydra SUNNY

2 51.62 69.22 66.84 68.35 68.63 68.9 66.7 67.38 68.69
3 51.62 76.45 73.01 73.13 74.15 75.71 72.43 71.78 75.13
4 51.62 77.68 73.43 73.4 74.69 76.32 72.65 72.12 76.07
5 51.62 78.67 73.45 73.45 75.07 76.61 72.64 72.34 76.77
6 51.62 79.1 73.83 73.73 75.42 76.89 72.79 72.43 77.11
7 51.62 79.36 73.99 73.93 75.49 76.95 72.48 72.67 77.28
8 51.62 79.53 74.24 74.01 75.79 77.21 72.67 73.21 77.66
9 51.62 79.6 74.21 74.05 75.85 77.17 72.73 73.18 77.65
10 51.62 79.66 74.18 74.06 75.84 77.23 72.77 73.15 77.69
11 51.62 79.66 74.2 74.09 75.84 77.23 72.68 72.98 77.69

MIN 51.62 69.22 66.84 68.35 68.63 68.9 66.7 67.38 68.69
MAX 51.62 79.66 74.24 74.09 75.85 77.23 72.79 73.21 77.69
AVG 51.62 77.9 73.14 73.22 74.68 76.02 72.05 72.12 76.17

Table 2: AST values.
No. Solvers SBS VBS RF SMO SATzilla 3S ISAC CPHydra SUNNY

2 950.91 639.36 725.12 703.85 696.53 731.54 737.21 780.5 703.39
3 950.91 521.23 627.35 625.96 609.81 666.06 664.79 855.24 601.78
4 950.91 494.77 619.35 622.61 599.94 654.8 660.3 853.04 589.41
5 950.91 481.04 624.61 627.17 600.32 648.65 666.9 885.84 584.2
6 950.91 473.47 618.08 622.54 593.55 642.83 664.55 886.39 578.4
7 950.91 469.18 615.43 619.72 592.3 641.8 667.57 886.35 577.54
8 950.91 462.17 608.54 614.11 583.1 636.47 662.57 883.89 569.7
9 950.91 459.25 607.28 612.15 580.43 636.09 661.39 884.75 569.51
10 950.91 458.12 607.63 611.96 580.35 634.72 659.54 884.19 568.84
11 950.91 458.03 607.68 611.68 580.3 634.83 662.27 884.81 569.3

MIN 950.91 458.03 607.28 611.68 580.3 634.72 659.54 780.5 568.84
MAX 950.91 639.36 725.12 703.85 696.53 731.54 737.21 886.39 703.39
AVG 950.91 491.66 626.11 627.17 601.66 652.78 670.71 868.5 591.21

http://www.cs.unibo.it/~amadini/csp_portfolio.zip

about algorithm selection and runtime prediction we refer the
interested reader to [25,45,20].

The possible extensions of this work are manifold. From
the CSP point of view, the gap with SAT portfolio solvers is
still pronounced. An immediate research direction is therefore
to encourage the construction, the experimentation, and the
dissemination of effective and portable CSP portfolio solvers
by devising new techniques and strategies. Moreover, even if
in this work we focused only on sequential approaches, the
multi-solver nature of portfolios naturally leads to the
parallelization of the solvers execution [29,24,42,16,5].

A well-known problem concerns the selection of the most
informative features for removing redundant information and
improving the prediction accuracy [19,26]. Reducing the
training times [47] and exploiting incoming knowledge [28]
are also promising directions for having more dynamic
portfolios. Finally, we remark that portfolio approaches can
be successfully applied in the most disparate domains.
Besides SAT and CSP fields, successful portfolio solvers have
been developed also for Answer-Set Programming (ASP)
[15], Quantified Boolean Formula (QBF) [38], Planning [44],
Constraint Optimization Problems (COPs) [6].

REFERENCES

[1] Roberto Amadini, Maurizio Gabbrielli, and Jacopo
Mauro. A Constraint-Based Model for Fast Post-Disaster
Emergency Vehicle Routing. IJIMAI, vol. 2, num. 4, pp.
67-75, 2013.

[2] Roberto Amadini, Maurizio Gabbrielli, and Jacopo
Mauro. An Empirical Evaluation of Portfolios
Approaches for Solving CSPs. In CPAIOR, vol. 7874 of
LNCS, pp. 316-324. Springer, 2013.

[3] Roberto Amadini, Maurizio Gabbrielli, and Jacopo
Mauro. An Enhanced Features Extractor for a Portfolio
of Constraint Solvers. In SAC, pp. 1357-1359. ACM,
2014.

[4] Roberto Amadini, Maurizio Gabbrielli, and Jacopo
Mauro. SUNNY: a lazy portfolio approach for constraint
solving. TPLP, vol. 14, num. 4-5, pp. 509-524, 2014.

[5] Roberto Amadini, Maurizio Gabbrielli, and Jacopo
Mauro. A Multicore Tool for Constraint Solving.
In IJCAI, pp. 232-238. AAAI Press, 2015.

[6] Roberto Amadini and Peter J. Stuckey. Sequential Time
Splitting and Bounds Communication for a Portfolio of
Optimization Solvers. In CP, vol. 8656 of LNCS, pp.
108-124. Springer, 2014.

[7] Roberto Amadini, Maurizio Gabbrielli, and Jacopo
Mauro. Why CP Portfolio Solvers are (under)Utilized?
Issues and Challenges. In LOPSTR, vol. 9527 of LNCS,
pp. 349-364. Springer, 2015.

[8] S. Arlot and A. Celisse. A survey of cross-validation
procedures for model selection. Statistics Surveys, vol. 4,
pp. 40-79, 2010.

[9] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius
Thomas Lindauer, Yuri Malitsky, Alexandre Fréchette,
Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown,
Kevin Tierney, and Joaquin Vanschoren. Aslib: A

benchmark library for algorithm selection. CoRR,
abs/1506.02465, 2015.

[10] Broes de Cat, Bart Bogaerts, Jo Devriendt, and Marc
Denecker. Model Expansion in the Presence of Function
Symbols Using Constraint Programming. In ICTAI, pp.
1068-1075, 2013.

[11] Cormac Gebruers, Alessio Guerri, Brahim Hnich, and
Michela Milano. Making Choices Using Structure at the
Instance Level within a Case Based Reasoning
Framework. In CPAIOR, vol. 3011 of LNCS, pp. 380-386.
Springer, 2004.

[12] Ian P. Gent, Christopher Jefferson, Lars Kotthoff, Ian
Miguel, Neil C. A. Moore, Peter Nightingale, and Karen
E. Petrie. Learning when to use lazy learning in
constraint solving. In ECAI, vol. 215 of FAIA, pp. 873-
878. IOS Press, 2010.

[13] Carla P. Gomes and Bart Selman. Algorithm portfolios.
Artif. Intell., vol. 126, num. 1-2, pp. 43-62, 2001.

[14] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The
WEKA data mining software: an update. SIGKDD
Explor. Newsl., vol 11, num. 1, November 2009.

[15] Holger Hoos, Marius Thomas Lindauer, and Torsten
Schaub. claspfolio 2: Advances in algorithm selection for
answer set programming. TPLP, vol. 14, num. 4-5, pp.
569-585, 2014.

[16] Holger H. Hoos, Marius Thomas Lindauer, and Frank
Hutter. From Sequential Algorithm Selection to Parallel
Portfolio Selection. In LION, vol. 8426 of LNCS, pp. 21-
35, 2015.

[17] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg.
An economics approach to hard computational problems.
Science, vol. 275, num. 5296, pp. 51-54, 1997.

[18] Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry
O'Sullivan. Proteus: A Hierarchical Portfolio of Solvers
and Transformations. In CPAIOR, vol. 8451 of LNCS, pp.
301-317. Springer, 2014.

[19] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Identifying Key Algorithm Parameters and Instance
Features Using Forward Selection. In LION, vol. 7997 of
LNCS, pp. 364-381. Springer, 2013.

[20] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin
Leyton-Brown. Algorithm runtime prediction: Methods
& evaluation. Artif. Intell., vol. 206, num. 79-111, 2014.

[21] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst
Samulowitz, and Meinolf Sellmann. Algorithm Selection
and Scheduling. In CP, vol. 6876 of LNCS. Springer,
2011.

[22] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and
Kevin Tierney. ISAC - Instance-Specific Algorithm
Configuration. In ECAI, vol. 215 of FAIA. IOS Press,
2010.

[23] George Katsirelos and Fahiem Bacchus. Generalized
NoGoods in CSPs. In AAAI, pp. 390-396, 2005.

[24] George Katsirelos, Ashish Sabharwal, Horst Samulowitz,
and Laurent Simon. Resolution and parallelizability:
Barriers to the efficient parallelization of SAT solvers.
In AAAI. AAAI Press, 2013.

International Journal of Artificial Intelligence and Interactive Multimedia, vol. 1, Nº 1.

[25] Lars Kotthoff. Algorithm Selection for Combinatorial
Search Problems: A Survey. AI Magazine, vol. 35, num.
3, pp. 48-60, 2014.

[26] Christian Kroer and Yuri Malitsky. Feature Filtering for
Instance-Specific Algorithm Configuration. In ICTAI, pp.
849-855. IEEE, 2011.

[27] Alan K. Mackworth. Consistency in Networks of
Relations. Artif. Intell., vol. 8, num. 1, pp. 99-118, 1977.

[28] Yuri Malitsky, Deepak Mehta, and Barry O'Sullivan.
Evolving instance specific algorithm configuration. In
SOCS. AAAI Press, 2013.

[29] Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Parallel SAT solver selection and
scheduling. In CP, vol. 7514 of LNCS, pp. 512-526.
Springer, 2012.

[30] Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Algorithm Portfolios Based on Cost-
Sensitive Hierarchical Clustering. In IJCAI.
IJCAI/AAAI, 2013.

[31] Yuri Malitsky and Meinolf Sellmann. Instance-Specific
Algorithm Configuration as a Method for Non-Model-
Based Portfolio Generation. In CPAIOR, vol. 7298 of
LNCS. Springer, 2012.

[32] Steven Minton. Automatically configuring constraint
satisfaction programs: A case study. Constraints, vol. 1,
num. 1/2, pp. 7-43, 1996.

[33] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket,
Sebastian Brand, Gregory J. Duck, and Guido Tack.
MiniZinc: Towards a Standard CP Modelling Language.
In CP, 2007.

[34] Mladen Nikolic, Filip Maric, and Predrag Janicic.
Instance-Based Selection of Policies for SAT Solvers. In
SAT, vol. 5584 of LNCS, pp. 326-340. Springer, 2009.

[35] Eoin O'Mahony, Emmanuel Hebrard, Alan Holland,
Conor Nugent, and Barry O'Sullivan. Using case-based
reasoning in an algorithm portfolio for constraint
solving. In AICS, 2008.

[36] Zahra Pooranian, Mohammad Shojafar, Jemal H.
Abawajy and Mukesh Singhal. GLOA: A New Job
Scheduling Algorithm for Grid Computing. IJIMAI, vol.
2, num. 1, pp. 59-64, 2013.

[37] Luca Pulina and Armando Tacchella. A Multi-engine
Solver for Quantified Boolean Formulas. In CP, vol.
4741 of LNCS, pp. 574-589. Springer, 2007.

[38] Luca Pulina and Armando Tacchella. A self-adaptive
multi-engine solver for quantified boolean formulas.
Constraints, vol. 14, num. 1, pp. 80-116, 2009.

[39] John R. Rice. The Algorithm Selection Problem.
Advances in Computers, vol. 15, pp. 65-118, 1976.

[40] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of
Constraint Programming. Elsevier, 2006.

[41] Olivier Roussel and Christophe Lecoutre. XML
Representation of Constraint Networks: Format XCSP
2.1. CoRR, abs/0902.2362, 2009.

[42] Ashish Sabharwal and Horst Samulowitz. Insights into
parallelism with intensive knowledge sharing. In CP,
vol. 8656 of LNCS, pp. 655-671. Springer, 2014.

[43] Horst Samulowitz, Chandra Reddy, Ashish Sabharwal,
and Meinolf Sellmann. Snappy: A simple algorithm

portfolio. In SAT, vol. 7962 of LNCS, pp. 422-428.
Springer, 2013.

[44] Jendrik Seipp, Silvan Sievers, Malte Helmert, and Frank
Hutter. Automatic configuration of sequential planning
portfolios. In AAAI, pp. 3364-3370. AAAI Press, 2015.

[45] Kate Smith-Miles. Cross-disciplinary perspectives on
meta-learning for algorithm selection. ACM Comput.
Surv., vol. 41, num. 1, 2008.

[46] Kostas Stergiou. Heuristics for dynamically adapting
propagation in constraint satisfaction problems. AI
Commun., vol. 22, num. 3, pp. 125-141, 2009.

[47] Mirko Stojadinovic, Mladen Nikolic, and Filip Maric.
Short portfolio training for CSP solving. CoRR,
abs/1505.02070, 2015.

[48] Peter J. Stuckey, Ralph Becket, and Julien Fischer.
Philosophy of the MiniZinc challenge. Constraints, vol.
15, num. 3, pp. 307-316, 2010.

[49] MRC van Dongen, Christophe Lecoutre, and Olivier
Roussel. Third International CSP Solver Competition,
2008.

[50] L. Xu, F. Hutter, J. Shen, H. Hoos, and K. Leyton-Brown.
SATzilla2012: Improved algorithm selection based on
cost-sensitive classification models. Solver description,
SAT Challenge 2012, 2012.

[51] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton
Brown. Evaluating Component Solver Contributions to
Portfolio-Based Algorithm Selectors. In SAT, vol. 7317 of
LNCS, pp. 228-241. Springer, 2012.

[52] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. The design and analysis of an algorithm
portfolio for sat. In CP, vol. 4741 of LNCS, pp. 712-727.
Springer, 2007.

[53] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. Satzilla: Portfolio-based algorithm
selection for SAT. JAIR, vol. 32, pp. 565-606, 2008.

Roberto Amadini received a Bachelor (2007) and Master (2011)
degree in Computer Science from the University of Parma. In 2015
he received a Ph.D. in Computer Science from the University of
Bologna. He is interested in Constraint Programming, Operations
Research, Algorithm Selection, Software Anallysis and Verification.

Currently is a Research Fellow at the Department of Computing and
Information Systems of the University of Melbourne, Australia.

Maurizio Gabbrielli is professor of Computer Science at
the University of Bologna, member of the INIRIA team FOCUS
and Director of the EIT Digital Doctoral School. He received his
Phd. in Computer Science in 1992 from the University of Pisa
and worked at CWI (Amsterdam) and at the University of Pisa
and of Udine. His research interests include constraint

programming, formal methods for program verification and analysis, service
oriented programming.

Jacopo Mauro received a bachelor and master degree in computer
science from Udine University. In 2012 he receive a PhD in
computer science from the University of Bologna. From 2010 to
2015 he was member of the Focus Research Group at INRIA
(France). He has been involved in numerous Italian, French, and
European research projects and a visiting student at CWI

(Netherlands). He is currently working at the University of Oslo and interested in
Concurrent Languages, Service Oriented Computing, Constraint Programming,
Constraint Handling Rules, AI Planning and Distributed Application
Deployment.

7

