908 research outputs found

    FLASH MEMORY DEVICES WITH METAL FLOATING GATE/METAL NANOCRYSTALS AS THE CHARGE STORAGE LAYER: A STATUS REVIEW

    Get PDF
    Traditional flash memory devices consist of Polysilicon Control Gate (CG) – Oxide-Nitride-Oxide (ONO - Interpoly Dielectric) – Polysilicon Floating Gate (FG) – Silicon Oxide (Tunnel dielectric) – Substrate. The dielectrics have to be scaled down considerably in order to meet the escalating demand for lower write/erase voltages and higher density of cells. But as the floating gate dimensions are scaled down the charge stored in the floating gate leak out more easily via thin tunneling oxide below the floating gate which causes serious reliability issues and the whole amount of stored charge carrying information can be lost. The possible route to eliminate this problem is to use high-k based interpoly dielectric and to replace the polysilicon floating gate with a metal floating gate. At larger physical thickness, these materials have similar capacitance value hence avoiding tunneling effect.  Discrete nanocrystal memory has also been proposed to solve this problem. Due to its high operation speed, excellent scalability and higher reliability it has been shown as a promising candidate for future non-volatile memory applications. This review paper focuses on the recent efforts and research activities related to the fabrication and characterization of non-volatile memory device with metal floating gate/metal nanocrystals as the charge storage layer

    A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires

    Get PDF
    In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n+-poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications

    Nanocrystalline Ge Flash Memories: Electrical Characterization and Trap Engineering

    Get PDF
    Conventional floating gate non-volatile memories (NVMs) present critical issues for device scalability beyond the sub-90 nm node, such as gate length and tunnel oxide thickness reduction. Nanocrystalline germanium (nc-Ge) quantum dot flash memories are fully CMOS compatible technology based on discrete isolated charge storage nodules which have the potential of pushing further the scalability of conventional NVMs. Quantum dot memories offer lower operating voltages as compared to conventional floating-gate (FG) Flash memories due to thinner tunnel dielectrics which allow higher tunneling probabilities. The isolated charge nodules suppress charge loss through lateral paths, thereby achieving a superior charge retention time. Despite the considerable amount of efforts devoted to the study of nanocrystal Flash memories, the charge storage mechanism remains obscure. Interfacial defects of the nanocrystals seem to play a role in charge storage in recent studies, although storage in the nanocrystal conduction band by quantum confinement has been reported earlier. In this work, a single transistor memory structure with threshold voltage shift, Vth, exceeding ~1.5 V corresponding to interface charge trapping in nc-Ge, operating at 0.96 MV/cm, is presented. The trapping effect is eliminated when nc-Ge is synthesized in forming gas thus excluding the possibility of quantum confinement and Coulomb blockade effects. Through discharging kinetics, the model of deep level trap charge storage is confirmed. The trap energy level is dependent on the matrix which confines the nc-Ge.Singapore-MIT Alliance (SMA

    Design and Evaluation of a Sub-1-Volt Read Flash Memory in a Standard 130 Nanometer CMOS Process

    Get PDF
    Nonvolatile memory design is a discipline that employs digital and analog circuit design techniques and requires knowledge of semiconductor physics and quantum mechanics. Methods for programming and erasing memory are discussed here, and simulation models are provided for Impact Hot Electron Injection (IHEI), Fowler-Nordheim (FN) tunneling, and direct tunneling. Extensive testing of analog memory cells was used to derive a set of equations that describe the oating-gate characteristics. Measurements of charge retention also revealed several leakage mechanisms, and methods for mitigating leakage are presented. Fabrication of ash memory in a standard CMOS process presents significant design challenges. The absence of multiple polysilicon layers requires that additional devices be used to control the oating-gate voltage. Furthermore high-voltage devices are often required to isolate the selected memory cells during write and erase cycles. However, a single-poly design allows portability to another standard process provided that the oating-gate characteristics are known. A ash memory system is presented here that has been fabricated in a standard 130 nanometer CMOS process. The design utilizes capacitive feedback to maintain desired injection current during programming. It also includes a sense amplifier design which features auto-zeroing of inherent offsets. Comparisons to existing memory designs show that a significant improvement in areal density was achieved through the elimination of on-die high-voltage charge pumps and switches. Measurements were performed over a range of clock frequencies and supply voltages. Results show that this memory system is capable of a read access time of 3.5 microseconds with a 1 megahertz clock while consuming less than 25 microwatts from a 1 volt supply. Operation down to 650 millivolts was confirmed where power consumption was reduced to only 3.4 microwatts. The low power consumption and high density of this ash memory make it an excellent choice for on-die firmware storage in battery-powered embedded applications

    Bistability and Electrical Characterisation of Two Terminal Non-Volatile Polymer Memory Devices.

    Get PDF
    Polymer blended with nanoparticle and ferroelectric materials in two terminal memory devices has potential for electronic memory devices that may offer increased storage capacity and performance. Towards understanding the memory performance of a combination of an organic polymer with a ferroelectric or unpolarised material, this research is concerned with testing the memory programming and capacitance of these materials using two-terminal memory device structures. This research contributes to previous investigation into the internal working mechanisms of polymer memory devices and increases understanding and verifies the principles of these mechanisms through testing previously untested materials in different material compositions. This study makes a novel contribution by testing the electrical bistability of new materials; specifically, nickel oxide, barium titanate and methylammonium lead bromide and considers their properties which include nanoparticles, ferroelectric, perovskite structures and organic-inorganic composition. Due to their material properties which have different implications for internal switching and memory storage. Nanoparticles have a greater band gap between the valence band and conduction band compare to bulk material which is exploited for memory storage and ferroelectric properties and perovskite materials have non-volatile properties suitable for switching mechanisms. Specific attributes of memory function which include charging mechanism, device programming, capacitance and charge retention were tested for different material compositions which included, blend and layered with a PVAc polymer, and as a bulk material with a single crystal structure using MIM memory devices and MIS device structures. The results showed that nickel oxide was the most effective material as a blend with the polymer for memory performance, this was followed by barium titanate, however, methylammonium lead bromide performed poorly with polymer but showed promise as a single crystal structure. The results also showed that an increase in concentration of the tested material in a blend composition resulted in a corresponding increase in memory function, and that blend compositions were much more effective than layered compositions

    High-Performance Silicon Nanowire Electronics

    Get PDF
    This thesis explores 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications via the fabrication and testing of SiNW-based ring oscillators. Both SiNW surface treatments and dielectric annealing are reported for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV), high carrier mobilities (~269 cm2/V•s), and low subthreshold swing (~80 mV/dec). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs is explored as well. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. A set of novel charge-trap non-volatile memory devices based on high-performance SiNW FETs are well investigated. These memory devices integrate Fe2O3 quantum dots (FeO QDs) as charge storage elements. A template-assisted assembly technique is used to align FeO QDs into a close-packed, ordered matrix within the trenches that separate highly aligned SiNWs, and thus store injected charges. A Fowler-Nordheim tunneling mechanism describes both the program and erase operations. The memory prototype demonstrates promising characteristics in terms of large threshold voltage shift (~1.3 V) and long data retention time (~3 × 106 s), and also allows for key components to be systematically varied. For example, varying the size of the QDs indicates that larger diameter QDs exhibit a larger memory window, suggesting the QD charging energy plays an important role in the carrier transport. The device temperature characteristics reveal an optimal window for device performance between 275K and 350K. The flexibility of integrating the charge-trap memory devices with the SiNW logic devices offers a low-cost embedded non-volatile memory solution. A building block for a SiNW-based field-programmable gate array (FPGA) is proposed in the future work.</p

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today “3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    Top-down Si nanowire technology in discrete charge storage nonvolatile memory application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Overview of emerging nonvolatile memory technologies

    Get PDF
    corecore