981 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Community Microgrid offers effective energy harvesting from distributed energy resources and efficient energy consumption by employing an energy management system (EMS). Therefore, the collaborative microgrids are essentially required to apply an EMS, underlying an operative control strategy in order to provide an efficient system. An EMS is apt to optimize the operation of microgrids from several points of view. Optimal production planning, optimal demand-side management, fuel and emission constraints, the revenue of trading spinning and non-spinning reserve capacity can effectively be managed by EMS. Consequently, the importance of optimization is explicit in microgrid applications. In this paper, the most common control strategies in the microgrid community with potential pros and cons are analyzed. Moreover, a comprehensive review of single objective and multi-objective optimization methods is performed by considering the practical and technical constraints, uncertainty, and intermittency of renewable energies sources. The Pareto-optimal solution as the most popular multi-objective optimization approach is investigated for the advanced optimization algorithms. Eventually, feature selection and neural network-based clustering algorithms in order to analyze the Pareto-optimal set are introduced.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN)–Agencia Estatal de Investigación (AEI), and by the European Regional Development Funds (ERDF), a way of making Europe, under Grant PGC2018-098946-B-I00 funded by MCIN/AEI/10.13039/501100011033/.Peer ReviewedPostprint (published version

    Modeling and Analysis of Scheduling Problems Containing Renewable Energy Decisions

    Get PDF
    With globally increasing energy demands, world citizens are facing one of society\u27s most critical issues: protecting the environment. To reduce the emission of greenhouse gases (GHG), which are by-products of conventional energy resources, people are reducing the consumption of oil, gas, and coal collectively. In the meanwhile, interest in renewable energy resources has grown in recent years. Renewable generators can be installed both on the power grid side and end-use customer side of power systems. Energy management in power systems with multiple microgrids containing renewable energy resources has been a focus of industry and researchers as of late. Further, on-site renewable energy provides great opportunities for manufacturing plants to reduce energy costs when faced with time-varying electricity prices. To efficiently utilize on-site renewable energy generation, production schedules and energy supply decisions need to be coordinated. As renewable energy resources like solar and wind energy typically fluctuate with weather variations, the inherent stochastic nature of renewable energy resources makes the decision making of utilizing renewable generation complex. In this dissertation, we study a power system with one main grid (arbiter) and multiple microgrids (agents). The microgrids (MGs) are equipped to control their local generation and demand in the presence of uncertain renewable generation and heterogeneous energy management settings. We propose an extension to the classical two-stage stochastic programming model to capture these interactions by modeling the arbiter\u27s problem as the first-stage master problem and the agent decision problems as second-stage subproblems. To tackle this problem formulation, we propose a sequential sampling-based optimization algorithm that does not require a priori knowledge of probability distribution functions or selection of samples for renewable generation. The subproblems capture the details of different energy management settings employed at the agent MGs to control heating, ventilation and air conditioning systems; home appliances; industrial production; plug-in electrical vehicles; and storage devices. Computational experiments conducted on the US western interconnect (WECC-240) data set illustrate that the proposed algorithm is scalable and our solutions are statistically verifiable. Our results also show that the proposed framework can be used as a systematic tool to gauge (a) the impact of energy management settings in efficiently utilizing renewable generation and (b) the role of flexible demands in reducing system costs. Next, we present a two-stage, multi-objective stochastic program for flow shops with sequence-dependent setups in order to meet production schedules while managing energy costs. The first stage provides optimal schedules to minimize the total completion time, while the second stage makes energy supply decisions to minimize energy costs under a time-of-use electricity pricing scheme. Power demand for production is met by on-site renewable generation, supply from the main grid, and an energy storage system. An ε-constraint algorithm integrated with an L-shaped method is proposed to analyze the problem. Sets of Pareto optimal solutions are provided for decision-makers and our results show that the energy cost of setup operations is relatively high such that it cannot be ignored. Further, using solar or wind energy can save significant energy costs with solar energy being the more viable option of the two for reducing costs. Finally, we extend the flow shop scheduling problem to a job shop environment under hour-ahead real-time electricity pricing schemes. The objectives of interest are to minimize total weighted completion time and energy costs simultaneously. Besides renewable generation, hour-ahead real-time electricity pricing is another source of uncertainty in this study as electricity prices are released to customers only hours in advance of consumption. A mathematical model is presented and an ε-constraint algorithm is used to tackle the bi-objective problem. Further, to improve computational efficiency and generate solutions in a practically acceptable amount of time, a hybrid multi-objective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is developed. Five methods are developed to calculate chromosome fitness values. Computational tests show that both mathematical modeling and our proposed algorithm are comparable, while our algorithm produces solutions much quicker. Using a single method (rather than five) to generate schedules can further reduce computational time without significantly degrading solution quality

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated

    Multiobjective Optimisation of Job Shop Scheduling of Renewable Powered Machinery

    Get PDF
    Postprin

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto
    corecore