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Abstract 

Decarbonisation of aviation goals set by Flightpath 2050 Europe’s Vision for Aviation 

requires that the airports become emission-free by 2050. This thesis original contribution 

to knowledge is to explore the incorporation of aviation electrification technologies, 

including electric aircraft (EA), electrified ground support equipment (GSE), and airport 

parking electric vehicles (EVs), into power systems, evaluating their influence on grid 

infrastructure and operations, as well as their potential to support the grid operation. 

A comprehensive review of aviation electrification technologies revealed a research gap 

in the integration of these technologies into the power systems. The thesis contributes to 

electricity network infrastructure planning for electrification of aviation and airport-based 

distributed energy resources (DER) that provide ancillary services to the power grid. 

A multi-objective airport microgrid planning framework is developed, comparing EA 

charging strategies and revealing that battery swap performs better. Vehicle-to-grid (V2G) 

strategy with parking EVs improves the microgrid's performance. A techno-economic 

assessment of wireless charging systems for electric airport shuttle buses shows better 

economic performance than conventional buses and other charging options. 

A novel Aviation-to-Grid (A2G) flexibility concept provides frequency response services 

to the GB power system using EA battery charging systems, with typical A2G service 

capacity showing significant variation across eight UK airports. A deep reinforcement 

learning (DRL)-based A2G dispatch approach evaluates the impact of EA charger 

capacity on energy dispatch results, with higher capacities leading to higher revenue and 

lower operation costs. 

To summarise, this thesis addresses the research gaps in integrating aviation 

electrification technologies into power systems, offering valuable insights for airport 

operators aiming to decarbonise air transport activities through the adoption of these 

technologies. The study also provides an understanding of the impacts on grid operators 

in terms of infrastructure planning and operations. This comprehensive approach ensures 

a cohesive understanding of the challenges and opportunities presented by aviation 

electrification and its integration into power systems. 
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Chapter 1 Introduction 

1.1 Motivation and Background 

Flightpath 2050, the European Commission’s vision for aviation, requires that the 

aviation industry achieves a 75% reduction in CO2 emissions per passenger mile and 

airports become emission-free by 2050 [1]. The civil aviation develops substantially over 

the past decades and contributes to around 2% of the global greenhouse gas emission. To 

limit or reduce the aviation-related climate impact, alternative power source aircraft 

technology and the more efficient energy infrastructure become necessary measures, as 

shown in Figure 1-1. 

 

Figure 1-1 International Airlines Group (IAG) CO2 road-map for global aviation [2] 

In recent years, the design innovation of electrically powered aircraft has advanced 

rapidly with over 200 innovation projects targeting a service date between 2020 and 2030 

with some of them already commercially viable. An increasing number of aircraft 

designers including Airbus, Rolls Royce, NASA, etc., are working on the electric 

propulsion system for electric aircraft (EA) [3]. EA has been identified as one of the 

promising approaches to reduce CO2 emissions and NOx pollution from aviation industry. 

EA can be generally classified as fully electric (also known as universally electric), 

hybrid-electric and turboelectric aircraft. However, due to the limitation of energy density 

of on-board batteries, fully electric and battery-powered aircraft propulsion system is not 
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recommended as a high-priority approach for long distance commercial aircraft [4]. For 

regional and single-aisle aircraft, all-electric and hybrid-electric aircraft propose feasible 

solutions to utilise electrical energy to reduce fuel burn and emissions. By considering 

the 20-year projections and state of art development for battery powered electric 

propulsion technologies, medium-haul routes (1,500 and 4,000 km) are envisioned as 

viable application scenarios for hybrid-electric aircraft and all-electric aircraft. However, 

with the electrification of aviation industry, the EA charging will have significant impact 

on ground energy systems, in particular the extra charging demand and infrastructure. 

The study in Ref. [5] indicates that the global electricity consumption will increase by 

112-344 TWh (0.6-1.7% of 2015 global electricity consumption) if all the short haul 

flights with 400-600 nautical-mile (nm) are operated by all-electric aircraft. In the UK, 

additional 1.2-3.6 GW electricity generation capacity is required even if the daily first 

morning flight is electrified which requires the EA batteries to be recharged overnight. 

Electric aircraft such as air taxis with 1-4 passengers over a distance of around 100 km 

require battery specific energy of 200Wh/kg [5]. The existing fast charger (10-50kW) for 

electric vehicle is not quick enough for aircraft charging (4-20 hours) due to the high-

power consumptions of aircraft propulsion system and constrained flight turnaround time. 

As advancements in fast charging technology continue to unfold, the increasing demand 

for charging EA batteries may place a significant strain on the existing electrical grid 

infrastructure [6]. However, the EA charging has potentials to provide grid flexibility 

through the large EA batteries and their charging infrastructure. In order to eliminate the 

airport local ground emission of CO2 and NOx, the electrification of ground support 

equipment (GSE) also plays an important role in aviation decarbonisation. Therefore, the 

ground-side electrification technologies for GSE and the energy management of the 

airport energy systems are also emerging challenges for both aviation industry and power 

system [7].  

The rapid integration of renewable energy sources and electrification of transportation, 

including aviation, poses significant challenges to the power grid [8]. These challenges 

include the need for additional flexibility services, frequency response, and generation 

capacity. The reduction of system inertia due to the increasing penetration of power 

electronics-interfaced renewable energy sources calls for the development of innovative 

solutions to maintain frequency stability and robustness [9]. 
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To address these challenges, this thesis aims to create a new aviation-energy nexus by 

exploring methods to integrate aviation electrification technologies with the power grid, 

focusing on grid-side challenges and motivations. The research will consider the 

increased demand for flexibility services from both the aviation and grid sectors, as well 

as the integration of aviation electrification with broader transport electrification 

initiatives. 

Motivated by the need to maintain power system stability in the face of low-inertia 

challenges, the thesis will investigate various technologies and strategies, including novel 

control methods, distributed energy resources (DER) such as micro gas turbines and 

electrified transport, and the integration of EA batteries as a potential source of frequency 

response services. By addressing these grid-side challenges comprehensively, the 

research aims to contribute meaningfully to both the aviation and power grid sectors, 

providing valuable insights for infrastructure planning, operations, and grid operators' 

impacts. 

  

Figure 1-2 The new nexus between major UK airports and GB power network 

This thesis presents approaches and frameworks for planning and design the aviation-

energy nexus through integrating these aviation electrification technologies into the grid. 

One example nexus between UK aviation transport and the GB power transmission 

network is shown in Figure 1-2, where lines and links represent the connections between 

power system components, such as substations, and aviation infrastructure like airports. 
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This thesis also presented a novel concept of “Aviation-to-Grid (A2G)”, which enables 

the EA battery charging system to provide ancillary services to the grid when there is a 

frequency drop event. The A2G concept addresses the emerging nexus between power 

systems and electrified aviation. As electrification progresses in the aviation sector, it is 

crucial to integrate these two systems effectively to maintain stability and reliability. A2G 

enables electrified aviation to provide flexibility and support the frequency of power 

system while managing its electricity supply and demand.  

To effectively implement the A2G concept, electrified aviation must be integrated into 

ground energy infrastructure. Moreover, power systems must provide sufficient 

electricity to meet the demands of electrified aviation, and significant charging 

infrastructure investments are crucial. By addressing these challenges and developing 

innovative solutions, the A2G concept can help ensure the long-term sustainability and 

reliability of both the power and aviation industries. 

1.2 Research Aim and Objectives 

The aim of this thesis is to explore the new nexus between the electricity network and 

aviation sectors, focusing on the coordinated planning and operation of infrastructure for 

the electrification of aviation and the integration of airport-based DER. This research 

seeks to understand the interaction, interdependency, and interoperability between these 

two sectors, providing a comprehensive framework for their synergistic development. To 

achieve this aim, the research objectives of the thesis have been defined as follows: 

1) A comprehensive review of sustainable aviation electrification technologies, 

renewable energy and airport demand patterns, and potential technologies for 

aviation-energy nexus. Identify the research gap in the integration of aviation 

electrification technologies into power systems. 

2) Develop plans and designs of airport microgrids that are capable to accommodate 

airport-based renewable generation, EA, and parking EVs. Investigate the impact of 

two different EA charging strategies (plug-in charge and batter swap) on the airport 

microgrid operation stability and cost. 

3) Integrate the electric airport ground support vehicles (e.g., electric airport shuttle 

buses) into the airport power networks through wireless charging systems. Conduct a 
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techno-economic assessment of wireless charging systems for electric airport shuttle 

buses from the perspective of the power system operation.  

4) Investigate the impact of energy demand and charging demand from aviation 

electrification on the power grid, considering flight schedules and other factors, as a 

crucial and novel aspect of the research. 

5) Analyse the volume, capacity, and effectiveness of frequency response services that 

Aviation-to-Grid can provide to the power grid, examining their impact on frequency 

nadirs and restoration levels. 

6) Assess the role and value of Aviation-to-Grid flexibility, including the quantification 

of benefits, costs, and revenues associated with providing such services to the grid. 

1.3 Major Contributions 

Based on the abovementioned research aim and objectives, the principal contributions of 

the thesis can be summarised as follows: 

1) A comprehensive review of sustainable aviation electrification technologies, 

renewable energy and airport demand patterns, and potential technologies for 

aviation-energy nexus. The review work helps the readers to understand the technical 

path of aviation electrification and the research gaps in integrating aviation 

electrification into the power systems. 

2) A multi-objective airport microgrid planning framework for airport microgrid to 

accommodate parking EVs and EAs. The difference between two different scheduling 

approaches for charging EA batteries (plug-in charge and batter swap) and the impact 

of Vehicle-to-Grid (V2G) on the airport microgrid are assessed as well. 

3) A techno-economic assessment of wireless charging systems for electric airport 

shuttle buses through a bi-level hybrid algorithm of (Non-dominated Sorting Genetic 

Algorithm-Ⅲ) NSGA-Ⅲ and mixed integer linear programming (MILP). A multi-

agent-based model for airfield shuttle bus transport network simulation is designed 

based on Anylogic software for generating shuttle bus position and energy 

consumption profiles. 

4) A novel concept of A2G flexibility to provide frequency response services to the GB 

power system with EA battery charging systems. EA batteries and gas turbines are 
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controlled coordinatively to provide combined primary and secondary frequency 

responses to grid disturbance. 

5) A deep reinforcement learning (DRL)-based A2G dispatch approach for providing 

fast frequency response services to the grid. The results of the A2G frequency 

response are validated based on the reduced GB power system simulations in 

DIgSILENT PowerFactory. 

1.4 Selection Rationale for Study Sites and Data Sources 

The choice of research objects for this study, namely airports and the power system, were 

determined by our research objectives and backgrounds. Specifically, this investigation 

places a strong emphasis on airports within the United Kingdom (UK) and the Great 

Britain (GB) power system. Depending on the specific objectives of the research, various 

airports are chosen as reference points. Middle-sized airports, for instance, are selected 

when examining airport energy systems with commuting EA or airport electric ground 

support vehicles. Major airports, on the other hand, are chosen when investigating 

medium range EA. 

In Chapter 4, the focus is on airport microgrids that can accommodate parking EVs and 

EAs, with the implementation of renewable energy. East Midland Airport was selected 

as the case study due to its commitment to emission reduction through the adoption of 

wind power [10]. In Chapter 5, the objective is to explore the wireless charging systems 

for electric airport shuttle buses. London City Airport was chosen due to its unique layout, 

where shuttle buses are used to minimise terminal size and maximise aircraft servicing 

capacity [11]. 

Chapters 6 and 7 aim to examine Aircraft-to-Grid (A2G) flexibility in providing 

frequency response services to the GB power system with EA battery charging systems. 

For these chapters, eight major UK airports are selected for electrification assumptions. 

The electricity demand data, electricity price data, and flight demand data used in the 

study are primarily based on data available in 2019. For the projected cases in 2050, flight 

schedules were forecasted using the method detailed in Appendix C. In consideration of 

data availability, the electricity prices and frequency response revenues from 2019 were 

utilized as inputs for the research presented in Chapters 6 and 7. 
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1.5 List of Publications Arising from the PhD 

1.5.1 Journal publications 

[J1] Z. Guo, J. Zhang, R. Zhang and X. Zhang, "Aviation-to-Grid Flexibility Through 

Electric Aircraft Charging", IEEE Transactions on Industrial Informatics, vol. 18, 

no. 11, pp. 8149-8159, Nov. 2022, doi: 10.1109/TII.2021.3128252. 

[J2] Z. Guo, C. S. Lai, P. Luk, and X. Zhang, “Techno-economic assessment of wireless 

charging systems for airport electric shuttle buses”, Journal of Energy Storage, vol. 

64, p. 107123, 2023, doi: 10.1016/j.est.2023.107123. 

[J3] Z. Guo, B. Li, Y. Yuan, X. Zhang, “Infrastructure Planning for Airport Microgrid 

Integrated with Electric Aircraft and Parking Lot Electric Vehicles”, 

eTransportation, vol. 17, p. 100257, 2023, doi: 10.1016/j.etran.2023.100257. 

1.5.2 Conference Publications 

[C1] Z. Guo, X. Zhang. Aviation to Grid: Airport Charging Energy Systems for Electric 

Aircraft, Proceedings of the 12th International Conference on Applied Energy 

(ICAE2020), Bangkok, Thailand [virtual], 1-10 December 2020, 10 (2), pp. 1-6.  

[C2] Z. Guo, X. Zhang, Rui Zhang. A multi-agent microgrid energy management 

solution for air transport electrification, IET Conference Proceedings, p. 318-324, 

doi: 10.1049/icp.2021.2351 

[C3] B. Li, Z. Guo, Y. Yuan and X. Zhang, "Study on the Impact of Aviation 

Electrification on Voltage Deviation of the GB Transmission System," 2022 57th 

International Universities Power Engineering Conference (UPEC), 2022, pp. 1-6, 

doi: 10.1109/UPEC55022.2022.9917970. 

1.6 Structure of the Thesis 

Figure 1-3 shows the flowchart for the organisation of the thesis. The outline of the thesis 

is provided to summarise the main content of each following chapter: 

Chapter 2 - Literature Review 

This chapter presents a comprehensive review on the sustainable aviation electrification 

technologies, renewable energy and airport demand patterns, and potential technologies 

for aviation electrification. The research gap in the integration of aviation electrification 
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technologies into the power systems is found through critical analysis of existing 

literature. 

 

Chapter 3 – Technology Background 

This chapter presents a comprehensive overview of the technology behind electrified 

aviation, emphasising the importance of effective scheduling methods for efficient energy 

use and proper charging of electric aircraft. The chapter also explores the potential of 

wireless charging systems for public transportation, specifically focusing on airport 

electric shuttle buses. The concept of aviation-to-grid is presented as a new nexus between 

power systems and electrified air transport, highlighting the need for effective strategies 

to integrate aviation and power systems to provide efficient frequency response services 

to the grid. 

 

Chapter 4 - The Coordination between Electric Aircraft and Airport Parking of EVs 

In this chapter, a multi-objective infrastructure planning framework for airport microgrid 

to accommodate parking EVs and EAs is developed, and the impact of V2G on the airport 

microgrid is assessed as well. The dispatch problem of airport microgrid is formulated as 

a heuristic optimisation problem and the NSGA-II algorithm is adopted to find the Pareto 

Fronts and optimal solutions. There are two different scheduling strategies for charging 

EA: plug-in charge and battery swap. The economic and technological assessments for 

both strategies are conducted and compared. Sensitivity analyses for different EA 

implementation levels and renewable generation uncertainties are carried out to 

investigate the cost of future potential investment for increasing the number of EA flights 

and fluctuations of renewable power output. 

 

Chapter 5 - Infrastructure Design for Airport Shuttle Bus Electrification 

In this chapter, the feasibility of wireless charging facilities implemented in the airfield 

of commercial airport for recharging the electric shuttle buses is evaluated. The input 

traffic data of airport shuttle buses is simulated from a multi-agent-based model (MABM) 

based on Anylogic software. To evaluate the techno-economic potential of the wireless 

charging technology, a hybrid bi-level optimisation framework is presented for seeking 

the optimal design of proposed wireless charging system. The optimisation approach 
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combines the multi-objective NSGA-Ⅲ and MILP algorithm to handle the large number 

of decision variables and constraints generated from the investigated problem.  

 

Chapter 6 - Power Grid Ancillary Services through Aviation-to-Grid Flexibility 

This chapter proposes the novel concept of A2G that utilises EA charging to provide 

flexibility to the power grid. Smart EA charging system with battery swap method is 

developed using photovoltaic, gas turbine, and grid electricity. Hourly energy dispatch 

strategy is produced based on the mixed integer linear programming method to meet 

electrified aviation charging demand and provide A2G frequency response to the power 

grid. The A2G frequency response services will be further enhanced by coordinating with 

airport gas turbines which are primarily used to provide off-grid and high-power charging 

to the swappable EA batteries. Case studies are conducted in 8 major UK airports 

considering seasonal flight schedules and power system operation scenarios.  

 

Chapter 7 – Aviation-to-Grid Flexibility through Deep Reinforcement Learning 

This chapter proposes a novel DRL-based dispatch approach for EA battery recharging 

systems to provide FFR services to the power grid with the A2G capability. The feasibility 

of the proposed approach is demonstrated by a case study conducted in 8 major UK 

airports and the GB power system and solved with the Deep Q network (DQN) approach. 

The simulations for the reduced GB power system model were implemented in 

DIgSILENT PowerFactory. 

 

Chapter 8 - Conclusion and Further Works 

This chapter summarises the overall findings of the whole research work and discusses 

the key contributions of this project and implies some further research directions in the 

future. 
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Figure 1-3 Flowchart for thesis structure organisation 
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Chapter 2 Literature Review 

2.1 Introduction 

Airports are vital hubs that transport people and cargos in regional, national, and 

international commerce. Identifying the common energy patterns of airports is essential 

to solving energy supply problems, adopting advanced new aviation electrification 

technologies, and introducing innovative aviation-energy nexus into both power and 

aviation industries. In this chapter, a comprehensive review on the electrification of 

aviation sector is presented, including sustainable aviation electrification technologies, 

renewable energy and airport demand patterns, and potential technologies for aviation 

electrification. A particular focus is placed on examining the existing literature on power 

system frequency response services and outlining various research projects exploring 

power system inertia and frequency response services. These projects highlight the 

benefits and difficulties encountered in maintaining frequency stability in the grid, which 

is crucial for ensuring seamless integration of aviation electrification technologies. This 

review will help the researchers to understand the state of the art of the sustainable 

aviation electrification technologies and to provide a reference for the potential aviation-

energy nexus in the future. 

2.2 Aviation Electrification Technologies 

To achieve net-zero emissions in air transport industry and align with defined CO2 

mitigation objectives in “Flightpath 2050” [12], electrically powered aircraft as part of 

electrified aviation have become increasingly attractive technologies. In recent years, 

numerous electric aircraft prototypes for short-haul commuting air transport have been 

designed, with the majority expected to be deployed in the real airports by 2030 – 2035 

[13]. This section presents a comprehensive survey of the current development trends and 

progress in aviation electrification, examining various aspects of this emerging field. 

This section delves into three main areas of aviation electrification: hybrid-electric 

aircraft, all-electric aircraft, and ground operation challenges for aviation electrification. 

Each of these aspects plays a vital role in the development and deployment of electric 

aviation technologies. 
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Hybrid-electric aircraft utilise a combination of conventional propulsion systems and 

electric motors, providing a transitional path towards full electrification. All-electric 

aircraft rely entirely on electric propulsion systems, powered by batteries. These aircraft 

have the potential to significantly reduce emissions, noise, and operating costs, making 

them an attractive option for short-haul and regional flights. The successful integration of 

electric aircraft into the aviation ecosystem also requires addressing various ground 

operation challenges. As the aviation industry continues to embrace electrification, the 

environmental and economic benefits of electric aircraft will become increasingly 

apparent, paving the way for a more sustainable and efficient air transportation system. 

2.2.1 Hybrid-Electric Aircraft 

Generally, the hybrid-electric propulsion systems can be categorised into two types: series 

hybrid-electric and parallel hybrid-electric. Series hybrid-electric propulsion systems 

generate electricity using both combustion engines and batteries, with power delivered to 

the motor and fan/propeller through converters. In contrast, parallel hybrid-electric 

propulsion systems directly supply combustion power directly to the fan/propulsor by 

mounting the gas turbines on a shaft [14].  

Most current plans for decarbonising the general aviation sector envision the hybrid-

electric aircraft entering service for domestic fleet in the UK by 2030 [15]. Figure 

2-1illustrates the technical schematic of parallel and series hybrid-electric aircraft 

propulsion systems. In a parallel hybrid-electric propulsion system, both gas turbine and 

a battery-powered motor are mounted on a shaft to drive the ducted fan. This 

configuration allows either or both power sources to provide aircraft propulsion at any 

given time during the flight mission. In contrast, in a series hybrid-electric propulsion 

system, the turbine drives an electric generator, which drives the motor with electricity 

output. With this design, the electricity generated by the generator can be stored with 

energy storage units when the electrical output exceeds the required propulsive effort. 

The primary advantage of the series architecture is that the turbine, not being 

mechanically coupled to thrust generation, can consistently operate at its optimal power 

and speed. Furthermore, the simplicity of the concept facilitates straightforward 

propulsion control. 
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Figure 2-1 Parallel hybrid-electric and Series hybrid-electric propulsion systems 

A standard flight mission profile involves all phases from taking off at the origin to 

landing at the destination, including take off, initial climb, cruise climb, cruise, descent, 

holding, approach, and landing [16], is shown in Figure 2-2. Batteries in hybrid-electric 

aircraft not only provide energy for propulsion during one or more flight phases, reducing 

direct combustion emissions, but also allows for a smaller gas turbine with lower specific 

fuel consumption and a reduced NOx emission index [5].  

 

Figure 2-2 standard flight mission profile  

2.2.2 All-Electric Aircraft 

The all-electric aircraft is the only potential technology emerging in aviation industry that 

could achieve net-zero emissions [17]. In all-electric propulsion system, batteries are the 

only power source for the fan/propeller, as shown in Table 2-1. All-electric aircraft is a 

high-efficiency and economic technology to eliminating the environment impacts of air 

transport. Eviation Alice is the world’s first all-electric aircraft designed to accommodate 

2 crew members and 9 passengers with a 900-kWh battery, as shown in Figure 2-3. The 

prototype has conducted its first flew on 27th September 2022 [18]. This aircraft was 

ordered by DHL to transport cargos from 2024 [19]. With the electrification of aviation, 

all-electric aircraft have the potential to reduce aviation's environmental impact 

significantly. In addition to eliminating various air contaminants, they might also 
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contribute to resolving the global warming issue. Furthermore, All-electric aircraft (EA) 

could considerably lower noise with electric propulsion systems, particularly during take-

off and landing [20]. In the last few years, Numerous companies are working in a variety 

of directions to realise the concept of all-electric flight and overcome significant obstacles, 

including increasing battery energy capacity and proposing novel electric propulsion 

systems [21]. Electric propulsion systems shows potential for the future of aviation, and 

further electrification of future aircraft can be foreseen [22].  

 

Figure 2-3 “Eviation Alice” aircraft [18] 

The key progress in designing all-electric aircraft to date is shown in Table 2-1. 

Table 2-1 Progress in designing and applications of all-electric aircraft to date 

Name Design Remarks Ref 

Airbus E-Fan 
2-seat electric aircraft for pilot training, with 60 min flight 

endurance, FFY: 2014 
[23] 

Magnus eFusion 
2-seat training electric aircraft, serving as a testbed for sub-

100 kW electric propulsion system, FFY: 2016 
[24] 

Siemens Extra 330 LE 
2-seat aerobatic electric aircraft, serving as a testbed for 0.25 

to 0.5 MW electric motors, FFY: 2016 
[24] 

NASA X-57 “Maxwell” 
2-seat electric aircraft, maximum operational altitude: 14,000 

ft, cruise speed: 172 mph, FFY: 2020 
[25] 

Rolls Royce/YASA ACCEL 

Project 

1-PAX light sport and training electric aircraft, flight range: 

200 miles, FFY: 2020 
[26] 

Eviation Alice 
9-PAX commuting electric aircraft, maximum cruise speed: 

250 kts, flight range:440 nmi, EISY: 2024 
[18] 

Easy Jet 
100-PAX large commercial electric aircraft, with 1-hour flight 

endurance, EISY: 2026 
[27] 

Rolls-Royce/Siemens 

CleanSky 2 ELICA 

19-PAX commuting electric aircraft, flight range: 400nmi, 

EISY: 2060 
[28] 

* FFY: first flight year, EISY: enter into service year, PAX: passenger 
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2.2.3 Ground Operation Challenges for Aviation Electrification 

While the aircraft designers and aerospace engineers are pushing the boundary of the 

electric propulsion system, little research has been focusing on the energy infrastructure 

to support the future air transport electrification. While adopting aviation electrification 

technologies to decarbonise the air transport activities, the attention on common operating 

problems occurred in airport management should also be paid. 

One of the compulsory infrastructures for adopting EA is the high-power EA charging 

system [29]. The traditional airport consumes a large amount of electricity, and the 

adoption of EA in the airports will require additional high energy demand. In order to 

avoid increase the turnaround time of electric flight missions, battery swap technology 

should be adopted to recharge the EA batteries. Battery swap is a technology that directly 

swaps the empty batteries from the arrival vehicles with a fully charged battery. The 

empty batteries will be charged off-board in a scheduled period when the power system 

is not in congestion. As a result, battery swap is recognised as a flexible charging strategy 

particularly for large capacity batteries. Battery swap technology has been extensively 

studied for use in electric public transportation. In most of the existing literatures, the 

battery swap process is formulated by various linear integer or mixed integer program 

with different optimisation algorithms to solve this problem. A population-based 

evolutionary algorithm is proposed to optimise the allocation of distributed generation 

and battery swap stations [30]. In [31] , an electric vehicle transportation network routing 

problem is presented with battery swapping stations located in the city. Battery swap is 

adopted to recharge a fleet of electric commuter aircraft aiming to minimise the operation 

costs and charging infrastructure expenditures in [32]. The battery swap process is 

formulated with a state flow model and to assess the operation cost of the battery swap 

station in [33][34][35].  

Another emerging technology to eliminate airport ground emissions is electrified Ground 

support equipment (GSE), which refers to support equipment in an airport that is adopted 

to conduct ground services for the aircraft between flight missions. The main duties of 

GSE include aircraft movement, ground power supply, cargo and passenger loading 

process, aircraft refuelling, etc. In modern airports, GSE is typically powered by diesel or 

petrol fuels and becomes a nonnegligible part of airport emission source. One way to cut 
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airport greenhouse gas (GHG) emission is to adopt zero-emission GSE, such as electric-

powered GSE and hydrogen-powered GSE. Most of the GSE that is responsible for easier 

tasks like catering, transporting passenger and cargos is prone to be electrified, because 

these GSE can be replaced by electric trucks of similar size [36]. However, tug vehicles 

are a special type of GSE that is hard to be electrified due to high power requirement of 

motors. The electric tugs that are responsible to carry the aircraft to taxi-in or taxi-out are 

called electric taxi (e-Taxi) equipment [37]. In the conventional taxi-out process, aircraft 

will detach with electric tugs after it has been pushed out. A new taxi-out procedure was 

introduced in [38] to improve the taxi-out efficiency, which detach the electric tugs and 

aircraft after carrying the aircraft to the holding point in Figure 2-4. 

 

Figure 2-4 Aircraft ground taxi-out process 

2.3 Renewable Energy and Airport Demand 

Airports are high-energy consumption public transportation infrastructures, requiring 

significant amounts of energy to support the numerous air transport activities they 

facilitate. Serving as essential hubs for both passenger and freight transportation, airports 

have experienced a sharp increase in air transport operations over the past few decades, 

leading to a significant rise in their energy demand in order to meet the growing air 

transport requirements [16]. Concurrently, emissions from the aviation industry have 

continued to grow rapidly. As a result, airport operators are actively exploring strategies 

to reduce energy consumption and enhance energy efficiency.  

In this context, renewable energy resources have emerged as a promising option for 

supporting airport ground energy systems. By integrating renewable energy resources, 

such as solar and wind, airports can decrease reliance on traditional fossil fuels, reduce 
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the carbon footprint, and contribute to the global efforts towards tackling unprecedented 

climate change challenges. Additionally, incorporating renewable energy systems can 

provide economic benefits for airports by reducing energy bills and securing a stable on-

site energy supply. 

2.3.1 Energy Demand in Airports 

Airports serve as essential transportation hubs for passengers and cargos, necessitating 

significant energy consumption for efficient and effective operations. Airports operate 

like cities that require large-scale public infrastructure to accommodate the vast number 

of air travellers. The energy demand patterns at airports are influenced by various factors, 

including air transport activities, weather conditions, and the behaviours of passengers 

and employees. Consequently, airport energy consumption exhibits nonlinear, stochastic, 

and dynamic characteristics [39].  

Table 2-2 EPI in European airports in 2009 [40] 

Airport 
EPI 

(kWh/pax⸱year) 
Airport 

EPI 

(kWh/pax⸱year) 

London (LHR) 13.57 Mallorca (PMI) 3.87 

Paris (CDG) 17.93 Munich (MUC) 11.53 

Frankfurt (FRA) 15.69 Barcelona (BCN) 6.30 

Madrid (MAD) 7.19 Brussels (BRU) 10.90 

Amsterdam (AMS) 7.61 Lisbon (LIS) 8.52 

Rome (FCO) 7.24 Edinburgh (EDI) 3.95 

Istanbul (IST) 8.00 Manchester (MAN) 12.48 

Zurich (ZRH) 13.96 Oslo (OSL) 4.31 

* the information in this table is not based on recent data and is presented only for illustrative purposes. 

Energy consumption costs comprise a considerable percentage of the total expenses of an 

airport. For instance, data from 2010 suggests that in the United States, energy bills made 

up roughly 10% to 15% of overall operation costs at airports [41]. Energy performance 

indicators (EPI) are utilised as benchmarks for evaluating the energy efficiency of an 

airport, typically measured on a per passenger basis (kWh/passenger (pax)). Table 2-2 

shows the EPI of European airports in 2009, illustrating that the EPI performance does 
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not have a linear relationship with the size of airport or the number of passengers due to 

the influence of multiple complex factors [40]. As a result, a detailed study examining the 

energy demand patterns in different airport areas is crucial for evaluating the overall 

energy performance of an airport. 

Airports can be divided into two main areas based on operational functions, an: the airside 

and the landside [42]. On the airside, aircraft and related activities are the primary energy 

consumers. Typical airside traffic operation processes, such as landing, taking off, and 

directing aircraft to aprons, are shown in Figure 2-5. Several structures and facilities are 

constructed to organise and control airside operations, including the air traffic control 

tower, airfield lighting system, firefighting buildings, and hangers [43].  

On the landside, air travellers are the most important customers, with their demands 

prioritised. Passenger-related operations involve organising and controlling passenger 

flows, baggage, and freight at the terminal buildings. Common land side constructions at 

airports include terminal buildings, cargo terminals, and airport parking lots. The majority 

of energy demand at airports is dedicated to supporting activities on both the airside and 

landside. 

 

Figure 2-5 Standard traffic pattern in airports [44] 

On the landside, the terminal building is the largest energy consumer in the airport, as it 

serves as a hub for processing passenger and cargo movement activities [45]. A variety 

of facilities are required to support airport terminal building operations, such as heating, 

ventilation, and air conditioning (HVAC), information and communications technologies 

(ICT) systems, and lighting system. With the increasing penetration level of electric 
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vehicles (EV), more and more customers and airport employees require charging facilities 

for their EVs. The EV charging demand in airport parking lots is becoming a high-energy 

consumption facility in airports. 

Within the airside of an airport, the majority of energy is consumed by the air traffic 

control tower, hangers, radio navigation systems, ground support equipment, and the 

airfield lighting system. Airfield lighting system takes around 7% of the total airport 

energy demand, which is the largest share of energy consumption within airfield [40]. 

The amount of airfield energy demand is mainly influenced by the size of the airfield 

operation areas, because it is proportional to the number of lights installed in the airfield 

and the airfield operating time. For busy airports, the aircraft usually have to conduct 

flight missions during night, and the airfield lighting system should be switched on. 

Moreover, there is a growing trend towards electrifying GSE, such as electric shuttle 

buses, tractors, and de-icing vehicles, etc. As this technology becomes more widespread, 

the charging demand for electric GSE will emerge as a significant energy demand within 

the airfield in the future.  

Airport demand is typically determined by considering design peak day (DPD) or design 

peak hour (DPH) loads, which represent traffic levels exceeded only rarely during a target 

period [42]. The goal is to ensure airport facilities have sufficient capacity to handle 

demand at an acceptable level of service throughout the year without overdesigning for 

extreme peaks. To estimate DPD and DPH loads, planners must carefully analyse 

historical data to understand seasonal, monthly, daily, and hourly peaking patterns at the 

airport and use their judgment to predict how these patterns might change in the future. 

As traffic grows, demand peaking at airports generally becomes less pronounced, and 

planners must take care to differentiate between peaking characteristics of passengers and 

air traffic, as well as arriving and departing passengers. 

Figure 2-6 illustrates flight schedules in two typical design days at London Gatwick 

Airport. The provided flight schedules represent hourly flight frequencies for winter and 

summer over a 24-hour period. Both schedules display a similar pattern, with peak 

demand occurring during the morning hours, particularly at hour 9. The lowest flight 

frequencies are observed in the early morning hours (1-6 am) for both seasons. In the 
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majority of airports, flight demand tends to be significantly lower during the initial six 

hours of the day. 

 

Figure 2-6 Two typical design day flight schedules at London Gatwick Airport 

2.3.2 Airport-based Renewable Generation 

Renewable energy resources, which are naturally replenishing and almost inexhaustible 

on a human timescale, including biomass, hydro, geothermal, solar, wind, ocean thermal, 

wave and tidal [46]. In recent years, airport operators have made significant efforts to 

minimise the environmental impact by adopting sustainable energy supply technologies. 

Given that the geographic and structural characteristics of airports, renewable energy 

resources such as solar, wind, hydroelectric, and geothermal energy technologies are 

suitable for supplying the energy demand at airports. 

Solar Photovoltaic (PV) technology, which converts sunlight into electricity, is 

increasingly being utilised in airport building rooftops. Airports usually offer large 

shading-free space, providing an ideal platform for the implementation of solar PV panels. 

However, the adoption of solar PV energy at airports can raise some safety concerns. In 

some sunlight conditions (suns position, tilt angle), solar PV panels might cause glare that 

might reduce the visibility of pilots and air traffic controllers [47]. There are some 

potential solutions such as glare prediction through computational simulations [48], and 

setup regulations and guidance on glare assessment [49]. 

Wind energy has a physical conflict with aircraft. As a result, it is impossible to install a 

large-scale wind farm near airports. However, wind turbines with height less than 50 m 
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above ground is in compliance with airspace protection regulations. Alternatively, 

installing 10 to 20 small-scale wind turbines on the rooftop of airport buildings can also 

provide renewable energy supply to the airport buildings. 

2.4 Airport Microgrids 

Renewable energy resources and DER have become promising energy sources due to the 

increasing requirements on emission reduction. The interconnection of DER has initiated 

the concept of microgrid which is the aggregation of DER, energy storage units, and loads 

[50]. In modern present power system and air transport scenario, airports are still one of 

customers of electricity from the national main grid [10]. However, the airport is also 

developing DER to provide on-site electrical power generation like other consumers of 

the grid [51][52]. This trend is making the adoption of microgrids become a reliable and 

profitable choice. When referring to airport microgrids, the airport facilities include 

terminal buildings, airport parking lots, airfield electrification utilities and other power 

consumption elements of the airports should be covered. 

2.4.1 Airport Microgrid Infrastructure 

A microgrid is a collection of interconnected loads, local energy storage system, energy 

management system and DER that operates as a single, controllable entity in relation to 

the grid and is contained within well-defined electrical boundaries [53]. Microgrids can 

operate in both grid-tied and islanded mode by connecting or disconnecting from the main 

grid [54]. In order to achieve the connection mode exchanging, the primary infrastructure 

named Point of Common Coupling (PCC) is required at the connection between the 

microgrid and the main grid [55]. 

The PCC allows the airport import or export power according to the situation regarding 

with technical or commercial conditions. To allow the airport operators effectively 

control the DER generation and local energy demands, another essential infrastructure, 

referred to as the Energy Management System (EMS), is required to monitor and control 

the microgrid [56]. For example, when the electricity generated by solar and wind energy 

exceeds the real-time airport electrical demand, the EMS will monitor the situation and 

control the energy storage to store the renewable generation to balance the generation and 

loads. The most important infrastructure to balance the renewable generation and demand, 
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especially in the context of the microgrid, is the energy storage system (ESS) [57]. The 

ESS enables the microgrid operators to store the excessive power generation and 

discharge power to meet the load when generation is not able to fully satisfy the demand. 

There are limited examples of implementing microgrids in commercial airport and other 

public transport infrastructures. 

2.4.2 Airport Microgrid Stability and Resilience 

Microgrids offer numerous benefits to airports, including profit generation, locally 

controlled DER electricity generation, and protection from regional or even national grid 

failure [58]. This enables airports to maintain air transport operations even during power 

loss events. Aviation industry experts and airport stakeholders consider four crucial 

project indicators when evaluating advanced technology adoption: reliability, resiliency, 

affordability, and sustainability [59]. Microgrids have the potential to achieve all four 

project metrics while reducing overall costs and carbon emissions. 

Airport microgrid stability and resilience play crucial roles in maintaining seamless 

airport and public transit operations. Reliability is a key concern, as power instability and 

poor power quality can adversely impact these sectors. For instance, on 17th December 

2017, Hartsfield-Jackson Atlanta International Airport experienced an 11-hour power 

outage, resulting in 1,150 cancelled flights and an inability to serve 30,000 travellers [60]. 

A fire caused the power outage by cutting off the feeders connecting the airport 

distribution network to the main grid. Adopting microgrids in airports could prevent such 

situations. Well-designed microgrids with an advanced energy management and control 

systems can secure the power supply reliability and stability, enhancing overall airport 

operations and mitigating the impact of unforeseen power disruptions.  

2.5 Power System Frequency Response Services 

Power system stability, as described in [61], refers to the capacity of an electrical power 

network to re-establish a balanced operating state from a specific initial condition after 

experiencing a physical disruption, while ensuring that the majority of system variables 

remain within acceptable limits, thus preserving the system's integrity.  
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One key challenge for power system operators is the real time balancing of electricity 

generation and demand. The imbalance between generation and load will be reflected in 

frequency deviation of the power system [62]. The inertia stored in the synchronous 

generators can reduce the frequency deviation. However, with the increasing penetration 

of renewable power generation which is expected to reach over 60% in the future GB 

power grid [63], the system inertia will reduce significantly due to the power electronics-

interfaced renewable energy that do not provide conventional inertia to the grid.  

Frequency serves as the primary indicator reflecting this balance between generation and 

load. It is essential to keep the power system's frequency as close as possible to its nominal 

value, which is 50 Hz for the GB power system. This section primarily concentrates on 

the aspect of frequency stability and reviews the existing literature on power system 

frequency response services. The section outlines various research projects exploring 

power system inertia and frequency response services, highlighting the benefits and 

difficulties encountered. 

2.5.1 Power System Inertia and Frequency Response Services 

Essentially, power system inertia represents the capacity of an electrical grid to counteract 

energy variations stemming from external disruptions [64]. In conventional power 

systems, this inertia is preserved as kinetic energy stored within the spinning mass of 

synchronous generators [65].This stored kinetic energy is valuable during major power 

plant failure events, because it can provide a temporary compensation to the loss of power 

from the connected generators. The kinetic energy (𝐸𝑘 ) of a power system can be 

expressed as Equation (2.1) [66]: 

𝐸𝑘 = ∑ (
1

2
𝐽𝑚𝜔𝑚

2 )

𝑁𝑚

𝑚=1

 2.1 

where 𝐽𝑚 and 𝜔𝑚 denote the inertia (in 𝑘𝑔 ∙ 𝑚2) and the angular speed of the rotor of the 

m-th rotating machine, respectively. 𝑁𝑚  is the number of connected synchronous 

machines. 

The total inertia constant of a power system is determined by calculating the ratio of the 

total stored kinetic energy (in MJ) to the base power rating (in MVA) of the power system: 
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𝐻𝑠𝑦𝑠 =
𝐸𝑘
𝑆𝑏𝑎𝑠𝑒

 2.2 

where  𝑆𝑏𝑎𝑠𝑒 represents the MVA base apparent power of the power system. It is evident 

that the total power system inertia is contingent on the number of connected synchronous 

generators and the kinetic energy stored within their rotating mass. Consequently, a 

decrease in the number of synchronous machines connected to the power system can lead 

to a reduction in system inertia, making it more susceptible to instability during 

fluctuations in generation and demand. 

The integration of renewable energy resources can bring significant challenges to the 

power system frequency stability. The power system inertia will be greatly reduced 

because the renewable energy generators that do not contribute to system inertia is 

replacing the spinning synchronous generators. In this context, the power system inertia 

is essential for the future power grids with high penetration levels of renewable energy 

resources. Therefore, the provision of additional inertia from auxiliary sources may help 

mitigate frequency deterioration in the future power systems. Consequently, offering 

inertia support from supplementary sources can play a crucial role in maintaining 

frequency stability. This additional inertia can be provided by thermal generators, rotating 

loads, or even wind generators. By designing thermal generators and rotating loads with 

a higher inertia constant, they can contribute effectively to system stability. Moreover, 

wind generators have the potential to provide "synthetic inertia" through the 

implementation of an extra control loop in the wind turbine controller, as demonstrated 

by several studies [67], [68]. Grid-scale energy storage units can also contribute to inertia 

support by emulating the mechanical inertia of synchronous generators [66]. Although 

these technologies have been developed to support power system inertia, existing market 

mechanisms do not sufficiently incentivize participants to supply such services. This lack 

of financial encouragement may hinder the widespread adoption and implementation of 

these solutions. 

Given these challenges, the need for frequency response services becomes even more 

critical. To ensure secure system operation from a frequency performance perspective, 

system operators must satisfy three key criteria: 

• The Rate-of-Change-of-Frequency (RoCoF) must remain within a specific limit 
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to prevent RoCoF-sensitive relay tripping. 

• The frequency nadir, or minimum frequency value, must stay above a designated 

level to avoid triggering Under-Frequency Load Shedding. 

• The quasi-steady-state frequency deviation, identified as the stable frequency 

value 60 seconds after a power outage, must not exceed a predetermined threshold. 

By scheduling specific frequency response services to be activated in case of frequency 

drops, system operators can maintain frequency within these secure ranges consistently. 

To demonstrate the mechanism of different frequency response services, here the standard 

of GB power system is given as an example. The GB power system frequency steady-

state limits are 50 ± 0.5 Hz, but normally the operational range of frequency is 50 ± 0.2 

Hz [69], as shown in Figure 2-7. It is important to mention that this research is grounded 

in the state of the GB power system frequency response services as they were in 2019. 

Modifications or evolution of these frequency services in the future have not been 

factored into our analysis, and can be found in [70]. 

 

Figure 2-7 Post-contingency frequency evolution and power system frequency control 

in GB power system, along with different types of frequency response services: inertia, 

Enhanced Frequency Response (EFR), Primary Frequency Response (PFR) and 

Secondary Frequency Response (SFR) (National Grid regulation [69]) 
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The initial RoCoF at the beginning of the incident can be expressed as: 

 𝑅𝑜𝐶𝑜𝐹 =
𝑓0

2𝐻𝑠𝑦𝑠
∙
∆𝑃

𝑆𝑏𝑎𝑠𝑒
 2.3 

where ∆𝑃  is the disturbance power and 𝑓0  represents the nominal power system 

frequency. I can be seen that the initial RoCoF is inversely proportional to the level of 

inertia in the power grid.  

A specific fast-responding frequency response service, known as Enhanced Frequency 

Response (EFR) in the GB, necessitates that service providers respond to power system 

incidents within 1 second and maintain their response for at least 15 minutes after the 

incident occurs [71] [72]. When the frequency deviation surpasses the ‘trigger level’ set 

point (49.7 Hz), primary (PFR) and secondary frequency response (SFR) services are 

deployed to restore the system frequency to its normal operational range. PFR serves to 

prevent the frequency nadir point (occurs at least 20 seconds) [73] [74] from falling below 

the Infrequent Infeed Loss Risk (defined as below 49.5 Hz) [75], while SFR aims to bring 

the frequency back to operational points (at least 30 minutes) [76].  

Currently, frequency response services are predominantly provided by conventional 

generation units [77], although energy storage units are emerging as increasingly 

important contributors. As the penetration of renewable power generation increases and 

replaces traditional synchronous machines, system inertia will significantly decline due 

to fewer synchronous machines containing rotational kinetic energy [78]. Consequently, 

the real-time balancing mechanism will necessitate supplementary frequency response 

services from new, flexibility-enabled energy sources [79].  

2.5.2 Future Low-inertia Challenges and Solutions 

As discussed in previous sections, the increasing penetration of renewable power 

generation is replacing conventional synchronous machines, significantly reducing 

system inertia due to the decreased presence of synchronous machines containing 

rotational kinetic energy [78]. Consequently, new and additional frequency response 

services are urgently required for frequency stability in a low-inertia power system [79].  

Various frequency control methods have been proposed to address these challenges. For 

instance, a novel tuning method has been introduced, enabling a fuzzy hierarchical control 
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structure to supplement conventional control and improve power system stability and 

robustness [80]. Furthermore, DERs have been investigated as potential sources of 

frequency regulation services. One major type of future DERs, micro gas turbines, could 

provide firm frequency response services [81]. Advanced gas turbine technologies have 

been developed, improving ramp-up rates, start-up rates, and compliant load to enhance 

their frequency response capabilities. 

Electrified transport is emerging as an attractive DER for providing ancillary services to 

the power system, including frequency response services. Research indicates that 

electrically powered GB trains could provide response power ranging from 300 MW to 

850 MW to the power system [82]. With the higher penetration level of electric vehicles, 

the GB power system has introduced a new frequency response service called fast 

frequency response (FFR) [83], which requires idling battery energy storage systems to 

reserve power to prevent power loss issues [84]. 

In the context of aviation, electrified aviation technologies have become an attractive 

solution for achieving emission reduction goals in the industry. When adopted in airports, 

these technologies will connect to the grid as potential DER flexibility resources through 

charging systems, forming a new aviation-energy nexus. However, managing the FFR 

reserve power and EA battery recharging schedule simultaneously requires a smart 

scheduling dispatch approach, as the price of FFR will interact instantaneously with the 

EA battery charging systems. 

In summary, various technologies and strategies have been proposed to tackle the 

challenges of low-inertia power systems. These include novel control methods, DERs 

such as micro gas turbines and electrified transport, and the integration of EA technology 

as a potential source of frequency response services. As the aviation industry continues 

to electrify and renewable energy sources become more prevalent, innovative solutions 

must be further developed and implemented to maintain power system stability and 

robustness in the face of low-inertia challenges. 
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2.6 Conclusions 

In this chapter, a comprehensive review of aviation electrification, airport energy demand, 

and airport-based renewable energy resources is presented, along with an in-depth 

exploration of power system frequency stability.  

The identified research gap in the integration of aviation electrification technologies into 

the power systems not only covers the general interactions, but also specifically includes 

an exploration of the technological details of interactions between EA and EVs in airport 

parking, as well as the planning and design of wireless charging systems for electric 

airport shuttle buses. Furthermore, the investigation extends to the provision of Aviation-

to-Grid frequency response services. The decarbonisation of aviation and the grid can be 

enabled simultaneously by adopting emerging Aviation-to-Grid technologies, including 

EA charging systems, wireless charging technology for GSE, and V2G from parking EVs. 

A particular focus is placed on examining the existing literature on power system 

frequency response services and outlining various research projects exploring power 

system inertia and frequency response services. These projects highlight the benefits and 

difficulties encountered in maintaining frequency stability in the grid. 

In the following chapters, we will further investigate deep reinforcement learning 

approaches for dispatching EA charging systems, the interactions between EA, airport 

parking EVs and airport-based renewable energy resources, the planning and design of 

wireless charging systems for electric airport shuttle buses, as well as the practical 

implementation of frequency response services in the context of aviation electrification 

technologies. 
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Chapter 3 Technology Background 

3.1 Introduction 

This chapter provides a comprehensive overview of the technology backgrounds for 

electrified aviation. Section 3.2 focuses on the microgrid architecture and presents two 

EA charging scheduling methods. This section discusses the need for effective scheduling 

methods to ensure the efficient use of energy resources and the proper charging of electric 

aircraft. This section also presents the airport parking EV scheduling approach that can 

coordinatively interact with EA charging system. The Section 3.3 presents a dynamic 

wireless charging system for airport electric shuttle buses. This section discusses the 

technology behind wireless charging and its potential as a solution for the electrification 

of public transportation systems. The Section 3.4 explores the Aviation-to-Grid concept 

and its potential as a new nexus between power systems and electrified air transport. This 

section highlights the importance of developing effective strategies for integrating 

aviation and power systems to provide efficient frequency response services to the grid.  

3.2 Airport Microgrid Architecture with EV and EA 

3.2.1 Introduction to Microgrid Architecture with EV 

In recent years, many research studies are conducted on microgrid for electrified 

transportation, particularly concerning the integration of EVs and renewable energy 

sources. As mentioned in the literature review, various studies have focused on different 

aspects of microgrids and their potential applications. 

Existing energy system research work is mainly focused on the optimal design of energy 

systems with energy resource integration, and various novel techniques have been 

increasingly implemented on both the demand and supply side of energy systems [85][86]. 

To determine the potential of integrating electric vehicles (EVs) to the grid, [87] proposed 

a multi-agent system to simulate the operation of an energy hub with EVs and integrated 

a novel dispatch algorithm into the charging strategy, considering varied penetration 

levels and charging patterns of EVs.  
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In recent research, electrified airports present an attractive application case for integrated 

energy systems. In [88], Sensitivity analyses of critical system parameters including a 

wide variety of uncertainties were conducted to inform the design of an integrated energy 

system with 5 integration scenarios for an electrified airport. Additionally, the study 

analyses the financial and environmental benefits of integration. [89] investigated the 

integration of EVs into an electrified airport energy system.  

The microgrid is an emerging framework for adopting distributed energy resources. 

Microgrids can be classified into two categories: island microgrids and grid-tied 

microgrids. Island microgrids operate independently from the main grid, while grid-tied 

microgrids are connected to the main grid [50]. [90] investigated microgrid integration at 

maritime ports and developed a holistic framework to evaluate the benefits of microgrid 

adoption in addressing challenges in the ports and generating economic and social value 

through comprehensive planning. [91] adopted a coordinated scheduling model for 

microgrids with hydrogen fuelling stations, taking multiple uncertainty variables into 

account. By addressing power generation and system load uncertainty using a data-driven 

chance-restricted method and electricity pricing uncertainty using a distributionally 

robust optimisation strategy, the study aimed to create a more robust and efficient 

microgrid system. [92] developed an integrated energy system with a hydrogen station 

considering hydrogen generation and storage processes, whilst a sensible power to heat 

and hydrogen model with various constraints is also proposed, and generation-load 

uncertainties are addressed using random and robust optimisation methods. [93] proposed 

a multi-agent stochastic programming model for optimal design and dispatch of an energy 

system, where the influence of the uncertainties on energy system is also investigated. In 

the work reported in [94], to enhance the flexibility of the energy system, a model for a 

set of energy hubs is established and the bi-directional energy flows between energy 

consumer and the main grid are also analysed. [95] presented a multi-energy system for 

a microgrid with renewable coupled with a hydrogen fuel cell system and proposed a 

power management strategy to reduce the fluctuations of wind generation. In [96], a 

genetic algorithm-based multi-objective optimisation technique is implemented to solve 

a multi-agent system framework for achieving flexible demand response in low-voltage 

distribution networks. [97] proposed a bi-level optimisation approach for day-ahead 

operation management of a building-level integrated energy system with potential 
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benefits provided by the energy storage system, which proves the potential benefits 

provided by energy storage. In [98], a steady-state model of an energy system with 

multiple energy resources had been established, which considers the electricity-gas-

thermal coupling interaction characteristics. Generally, the integration of sophisticated 

and novel technology is critical for energy system transitions. These real-world case 

studies have demonstrated the numerous economic and environmental benefits of 

integrating energy systems with renewable energy sources and hydrogen energy systems 

may deliver. 

The existing research has demonstrated the numerous economic and environment benefits 

of integrating microgrid with renewable energy resources, hydrogen energy systems, and 

EV charging systems. However, there is still a gap in research when it comes to airport 

microgrid planning for adopting EA. This thesis will focus on exploring the flexibility 

potential of EA charging demand to participate in the operation of the airport energy 

system, enabling airports to further enhance their sustainability and efficiency. 

3.2.2 Charging Infrastructure for EA 

The development of charging infrastructure is a critical aspect of incorporating EA into 

commercial airports as part of aviation electrification. A few studies have explored EA 

charging systems and their potential benefits. In [99], a multi-agent real-time microgrid 

energy scheduling solution was designed to address the stochastic electric aircraft 

charging requirements of electrified air transport. Optimal airport charging infrastructure 

for EA is investigated in [100], where battery swap and plug-in charging systems are 

proposed and compared in terms of charging schedule flexibility, costs, and revenue with 

different EA penetration levels. In that case, the adoption of V2G and A2G technology 

could offer not only socio-economic profits (emission free and lower energy costs) but 

also operational benefits by providing services to the grid.  

While there are limited existing works focusing on the EA charging infrastructure 

planning, charging system designs for heavy-duty electric trucks can serve as alternative 

references for adopting EA in airports. The smart charging system for heavy EVs 

designed in [101] achieved a 46% reduction in monthly cost compared to the uncontrolled 

charge scenarios. In [102], the battery swap strategy for charging heavy electric trucks 

was proved to be a more economical solution under medium recharge distance.  
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However, the existing research predominantly examines EA charging systems 

independently from EV energy systems, without combining the flexibility of EA and EV 

charging systems to support energy system operation. Moreover, the comprehensive 

evaluation of different charging strategies (plug-in charge and battery swap) for EA has 

not been investigated with a focus on their impact on power system operations. 

Figure 3-1 illustrates two distinct charging scenarios for EA based on the analysis of 

existing literature: plug-in charging and battery swapping. In the plug-in charging 

scenario, EA is directly connected to the busbar through dedicated chargers, facilitating 

power transfer for recharging their batteries. On the other hand, the battery swapping 

scenario involves EA exchanging depleted batteries with fully charged ones at a battery 

swap station. The swap station, in turn, connects to the busbar through chargers to 

recharge the depleted batteries. These two strategies showcase alternative methods for 

maintaining the energy requirements of electric aircraft while considering their potential 

impact on power system operations. 

 

Figure 3-1 Electric aircraft charging scenarios (plug-in charge and battery swap) 

3.2.3 EV Charging and Vehicle-to-Grid Technology 

Vehicle-to-grid (V2G) technology presents new opportunities for value-added services in 

EVs, enabling efficient and seamless operation of power generation and distribution 

factors. [102] proposes a model that classifies EVs into distinct clusters based on their 

state of storage charge (SoC) and dwell time, helping meet the electrical demands of the 

main grid while utilising the flexibility potential of EVs. A robust optimisation approach 

is used to analyse the optimal procurement strategies for the microgrid under worst-case 

scenarios of electricity price uncertainty.  
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[103] suggest an optimising strategy for energy system planning that incorporates V2G 

technology into integrated energy systems. The benefits of V2G on energy system design 

are evaluated using a modified Non-dominated Sorting Genetic Algorithm- II (NSGA-II) 

algorithm. An electric vehicle charging dispatch optimisation model based on the NSGA-

II algorithm is constructed in [103], considering demand-side response service 

participation and the impact of uncertainties of renewable generation resources and 

demand. The results indicate that the NSGA-II algorithm is an effective algorithm for 

solving multi-objective energy dispatch problems. [104] proposes an intelligent energy 

management system to optimise emissions, energy costs, and battery SoC based on the 

NSGA-II algorithm, contributing to a more cost-effective and environmental-friendly 

power supply. The benefits of adopting EVs in energy systems are also witnessed in [105]. 

Additionally, with advancements in battery and charging technology, electrified aviation 

and bi-directional power exchange between the main grid and airport energy management 

systems could provide greater flexibility for both airport microgrids as well as the main 

power grids.  

[106] review the concepts of G2V (EVs operate as electrical loads) and V2G (EVs operate 

as distributed energy storage), examining the future development trends of EV grid 

integration and analysing both the positive and negative impacts of EV integration on the 

grid. In [107], to support the consumption of wind energy and ensure a robust system, 

EVs are introduced in V2G mode as both a load and a source, and a multi-agent 

optimisation scheduling model is adopted with the worst-case strategy. In [108], a multi-

objective model for EVs management system in consideration of EVs travel pattern and 

V2G capability is constructed. The adopted scheduling strategy is evaluated over a 24-

hour period on a 33-bus distribution test system. [110] investigated the financial benefit 

of the interaction between EVs and the electrical grid and found that the overall electricity 

costs could be reduced by adopting V2G technology. In consideration of battery life, [109] 

investigated the influence on EV batteries of adopting V2G technology and proposed a 

battery degradation model based on long-term ageing data. The model was tested using 

multiple real-world usage cycles. In [110], battery degradation is also included in the 

objective functions, the authors proposed a stochastic model for battery management and 

EVs charge/discharge power in V2G strategies and investigated the economic benefit of 

V2G implementation in active distribution networks.  
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To utilise V2G functionality of the plug-in EV, a charging and discharging strategy are 

developed in [111], considering the limited EVs battery capacity and reverse power flow 

induced by excess PV energy. [112] developed a V2G aggregator dispatching strategy 

with two calculation modules to calculate the SOC of the battery and optimise the 

financial benefits of the aggregator for its performance in frequency control services. In 

the work reported in [113], considering the potential battery degradation cost, an energy 

management strategy for integration of EVs with V2G into the operation of grid-

connected microgrids is developed based on the forecast accuracy of various variables. 

Previous works have focused on the formulation of the V2G strategy, however, there 

remains a need for an efficient approach to plan for the airport microgrid integrated with 

EA and Parking EV. 

V2G technology offers opportunities for efficient power generation and distribution, as 

well as value-added services in EVs. Various studies have proposed models and strategies 

to optimise energy system planning, EV management systems, and charging dispatch, 

considering factors such as battery life, economic benefits, and renewable resource 

uncertainties. The integration of electrified aviation and bi-directional power flow 

between the main grid and airport energy management systems could enhance flexibility 

for both airport microgrids and main power grids. Although previous research has focused 

on V2G strategy formulation, there is still a need for efficient planning approaches for 

airport microgrids integrated with electrified aviation and parking EVs. 

3.2.4 Coordinative Interaction with Airport Parking EV 

In the context of future airports, the adoption of charging infrastructure to support EA and 

EV is expected to significantly increase energy consumption. This increase in energy 

demand results in a supply gap that can be addressed by incorporating a high penetration 

of DER. To effectively manage the electric load of the airport building, EA and EV 

charging loads, the hydrogen systems, PV and wind turbines (WT), an airport microgrid 

system is proposed.  

The architecture of airport microgrid system is shown in Figure 3-2, which is designed to 

provide a comprehensive energy management solution for airports, integrating a diverse 

range of renewable energy and DER. to optimise the energy supply and consumption 

within the airport. The proposed airport microgrid system can potentially foster greater 
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flexibility in energy management, facilitate the integration of renewable energy sources 

and promote the transition towards a more sustainable and environmentally responsible 

aviation industry. 

 

Figure 3-2 Airport Microgrid architecture 

This thesis proposes an architecture of airport microgrid system involves various 

components that interact with each other to manage the energy consumption of the airport 

building, EA and EV charging loads, PV, hydrogen systems, and micro-WT. The PV, 

micro-WT, and hydrogen systems are adopted as distributed energy resources for the 

microgrid, while the terminal building electric loads, parking EVs, and electric aircraft 

represent the loads. 

To enable interactions between the airport microgrid and the main power grid, a 

substation connects the two systems. This connectivity ensures that the airport microgrid 

has access to the main grid's power supply and can also supply excess energy back to the 

main grid. This bi-directional power flow not only provides a more secure energy supply 

for the airport but also helps reduce demand congestion on the main grid, especially 

during peak hours of electricity demand and flight missions. 

Another advantage of adopting a microgrid in the airport is its ability to operate in an 

islanded mode. In case of a power outage or disruption in the main grid's electricity supply, 

the airport microgrid can continue to operate independently and provide uninterrupted 

power supply to critical airport operations with adequate protection and power balance. 
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Gas turbines are commonly used as distributed generation resources in airport energy 

systems. However, many airport operators are now striving for carbon neutrality and 

emission reduction [114]. To achieve these goals, the hydrogen system is a promising 

alternative to decarbonize airport energy systems and reduce ground carbon dioxide 

emissions. In this context, the proposed airport energy system assumes the existence of 

on-site hydrogen fuel cells with an external hydrogen supply, replacing the fossil fuel 

generation system. This means the airport operator will purchase hydrogen from the 

external supplier based on day-ahead energy dispatch results every day. The hydrogen 

system consists of the hydrogen storage tank and fuel cell, acting as a distributed 

generator in the airport energy system. 

In summary, the proposed airport microgrid system offers a decentralized energy 

generation approach that guarantees energy security, reduces demand congestion on the 

main grid, and enables the airport to operate in an islanded mode, providing a more 

reliable energy supply for critical airport operations. 

3.3 Dynamic Wireless Charging System for Airport Electric 

Shuttle Buses 

3.3.1 Introduction to Wireless Charging Technology 

As transport electrification emerges as a crucial strategy for reducing emissions and 

mitigating pollution, the methods for recharging EVs have become a popular research 

topic [106][115]. However, in underdeveloped areas where charging facilities are 

inadequate, the scarcity of charging infrastructure for EVs away from home emerges as a 

significant challenge. Wireless power transfer technology employed in EV charging 

could help overcome the limitations of wired charging infrastructure, as it does not require 

a physical connection between the power supply and EVs [116]. The technology enables 

EV charging both when stationary and in motion by installing wireless chargers 

underneath the ground surface and pick-up devices on EVs [117].  

Wired EV charging systems are a mature technology with established standards [118]. 

These systems necessitate a physical (ohmic) connection between EVs and the power grid 

through electric circuits, comprising the AC-DC rectifier and DC-DC converters or a 

converter with power factor correction circuits that directly transition from low-frequency 
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AC to high-frequency AC. Wireless charging infrastructure can be categorised based on 

the operational status of EVs during charging into three groups: 1) static wireless charging 

(SWC); 2) quasi-dynamic wireless charging (QWC); and 3) dynamic wireless charging 

(DWC) [116][119]. 

SWC refers to charging EVs when they are stationary [120], typically installed in public 

parking areas and residential garages. SWC has a higher efficiency of power transfer than 

DWC due to improved alignment [121]. Although SWC requires a designated stationary 

parking area to charge the battery of the EVs. It eliminates the need for human 

intervention during the automatic charging procedure, which is especially beneficial for 

individuals with disabilities. The primary technological advantage of SWC over wired 

EV charging technology is the elimination of shock hazards caused by wired chargers 

[122]. Amongst the three types of wireless charging technologies, SWC achieves the 

highest efficiency of 95% due to the enhanced alignment between EV pick-up devices 

and wireless charging coils [123]. 

DWC technology means charging the EV when it is in motion [124] [125]. This 

technology eliminates the need for EVs to stop and wait for charging, thus their travel 

range can be extended [116]. DWC technology addresses many issues of EVs, including 

range anxiety and battery cost. Like SWC technology, the power transfer between power 

supply units and EVs relies on the magnetic coupling effect between the transmitter coils 

buried underground and the EV pick-up device. A research team at the Korea Advanced 

Institute of Science and Technology (KAIST) has led the development of DWC 

technology and has installed a dynamic wireless charging system for passenger buses 

[126]. An optimisation framework based on the genetic algorithm was proposed in [127] 

for designing the operation velocity profile of electric buses. [128] proposed a flow-

capturing location model for designing the optimal location of wireless charging facilities 

that could maximise the demand-supply coverage. A comprehensive optimisation 

approach for designing dynamic wireless charging pads for EVs is presented in [129].  

QWC is defined as EVs being charged when moving at low speeds or stopped at stop-

and-go positions [130]. Potential implementation locations for QWC include traffic lights, 

bus stops and taxi parking stands. The KAIST research group has tested a wireless 

charging system that charges electric buses at lower power levels while in motion and at 
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high power at bus stops [116], demonstrating the potential of QWC to further improve 

the range of electric buses. [131] developed a novel user equilibrium model to illustrate 

the travel choices of electric vehicle drivers when wireless power transmitters are 

installed. In [131], the trade-off between vehicle speed and travel time is captured because 

higher speeds make the wireless charging less efficient than lower speeds. If more 

wireless charging infrastructure is implemented, it could lead to an increase in customers 

choosing to buy EVs. This, in turn, could subsequently increase the number of dynamic 

charging EVs on the traffic networks [132]. The impact of different traffic scenarios 

(motorway, highway, and urban stretch) on wireless charging power for an ordinary EV 

with 24 kWh battery is compared in [133]; the results reveal that the EVs can be recharged 

on average at 0.6 kWh/km in the urban stretch and 0.25 kWh/km on the highway. The 

financial feasibility of DWC system has been examined in [134] for Auckland motorway, 

offering critical decision support for DWC implementation to stakeholders. [135] 

assessed the impact of DWC implementation on realistic driving patterns. 

In summary, wireless EV charging technologies, including static, quasi-dynamic, and 

dynamic wireless charging, offer potential solutions to address the challenges associated 

with wired charging infrastructure. Each type of wireless charging technology has its 

unique advantages and application scenarios. While SWC is optimal wireless charging 

solution for stationary charging with the highest efficiency, QWC can be employed at 

low-speed or stop-and-go positions, and DWC can charge EVs while in motion, extending 

their range and reducing range anxiety. These innovations in wireless EV charging 

technology could significantly improve the overall adoption and usability of electric 

vehicles, contributing to a greener and more sustainable transportation system. 

3.3.2 Potential of Bidirectional Wireless Charging 

Similar to the V2G concept of plug-in EVs, an emerging technology known as 

bidirectional wireless power transfer technology will potentially achieve V2G flow 

remotely between EVs and the power system. [138] reported the development of a large 

air-gap bidirectional wireless charger without an additional current chopper. [139] and 

[140] compared V2G power flow based on wired and wireless charging infrastructures. 

The results show that the connectivity provided by EVs with wireless connection to the 

grid is higher than that of wired connectivity [136], because the wireless charging 



Chapter 3 Technology Background 

39 

 

infrastructure could detect the condition of EVs automatically through wireless 

communication devices [116]. The methodologies that enable long-term, mid-term, and 

short-term traffic-power network modelling and management have been reviewed in 

[137]. The design of a bidirectional 20 kW wireless charging system with an air gap of 

11 inches is presented in [138]. A heuristic optimisation approach based on a chicken 

swarm algorithm for designing simply reachable charging stations for EVs is proposed in 

[139]. The potential of future deployment of bidirectional wireless charging facilities that 

will enable the EVs to charge and discharge wirelessly in regional road traffic networks 

is investigated in [140], which reveals that the individual entity building up the wireless 

charging infrastructures should be responsible for both traffic network and power network, 

e.g. the government agency and airport designers and operators. 

3.3.3 Wireless Charging System for Airport Electric Shuttle Buses 

One of the potential application scenarios of wireless charging technology is the charging 

system of airport ground support vehicles. These vehicles are normally powered by 

gasolines and diesel engines, which would contribute to the airport ground emissions. 

According to the goal set up by Flightpath 2050, the elimination of airport ground 

emission is a high priority of airport operators [1], and the ambitious target towards 

electrifying airport ground support equipment is attracting widespread interest [141]. In 

response to the aim for carbon emission reduction in aviation industry, an increasing 

number of commercial airports have adopted electric vehicle fleets replacing gasoline 

vehicles to eliminate airfield ground emissions [142]. However, the availability of space 

on airfields is limited due to the high intensity of airport movement, which makes it 

difficult for electric ground support fleets to stop and recharge at stationary facilities 

during busy hours. This frequent plug-in and plug-out activity reduces the efficiency of 

airfield ground transportation. 

Therefore, one of the challenges of electrifying these ground support vehicles is the 

limitation of space in airfield to install charging infrastructures while the demand of 

ground support tasks is high [143]. Simultaneously, the airport operation has a 

dramatically high demand in ground support tasks, which means pre-scheduling for the 

vehicle charging can be challenging. The wireless power transfer technology will enable 

the power supply for airport ground support vehicles when they are moving to conduct 
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tasks through installing wireless power transmitters underneath the airfield [144]. 

Currently, electric airport ground vehicles used on airfield ground operations are mainly 

scheduled to charge during off-peak hours [88]. To maintain full day’s flight mission 

demand, significant battery capacities are required on these vehicles, which can result in 

excessive weight and associated costs. To address the limitations of space and time 

schedule conflicts and to avoid excessive battery weight and costs, wireless charging 

systems becomes a promising technology. 

Wireless charging systems offer a dynamic approach that allows electric fleets to recharge 

their batteries while in motion and performing tasks, without requiring them to stop at a 

stationary position. Importantly, this approach significantly reduces battery weight and 

improves overall efficiency. 

 

Figure 3-3 Framework of dynamic wireless charging for airport shuttle bus 

The technology framework depicted in Figure 3-3 comprises wireless power transmitters 

(WPT) embedded beneath the ground and a power pick-up device installed on the electric 

shuttle bus. The WPT coils require a power supply unit (PSU) to convert power from the 

distribution network. As the electric shuttle bus travels on a road equipped with a power 

transmitter, the WPTs produce a high-frequency current that generates a magnetic field 

following Ampere’s Law. The magnetic field in turn generates a high-frequency current 

in the coils of the pick-up device following Faraday’s Law. The current is then rectified 

to charge the battery of the shuttle bus. 

The thesis proposes a cutting-edge smart dispatch framework that seamlessly integrates 

the airport transportation network with the distribution network, employing wireless 
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charging systems for electric airport shuttle buses, as illustrated in Figure 3-4. At the core 

of this framework lies the Air Traffic Coordinator, which serves as a central hub for 

managing and processing crucial information from various sources, including grid-side 

load flow data, electric shuttle bus location information, and air transport details. By 

consolidating and analysing these diverse data streams, the Air Traffic Coordinator 

effectively monitors and optimises the charging policies of the electric shuttle buses. This 

real-time coordination ensures that the shuttle buses operate at peak efficiency. The 

implementation of this smart dispatch framework ultimately enhances the overall 

operational efficiency and sustainability of the airport transportation network, paving the 

way for a more resilient, eco-friendly, and intelligent transportation ecosystem. 

 

Figure 3-4 Smart dispatch framework for the airport transportation network and 

distribution network combining by wireless charging systems for airport electric shuttle 

buses 

3.4 Aviation-to-Grid through EA Charging 

3.4.1 Nexus between Aviation and Power Systems 

Based on the reviewed aviation electrification technologies, there will be more distributed 

energy resources installed at airports. The aviation industry will be deeply connected with 

the power grid. As a result, a new nexus between aviation and power systems is emerging. 

The concept of the nexus between aviation and power systems refers to the fundamental 

relationship between the two systems, where aviation relies heavily on power systems for 

its operation, and power systems rely on aviation to a lesser extent as a consumer of 

electricity. In recent years, the electrification of aviation has led to an increased 
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dependence on power systems to provide electricity to the emerging fleet of electric 

aircraft. 

The integration of aviation and power systems has become more critical as electrified air 

transport systems have been developed. This integration is crucial in ensuring the stability 

and reliability of both systems. As electrified aviation continues to grow, the power 

system must be capable of meeting the increasing demand for electricity while 

maintaining a stable supply of energy. 

 

Figure 3-5 The conceptual design of a hybrid and smart EA charging system - A2G 

One solution to address this issue is the integration of Aviation-to-Grid (A2G), which can 

provide flexibility to the electrified air transport system while also supporting the power 

system’s frequency response. The flexibility provided by Aviation-to-Grid allows the 

electrified air transport system to adjust within an acceptable ramp rate and defined 

boundary to maintain electricity supply and demand while supporting the power system’s 

frequency response. The conceptual design of the hybrid and smart charging system for 

A2G system shown in Figure 3-5 presents an innovative approach to integrating 

renewable energy, energy storage, and conventional power sources for efficient and 

sustainable airport operations. At the heart of this design, a photovoltaic (PV) system 

generates solar power, which is then converted from DC to AC using an inverter before 

being fed into the AC bus. Simultaneously, the battery charging station, which serves as 

the primary energy storage component, is connected to the busbar and receives power 
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from multiple sources, including the PV system, an on-site airport gas turbine, and the 

main electricity grid. This diverse energy mix ensures a reliable and stable power supply 

for the charging station, allowing it to accommodate fluctuations in demand and resource 

availability. By harnessing the synergies between renewable and conventional energy 

sources, the A2G system effectively addresses the unique energy demands of the aviation 

sector, facilitating smart and sustainable charging solutions that optimise efficiency, 

reduce environmental impact, and promote a greener future for air transportation. 

This integration can lead to effective cost reductions in terms of energy purchase costs 

and frequency response services in both the power and aviation industries. This 

integration could potentially facilitate significant cost savings, as it may help reduce both 

energy purchase costs within aviation industry and expenses related to frequency 

response services within the power industry. Additionally, it can help achieve a low-

carbon energy supply to electrified aviation at affordable costs from the power grid. 

Therefore, the nexus between aviation and power systems is critical, and the integration 

of Aviation-to-Grid can provide a solution to address the challenges and issues arising 

from the electrification of the aviation industry. It is essential to continue researching and 

developing innovative solutions to integrate the two systems effectively and efficiently to 

ensure the long-term sustainability and reliability of both industries. 

3.4.2 Aviation-to-Grid Concept and Motivation 

At present, there exists a notable gap between power systems and electrified air transport 

with regards to energy users and suppliers, infrastructure, and interoperability to achieve 

carbon neutrality in both industries. As depicted in Figure 3-6, the electrification of air 

transport will establish a new “nexus” between power systems and electrified air transport 

through electrification, creating potentials for a new technology of “Aviation-to-Grid 

flexibility”. There are various key issues that need to be addressed: 

• Electrified aviation must be integrated into ground energy infrastructure and 

should not burden the future grid. 

• Power systems must provide significant volumes of low-carbon electricity to 

electrified aviation as a new energy user to meet the electricity requirements of 

electric aircraft. 
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• The implementation of significant charging infrastructures is necessary. My study 

on the feasibility of electrifying 10% of domestic flights at Gatwick airport 

suggests that £50 million will be required for charging infrastructure [168]. There 

will also be significant costs associated with building additional power generation 

capacity. 

Aviation-to-Grid is defined to include various levels and locations of integration between 

power system and electrified air transport system, from individual airports as well as 

national power system operation. Aviation-to-Grid flexibility is proposed as the ability 

that the electrified air transport can adjust, with an acceptable ramp rate in a defined 

boundary, to maintain electricity supply and demand in its own system as well as to 

support the power systems frequency response. Aviation-to-Grid flexibility will be 

investigated as a key solution for effective costs reduction in terms of energy purchase 

costs and frequency response services in both power and aviation industries, which will 

achieve low-carbon energy supply to electrified aviation at affordable costs from power 

grid.  

The main energy resources to provide EA charging consist of grid electricity, micro gas 

turbines, and solar PV, as shown in Figure 3-6. Gas turbines can provide a reliable and 

efficient source of energy for charging electric aircraft, while solar PV can provide clean 

and renewable energy to reduce the carbon footprint of the charging process. However, 

the intermittency of solar PV and the fluctuating energy demand of electric aircraft require 

careful management and coordination. One possible mechanism for integrating these 

energy sources is through a microgrid system. A microgrid is a small-scale, localized 

power grid that can operate independently or in conjunction with the main power grid. It 

can incorporate various sources of energy, such as solar PV and gas turbines, and can 

manage energy storage and distribution. In this way, a microgrid can provide a stable and 

reliable source of energy to electrified aviation while also managing energy demand and 

supply. 
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Figure 3-6 The new nexus between electrified air transport and electrical power systems 

– Electric aircraft charging system with grid frequency response 

3.4.3 Deep Reinforcement Learning Applications in Aviation-to-Grid 

Another possible mechanism for integrating these energy sources is through a dynamic 

energy management system. Such a system could incorporate artificial intelligence and 

machine learning algorithms to optimise energy supply and demand in real-time. For 

example, the system could adjust energy storage and distribution based on weather 

patterns and flight schedules and could coordinate with the main power grid to provide 

frequency response services. 

The definition of machine learning is the automated methods that can detect patterns in 

data and exploit these patterns to achieve some tasks [145]. There are three types of 

machine learning tasks: supervised learning, unsupervised learning, and reinforcement 

learning [146]. Reinforcement learning is one of the core topics of machine learning that 

was invented to handle the sequential decision-making problems. Typically, the 

reinforcement problem is formalised as an agent that can make decisions based on the 

observation in an environment to cumulate pre-set rewards, as shown in Figure 3-7. The 

sequential decision-making problems should be firstly formulated by a Markov Decision 

Process, which means a discrete time stochastic control process [147]. 
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Figure 3-7 Agent and environment of deep reinforcement learning [148] 

Deep learning is one of the machine learning approaches based on artificial neural 

networks, which is capable of supervised, semi-supervised, and unsupervised tasks [149]. 

By combining reinforcement learning and deep learning, the deep reinforcement learning 

(DRL) approach has both optimal control ability and data mining ability [148]. These 

abilities enable DRL to solve stochastic sequential decision-making problems, which are 

the general forms of energy dispatch problems [150]. In existing studies, DRL has been 

widely adopted in energy management and power system dispatch problems in existing 

studies [151]. In [152], a DRL-based controller was designed for managing the SOC of 

the energy storage system while providing frequency response services to the power 

system. [158] presents a multi-agent deep reinforcement learning approach for training a 

multi-area power system frequency controller, which can cooperatively reduce the 

frequency deviations for all areas by observing local status.[153] proposed a 

reinforcement learning approach for real-time pricing in EV charging stations. DRL has 

been widely accepted to be adopted in electrified transport uncertain scheduling for 

coordinative supporting the power networks. In [154], EVs are dispatched to provide 

active and reactive power to the distribution networks through DRL algorithms. [155] 

proposed a DRL-based surrogate modelling approach to enable spatial optimisation of 

EV flows and the operation of the transport network and power distribution networks. In 

[156], a hybrid multi-agent DRL for resilience control of EVs to provide ancillary 

services to the power networks with a high penetration level of renewable generation. In 

the literature, little research has focused on the application of the DRL-based scheduling 

approach for battery swap recharging scheduling and frequency response dispatch. 
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This thesis therefore proposes a novel reinforcement learning dispatch framework. This 

framework for A2G flexibility is a robust mechanism designed to optimise air transport 

scheduling in coordination with the power network environment, as shown in Figure 3-8. 

At the core of this framework lies a deep reinforcement learning process, which facilitates 

an efficient interplay between the Air Transport Scheduling Agent, and its environment, 

the Power Network Environment. In this system, the agent continually observes the state 

of the environment, capturing various parameters such as demand, supply, and grid 

constraints. It then performs actions, such as dispatching EA battery charging system for 

serving flights, in response to the observed state. Subsequently, the agent receives 

feedback in the form of a reward signal that reflects the impact of its actions on the 

environment. This reward signal enables the agent to learn optimal decision-making 

strategies over time, aligning air transport operations with the power network's frequency 

requirements. The iterative nature of the state, action, and reward loop within this deep 

reinforcement learning dispatch framework allows the Air Transport Scheduling Agent 

to dynamically adapt to evolving circumstances and achieve seamless integration with 

the power network environment. 

 

Figure 3-8 Reinforcement learning dispatch framework for A2G flexibility 

3.5 Concluding Remarks 

In conclusion, this chapter presents a comprehensive exploration of the technology 

backgrounds for electrified air transport. The chapter covers a broad range of topics, 

including microgrid architecture with EA and EV scheduling, wireless charging 
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technologies, Aviation-to-Grid integration, and deep reinforcement learning techniques 

for dispatching EA charging systems.  

Furthermore, the upcoming chapters provide in-depth analyses of the feasibility and 

effectiveness of the implementations of these technologies, evaluating their potential 

benefits and drawbacks. These discussions will encompass various aspects, including the 

impact on power systems, the role of renewable energy sources, infrastructure 

requirements, and environmental considerations. The findings and insights gleaned from 

these chapters will contribute to a more comprehensive understanding of the electrified 

air transport ecosystem and help guide future research, development, and policymaking 

in this rapidly evolving field. 
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Chapter 4 The Coordination between Electric 

Aircraft and Airport Parking of EVs 

4.1 Introduction 

To achieve the ambitious CO2 emission mitigation objectives outlined in "Flightpath 

2050" and attain net-zero emissions in aviation sector, the adoption of EA has emerged 

as a promising solution. While there have been numerous prototypes of fully electrically 

powered aircraft for short-haul commuting air transport, the potential of electrified 

aviation can only be fully realised with careful planning and design of the ground power 

systems and associated electric aircraft charging operations, as highlighted in Chapter 2. 

For this reason, it is crucial to develop a future microgrid energy system for airports that 

utilises large-scale DERs such as PV and WT to supply clean energy to the airport energy 

infrastructure, as outlined in [88]. Incorporating these DERs into the airport energy 

infrastructure not only aligns with the sustainability goals but also enhances the reliability 

and resilience of microgrid operations. In addition to PVs and WTs, hydrogen system 

consisting of a hydrogen fuel cell and storage tank with external hydrogen supply are also 

being considered as a clean distributed generation resource. Integrating these DERs and 

hydrogen systems into the microgrid energy system will help reduce greenhouse gas 

emissions and improve energy efficiency. 

This chapter presents a comprehensive multi-objective infrastructure planning framework 

for airport microgrids that incorporates both parking EVs and EA with a focus on the 

impact of V2G technology. The dispatch problem of the airport microgrid is formulated 

as a heuristic optimisation problem, which is then solved using the NSGA-II algorithm to 

identify Pareto optimal solutions. Two different charging strategies for EA, namely plug-

in charging and battery swap, are investigated and compared through economic and 

technological assessments. Additionally, sensitivity analyses are conducted to explore the 

potential costs associated with increasing the number of EA flights and to evaluate the 

impact of renewable generation uncertainties. The results show that the proposed 

framework can effectively manage the coordination of EV and EA charging while 

improving the flexibility and efficiency of airport microgrid operation. The battery swap 

strategy for EA charging is found to be more beneficial than the plug-in charging strategy, 
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as it can reduce peak power demand and operating costs. Furthermore, the V2G 

technology is found to have a significant impact on the performance of the airport 

microgrid, enabling further reductions in peak power demand and overall operating costs. 

The sensitivity analyses reveal that the implementation of additional EAs and fluctuations 

in renewable power output could result in increased investment costs, highlighting the 

importance of careful planning and cost analysis when expanding the use of EAs in airport 

microgrids. The main contribution of this chapter is to investigate the potential for 

coordinated scheduling of EA and airport parking EV charging demand to improve the 

efficiency and flexibility of airport microgrid operation. The followings are specific 

contributions: 

• A novel approach for coordinated scheduling of EA and airport parking EV 

charging demand is proposed. The approach dispatches EV and EA charging 

demand according to the flight schedule and airport operation conditions. This 

approach enhances the integration of renewable energy sources and the adoption 

of EVs, which are essential for achieving sustainability in the aviation industry. 

• This study formulates and compares two different scheduling strategies (plug-in 

and battery swap) for adopting EA battery charging. The economic and airport 

microgrid operation benefits of these strategies are quantified.  

• A multi-objective optimisation framework is developed to manage the airport 

microgrid adopting EV and EA charging. The framework improves the flexibility 

of airport microgrid operation by coordinative scheduling for both EV and EA. 

The impact of V2G on the airport microgrid is also examined.  

The rest of this chapter is organised as follows: Section 4.2 introduces the airport 

microgrid architecture and scheduling approaches for EV and EA charging. Section 4.3 

and Section 4.4 mathematically formulates the proposed multi-objective optimisation 

framework. Section 4.5 presents the case study results and analysis, following the 

conclusions and summary of this chapter illustrated in Section 4.6. 

4.2 Scheduling approach for airport microgrid with EA and EV  

The proposed multi-objective infrastructure planning framework for airport microgrid is 

illustrated in Figure 4-1, which incorporates both EA charging scheduling and 
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bidirectional charging strategies for EVs. The framework aims to fulfil the airport electric 

demand of the airport and the charging demand of EA while also reaping benefits from 

the flexible scheduling of EV and EA. The proposed framework consists of four major 

steps. Firstly, energy and aviation information databases from airport operators, which 

includes flight schedules, passenger information (ticket and arrival time), energy 

consumption, and technology data. Secondly, EV parking lot profiles are generated by 

linking the flight schedule with the passenger travel patterns. Thirdly, the gathered 

information is input into the proposed multi-objective model to obtain Pareto fronts and 

find the compromise optimal solution. Finally, case studies of electrified airport are 

developed to analyse energy dispatch, EV and EA scheduling, and economic feasibility, 

and sensitivity analysis on the EA electrification rate. 

 

Figure 4-1 Outline of the proposed optimisation framework for airport microgrid 

The airport microgrid demand includes the electric load of the airport terminal building, 

EA charging load, and EV charging load, while the energy supply consists of power grid 



Chapter 4 The Coordination between Electric Aircraft and Airport Parking of EVs 

52 

 

electricity supply, airport renewable generations such as PV and WT, and hydrogen 

systems. By considering these factors, the proposed framework enables efficient and 

effective management of the airport's energy resources, facilitating the integration of 

renewable energy sources and the adoption of EVs and EAs for sustainable aviation. The 

proposed framework also takes into account the flexibility of scheduling EV and EA 

charging demand, allowing for improved efficiency and cost-effectiveness in the 

operation of the airport microgrid. The case studies conducted with electrified airports 

demonstrate the feasibility and potential benefits of the proposed framework, and 

sensitivity analysis of the EA electrification rate highlights the importance of careful 

planning and cost analysis when adopting EAs in airport microgrids. Overall, the 

proposed multi-objective infrastructure planning framework offers a comprehensive and 

practical approach for managing the energy demand and supply of airport microgrids, 

promoting sustainable and efficient operations in the aviation industry. 

4.2.1 Two EA charging scheduling methods 

The “Eviation Alice” is a notable electric aircraft, serving as a reference electric aircraft 

model due to its impressive technical specifications, which are detailed in Table 4-1. The 

designed travel distance range of the aircraft is particularly suitable for domestic 

commuting flight missions. Notably, The “Eviation Alice” is expected to be adopted in 

airports as early as 2024 [18]. This development is promising news for the aviation 

industry as it represents a significant step forward in the pursuit of sustainable and 

environmentally-friendly air transport. As EA technology continues to advance, it is 

likely that more models will be developed and deployed in the coming years, further 

reducing the industry's reliance on fossil fuels and contributing to a more sustainable 

future. 

Conventionally, most commuter aircraft can transport 20-50 passengers, with a distance 

range of less than 1000 km. The “Eviation Alice” will be used to replace conventional 

commuter aircraft such as SF3 (Saab 340B), as shown in Table 4-1. As the passenger 

capacity of SF3 is four times higher than the Eviation Alice, it is assumed that four EAs 

will be utilised to conduct one existing commuter flight mission. To avoid a simultaneous 

high-power EA charging on the airport microgrid, the flight is rescheduled to evenly 

distribute one flight mission conducted by conventional aircraft into four flight missions 
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conducted by EA, as shown in Figure 4-2. Plug-in charge means the EA flights are 

recharged during the time they are parked at the apron in airports, which is also called 

turnaround time. Battery swap means the EA batteries are swapped after the EA parking 

at the apron, then they are recharged at the airport at another time, most likely the time of 

off-peak electricity demand or price. As a result, additional batteries are required for 

implementing the EA battery swap.  

Table 4-1 The characteristics of electric aircraft and conventional aircraft  

Design property Eviation Alice SF3 

Passenger 9 (+2 crew) 36 

Distance Range (nm) 440 977 

Battery Energy (kWh) 900 - 

Rated charging power (MW) 0.3 - 

Fast charging power (MW) 1.26 - 

Charging/discharging efficiency 95% - 

 

 

Figure 4-2 Airport electric load and EA EV charging load 

To figure out the optimal EA charging solution, the pattern of airport terminal building 

demand, which is the ‘basic’ demand, is analysed. There are several general features of 

energy behaviour in the medium size airport, based on the data metered in [157], the 

energy consumption loads of airport terminal buildings are shown in Figure 4-2. There is 

an absolute valley demand time from 0 to 6 o’clock when there is rarely scheduled flight 
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and passengers in the airport. The valley time should be considered as the preferred EV 

and swapped battery charging period. As for the plug-in charge, in order to improve the 

flexibility of EA charging load, EA is rescheduled within 2 hours’ range from the original 

arrival time of the conventional aircraft flight, as shown in the zoom-in figure in Figure 

4-2. 

4.2.2 Airport EV scheduling 

Different from other commercial or residential districts, airports are hubs between ground 

transport and air transport. As a result, the parking EV charging management is different 

from most of the districts penetrated with EVs. Firstly, most airports have separate 

parking lots for short-term and long-term EV parking. In this chapter, passengers who 

book to-and-from tickets and drive to the airport are defined as long-term parking EV 

owners. Usually, the long-term parking passengers who choose to travel to and from the 

airport tend to book tickets in advance with a certain return date which can be linked to 

the flight schedule. This behaviour benefits the airport operators for gathering and 

forecasting the airport parking lot demand. These long-term parking EVs with V2G 

capacity could be aggregated as energy storage. Similar to other commercial areas, there 

are also short-term parking EVs owned by the airport staff. At Luton Airport, there are 

46% of the passengers decided to travel to the airport by their private cars. In order to 

reduce the congestion of airport parking lots, the airport operators tend to limit the 

employees who travel to and from work by car to 60% [158]. Table 4-2 provides an 

overview of the assumptions used in generating EV parking profiles. 

 

Table 4-2 Assumptions for generating EV parking profiles 

Parameter Assumed Value Ref. 

Proportion of to-and-from passengers 50% - 

Proportion of employees driving to work 60% [163] 

Proportion of passengers driving to the airport 30% - 

EV arrival time before flight 2 to 4 hours [159] 

Initial SoC of EVs on arrival 15% to 20% - 
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The behaviours of passengers and employees are assumed to be subject to Gaussian 

distributions and have a dependent relationship with the flight schedules. A set of flights 

𝐹 with their arrival time, departure time, and the number of passengers is defined to 

represent the flight schedule in Eq. (4.1). The relationship between passenger travel 

patterns and flight schedules is explored. The proportion of passengers who drive to the 

airport and book to-and-from tickets are assumed to be 30% and 50% respectively. When 

the drivers arrive at the airport and park their EVs, the arrival time of the EVs will be like 

2 to 4 hours before the scheduled flight departure time. The desired return days and hours 

are selected according to the following Gaussian distribution, then the closest flight that 

has an available ticket is booked.  

𝐹 = {𝑇𝑓1
𝑎𝑟𝑟 , 𝑇𝑓2

𝑎𝑟𝑟 , … 𝑇𝑓𝑁
𝑎𝑟𝑟; 𝑇𝑓1

𝑑𝑒𝑝, 𝑇𝑓2
𝑑𝑒𝑝, … 𝑇𝑓𝑁

𝑑𝑒𝑝; 𝑁𝑓1
𝑝𝑎𝑠𝑠 , 𝑁𝑓2

𝑝𝑎𝑠𝑠 , …𝑁𝑓𝑁
𝑝𝑎𝑠𝑠  } 4.1 

𝑋𝑝𝑎𝑠𝑠−𝑎~𝑁(2.5,1), 𝑋𝑝𝑎𝑠𝑠−𝑎~𝑐𝑙𝑖𝑝(2,4) 4.2 

𝑋𝑝𝑎𝑠𝑠−𝑑~𝑁(3,1), 𝑋𝑝𝑎𝑠𝑠−𝑑~𝑐𝑙𝑖𝑝(1,10) 4.3 

𝑋𝑝𝑎𝑠𝑠−ℎ~𝑁(12,1), 𝑋𝑝𝑎𝑠𝑠−ℎ~𝑐𝑙𝑖𝑝(6,20) 4.4 

Meanwhile, the initial SoC of the EVs on arrival is assumed to vary uniformly between 

15% to 20%, this means that the initial SOC of arrival EVs are generated with a uniform 

distribution, as shown in Eq. (4.5). 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡,𝑘
𝐸𝑉 ~𝑟𝑎𝑛𝑑𝑜𝑚(0.15,0.2) 4.5 

 Finally, a set of EV parking profile 𝐸𝑝 is generated according to distribution: 

𝐸𝑝

= {𝑇1
𝑎𝑟𝑟, 𝑇2

𝑎𝑟𝑟 , …𝑇𝐾
𝑎𝑟𝑟; 𝑇1

𝑑𝑒𝑝, 𝑇2
𝑑𝑒𝑝, … 𝑇𝐾

𝑑𝑒𝑝; 𝑆𝑂𝐶𝑖𝑛𝑖𝑡,1
𝐸𝑉 , 𝑆𝑂𝐶𝑖𝑛𝑖𝑡,2

𝐸𝑉 , … 𝑆𝑂𝐶𝑖𝑛𝑖𝑡,𝐾
𝐸𝑉   } 

4.6 

The daily EV scheduling in the airport parking lot is correlated to the passenger travel 

plan and flight arrival and departure schedules, which can be modelled as a Monte-Carlo 

stochastic process. Figure 4-3 shows the parking EV profiles generated from EA flight 

schedules with stochastic approach.  
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Figure 4-3 Flight schedules and EV parking profiles of the East Midland Airport over 

one month 

The airport facilities are typically designed to meet the traffic demand during a design 

peak day (DPD) to ensure the airports are designed with adequate capacity to handle 

demand at extreme peaks [42]. There are various DPD selection methods. In this study, 

considering the monthly and seasonal impacts on the flight missions, the peak day of the 

peak month is selected as DPD. According to the proposed data process approach, the 

flight schedules of the East Midland Airport with EV parking lot profile for one summer 

season month (30 days) are generated. The flight schedule and parking lot profile with 

the highest value are utilised as the reference day for flight scheduling in the analysis. 

The selected DPD from the profiles and the flowchart for the EV profile generation 

methodology are shown in Figure 4-3 and Figure 4-4, respectively. 

 

Figure 4-4 The flowchart for the EV profile generation methodology 
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4.3 Optimisation framework for airport microgrid 

4.3.1 Objective functions 

In the proposed airport energy management system, two objectives have been considered: 

the annualised total cost of the system, and the microgrid operation indices. 

𝑀𝑖𝑛(𝑓1 = 𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 + 𝐶𝐶𝑂2 + 𝐶𝑚𝑎𝑖𝑛) 4.7 

The capital expenditure (CAPEX) contains the investment cost of installed energy 

technologies including the hydrogen storage tank, hydrogen fuel cell, transformer, EA 

charger, PV as well as micro-WT, as shown in Eq. (4.8). The CAPEX is annualised with 

the capital recovery factor (CRF) as follow: 

𝐶𝐴𝑃𝐸𝑋 =
𝑟 ∙ (1 + 𝑟)𝑦

(1 + 𝑟)𝑦 − 1
∑(𝐶𝐴𝑃𝑑𝑒𝑣 ∙ 𝜋𝑑𝑒𝑣

𝐶𝐴𝑃)

𝑑𝑒𝑣

 4.8 

Where 𝐶𝐴𝑃𝑑𝑒𝑣 represents the installed capacity of the devices and 𝜋𝑑𝑒𝑣
𝐶𝐴𝑃 denotes the per 

unit investment cost of the devices. 𝑦 denotes the total lifetime of the system; 𝑟 denotes 

the discount rate, which is 6% [88]. 

The operating expense (OPEX) is formulated by the grid electricity purchase cost and the 

financial compensation for EV owners, as defined: 

𝑂𝑃𝐸𝑋 =∑(𝜋𝑡
𝑒 ∙ 𝑃𝑡

𝑔𝑟𝑖𝑑
∙ 𝜑𝑖𝑚 + 𝜋𝐻2 ∙ 𝑚𝑡

𝐻2,𝑝)

𝑡

+ 𝐶𝑐𝑜𝑚𝑝 4.9 

where 𝜋𝑡
𝑒  and 𝜋𝐻2  are the electricity and hydrogen purchasing price, respectively. 𝑃𝑡

𝑔𝑟𝑖𝑑
 

denotes the electricity power imported from the grid. 𝜑𝑖𝑚  is a binary variable that 

controls the airport to import electricity from the grid (𝜑𝑖𝑚 = 1) or not (𝜑𝑖𝑚 = 0). 𝑚𝑡
𝐻2,𝑝 

is the mass of hydrogen purchased by the airport operator. 

The emission carbon dioxide (CO2) emission cost is derived from the power grid: 

𝐶𝐶𝑂2 = 𝜋𝐶𝑂2 ∙ 𝜗
𝑔𝑟𝑖𝑑 ∙∑(𝑃𝑡

𝑔𝑟𝑖𝑑
∙ 𝜑𝑖𝑚)

𝑡

 4.10 

where 𝜋𝐶𝑂2 is the penalty fee for CO2 emission, 𝜗𝑔𝑟𝑖𝑑 is the emission factor regarding the 

grid electricity. 
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𝐶𝑚𝑎𝑖𝑛 =∑(𝐶𝐴𝑃𝑑𝑒𝑣 ∙ 𝜋𝑑𝑒𝑣
𝑚𝑎𝑖𝑛)

𝑑𝑒𝑣

 4.11 

where 𝜋𝑑𝑒𝑣
𝑚𝑎𝑖𝑛 denotes the maintenance cost of the devices. 

The financial compensation for EV owners who participate in the V2G process is 

formulated by the degradation cost of EV batteries: 

𝐶𝑐𝑜𝑚𝑝 =
𝐶𝑏𝑎𝑡𝑡 ∙ 𝐸

𝐸𝑉 + 𝐶𝑙
𝐸𝐸𝑉 ∙ 𝐿𝑐 ∙ 𝐷𝑂𝐷

∑𝑃𝑡
𝐸𝑉𝑑𝑖𝑠𝑐

𝑇

𝑡=1

 4.12 

where 𝐶𝑏𝑎𝑡𝑡 is the battery cost per kWh, 𝐶𝑙 is the cost of labour for replacing EV batteries, 

𝐷𝑂𝐷  is the depth of discharge, 𝐿𝑐  is the life cycle of EV batteries at specific 𝐷𝑂𝐷 . 

𝑃𝑡
𝐸𝑉𝑑𝑖𝑠𝑐 represents the discharging power from airport parking EVs. 

The second objective aims to improve the operation stability and renewable consumption 

of the airport microgrid: 

𝑀𝑖𝑛(𝑓2 = 𝑃𝐴𝑅 + 𝑅𝐹 + (1 − 𝑅𝑆𝐶𝑅)) 4.13 

𝑃𝑉𝑅 =
𝑀𝑎𝑥(𝑃𝑡

𝑑𝑒𝑚𝑎𝑛𝑑)

𝑀𝑖𝑛(𝑃𝑡
𝑑𝑒𝑚𝑎𝑛𝑑)

 4.14 

𝑅𝐹 =
∑ 𝑃𝑡

𝑔𝑟𝑖𝑑𝑇
𝑡=1

∑ 𝑃𝑡
𝑑𝑒𝑚𝑎𝑛𝑑𝑇

𝑡=1

 4.15 

𝑅𝑆𝐶𝑅 =
∑ (𝑃𝑡

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒)𝑇
𝑡=1

∑ (𝑃𝑡
𝑑𝑒𝑚𝑎𝑛𝑑)𝑇

𝑡=1

 4.16 

 where, 

- 𝑃𝑉𝑅 denotes the peak to valley ratio of the airport energy system demand. 

- 𝑅𝐹 denotes the resilience factor, which represents the extent to which the airport energy 

system demand rely on the electricity imported from the main grid. 

- 𝑅𝑆𝐶𝑅 denotes the renewable generation self-consumption rate. 

4.3.2 Constraints 

The following constraints must be satisfied during the operation of the airport microgrid. 
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4.3.2.1 Energy balance constraints 

The energy supply and demand in the airport microgrid are balanced at each time interval, 

as shown in Eq. (4.17). 

𝑃𝑡
𝑔𝑟𝑖𝑑

+ 𝑃𝑡
𝑃𝑉 + 𝑃𝑡

𝑊𝑇 + 𝑃𝑡
𝑓𝑐
+ 𝑃𝑡

𝐸𝑉𝑑𝑖𝑠𝑐 = 𝑃𝑡
𝐸 + 𝑃𝑡

𝐸𝑉𝑐 + 𝑃𝑡
𝐸𝐴  4.17 

where 𝑃𝑡
𝑔𝑟𝑖𝑑

 is the imported power from the grid. 𝑃𝑡
𝑃𝑉, 𝑃𝑡

𝑊𝑇, and 𝑃𝑡
𝑓𝑐

 represent the power 

generated by PV, micro-WT, and hydrogen fuel cells, respectively. 𝑃𝑡
𝐸𝐴  is the EA 

charging power. 𝑃𝑡
𝐸  is the airport electricity demand. 𝑃𝑡

𝐸𝑉𝑐 and 𝑃𝑡
𝐸𝑉𝑑𝑖𝑠𝑐 are the charging 

and discharging power from airport parking EVs, respectively. 

4.3.2.2 Renewable generation constraints 

The renewable power generation units adopted in the airport microgrid include PV and 

micro-WT. The power outputs of PV generation can be calculated by Eq. (4.18) [160], 

which converts solar energy to electricity. This process could be expressed as a function 

of PV rated power (𝑃𝑃𝑉,𝑟𝑎𝑡𝑒𝑑) under 1,000 W/m2 radiation, solar radiation intensity (𝑟𝑡), 

and the temperature of PV panels (𝑇𝑡).  

𝑃𝑡
𝑃𝑉 = 𝑃𝑃𝑉,𝑟𝑎𝑡𝑒𝑑

𝑟𝑡
𝑟𝑆𝑇𝐶

[1 + 𝑘𝑇(𝑇𝑡 − 𝑇𝑟)] 4.18 

where 𝑃𝑡
𝑃𝑉 is the power output of the PV cell at time t. 𝑃𝑃𝑉

𝑚𝑎𝑥 is the maximum installation 

capacity of the PV cell under the standard test condition (1,000 W/m2, 25 ℃). 𝑟𝑡 is the 

light intensity of the PV cell at time t. 𝑟𝑆𝑇𝐶 is the standard test light intensity of the PV 

cell, equals 1,000 W/m2. 𝑘𝑇 is the power temperature coefficient. 𝑇𝑡 is the temperature of 

the PV cell. 𝑇𝑟 is the reference temperature. 

The power output of the micro-WT generation depends on the wind speed and the 

characteristics of the micro-WT, calculated by Eq. (4.19) [161]. The linearized first-order 

model involves factors including the cut-in velocity 𝑉𝑤𝑡,𝑐𝑖, the cut-out velocity 𝑉𝑤𝑡,𝑐𝑜, and 

the rated velocity 𝑉𝑤𝑡,𝑟𝑎𝑡𝑒𝑑. 

𝑃𝑡
𝑊𝑇 =

{
 

 
0

𝑎𝑉𝑤𝑡,𝑡
3 − 𝑏𝑃𝑊𝑇,𝑟𝑎𝑡𝑒𝑑

𝑃𝑊𝑇,𝑟𝑎𝑡𝑒𝑑

0

, 0 ≤ 𝑉𝑤𝑡,𝑡 ≤ 𝑉𝑤𝑡,𝑐𝑖 

, 𝑉𝑤𝑡,𝑐𝑖 ≤ 𝑉𝑤𝑡,𝑡 ≤ 𝑉𝑤𝑡,𝑟𝑎𝑡𝑒𝑑
, 𝑉𝑤𝑡,𝑟𝑎𝑡𝑒𝑑 ≤ 𝑉𝑤𝑡,𝑡 ≤ 𝑉𝑤𝑡,𝑐𝑜

, 𝑉𝑤𝑡,𝑐𝑜 ≤ 𝑉𝑤𝑡,𝑡

 4.19 
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where: 

𝑎 =
𝑃𝑊𝑇,𝑟𝑎𝑡𝑒𝑑

(𝑉𝑤𝑡,𝑟𝑎𝑡𝑒𝑑
3 − 𝑉𝑤𝑡,𝑐𝑖

3 )
 4.20 

𝑏 =
𝑉𝑤𝑡,𝑐𝑖
3

(𝑉𝑤𝑡,𝑟𝑎𝑡𝑒𝑑
3 − 𝑉𝑤𝑡,𝑐𝑖

3 )
 4.21 

𝑃𝑃𝑉,𝑟𝑎𝑡𝑒𝑑 ≤ 𝐶𝐴𝑃𝑃𝑉 4.22 

𝑃𝑊𝑇,𝑟𝑎𝑡𝑒𝑑 ≤ 𝐶𝐴𝑃𝑊𝑇 4.23 

4.3.2.3 Hydrogen energy system constraints 

The hydrogen tank stores the hydrogen purchased from the external hydrogen supply that 

will be used to meet the hydrogen required by fuel cell power generation, as shown in Eq. 

(4.24) – (4.27). The polymer electrolyte membrane (PEM) fuel cell model is utilised in 

this research for its reliable performance and commercial availability [162][95]. The 

power output of this type of hydrogen fuel cell can be expressed as Eq. (4.26). 

𝑆𝑂𝐶𝑡
ℎ = 𝑆𝑂𝐶𝑡−1

ℎ + (𝑚𝑡
𝐻2,𝑝 −𝑚𝑡

𝐻2,𝑓𝑐) 𝐶𝐴𝑃𝐻2𝑡𝑎𝑛𝑘⁄  4.24 

0 ≤ 𝑆𝑂𝐶𝑡
ℎ ≤ 𝑆𝑂𝐶ℎ,𝑚𝑎𝑥, 𝑆𝑂𝐶0

ℎ = 𝑆𝑂𝐶𝑇
ℎ 4.25 

𝑃𝑡
𝑓𝑐
= 𝑚𝑡

𝐻2,𝑓𝑐 ∙ 𝜂𝑓𝑐 ∙ 𝐿𝐻𝑉𝐻 4.26 

𝑃𝑡
𝑓𝑐
≤ 𝐶𝐴𝑃𝐻2𝑓𝑐 4.27 

where 𝑆𝑂𝐶𝑡
ℎ is the equivalent state of charge of the hydrogen storage tank. 𝑚𝑡

𝐻2,𝑝 and 

𝑚𝑡
𝐻2,𝑓𝑐  represent the purchased hydrogen from the external supplier and hydrogen 

consumed by fuel cell generation, respectively. 𝜂𝑓𝑐  is the efficiency of hydrogen fuel 

cells. 𝐿𝐻𝑉𝐻is the lower hearting value of hydrogen, which is 33.33 kWh/kg [163]. 

4.3.2.4 EA charging constraints 

The aircraft behaviours can be described as an event-based model, there are four events 

for an EA: arrival, start charge, fully charged, and departure. The aircraft is assumed to 

start charging 10 minutes after arrival and finish charging within 30 minutes. To avoid 

the charging process causing flight mission delays, the fast charger that has a rated power 

of 0.63 MW is adopted, and the charging load is modelled as Eq. (4.28) – (4.32).  
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For the plug-in charge scenario, the EA charging time could be seen as the same as the 

arrival time. The plug-in EA charging demand is formulated as Eq. (4.28) – (4.29). 

𝑃𝑓𝑖,𝑇𝑓𝑖
𝑎𝑟𝑟

𝐸𝐴 = 𝑃𝐸𝐴
𝑟𝑎𝑡𝑒𝑑 4.28 

𝑃𝑡
𝐸𝐴 =∑𝑃𝑓𝑖,𝑡

𝐸𝐴

𝑓𝑖

 4.29 

For the battery swap scenario, the EA battery charging is allocated between 1 to 6 am to 

fill the valley of the airport energy demand. The battery swap EA charging demand is 

formulated as Eq. (4.30) – (4.32). 

𝑃
𝑓𝑖,𝑇𝑓𝑖

𝑐ℎ
𝐸𝐴 = 𝑃𝐸𝐴

𝑟𝑎𝑡𝑒𝑑 4.30 

1 ≤ 𝑇𝑓𝑖
𝑐ℎ ≤ 6 4.31 

𝑃𝑡
𝐸𝐴 =∑𝑃𝑓𝑖,𝑡

𝐸𝐴

𝑓𝑖

 4.32 

where, 𝑃𝐸𝐴
𝑟𝑎𝑡𝑒𝑑 is the rated power of the EA fast charger, 𝑇𝑓𝑖

𝑐ℎ is the charging time variable 

of EA. 

4.3.2.5 EV charging constraints and setup 

The heuristic algorithm is not capable of a high number of variables representing the 

charging and discharging of every electric vehicle. As a result, the aggregate management 

strategy is utilised to reduce the dimension of decision variables. As discussed in previous 

sections, there are two types of control strategies for airport parking EVs: G2V (operate 

as electric loads) and V2G (operate as energy storage). For the G2V strategy, the EV 

charging loads are allocated at a specific period of the day before the leaving time of EV 

owner passengers. For the V2G strategy, the EVs are available for charging and 

discharging while staying at the airport parking lot. 

The EV charging load allocation algorithm was modified from [164] and shown as 

Algorithm 4.1. In our case, the algorithm has considered that the EV charging power 

should be allocated within the parking time duration of each EV instead of the whole day. 

The flowchart for the EV charging load allocation algorithm is shown in Figure 4-5. 
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Figure 4-5 The flowchart for the EV charging load allocation algorithm 

The following equations are presented as input information for the algorithm.  

𝑃𝑡
𝑛𝑒𝑡𝑑𝑒𝑚 = 𝑃𝑡

𝐸 + 𝑃𝑡
𝐸𝐴 − 𝑃𝑡

𝑊𝑇 − 𝑃𝑡
𝑃𝑉 4.33 

𝐸𝑘
𝐸𝑉,𝑟𝑒𝑞 = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡,𝑘

𝐸𝑉 ∙ 𝐸𝐸𝑉 4.34 

𝑃𝑘,𝑡
𝐸𝑉,𝑐 = {

𝑃𝐸𝑉,𝑚𝑎𝑥

𝜉 − 𝑞𝑘,𝑡
0

𝜉 − 𝑞𝑘,𝑡 > 𝑃
𝐸𝑉,𝑚𝑎𝑥

0 ≤ 𝜉 − 𝑞𝑘,𝑡 ≤ 𝑃𝐸𝑉,𝑚𝑎𝑥

𝜉 − 𝑞𝑘,𝑡 < 0

 4.35 

where 𝑃𝑡
𝑛𝑒𝑡𝑑𝑒𝑚 is the net demand after importing electricity from the grid and hydrogen 

fuel cell generation. 𝐸𝑘
𝐸𝑉,𝑟𝑒𝑞

 represents the energy required by 𝑘th EV. 𝐸𝐸𝑉 is the total 

energy capacity of 𝑘th EV batteries. 𝑃𝑘,𝑡
𝐸𝑉,𝑐

 and 𝑃𝐸𝑉,𝑚𝑎𝑥 are the charging power of 𝑘th EV 

and the rated power of EV charger, respectively. 
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Algorithm 4.1: EV charging power allocation algorithm [164] 

Input: 𝑃𝑡
𝑛𝑒𝑡𝑑𝑒𝑚, 𝑇𝑘

𝑎𝑟𝑟, 𝑇𝑘
𝑑𝑒𝑝, 𝑆𝑂𝐶𝑖𝑛𝑖𝑡,𝑘

𝐸𝑉 , 𝑃𝐸𝑉,𝑚𝑎𝑥, 𝑘 = 1,2, … , 𝐾 

Output: 𝑃𝑡
𝐸𝑉,𝑐

 

1: Calculate the 𝐸𝑘
𝐸𝑉,𝑟𝑒𝑞

 according to (4.34) 

2: for 𝑘 = 1,2, … , 𝐾 do 

3:    𝐸𝑉𝑘 gets 𝑃𝑡
𝑛𝑒𝑡𝑑𝑒𝑚 from airport microgrid operator 

4:    Compute parking period 𝑡𝑘
𝑝 = 𝑇𝑘

𝑎𝑟𝑟: 𝑇𝑘
𝑑𝑒𝑝

 

5:    Compute 𝑞𝑘,𝑡 = 𝑃𝑡𝑘
𝑝
𝑛𝑒𝑡𝑑𝑒𝑚 

6:    define 𝜉𝑚𝑖𝑛 = min (𝑞𝑘,𝑡) and 𝜉𝑚𝑎𝑥 = max (𝑞𝑘,𝑡) 
7:    while 𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛 > 𝜎 do 

8:        𝜉 = (𝜉𝑚𝑎𝑥 + 𝜉𝑚𝑖𝑛)/2 

9:        Compute 𝑃𝑘,𝑡
𝐸𝑉,𝑐

 according to (4.35) 

10:       if ∑𝑃𝑘,𝑡
𝐸𝑉,𝑐 > 𝐸𝑘

𝐸𝑉,𝑟𝑒𝑞
 then 

11:           𝜉𝑚𝑎𝑥 = 𝜉 

12:       elseif ∑𝑃𝑘,𝑡
𝐸𝑉,𝑐 < 𝐸𝑘

𝐸𝑉,𝑟𝑒𝑞
 then 

13:           𝜉𝑚𝑖𝑛 = 𝜉 

14:       end 

15:    𝐸𝑉𝑘 reports new 𝑃𝑡
𝑛𝑒𝑡𝑑𝑒𝑚 = 𝑃𝑡

𝑛𝑒𝑡𝑑𝑒𝑚 + 𝑃𝑘,𝑡
𝐸𝑉,𝑐

 to operator 

16: end 

In the V2G strategy, the parking EVs are aggregated as flexible energy storage, the 

following equations describe the charging behaviour of the airport parking EV aggregator. 

𝑆𝑂𝐶𝑡
𝐸𝑉 = 𝑆𝑂𝐶𝑡−1

𝐸𝑉 + (𝑃𝑡
𝐸𝑉𝑐 ∙ 𝜂𝐸𝑉𝑐 − 𝑃𝑡

𝐸𝑉𝑑𝑖𝑠𝑐 𝜂𝐸𝑉𝑑𝑖𝑠𝑐⁄ )∆𝑡/𝐸𝐸𝑉 4.36 

𝑆𝑂𝐶𝐸𝑉,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡
𝐸𝑉 ≤ 𝑆𝑂𝐶𝐸𝑉,𝑚𝑎𝑥 4.37 

0 ≤ 𝑃𝑡
𝐸𝑉𝑐 ≤ 𝑃𝐸𝑉,𝑚𝑎𝑥 4.38 

0 ≤ 𝑃𝑡
𝐸𝑉𝑑𝑖𝑠𝑐 ≤ 𝑃𝐸𝑉,𝑚𝑎𝑥 4.39 

𝑆𝑂𝐶𝑡0
𝐸𝑉 = 𝑆𝑂𝐶𝑡𝑒𝑛𝑑

𝐸𝑉  4.40 

𝑆𝑂𝐶𝑡𝑑
𝐸𝑉 ≥ 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 4.41 

where, 𝑆𝑂𝐶𝑡
𝐸𝑉 is the SOC of EV at time t, 𝜂𝐸𝑉𝑐  and 𝜂𝐸𝑉𝑑𝑖𝑠𝑐 are the charging and 

discharging efficiency of the EV battery respectively, 𝑃𝑡
𝐸𝑉𝑐  is the rated EV charging 

power, 𝑡𝑑 is the target leaving time of EV owner, 𝐸𝐸𝑉 is the energy capacity of the EV 

battery, 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡  is the EV target SOC. 𝑆𝑂𝐶𝑡0
𝐸𝑉  and 𝑆𝑂𝐶𝑡𝑒𝑛𝑑

𝐸𝑉  are the initial and final 

state of charge of the EV aggregator. 
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4.4 Implementation of multi-objective optimisation 

4.4.1 Non-dominant sorting genetic algorithm Ⅱ (NSGA-Ⅱ) 

The proposed problem is formulated as a heuristic optimisation problem. There are many 

methods to solve multi-objective problems, and one of the effective algorithms NSGA-Ⅱ 

is adopted to solve the proposed problem [165]. The logic flow of the NSGA-Ⅱ algorithm 

is described as follows: 

(1) Non-dominated sorting and crowding: Classify and confirm the particles' rank, 

which is used to calculate the distance between particles propagating along fronts. 

Sort the individuals according to their rank and calculate the crowding distance 

among particles. 

(2) Game selection: Binary tournament is a game strategy that will be used to select 

two populations to participate in the future crossover and mutation processes. The 

game selection theory is that particles with a lower (better) rank located in a less 

crowded zone will be adopted first. 

(3) Cross over and mutation: After the crossover and mutation, a new population is 

created. 

(4) Population recombination: At each generation, by evaluating the dominance 

criterion of all accessible solutions, a combined population with the parent and 

the current population is constructed to generate non-dominant fronts. 

(5) Calculating crowding distance and non-dominated sorting: Repeat non-dominated 

and crowding distance sorting in the new generation. 

(6) New population generation: A new generation is generated from the reproduced 

population with the same strategy as above. 

After the process (1) – (6), a set of potential optimal solutions that represent possible 

scenarios of energy dispatch is obtained.  

𝑃𝐹 = {𝑓1(𝑥), 𝑓2(𝑥), … 𝑓𝑖(𝑥)}, 𝑥 ∈ ℂ 4.42 

where ℂ is the feasible search space, 𝑓𝑖(𝑥) are sets of the Pareto optimal solutions. 
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4.4.2 Decision making 

In multi-objective optimisation, the Pareto optimal front is one approach for representing 

optimum solutions that satisfy different objectives. After obtaining the Pareto front, the 

next step is to make a trade-off between the two objectives: annualised total cost of the 

system and the microgrid operation indices. There is only one solution that could be 

selected from the Pareto front. TOPSIS has been widely utilised in a wide range as a 

multiple-attribute decision-making method based on the Euclidean distance of the 

alternative with respect to the positive ideal solution and negative ideal solution [166]. In 

this study, the Euclidean-distance-based TOPSIS method is applied to calculate proximity 

degree and select the final planning solution among Pareto-optimal points.  

The two objectives could be normalised by placing all objectives on the same dimension 

scale between 0 to 1: 

𝑓𝑖𝑗
𝑛𝑜𝑟𝑚 =

𝑓𝑖𝑗 −min (𝑓𝑖𝑗)

max(𝑓𝑖𝑗) − min (𝑓𝑖𝑗)
 4.43 

 𝑓𝑖𝑗 is the values of 𝑖th solution of 𝑗th objective. 

The Euclidean-distance-based TOPSIS approach uses two reference points: “ideal” and 

“nadir” points representing the best and the worst point to select the best compromising 

solution. The least Euclidean distance from “ideal” and “nadir” points to non-dominated 

solutions are marked as 𝐸𝐷𝑖+ and 𝐸𝐷𝑖− respectively. 

𝐸𝐷𝑖+/𝑖− = √∑ (𝑓𝑖𝑗 − 𝑓𝑖𝑗
𝑖𝑑𝑒𝑎𝑙/𝑛𝑎𝑑𝑖𝑟

)

𝑁𝑜𝑏𝑗

𝑗=1

 4.44 

The smaller value of 𝐸𝐷𝑖+ implies that the solution is closer to the best decision point. 

Based on Euclidean distance, the relative closeness index is expressed as (44). The 

solution with the maximum relative closeness index is recognised as the overall optimal 

solution. 

𝜋𝑖 =
𝐸𝐷𝑖−

𝐸𝐷𝑖+ + 𝐸𝐷𝑖−
 4.45 
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4.4.3 Overall Algorithm 

 

Figure 4-6 Flow chart for overall algorithm 

The overall algorithm is illustrated in Figure 4-6. This subsection describes the overall 

approach to implementing multi-objective optimisation for the airport microgrid 

integrated with EA and parking EVs. After obtaining the required data, including weather 

profile, load profile, and flight schedules, the first subprocess is the parking EV profile 
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generation algorithm, as illustrated in Section 4.2.2. The next step is to set up different 

constraints for different cases: Eq. (4.28) – (4.29) for plug-in charge cases, Eq. (4.30) – 

(4.32) for battery swap cases. If the G2V strategy is adopted, the EV charging demand 

allocation algorithm is implemented to allocate the EV charging demand. Otherwise, the 

constraints Eq. (4.36) – (4.41) are applied for the V2G strategy. Afterward, all the input 

and constraints are ready for the implementation of the NSGA-Ⅱ algorithm. The Pareto 

front and optimal solution could be derived by solving the proposed algorithm. 

4.5 Results and analysis 

4.5.1 Overview 

In this study, case studies are conducted at the East Midland Airport (IATA code: EMA). 

To avoid the impact of COVID, the aviation demand data from 2019 is used. Domestic 

flight schedules from August 1st to 30th August 2019, serve as the basis for generating 

EA flight schedules and air passenger arrival profiles. It is assumed that 50% of domestic 

flights to-and-from the East Midland Airport as a hub are electrified. The peak demand 

for airport terminal building load is assumed to be 10 MW, which is a typical level for a 

mid-size hub airport [42]. The maximum installation capacities of micro-WT and PV are 

assumed to be 9 MW and 10 MW, respectively. The initial SOC for arriving EA is 

assumed to be at 20% in order to simulate an extreme scenario with the highest possible 

recharging demand. In this research, every megawatt of hydrogen fuel cell requires at 

least a 500 kg hydrogen storage tank. Economic inputs primarily include investment and 

maintenance costs for each energy device, as shown in Table 4-3, while energy prices and 

emission cost parameters are displayed in Table 4-4. Because this work is focusing on the 

design of airport microgrid, only the maintenance costs of energy supply devices within 

the microgrid are considered.  

Table 4-5 presents the planning parameters for EV battery and compensation costs for 

EV owners participating in the V2G process. To explore the effect of V2G and various 

EA scheduling approaches, the following six case studies are investigated: Case 1, EA 

plug-in charge without Parking EV; Case 2, EA plug-in charge with G2V; Case 3, EA 

plug-in charge with V2G; Case 4, EA battery swap without Parking EV; Case 5, EA 

battery swap with G2V; Case 6, EA battery swap with V2G. These case studies aim to 
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provide insights into the effects of various charging and energy management strategies 

on airport microgrid infrastructure planning. The proposed airport microgrid multi-

objective infrastructure planning framework and the NSGA-Ⅱ algorithm are coded in 

MATLAB 2021a on a PC with AMD Ryzen 5 3500XCPU @ 3.6 GHz and 16 GB of 

RAM. The population size and the number of iterations are set as 200 and 2000, 

respectively. 

 

Table 4-3 Economic parameters of devices [57], [88] 

Device Installation cost 
Maintenance cost (per 

year) 

PV 2245 £/kW 28.7 £/kW 

micro-WT 1451 £/kW 37.5 £/kW 

Transformer 25,000 £/MVA - 

EA Chargers 10,000 £/each - 

EV Chargers 1,300 £/each - 

Fuel Cell 501.64 £/kWh 11.57 £/kW 

Hydrogen tank 1341 £/kg 15.65 £/kW 

 

Table 4-4 Economic parameters 

Parameter Time value 

Electricity price [167] 
0:00-7:00, 21:00-24:00 0.1£/kWh 

7:00-21:00 0.2 £/kWh 

CO2 Emission cost - 20 £/t 

Hydrogen price - 5 £/kg 

Electricity Carbon 

factor 
- 

0.257 

kg/kWh 
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Table 4-5 EV Planning Parameters [168] 

Parameter Value Parameter Value 

EV Battery Cost 300 £/kWh EV Battery Capacity 25 kWh 

Labour Cost of Replacing 

Battery 
240 £ 

Charging/Discharging 

Efficiency of EV 
92% 

Battery Life cycle 5000 Maximum SOC 90% 

DOD 80% Minimum SOC 20% 

4.5.2 Microgrid energy dispatch 

 

Figure 4-7 Energy dispatch results of the airport microgrid. (a) EA plug-in charge case 

without EV, (b) EA plug-in charge case with G2V, (c) EA plug-in charge case with 

V2G, (d) EV battery swap case without EV, (e) EV battery swap case with G2V, (f) EV 

battery swap case with V2G 
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This section investigates the impacts of different EA charging scheduling strategies and 

G2V/V2G on airport microgrid energy dispatch. The energy dispatch results for all six 

cases are presented in Figure 4-7. As demonstrated, the load characteristics of EA plug-

in charge cases and battery swap cases differ, with the load curves of EA battery swap 

cases appearing more flattened than EA plug-in charge cases. By incorporating battery 

swap technology into EA charging scheduling, a more balanced and smoother electric 

load pattern in airport microgrid can be achieved. Approximately half of the airport loads, 

including EV and EA charging, are supplied by renewable power generation in the 

selected design day. However, due to the limited installation capacity of the PV and 

micro-WT generation, the microgrid must request power from the main grid. When the 

EA charging load exceeds microgrid generation limits, the hydrogen fuel cell system 

operates to support the system and achieve power balance by generating electricity from 

the hydrogen storage tank.  

Meanwhile, parking EVs can serve as an alternative stable distributed energy storage 

during daytime hours. As shown in Figure 4-7 (c) and (f), hydrogen fuel cell system 

generation operates less with the existence of V2G for both EA plug-in charge and battery 

swap cases. This demonstrates that V2G from parking EVs and the hydrogen fuel cell 

system work together to satisfy the total demand of the airport microgrid, thereby 

improving its resilience. The hydrogen fuel cell system also tends to generate electricity 

when renewable generation is not at its peak. Parking EVs prefer to charge during 

renewable generation and valley of other demands, as this improves the resilience factor 

and renewable self-consumption rate. 

Table 4-6 Optimal microgrid operation indices for all 6 cases 

EA Charging  

Strategy 

EV Charging  

Strategy 

Indices 
Sum. Avg. 

PVR RF RSCR 

Plug-in Charge 

w/o EV 2.88 0.51 0.38 4.01 

3.89 with G2V 2.92 0.42 0.37 3.97 

with V2G 2.45 0.58 0.35 3.68 

Battery Swap 

w/o EV 1.55 0.45 0.38 2.62 

2.55 with G2V 1.65 0.42 0.37 2.7 

with V2G 1.13 0.54 0.35 2.32 
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In generally, the EA battery swap scenario appears more flattened than the plug-in 

scenario, regardless of whether EVs are involved. This indicates that adopting the EA 

battery swap strategy is more beneficial for airport peak load shaving and valley filling 

than V2G from airport parking EVs, due to the difference in their capacity. Table 4-6 

presents the optimal microgrid operation indices for all six cases. Among all cases, the 

PVR is significantly reduced in EA battery swap cases, suggesting that the energy 

consumption of the microgrid has less fluctuation during the day. The average microgrid 

operation indices of EA battery swap cases (which is 2.55) are smaller than that of EA 

plug-in charge cases (which is 3.89). As observed from Table 4-6, V2G can help improve 

the PVR and RF, meaning that flexible EV charging and discharging can help reduce the 

gap between peak and valley demand and enhance the microgrid resilience. 

4.5.3 EV and EA scheduling 

This section examines the results of EA charging scheduling and the interactions between 

EV and EA. Figure 4-8 clearly demonstrates that EA battery swap scenarios necessitate 

a greater number of chargers compared to EA plug-in charge scenarios.  

 

Figure 4-8 The EA charging schedules for four cases (a) EA battery swap cases with 

G2V and with V2G, (b) EA plug-in charge cases with G2V and with V2G 

As shown in Figure 4-8 (a), the demand for EA charging in EA battery swap cases is more 

evenly distributed, rather than experiencing uneven fluctuation. This is an optimal 

solution for minimising the total number of required chargers. In EA plug-in charge 

scenarios, the EA charging demand for both V2G and G2V cases exhibit distinct 

characteristics. The EA charging demand in the V2G case is more consistent than in the 

G2V case as the V2G process contributes to a more balanced energy price throughout the 

day. The peak EA charging demand in the G2V case occurs between 3 – 6 pm, coinciding 

with renewable resource electricity generation. This suggests that the charging schedule 
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of the G2V case is more reliant on renewable energy. As a result, the previous evening 

peak (7 – 8 pm) in the G2V cases shifts to an earlier time for enhanced energy price and 

efficiency.  

In contrast, the V2G cases still have noon (12 pm) and evening (8 pm) peaks. These 

findings indicate that if airport operators choose to maintain the daily flight schedules 

similar to that conducted by conventional aircraft, V2G technology could offer more 

benefits in terms of the airport microgrid scheduling performance. Overall, this analysis 

indicate that the EA battery swap approach provides a more evenly distributed demand, 

minimizing the total number of chargers needed. Meanwhile, the EA plug-in charge 

scenarios display unique characteristics based on the V2G and G2V cases, with V2G 

offering a more balanced energy price throughout the day. 

 

Figure 4-9 EV charging and discharging schedules. (a) Case 2: EA plug-in charge case 

with G2V, (b) Case 4: EA battery swap case with G2V, (c) Case 3: EA plug-in charge 

case with V2G, (d) Case 6: EA battery swap case with V2G 

The EV charging and discharging scheduling results can be seen in Figure 4-9. A 

comparison of the charging demand for departing EVs (long-term parking EVs leaving 

today) in EA plug-in charge cases (Figure 4-9 (a) and (c)) and EA battery swap cases 

(Figure 4-9 (b) and (d)) reveals a distinct difference: more departing EVs tend to charge 
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during daytime hours in the battery swap case. This is because the charging demand for 

swapped EA batteries fills the valley between 0 to 6 am, eliminating the need for EVs to 

charge during this period to balance the total demand of the airport microgrid.  

Another observation is that the charging demands for departing EVs consistently peak 

around the noon (12 – 1 pm) in all cases, coinciding with the highest level of renewable 

energy generation. Regarding short-term parking EVs, they tend to charge primarily 

between 10 to 2 pm in all cases to consume excess renewable energy generation.  

Figure 4-9 (c) and (d) show that the EVs are more likely to charge during off-peak hours 

(10 pm – 12 am and 12 to 4 am) and renewable generation peak time (10 am to 2 pm), 

then provide surplus energy during the morning peak (8 to 10 am) and evening peak (4-8 

pm). This illustrates the V2G function logic effectively. In Case 3 (EA plug-in charge 

case), EVs tend to charge continuously during the early morning hours (12 – 5 am) 

because they are responsible for flattening the demand by filling the valley. Conversely, 

in Case 4 (EA battery swap case), EVs are free to charge and discharge to support EA 

swapped battery charging during the same period. 

4.5.4 Economic assessment 

This section discusses the economic assessment of the optimal solutions for the six 

investigated cases. Figure 4-10 shows that the costs of G2V cases (Case 2 and Case 5) 

are the highest within their respective scenarios (EA plug-in charge or battery swap). 

Simultaneously, Case 3 (EA plug-in charge case with V2G) has the lowest cost among 

all EA battery swap cases. 

The implementation of V2G technology significantly reduces both the CAPEX and 

OPEX of EA plug-in charge cases: Case 3 achieves a 6.1% reduction in CAPEX and a 

16.9% reduction in OPEX compared to Case 2. In contrast, the reductions in EA battery 

swap cases are less pronounced, with only 2.8% decrease in CAPEX and 15.9% decrease 

in OPEX. It is important to note that V2G increases the emission cost for both EA plug-

in charge and battery swap by 43.9% and 35.6% respectively. This could be attributed to 

the fact that EVs with V2G capacity typically charge when electricity demand is low and 

discharge during peak times. This pattern could potentially lead to additional emissions 

due to increased use of grid electricity. Emission Cost is lowest in Case 5 (EA battery 
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swap with G2V) at 17.159 thousand pounds, followed by Case 2 (EA plug-in charge with 

G2V) at 17.211 thousand pounds, indicating that incorporating G2V in both plug-in 

charging and battery swapping scenarios can effectively reduce emissions. Case 3 (EA 

plug-in charge with V2G) and Case 6 (EA battery swap with V2G) have higher emission 

costs, 24.774 thousand pounds and 23.274 thousand pounds, respectively, which implies 

that V2G integration may lead to increased emissions. Case 1 (EA plug-in charge without 

Parking EV) and Case 4 (EA battery swap without Parking EV) show intermediate values 

of 20.162 thousand pounds and 17.839 thousand pounds, respectively, suggesting that 

Parking EVs may have an impact on emission reduction. Maintenance Costs are quite 

similar across all cases, with a range between 8.215 thousand pounds and 8.221 thousand 

pounds, indicating that the choice of charging strategy (plug-in charge or battery swap) 

and the integration of G2V or V2G services have minimal impact on maintenance costs 

in the airport microgrid. 

 

Figure 4-10 Optimal annualised costs for the 6 cases. (a) Emission and Maintenance 

Costs, (b) CAPEX and OPEX. 
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In conclusion, incorporating G2V strategies in both plug-in charging and battery 

swapping scenarios can help reduce emissions effectively, while V2G integration may 

lead to increased emissions. Maintenance costs are not significantly affected by the choice 

of charging strategy or the integration of G2V or V2G services. 

The overall cost of EA battery swap with the V2G case falls between the other two EA 

battery swap cases. Although the improvement may not be substantial, V2G can still be 

considered an economically viable option when taking microgrid performance 

enhancement into account. 

4.5.5 Microgrid energy technologies installed capacity  

This section focuses on the installation capacity of airport microgrid energy technologies. 

Figure 4-11 displays the changes in installed hydrogen fuel cell capacities across the six 

cases, with two objectives: optimal cost (Objective 𝑓1) and optimal operation (Objective 

𝑓2). As evident in Figure 4-11, when the focus shifts towards optimal microgrid operation, 

the installed hydrogen fuel cell capacity increases from approximately 1 MW to around 

9 MW. This highlights the significance of the hydrogen system for the airport microgrid 

operation performance. However, the high cost of hydrogen fuel cell systems means they 

are only considered for large-scale installation (8 to 10 MW) when microgrid operational 

performance becomes a more critical objective. 

 

Figure 4-11 Installed capacity of hydrogen fuel cell varying with two objectives in 6 

cases 

The importance of the hydrogen system varies across different cases; it is less significant 

in cases with V2G (Case 3 and Case 6), as also corroborated in section 4.5.2. For G2V 



Chapter 4 The Coordination between Electric Aircraft and Airport Parking of EVs 

76 

 

cases (Case 2 and Case 5), the hydrogen fuel cell system is of paramount importance, as 

without V2G resources to improve overall microgrid performance, it becomes the only 

means to achieve enhanced stability and resilience.  

Table 4-7 presents the optimal installed capacity of microgrid installation for all six cases, 

revealing a trend where the adoption of V2G technology results in reduced requirement 

for hydrogen fuel cell systems. 

Table 4-7 Optimal microgrid technology installation capacity for all cases 

Infrastructure Unit 

Plug-in charge Battery swap 

w/o 

EV 

with 

G2V 

with 

V2G 

w/o 

EV 

with 

G2V 

with 

V2G 

PV MW 10 10 10 10 10 10 

micro-WT MW 9 9 9 9 9 9 

Fuel Cell MW 4 7 2 6 7 4 

Transformer MVA 9 9 10 9 8 9 

Charger number Quantity 4 4 4 8 8 9 

 

4.5.6 Pareto Fronts and Microgrid Scoring 

Figure 4-12 illustrates the trade-off between microgrid operation indices and costs for all 

six investigated cases. Due to the high investment cost of EV charging, the costs for both 

G2V cases (Case 2 and Case 5) are higher than those without EVs (Case 1 and Case 4). 

Additionally, the microgrid operation performance of cases without EVs is superior to 

G2V cases, as the G2V strategy only adds a burden to the airport demand.  

 

Figure 4-12 Pareto fronts of different cases 
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However, in both scenarios, V2G cases achieves better operational performance with 

lower costs compared to G2V cases. The difference between EA plug-in charge and 

battery swap scenarios can be analysed by comparing Figure 4-12 (a) and (b). EA battery 

swap cases exhibit better microgrid operation performance, while V2G helps improve the 

performance of EA plug-in charge cases. 

4.5.7 EA implementation level sensitivity analysis 

The level of EA implementation could potentially impact the operational and economic 

performance of airport microgrids. A sensitivity analysis has been conducted, exploring 

the effects of increasing the percentage of flights replaced by EAs from 50% (benchmark) 

to 100%. Figure 4-13 presents the trade-off between airport microgrid operation and 

economic performance, with varying EA implementation levels.  

 

Figure 4-13 Pareto fronts of sensitivity analysis of EA implementation level. (a) EA 

plug-in charge cases, (b) EA battery swap cases 

In general, EA battery swap cases consistently outperform plug-in charge cases across all 

EA implementation level. Moreover, both objective values in EA plug-in charge cases 

increase more significantly as the EA implementation level rises, compared to EA battery 

swap cases. This is because plug-in charge cases have less flexibility to reduce costs and 

improve operational performance. 

Additionally, there is a considerable gap in airport microgrid performance indices 

between the reference case (50% EA implementation) and the other two implementation 

levels. This occurs because the EA charging power in cases with 75% EA implementation 

has substantially exceeded the original electric load of the airport terminal building, 
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resulting in uneven airport microgrid operation. This insight suggests that airport 

operators should consider constructing a separate microgrid to accommodate higher EA 

charging demand if the EA implementation level exceeds 50%. 

4.5.8 Renewable generation uncertainty sensitivity analysis 

Seasonal fluctuations in renewable generation can influence planning results for airport 

microgrids. To address the uncertainties associated with PV and micro-WT generation, a 

sensitivity analysis on seasonal renewable generation has been performed. Scenarios for 

three design days with low, medium, and high renewable generation profiles are explored. 

The renewable generation profiles are depicted in Figure 4-14.  

 

Figure 4-14 Three renewable generation scenarios. (a) low renewable generation, (b) 

medium renewable generation, (c) high renewable generation 

 

Figure 4-15 Hydrogen fuel cell capacities in different renewable generation scenarios 

Figure 4-15 displays the optimal installation capacities of hydrogen fuel cells for three 

design days and six cases. The designed fuel cell capacities for EA plug-in charge cases 

(Case 1, 2, and 3) are more sensitive than those for EA battery swap cases (Case 4, 5, and 

6). This is because the demand for EA plug-in charge cases is more concentrated during 
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the daytime when PV generates electricity, while the demand for EA battery swap is more 

evenly distributed throughout the day. With higher renewable generation power, the 

required capacities of hydrogen fuel cells decrease from 7 - 9 MW to 3MW for EA battery 

swap cases, and from 8 - 9 MW to 1 MW for EA plug-in charge cases.  

 

Figure 4-16 Optimal annualised costs under different renewable generation scenarios. 

(a) CAPEX and OPEX, (b) Emission and Maintenance Costs. L: low renewable 

generation, M: medium renewable generation, H: high renewable generation 

Figure 4-16 presents the annualised costs for the six cases under three design days. For 

low renewable generation scenarios, less renewable generation power is expected, and 

the CAPEX is as low as around £2.5 million because no renewable generation unit is 

deployed. Under the low renewable generation situation, renewable resources are less 

economical for airport microgrid operation, and OPEX will be 50.5% to 87.8% higher 

than risk-neutral strategies. For high renewable generation scenarios, the CAPEX will be 

5.5% to 25.6% lower than in medium renewable generation scenarios, while the OPEX 

will reduce dramatically by 47.4% to 61.7%, as most of the demand will be covered by 
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renewable generation resources. Under the low renewable generation scenario, Case 4 

(EA battery swap without Parking EV) and Case 5 (EA battery swap with G2V) yield the 

lowest emission costs, indicating that battery swap systems are more beneficial when 

renewable generation is low. For the medium renewable generation scenario, Case 2 (EA 

plug-in charge with G2V) presents the lowest emission cost, suggesting that plug-in 

charging combined with G2V is optimal when renewable generation is moderate. In the 

high renewable generation scenario, Case 2 (EA plug-in charge with G2V) still performs 

well with the lowest emission costs, followed closely by Case 5 (EA battery swap with 

G2V). 

4.6 Conclusions 

This chapter presents a multi-objective infrastructure planning framework that aims to 

accommodate both parking EVs and EAs in the airport microgrid. The proposed 

framework includes two scheduling strategies for EA charging, namely, the EA plug-in 

charge strategy and the EA battery swap strategy. The trade-off objectives of economic 

and operational performance are optimised to evaluate the advantages and disadvantages 

of these strategies. With the proposed framework, the airport can economically 

accommodate EAs and operate safely. 

The results of the study demonstrate that the adoption of the V2G strategy can improve 

the airport microgrid's performance in terms of economics and operation, compared to 

the G2V and without EV cases. The V2G service of the airport parking EVs can support 

the energy management of the airport microgrid with EA charging. Additionally, the 

parking EV is essential for reducing the total cost of future electrified aviation, which is 

a crucial consideration for airport operators. 

The study also reveals that the EA battery swap strategy performs better than the EA plug-

in charge strategy in terms of microgrid operation performance, regardless of whether 

EVs are involved or not, especially in the peak-to-valley ratio (PVR) and resilience factor 

(RF). Moreover, the difficulty of airport microgrid operation increases sharply with an 

increase in EA implementation level. Hence, it is essential to consider adopting an 

independent microgrid to support a higher EA implementation level. 

Lastly, to handle the uncertainties of renewable generation and risks involved in the 
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planning and operation of the airport, a higher capacity of the hydrogen fuel cell is 

required to reduce the negative impact on the microgrid. 

Overall, the findings of this study provide valuable insights that will help airport operators 

make informed decisions on how to achieve aviation electrification while optimizing the 

performance of the airport microgrid. 
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Chapter 5 Infrastructure Design for Airport 

Shuttle Bus Electrification 

5.1 Introduction 

Ground support vehicles at airfields are typically powered by fossil fuels, which 

contribute to air pollution and greenhouse gas emissions. To address this issue, there is a 

growing trend towards electrifying ground vehicles. However, implementing stationary 

charging facilities can be challenging due to limited movement space and time schedules 

at airports. Therefore, dynamic wireless charging technology has emerged as a promising 

solution to enable the stable electrification of airfield transport network. This chapter 

focuses on the implementation of wireless charging facilities for electric shuttle buses at 

commercial airports. To handle the large number of decision variables and constraints 

involved in the optimisation process, a multi-objective Non-dominated Sorting Genetic 

Algorithm-Ⅲ (NSGA-Ⅲ) and mixed integer linear programming (MILP) algorithm are 

employed. The traffic data for the airport shuttle buses is simulated using a multi-agent-

based model (MABM).  

The proposed system aims to integrate the airport ground support network with the power 

grid network in order to achieve sustainable aviation goals. To assess the techno-

economic potential of wireless charging technologies, this chapter presents a bi-level 

optimisation framework is presented to determine the optimal design of the proposed 

wireless charging system. The framework is applied to three case studies, which 

demonstrate the feasibility of wireless charging technology for electric shuttle buses at 

airports. The analysis includes a thorough evaluation of the techno-economic factors, 

taking into account the costs of equipment, installation, and operation, as well as the 

environmental benefits of reducing emissions. 

The chapter makes three significant contributions: 

• A multi-agent-based model based on Anylogic software is proposed for 

simulating the airfield shuttle bus transport network. This model generates 

detailed position and energy consumption profiles of the shuttle buses, providing 

valuable information for optimising the wireless charging system. The use of this 
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model allows for a more accurate assessment of the energy requirements and 

operational characteristics of the electric shuttle buses, which is essential for 

designing an effective wireless charging system. 

• A bi-level optimisation framework is developed that combines NSGA-Ⅲ 

algorithm and MILP algorithm to solve the optimal planning problem for the 

wireless charging system. This framework enables the simultaneous optimisation 

of both the wireless charging infrastructure and the charging and discharging 

behaviours of airfield shuttle bus fleet. The use of a bi-level optimisation approach 

allows for a more comprehensive assessment of the trade-offs between various 

system design parameters, such as the number and location of PSU, the capacity 

of the batteries, and the charging strategy. 

• The chapter conducts a techno-economic assessment of four different airport 

shuttle bus power systems: conventional diesel fuel, stationary wired charging, 

and wireless charging. This analysis investigates the potential cost reduction 

(including capital and operational expenses). The results of this assessment 

demonstrate the significant potential benefits of implementing wireless charging 

systems, which can reduce both costs and emissions. 

This chapter is structured as follows: The multi-agent-based model framework for airport 

airfield traffic network simulation is proposed in Section 5.2. In Section 5.3, the 

mathematical formulation of the bi-level optimisation framework that is developed from 

the NSGA-Ⅲ algorithm and MILP algorithm is presented. Case studies based on a 

realistic commercial airport (London City Airport) are presented in Section 5.4 and finally 

conclusions are summarised in Section 5.5. 

5.2 Multi-Agent based Airport Transport Network Simulation 

The airport transport network is a complex system involving the transportation of various 

vehicles and frequent communication between different individuals. Multi-agent-based 

modelling (MABM) is a computational approach that provides a framework for 

simulating and studying the interactions between multiple agents in a dynamic 

environment [169]. In this chapter, a multi-agent-based model is proposed to investigate 

the corporative behaviour of three agents involved in airport ground transportation 

dispatching.  
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The proposed multi-agent airport transport simulation system includes three agents: flight 

agent, air traffic coordinator agent, and shuttle bus agent, as shown in Figure 5-1. The 

flight agent is responsible for providing information about the arrival and departure of 

flights, which is essential for coordinating the movement of the shuttle buses. The air 

traffic coordinator agent is responsible for managing the air traffic at the airport and 

ensuring the safety of the flights. The shuttle bus agent is responsible for dispatching and 

managing the electric shuttle buses, including their routes and schedules. 

 

Figure 5-1 Multi-agent based airport transportation network simulation 

5.2.1 Flight agent 

The flight agent is responsible for representing the aircraft that requires boarding and 

disembarking services, which are conducted by airport shuttle buses. The population of 

flight agents and the time they enter the simulation environment are based on the realistic 

flight demand and schedules at the airport.  

When an aircraft arrives at the airport, its ground service time and departure time are 

determined. The flight agent sends a service request to the air traffic coordinator agent, 

indicating the expected time of boarding and disembarking of the passengers. Upon 

receiving the request, the air traffic coordinator agent coordinates with the aggregator of 

shuttle bus agent to allocate the appropriate electric shuttle buses to the aircraft.  

Once the shuttle bus arrives, the passengers disembark from the aircraft and travel to the 

terminal building by shuttle bus. The shuttle bus agent ensures that the electric shuttle 

buses are dispatched in a timely manner and follow the designated routes to transport the 

passengers.  
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When the flight is scheduled to departure in 15minutes, the flight agent sends another 

request for shuttle bus transportation to transport the passengers from the terminal 

building to the remote gates. The shuttle bus agent responds by dispatching the 

appropriate electric shuttle buses to transport the passengers. 

By simulating the interactions between the flight agent and other agents in the multi-

agent-based model, the proposed simulation system can provide a more accurate 

representation of the ground transportation system at the airport. The model generates 

detailed position and energy consumption profiles of the electric shuttle buses, which are 

used as input data for the wireless charging optimisation framework. The results of the 

simulation provide insights into the performance of the airport ground transportation 

system and help to identify potential areas for improvement. 

5.2.2 Shuttle bus agent 

As outlined in previous section, the shuttle buses play a critical role in transporting 

passengers to and from the aircraft parking at the remote gates. When not engaged in a 

transport task, the shuttle buses are aggregated into a fleet and managed by the 

"Aggregator". The air traffic coordinator agent communicates task messages to the 

Aggregator when shuttle bus services are requested to transport passengers. 

The shuttle bus agent is responsible for recording position information and energy 

consumption profiles of each shuttle bus. Energy consumption profiles are calculated 

based on the length of operation, which is determined by the transport tasks assigned by 

the air traffic coordinator agent, as shown in Eq. (5.1). Upon completing an assigned task, 

the shuttle bus returns to the Aggregator and becomes available for the next task. The 

shuttle bus agent ensures efficient and effective use of shuttle buses for timely passenger 

transportation. 

𝐸𝑠,𝑡
𝑏𝑢𝑠 = 𝐸𝑠,𝑡−1

𝑏𝑢𝑠 − (1 − 𝑢𝑠,𝑡
𝑏𝑢𝑠) ∙ 𝑣𝑠,𝑡

𝑏𝑢𝑠 ∙ 𝑓𝑟𝑎𝑡𝑒 5.1 

where 𝐸𝑠,𝑡
𝑏𝑢𝑠 is the stored energy in the battery of 𝑠th shuttle bus at time 𝑡. 𝑢𝑠,𝑡

𝑏𝑢𝑠 is the 

operation status factor of shuttle buses, 1 stands for operating, 0 stands for idling. 𝑣𝑠,𝑡
𝑏𝑢𝑠 

represents velocity of shuttle buses. 𝑓𝑟𝑎𝑡𝑒 is the energy consumption rate. 



Chapter 5 Infrastructure Design for Airport Shuttle Bus Electrification 

86 

 

5.2.3 Air traffic coordinator agent 

The air traffic coordinator agent is the central coordinator for the air transport 

management system. It plays a crucial role in receiving the service requirement message 

from the flight agents and assigning specific shuttle buses to conduct the services. Unlike 

other agents, the air traffic coordinator agent holds all the information about air transport 

movements, including the spatial information and operation status of shuttle buses, gate 

and departure time of flights. It ensures effective communication and coordination 

between different agents by acting as the dispatcher.  

 

Figure 5-2 MABM communications between flight agent, air traffic coordinator agent, 

aggregator, and shuttle bus agent 

When flight agents communicate and share information with the air traffic coordinator 

agent, it creates a task request for shuttle bus agents. The task is a discrete event that 

allocates the appropriate vehicle agents to serve various aircraft based on the information 

gathered by the other agents. The air traffic coordinator agent records the position 

information for parameter 𝐿𝑠,𝑡 of shuttle buses, which is a critical profile generated from 

the proposed MABM simulation. The interactions between different agents in the airport 
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transport network are shown in Figure 5-2, where the air traffic coordinator agent 

communicates with other agents to ensure efficient and effective transportation services 

for passengers. 

5.3 Bi-level Optimisation Framework Formulation 

After conducting the MABM simulation presented in Section 5.2, the position 

information and energy consumption profiles of shuttle buses are obtained. In order to 

optimise the charging and discharging behaviours as well as WPT installation solutions, 

a large number of requirements need to be met. To handle the complexity of the problem, 

the WPT installation problem is formulated as a bi-level optimisation framework, as 

shown in Figure 5-3.  

 

Figure 5-3 Flowchart of the overall algorithm 

The primary level of the framework utilises the Non-dominated Sorting Genetic 

Algorithm-Ⅲ (NSGA-Ⅲ) to determine the optimal WPT and PSU installation positions. 
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These positions are then passed to the secondary level problem, which optimises the 

charging and discharging behaviours of the electric shuttle buses based on the WPT and 

PSU installation decisions. The secondary level problem is formulated as MILP model, 

which takes into account a variety of constraints and decision variables to determine the 

optimal charging and discharging behaviours. Overall, this bi-level optimisation 

framework provides a comprehensive approach to optimising the design and operation of 

the proposed wireless charging system. 

5.3.1 NSGA-Ⅲ Infrastructure Design 

The proposed primary infrastructure design problem was solved using the effective multi-

objective heuristic algorithm known as the NSGA optimisation algorithm [170], which is 

described in this section. Following the NSGA-II algorithm, the NSGA-III algorithm uses 

a reference-point-based technique presented in [171] to enhance performance while 

addressing multi-objective problems. The selection operator, which was created for 

maintaining variety among population members by updating reference points, is the only 

distinction between the NSGA-III algorithm and the NSGA-II algorithm. The NSGA-III 

optimisation technique was used to produce a number of pareto front solutions. The 

reference points are selected using the Das and Denis approach [172] prior to running the 

NSGA-III algorithm. The trade-off between two or more objectives is displayed by the 

pareto front. The decision-making process is the same as described in Section 4.4.2.  

The NSGA-III algorithm is a multi-objective optimisation algorithm that is widely used 

in solving optimisation problems. The logic flow of the NSGA-III algorithm is composed 

of several steps. First, the algorithm begins with a population of particles that are 

randomly generated. Then, the algorithm sorts the particles and validates their rank to 

establish how far apart they are from one another as they move along fronts. The crowding 

distance between particles is calculated after sorting people by rank. This process is 

known as random non-dominated sorting and crowding. 

Next, the algorithm uses game selection, which is a gaming approach for selecting two 

populations to participate in upcoming crossover and mutation operations. The game 

selection theory states that particles in a less congested zone and with a lower (better) 

rank are adopted first. After selecting the particles for crossover and mutation, a new 

population is created. The population recombination process follows, where a combined 



Chapter 5 Infrastructure Design for Airport Shuttle Bus Electrification 

89 

 

population with the parent and current populations is formed at each generation to develop 

non-dominant fronts. The dominance criterion of all feasible solutions is assessed to 

achieve population recombination. 

The NSGA-III algorithm's sorting and selection procedure occurs in the new generation. 

The sorting approach involves three steps: normalizing the objective functions of the 

population into numbers within the range 0 to 1, associating each individual of the 

population to a reference point, and performing niche preservation operation by counting 

the number of members of the population that are associated with reference points, and 

exclude the reference points that there is no member associated. Then apply non-

dominated sorting approach. 

Finally, the replicated population is used to create a new generation using the same 

methodology as previously. The NSGA-III algorithm is a powerful tool that can be used 

to solve many optimisation problems, including those with multiple objectives. The 

aforementioned steps result in the generation of a set of probable optimal solutions that 

represent distinct energy dispatch scenarios. 

ΡF = {𝑦1(𝑥), 𝑦2(𝑥),… 𝑦𝑟(𝑥)}, 𝑥 ∈ ℚ 5.2 

where ℚ is the feasible search space, 𝑦𝑟(𝑥) are sets of pareto optimal solutions, 𝑟 is the 

number of population. 

The installation locations of WPT and PSU are determined by binary variables Θ𝑤𝑝𝑡 and 

Θ𝑝𝑠𝑢 at the primary level. While there is no limit on the number of WPTs that can be 

installed, only one PSU is installed in order to connect all WPTs to the network. 

Θ𝑤𝑝𝑡 = {𝑤𝑝𝑡1, 𝑤𝑝𝑡2, …𝑤𝑝𝑡𝑤}, 𝑤 ∈ ℝ 5.3 

Θ𝑝𝑠𝑢 = {𝑝𝑠𝑢1, 𝑝𝑠𝑢2, … 𝑝𝑠𝑢𝑚},m ∈ ℕ 5.4 

∑𝑝𝑧
𝑧

= 1 5.5 

where ℝ and ℕ denote collections of routes that are potentially being installed with WPT 

and network nodes being installed with PSU respectively. 

By incorporating the position information of shuttle buses 𝐿𝑠,𝑡  obtained from MABM 

simulation, the connectivity information of shuttle buses can be determined. Specifically, 



Chapter 5 Infrastructure Design for Airport Shuttle Bus Electrification 

90 

 

a matrix 𝐶𝑠,𝑡 containing full of binary parameters is created to represent whether each 

shuttle bus is connected to the network at each time interval. For example, if a WPT is 

installed along a route 𝑤𝑝𝑡𝑤, all positions in 𝐿𝑠,𝑡 that correspond to 𝑤𝑝𝑡𝑤 are set to 1 in 

the corresponding positions of 𝐶𝑠,𝑡. 

The NSGA algorithm implements power flow during each evaluation cycle to prevent 

network constraint violations. Backward forward sweep (BFS) algorithm [173] [174], a 

precise and effective voltage dependent power flow algorithm, is used to solve the ac 

power flow. This step ensures that the proposed solution meets the power system 

constraints and regulations. The power flow analysis evaluates the distribution network's 

ability to accommodate the charging load and determines if there are any violations of the 

network's voltage drop limits. By incorporating power flow compliance analysis, the 

proposed solution ensures that the charging operations of the electric shuttle buses do not 

violate the stability constraints of the distribution network. 

(1) Backward sweep 

Backward sweep technique is the BFS algorithm's first stage. In this stage, the voltage 

𝑉𝑖,𝑡
𝑜  is assumed for 𝑜 -th iteration, and the Kirchhoff's current law (KCL) is used to 

determine the current at each bus. The following formulas are used to calculate the bus 

current 𝐼𝑖,𝑡
𝑜  for 𝑜-th iteration and apparent power 𝑆𝑖,𝑡: 

𝐼𝑖,𝑡
𝑜 = (

𝑆𝑖,𝑡
𝑉𝑖,𝑡
𝑜 )

∗

 5.6 

𝑆𝑖,𝑡 = 𝑃𝑖,𝑡 + 𝑗𝑄𝑖,𝑡 = (𝑃𝑖,𝑡
𝐺 + 𝑗𝑄𝑖,𝑡

𝐺 ) − (𝑃𝑖,𝑡
𝐿 + 𝑃𝑖,𝑡

𝐸𝑆 + 𝑗𝑄𝑖,𝑡
𝐿 ) 5.7 

where 𝑃𝑖,𝑡 and 𝑄𝑖,𝑡 represent the real and reactive power at bus 𝑖, 𝑃𝑖,𝑡
𝐺  and 𝑄𝑖,𝑡

𝐺  denote the 

real and reactive generation power output at bus 𝑖, 𝑃𝑖,𝑡
𝐿  and 𝑄𝑖,𝑡

𝐿  are the real and reactive 

power consumption of conventional loads, 𝑃𝑖,𝑡
𝐸𝑆  is the aggregate charging/discharging 

power of the WPT system. 

Then the branch current 𝐼𝑖𝑗,𝑡
𝑜  is calculated by summing in the backward direction from the 

end node 𝑗 to the root node 𝑝, which is given by: 

𝐼𝑖𝑗,𝑡
𝑜 = 𝐼𝑗,𝑡

𝑜 +∑𝐼𝑗𝑝,𝑡
𝑜

𝑝

, 𝑝 ∈ 𝛹𝑗  5.8 
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where 𝛹𝑗  is the set of all buses that are adjacent to bus 𝑗 downwards. 

(2) Forward sweep 

Based on Kirchhoff's Voltage Law, the forward sweep procedure looks for a voltage 

decrease from the upstream bus to the downstream bus (KVL). 

𝑉𝑗,𝑡
𝑜 = 𝑉𝑖,𝑡

𝑜 − 𝑍𝑖𝑗𝐼𝑖𝑗,𝑡
𝑜  5.9 

where 𝑉𝑖,𝑡
𝑜  and 𝑉𝑗,𝑡

𝑜  represent the voltage at bus 𝑖 and bus 𝑗. 𝑍𝑖𝑗  is the impedance of the 

branch 𝑖𝑗. 

(3) Voltage tolerance 

The voltage difference between the current step and the step before it, minus the tolerance 

parameter 𝜎 (𝜎 = 10−4 in this research), is the iteration convergence condition.  

∆𝑉𝑖,𝑡
𝑜 = 𝑉𝑖,𝑡

𝑜 − 𝑉𝑖,𝑡
o−1 5.10 

{

|𝑅𝑒(∆𝑉𝑖,𝑡
𝑜 )| ≤ 𝜎

|𝐼𝑚(∆𝑉𝑖,𝑡
𝑜 )| ≤ 𝜎

|∆𝑉𝑖,𝑡
𝑜 | ≤ 𝜎

 5.11 

When the iteration is terminated, the voltage 𝑉𝑖,𝑡 and current 𝐼𝑖,𝑡 at each node equal the 

final converged value of 𝑉𝑖,𝑡
𝑜  and 𝐼𝑖,𝑡

𝑜 , respectively. 

The apparent power of each branch 𝑆𝑏𝑟,𝑡 should be within the limitation: 

𝑆𝑏𝑟,𝑡 = √𝑃𝑏𝑟,𝑡
2 + 𝑄𝑏𝑟,𝑡

2 ≤ 𝑆𝑏𝑟
𝑚𝑎𝑥 5.12 

𝑃𝑏𝑟,𝑡 =∑𝑃𝑖𝑗,𝑡
𝐺

𝑖𝑗

−∑𝑃𝑖𝑗,𝑡
𝐿

𝑖𝑗

 5.13 

𝑄𝑏𝑟,𝑡 =∑𝑄𝑖𝑗,𝑡
𝐺

𝑖𝑗

−∑𝑄𝑖𝑗,𝑡
𝐿

𝑖𝑗

 5.14 

The following constraints are node voltage constraints and feeder thermal limits. 

(1 − 𝜀)𝑉0 ≤ 𝑉𝑖,𝑡 ≤ (1 − 𝜀)𝑉0 5.15 

𝐼𝑖𝑗,𝑡 ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥 5.16 

The power loss of the network can be calculated by the equation: 
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𝑃𝑡
𝑙𝑜𝑠𝑠 =∑𝑅𝑖𝑗 [

|𝑉𝑖,𝑡 − 𝑉𝑗,𝑡|

𝑍𝑖𝑗
]

2

𝑖,𝑡

 5.17 

The proposed primary optimisation framework is designed to address the challenges of 

wireless charging technology for electric shuttle bus deployment at airports. The 

framework is based on a bi-level optimisation approach with two conflict objective 

functions. The first objective aims to minimise the battery costs, including both capital 

and operation and maintenance (O&M) costs for batteries.  

To achieve the first objective, the framework considers the cost of the batteries, including 

the initial cost of purchasing and installing the batteries, as well as the ongoing O&M 

costs, such as electricity purchasing and infrastructure maintenance costs. The 

optimisation algorithm is designed to identify the optimal battery capacity and the number 

of batteries required to meet the operational requirements of the electric shuttle buses, as 

shown in Eq. (5.18). 

The second objective seeks to minimise the infrastructure installation costs for wireless 

power charging points (CAPEX) and the energy consumption cost of shuttle buses 

(OPEX), including the power loss of the network, as shown in Eq. (5.19). Both battery 

costs and the CAPEX are annualised with the CRF, which is calculated with Eq. (5.21). 

𝑀𝑖𝑛 𝑂𝑏𝑗1 =
𝑟 ∙ (1 + 𝑟)𝑦

(1 + 𝑟)𝑦 − 1
∙ 𝐶𝑏𝑎𝑡𝑡 ∙ 𝐸

𝑚𝑎𝑥 5.18 

𝑀𝑖𝑛 𝑂𝑏𝑗2 = 𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 5.19 

𝐶𝐴𝑃𝐸𝑋 =
𝑟 ∙ (1 + 𝑟)𝑦

(1 + 𝑟)𝑦 − 1
∑(𝐶𝐴𝑃𝑑𝑒𝑣 ∙ 𝜋𝑑𝑒𝑣)

𝑑𝑒𝑣

 5.20 

𝑂𝑃𝐸𝑋 = 𝑑 ∙ (∑((𝜋𝑡
𝑒 + 𝜋𝐶𝑂2 ∙ 𝜗

𝑔𝑟𝑖𝑑) ∙ (𝑃𝑡
𝑔𝑟𝑖𝑑

+ 𝑃𝑡
𝑙𝑜𝑠𝑠))

𝑡

+ 𝜋𝑝max (𝑃𝑡
𝑔
)) 5.21 

where 𝐸𝑚𝑎𝑥  represents the capacity of EV batteries. 𝐶𝑏𝑎𝑡𝑡  is the purchasing price for 

battery per kWh. The subscript 𝑑𝑒𝑣 denotes the installed devices, 𝐶𝐴𝑃𝑑𝑒𝑣 is the installed 

capacity of device 𝑑𝑒𝑣, 𝑟 is the discount rate, 𝑦 is the number of years in lifetime, 𝑑 is 

the number of representative days. 𝜋𝑡
𝑒  is the time-of-use electricity price, 𝜋𝑑𝑒𝑣  is the 

capital cost of device 𝑑𝑒𝑣. 𝑃𝑡
𝑔𝑟𝑖𝑑

 is the imported grid electricity, 𝜋𝐶𝑂2 is the penalty fee 
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for CO2 emissions. 𝜗𝑔𝑟𝑖𝑑  denotes the emission factor of the grid electricity. 𝜋𝑝  is the 

demand charges for the peak electricity demand.  

The primary decision variables, which include installation positions of WPT and PSU, 

will be passed on to the secondary level for optimisation of charging and discharging 

dispatch. 

5.3.2 MILP-based Wireless Charging Management 

Due to the large number of decision variables and constraints involved in the problem, 

the secondary layer problem was formulated using mixed integer linear programming 

problem as a heuristic algorithm was insufficient to handle the complexity. MILP 

formulation is better suited for solving such complex problems and ensures efficiency in 

the optimisation process.  

The MILP problem is solved for each evaluation of the population generated in the 

NSGA-Ⅲ algorithm. The objective of the MILP problem is to obtain an optimal charging 

/ discharging dispatch profile for electric shuttle buses, given the current WPT and PSU 

installation choices of each individual in the NSGA-Ⅲ algorithm. By formulating and 

solving the MILP problem for each individual, the NSGA-III algorithm is able to generate 

a diverse population of solutions that effectively represent the trade-offs between 

conflicting objectives. 

The charging constraints for electric shuttle buses are derived from their transportation 

profiles, which consists of two main components: the energy consumption profile 𝐸𝑠,𝑡
𝑐𝑜𝑛𝑠 

and the connectivity profile 𝐶𝑠,𝑡. The energy consumption profile describes the amount 

of energy consumed by the shuttle buses at each time slot during its operation, while the 

connectivity profile represents the availability for wireless charging at different location 

and times.  

To manage the charging and discharging process, two binary variables are used: 𝑢𝑠,𝑡
𝑐ℎ 

controls the charging behaviour, and 𝑢𝑠,𝑡
𝑑𝑖𝑠𝑐  controls the discharging behaviour. These 

variables are designed to optimise the charging and discharging operations of the shuttle 

bus fleet, while ensuring that the charging constraints are met. 

𝑢𝑠,𝑡
𝑐ℎ + 𝑢𝑟,𝑡

𝑑𝑖𝑠𝑐 ≤ 1 5.22 
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𝑃𝑠,𝑡
𝑐ℎ = 𝑢𝑠,𝑡

𝑐ℎ ∙ 𝑃𝑟𝑎𝑡𝑒𝑑 5.23 

𝑃𝑠,𝑡
𝑑𝑖𝑠𝑐 = 𝑢𝑠,𝑡

𝑑𝑖𝑠𝑐 ∙ 𝑃𝑟𝑎𝑡𝑒𝑑 5.24 

The connectivity between electric shuttle buses and WPTs is represented by a matrix 𝐶𝑠,𝑡. 

Specifically, if the 𝑠 -th electric shuttle bus is connected to a WPT at time t, the 

corresponding value in the matrix 𝐶𝑠,𝑡 is set to 1; otherwise, it is set to 0. 

To ensure the safe and efficient operation of the WPT systems, a power limit is imposed 

on the connectivity between electric shuttle buses and WPTs. The power limit is 

expressed as the following equation: 

𝑃𝑠,𝑡
𝑑𝑖𝑠𝑐 , 𝑃𝑠,𝑡

𝑐ℎ ≤ 𝐶𝑠,𝑡 ∙ 𝑃
𝑟𝑎𝑡𝑒𝑑 5.25 

The amount of energy stored in each shuttle buses is expressed as follows: 

𝐸𝑠,𝑡
𝑏𝑢𝑠 = 𝐸𝑠,𝑡−1

𝑏𝑢𝑠 + 𝜂𝑤𝑐ℎ ∙ 𝑃𝑠,𝑡
𝑐ℎ − 𝑃𝑠,𝑡

𝑑𝑖𝑠𝑐/𝜂𝑤𝑐ℎ − 𝐸𝑠,𝑡−1
𝑐𝑜𝑛𝑠  5.26 

𝐸𝑠,0
𝑏𝑢𝑠 = 𝐸𝑠,𝑇

𝑏𝑢𝑠 5.27 

0.2 ∙ 𝐸𝑚𝑎𝑥 ≤ 𝐸𝑠,𝑡
𝑏𝑎𝑡𝑡 ≤ 𝐸𝑚𝑎𝑥 5.28 

where 𝜂𝑤𝑐ℎ represents the efficiency for wireless charging. 

The total charging power required by the shuttle buses is formulated as follows: 

𝑃𝑡
𝐸𝑆 =∑(𝑃𝑠,𝑡

𝑐ℎ − 𝑃𝑠,𝑡
𝑑𝑖𝑠𝑐)

𝑠

 5.29 

Once the MILP problem is solved, the total charging power of electric shuttle buses is 

returned to the NSGA-Ⅲ algorithm for power flow compliance analysis.  

5.3.3 Secondary objective function 

The objective of the secondary level problem is to minimise the overall cost associated 

with the electric shuttle bus system. This cost includes the annualised cost of the batteries 

installed in the electric shuttle buses, as well as the annual cost of purchasing electricity 

for charging the batteries. The problem seeks to find an optimal solution with minimum 

costs while meeting the charging constraints and other operational requirements. 

𝑀𝑖𝑛 (𝐶𝑅𝐹 ∙ 𝐶𝑏𝑎𝑡𝑡 ∙ 𝑁𝑒𝑣 ∙ 𝐸
𝑚𝑎𝑥 + 𝑑 ∙∑𝜋𝑡

𝑒 ∙ 𝑃𝑡
𝐸𝑆

𝑡

) 5.30 
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where 𝐶𝑏𝑎𝑡𝑡 is the battery purchasing cost, 𝑁𝑒𝑣 is the number of EVs. 

5.4 Case studies 

To demonstrate how the proposed approach can be applied in real-world scenarios, a 

comprehensive case study is investigated on London City Airport (IATA code: LCY). 

LCY is a regional airport located in London, England, with a standard linear terminal 

building. The flight demand at LCY airport on a typical day is shown in Figure 5-5.In this 

study, the airfield transport network and power network topologies of LCY airport are 

analysed, which are presented in Figure 5-4. The power network consists of nine nodes 

(N1 – N9), which are located at contact gates in the terminal building. Additionally, there 

are 24 gate positions (G1 – G24) and 18 shuttle bus transport routes (R1 – R18) 

throughout the airport. It is worth noting that in this study, the power network supplying 

LCY airport was assumed to be an IEEE 9-bus radial distribution network, with each node 

located at one contact gate at the terminal building. The chosen distribution network may 

not accurately represent a common distribution network in Great Britain. However, it has 

been selected in this context specifically for testing the proposed optimisation framework. 

 

 

Figure 5-4 The airport ground transportation network and the IEEE 9-bus radial 

distribution network framework in London City Airport (LCY) 
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Figure 5-5 The flight demand at LCY airport on 31st March 2019 on a half-hourly basis 

The candidate installation positions of WPT and PSU were identified at all power network 

nodes and shuttle bus transport routes. The total number of shuttle buses is assumed to be 

60 (the minimum number of shuttle buses that can fulfil the flight service demand without 

causing any delay according to the proposed multi-agent-based simulations). The energy 

consumption rate for diesel of the shuttle bus was 0.32 L/km, while the energy 

consumption rate for electricity was 1.27 kWh/km, which were obtained from [175]. The 

speed of shuttle buses was assumed to be 15 miles per hour for the shuttle buses. 

To assess the economic parameters and energy factors associated with the proposed 

approach, Table 5-1 and Table 5-3 were used, respectively. The simulation was conducted 

on one of the busiest days (31st March) in 2019, taking into account the flight demand at 

LCY airport, as shown in Figure 5-5. This enabled a comprehensive analysis of the 

effectiveness of the proposed approach. 

There are two benchmark scenarios: Case 1: no electrification, all shuttle buses are using 

diesel; Case 2: EV wired charging; and two investigated scenarios: Case 3: EV wireless 

charging.  

1) Case 1: no electrification is implemented, and all shuttle buses continue to use 

conventional diesel fuel. 

2) Case 2: Electric shuttle buses are introduced, and wired charging is used at the 

stationary charging facilities located at node 9 of the distribution network, as 

shown in Table 5-2 and Figure 5-4. The assumption is that all electric shuttle buses 

are equipped with batteries that are fully charged at the beginning of the day, 
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which can meet the power requirements of the day's flight service missions. A 

regular AC charger with a rated power of 50 kW is used to charge the buses during 

the off-peak period from 0:00 to 6:00 when the airport is not in operation. Under 

this scenario, it is assumed that the airport shuttle buses will only be recharged 

during off-peak hours, with no charging occurring during daytime operations. 

This scenario requires a battery energy capacity of 174.5 kWh and a total of 33 

chargers. 

3) Case 3: Electric shuttle buses are charged wirelessly through installed 

unidirectional WPT and PSU. 

The modelling and simulations are conducted on a PC equipped with AMD Ryzen 5 

3500X 3.6 GHz processor and 16 GB RAM. The MABM simulation is implemented in 

Anylogic software, and the bi-level optimisation framework is developed in the 

MATLAB 2021a environment and solved with Gurobi solver and YALMIP software. 

The MABM simulation takes 1 minute 12 seconds to complete. The optimisation times 

for Case 3 is 25 minutes.  

The electricity pricing mechanism used in this study is the time-of-use (TOU) pricing, 

which varies throughout the day [167]. The electricity prices are set at £0.07 per kWh 

during off-peak hours (00:00-07:00), £0.15 per kWh during mid-peak hours (10:30-16:00 

and 21:00-24:00), and £0.2 per kWh during peak hours (07:00-10:30 and 16:00-21:00), 

with an additional demand charge of £0.2 per kW per day. The demand charge is 

calculated based on the maximum power demand during the operation. 

 

Table 5-1 Economic parameters of technologies [144] 

Device 
Installation 

cost 
Maintenance cost Cases 

WPT 89,264 £/mile 892 £/mile per year 3, 4 

PSU 10,000 £/each 100 £/year 3, 4 

Pickup device 5000 £/each - 3, 4 

EV 50 kW Chargers 2,500 £/each 250 £/10 years 2 
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Table 5-2 Line and load data of the IEEE 9 bus radial test system 

 

Bus Number 

1 2 3 4 5 6 7 8 9 

P (kW) 1840 980 1790 1598 1610 780 1150 980 1640 

Q (kVar) 460 340 446 1840 600 110 60 130 200 

i bus 0 1 2 3 4 5 6 7 8 

j bus 1 2 3 4 5 6 7 8 9 

Ri,j (Ω) 0.123 0.014 0.746 0.698 1.983 0.905 2.055 4.795 5.343 

Xi,j (Ω) 0.413 0.605 1.205 0.608 1.728 0.789 1.164 2.716 3.026 

 

 

Table 5-3 Energy prices/factors of airport power system 

Parameter value Ref 

Fuel price 1.3 £/kg [176] 

CO2 Emission factor of diesel fuel 2.68 kg/L [177] 

CO2 Emission factor of electricity 0.257 kg/kWh [178] 

CO2 Emission cost 75 £/t [179] 

 

 

5.4.1 Pareto fronts 

Figure 5-6 displays the resulting non-dominated Pareto front solutions for Case 3. The 

solution shows annualised CAPEX and OPEX ranging from 0.360 to 0.395 million 

pounds, while the battery cost range from 0.014 to 0.046 million pounds. 
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Figure 5-6 Pareto front for Case 3  

 

 

Figure 5-7 WPT and PSU installation positions for wireless charging (Case 3) 

Figure 5-7 shows the optimal installation positions of WPT for Case 3. In this case, there 

are seven routes equipped with WPT, and the distance between the PSU and the closest 

WPT is approximately 68 metres and the PSU is installed on node 4. 

5.4.2 Charging power and aggregate stored energy 

Figure 5-8 and Figure 5-9 illustrate the electric shuttle bus charging power dispatch and 

aggregate stored energy in the shuttle bus fleet. Figure 5-9 (a) reveals that the electric 

shuttle buses recharge during early morning hours (1 to 5 am) when there is no flight 

demand, as the fleet is in use during the daytime. As a result, large batteries are required 
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to ensure that daytime energy consumption is met, as shown in Figure 5-8. On the other 

hand, the demand for wireless charging of electric buses is evenly distributed during the 

daytime, as demonstrated in Figure 5-9 (b). 

 

Figure 5-8 Aggregate energy storage of all electric shuttle buses for Case 2 and Case 3 

 

Figure 5-9 Charging and discharging power dispatch results for (a) Case 2 and (b) Case 

3 
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Table 5-4 provides a comparison of the demand profile characteristics of Cases 2, and 

Case 3. The findings indicate that wireless charging technology, used in Case 3, had 

similar peak and average demand values as wired charging technology, used in Case 2. 

This suggests that wireless charging can provide the same level of power output and 

charging capacity as wired charging while eliminating the need for physical connections 

between the vehicle and the charger.  

Table 5-4 Comparison of demand characteristics between three cases 

Cases 
Peak demand 

(MW) 

Average 

demand (MW) 

Peak 

hour 

Annual electricity charges 

TOU charge 

(million £) 

Demand charge 

(million £) 

2 12.37 9.69 21:00 6.37 0.12 

3 12.37 9.72 21:00 6.47 0.11 

 

5.4.3 Economic analysis 

The figure presented in Figure 5-10 shows the total annualised cost results for the three 

cases. Among the electrification cases (Cases 2 - 3), the conventional diesel shuttle buses 

(Case 1) have significantly higher costs, mainly due to the high fuel price. The plug-in 

charging option (Case 2) has a higher cost because of the larger battery size, but the 

electricity cost is lower due to lower night-time electricity prices.  

Moreover, it is worth mentioning that the emission cost of Case 1 is significantly higher 

than that of the electrification cases (Cases 2 - 3). Specifically, the emission cost of Case 

1 is 159%, and 132% higher than that of Case 2, and Case 3, respectively. This indicates 

that the emission tax could be a vital factor that encourages airport designers and 

operators to consider electrifying their shuttle fleets to avoid high carbon tax in the future. 
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Figure 5-10 Annualised costs of all three cases 

5.5 Conclusions 

In this chapter, a bi-level optimisation framework is proposed for the allocation of WPT 

and PSUs in the airfield traffic network and distribution power network of a commercial 

airport. The framework aims to address the challenge of electrifying airport ground 

vehicles while ensuring that the distribution network can accommodate the additional 

demand. Four case studies are presented to demonstrate the techno-economic feasibility 

of using wireless charging technology for airport electric shuttle buses.  

The economic analysis shows that the annualised operation cost of conventional diesel 

shuttle buses is much higher than that of electric shuttle buses, making electrification a 

promising option. Wireless charging technology allows for smaller batteries to be used in 

electric shuttle buses while still achieving the same performance.  

In summary, the results suggest that future airport designers and operators are likely to 

adopt electrification of ground vehicles in the airside of the airport, with wireless charging 

technology being an attractive option for economic reasons. The benefits of this approach 

are demonstrated through a realistic example.  

Future research could explore the potential of cooperation between electric ground 

support vehicles, airport parking EVs, and future adopted electric aircraft. Additionally, 

the feasibility of wireless charging technology on road traffic and ordinary electric 
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vehicles could be investigated. Overall, this chapter highlights the potential of wireless 

charging technology to revolutionize airport ground vehicle electrification, paving the 

way for a greener and more sustainable aviation industry. 
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Chapter 6 Power Grid Ancillary Services 

through Aviation-to-Grid Flexibility 

6.1 Introduction 

This chapter proposes a novel concept of ‘Aviation-to-Grid (A2G)’ flexibility that utilises 

EA battery charging to provide frequency reserve services to the power grid. Smart 

battery swap-based EA charging system is developed, utilising PV, gas turbine, and grid 

electricity. An hourly energy dispatch strategy is proposed based on the mixed integer 

linear programming, which is designed to meet the demand for electrified aviation 

charging while simultaneously providing A2G frequency response to the power grid. The 

A2G flexibility concept addresses the challenges of high-power and highly-scheduled EA 

charging, while also exploring new flexibility provisions from EA charging. By utilising 

EA battery charging system to provide frequency response for frequency regulation. A2G 

frequency response services can be enhanced even further by coordinating with airport 

gas turbines which are primarily used to provide off-grid and high-power charging to the 

swappable EA batteries. To validate the feasibility and effectiveness of the proposed A2G 

flexibility concept, case studies were conducted in 8 major UK airports. These case 

studies considered seasonal flight schedules and power system operation scenarios.  

The main contributions of this chapter are: 

• An EA charging system is developed to handle highly-scheduled charging 

patterns that are driven from the electrified air transport. The developed charging 

system is able to accommodate high-power charging in a short flight turnaround 

time at airports. 

• A novel A2G concept that uses EA charging as a new energy resource to provide 

flexibility to the power grid. Coordinated energy control solutions of EA batteries 

and gas turbines will provide combined primary and secondary frequency 

responses to grid disturbance. This approach enables the integration of electrified 

air transport into the power system, while also providing a reliable and sustainable 

source of frequency response to the grid. 
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The rest of this chapter is structured as follows: The infrastructure of the EA charging 

system is proposed in Section 6.2. In Section 6.3, the mathematical formulation of the 

Aviation-to-Grid frequency response framework is presented. Case studies based on 8 

UK major commercial airports are presented in Section 6.4 and finally conclusions are 

summarised in Section 6.5. 

6.2 Electric Aircraft Charging Systems 

The research in this chapter focuses on the UK air transport sector and the GB power 

system. In the UK, there are 40 commercial airports with a high volume of domestic and 

international flights. However, due to the significant investment required in electric 

charging infrastructure, it is assumed that the top 8 busiest UK airports are electrified.  In 

addition, in these airports, only domestic flights are considered to be electrified due to 

battery energy density and range anxiety of EA. 

To further support this research, the annual air traffic data for UK airports was obtained 

from the UK Civil Aviation Authority (CAA) [180]. Based on this data, it was found that 

the top 8 UK airports serve around 37% of the total number of UK domestic air passengers. 

Therefore, focusing on these airports provides a significant opportunity to explore the 

potential of utilising EA charging as a flexible resource to support the power grid, while 

meeting the demand for electrified air transport in the UK. 

Based on the analysis in Chapter 3, there are two technical approaches to recharge the EA 

batteries. The first approach is to implement fast chargers, which aims to recharge EA 

batteries during the ground handling process for the flight similar to the fuel refilling. 

However, flight schedule data from London Heathrow Airport shows that domestic flights 

typically park at the gate position for only 30 to 50 minutes [181], which is a limited time 

period to recharge the EA batteries for medium-range aircraft with high-power chargers 

(50 MW level chargers for the proposed EA). There are significant technical barriers to 

develop the chargers for EA, such as power capacity, overheating, battery degradation, 

and the network constraints.  

As an alternative, the battery swap approach is proposed, where all EA batteries can be 

recharged on the ground for a flexible time period and then swapped to the arrival aircraft 

during the ground handling process [29]. The battery swap is chosen as the suitable 
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technology for integrating into existing airport operation management in our case studies, 

as it avoids the need for 50 MW level chargers with long battery charging time, which 

would delay the flight journey.  

Aviation is a highly scheduled transportation monde that allows airport operators to 

manage the arrival and departure times of aircraft and fit the battery swap process in 

between. The battery swap process is conducted together with the ordinary cargo loading 

and unloading processes, taking around 30 minutes after the EA has parked at the apron 

with all passengers de-boarded [29]. Therefore, an analysis of the charging schedule is 

required for the economic dispatch of the airport charging system for battery swap process. 

This ensures that the battery swap process can be effectively integrated into the airport’s 

operation management, providing a reliable and efficient solution for EA batteries. 

Based on our analysis in this study, a significant amount of daily energy consumption, 

amounting to 8.7 GWh daily, is required for EA charging in the top 8 UK airports. Such 

high energy demands cannot be fully met by grid-level energy supply alone. Therefore, a 

more comprehensive airport energy system that includes gas turbines, PV and microgrid 

is proposed.  

Specifically, the proposed integrated energy system allows for 50% off-grid charging 

using the airport gas turbines and microgrid, which can help relieve the grid-level energy 

requirements. Additionally, 15% of charging energy can be supplied by renewable energy 

sources. By combining these energy sources with grid-level power supply, a robust airport 

microgrid can be created by combining these energy sources with grid-level power supply, 

which can be coordinated to provide super-fast charging to meet the demands of busy 

flight schedules. 

The airport microgrid with combined gas turbine, PV as well as grid-level power supply 

allows for a more flexible and reliable charging system for electric aircraft. By utilising 

a combination of energy sources, we can ensure that the energy demands for charging are 

met, while also reducing the reliance on the grid and increasing the use of renewable 

energy. This energy system can also help mitigate the challenges of high-power charging 

and battery range anxiety, allowing for a more efficient and effective electrification of air 

transport in the UK. 
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6.2.1 Flight schedule driven charging requirement 

Over the past decade, aircraft designers have developed more than 50 all-electric 

conceptual, experimental, and commercial aircraft. While the current highest battery 

specific energy level of around 250 Wh/kg is insufficient to power a middle-size all-

electric aircraft, research indicates that the battery specific energy has the potential to 

reach 800 Wh/kg by the mid of the century [5]. Based on the research [3], an 800 Wh/kg 

battery would enable all-electric A320 to carry a 28 MWh battery and transport 180 

passengers over a range of 500 nm, which would cover the regional and domestic flight 

missions in the UK. As a result, the commercial all-electric aircraft is anticipated to enter 

into service for the UK domestic air transport by 2050 [5]. In this chapter, the novel 

concept of A2G flexibility is investigated using an all-electric aircraft with a battery 

specific energy of 800Wh/kg, a 500 nautical-mile design range, and 180 passenger 

capacity, as designed in [3]. Table 6-1 lists technical assumptions of all-electric A320 

including the aircraft battery and charging. The following sections present case studies 

that investigate the interaction between electrified air transport and the power grid, with 

the all-electric A320 aircraft used as a reference. 

Table 6-1 The parameters of the all-electric aircraft A320 [3] 

Design property 
All-electric 

aircraft 

Passenger 180 

Distance Range (km/nm) 926/500 

Battery Energy (MWh) 28 

Nominal charging and discharging power (MW) 5 

Charging/discharging efficiency (%) 97 

 

To meet the peak charging demand of the EA, a detailed analysis of the flight schedules 

is conducted. The peak charging hours are determined based on the number of chargers 

available at the airport. After analysing the flight schedules, it is observed that there are 

very few flights during 00:00 to 07:00. Therefore, to ensure that the EA batteries are fully 

charged batteries for the entire day’s flights, it is planned to recharge 30% of daily energy 

requirement of all EA batteries during that time period. To facilitate this, the initial 

number of swappable batteries are set equal to the number of arrival flight at the peak of 
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the flight schedule in each airport. The number of chargers required can be calculated 

using a formula that takes into account the energy capacity of the battery and the charging 

time required, as shown following. 

𝑁𝑐 =
𝛽𝑒 × 𝐸𝑏𝑎𝑡𝑡

𝐸𝐴

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 ∙ 𝑇𝑛𝑖𝑔ℎ𝑡
 6.1 

where 𝑁𝑐 is the number of battery chargers at each airport, 𝛽𝑒 is the coefficient of the 

required energy for charging EA batteries during the 7 hours night period, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 is the 

rated power of each battery charger, 𝐸𝑏𝑎𝑡𝑡
𝐸𝐴  is the total energy required by the EA batteries 

of daily scheduled flights, 𝑇𝑛𝑖𝑔ℎ𝑡 is the night charging period defined from 00:00 to 07:00. 

The capacity of the transformer is determined based on the maximum power required to 

charge the EA on the busiest day of flight schedule. The number of daily domestic flights 

travelling to and from these 8 major UK airports are shown in Table 6-2. This ensures 

that the transformer for each airport can handle the peak charging demand without causing 

any overloading issues or system failures.  

Table 6-2 8 major UK airports with number of daily flights 

Airport IATA code Num. of daily flights* 

London Heathrow LHR 240-260 

Edinburgh EDI 230-240 

Glasgow GLA 160-170 

Manchester MAN 100-120 

Birmingham International BHX 70-80 

Belfast International BFS 50-80 

London Gatwick LGW 50-60 

London Stansted STN 40-50 

* The number of flights listed in this table specifically pertains to those travelling between the selected 

airports and does not represent the total number of all flights. 

In addition, to ensure reliable energy operation, the installed capacity of airport gas 

turbine is assumed to be equal to the capacity of the grid transformer. This means that if 

one of these energy devices experiences an outage or failure, the other can still supply 

power to meet the peak charging demand of the EA. This approach follows the ‘N-1’ 
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criteria, which means that the system can still operate with a single contingency event, 

ensuring a high level of resilience in case of any unforeseen circumstances. 

6.2.2 PV capacity and output profile 

The estimation for the maximum PV installation capacity considers the land availability 

at each individual airport. This study focuses on identifying the ideal locations for PV 

installation, such as car park canopies and building rooftops, which can vary in capacity 

based on the type of PV module technology and mounting systems used. However, as the 

main focus of this research is on the EA charging system, the calculation of PV capacity 

will only be based on the initial and high-level estimation of the area of canopy and 

building rooftop.  

To estimate the PV installation capacity, the worldwide standard of PV land size over 

installed capacity is used as a reference, which is 1 MW per 2 hectares (5 acres) [182]. 

This standard will be applied to estimate the PV capacity in airport areas. Additionally, 

the 2019 PV generation profiles of relevant cities where the airports are located are 

calculated based on this model. The PV panels are installed horizontally, which means 

the installation tilt is 0°. This represents an extreme scenario where the PV panels are 

installed without any tilt angle. 

The results of the PV installation capacity for the top 8 UK airports are summarised in 

Appendix A. The estimation considers the land availability and location of the airport and 

may vary depending on the specific details of each airport's layout and infrastructure. 

The power output profile of airport PV generation has been calculated using the Global 

Solar Energy Estimator (GSEE) model [183] , which is a widely used and reliable model 

in the field of solar energy. This model takes into account the irradiance data of the PV 

panels and the estimated maximum PV installation capacity for the airport.  

6.2.3 Gas turbine operation parameters 

The power output of the gas turbine can be calculated as Eq. (6.2). 

𝑃𝑡
𝐺𝑇 = 𝜂𝐺𝑇 ∙ 𝐺𝑡

𝐺𝑇 6.2 

where 𝑃𝑡
𝐺𝑇 is the power output of the gas turbine at time t. 𝜂𝐺𝑇 is the efficiency of the gas 

turbine. 𝐺𝑡
𝐺𝑇 is the gas input at time t. 
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To enable switch-on and switch-off control for gas turbine scheduling, the gas turbine 

sate flow model [184] is utilised. This model includes three operation statuses of gas 

turbine that considers switch control and is formulated using Equations (6.3-6.7). The 

model also introduces state binary variables, including the operation state variable 𝑣𝑡
𝐺𝑇 , 

starting up integer variable 𝑦𝑡
𝐺𝑇, and shutting down integer variable 𝑧𝑡

𝐺𝑇. The transition 

between these variables is formulated using a set of equations that describe the physical 

constraints and operating limits of the gas turbine, including ramp-up and ramp-down 

limits.  

𝑦𝑡
𝐺𝑇 − 𝑧𝑡

𝐺𝑇 = 𝑣𝑡
𝐺𝑇 − 𝑣𝑡−1

𝐺𝑇  6.3 

𝑦𝑡
𝐺𝑇 + 𝑧𝑡

𝐺𝑇 ≤ 1 6.4 

𝜆𝐺𝑇,𝑚𝑖𝑛 ∙ 𝑃𝐺𝑇
𝑚𝑎𝑥 ∙ 𝑣𝑡

𝐺𝑇 ≤ 𝑃𝑡
𝐺𝑇 ≤ 𝜆𝐺𝑇,𝑚𝑎𝑥 ∙ 𝑃𝐺𝑇

𝑚𝑎𝑥 ∙ 𝑣𝑡
𝐺𝑇 6.5 

𝑅𝐷 ∙ 𝑣𝑡−1
𝐺𝑇 ≤ 𝑃𝑡

𝐺𝑇 − 𝑃𝑡−1
𝐺𝑇 ≤ 𝑅𝑈 ∙ 𝑣𝑡

𝐺𝑇 6.6 

𝑈𝑇 ∙ 𝑦𝑡
𝐺𝑇 ≤∑ 𝑣𝑡

𝐺𝑇
t+𝑈𝑇

𝑙=t
≤ 𝐷𝑇 ∙ (1 − 𝑧𝑡

𝐺𝑇) 6.7 

The operation boundaries of the gas turbine are critical factors to be considered in 

optimising the energy dispatch. To this end, the constraints (6.5) and (6.6) are formulated 

to define the upper and lower limits and the ramp-up and ramp-down limits of the gas 

turbine’s power output. These constraints are essential to ensure that the gas turbine 

operates within a safe and efficient range while providing the required power output. 

Additionally, the start-up time of gas turbine is taken into consideration by incorporating 

Equation (6.7). The parameters of the gas turbines can be found in [81]. By considering 

these constraints and parameters, the gas turbine scheduling can be optimised to ensure 

that the power output is both safe and efficient, making it a valuable tool for integrating 

renewable energy sources into the energy grid. 

6.2.4 Battery swap state flow model 

The process of battery swap process for EA is a complex task that can be represented 

mathematically as a job-shop problem [34]. To describe this process, a state flow model 

has been developed and used in this study, based on existing literature. The model used 

represent the EA battery swap process is formulated using Equations (6.8-6.14) that 

capture the key variables and constraints involved in the process. 
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∑ (𝑛𝑐,𝑡
𝑖 + 𝑛𝑤,𝑡

𝑖 )
𝑇𝑐

𝑖
+ 𝑛𝑓,𝑡 = 𝑁𝑏 6.8 

𝑛𝑑𝑐,𝑡
𝑖 + 𝑛𝑑𝑤,𝑡

𝑖 = 𝑛𝑑,𝑡−𝑇𝑏𝑠
𝑖  6.9 

𝑛𝑐,𝑡
𝑖 = 𝑛𝑐,𝑡−1

𝑖−1 + 𝑛𝑑𝑐,𝑡−1
𝑖−1 + 𝑛𝑤𝑐,𝑡

𝑖  6.10 

𝑛𝑤,𝑡
𝑖 = 𝑛𝑤,𝑡−1

𝑖−1 + 𝑛𝑑𝑤,𝑡−1
𝑖−1 − 𝑛𝑤𝑐,𝑡

𝑖  6.11 

𝑛𝑓,𝑡 = 𝑛𝑓,𝑡−1 + 𝑛𝑐,𝑡
𝑇𝑐 −∑ (𝑛𝑑,𝑡

𝑖 )
𝑇𝑐

𝑖
 6.12 

∑ (𝑛𝑐,𝑡
𝑖 )

𝑇𝑐

𝑖
≤ 𝑁𝑐 6.13 

𝑛𝑐,1
𝑖 = 𝑛𝑐,𝑇

𝑖 , 𝑛𝑤,1
𝑖 = 𝑛𝑤,𝑇

𝑖 , 𝑛𝑓,1 = 𝑛𝑓,𝑇 6.14 

Eq. (6.8) describes the balance of the total number of batteries 𝑁𝑏, which remains constant 

in three charging states including charging 𝑛𝑐,𝑡
𝑖 , fully charged 𝑛𝑓,𝑡 and empty  𝑛𝑤,𝑡

𝑖 . The 

battery swapping process is governed by the constraint represented by Equation (6.9). this 

equation defines the process of dividing depleted batteries into two groups: the direct 

charge group 𝑛𝑑𝑐,𝑡
𝑖 , and the waiting for charge group 𝑛𝑑𝑤,𝑡

𝑖  after the time 𝑇𝑏𝑠 spent on 

battery swapping. The number of charging and waiting batteries can be calculated using 

Equations (6.10) and (6.11), respectively. Additionally, 𝑛𝑤𝑐,𝑡
𝑖  represents the number of 

batteries transferred from the waiting to the charging state at time t.  

The number of fully charged batteries is calculated by summing up the number of fully 

charged batteries and subtracting the depleted (swapped) batteries ∑ (𝑛𝑑,𝑡
𝑖 )

𝑇𝑐
𝑖 . The daily 

repetitive operation pattern of the airport battery swapping process ensures that the 

number of batteries with SoC in each state remains equal between the beginning and end 

of the day, as formulated in Equations (6.12-6.14). Notably, all the variables in Eq. (6.8)-

(6.14) that represent the numbers of batteries are integer. 

6.2.5 Electrical power balance 

To calculate the total charging demand of EA battery accurately, it is necessary to 

consider both the number of charging batteries and the rated power of the battery chargers. 

This information can be used to determine the total amount of power required to charge 

all the batteries in a given time period. By taking into account both of these factors, a 
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more accurate estimation of the total charging demand can be formulated as Equation 

(6.15), enabling better planning and management of the airport's energy resources. 

𝑃𝑡
𝐸𝐴𝑐 =∑ (𝑛𝑐,𝑡

𝑖 )
𝑇𝑐

𝑖
∙ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 ∙ 𝜂𝐸𝐴𝑐 6.15 

where 𝑃𝑡
𝐸𝐴𝑐 is the charging power output of EA battery chargers. 𝜂𝐸𝐴𝑐 is the charging 

efficiency of EA batteries. 

To ensure a stable and reliable energy supply, the power generated from the grid, gas 

turbines, and PV panels must be balanced with the EA charging demand. This balancing 

process represented by Equation (6.16) is crucial to prevent overloading the system, 

which can result in power outages or damage to the equipment. 

𝑃𝑡
𝑔𝑟𝑖𝑑

+ 𝑃𝑡
𝑃𝑉 + 𝑃𝑡

𝐺𝑇 = 𝑃𝑡
𝐸𝐴𝑐 6.16 

where 𝑃𝑡
𝑔𝑟𝑖𝑑

 is the power import from the grid, 𝑃𝑡
𝑃𝑉 is the power generated by PV, 𝑃𝑡

𝐺𝑇 

is the power generated by the gas turbine. 

To ensure the reliable and safe operation of the airport energy system, it is important to 

ensure that the power output of each energy source is within its capacity. This is achieved 

by imposing constraint (6.17) on the power output of the grid, gas turbines, and PV panels.  

0 ≤ 𝑃𝑡
𝑢𝑛𝑖𝑡 ≤ 𝑃𝑢𝑛𝑖𝑡,𝑚𝑎𝑥,   𝑢𝑛𝑖𝑡 = 𝑃𝑉, 𝑔𝑟𝑖𝑑, 𝐺𝑇 6.17 

  

6.3 Aviation-to-Grid Frequency Response 

The EA charging system is designed to not only provide power for the EA charging, but 

also offer primary and secondary frequency response to the power grid. The system 

utilises the batteries of the electric aircraft and the airport gas turbine to provide this 

response. A control strategy is developed to manage the dispatching of the EA batteries 

and gas turbines by monitoring the real-time system frequency. A frequency response 

control is also established to mitigate frequency deviation. The charging scheme for the 

EA will be scheduled on an hourly basis, based on the flight schedule, along with the 

battery swap process. Utilising the EA charging system for frequency response through 

this innovative approach can provide a fast and high-power A2G frequency response. 



Chapter 6 Power Grid Ancillary Services Provided by the Aviation-to-Grid Flexibility 

113 

 

This approach has the potential to significantly reduce the risk of power outages that may 

be caused by a frequency drop. 

6.3.1 Objective function of EA charging system operation with A2G 

frequency response 

In order to determine the optimal charging schedule for the EA at the airport, a MILP 

optimisation problem is formulated. The main objective of this optimisation is to 

minimise the overall energy operation costs of the airport EA charging system. The costs 

include the electricity purchase cost from the grid, the gas supply cost for the airport gas 

turbine, and the revenue earned from providing frequency response services to the power 

grid. By solving this MILP optimisation problem, a charging schedule is derived, which 

ensures the EA batteries are fully charged and available for flight operations while 

minimising the overall energy operation costs of the airport. The optimised charging 

schedule also enables the airport to reserve for the frequency response services to the 

power grid, which can generate additional revenue for the airport. 

To calculate the frequency response revenue, Eq. (6.18-6.19) is used. These equations 

take into account the energy costs, the amount of power that the airport can provide for 

frequency response, and the market price for frequency response services. 

𝑂𝑏𝑗 = 𝑚𝑖𝑛 (∑ 𝑑𝑠(𝑂𝐶𝑠 − 𝑅𝐴2𝐺,𝑠)
2

𝑠=1
) 6.18 

𝑂𝐶𝑠 =∑ (𝑃𝑠,𝑡
𝑔𝑟𝑖𝑑

∙ 𝜋𝑡
𝑒 + 𝐺𝑠,𝑡

𝐺𝑇 ∙ 𝜋𝑔) ∙ ∆𝑡
𝑇

𝑡=1
 6.19 

where 𝑂𝐶𝑠 is the operation costs of EA charging system. 𝜋𝑡
𝑒  is the time-of-use electricity 

price. 𝜋𝑔 is the gas price. 𝑑𝑠 is the number of days in one season (230 days for summer, 

135 days for winter). 

To ensure grid stability, a mechanism named “Firm Frequency Response” is triggered 

when the grid frequency drops below a certain threshold of 49.7Hz [185]. In this 

mechanism, the charging batteries of the EA charging systems will reverse their charging 

state to discharging, providing double the volume of frequency response to their rated 

power. All batteries are required to sustain their output for 30 seconds, as mandated by 

primary response, after which the batteries will linearly reduce their power output at the 
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rate of 0.5 MW/s in order to prevent instantaneous power imbalance [31][32]. The A2G 

frequency response system comprises both gas turbines and EA batteries, and it is 

illustrated in Figure 6-1, which displays the primary and secondary frequency response 

control for both of these components. 

 

Figure 6-1 Primary and secondary frequency response control for gas turbines and EA 

batteries 

Since primary response only requires the batteries to discharge for 30 seconds, the SoC 

of the batteries is estimated to decrease by less than 5%, which will not have any 

significant impact on the scheduled flight operations. It is worth noting that the batteries’ 

discharging state will not go beyond the minimum SoC limit, which is set at 20% to ensure 

the batteries' longevity. 

The gas turbine plays an important role in the frequency control of the power system. It 

is capable of participating in both primary and secondary frequency control as long as the 
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operation reserve of gas turbine is available [188]. The primary frequency control requires 

the gas turbine to automatically increase or decrease its power output within a certain 

timescale when a grid frequency event occurs. [195] 

The secondary response is provided by the gas turbines to sustain the system frequency 

for a longer period of time, usually around 30 minutes. The total primary response power 

and secondary reserve energy provided by the gas turbines can be calculated by Eq. (6.20-

6.23). By participating in the frequency response, the gas turbines can generate additional 

revenue, which is considered as one component of the objective function of the MILP 

optimisation problem. This revenue can help to offset the costs of electricity purchase 

from the grid and gas supply, leading to a more economically sustainable charging system. 

∆𝑃𝐵,𝑡
𝑟𝑒𝑠 = 2 ∙ 𝑃𝑡

𝐸𝐴𝑐 6.20 

0 ≤ ∆𝑃𝐺𝑇,𝑡
𝑟𝑒𝑠 ≤ 𝜑𝑟𝑒𝑠 ∙ 𝑃𝐺𝑇

𝑚𝑎𝑥 ∙ 𝑣𝑡
𝐺𝑇 6.21 

∆𝑃𝐴2𝐺,𝑡 = ∆𝑃𝐵,𝑡
𝑟𝑒𝑠 + ∆𝑃𝐺𝑇,𝑡

𝑟𝑒𝑠  6.22 

𝐸𝐴2𝐺,𝑡 = ∆𝑃𝐺𝑇,𝑡
𝑟𝑒𝑠 ∙ 𝑇𝑠 6.23 

where 𝜑𝑟𝑒𝑠  denotes maximum reserve power proportion of gas turbines, ∆𝑃𝐵,𝑡
𝑟𝑒𝑠  is the 

response power from the EA batteries. ∆𝑃𝐴2𝐺,𝑡 is the A2G primary response power. 𝐸𝐴2𝐺,𝑡 

is the A2G secondary reserve energy, ∆𝑃𝐺𝑇,𝑡
𝑟𝑒𝑠  is the response power from gas turbines. 𝑇𝑠 

is the response time of gas turbine, which is 30 minutes. 

The contract between the airport EA charging systems and the GB National Grid for Firm 

Frequency Response will specify a revenue settlement every half hour, regardless of 

whether there is an actual frequency event or not. The primary and secondary response 

reserve revenue will be paid by a fixed tariff rate, which is similar to an insurance 

premium [189]. The frequency response revenue is calculated using the formula shown 

in Eq. (6.24), which takes into account the duration and amount of power delivered by 

the EA charging system to the grid during a frequency event. The revenue earned through 

participating in frequency response programs incentivises the airport operators to 

maintain a reliable and stable grid, while also promoting the integration of renewable 

energy sources and reducing carbon emissions from aviation sectors. 

𝑅𝐴2𝐺,𝑠 =∑ (∆𝑃𝐴2𝐺,𝑡 ∙ 𝑝𝑝𝑟𝑖 + 𝐸𝑠𝑒𝑐,𝑠,𝑡 ∙ 𝑝𝑠𝑒𝑐) ∙ ∆𝑡
𝑇

𝑡=1
 6.24 
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where 𝑅𝐴2𝐺,𝑠 is the daily A2G frequency response revenue in summer or winter season. 

𝑝𝑝𝑟𝑖 and 𝑝𝑠𝑒𝑐 are the primary and secondary frequency response revenue respectively. 

6.3.2 A2G frequency response integration to power system 

After the MILP optimisation problem is solved, the results of A2G frequency response 

powers (∆𝑃𝐵,𝑡
𝑟𝑒𝑠 and ∆𝑃𝐺𝑇,𝑡

𝑟𝑒𝑠 ) are input into the frequency response simulation model to 

obtain the frequency response results. The simplified Great Britain (GB) power system 

with inertia estimation [77] was used to analyse the frequency response from the EA 

charging system, as depicted in Figure 6-2.  

 

Figure 6-2 Simplified GB power system model with the A2G frequency response 

control [77] 

This system model includes various parameters, such as power system demand level, 

damping constant, and power system inertia constant, which are specified in [190]. The 

time evolution of system frequency deviation can be mathematically represented by a 

first-order ordinary differential equation in Equation (6.25) [77]. 

2𝐻𝑠𝑦𝑠
𝜕∆𝑓𝑡
𝜕𝑡

+ 𝐷 ∗ 𝑃𝑡
𝐷 ∗ ∆𝑓𝑡 = ∆𝑃𝑚,𝑡 − ∆𝑃𝑑𝑖𝑠,𝑡 + ∆𝑃𝐴2𝐺,𝑡 6.25 

where ∆𝑓𝑡 is the frequency deviation at time 𝑡, 𝑃𝑡
𝐷 (MW) is the power system demand 
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level, and ∆𝑃𝑑𝑖𝑠,𝑡  is the generation power loss, ∆𝑃𝑚,𝑡  is the response power from 

synchronous generators. The 𝐻𝑠𝑦𝑠 (MW/Hz) is the power system inertia constant, which 

represents the total stored kinetic energy in the synchronous generators of the power 

system. 

The synchronous generators are modelled by a governor droop block, a governor actuator 

block, and a turbine block. 𝑇𝐺 is the typical governor actuator time constant of 0.2s. A 

transient droop compensation is introduced between the governor and the turbine which 

is a lead-lag transfer function with time constants 𝑇1 and 𝑇2 at 2s and 12s respectively. 

The turbine model is characterized by a time constant 𝑇𝑇 of 0.3s, which represents the 

mechanical power output following the governor action. 𝐷 (%/Hz) is a single damping 

constant which represents the damping provided by the frequency-dependent loads. These 

parameters capture the characteristics of different governors and turbines in response to 

a frequency change, which can be derived from a frequency deviation event caused by 

power imbalance [190]. The responsive synchronous generators are represented by the 

closed-loop transfer functions Eq. (6.26-6.27). 

𝐺𝑔(𝑠) =
1

1 + 𝑠 ∙ 𝑇𝐺
 6.26 

𝐺𝑇(𝑠) =
1 + 𝑠 ∙ 𝑇1

1 + 𝑠 ∙ 𝑇2𝑇𝑇 + 𝑠2 ∙ (𝑇2 + 𝑇𝑇)
 6.27 

The primary and secondary responses of the gas turbines and EA batteries are coordinated 

through the adoption of droop control, wherein they will operate at a fixed frequency 

deviation and output power level according to the results obtained by solving MILP 

problem. Upon sensing a system frequency below 49.7 Hz, the reserve power from the 

system will be discharged to address the power system frequency drop issue. The dynamic 

behaviour of the system can be described by a set of first-order Equations (6.28-6.29) that 

capture the time evolution of the system's frequency and power output levels. 

𝜕∆𝑃𝑡
𝑢𝑛𝑖𝑡

𝜕𝑡
=

1

𝑇𝑢𝑛𝑖𝑡
(−

∆𝑓𝑡
𝑅𝑢𝑛𝑖𝑡

− ∆𝑃𝑡
𝑢𝑛𝑖𝑡)  , (𝑢𝑛𝑖𝑡 = 𝐵, 𝐺𝑇) 6.28 

∆𝑃𝐴2𝐺,𝑡 = ∑ ∆𝑃𝑡
𝑢𝑛𝑖𝑡

𝑢𝑛𝑖𝑡
  , (𝑢𝑛𝑖𝑡 = 𝐵, 𝐺𝑇) 6.29 

where ∆𝑃𝑢𝑛𝑖𝑡,𝑡 is the response power output from the units (EA batteries and gas turbines). 
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𝑇𝑢𝑛𝑖𝑡 and 𝑅𝑢𝑛𝑖𝑡 are the time delay constant and the droop constant for the EA batteries 

and gas turbines to inject response power to grid.  

6.4 Results and Discussion 

6.4.1 Case studies with input data and assumptions 

The sizing of EA charging systems, as shown in Figure 6-2, is crucial to ensure the 

efficient operation of the system. To achieve this, the A2G frequency response control 

system and the simplified GB power system are modelled on the Simulink platform of 

MATLAB 2019b. The EA charging scheduling problem is solved by the MILP algorithm 

with CPLEX solver, which can provide an optimal solution for the given inputs.  

The modelling process is conducted on a PC with Intel Core i5-8500 CPU @ 3.00 GHz 

and 8 GB RAM. As discussed in the previous section, the flight schedules vary with 

seasonal effect. In the case studies, two weeks’ flight schedules in summer peak month 

(May) and winter peak month (November) are investigated, as shown in Appendix B. The 

flight schedule in 2050 is forecasted by scaling up from the base year 2019, and the effect 

of COVID was also considered, as shown in Appendix C.  

In this chapter, the inertia of the GB power system is based on the long-term inertia 

forecast of a typical value 100 GVA∙s in 2050 across both summer and winter for the 

simplification purpose [191]. 𝑇𝐵 is assumed to be 35 ms that is similar to the normal EV 

charging case [192]. 𝑇𝐺𝑇 is set at 10s according to reference [193]. The maximum reserve 

power proportion of gas turbines is assumed to be 15%. The droop constants of the EA 

batteries and gas turbines are assumed to be 2.5% and 5% respectively. The sizing of EA 

charging system is shown in Table 6-3. 

The national demand profiles on typical summer and winter days are utilised in the case 

studies. The total power system demands are 41.6 GW as the winter maximum demand 

and 21.2 GW as the summer minimum demand, respectively. In order to maintain 

consistency with the power loss event of 2019, the national demand profiles from the 

same year are utilised in this analysis. The simulated generator loss is assumed to be 1,800 

MW, which is equivalent to the largest generators loss at Sizewell nuclear power station 

in the UK. The power loss is assumed to happen repeatedly in every 30 minutes interval 

for test.  
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Table 6-3 Sizing of EA charging equipment and airport energy resources 

Airport 
Grid 

(MVA) 

PV 

(MW) 

GT 

(MW) 

Num. of 

Batteries 

Num. of 

Chargers 

LHR 180 50 180 260 36 

EDI 170 17 170 240 34 

GLA 120 7 120 170 24 

MAN 85 17 85 120 17 

BHX 60 21 60 80 12 

BFS 60 11 60 80 12 

LGW 45 43 45 60 9 

STN 35 19 35 50 7 

For airport energy purchase from grid, the gas price is stable at 0.038 £/kWh, while the 

TOU pricing mechanism of electricity price is introduced as £0.07 (00:00-07:00), £0.15 

(10:30-16:00 and 21:00-24:00), and £0.2 (07:00-10:30 and 16:00-21:00) per kWh. The 

primary A2G frequency will receive a stable capacity revenue which is assumed to be 8 

£/MW per 30 min, while the secondary response power will receive a payment for 

reserved energy (10 £/MWh per 30 min). The national demand profiles on a typical 

summer and winter day in 2019 are utilised in the case studies as shown in Figure 6-3. 

 

.  

Figure 6-3 UK national demand in summer and winter typical days with TOU electricity 

price 
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6.4.2 Energy dispatch results of EA charging system 

Figure 6-4 shows the hourly EA charging supply and demand driven by the power 

generation dispatch with defined flight schedules. The results indicate that the EA 

charging demand patterns are different to the flight schedules due to the battery swap with 

optimal energy dispatch that enables the charging demand flexibility in the airport 

operation. In terms of power generation, the power drawn from the grid is significantly 

high during the night from 00:00 to 07:00, while gas turbines supply the most EA 

charging demand during the daytime and in the evening. This is because the electricity 

price is cheaper during the night which incentivises the EA charging system to purchase 

electricity from grid to fully change batteries for the oncoming flight missions.  

 

Figure 6-4 Energy dispatch results of the 8 UK airports. (a) Summer, (b) Winter. 

The advantage of this EA charging arrangement is to compensate the national power 

system demand profiles across the 8 UK airports, where the overnight national demand 

valley can be filled by EA charging, while the day and evening demand peak can be self-

dispatched by airport gas turbines. To maximise the PV generation, the EA charging 
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system dispatches the maximum available PV generation during the daytime, which 

ensures the 100% utilisation of renewable PV generation. Due to the seasonal effect of 

solar energy source in particular the output reduction over winter period, gas turbines are 

operating at a higher level in the winter daytime. 

6.4.3 A2G frequency response results 

The A2G frequency control mechanism is triggered when a frequency deviation such as 

power generation loss occurs. Figure 6-5 presents a comparison of the frequency 

deviation profiles with and without A2G frequency response in response to a 1,800 MW 

generation loss on the GB power system at 06:00 and 23:00 in summer and winter, 

respectively.  

 

Figure 6-5 Frequency drop in different cases with and without A2G response 

(1,800MW loss): (a) Summer 06:00 am, (b) Winter 06:00 am, (c) Summer 23:00 pm, 

(d) Winter 23:00 pm 
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The results reveal that A2G frequency response is most effective at 06:00 in summer 

(Figure 6-5 a), where it prevents the frequency nadir from dropping to 49.05 Hz and 

increases it to 49.55 Hz compared to non-A2G response. This is because A2G can provide 

high response power during a period of no flight schedules, coupled with low system 

inertia during the summer minimum demand period. On the other hand, A2G provides 

the least effective frequency response at 23:00 in winter (Figure 6-5 d) due to peak flight 

schedules. At this time, the EA charging system prioritizes its reserve power to meet 

aviation requirements rather than grid frequency response. The study also highlights the 

effectiveness of EA batteries and gas turbines in providing frequency response services. 

At 06:00 (Figure 6-5 a-b), the primary frequency response is mainly provided by EA 

batteries, while at 23:00 (Figure 6-5 c-d), gas turbines provide the frequency response. 

The results show that gas turbines are three times less effective than EA batteries in 

restoring frequency nadir due to slower response times. 

Figure 6-6 (e) and (f) show a series of frequency nadirs – the minimum post-contingency 

frequency after the system suffers a loss of 1,800 MW generation in every 30 minutes 

interval with and without A2G frequency response. Comparing with and without A2G 

scenario, the half-hourly frequency nadir improved significantly by approximately 0.4 Hz 

during the night and 0.2 Hz in the day. The effectiveness of A2G frequency response in 

improving frequency nadir is dependent on the power system inertia, and A2G becomes 

more effective in the summer and 00:00-07:00 period due to the weak system inertia. 

When the frequency event occurs, the charging batteries not only stop charging but also 

being able to fully discharge the power back to the grid. This makes the “double effect” 

of frequency response capacity. Therefore, the night frequency nadir improved twice as 

much as daytime due to the EA batteries which are fully available to provide frequency 

response 00:00-07:00 when no flights are scheduled. During the daytime the frequency 

response is mainly provided by gas turbines. In a realistic power system operation 

scenario, the frequency contingency events will not happen repeatedly at such a short 

interval. As a result, this study always assumes that each frequency events in a half-hourly 

interval are independent and there is sufficient power reserve capacity to restore the 

frequency before the next contingency event. Overall, the average frequency nadir can be 

improved by 0.31 Hz in summer, and 0.23 Hz in winter due to the A2G frequency 

response services. Most importantly, the number of Infrequent Infeed Loss Risk (defined 
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as below 49.5 Hz [186]) can be reduced by 83.33% in summer and 68.75% in winter, 

which significantly reduce the likelihood of significant frequency deviations with A2G 

frequency response services.  

6.4.4 Response power and energy from A2G system 

The amount of response power available from A2G frequency response through EA 

batteries and airport gas turbines is calculated, and the results are shown at every half an 

hour for a summer and winter day in Figure 6-6 (a-b).  

There are 900 to 1,200 MW response power capacity from 00:00 to 06:30 when there is 

no flight, and 300 to 900 MW capacity when the EA requires charging power. The higher 

power response capacity during night is caused by the full amount of EA batteries that 

are available at airports overnight. In the peak flight scheduling periods of 20:00 - 22:00 

in summer and 19:00 - 21:00 in winter, the majority of EA batteries are used to meet 

aviation requirements, therefore less power response capacity is observed. Such response 

power capacity has a strong impact by the EA charging schedules. To discuss the response 

power capacity from different sources, the EA batteries provide 100% of response power 

capacity overnight and around 80% - 90% capacity during the day, gas turbines can only 

provide around 10% to 20% response power capacity from 07:00 to 23:00. This is because 

the response power of gas turbines for frequency control can only provide response power 

when the turbines are dispatched. Overnight due to the low electricity price, the charging 

power is mainly from the external power grid with no gas turbines dispatchable overnight 

to provide response power capacity. For the rest of time, the A2G system provides a 

combined response power from EA batteries and gas turbines.  

The response energy provided by EA batteries and gas turbines is calculated in Figure 

6-6 (c) and (d). Gas turbines can provide more than 30 MWh response energy on most 

occasions, with peak response energy of 35 MWh in both summer and winter. However, 

the EA batteries can only provide response energy around 10 to 15 MWh (overnight) and 

5 to 10 MWh (daytime). The reason for gas turbine to provide much higher response 

energy is due to the sustained power output of gas turbine over a longer period of 30 

minutes comparing with the constrained response time of only 30 seconds for EA batteries. 

The response energy provided by gas turbines is up to four times higher than EA batteries. 
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Figure 6-6 Frequency response power and energy from the EA batteries and gas turbine. 

(a) response power (summer), (b) response power (winter), (c) response energy 

(summer), (d) response energy (winter), (e) Frequency nadir (summer), (f) Frequency 

nadir (winter) 

6.4.5 Response revenue and charging costs 

The annual EA charging costs with A2G frequency response revenue are shown in Figure 

6-7. The EA charging costs consist of two main parts: the grid electricity purchase and 

the gas turbine energy consumption, which are based on the electricity and gas prices 

provided. The calculated EA charging costs across 8 UK airports demonstrate a balanced 
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expenditure on electricity and gas usage for all airport size with flight schedule variation. 

The annual frequency response revenue is calculated in Eq. (6.24). In average, the 

frequency response revenue can off-set 19.8% to 30% of charging costs across 8 UK 

airports. The total revenue generated from A2G frequency response services is estimated 

at £46.58 million. 

 

Figure 6-7 Annual EA charging costs and A2G frequency response revenue for 8 UK 

airports 

6.4.6 Sensitivity analysis of A2G generation capacity 

A sensitivity analysis has been conducted to investigate the impacts of generation 

capacity on the energy dispatch of the EA charging system, as well as the associated A2G 

frequency response power and energy. Two additional scenarios are considered: Scenario 

2 with half the gas turbine capacity and Scenario 3 with half the grid transformer capacity.  

Figure 6-8 presents a comparison of the energy dispatch simulation results for these two 

scenarios with the base case. In scenario 2 (illustrated in Figure 6-8 b), with a 50% 

reduction in gas turbine capacity, a portion of the daily EA charging demand shifts to the 

overnight period, where it is supplied by grid electricity. As a result, the gas turbine 

generation profile becomes flattened and constrained by the decreased capacity.  

In scenario 3 (depicted in Figure 6-8 c), with a 50% reduction in grid transformer capacity, 

the grid electricity is insufficient to meet the EA charging demand overnight. This 

situation necessitates the scheduling of the gas turbine to fulfil approximately 30% of the 

charging demand. Additionally, the gas turbine is required to generate more power during 
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daytime hours to offset the energy deficit resulting from the insufficient EA charging 

overnight. 

 

Figure 6-8 Energy dispatch and EA charging demand with reduced generation 

capacities 
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Figure 6-9 presents the response power and energy provided by the 50% reduced capacity 

of gas turbine or grid transformer, along with the frequency nadir simulation results 

subject to half-hourly power loss events.  

 

Figure 6-9 Frequency nadir (a), response power (b), and response energy (c) by reduced 

generation capacity of grid electricity and gas turbine 

Scenario 2 (half gas turbine) exhibits an uneven distribution of response power between 

day and night, as well as less response energy due to the 50% reduction in gas turbine 
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participation in providing sustained response energy for secondary response timescales. 

Scenario 3 shows a 0-180 MW lower response power during the night and a 0-160MW 

higher response power during the day. This is attributed to increased gas turbine 

participation in energy dispatch when grid supply capacity is halved, resulting in a more 

balanced distribution of response power and energy between day and night.  

However, the base case scenario with balanced grid and gas turbine capacity is still 

considered the optimal option due to the higher response power provided during low 

system inertia periods. This frequency phenomenon can be observed in the 24-hour 

frequency nadir results shown in Figure 6-9 (a), where the base case with balanced 

generation capacity effectively manages frequency nadirs for both day and night.  

6.4.7 Sensitivity analysis of Grid service value 

Another sensitivity analysis is conducted to examine the impact of grid service value on 

energy dispatch strategy and frequency response revenue. Three scenarios are conducted: 

Scenario 1 as a base case with primary response payment of 8 £/MW and secondary 

response payment of 10 £/MWh; Scenario 4 representing a lower grid service value with 

primary response payment of 4 £/MW and secondary response payment of 5 £/MWh; and 

Scenario 5 representing a higher grid service value with primary response payment of 16 

£/MW and secondary response of 20 £/MWh.  

Figure 6-10 presents the dispatch results for lower and higher grid service values. In 

Scenario 4 (Figure 6-10 b), with a lower grid service value, the dispatch strategy tends to 

rely less on gas turbines during the day, opting to increase grid charging to compensate 

for the energy shortfall. This is due to the decreased revenue generated from response 

contracts, causing the dispatch optimisation algorithm to reduce gas turbine usage and 

increase grid charging to minimise charging costs, taking advantage of lower electricity 

prices overnight.  

Conversely, in Scenario 5 (Figure 6-10 c), with a higher grid service value, gas turbines 

are dispatched both during the day and at night, enabling a higher share in gas energy 

dispatch. This strategy maximises the overall revenue of the A2G system by leveraging 

the higher frequency response payments available. 
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Figure 6-10 Energy dispatch results for case studies with lower and higher grid service 

values 

In Figure 6-11 (a), the impact of varying grid service values on the energy dispatched 

from A2G system is illustrated. When there is a higher grid service value, the A2G system 

dispatches more response energy, especially during nighttime hours when the gas turbine 

provides secondary response. Conversely, a lower grid service value results in a reduction 

of response energy by half compared to the base case scenario. In Figure 6-11 (b), the 
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frequency response revenues are analysed across three scenarios with different 

proportions of primary and secondary response. A higher grid service value attracts 

greater frequency response revenue, as both the value and capacity of frequency response 

increase. It is important to note that secondary response revenue, primarily provided by 

the gas turbines, is more sensitive to changes in grid service value. In summary, higher 

grid service values result in increased energy dispatch and frequency response revenues, 

while lower grid service values lead to reduced energy dispatch and revenues. 

 

Figure 6-11 Response energy (a) and response revenue (b) of case studies with lower 

and higher grid service values 
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6.5 Conclusions 

In summary, this chapter proposes a novel approach to A2G flexibility that utilises the 

EA battery charging system with a battery swap method to provide grid frequency 

response services. The smart EA charging system is developed to dispatch power from 

various sources to meet EA charging demand associated with seasonal flight schedules. 

The A2G frequency response system is designed to coordinate primary and secondary 

frequency response control with grid inertia estimation. 

Case studies were conducted in 8 UK airports serving around 37% of the total UK 

domestic air passengers. The results show that the typical A2G frequency response 

services capacity across the 8 UK airports can reach between 900 - 1,300 MW overnight 

and 200 - 900 MW daytime with seasonal variation. The installed generation capacity has 

a significant impact on the energy dispatch strategy and response power and energy of 

the A2G frequency response system. 

The study found that EA batteries can provide frequency response power up to six times 

higher than gas turbines during the day, while 100% of frequency response power is 

provided by EA batteries overnight. However, gas turbines can provide approximately 

four times higher frequency response energy than EA batteries due to sustained gas 

turbine output. The hourly energy dispatch strategy is optimised to achieve minimum 

operation costs by considering EA charging demand, energy prices, and A2G frequency 

response revenue. 

Moreover, the annual revenue generated from A2G frequency response is estimated to be 

£46.58 million, covering 19.8% to 30% of energy consumption costs of EA charging in 

future airports. The average frequency nadir can be improved by 0.31 Hz in summer and 

0.23 Hz in winter due to the A2G frequency response services. The likelihood of 

Infrequent Infeed Loss Risk (defined as power system frequency below 49.5 Hz) can be 

reduced by 83.33% in summer and 68.75% in winter, indicating significant improvements 

in the stability of the power grid. Another sensitivity analysis of grid service value reveals 

that higher grid service value attracts higher frequency response revenue. Specifically, 

secondary response revenue provided by gas turbines is more sensitive to the variation of 

grid service value. sensitivity analysis has been performed to study the impacts of 
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generation capacity on the energy dispatch of EA charging systems, focusing on the A2G 

frequency response volume, revenue, and costs. Two additional scenarios were analysed: 

one with half the gas turbine capacity and another with half the grid transformer capacity. 

The results show that the reduced gas turbine capacity leads to an uneven distribution of 

response power across day and night, and less response energy due to a 50% reduction in 

gas turbine participation for providing sustained response energy to secondary response 

timescales. The scenario with half the grid transformer capacity smooths out the response 

power and energy between day and night. These findings demonstrate the potential of 

A2G flexibility to enhance the reliability and efficiency of the power grid while 

supporting the electrification of aviation, which is crucial for achieving carbon neutrality 

and reducing greenhouse gas emissions in the aviation industry. 
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Chapter 7 Aviation-to-Grid Flexibility through 

Deep Reinforcement Learning 

7.1 Introduction 

This chapter proposes a novel DRL-based dispatch approach for EA battery recharging 

systems, designed to provide fast frequency response (FFR) services to power grid. The 

Deep Q network (DQN) approach is employed to solve the proposed problem. A case 

study encompassing eight major UK airports and the GB power system demonstrates the 

feasibility of the proposed approach, utilising the DQN method for problem-solving. The 

results indicate that UK airport operators could reduce the electricity purchasing cost by 

58% by participating in FFR services. To examine the impact of rated EA battery charging 

power, three scenarios with 5 MW, 7 MW, and 14 MW chargers are explored. The 

primary contributions of this chapter can be summarized in three main points: 

• Developed a Markov decision process (MDP) model to optimise the EA battery 

swap process within airports. This model considers various factors such as battery 

charging/discharging rates, state of charge, and the number of available battery 

packs to provide an efficient and reliable battery management system. 

• Developed a model-free DRL approach to tackle the challenges presented by the 

MDP model. The DRL framework enables real-time decision-making that 

accommodates dynamic process of the EA battery swap stations within airports. 

• The FFR price is updated by incorporating power system inertia and frequency 

nadir constraints. This allows for a more accurate interaction between the EA 

battery charging system and the power system FFR price. 

• To validate the multi-area impact of A2G frequency response, simulations based 

on reduced GB power system are performed using DIgSILENT PowerFactory 

software. These simulations demonstrate the effectiveness of the proposed A2G 

frequency response system and its influence on power system stability and 

frequency regulation. 
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This chapter is organised as follows. Section 7.2 illustrates the concept and motivation of 

the proposed Aviation-to-Grid frequency response service, Section 7.4 presents the 

reduced GB power system model and A2G aggregate battery model developed in 

DIgSILENT PowerFactory. Section 7.3 formulates the A2G fast frequency response as a 

MDP and proposes the Deep Q Network (DQN) algorithm to solve the problem. The case 

study is presented in Section 7.5. Section 7.6 concludes this chapter. 

7.2 Aviation-to-Grid Framework 

The foundational assumptions in this chapter are consistent with those in Chapter 6, 

concentrating on the conceptual design of an all-electric version A320 to analyse the 

potential of the A2G FFR strategy. The electric A320 features a passenger capacity of 

180, a flight range of 500 nm, and a 28 MWh battery capacity [3]. To prevent flight 

mission delays due to extended battery charging times, battery swap technology is utilised. 

The first group of flights to be electrified consists of domestic flights within the eight 

busiest UK airports, as depicted in Figure 7-1. To ensure the safe operation of the power 

system, a robust charging infrastructure and efficient recharging scheduling dispatch 

strategies are essential for EA adoption. 

This chapter investigates a DRL approach to establishing A2G as a crucial nexus between 

electrical power and electrified air transport systems. A2G comprises various levels and 

locations of integration between the power system and electrified air transport system, 

including individual airports and national power system operations. A2G flexibility is 

proposed as the ability of electrified air transport to adjust, within defined boundaries and 

at acceptable ramp rates, to balance electricity supply and demand within its system and 

support power systems frequency.  

7.3 DRL-Based Aviation-to-Grid Strategy 

In this chapter, all the EA batteries at the airport are centrally dispatched. To address the 

challenges associated with the highly scheduled EA charging problem, a DRL-based 

dispatch approach is proposed. This approach manages the charging and reserve schedule 

of EA batteries to provide FFR service, while adhering to the flight schedule for each 

airport p, as shown in Eq. (7.1). 
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ℱ𝑝 = [𝐹𝑝,1, 𝐹𝑝,2, ⋯ , 𝐹𝑝,𝑇] 7.1 

7.3.1 Aviation-to-Grid System Model 

The A2G system model dispatches the EA batteries to charge or reserve for frequency 

service, taking into account the interactions between the air transport network and the 

power system. The objective function of the A2G system model aims to minimise the 

total cost, which comprises electricity expenses and FFR revenue: 

min 𝑓 =∑∑(𝜋𝑡
𝑒 ∙ 𝑁𝑐,𝑝,𝑡 ∙ 𝑃

𝑐ℎ𝑎𝑟𝑔𝑒𝑟∆𝑡 − 𝑝𝑟𝑒𝑣,𝑡 ∙ 𝑃
𝑐ℎ𝑎𝑟𝑔𝑒𝑟 ∙ 𝑁𝑝,𝑟,𝑡)

𝑃

𝑝=1

𝑇

𝑡=1

 7.2 

where 𝜋𝑡
𝑒  is the electricity purchase price, 𝑝𝑟𝑒𝑣,𝑡 is the FFR revenue, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 is the rated 

power of EA batteries, 𝑁𝑐,𝑝,𝑡 is the number of charging batteries for at airport p, 𝑁𝑝,𝑟,𝑡 is 

the number of EA batteries reserving for FFR at airport p. 

Subject to: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑝,𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 7.3 

0 ≤ 𝐸𝑝,𝑖,𝑡 ≤ min (
𝐸𝑏𝑎𝑡𝑡
𝐸𝐴 (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑝,𝑖,𝑡)

𝜂∆𝑡
, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟) 7.4 

1) Battery Swap Process: At the start of each step, the battery swap process is carried out 

if there are flight missions at this step. First, the list of SOC values of EA batteries 

𝑆𝑂𝐶𝑝,𝑖,𝑡 is sorted in ascending order. Next, the first 𝐹𝑝,𝑡  batteries in the list undergo 

swapping by exchanging the SOC values with the depleted batteries. The number of EA 

batteries that are swapped to the arrival flights but not yet fully charged is denoted as 

𝑁𝑝,𝑢,𝑡. The constraint violation is represented by the penalty cost 𝐶𝑝𝑒𝑛,𝑡: 

𝐶𝑝𝑒𝑛,𝑡 = 𝜌𝑝𝑒𝑛 ∙ 𝑁𝑝,𝑢,𝑡 7.5 

where 𝜌𝑝𝑒𝑛 is the penalty for violating the constraint. 

2) Battery Charge and Reserve Process: Once the battery swap process is completed, the 

updated SOC list is sorted in ascending order again. Based on the action, 𝑁𝑐,𝑝,𝑡 batteries 

from the first battery that are not fully charged undergo charging. The charged energy for 

each battery is constrained to be less than the energy required for a fully charge, as 

demonstrated in Eq. (7.4). The number of batteries reserved for FFR services at the step 
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equals the number of batteries that are neither charging nor being swapped, as illustrated 

in Eq. (7.6). The complete process of EA battery charging scheduling is depicted in 

Algorithm 7.1. 

𝑁𝑝,𝑟,𝑡 = 𝑁𝑝,𝑏 − 𝑁𝑐,𝑝,𝑡 − 𝐹𝑝,𝑡 7.6 

where 𝑁𝑝,𝑏 is the total number of batteries in the airport p. 

 

Algorithm 7.1: EA Battery Charging Scheduling Algorithm 

Input: 𝑁𝑐,𝑝,𝑡, 𝑆𝑂𝐶𝑝,𝑖,𝑡, 𝑝 = 1,2, … , 𝑃, 𝑖 = 1,2, … ,𝑁𝑝,𝑏, 𝑒𝑝𝑡, 𝐹𝑝,𝑡. 

1: Estimate the FFR price through Eq. (7.9) and system inertia. 

2: for 𝑎 = 1,2, … , 𝐴 do 

3:     Sort 𝑆𝑂𝐶𝑝,𝑖,𝑡 in descending order. 

4:     Replacing first 𝐹𝑝,𝑡 of batteries with depleted 𝑆𝑂𝐶 values. 

5:     Record the number of unsatisfied batteries 𝑁𝑝,𝑢,𝑡. 

6:     Sort 𝑆𝑂𝐶𝑝,𝑖,𝑡 in ascending order. 

7:     Charge first 𝑁𝑐,𝑝,𝑡 of batteries through Eq. (7.3) and (7.4). 

8:     Record the number of reserved batteries 𝑁𝑝,𝑟,𝑡. 

9:     Calculate penalty 𝐶𝑝𝑒𝑛,𝑡 through Eq. (7.5). 

10:     Calculate overall cost 𝑓𝑡 through Eq. (7.2). 

11:     Output the reward 𝑟𝑡 through Eq. (7.11). 

12: end for 

 

7.3.2 Fast Frequency Response Service 

FFR service is a potential scheme in the GB power system, where the price should vary 

over time to reflect the real-time balancing of the power system [194]. In this chapter, the 

FFR price is calculated every time step (30 minutes time interval) based on the power 

system inertia. The inertia of the power system is determined by the generation mix: 

𝐻𝑠𝑦𝑠 =∑ 𝐻𝑔 ∙
𝑆𝑔

𝑆𝑁𝐷𝑔
 7.7 

where 𝐻𝑔 is the inertia constant for generation unit 𝑔. 𝑆𝑔 and 𝑆𝑁𝐷 are rated generation 

power of generation unit 𝑔 and national demand respectively. 

After deriving the inertia of the power system, the required amount of PFR and FFR 

power can be derived by applying the frequency nadir limit [194]. It is important to note 

that the FFR service must be fully delivered within 1 second after a contingency occurs, 

while the PFR is required to be fully delivered within 10 seconds following the 
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contingency. The price of FFR is calculated based on the amount of 𝑃𝑃𝐹𝑅 can be replaced 

by the 𝑃𝐹𝐹𝑅, as shown in Eq. (7.8). 𝑃𝑃𝐹𝑅 represents the aggregation of all generators that 

can provide PFR services. 

(
𝐻𝑠𝑦𝑠

𝑓0
−
𝑃𝐹𝐹𝑅 ∙ 𝑇𝐹𝐹𝑅
4 ∙ ∆𝑓𝑚𝑎𝑥

) ∙
𝑃𝑃𝐹𝑅
𝑇𝑃𝐹𝑅

≥
(𝑃𝑙𝑜𝑠𝑠 − 𝑃𝐹𝐹𝑅)

2

4 ∙ ∆𝑓𝑚𝑎𝑥
 7.8 

where ∆𝑓𝑚𝑎𝑥 is 0.8 Hz, 𝑃𝐹𝐹𝑅 is 1000 MW initially. 𝑇𝐹𝐹𝑅 and 𝑇𝑃𝐹𝑅 equals to 1s and 10s, 

respectively. 

To prevent under-frequency load shedding during the most significant power loss event 

in the GB power system, the required amount of PFR should be calculated using Equation 

(7.9), which is presented below:  

𝑃𝑃𝐹𝑅 ≥
(𝑃𝑙𝑜𝑠𝑠 − 𝑃𝐹𝐹𝑅)

2 ∙ 𝑇𝑃𝐹𝑅

4 ∙ ∆𝑓𝑚𝑎𝑥 (
𝐻𝑠𝑦𝑠
𝑓0

−
𝑃𝐹𝐹𝑅 ∙ 𝑇𝐹𝐹𝑅
4 ∙ ∆𝑓𝑚𝑎𝑥

)

 
7.9 

Finally, the price of FFR is determined by calculating the equivalent amount of PFR that 

an additional megawatt (MW) of FFR can replace, as derived from Eq. (7.9). 

7.3.3 Markov Decision Process 

Reinforcement learning problems should be formulated as a MDP [148]. The following 

discussion covers the state, action, state transition function, and reward function of the 

MDP. 

1) State: The system state 𝑆, as described by Eq. (7.10), comprises the electricity price, 

frequency response price, battery swap demand, and the SOC of the EA batteries. 

𝑆 = {𝑠|𝑠𝑡 = (𝜋𝑡
𝑒 , ℱ𝑝, 𝑝𝑟𝑒𝑣,𝑡, 𝑆𝑂𝐶𝑝,𝑖,𝑡)} 7.10 

2) Action and State Transition Function: To dispatch the number of charging batteries at 

time t, a discrete action space 𝐴 = {𝑎|𝑎𝑡 = 𝑁𝑐,𝑝,𝑡}  is established. Once an action is 

selected, the number of charging batteries 𝑁𝑐,𝑝,𝑡 is used to compute the next system state 

following the process described in Section 7.3.1. 

3) Reward and State-action Value Function: The real-time reward function is formulated 

using the objective function Eq. (7.2) and the penalty function Eq. (7.11), defined as 

follows: 
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𝑟𝑡 = −𝑓𝑡 − 𝐶𝑝𝑒𝑛,𝑡 7.11 

where 𝑓𝑡 represents the value of objective function at time t. 

At each time step t, the optimal action A can be determined by solving the corresponding 

state-action value function: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑟𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 7.12 

The objective of the proposed A2G dispatch problem is to find a policy 𝜋 that maximises 

the state-action value function Eq. (7.13), which is defined by the following equation: 

𝜋 = arg min
∀𝑎∈𝐴

𝑄𝜋(𝑠, 𝑎) 7.13 

7.3.4 DQN Algorithm 

In this chapter, the DQN algorithm is selected as the method for solving the reinforcement 

learning optimisation problem. The DQN algorithm trains the agent to learn a dispatch 

policy based on past observations, iteratively updating the state-value function in 

accordance with the Bellman equation: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑟𝑡 + 𝛾𝑄
𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 7.14 

 

Algorithm 7.2: Training Process of DQN Algorithm 

Initialize: replay memory 𝒟  to capacity 𝒩 , action-value function Q 

with random weights. 

1: Initialize action-value function �̂� with parameter 𝜃 ← 𝜃 

2: for episode = 1,2, … ,𝑀 do 

3:     Initialize sequence 𝑠0 and preprocess 𝜙0 =  𝜙(𝑠0) 
4:     for t = 1,2, … , 𝑇 do 

5:         Select an action 𝑎𝑡 based on the current state 𝑠𝑡. 
6:         Execute 𝑎𝑡 in the environment Algorithm 1. 

7:         Transit to the next stage 𝑠𝑡+1 and obtain the reward 𝑟𝑡. 
8:         Pre-process next state 𝜙𝑡+1 =  𝜙(𝑠𝑡+1). 
9:         Store transition (𝜙𝑡 , 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) in 𝒟. 

10:         Sample random minibatch of transitions from 𝒟. 

11:         Set 𝑦𝑖 = {
𝑟𝑖                                              , 𝒟𝑖 ≠ 0

𝑟𝑖 + 𝛾max𝑎′�̂�(𝜙𝑖+1, 𝑎
′; 𝜃), 𝒟𝑖 = 0

 

12:         Perform a gradient descent step on (𝑦𝑖 − 𝑄(𝜙𝑖, 𝑎𝑖; 𝜃))
2
. 

13:     end for 

14: end for 

Algorithm 7.2 presents the training process of the DQN algorithm. The DQN algorithm 
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enhances the traditional Q learning algorithm in three ways: by incorporating an 

experience playback mechanism, using a fixed goal Q-value network, and narrowing the 

reward value range.  

7.4 GB Power System Model 

Upon acquiring the charging and reserve schedules for EA batteries, the ability of A2G 

flexibility to provide frequency response services to the grid are evaluated using the 

simulation proposed in this section. 

7.4.1 37-Bus GB Power System Model 

In this study, a reduced dynamic equivalent model of the GB power system is employed 

for the case study analysis. This equivalent model was meticulously developed by the 

National Grid using DIgSILENT PowerFactory software, specifically for academic 

research purposes [195][196]. As illustrated in Figure 7-1, the entire transmission 

network of GB power system comprises 37 distinct zones.  

 

Figure 7-1 Reduced GB 37-bus transmission system and UK airport map 
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To better reflect future energy scenarios, the generation mix in the dynamic equivalent 

model has been further modified based on the National Grid's Future Energy Scenario 

[63] as follows: 

• Adjusted the generation mix, specifically by proportionally increasing the 

renewable generation (solar PV and Wind) capacity, and reducing the generation 

power of synchronous generators accordingly.  

• Incorporated EA batteries connected to each zone based on the geographical 

distribution of airports. And added an additional zone was to the model to 

represent Northern Ireland. 

 

Figure 7-2 Structure of a single zone substation in the reduced GB power system model 

 

Table 7-1 Connections of Major Airports 

Airport IATA Code Zone 

London Heathrow LHR 7 

Edinburgh EDI 27E 

Glasgow GLA 28 

Manchester MAN 18 

Birmingham International BHX 14A 

Belfast International BFS S9 

London Gatwick LGW 10 

London Stansted STN 9 
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This modification ensures that the case study analysis considers the anticipated changes 

in energy production and consumption, providing a more accurate representation of how 

the GB power system may evolve over time. The details of modified generation mix can 

be found in Section 7.5. By utilising this updated model, the case study can more 

effectively evaluate the impacts and benefits of the proposed A2G FFR strategy within 

the context of future power system operations and requirements. 

Figure 7-2 illustrates the structure of a single-zone substation within the 37-bus reduced 

GB power system model. Each zone features generators, a load model, and high-voltage 

direct current (HVDC) interconnectors connected to the busbar. Each synchronous 

generator is equipped with standard governor control (GOV), automatic voltage regulator 

(AVR), and power system stabilizer (PSS) [197], ensuring stable and efficient operation 

of the power system. It is important to note that not all generators and connectors are 

installed in every bus. In cases where specific types of generators are not present, the 

power output for those generators will be set to 0. This ensures a more accurate 

representation of the power system and its components. 

Renewable generators, such as PV and WT, are modelled as static generators, meaning 

they are unable to provide frequency response services in this study. Airports are 

integrated into the GB power system through the geographical adjacent busbars. For 

example, London Heathrow (LHR) airport is connected to Zone 7. The specific 

connections of the airports to the GB power system can be found in Table 7-1, which 

details the corresponding zones for each of the airports considered in this study. This 

integration allows for a more realistic and accurate representation of the interactions 

between the electrified air transport system and the power grid, enabling a comprehensive 

assessment of the proposed A2G FFR strategy's impacts and benefits. 

7.4.2 Aggregate EA Battery Energy Storage Model 

The EA batteries are represented by a large-scale battery energy storage model [198], 

connected to the busbars at the representative airport locations. As depicted in Figure 7-3, 

the aggregate EA battery is modelled using a DC Voltage Source and a pulse-width 

modulation (PWM) technique. The PWM enables efficient control of the power 

electronics, ensuring smooth and responsive operation of the battery system. 
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The most critical component of this model, in the context of this study, is the frequency 

controller, highlighted by a red rectangle in Figure 7-3. The frequency controller 

comprises a proportional controller with a deadband feature. This configuration allows 

the controller to effectively manage the frequency response provided by the EA batteries, 

ensuring that they contribute to maintaining the frequency stability of the power system 

as needed. 

By integrating this frequency controller into the EA battery model, the study can 

thoroughly evaluate the impact of the proposed A2G FFR strategy on the power system's 

frequency response and overall performance. This detailed representation of the EA 

battery system provides valuable insights into the potential benefits and challenges of 

implementing the A2G FFR strategy in real-world power grid environments. 

 

Figure 7-3 EA battery model featuring frequency controller implemented in 

DIgSILENT PowerFactory 

7.5 Case Study 

In this section, the proposed DQN network is trained and evaluated using the national 

demand, which ranges from 20 GW to 60 GW, along with 6.5 GW of wind capacity and 

13 GW of PV capacity. The power system connects of 35 inertial generation units 
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including nuclear power plants, gas turbines, hydraulic generators, biomass generators, 

and pump storage units. The initial price for PFR is set as £10/MW/h. The 2019 UK peak 

air transport schedules are utilised as the training database, which is shown in Appendix 

B. The time-of-use electricity price are as follows: a peak tariff is 200 £/MWh (7:30-

10:00, 16:30-21:00), an off-peak tariff is 70 £/MWh (0:00-7:00, 23:30-24:00) and a mid-

peak tariff is 150 £/MWh (10:30-16:00, 21:30-23:00).  

One critical parameter that significantly impacts the results is the rated charging power 

of EA batteries. To investigate the differences resulting from various rated charging 

powers, three case studies are conducted, featuring EA charging powers of 5 MW, 7 MW, 

and 14 MW. The total number of EA batteries stored at each airport is assumed to be 25% 

of the daily arrival flight number. This assumption ensures that the operation of flights 

will not experience delays due to any discrepancies between the availability of fully 

charged batteries and flight demand. By maintaining an adequate supply of charged 

batteries, the system can accommodate fluctuations in flight schedules. 

 

Figure 7-4 National demand and renewable power data for a typical day 

To evaluate the performance of the A2G fast frequency response service, a typical day 

shown in Figure 7-4 is selected for running the test. The simulated system loss for 

frequency events is assumed at 1800 MW in Zone 3, and the events are assumed to happen 

every half an hour. The power system simulations are implemented in DIgSILENT 

PowerFactory. 
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7.5.1 Training Results 

The neural network training process is shown in Figure 7-5, with depicting the average 

cost for all airports. During the initial stage (first 500 episodes), the average cost 

experiences fluctuations at a higher level without a significant downward trend. This 

occurs because the algorithm is still learning the policy through sampling new input data 

and accumulating experience, with the penalties applied for the failure to provide fully 

charged EA batteries. Following this process, the algorithm obtains the optimal action 

strategy, and the overall cost experienced a substantial decrease, from more than 1×107 

£ to less than 2×106 £. After approximately 5,000 training episodes, the average overall 

costs of the three cases converged at 1.53×106 £, 1.28×106 £, and 1.16×106 £ respectively, 

as shown in Table 7-2. The converged average cost values demonstrate that higher rated 

power for EA battery chargers results in lower overall operation costs. The A2G revenues 

for the three cases account for 3.93%, 6.47%, and 13.2% of their respective charging costs. 

The results indicate that higher rated charging power leads to a greater proportion of the 

charging cost being offset by A2G revenue. 

 

Figure 7-5 Convergence of the average rewards curve for DQN 

Table 7-2 Converged Average Charging Cost and A2G Revenue for Three Cases 

Capital (£) 5 MW 7 MW 14 MW 

Charging Cost 1.60×106 1.36×106 1.34×106 

A2G Revenue 6.3×104 8.8×104 1.77×105 

Overall Cost 1.53×106 1.28×106 1.16×106 
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7.5.2 Optimal Dispatch Results 

After the training process is finished, the converged neural network is applied in another 

environment with the selected input data, as shown in Figure 7-4.  

 
Figure 7-6 Dispatch results obtained by the proposed DQN-based approach: Operation 

status of EA battery charging system for all airports with 5 MW (a), 7 MW (b), and 14 

MW (c) rated charging power; Aggregate response power of EA batteries with 5 MW 

(d), 7 MW (e), and 14 MW (f) rated charging power for four airports (EDI, LHR, STN, 

and BHX). 

As shown in Figure 7-6 (a)(b)(c), all the flight mission demands for three cases are 

satisfied. At the beginning of the day, the batteries restored at airports are dispatched to 
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be fully recharged to satisfy the morning peak flight demand. With the rated EA battery 

charging power increases, the fewer EA batteries are charging at the same time across the 

day and the higher number of batteries will be available for participating A2G frequency 

response reserve. In terms of battery dispatch, the number of charging batteries is 

significantly high during the daytime from 09:00 to 20:00, indicating that the EA battery 

charging demand patterns are similar to the flight schedules across the day. The EA 

charging demand is uniformly distributed during the night time, and the number of reserve 

batteries reaches a peak at 07:30, which is exactly the time before the morning peak. This 

is because the cheaper electricity price during the night incentivizes the EA battery 

charging system to charge the swappable batteries ready for the morning peak flight 

missions the following day.  

The response power from four selected representative airports (EDI, LHR, STN, and 

BHX) is shown in Figure 7-6 (d)(e)(f). The EDI and LHR represent large airports while 

STN and BHX represent medium hub airports. The results indicate that large airports 

(EDI and LHR) can provide higher response power than medium airports. Especially 

during night time, large airports can provide 2 to 3 times higher response power than 

medium airports. As shown in Figure 7-6 (d), response powers generated from both large 

airports and medium airports are fluctuated around the lower level (0 to 200 MW) from 

8:00 to 23:00. This is because the lower rated charging power makes it difficult to 

dispatch more batteries to reserve for FFR services. In the case of 7 MW EA battery 

chargers, the large airports can provide relatively stable FFR response power during 

daytime, indicating that the flight mission demand is easier to be satisfied with 7 MW EA 

battery chargers. In contrast, the response powers from large airports fluctuate from 200 

to 600 MW during the daytime in the case of 14 MW EA battery chargers. This is because 

the power system does not need higher response power to save the frequency during high-

inertia time (8:00 to 23:00), and higher response power is concentrated in the night-time 

to prevent severe frequency drop due to low-inertia. 

Figure 7-7 shows the total FFR response power from all 8 major airports for three cases. 

The trends of response power across the day are similar for three cases: high response 

power is available during the night, and there is less response power during the morning 

peak (08:00 – 10:00) and evening peak (18:00 – 23:00). The A2G strategy can provide 
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around 800 – 3200 MW during the night and 300 – 2400 MW during the daytime to the 

GB power system. 

 

Figure 7-7 Total frequency response power across one day from all 8 airports for three 

cases 

7.5.3 A2G Frequency Response Simulation Results 

The A2G frequency response control mechanism is triggered when a large frequency 

deviation such as a power generation loss event happens. Figure 7-8 compares the 

frequency deviation profiles with and without the A2G frequency response due to 1800 

MW generation loss on the GB power system at 02:00, 07:00, and 14:00 with different 

rated charging power of EA battery.  

The most effective A2G frequency response appears at 07:00 (Figure 7-8 (b) and (f)), 

which can restore the frequency nadir from 49.15 Hz to 49.75 – 49.9 Hz by comparing it 

with the non-A2G response case. This is due to the high response power that A2G can 

provide with no flight schedules at 07:00, together with low system inertia during the 

minimum national demand period.  

During the evening peak period from 18:00 to 20:00, the A2G service provides the least 

effective frequency response due to the peak flight schedules so the EA charging system 

will prioritise its reserve charging power to meet aviation requirements instead of grid 

frequency response.  
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Figure 7-8 Frequency variations in difference cases with and without A2G frequency 

response at 02:00(a), 07:00 (b), 14:00 (c) at disturbance bus 3, and 02:00(e), 07:00 (f), 

14:00 (g) at remote bus 28 
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Figure 7-9 shows the frequency nadir – the minimum post-contingency frequency after 

the system suffers a loss of 1800 MW generation every 30 minutes with and without A2G 

frequency response. Comparing with the non-A2G scenario, the half-hourly frequency 

nadir in the case with 5 MW EA battery chargers improved significantly by approximately 

0.4 – 0.9 Hz during the night and 0.2 – 0.3 Hz in the daytime. However, the results for all 

cases with different charger power rating shows that the system frequency is always kept 

within the safe range (higher than 49.5 Hz) in the 1800 MW power loss event across the 

day. At the same time, the frequency nadir results for 7 MW and 14 MW show that the 

system frequency A2G response can save the frequency response to a safer frequency 

range (higher than 49.7 Hz). Most importantly, the A2G frequency response can 

completely avoid Infrequent Infeed Loss Risk (defined as below 49.5 Hz) [62]. The 

average frequency nadir across the day of the base case is 49.23 Hz, while the value was 

improved to 49.66 Hz, 49.80 Hz, and 49.86 Hz by cases with 5 MW, 7 MW, and 14 MW 

A2G chargers. 

 

Figure 7-9 Frequency nadirs across the day for different cases  

7.6 Conclusions  

This chapter proposed a DRL-based approach for dispatching the EA battery recharging 

system to provide FFR services to the power grid with the A2G capability. The results 

demonstrated the feasibility of the A2G FFR strategy for providing essential flexibility 

services to the power grid whilst fulfilling the EA charging demand associated with the 

flight schedules. Considering the EA charging demand, energy prices, and A2G 
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frequency response revenue, the hourly energy dispatch strategy is designed to achieve 

the lowest possible operation costs. Case studies with different levels of rated EA battery 

charging power of 5 MW, 7 MW, and 14 MW are conducted in 8 UK airports that serve 

approximately 37% of the total domestic air travellers in the UK. The results show that 

the typical A2G frequency response services capacity across the 8 UK airports can reach 

between 800 – 3200 MW overnight and 300 – 2400 MW daytime depending on different 

rated EA charging power. The response power is essential for the GB power system, 

especially during the night when the system inertia is low. 

The rated EA battery charging power has a significant impact on the energy dispatch 

results and response power of the A2G frequency response system. The revenues that are 

generated from A2G frequency response are estimated to be 6.3×104 £, 8.8×104 £, and 

1.77×105 £ for 5 MW, 7 MW, and 14 MW EA battery charger, which can cover 3.93%, 

6.47%, and 13.2% of charging power consumption costs in the airports, respectively. The 

average frequency nadir was improved to 49.66 Hz, 49.80 Hz, and 49.86 Hz by cases 

with 5 MW, 7 MW, and 14 MW A2G chargers, and the likelihood of Infrequent Infeed 

Loss Risk can be totally avoided.  

For future work, the competition mechanism between multi-airport EA charging systems 

will be built through multi-agent deep reinforcement learning. Future works will also 

focus on the application of A2G to participate in regional ancillary services for power 

network constraint management. 

In the next chapter, the conclusions of the studies conducted in this thesis are presented, 

along with suggestions for future works. 

 

 



Chapter 8 Conclusions and Future Research 

151 

 

Chapter 8 Conclusions and Future Research 

This thesis has contributed to the planning and design of electrified energy networks for 

sustainable aviation considering the ancillary services (A2G) to the grids from electrified 

aviation technologies including EA, airport parking EVs, and electric airport shuttle buses. 

In this concluding chapter, section 8.1 summarises the key contributions of this thesis. 

Section 8.2 outlines the suggestions for future work. 

8.1 Summary and Conclusions 

The key motivation of the research, as explained in Chapter 1, was to investigate the 

electricity network infrastructure planning for the electrification of aviation with EA and 

the airport-based DER resources that can provide ancillary services to the power grid. 

The key contributions of the thesis are summarised as follows. 

8.1.1 Planning framework for the airport microgrid accommodating EA and 

parking EVs 

As reviewed in Section 3.2, existing research has primarily concentrated on designing EA 

charging system. However, these studies have not investigated the coordinative 

interactions between EA charging system and airport parking EV charging systems. In 

this study, a multi-objective infrastructure planning framework for the airport microgrid 

to simultaneously accommodate parking EVs and EAs is proposed. Additionally, two 

different scheduling strategies (plug-in charge and battery swap) for charging EA 

batteries are proposed and compared. The key findings in this research are listed as 

follows: 

The results obtained from the without EV, G2V, and V2G scenarios demonstrate that 

implementing the V2G strategy can significantly enhance the airport microgrid economic 

and operational performance. This finding indicates that V2G services from airport 

parking EVs can bring substantial benefits to airport operators in terms of energy 

management. At the same time, encouraging the parking EV owners to participate in V2G 

services is essential for reducing the total operation cost of future electrified aviation, 

benefiting both EV owners and airport operators. 

Comparing the two different EA charging strategies, the Pareto Front results reveal that 
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the EA battery swap strategy outperforms the EA plug-in charge strategy in terms of 

microgrid operation performance, regardless of whether airport parking EVs are involved 

in the microgrid operation or not, particularly in peak-to-valley ratio (PVR) and resilience 

factor (RF). 

The sensitivity analysis on EA implementation levels shows a clear trend of increasing 

difficulty in airport microgrid operation as the EA implementation level rises. Airport 

operators should consider adopting a microgrid independent from the airport landside 

(terminal building) energy system to support higher EA implementation level. The 

sensitivity analysis on renewable generation uncertainties underscores the importance of 

adopting hydrogen fuel cells with higher capacity to mitigate the negative effects of 

renewable generation on the airport microgrid. 

Most notably, to the best of the author’s knowledge, this is the first study to investigate 

the coordinative scheduling of EA and airport parking EVs. Our findings provide valuable 

insights for airport operators striving to decarbonise their air transport activities through 

the adoption of EA, emphasising the significance of this research in promoting 

sustainable aviation practices. 

8.1.2 Planning approach for the wireless charging system for airport electric 

shuttle buses 

While the existing work in the field of wireless charging systems for EVs primarily 

focuses on the planning and design of equipment enabling wireless power transfer, these 

studies have not explored the integration of wireless charging system for EVs from the 

power system perspective. In this research, a bi-level optimisation framework for 

allocating WPTs and PSU in the airfield traffic network and distribution power network 

of a commercial airport is proposed.  

The results obtained from the three case studies demonstrate the techno-economic 

feasibility of wireless charging technology for airport electric shuttle buses. Th economic 

analysis reveals that, as annualised cost results show, conventional diesel shuttle buses 

will become a more expensive option compared with electrification options in the future, 

making the electrification of airport shuttle buses a more promising technical path. The 

average energy stored in electric buses suggests that wireless charging technology enables 
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the electric shuttle buses to carry batteries with lower capacity while conducting the same 

number of tasks.  

The findings provide airport designers and operators evidence that adopting electric 

shuttle buses and wireless charging systems at airports is an economically viable option 

from the power system integration perspective. The system presented in this research 

serves as a cost-effective and realistic example. The work expends on prior works by 

examining an additional aspect: the power network operation perspective thereby 

contributing valuable insights to the ongoing discourse on wireless charging systems for 

EVs. 

8.1.3 Providing A2G ancillary services to the power system through electric 

aircraft charging 

The literature review in Section 2.5 indicates that prior research works have sought to 

leverage DER from transportation electrification sectors to provide ancillary services to 

grids. However, these studies have primarily focused on the potential flexibility provided 

by EVs, leaving the potential flexibility from aviation electrification unexplored. 

Additionally, there has been limited research on utilising multiple energy resources to 

provide both primary and secondary frequency response services. 

In this thesis, aviation electrification enables the EA battery charging system to provide 

valuable flexibility services to the power grid. A novel concept of A2G flexibility that 

utilises EA charging system with a battery swap method to provide grid frequency 

response services. A smart EA charging system is developed to dispatch PV, gas turbines 

and grid electricity to meet EA charging demand associated with the seasonal flight 

schedules.  

The A2G frequency response system is developed to coordinate primary and secondary 

frequency response control with the grid inertia estimation. The hourly energy dispatch 

strategy is optimised to achieve the minimum operation costs by considering the EA 

charging demand, energy prices and A2G frequency response revenue. Case studies are 

conducted in 8 major UK airports which serve around 37% of the total UK domestic air 

passengers.  

The results show that the typical A2G frequency response services capacity across these 
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major UK airports can reach between 900 - 1,300 MW overnight and 200 - 900 MW 

daytime with seasonal variation. EA batteries can provide up to six times more frequency 

response power than gas turbine during the day, while overnight, EA batteries supply 100% 

of frequency response power. However, due to sustained gas turbine output, gas turbines 

can provide roughly four times more frequency response energy than EA batteries. The 

installed generation capacity significantly impacts on the energy dispatch strategy, 

response power, and energy of A2G frequency response system. The annual revenue 

generated from A2G frequency response is estimated at £46.58 million, potentially cover 

19.8% to 30% of energy consumption costs of EA charging at future airports. The average 

frequency nadir can be improved by 0.31 Hz in summer and 0.23 Hz in winter due to the 

A2G frequency response services, and the likelihood of Infrequent Infeed Loss Risk can 

be reduced by 83.33% in summer and 68.75% in winter.  

The sensitivity analysis of grid service value reveals that the higher grid service value 

will attract higher frequency response revenue. Specifically, the secondary response 

revenue which is provided by gas turbine is more sensitive to the variation of grid service 

value. Another sensitivity analysis examined the impacts of generation capacity on energy 

dispatch, A2G frequency response, and costs. Two scenarios were evaluated: one with 

reduced gas turbine capacity and another with reduced grid transformer capacity. Results 

revealed that a balanced grid and gas turbine capacity is optimal due to its higher night 

response power and more effective management of frequency nadir events. Although the 

scenario with half the grid transformer capacity had the highest profitable ratio of revenue 

over operation costs, the base case had the lowest total cost after the deduction of revenue. 

The results obtained in this research reveal that the A2G flexibility provided from EA 

charging systems can significantly improve the frequency stability of the future power 

grid. The work also establishes a framework for future studies to investigate the potential 

A2G flexibility services further. 

8.1.4 Deep reinforcement learning-based A2G dispatch approach 

Previous work in Chapter 6 has presented the novel concept of A2G flexibility and 

examined the results of adopting A2G frequency response services to support the grid in 

frequency drop events. However, the previous work adopted MILP to solve the A2G 

frequency reserve scheduling problem, which can only make decisions in advance (day-
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ahead) rather than react when the situation changes. In this research, the A2G FFR service 

scheduling problem was formulated as an MDP, and solved with DRL-based approach, 

by which the real-time management of EA charging system is enabled. The UK domestic 

air transport and GB power system are combined for testing the proposed strategy. 

The results demonstrate the feasibility of the A2G FFR strategy in providing essential 

flexibility services to the power grid while meeting the EA charging demands associated 

with the flight schedules. By taking the EA charging demand, energy prices, and A2G 

frequency response revenue into account, the hourly energy dispatch strategy is designed 

to achieve the lowest possible operation costs efficiently.  

To test the impact of EA battery charger capacity on the results, case studies with different 

levels of rated EA battery charging power of 5 MW, 7 MW, and 14 MW are conducted. 

in 8 UK airports that serve approximately 37% of the total domestic air travellers in the 

UK. The results show that the typical A2G frequency response services capacity across 

the 8 UK airports can reach between 800 – 3200 MW overnight and 300 – 2400 MW 

daytime depending on different rated EA charging power. The response power is essential 

for the GB power system, especially during the night when the system inertia is low. 

The rated EA battery charging power has a significant impact on the energy dispatch 

results and response power of the A2G frequency response system. The revenues that are 

generated from A2G frequency response are estimated to be 6.3×104 £, 8.8×104 £, and 

1.77×105 £ for 5 MW, 7 MW, and 14 MW EA battery charger, which can cover 3.93%, 

6.47%, and 13.2% of charging power consumption costs in the airports, respectively. The 

average frequency nadir was improved to 49.66 Hz, 49.80 Hz, and 49.86 Hz by cases 

with 5 MW, 7 MW, and 14 MW A2G chargers, and the likelihood of Infrequent Infeed 

Loss Risk can be totally avoided.  

This research expands on prior work by employing DRL-based approaches to dispatch 

the EA battery charging system for FFR services, offering an innovative scheduling 

method.  

8.2 Future Research 

The research aims and objectives have been satisfied through the presented works. 

However, the work can be extended in several potential research directions. This section 
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suggests further works as a continuation of development on the presented work in the 

thesis as follows.  

8.2.1 Integrating more DER resources in airports 

Future works can further explore the impact of integrating more flexible DER located in 

the airport into the airport microgrids and the main grid, such as controllable thermal load, 

electric ground support vehicles, and electric air conditioning systems. All these DER 

resources can potentially provide demand-side response services to the microgrid and the 

main grid. 

8.2.2 Renewable-powered hydrogen-electric aviation 

There is an alternative technical path of sustainable aviation named “hydrogen-electric 

aircraft”. More and more airport operators are evaluating the applicability of installing 

on-site hydrogen production devices to accommodate hydrogen-electric aircraft. The 

utility-scale hydrogen electrolyser and airport-based renewable generation can also 

provide massive flexibility to the grids as well. Future work can be focused on the 

integration of large-scale hydrogen production devices into the grid and the potential 

ancillary services provided by airport on-site hydrogen electrolysers. Alternatively, the 

airport integrated renewable energy systems planning and design for accommodating 

hydrogen-electric aircraft is also a significant topic. 

8.2.3 Uncertainty parameters and analysis 

In this research, it can be seen that several underlying parameters in the developed 

planning and scheduling approaches contain uncertainties, including the stochastic 

behaviours of EV owners, flight mission punctuality, availability of shuttle buses, and 

renewable power output. There are many recent approaches designated for handling the 

uncertainties in optimisation problems: stochastic optimisation methods, robust 

optimisation methods, chance-constrained programming-based methods, Interval 

optimisation, fuzzy techniques, information gap decision theory, and hybrid techniques. 

One of the potential future directions is adopting these advanced techniques for optimal 

dispatch of the proposed airport energy system planning and design. 
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8.2.4 Advanced reinforcement learning technologies 

The reinforcement learning theory and algorithms have been developing fast in the past 

few years, more advanced algorithms such as multi-agent deep reinforcement learning, 

federated learning, multi-task reinforcement learning, etc., are developed to solve more 

complex problems. These advanced reinforcement learning technologies can be adopted 

in more complicated and realistic situations, such as the privacy of data sharing between 

airport operators, the competition mechanism between different airports in terms of 

providing ancillary services to the grid, and multi-airport collaboration in grid frequency 

restoration tasks. 

8.2.5 More types of A2G ancillary services to the grid 

Current work is focused on A2G frequency response services. However, frequency 

response is one of the most essential ancillary services that are desired by the grid 

operators, but it is not the only one. There are multiple types of ancillary services that are 

becoming more and more important since the grid operators are facing unprecedented 

system balancing challenges due to the increasing penetration level of renewable 

generation. Future work can explore the potential of A2G flexibility in providing multiple 

types of ancillary services, such as reactive power services, reserve services, regional 

inertial support services, voltage constraint management, etc. 
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Appendix A 

Table A-1 UK Airport PV Installation Capacity 

Airport Name IATA Code 
Total Area 

(acres) 

Available 

Area (acres) 
PV (MW) 

London Heathrow LHR 3,032 250 50 

Edinburgh EDI 1,300 85 17 

Glasgow GLA 1,028 37 7 

Manchester MAN 1,384 88 17 

Birmingham International BHX 820 108 21 

Belfast International BFS 1,198 58 11 

London Gatwick LGW 1,665 217 43 

London Stansted STN 1,796 95 19 

 

An example of PV installation capacity calculation: 

Airport-based solar PV system becomes a promising technology to achieve low emission 

in aviation. There are three main types of airport-based PV plants: ground-mounted, 

parking canopy-supported, and building rooftop-mounted [199]. 

The roof-mounted PV system is the most demanding one, as a result, only the flat-roof 

buildings are selected. The capacity of the solar plant can be calculated on the basis of 

available land area in the selected zone. The plant capacity varies with the selection of 

PV module technology and type of mounting system. Many factors will affect the 

capacity of installed PV. Latitude, tilt angle, azimuth of the PV panels. This work is only 

for a rough estimation; therefore, these influence factors are neglected. The worldwide 

norm of PV land size over installed capacity is 1 MW per 2ha (5 acres) [182]. The capacity 

of the PV plant is estimated using Eq. (A.1). However, the norm is based on the land-

based situation. If this assumption is going to be used for estimating the capacity of roof-

mounted and canopy-mounted PV systems, there will be a deduction rate. The deduction 

rate is 0.8 for roof-mounted, 0.7 for canopy-mounted. 

𝑃𝑐 = 
𝐴𝑃𝑉 × 𝑟𝑑

5
 A.1 



Appendix 

159 

 

where, 𝑃𝑐 is the estimated capacity of installed PV. 𝐴𝑃𝑉 is the area of the selected PV sites. 

𝑟𝑑 is the deduction rate of each type of PV plant. 

To investigate the solar PV installation potential in a specific airport, the first step is to 

identify the boundary and applicable area, as shown in Figure A-1. There is a runway 

protect zone in airport, the land near this zone is not recommended for PV installation 

due to the reflective hazard when the airplane taking off and landing. According to the 

expansion plan of LGW airport 

 

Figure A-1 LGW airport boundary and selected sites for solar PV installation 

The areas of each type of selected zones are listed in Table A-2. 

Table A-2 Areas of selected zones for PV installation 

Zone 
Area 

In km2 In acres 

Building rooftop 0.1563 38.62 

Land based 0.0488 12.06 

Solar car park 0.7223 178.5 

The total installation potential PV installation capacity in LGW airport is 43 MW. In order 

to reduce the complexity, the assumption that the PV installation capacity is proportional 

to the total area of the airport. In following research, the spare land for PV installation in 

each airport is calculated according to the total area of the airports over that of the LGW 

airport. 
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Appendix B 

Seasonal domestic arrival flight schedules: 

Two weeks’ flight schedules in summer peak month (May) and winter peak month 

(November) are investigated. Figure B-1 shows the domestic arrival flight schedules of 

the 8 major airports over 24 hours in summer and winter. The selected summer and winter 

dates are 1st May 2019 and 15th November 2018 respectively, which are determined by 

the highest number of flights in the respective season. The flight schedules normally have 

a double peak characteristic, one peak occurs in the morning (07:00 am to 10:00 am), the 

other peak happens in the afternoon to the early evening (16:00 to 21:00) dependent on 

season. There is no flight scheduled from midnight to early morning for the duration of 6 

hours.  

 

Figure B-1 Seasonal domestic arrival flight schedules of the 8 UK airports. (a) summer 

schedule, (b) winter schedule 



Appendix 

161 

 

Appendix C 

Flight demand forecasting considering the effect of COVID: 

The flight schedule is formulated as a time-series data, which includes the number of 

flights arriving at half-hour time slots in a specific airport. For flight schedule forecasting, 

the common assumption is that the existing growth rate of passengers will persist due to 

the demand inertia under the right economic conditions [42]. 

According to the forecast for future UK domestic air traffic [200], the domestic 

passengers in the UK can be expected to continuously increase 0.9% - 1.1% annually 

from 2016 to 2050. But under the impact of the COVID-19, the air travel is severely 

impacted. In this thesis, it is assumed that the economy and air travel will be recovered to 

the status before COVID (2019) by the year 2023. As shown in Figure C-1, the UK 

domestic flight passengers are expected to continuously increase 1% annually from 2023 

to 2050. In this thesis, the flight schedule in 2050 is formulated as a linear relationship 

with the year of passengers based on the Eq. (C.1) [201]. 

𝐹𝑆𝑡,2050 = 𝐹𝑆𝑡,2019 ×
𝑃𝑎𝑥2050
𝑃𝑎𝑥2019

 C.1 

 

Figure C-1 Prediction of the UK domestic flight passengers to the year 2050 
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