2,537 research outputs found

    Modeling and simulation of surface profile forming process of microlenses and their application in optical interconnection devices

    Get PDF
    Free space micro-optical systems require to integrate microlens array, micromirrors, optical waveguides, beam splitter, etc. on a single substrate. Out-of-plane microlens array fabricated by direct lithography provides pre-alignment during mask fabrication stage and has the advantage of mass manufacturing at low cost. However, this technology requires precise control of the surface profile of microlenses, which is a major technical challenge. The quality control of the surface profile of microlenses limits their applications. In this dissertation, the surface forming process of the out-of-plane microlenses in UV-lithography fabrication was modeled and simulated using a simplified cellular automata model. The microlens array was integrated with micromirrors on a single silicon substrate to form a free space interconnect system. The main contributions of this dissertation include: (1) The influences of different processing parameters on the final surface profiles of microlenses were thoroughly analyzed and discussed. A photoresist etching model based on a simplified cellular automata algorithm was established and tested. The forming process and mechanism of the microlens surface profile were explained based on the established model. (2) Microlens arrays with different parameters were designed, fabricated, and tested. The experiment results were compared with the simulation results. The possible causes for the deviation were discussed. (3) A microlens array based beam relay for optical interconnection application was proposed. A sequence of identical microlens array was fabricated on a single silicon substrate simultaneously and its optical performance was tested. A fast replication method for the microlens optical interconnects using PDMS and UV curable polymer was developed. A selective deposition method of micro-optical elements using PDMS ‘lift-off’ technique was realized. No shadow mask was needed during deposition process. With the continuous advances in the integration of micro-optical systems, direct lithography of micro-optical elements will be a potential technology to provide both precision alignment and low cost in manufacturing process. Microlenses and microlens array with precisely controlled surface profiles will be an important part in the micro-optical system

    An Iterative Algorithm for Lithography on Three-Dimensional Surfaces

    Get PDF
    Photolithography is an optical and chemical process for the patterning of commonly at substrates with shapes which are useful for electronics and a number of other applications. Holography, in its most general sense, is the manipulation of the coherent properties of an optical wave-front to produce two or three dimensional light patterns. A combination of holography and photolithography therefore allows for the patterning of three dimensional substrates by exploiting the coherence of an optical source. The work in this thesis approaches an optical optimisation methodology centered around the iterative algorithms derived from the Gerchberg-Saxton algorithm. This allows the design of holograms which, in turn, allows the patterning of three dimensional surfaces. The system parameters for the design of two and three dimensional light patterns in this methodology are examined. Simulations and practical optical examples are provided throughout with some application-focused demonstrations. The result is an understanding of an iterative optimisation approach within the context of lithography, and an implementation and methodology for achieving three dimensional patterns

    Optimization and visualization of rapid prototyping process parameters.

    Get PDF
    The optimal selection of rapid prototyping (RP) process parameters is a great concern to RP designers. When dealing with this problem, different build objectives have to be taken into consideration. Using virtual rapid prototyping (VRP) systems as a visualization tool to verify the optimally selected process parameters will assist designers in taking critical decisions regarding modeling of prototypes. This will lead to substantial improvements in part accuracy using minimal number of iterations, and no physical fabrication until confident enough to do so. The purpose of this thesis is to demonstrate that virtual validation of optimally selected process parameters can significantly reduce time and effort spent on traditional RP experimentation. To achieve the goal of this thesis, a multi-objective optimization technique is proposed and a model is generated taking into consideration different build objectives, which are surface roughness, support structure volume, build time and dimensional accuracy. The multi-objective method used is the weighted sum method, where a single utility function has been formulated, which combines all the objective functions together. The orders of magnitudes have been normalized, and finally weights have been assigned for each objective function in order to create the general formulation. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .E47. Source: Masters Abstracts International, Volume: 43-03, page: 0959. Adviser: Waguih ElMaraghy. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Photonic crystal interfaces: a design-driven approach

    Get PDF
    Photonic Crystal structures have been heralded as a disruptive technology for the miniaturization of opto-electronic devices, offering as they do the possibility of guiding and manipulating light in sub-micron scale waveguides. Applications of photonic crystal guiding - the ability to send light around sharp bends or compactly split signals into two or more channels have attracted a great deal of attention. Other effects of this waveguiding mechanism have become apparent, and attracted much interest - the novel dispersion surfaces of photonic crystal structures allow the possibility of “slow light” in a dielectric medium, which as well as the possibility of compact optical delay lines may allow enhanced light-matter interaction, and hence miniaturisation of active optical devices. I also consider a third, more traditional type of photonic crystal, in the form of a grating for surface coupling. In this thesis, I address many of the aspects of passive photonic crystals, from the underlying theory through applied device modelling, fabrication concerns and experimental results and analysis. Further, for the devices studied, I consider both the relative merits of the photonic crystal approach and of my work compared to that of others in the field. Thus, the complete spectrum of photonic crystal devices is covered. With regard to specific results, the highlights of the work contained in this thesis are as follows: Realisation of surface grating couplers in a novel material system demonstrating some of the highest reported fibre coupling efficiencies. Development of a short “injecting” taper for coupling into photonic crystal devices. Optimisation and experimental validation of photonic crystal routing elements (Y-splitter and bend). Exploration of interfaces and coupling for “slow light” photonic crystals

    Resolution enhancement in mask aligner photolithography

    Get PDF
    Photolithographie ist eine unentbehrliche Technologie in der heutigen Mikrofabrikation integrierter elektronischer Schaltungen und optischer Komponenten auf verschiedenen GrĂ¶ĂŸenskalen. Die zugrundeliegende Aufgabe ist die Replikation der gewĂŒnschten Struktur, die kodiert ist in einer Photomaske, auf einem photolackbedeckten Wafer. In vergangenen Jahrzehnten gab es eine beeindruckende Weiterentwicklung photolithographischer Anlagen, was Auflösungen weit unterhalb eines Mikrometers ermöglicht. Das einfachste photolithographische Instrument ist der Maskenjustierbelichter, bei dem die Photomaske und der Wafer entweder in Kontakt oder in unmittelbare NĂ€he gebracht werden (Proximity-Modus), ohne zusĂ€tzliche optische Komponenten dazwischen. Vor ĂŒber 50~Jahren eingefĂŒhrt bleibt der Maskenjustierbelichter aufgrund seines wirtschaftlichen Betriebs das Instrument der Wahl fĂŒr die Herstellung unkritischer Schichten, mit einer Auflösung von einigen Mikrometern im bevorzugten Proximity-Modus. Maskenjustierbelichter werden beispielsweise fĂŒr die Herstellung von Mikrolinsen, lichtemittierende Dioden und mikromechanischen Systemen verwendet. Die erreichbare laterale rĂ€umliche Auflösung ist letztlich begrenzt durch die Beugung des Lichts an den Strukturen der Photomaske, was zu VerfĂ€lschungen der Abbildung auf dem Photolack fĂŒhrt. In dieser Arbeit entwickeln, prĂ€sentieren und diskutieren wir mehrere Technologien zur Auflösungsverbesserung fĂŒr Maskenjustierbelichter im Proximity-Modus. Dies umfasst Photolithographie mit einer neuartigen Lichtquelle, die im tiefen Ultraviolett-Bereich emittiert, eine rigoros optimierte Phasenschiebermaske fĂŒr periodische Strukturen, optische Proximity-Korrektur (Nahbereichskorrektur) angewandt auf nichtorthogonale Geometrien, und die Anwendung optischer MetaoberflĂ€chen als Photomasken. Eine Reduzierung der WellenlĂ€nge verringert die Auswirkungen der Lichtbrechung und verbessert daher direkt die Auflösung, benötigt aber auch die Entwicklung geeigneter Konzepte fĂŒr die Strahlformung und Homogenisierung der Beleuchtung. Wir diskutieren die Integration einer neuartigen Lichtquelle, ein frequenzvervierfachter Dauerstrichlaser mit einer EmissionswellenlĂ€nge von 193 \,nm, in einem Maskenjustierbelichter. Damit zeigen wir erfolgreiche Prints von Teststrukturen mit einer Auflösung von bis zu 1,75 \,”m bei einem Proximity-Abstand von 20 \,”m. Bei Verwendung des selbstabbildenden Talboteffekts wird sogar eine Auflösung weit unterhalb eines Mikrometers fĂŒr periodische Strukturen erzielt. Außerdem diskutieren wir die rigorose Simulation und Optimierung der Lichtausbreitung in und hinter Phasenschiebermasken, die unter schrĂ€gem Einfall belichtet werden. Mit einem optimierten Photomaskendesign kann dabei die Periode bei Belichtung unter drei diskreten Winkeln verkleinert abgebildet werden. Dies erlaubt es, Strukturen deutlich kleiner als ein Mikrometer abzubilden, wobei die Strukturen auf der Photomaske deutlich grĂ¶ĂŸer und damit einfacher herzustellen sind. Zudem betrachten wir eine Simulations- und Optimierungsmethode fĂŒr die optische Proximity-Korrektur nicht-orthogonaler Strukturen, was deren Formtreue verbessert. die Wirksamkeit beider Konzepte bestĂ€tigen wir erfolgreich in experimentellen Prints. Die Verwendung optischer MetaoberflĂ€chen erweitert die FĂ€higkeiten zur Wellenfrontformung von Photomasken gegenĂŒber etablierten IntensitĂ€ts- oder Phasenschiebermasken. Wir diskutieren zwei Designs fĂŒr optische MetaoberflĂ€chen, die beide den vollen 2 π2\,\pi-Phasenbereich abdecken. Ein Design beinhaltet dabei noch einen plasmonischen Absorber, was zusĂ€tzliche Möglichkeiten bietet, den Transmissionskoeffizient anzupassen. Desweiteren beschreiben wir einen Algorithmus zur Berechnung des Maskenlayouts fĂŒr beliebige Strukturen. Eine kontinuierliche Weiterentwicklung von Maskenjustierbelichtern ist unerlĂ€sslich, um Schritt zu halten mit der fortschreitenden Miniaturisierung in allen Bereich der Optik, der Mechanik und der Elektronik. Unsere Forschungsergebnisse ermöglichen es, die Auflösung der optischen Lithographie im Proximity-Modus zu verbessern und sich damit den zukĂŒnftigen Herausforderungen der optischen Industrie stellen zu können
    • 

    corecore