565 research outputs found

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    New Mobility Trends in Data Networks

    Get PDF
    Dizertační práce se zabývá návrhem nového algoritmu řízení handoveru v rámci protokolu Mobile IPv6, který umožní nasazení tohoto protokolu v leteckých datových sítích. Existující algoritmy řízení handoveru sice dosahují dostatečné výkonnosti v konvenčních pozemních bezdrátových sítích disponujích velkou šířkou pásma a nízkou latencí, jako jsou WiFi nebo UMTS, ale jak ukazuje tato práce, nasazení těchto algoritmů prostředí leteckých datových sítí nepřináší očekávané výhody. Analýza ukazuje, že v úzkopásmových leteckých sítích trpí tyto algoritmy řízení handoveru velkou latencí a způsobují značnou režii. Nový algoritmus řízení handoveru v MIPv6 navržený v této práci je založený na jednoduché myšlence: ''Já jsem letadlo, já vím, kam letím!'' To znamená, že pohyb letadla není náhodný, ale vysoce předvídatelný. Díky tomu je možno předvídat handovery mezi přístupovými sítěmi podél očekávané trajektorie letadla a vykonat nezbytné operace pro přípravu handoverů již na zemi, kde je letadlo připojeno k širokopásmové síti letiště. Tato dizertační práce dále uvádí porovnání existujících algoritmů řízení handoveru s nově navrženým pomocí analytické metody ohodnocení handoveru. Díky tomu je možno kvantifikovat výhody, které nový algoritmus přináší a taktéž popsat slabiny algoritmů existujících.The doctoral thesis is focused on a design of novel Mobile IPv6 handover strategy suitable for deployment in aeronautical data networks. The current handover strategies provide sufficient performance in the conventional ground networks such as WiFi or UMTS that dispose high bandwidth and low latency. However, as this thesis shows, deploying these handover strategies in aeronautical data link environment does not bring desired benefits - the handover latency is high and the related overhead gets high as well. The novel MIPv6 handover strategy presented in this thesis is based on a simple thought: ''I am an aircraft, I know where I'm flying!'' This means that the movement of the aircraft is not random, it is highly predictable. Thanks to that, inter-network handovers may be anticipated and necessary IP handover related actions can be taken in advance, while the aircraft is connected via a broadband ground link at the origination airport. The thesis also presents a comparison of the existing handover strategies with the proposed new one conducted using an analytical approach. This allows to quantify the benefits of the novel handover strategy and the drawbacks of the current ones.

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Slicing on the road: enabling the automotive vertical through 5G network softwarization

    Get PDF
    The demanding requirements of Vehicle-to-Everything (V2X) applications, such as ultra-low latency, high-bandwidth, highly-reliable communication, intensive computation and near-real time data processing, raise outstanding challenges and opportunities for fifth generation (5G) systems. By allowing an operator to flexibly provide dedicated logical networks with (virtualized) functionalities over a common physical infrastructure, network slicing candidates itself as a prominent solution to support V2X over upcoming programmable and softwarized 5G systems in a business-agile manner. In this paper, a network slicing framework is proposed along with relevant building blocks and mechanisms to support V2X applications by flexibly orchestrating multi-access and edge-dominated 5G network infrastructures, especially with reference to roaming scenarios. Proof of concept experiments using the Mininet emulator showcase the viability and potential benefits of the proposed framework for cooperative driving use cases1812não temMinistério da Ciência, Tecnologia, Inovações e Comunicações - MCTICThe research of Prof. Christian Esteve Rothenberg was partially supported by the H2020 4th EUBR Collaborative Call, under the grant agreement number 777067 (NECOS - Novel Enablers for Cloud Slicing), funded by the European Commission and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTI

    On providing mobility management in WOBANs: Integration with PMIPv6 and MIH

    Get PDF
    The Wireless-Optical Broadband Access Network (WOBAN) is a promising access architecture that combines the high performance of optical networks with the ubiquity and convenience of wireless technologies. This article proposes a network-based mobility framework that is specially tailored for WOBANs. The proposed architecture is based on Proxy Mobile IPv6 and IEEE 802.21 mobility management protocols, but it also defines a number of optimizations that enable the seamless handover of mobile nodes. In particular, the hierarchical architecture together with the broadcast-and-select nature of the optical part of the WOBAN are leveraged to: optimize the mobility of users with respect to the overall network resources, both at the wireless access and optical distribution parts, remove the overhead of IP-in-IP tunneling between the PMIPv6 entities, and perform an efficient bicasting during the handover process to minimize packet loss.The authors would like to acknowledge the support of the EU-funded MEDIEVAL (grant FP7-ICT-2009-5/258053), the CAM-funded Medianet project (under code S-2009/TIC-1468) and the MICINN research grant TIN2010-20136-C03.European Community's Seventh Framework ProgramPublicad
    • …
    corecore