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Abstract— In the last few decades, the popularity of wireless networks has been growing dramatically for both home and 

business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to 

access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited 

batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the 

variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient 

handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this 

context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, 

etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It 

presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also 

discusses the recommendations on possible energy gains at different stages of the vertical handover process. 

 

IndexTerms—Wireless Heterogeneous Networks, Vertical Handover, Energy efficiency 

1.  INTRODUCTION 

As wireless networks (a.k.a. Wi-Fi) and mobile devices have been experiencing an out-standing progress, users demand 

uninterrupted, continuous, and seamless services with Quality of Service (QoS) from any source to any device at any 

time while on the move or stationary. Cisco forecasts that the Wi-Fi and mobile devices will account for 66% of the IP 

traffic and the Internet traffic will reach 18 GB per capita by 2019 [1]. In order to satisfy the increasing traffic demands 

and the service requirements, the next generation of wireless infrastructures (5G networks) paradigm will include a high 

deployment of base stations and several different radio access technologies (RATs), such as: Wireless Local, 

Metropolitan and Wide Area Networks (WLAN, WMAN, WWAN), Long Term Evolution (LTE, LTE-A), Worldwide 

Interoperability for Microwave Access (WiMAX), Wireless Broadband (WiBro) etc. as illustrated in Fig. 1. However, 

there is no single RAT that can simultaneously offer high amount of bandwidth, low-latency, wide coverage and high 

QoS levels for mobile users. Therefore, the next generation wireless systems will make use of various interworking 

solutions and technologies. For example, the integration of Software Defined Networks (SDN) and Network Function 

Virtualization (NFV) could help the mobile operators to reduce their CAPEX intensity by transferring their hardware-

based network to software- and cloud-based solutions. Another option could be Cloud-Radio Access Networks (C-

RAN) which offers a centralized, cooperative, clean (green) and cloud computing architecture for radio access 

networks. A popular solution is the hyper-dense small cell dynamic cooperation of different RATs and Wi-Fi and 

Femtocell opportunistic offloading techniques of the mobile traffic. These solutions will enable a cooperative 

heterogeneous wireless environment where the users will be always best connected (ABC) at anytime and anywhere [2]. 

Thus, this heterogeneous wireless environment, as illustrated in Fig. 1, can be defined as a multi-technology, multi-

terminal, multi-application, multi-user environment within which mobile users can roam freely. In this context, the main 



promise of the heterogeneous network integration is to increase the wireless capacity ensuring seamless mobility and to 

add support for high data rates and low latency to the mobile users. 

Until recently, the aim of Information and Communication Technology (ICT) was mainly focused on performance and 

cost and insufficient effort was allocated towards the energy consumed by ICTs and their impact on the environment. 

Current trends, such as increasing costs of electricity, reserve limitations, and increasing emissions of carbon dioxide 

(CO2) are shifting the focus of ICT towards energy-efficient well-performed solutions. Even though governments and 

companies are now aware of the massive carbon emissions and energy requirements, it is obvious that carbon emissions 

and the amount of energy consumption will continue to increase [3]. As stated by the SMART 2020 study [4], ICT-

based CO2 emissions are rising at a rate of 6% per year being expected to reach 12% of worldwide emissions by 2020. 

 

 
Fig. 1. Next Generation Communication Scenario 

The dense deployment of various RATs, which may differ in terms of technology, protocols, coverage, bandwidth, 

latency, or even service providers, is essential to handle the ever-growing demand of performance and coverage. 

However, these increases have led to the increase in wireless network’s energy consumption that represents one of the 

main current challenges that has received remarkable attention from both industry and academia [5–7]. In order to 

decrease the overall energy consumption, the Greentouch consortium [8] and major European projects like EARTH [9] 

and Mobile VCE [10] focus on infrastructure-based energy savings for wireless networks at the system level. The major 

aim of these projects is to design and implement pioneering approaches for green operation of wireless networks. 

However, these projects have only examined the optimization of homogeneous wireless systems. Since current mobile 

devices are equipped with several network interface cards to operate within the existing heterogeneous wireless 

infrastructure in a flexible way, energy-centric optimization solutions for heterogeneous networks represent an 

important issue that needs to be investigated carefully to reduce the energy consumption and carbon emissions. 

 

Interworking of heterogeneous networks may increase network performance and pro-vide seamless mobility for mobile 

devices. Nevertheless, this flexibility may cause additional energy consumption on the mobile device, which in turn will 

decrease the communication time. Mobile devices deeply depend on the energy provided by their batteries, and hence 

their running time is limited. Furthermore, processing power doubles almost every two years according to the Moore’s 

law. However, the progress in batteries did not even double over the last decade [11]. In this regard, the design concept 

of protocols, networks and hence mobile devices have started to change in both academia and industry by keeping the 

energy-efficiency in mind. Therefore, the bottleneck of up-to-date mobile system design is not only the transmission 

rate, but even more the energy limitation of the mobile devices, as users demand for more interactive multimedia-based 

services which in turn are known to be energy-hungry services [12]. 

 



Within a heterogeneous wireless network environment, handover, also known as handoff, is the procedure of shifting an 

ongoing call or a data session from one Point of Attachment (PoA) (the connection between the mobile device and the 

network) to another. Consequently, the handover procedure allows mobile stations to dynamically associate with the 

most suitable PoAs among available ones. If a handover occurs within the domain of a single RAT, the process is 

known as horizontal handover. On the contrary, vertical handover (VHO) takes place among different RATs. Figure 1 

demonstrates both horizontal and vertical handover procedures. 

 

As stations in heterogeneous wireless networks continuously seek channels to initiate horizontal or vertical handovers, 

designing an energy-aware well-performed vertical handover procedure is significant to minimize the energy 

consumption while still supporting essential quality of service. Handover duration and its accuracy is also essential for 

the energy efficiency. It is because, a possible improper association to a new network may let stations consume even 

more power than before until a proper association, if ever, is selected [13]. 

 

There have been many reviews in the literature focusing on the vertical handover process as in [14–16]. However, to the 

best of our knowledge, not much focus has been put on the energy-centric vertical handover solutions. Moreover, 

existing vertical handover reviews have no parameter-based (obtained locally or remotely) gain/cost analysis. To this 

extent, this paper aims at three-dimensional analysis of energy-efficient wireless communication, such as: (1) presents 

the energy gain/cost analysis of network-assisted and mobile-initiated parameters, (2) examines vertical handover 

phases taking the energy efficiency into account and (3) evaluates state-of-the-art energy-centric vertical handover 

approaches proposed in the literature. A brief comparison of possible energy gain ratios of existing approaches is also 

presented. 

 

The rest of the paper is organized as follows. Section 2 presents background information related to the vertical handover 

concept (e.g., definition, classification and procedure), describes the handover process in various radio access 

technologies (e.g., WiFi, 3G, LTE, WiMAX) and summarizes several energy-efficient vertical handover standards and 

industry solution approaches. Section 3 examines the impact of specific parameters, methods and vertical handover 

approaches on the energy efficiency. Section 4 presents a comprehensive comparison of the existing handover 

approaches from the literature in terms energy-gain. Section 5 provides recommendations for an energy efficient 

vertical handover. Finally, the conclusions are presented in Sect. 6. 

2. HANDOVER CONCEPT, STANDARDS AND INDUSTRY SOLUTIONS 

In order to be familiar with energy-efficient vertical handover parameters, classification and solutions, this section first 

presents brief information of vertical handover procedures, handover process in various radio access technologies and 

possible energy saving methods for vertical handover over wireless heterogeneous networks. 

2.1. Vertical Handover Definition, Classificatiton and Procedure 

The handover process [17] enables the link between communication and user mobility. A good definition of handover is 

given by ETSI and 3GPP [18] which define handover as being the process by which the mobile device keeps its 

connection when changing the PoA (base station or access point). In terms of technologies, if both the source and target 

system employ the same RAT and reply on the same specifications, then the handover process is referred to as 

Horizontal Handover [17]. If the target system employs a different RAT, the handover process is called Vertical 

Handover (VHO) [19], which is the focus of this paper. The main objective of the handover process is to minimize the 

service disruption, which can be due to data loss and delay during the session transfer. The handover procedure can be 

divided into three phases: (1) information gathering, (2) decision, and (3) execution. Figure 2 illustrates the relation 

among these phases required to perform handover in wireless heterogeneous networks. 

Throughout the information gathering phase, mobile devices periodically scan the available networks to be able to 

associate with a more suitable PoA when the service quality drops below the required QoS level. The mobile devices 

gather information received locally or remotely. The reliability of the gathered information is essential for the vertical 

handover process as the decision-making procedure depends on it. 

 



Traditionally, the handover process is performed based on the Received Signal Strength Indicator (RSSI) [20], such that 

stations select a PoA that has the strongest RSSI. Existing energy-efficient handover methods save energy by either 

reducing the overall channel scanning duration or connecting to a better energy-efficient PoA in relation to the RSS 

levels. Nevertheless, as each RAT has specific features, to increase the energy efficiency and the handover accuracy, a 

vertical handover method has to evaluate each RAT separately, making use of as much as local and network related 

parameters. In this context, main parameters that can be received remotely (network-side assisting) are: overall 

throughput, network connectivity graph, probability of collision, cost, packet loss ratio, frame error rate, latency, 

security, bandwidth available, offered bandwidth, jitter, number of users, link capacity, mobility, coverage, handoff rate, 

RSSI, noise signal ratio (NSR), bit error rate, distance, location, QoS parameters, transmission power, channel busy 

time (CBT), etc. All of the aforementioned parameters might assist mobile devices to save energy. However, most of 

these parameters require message exchanges, which cause additional overhead on the network and extra processing-

based energy consumption for mobile devices. 

 

Similarly, the parameters that can be received locally (mobile-side assisting) are: user preferences, battery status, 

handover thresholds, resources, channel scanning results, speed, historical information, service class, accelerometer, 

GPS, probability of local packet loss, local latency, local throughput, scanning frequency, specific application 

requirements, and etc. These parameters can also assist mobile devices for energy saving. However, they may also 

introduce extra processing-based power consumption for mobile devices. Consequently, the parameters received by 

information gathering, either remotely or locally, are very important for an energy-efficient vertical handover process 

and its accuracy. However, a trade-off between accuracy and overhead needs to be considered, as keeping accurate 

estimates for the more dynamic parameters depends on their frequency of change and can be data intensive, adding to 

signaling, processor and memory burden and could lead to introducing extra-energy consumption for mobile devices. 

Moreover, the energy consumption is also affected by the type of wireless access technology used by the mobile device 

and the users’ location relative to the access point [21]. A dense HetNet environment results in an increased number of 

handovers at the mobile device side that introduces a further increase in the energy consumption [22]. Therefore, all of 

the afore-mentioned parameters must be first analyzed in terms of energy versus performance trade-off. 

 

The handover decision phase is in charge of deciding whether a handover is necessary or not. If so, when and where to 

trigger the handover are essential information in the process. The when decision refers to the exact time of the handover 

initiation and the where decision refers to the selection of the most suitable PoA that satisfies the optimal requirements. 

 

In homogeneous networks, deciding when to handover generally depends on the RSSI values, while the where is not an 

issue, as there is only one RAT. The traditional handover decision policy [20, 23] that is mainly based only on RSSI is 

as follow. If the RSSI is the only parameter, a handover is performed whenever RSSInew > RSSIold. If a threshold T is 

considered, a handover is performed whenever RSSInew > RSSIold and RSSIold < T. If a hysteresis H is considered, a 

handover is performed whenever RSSInew > RSSIold + H. If both a hysteresis and a threshold are considered, then a 

handover is performed whenever RSSInew > RSSIold + H and RSSIold < T. 

 

In heterogeneous networks, the handover decision is more complex. To be able to perform the best decision, the data 

collected in the information gathering phase must contain as many essential parameters as possible obtained from 

various sources, such as the device, network and user preferences. However, redundancy of the information gathered 

not always leads to energy efficiency, as this process may take significant time and pro-cessing overhead for devices. 

 

The decision phase also consists of three sub-phases: (1) parameter-selection, (2) parameter-processing, and (3) 

parameter-aggregation. In order to evaluate and weight a candidate association, only the parameters that the algorithm 

requires are selected in the parameter-selection phase. In order to extract relevant data, all the selected parameters are 

normalized in the parameter-processing phase. Additionally, neural networks, fuzzy logic and specific utility functions 

are used to merge value parameters with diffuse information. Finally, the best candidate RAT is selected with the help 

of the network selection algorithm that aggregates and evaluates the load/cost of each parameter in the parameter-

aggregation phase. 

 



Once the information is gathered (phase 1), processed and a network candidate is selected (phase 2), handover 

execution phase performs the handover itself. This phase also handles the security, control, mobility and session issues 

to achieve a seamless handover operation [14]. 

 

  

 
Figure 2. Handover phases and relations among these phases 

2.2. Handover process in Vaious Radio Access Technologies (RATs) 

This sub-section presents brief information about handover process in four different, widely-used, radio access 

technologies; WiFi, 3G, LTE and WiMAX, respectively. 

 

2.2.1. Handover in Wireless Fidelity (WiFi) 

WiFi is a local area wireless computer networking technology that mainly uses the 2.4 and 5 GHz radio bands. The 

traditional procedure used for a WiFi handover starts with the channel-scanning phase. In order to detect available 

networks, stations initially transmit Probe Request Frames and wait for Probe Response Frames on each channel. With 

the end of the channel-scanning phase, stations obtain a list of PoAs, their signal strengths, available transmission 

modes, etc. [24]. After the channel scanning, Re-authentication phase, the procedure of transferring associations from 

one PoA to another, starts. Authentication is essential to associate to the next PoA. As soon as the station has been 

authenticated with the next PoA, the re-association phase starts. With the end of this phase, the station associates to the 

next PoA. It should be noted that, channel scanning is the main factor that dramatically affects the handover latency and 

the power consumption. There-fore, it has to be limited to provide seamless and energy-efficient handover operation. 

 

2.2.2. Handover in 3G 

3G is the third generation of mobile telecommunications technology. 3G networks mainly have three types of handover 

operation; (1) hard handover, (2) soft handover and (3) 3G-GSM inter RAT handover. In hard handover, connections 

are first broken and then re-established. Hence, users sometimes may notice a short communication break. In soft 



handover, the device is connected to more than one cell throughout the handover process. As it has more than one 

connection active, soft handover leads to more consistent communication opportunity. In addition to the hard and soft 

handover, handover between a 3G and a 2G GSM network is called inter-RAT handover [25]. 

The Radio Network Controller (RNC) manages the 3G handover decision. As in WiFi environment, RNC 

initiates a handover if the RSSI of a specific communication channel reduces below a certain threshold and a different 

channel that has a better RSSI exists. 

 

2.2.3. Handover in LTE 

LTE, usually advertised as 4G, is a standard for wireless communication of high-speed data for mobile phones and data 

terminals. LTE does not support soft handover that is one of the big technical features of 3G. The reason is, soft 

handover is possible in Code-Division Multiple Access (CDMA) as adjacent cells can operate on the same frequencies 

as long as they use different scrambling codes. Hence, a device can listen to two different cells by decoding the received 

signals twice. However, LTE is based on Orthogonal Frequency-Division Multiple Access (OFDMA), which is 

essentially a frequency division method. It means a mobile device has to re-sync to a different set of frequency 

subcarriers when it hands over between cells, which removes the possibility of a soft handover [26]. 

 

Although LTE does not support a soft handover process, it still maintains seamless mobility using hard handover. LTE 

has three different types of handover: (1) Intra-LTE Handover, (2) Inter-LTE Handover and (3) Inter-RAT Handover. In 

Intra-LTE Handover, source and target cells are part of the same LTE network. In Inter-LTE Handover, handover 

occurs towards other LTE nodes. In Inter-RAT Handover, handover occurs between different radio access technologies. 

 

2.2.4. Handover in mobile WiMAX 

WiMax (IEEE 802.16) is the Worldwide Interoperability for Microwave Access. Handover procedure in WiMax is 

classified in two main categories; (1) hard handover and (2) soft handover. Macro Diversity Handover (MDHO) and 

Fast Base Station Switching (FBSS) methods are two types of optional soft handover mechanisms, whereas the hard 

handover is mandatory [27]. 

 

Handover process in WiMax can be summarized as follows. The current PoA periodically broadcasts MOB NBR-ADV 

[28] messages that contain information of neighbor PoAs. Mobile device scans the neighbor PoAs and selects the next 

proper PoA. Afterwards, the device transmits a handover request to the current PoA. The current PoA then exchanges 

the handover messages with the target PoA candidates and finally selects the next PoA. The next PoA sends the 

handover response to the mobile device. With the reception of this message, the device breaks the connection with the 

current PoA and associates with the next PoA [29]. 

2.3. Standards which Support Energy-efficient Network Selection 

As background information, this sub-section summarizes three standards (IEEE 802.21 MIH, ANDSF and IEEE 

802.11u) that are able to support energy efficient network selection. The impact of each parameter, method and standard 

on the energy efficiency will be addressed in the next section in detail. 

 

2.3.1. IEEE 802.21 Media Independent Handover (MIH) 

Media Independent Handover (MIH) standard is part of the IEEE 802.21 protocol [30, 31]. It provides mobile devices 

with link-layer information of different Radio Access Networks (RANs) and battery-level status. Hence, it improves not 

only the vertical handover process and user experiences, but also energy efficiency, assisting both mobile and network-

initiated handovers. 

 

MIH provides stations with the abstract services that enable the information exchange between higher and lower layers 

by utilizing a media independent framework and associated services [32]. MIH standard has three key services that 

support the handover operation: (1) Media Independent Event Services (MIES) states events, such as Link_Up and 

Link_Down that signify the variations in the link quality, (2) Media Independent Command Service (MICS) provides 

commands to control the link state, (3) Media Independent Information Service (MIIS) provides mobile devices with 

energy-aware and rapid channel scanning results [12]. 



2.3.2. Access Network Discovery and Selection Function (ANDSF) 

The Access Network Discovery and Selection Function (ANDSF) is an entity in the 3GPP standard 23.402 [33]. The 

aim of the ANDSF is to assist for the detection of non-3GPP radio access networks. In order to connect to non-3GPP 

networks, it also provides mobile devices with the information regarding policies and operator requirements. 

 

The ANDSF mainly provides three types of information: (1) Inter system mobility policy (provides interface selection 

rules for mobile devices with only one active access network connection), (2) Inter system routing policy (provides 

interface selection rules for mobile devices with potentially more than one active access network connection) and (3) 

Discovery information (provides list of available access networks including radio access networks identifier, access 

type technology, etc.) [34]. As in Media Independent Information Service (MIIS), discovery information in ANDSF can 

also be used for an energy-efficient vertical handover. 

 

2.3.3. IEEE 802.11u 

IEEE 802.11u [35] is an amendment to the base IEEE 802.11-2007 standard. IEEE 802.11u protocol enables 

interworking of 802.11 networks with external networks. The standard defines an Access Network Query Protocol 

(ANQP) that provides the mobile device with information related to the neighboring networks that is not advertised in 

beacons [13]. The ANQP enables the pre-association services and it facilitates the network selection process even prior 

to network association. 

2.4. Industry Solutions for Network Selection 

The mass-market adoption of the high-end mobile devices has led the network operators to adopt various solutions to 

help them cope with the explosion of mobile broadband data traffic. One promising solution is the mobile data 

offloading technique that has become a popular solution for the network operators, especially in the 3GPP Release-10 

[36]. This enables the network operators to accommodate more mobile users and keep up with their traffic demands by 

transferring some of the traffic from the core cellular network to Wi-Fi or femtocells at peak times and key locations 

(e.g., home, office, public HotSpot, etc.). Even though this solution presents advantages for the network operators with 

improved capacity at low cost, a HetNet dense-small cell environment results in an increased number of handovers for 

the mobile user. Two handover strategies could be identified in this context: (1) proactive handover where the handover 

is triggered well in advance and (2) reactive handover where the handover is postponed as long as possible. It has been 

shown that the proactive handover reduces the packet loss probability when compared to the reactive handover [37], 

making it more suitable for real-time applications and more energy efficient. 

 

Qualcomm presented a study [38], which shows that the LTE-Advanced HetNet with LTE pico-cell solution is the best 

option over the HetNet with Wi-Fi cells in terms of throughput gain, handover mechanism, QoS guarantee, security, and 

self-organizing features. Moreover, the LTE-Advanced HetNet with LTE picocells already achieves seam-less handover 

between the two networks whereas for HetNet with Wi-Fi cells seamless handover is not possible yet as it requires an 

inter-RAT handover. However, in terms of CAPEX and OPEX, HetNet with Wi-Fi cells is a better option for network 

operators. 

 

The HetNets Wi-Fi offload solution is already adopted by many service providers. For example, the main service 

providers in United Kingdom, such as EE, Vodafone, O2 and Three offer WiFi-calling letting their customers to make 

and receive calls and send and receive texts over WiFi using their mobile number. The O2 and Three service providers 

enable WiFi calling by using an app, such as O2 TU Go
1 

app and inTouch
2 

app, respectively. Whereas EE
3
 and 

Vodafone
4
 offer a seamless approach without the need for a separate add by using the standard dialer and SMS apps of 

the mobile phone. In this way, customers can avail of a wider service offering. 

 

                                                           
1
 O2 TU Go—http://www.o2.co.uk/apps/tu-go. 

2
 Three inTouch—http://www.three.co.uk/Discover/Three_inTouch. 

3
 EE WiFi Calling—http://ee.co.uk/ee-and-me/why-ee/uks-no1-network/wifi-calling. 

4
 Vodafone WiFi Calling—http://www.vodafone.co.uk/explore/network/network-improvements/wi-ficalling/. 



A white paper published by 4G Americas [39] provides recommendations for an Intelligent Network Selection (INS) 

that will enable the mobile device to select between WiFi and cellular networks. The INS is based on the ANDSF and 

IEEE 802.11u standards and the selection decision makes use of the RSSI, QoS parameters such as RTT delay, jitter, 

packet loss and UE local information like battery and data usage or the mobile device motion state relative to the WiFi 

Access Point position. 

 

Another solution based on the ANDSF standard is proposed by InterDigital [40] referred to as Smart Access Manager 

(SAM). The proposed solution is distributed and consists of a SAM client residing at the mobile device side that 

monitors the network environment and the services and applications running on the device, whereas a mobile-network-

based ANDSF server integrates all the cost/revenue policy rules and the decision-making intelligence. 

 

A leading wireless, wireline, broadband and cable TV operator in South Europe adopted the solution offered by Openet
5
 

that provides intelligent Wi-Fi management and offload capabilities in real-time on a subscriber-by-subscriber basis. 

The solution enables the network operator to optimize the mobile data experience for its customers and reduce the 

network costs based on policy and charging controls combined with user profiles and service information. 

 

The Wi-Fi network database provider WeFi
6 

launched the WeFi enhanced Access Network Discovery and Selection 

Function (WeANDSF) that is ANDSF 3GPP compliant, supporting Wi-Fi and all 2G/3G/4G cellular technologies. The 

selection decision is based on weighted factors taking into consideration the real-time and historical network per-

formance parameters for all networks within the user’s location. The solution enables the operators to save investments 

costs in CAPEX/OPEX by maximizing the utilization of all existing and potential resources. 

 

Data offloading solution is a promising solution for the network operators. However, the key problem is the lack of 

integration between the cellular network and the carrier Wi-Fi networks. To this extent, the new 3GPP Rel-13 considers 

several key features and technologies including LTE Wireless Local Area Network Radio Level Aggregation (LWA) 

and the LTE Unlicensed or Licensed Assisted Access for LTE (LTE-U/LAA) which utilises the unlicensed spectrum 

(e.g., 5 GHz) to provide additional radio spectrum for the network operators. 

 

According to 4G Americas white paper [41] there are two basic deployment scenarios for LWA as illustrated in Fig. 3: 

(1) a collocated scenario where the LTE eNB integrates one or multiple WLAN Access Points (APs), and (2) a non-

collocated scenario where the LTE eNB connects to WLAN via an interface that is being standardized by 3GPP in Rel-

13. In this scenario the eNB is an anchor node that enables the Core Network connectivity and forwards the data packets 

to WLAN. However, these deployment scenarios consider the LTE and WLAN networks deployed and controlled by an 

operator and its partners. In this way, the operators can have more control over the offloading techniques and the quality 

experienced by their customers over the Wi-Fi network. 

 

 

a) Collocated eNB and WLAN 
 

b) Collocated eNB and WLAN 

Figure 3. Basic Deployment options for LWA 

                                                           
5
 Openet—http://www.openet.com/. 

6
 Wi-Fi Network Database Provider WeFi—WeANDFS—http://www01.wefi.com/solution/. 



3. TOWARDS ENERGY EFFICIENT VERTICAL HANDOVERS 

This section examines the impact of specific parameters, vertical handover decision strategies and proposed approaches 

on the energy efficiency.  

3.1. Impact of Local and Network-related Parameters on the Energy efficiency 

To increase handover accuracy, vertical handover approaches utilize a large set of local and network-related 

parameters. However, this comes at the cost of higher network overhead that could lead to increase in delay, handover 

duration, processing power and finally more energy consumption. On the other side, considering a small set of 

parameters might improve the energy efficiency but at the cost of handover accuracy. Thus, in order to maintain a good 

trade-off between the energy efficiency and the handover accuracy a balanced number of parameters need to be 

considered. In this context, this section presents the impact of specific parameters on the handover accuracy and the 

trade-off they provide in terms of energy efficiency. The parameters are classified into two groups: (1) mobile-based 

parameters that can be collected locally on the mobile device side and (2) network-based parameters that are received 

remotely from the network side. Both categories are summarized in the table below. 

As seen in Table 1, most of the parameters present a high energy-efficiency trade-off, depending on the specific 

problem they are addressing. For example, energy savings might be achieved by reducing the number of handovers 

when making use of the coverage range information about the PoAs in the vicinity. Avoiding frequent retransmissions 

could also lead to energy savings. By using the information about the application requirements and the underlying 

transport protocol energy savings could be achieved by selecting an energy efficient transmission, such as UDP. 

An important aspect to consider is what information is readily available to the decision maker and how accurate and/or 

dynamic that information is. For example, because of the dynamics of the wireless environment the received signal 

strength or the available band-width can present major fluctuations for short periods of time. On the other side, the 

coverage and the PoAs location are less dynamic and they do not present changes on a daily basis. Whereas the security 

level and access methodology are parameters that are more static. Note that the parameters presented above do not 

represent an exhaustive list and are possible choices that might be used as input into the handover decision strategy. 

Some solutions may use only a subset of these parameters, or may include additional parameters as well. 

It should be noted that most of local and network-related handover decision parameters are extremely related to each 

other and cannot be addressed individually. For instance, network connection time is closely related to the RSSI, 

location and speed of the device. Therefore, a multi-criteria based handover procedure is more suitable as it has a higher 

potential to fulfill an energy-efficient network/interface selection. 

 

Category Ref. No. Parameter Description Handover Accuracy Energy-efficiency  

trade-off 

Mobile-

based 
parameters 

[12, 46-51, 

64-69,84,85] 

RSSI Measurement of the received signal 

power level, and is directly related 

to the service quality. 

High accuracy High 

[66, 71] Bit Error Rate 

(BER) 

Offers information about the link 

reliability. 

High accuracy High 

 

[12, 70, 76, 
77] 

 

Network 
Connection 

Time 

Gives information about the time 

taken to initiate and execute a 
handover that is essential for the 

network/interface selection 

procedure. 

 

 
High accuracy 

 

 
High 

 

[12, 66, 72, 

74, 75, 85] 
 

 

 

Battery Status 

 

Indicator of the lifetime of a mobile 

device’s battery until the next 
charge. 

Used in combination with 

other parameters for 

improved accuracy by 
selecting an energy-

efficient PoA. 

 

 

High 

 

 
[55, 62, 84] 

 

 
 

Resources 

 

Any physical or virtual component 
of limited availability within a 

device: CPU, memory, Input/Output 
operations, electrical power, etc. 

Used in combination with 

other parameters for 
improved accuracy and to 

avoid resource contention 
when demand exceeds 

supply for a limited 

resource. 

 

 
 

High 



 

 
[68, 69, 71, 

76, 85] 

 

 
 

Speed 

Information about the speed of the 

mobile user (e.g., stationary, 
pedestrian walking or vehicular 

speed). Global Positioning System 

(GPS) can be used to obtain the 
location of the device relative to its 

PoA. 

 

Used in combination with 
other parameters for 

improved accuracy by 

deciding when and where to 
handover. 

 

Very low if GPS is used, as 
it consumes approximately 

ten times more energy than 

an accelerometer [37]. 

 

 
[12] 

 

 
Accelerometer 

 

 
Widely used as a motion sensor in 

the latest smart devices. 

Used in combination with 

other parameters for 
improved accuracy by 

performing channel 

scanning only when 

movement is detected. 

 

Medium, energy efficiency 
before handover can be 

achieved as in the work 

presented in [38]. 

[48-50, 54, 

72, 73] 

User 

Preferences 

It enables the users to express their 

preferences towards a certain 
criteria. 

High, if the users gives 

priority to handover 
accuracy. 

High, if the users gives 

priority to energy efficiency. 

 

[71] 

 

Historical 

Information 

Storing the information about the 

networks the device was associated 

according to specific time and 
location. 

High, as it speeds up the 

network selection process 

based on the previous user 
experience. 

High, as reduction of power 

consumption during the 

decision process can be 
achieved. 

 

[46, 49, 60, 
61, 66, 78] 

Local Packet 

Loss, Latency 
and 

Throughput 

rates 

Local information about the packet 

loss, latency and throughput rates of 
the network the mobile device is 

associated with. 

High, as the mobile devices 

may initiate handover 
operation whenever these 

parameters are below a 

certain threshold. 

 

High, as frequent 
retransmissions could be 

avoided. 

 
[12, 54, 74] 

Specific 
application 

requirements 
(TCP/UDP) 

Information about the required 
bandwidth for a certain application 

using the underlying transport 
protocol (UDP/TCP). 

High, when used in 
combination with other 

parameters. 

High, as UDP transmissions 
could be more energy 

efficient. 

Network-
based 

parameters 

 
[12, 59, 60, 

84] 

 
Overall 

throughput 

Information about the overall 
throughput of the available networks 

in the vicinity. 

High, by making use of the 
information on how dense a 

network is and how much 

more traffic it can handle. 

High, as the mobile device 
can reduce the energy 

consumption by limiting its 

duration in the idle states. 

 

 

[12, 48, 49, 
53] 

 

Network 

Connectivity 
Graph 

Information of the Service Set 

Identifiers (SSIDs) of networks, 

which are active and close to the 
current PoA allows mobile devices 

to scan only the available networks 

in the vicinity. 

 

High, when used in 

combination with other 
parameters to speed up the 

network selection process. 

 

High, as reduction of power 

consumption during network 
discovery is achieved. 

[46, 55, 58, 
62, 76] 

 
Location of 

PoAs 

Similar to Network Connectivity 
Graph, mobile devices can scan only 

the networks that are in the location 

of the device. 

High, when used in 
combination with other 

parameters to speed up the 

network selection process. 

High, as reduction of power 
consumption during network 

discovery is achieved. 

-  

 

Security and 
Access 

Methodology 

High security procedures, 

request/response-based access 

methodologies, authentication and 
encryption processes of some 

networks let mobile devices have a 

secure but slow communication 
channel. 

 

 

High, when used in 
combination with other 

parameters. 

High, as associating with a 

network/interface that has 

minimum or no security 
procedures increases the 

energy efficiency, as the 

additional overheads on the 
system are eliminated. 

 

 
[12, 59] 

 

Number of 
Connected 

Users 

Information on PoAs load allows 

mobile devices to comment on the 
channel utilization and possible 

probability of collision ratios. 

High, as mobile devices can 

associate with the network 
that has the minimum 

number of connected users. 

High, as the probability of 

collision is decreased and 
hence, the mobile device 

will consume less amount of 

energy. 

 
 

[52, 67] 

 
 

Coverage 

 
 

Coverage range information about 

the PoAs in the vicinity. 

High, as using the coverage 
information of each 

network/interface, 

minimum number of 
handover associations can 

be provided. 

 
 

High, by reducing the 

number of handovers. 

[12, 59, 60, 
67] 

Channel Busy 
Time (CBT) 

Estimation of the transmission 
duration. 

High, when used in 
combination with other 

parameters. 

High, when used in 
combination with other 

parameters. 

Table 1. Summary of Mobile-based locally collected parameters and Network-based remotely received parameters 



3.2. Impact of Handover Decision Strategies on the Energy Efficiency  

The parameters collected from the existing wireless networks and interfaces are weighted based on their importance 

during the vertical handover decision stage. The result of this stage is the selection of a network/interface, considering 

the information gathered throughout the channel scanning phase. Some of the existing vertical handover decision 

strategies that are widely used in the network selection process are: function-based decision, user-centric decision, fuzzy 

logic based decision, game theoretic decision and reputation-based decision. 

 

The proposed handover decision strategies from the literature are trying to find the best trade-off between various 

parameters and are not entirely focused on one parameter only. For example, the function-based decision selects the 

network/interface that maximizes an objective function. In most of the cases, the objective function is represented by a 

weighted sum of different parameters, such as QoS, cost, trust, power consumption, compatibility, user preferences, 

capacity, etc. Consequently, the energy efficiency when adopting this handover decision strategy will vary according to 

the power consumption’s weight value. 

 

In the case of user-centric decision solutions, the user satisfaction plays an important role in the decision criteria. 

Therefore, energy efficiency when using these strategies will vary according to users’ preferences in terms of 

performance, QoS, cost and power consumption. Fuzzy logic based decision deals with uncertainties. It analyzes vague 

data, such as the behavior of the RSS, channel utilization, energy consumed per bit or the BER. This information is then 

combined with other decision strategies to select the network/interface that finds the best trade-off between these 

parameters. Vertical handover decision problem can also be modeled by using some of the game theory approaches, 

such as cooperative games, non-cooperative games, hierarchic games and evolutionary games [16, 44]. Finally, 

reputation-based decision makes use of a new subjective metric that relies on earlier experiences and observations of 

users in similar situations. Reputation-based decision strategies compute global reputation values based on previous 

experiences of users. This might speed up the overall handover process and it might enable the mobile devices to 

perform fast and energy-efficient VHO operations. Thus, decision strategies select a net-work/interface, considering the 

information gathered throughout the network discovery phase. Moreover, the decision strategy selected has a direct 

impact on the data processing intensity and memory usage that in turn could introduce delay and extra energy 

consumption to the overall handover process. An optimal energy-efficient vertical handover could be achieved by 

employing a decision strategy that gathers only the most significant local and network-related information and selects 

the network/interface that is expected to find the best trade-off between performance and energy efficiency. 

Comprehensive anal-ysis of vertical handover decision strategies can be found in [16, 23, 44, 45]. 

3.3.  Impact of Vertical Handover Standards on the Energy Efficiency 

Depending on the type of architecture, and protocol in use, and whether it is a centralized or decentralized decision, 

different information will be available in different forms and accuracy levels. For example, for a decentralized 

approach, the mobile device could collect the network state information as statistics, usually represented by mean 

values of previous sessions, or could obtain some estimates through the use of IEEE 802.21. 

 

The IEEE 802.21 MIH Information Server (IS) provides mobile devices with fast and energy-efficient channel scanning 

results. The IS supports the distribution of network information and may provide information about: the available PoAs 

list and their coordinates (connectivity graph), the services they can provide, channel utilization ratios of each PoA, etc. 

Figure 4 shows an example of a distance-based connectivity graph provided by the IEEE 802.21 IS, where r is the 

transmission range of each PoA, di(n) is the lineal distance between the PoAi and PoAn. Making use of this information, 

mobile devices can perform unicast scanning (scanning only the PoAs the IS provides) and decrease the total scanning 

time, removing the channels that are not in the connectivity graph. Consequently, using the IEEE 802.21 MIH standard, 

mobile devices will be able to scan less than n (total number of channels) channels and decrease the total amount of 

energy consumed in the network discovery phase. 

 

As mentioned earlier, the aim of the ANDSF protocol is to assist mobile devices to discover non-3GPP radio access 

networks. Discovery information defined in ANDSF protocol provides list of available access networks including 

access type technology, radio access networks identifier, etc. Consequently, ANDSF protocol enables mobile devices 

that are associated with an UMTS interface to discover other RATs, such as WiFi and WiMAX in the vicinity without 



switching their interfaces on. Hence, this procedure also reduces both the total channel scanning time and the energy 

consumed in the scanning phase as the IEEE 802.21 protocol. 

 

Thus, the existing standards and protocols could assist the mobile device during the handover process speeding up the 

overall handover duration and consequently reducing the energy consumption. 

 

 
Figure 4. An example of a distance-based connectivity graph 

3.4. Existing Energy Efficient Handover Approaches  

There have been many works [45–78] proposed in the literature that focus on energy-efficient interface/network 

selection. These works are either network-assisted [45–73] or mobile-initiated [74–78] and mainly utilize specific 

decision strategies to provide energy efficient interface/network selection, such as reputation-based [46], cost-function 

[47–49], fuzzy-logic [50, 53], context-aware [52, 55, 58, 72], location-assisted [68, 69], history-based [71], etc. 

 

An important amount of interface/network selection algorithms proposed in the literature makes use of the IEEE 802.21 

MIH and ANDSF protocols. Some of these works [43–55] summarized below. Sukyoung et al. in [45] propose an IEEE 

802.21 MIH-assisted VHO algorithm that aims at balancing the overall load among all PoAs and maximize the 

collective battery lifetime of mobile devices. Celenlioglu et al. in [46] propose a reputation based VHO algorithm that 

makes use of the user location pattern. The algorithm also makes use of MIH and Stream Control Transmission Protocol 

(SCTP) for mobility management. The proposed reputation scheme lets mobile devices achieve energy-efficient vertical 

handover by considering previous experiences, obtained from previous visits at the same geographical location. 

Chowdhury et al. in [47] propose a network-assisted cost-function based VHO algorithm where the RSSI, battery status 

and offered QoS are the input parameters. In order to provide an energy-efficient VHO process, the proposed algorithm 

uses the MIH power management functionalities. In [48], Frei et al. make use of both IEEE 802.21 MIH and ANDSF 

protocols. The MIH is used to notify mobile devices about movements, link status, and list of available PoAs. 

Additionally, the ANDSF is used to get the operator policies that will assist to an energy-efficient PoA selection. Liu et 

al. in [49] propose a cost-function-based energy efficient network selection procedure among WLAN, WiMax and 3G 

networks. The proposed architecture is assisted by the IEEE 802.21 network coverage map and makes use of 

bandwidth, delay and the Wireless Network Interface Card (WNIC) power consumption values as input. In the 

proposed scheme, handover is triggered according to RSS values in WLAN networks, CINR values in WiMax networks 

and the application of an exponential moving-average filter. 

 

Chamodrakas et al. in [50] propose an energy-efficient interface/network selection approach based on a modified fuzzy 

version of Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) that takes into account both 

network conditions (with the help of MIH protocol), user preferences, QoS and energy consumption requirements. 

Additionally, authors in [12, 51] aim to decrease the energy consumption of mobile devices by making use of a smart 

selective channel scanning approach and associating with a PoA that is expected to consume the least amount of energy 



among all PoAs. In these works, the expected amount of energy consumption is obtained by using the channel scanning 

results, channel busy times (CBTs), RSS and SINR values, traffic class of the station, switching costs, the number of 

stations deployed in each PoA, and the power consumption of each WNIC. While an IEEE 802.21 MIH-assisted 

interface/network selection is aimed between 3G and WiFi in [12], an ANDSF-assisted interface/network selection is 

aimed between LTE-A and WiFi in [51]. 

 

Unlike the aforementioned algorithms, Coskun et al. in [52] propose a simple but not an effective interface selection 

algorithm. The proposed algorithm prefers to connect WLAN if all of three access technologies (WLAN, WiMAX, and 

UMTS) are available. If the device is not in the coverage of WLAN, then the algorithm connects to WiMAX. If neither 

WLAN nor WiMAX is available, then the device connects to UMTS. Simply, the order of preference is WLAN [ 

WiMAX [ UMTS. In addition, Lee et al. in [53] propose an efficient channel scanning scheme by utilizing the 

Information Element (IE) of the IEEE 802.21 MIIS. The proposed scheme aims to reduce the number of channel 

scanning on each NIC as full scanning in a heterogeneous wireless environment takes time and consumes an important 

amount of energy. Trestian et al. in [54] utilizes specific parameters (e.g., user mobility, user preferences, application 

requirements, and network conditions) and proposes an energy-efficient MIH-assisted network selection procedure for 

multimedia delivery over wireless heterogeneous networks. The proposed method increases the battery lifetime of 

mobile devices by selecting the network that offers the best energy-quality trade-off, while performing multimedia 

content delivery. In [55], a geo-referenced-based network selection that aims to increase the mobility of mobile devices 

is proposed. The proposed scheme makes use of GPS, power consumption values in each NIC, list of available PoAs 

and IEEE 802.21 protocol to decide when and where to handover. 

 

There have been works [56–58] that focus on interface/network selection by making use of central servers or 

controllers. For instance, Nam et al. in [56] propose a VHO algorithm referred to as WISE, in tightly coupled systems 

that utilizes a centralized entity called the Virtual Domain Controller (VDC). The authors indicate that 3G network 

interface consumes more energy in transmission state, but less energy in receiving and idle state. Hence, in WISE, 

interface switching between 3G and WLAN networks operates independently on both the downlink and the uplink for 

the purpose of energy conservation. Lee et al. in [57] make use of Serving GPRS Support Node (SGSN) and propose a 

power-aware communication protocol between WLAN and WWAN networks. Whenever the device enters the idle 

state, the proposed method turns the WLAN interface off and maintains its connection using the WWAN interface. 

Whenever the number of packets in the radio network controller’s buffer reaches a certain threshold, WLAN interface is 

re-activated by using the existing paging of WWANs. Additionally, Zhang et al. in [58] propose an energy man-

agement mechanism that increases users’ energy efficiency in non-saturated wireless heterogeneous network by making 

use of both a central server and the ANDSF protocol. The proposed method provides energy efficiency, balancing the 

user preferences and their energy requirements. 

 

Apart from the works that utilize either VHO standards or central servers, other pro-posed solutions [59–63] aim to 

associate with the most energy-efficient interface/network, using an expected energy consumption model. For instance, 

Pons et al. in [59] dynamically estimate the network/interface that is expected to consume the least amount of energy 

for the uplink traffic between WLAN and LTE networks. In [60], it is shown that achievable energy efficiency can be 

calculated by means of a simple expression, requiring only a limited amount of local and network-related information 

(e.g., data rate, throughput, channel fading and network load) for the networks employing Proportionally Fair Access 

(PFA). Kim et al. in [61] also propose a network/interface selection method called AWNIS that is based on 

mathematical modeling of energy consumption and data transfer delay patterns. The proposed method chooses a PoA, 

taking the link quality into account and adjusting a dynamic network/interface selection interval according to the 

network environment. Similar to [57], Seo et al. in [62] and Lee et al. in [63] also propose an interface selection method 

that turns the WLAN interface completely off, without any periodic wake-up, during the idle state to save energy. In the 

proposed method, existing out-of-band paging channels (PCHs) of cellular networks are exploited within the mobile 

stations. These schemes may reduce the total energy consumption dramatically in case each duration in the idle state is 

known beforehand. However, it is not an easy task to predict the exact idle time of a station and hence, the station may 

stay in long transmission/receiving states using the proposed method. Additionally, this method is effective only for 

tightly-coupled systems that makes the WLAN appear to the 3G core network as another 3G access network. 

 



Furthermore, Choi et al. in [64] and [65] propose an energy-efficient network-scanning algorithm for integrated IEEE 

802.16e/802.11 networks. In order to achieve energy efficiency, 802.16e Base Stations (BSs) periodically broadcast the 

information about the density of 802.11 APs within their cell coverage. In this context, the proposed scheme forecasts 

the effective scanning probability during a given scanning time. Authors in [66] propose a multiple criteria decision 

method to estimate the expected lifetime of stations in a heterogeneous wireless environment (CDMA, WiBro, WLAN). 

The proposed method makes use of Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRA) and takes 

the bandwidth, BER, jitter, delay, cost, QoS, and battery lifetime as input parameters. 

 

Petander et al. in [67] considers the handover operation between WLAN and UMTS networks on an Android mobile 

phone and examines energy consumption values. The results indicate that the energy consumption of UMTS is 

approximately equal to WLAN as a function of transfer time. However, for bulk transfers, the results indicate that 

transferring a byte of data using UMTS may require much more energy (over a hundred times) than using the WLAN. 

In this context, the proposed approach makes use of traffic load estimations according to Signal to Noise Ratio (SNR) 

and network load provided by the Home Agent (HA). The proposed scheme uses the aforementioned information to 

compute a threshold for the UMTS to WLAN handover operation. Moreover, handover from WLAN to UMTS is 

automatically initiated once the station leaves the coverage area of a WLAN. Additionally, Yang et al. in [68] and [69] 

propose an energy-efficient interface selection for integrated WiMAX-WLAN networks making use of the Geographic 

Mobility Awareness. The proposed method initiates a handover candidate selection based on historical handover 

geographic patterns, utilizing the RSS of the networks and the velocity of the station. Additionally, Desset et al. in [70] 

propose an energy-efficient handover decision strategy for both uplink and downlink data transmission between WLAN 

and WiMAX networks. In this context, the authors first examine related metrics, such as channel fading fluctuations, 

extraction of MAC-level behavior, packet error rates, and overall power consumption in each state. Then, authors 

present a handover controller to find the network that has the lowest expected power consumption for the required 

transmission rate. 

 

Rahmati et al. in [71] express the selection of wireless interfaces/networks as a statistical decision problem. In this 

context, authors explore various context information metrics, such as the time, history, cellular network conditions, and 

device motion, to statistically estimate Wi-Fi network conditions without powering up the network interface. Xenakis et 

al. in [72] propose an energy-efficient interface/network selection algorithm that makes use of parameters such as the 

network congestion, SINR level, offered QoS on the target PoA, remaining battery lifetime at the mobile station, energy 

consumption on the current PoA, charging policy and user preferences. Nevertheless, this work mainly uses the same 

analytical power consumption estimation for different radio access technologies, which results in imprecise 

computations. In [73] Fan et al. propose an energy-efficient interface selection strategy for real-time and non-real-time 

applications based on fuzzy logic that considers network conditions, user preferences and QoS requirements. 

 

All the aforementioned energy-efficient vertical handover approaches are mainly net-work-assisted approaches and they 

are initiated utilizing the information remotely obtained from networks. However, there are also some approaches [74–

78] that are initiated using only the local information obtained by the mobile station itself. For instance, In [74], Kanno 

et al. propose an energy-efficient interface selection scheme according to the traffic-type of the application running on 

the mobile station, as energy requirements of different traffic-types will be different. For instance, a non-real-time 

application, such as a file download consumes energy until the end of its process, mainly staying in the receiving state. 

However, a real-time application, such as a voice communication, consumes energy both in transmitting, receiving and 

idle state, as it does not always have a frame in its queue to transmit or receive. Additionally, Ikeda et al. in [75] 

propose a new way of measuring signal to interference and noise ratio (SINR) at a low level of power consumption for 

vertical handover. In this scheme, the SINR values of the other RANs in the vicinity are measured at a certain interval 

while communicating with the existing RAN. In [76], energy is saved by proposing a method that activates the network 

interfaces with a location-based wireless network discovery, instead of keeping them ‘‘alive’’ continuously. However, 

the energy saved using this method is inversely proportional to the frequency of activations of the interfaces. Besides, 

GPS solutions are not that practical in indoor or urban environments. In [77], Araniti et al. focus on green interface 

selection policies and aim to guarantee an efficient management of the power consumed by base stations (BS) and 

reduce the unnecessary handovers. In this context, the proposed scheme rejects the inbound handover requests from the 

stations with high mobility and allows only the handovers that do not increase the overall transmitted power of the BS 

target. Finally in [78], Harjula et al. propose an approach, referred to as e-Aware, to estimate the impact of the 



application layer protocol properties on the energy consumption of mobile devices operating in 3G and WLAN 

networks. The proposed energy consumption model is a mathematical model that estimates the energy consumption of 

network operations, such as signaling and media transfers. 

 

Apart from the energy-efficient network/interface selection approaches, there are also some works that examine the total 

amount of energy consumed by mobile devices from various angles, such as the architecture, operating system, 

available resources, etc. For example, in [79] the authors examine the energy consumption characteristics of two 

approaches of tight coupling architectures. While the first approach is the case when only one interface is active at a 

time, the second approach is the case when both interfaces may be concurrently active. Additionally, Wang et al. in [80] 

presents the results of real-time measurements of uplink and downlink power consumptions of EDGE, HSPA and 

802.11 radio interfaces. In this regard, the authors suggest that the data must be transmitted/ received as bursts to keep 

the interfaces in low power-consumption mode for longer. Furthermore, power consumptions of base stations for 

mobile WiMAX, HSPA, and LTE are modeled, based on the coverage of the base station, in [81]. 

4. EVALUATION OF ENERGY-EFFICIENT VERTICAL HANDOVER PARAMETERS AND APPROACHES 

Previous works from the literature compare the power consumption of pairs of two net-works, such as: WiFi–3G [12], 

WiFi–LTE [34, 79], 3G–LTE [82] and LTE–WiMAX [83] networks. To the best of our knowledge, there is no single 

work that compares the power consumption of the four aforementioned RATs in the literature. Although comparisons 

are not performed by a single work and the results may vary due to different test-beds and simulation environments, the 

general and also the accepted opinion is that a station con-nected to a WiFi network consumes the least power in case 

the network is not highly loaded and has a good signal strength. Additionally, the works presented in [82] and [83] 

show that LTE and WiMAX interfaces consume similar amount of powers to transfer the same amount of throughput, 

whereas 3G interface mainly consumes less power than both of these interfaces. 

 

However, it should be noted that there are many factors that may affect the amount of power consumption, such as 

received signal strengths, RAT interference, bit error rate, channel utilization, number of connected stations, etc. Hence, 

a station may even save power by switching from WiFi to a 3G, LTE or WiMAX network. In this regard, a comparison 

is proposed in Table 2 to summarize features and amount of energy savings of the algorithms presented in the Sect. 3. 

 

Table 2 shows that high amount of energy can be saved by utilizing as many parameters and protocols as possible, 

unless additional message exchanges resulting from these parameters and protocols are not damaging (e.g. additional 

delay, power consumption, memory and CPU requirements, etc.) the ongoing network operations. In other words, 

vertical handover approaches may utilize a large set of local and network-related parameters. Nevertheless, higher 

network overhead, resulting from additional parameters and protocol support, may lead to increase in delay, handover 

duration, processing power and finally more energy consumption. Considering a small set of parameters might improve 

the energy efficiency but at the cost of handover accuracy. Thus, a balanced number of parameters need to be 

considered to maintain a good trade-off between the energy efficiency and the handover accuracy. As an example, IEEE 

802.21 protocol support enables stations to save considerable amount of energy as the protocol broadcast up-to-date 

network coverage map and available PoA list, in return for limited number of message exchanges. In contrast, energy 

saving might be low (might be even worse than when not used) if GPS is used to locate stations, since it also consumes 

high amount of energy. 

 

Refere

nces 
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Operation 
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Support 
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stimation-based 

Location, RSS, data rate, QoS  Reputation-based IEEE 
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[52] Network-assisted 
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SNR, throughputs, # of sta.,              
Ch. utilization 
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[61] Network-assisted 
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- 3G – WiFi High 

[62] Network-assisted 

Estimation-based 
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Bandwidth, jitter, BER, delay, cost, 

battery lifetime 

Multiple attr. dec. 

(MADM) 

- CDMA, WiBro, 

WiFi 

High 
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Location-assisted - WiFi - WiMax Medium 

[70] Network-assisted 

Estimation-based 

Ch. fading fluctuations, BER, WNIC 

power, Ch. scanning, VHO cost 

Multiple attr. dec. 

(MADM) 

- WiFi - WiMax Very 

high 

[71] Network-assisted 
Estimation-based 

Time, history, cellular net. cond., 
motion 

Context-aware - WiFi - UMTS Very 
high 

[72] Network-assisted 

Prediction-based 

SINR, net. congestion, offered QoS, 

battery lifetime, user preferences 

Context-aware - Any RATs Medium 

[73] Network-assisted 
Estimation-based 

CINR, user pref., QoS req., Fuzzy logic - Wwan - Wman High 

[74] Mobile initiated 

Prediction-based 

battery status, QoS, App-type, 

energy consumed per bit 

Function-based - Any RATs Medium 

[75] Mobile initiated 
Measurement based 

SINR, SINR fluctuations, 

congestion, battery lifetime, QoS 

SINR measurement-

based 

- Any RATs Low 

[76] Mobile initiated 
Estimation-based 

Periodic interface activation, GPS 
location 

Location-assisted - Any RATs Low 

[77] Mobile initiated 

Prediction-based 

SINR, av. bandwidth, min. nr. of 

handover, speed 

Multiple attr. dec. 

(MADM) 

- LTE HetNets Medium 

[78] Mobile initiated 
Estimation-based 

Packet size, inactivity timers, delay 
between timer switches 

Long term power cons. 
model 

- WiFi – 3G High 



[84] Mobile initiated 

Estimation-based 

RSSI, throughput, CPU load Fuzzy logic - Any RATs Low 

[85] Network-assisted 

Prediction-based 

RSS, data rate, monetary cost, speed, 

battery level 

Fuzzy logic - Any RATs Low 

                 Table 2. A brief comparison of the proposed energy-efficient network/interface selection algorithms. 

5. RECOMMENDATIONS ON HOW TO SAVE ENERGY BEFORE, DURING AND AFTER HANDOVER 

In order to perform an energy efficient vertical handover, rather than considering a full information set, a limited set 

consisting of the information that provides the best performance versus energy efficiency trade-off must be gathered 

and transferred to the decision phase. In this context, mobile devices must seek for available networks (network 

discovery) at first, to detect whether there is a PoA to associate with in the vicinity. In addition to the network 

discovery, network-related convenient parameters must be advertised to the mobile devices. Local information, such as 

speed, battery status, resources, service class, historical information, accelerometer, GPS, etc. could be collected as 

well. Finally, all the above-mentioned information, along with the user preferences, need to be transferred to the 

decision phase. 

 

Consequently, there are five possible stages to save energy before the handover execution (throughout the information 

gathering and decision phases); (1) network discovery, (2) network-side assisting, (3) mobile-side assisting, (4) user 

preferences and (5) handover decision. 

 

Frequency of information gathering is crucial for an energy-efficient handover. Some approaches initiate the 

information gathering or the discovery process only in case the network is no more able to handle the current traffic, or 

in other words, information gathering is initiated only when the measured RSSI is below a certain threshold. In this 

way, as long as the channel allows mobile devices to be connected and to communicate, these devices only perform 

their regular actions, which means there is no extra processing time and additional energy consumption. At first sight, 

this procedure seems energy efficient. However, there might be another PoA(s) in the vicinity that will let the device 

consume less power in case of an association scenario with that PoA(s). The device does not perform a discovery 

process since the measured RSSI is not below a certain threshold. Thus, the device will consume more power as long as 

it is associated with its old PoA. Therefore, this procedure may not always be energy efficient. 

 

In contrast to the first approach, some approaches continuously or periodically seek for available networks and collect 

related information to let mobile devices perform fast and accurate handover opportunity. This is also not an energy 

efficient approach as continuous or periodic channel scanning might cause mobile devices to consume additional energy 

and interrupt their regular action and hence, overall throughput of the device decreases. 

 

In this regard, a dynamic algorithm that increases or decreases the frequency of information gathering can provide an 

optimal energy efficiency. In this context, the algorithm must increase the frequency in case the device is moving or the 

channel condition rapidly changes. In contrary, the algorithm must decrease the frequency in case the device is stable 

and the channel condition is fixed or slowly changes. 

 

It is possible for mobile devices to obtain many network-related information with the network-side assisting. It is also 

highly possible for mobile devices to make a better prediction, using this information. However, in order to collect this 

information, mobile devices may need to transmit additional frames (requests). These additional frames may also take 

significant time (one round-trip-time for each information) and processing overhead for mobile devices. Consequently, 

the device may be too late to handover, waiting for network-related information or may consume an important portion 

of unnecessary power. Therefore, gathering only the related and convenient information lets mobile devices achieve fast 

and energy-efficient handover. 

 

Making use of mobile-side assisting, mobile devices can process their local information and transfer it to the decision 

stage. Since these devices process only the local information, there are no message exchanges between devices and the 

network in mobile-side assisting. Gathering this information usually takes a very short time and consumes such a small 

amount of power (unless the information is obtained by additional hardware support such as GPS, accelerometer, etc.) 



compared to the time and power consumption of network-side assisting. Therefore, for an optimal energy efficient 

handover opportunity, all set of local information supported by the mobile device can be processed and transferred to 

the decision stage. 

 

If maximization of the communication time is an important metric for users, an important portion of energy 

consumption can also be reduced with the definition of user preferences. All the gathered information is transferred to 

the decision stage along with the information on user preferences. Making use of the user preferences, decision 

algorithms increase the weight of the energy priority and hence, association to an energy-efficient PoA would be 

performed for the device in a possible handover scenario. 

 

Various network interface selection methods (fuzzy-logic, context-aware, etc.) used in the decision stage may also result 

in different amount of power consumption for mobile devices. Even though the total energy consumed in the decision 

stage is not as much as in the information gathering stage as previously seen. 

 

As mentioned earlier, handover execution phase performs the handover (mainly hard or soft handover) itself. In both 

hard and soft handover, executions are performed in such a small amount of time, with only the required message 

exchanges and processing over-heads. Therefore, both of these two handover execution methods consume close and 

small amount of power, which is even negligible compared to the power consumed in the information-gathering phase. 

 

Consequently, making use of the aforementioned different stages efficiently, maxi-mization of the communication time 

with minimized energy consumption can be achieved not only before the handover (as only convenient parameters are 

collected, keeping the energy efficiency in mind) but also after the handover (associating with the most energy efficient 

network means the device will consume the least amount of energy for wireless access after the handover until the 

channel condition has changed and the device decides to hand over again). 

 

Last but not the least, while one of the wireless radio interfaces of a mobile device is active, reducing some amount of 

energy consumption is also possible by utilizing the transmission power control (TPC) [86], frame size adaptation [87], 

and data compression and aggregation methods [88]. Modifying TPC can be achieved by using directional antennas 

[89], location or RSSI-based low power transmission tuning [90] or bit rate per frame adaptation in CDMA-based 

devices [91].  

6. CONCLUSION 

Studies on energy-efficient interface/network selection have become popular due to the increasing interest in energy 

efficiency and users’ demand for connecting to the Internet anytime and anywhere. Despite the amount of research  done 

in the area of energy conservation, not much focus has been placed on reviewing and comparing the existing energy-

centric vertical handover approaches from the literature, in terms of their energy gain. Towards closing this gap, this 

paper reviews the impact of vertical handover parameters and methods and provides a comprehensive survey on state-

of-the-art energy-centric vertical handover approaches on the energy efficiency. 

 

In a nutshell, this work individually examines each possible energy gain metrics before/during/after the handover and 

concludes that redundancy of the information gathered locally or remotely not always leads to energy efficiency, as this 

process may take significant time and processing overhead for mobile devices. Instead, to perform an energy efficient 

vertical handover, rather than a full set, a convenient set of information, which varies depending on specific radio access 

technology, must be gathered and transferred to the decision phase. 
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