264 research outputs found

    Skype traffic detection and characterization

    Get PDF
    Skype is a very popular VoIP software which has recently attracted the attention of the research community and network operators; furthermore Skype uses a proprietary signalling design and its source code is unavailable. This makes its analysis really important since the classification of IP flows becomes increasingly crucial in modern network management platforms. Traditional classification systems based on packet headers are rapidly becoming ineffective. In this work after a general analysis of Skype protocol and traffic in both time and frequency domain, a new classification method is presented. It is based on statical classification of the flow, using only three basic properties of IP packets: their size, interarrival time and order of arrival. The whole process is based on a new quantity called Protocol Fingerprint. Its aim is to express these quantities in an efficient way. An important part in the classification process is taken by a Gaussian filter that smooths the protocol fingerprints avoiding misclassifications caused by any kind of noise generated in the network. Even if this technique is at an early stage of development and requires more work, it is quite promising

    Systemization of Pluggable Transports for Censorship Resistance

    Full text link
    An increasing number of countries implement Internet censorship at different scales and for a variety of reasons. In particular, the link between the censored client and entry point to the uncensored network is a frequent target of censorship due to the ease with which a nation-state censor can control it. A number of censorship resistance systems have been developed thus far to help circumvent blocking on this link, which we refer to as link circumvention systems (LCs). The variety and profusion of attack vectors available to a censor has led to an arms race, leading to a dramatic speed of evolution of LCs. Despite their inherent complexity and the breadth of work in this area, there is no systematic way to evaluate link circumvention systems and compare them against each other. In this paper, we (i) sketch an attack model to comprehensively explore a censor's capabilities, (ii) present an abstract model of a LC, a system that helps a censored client communicate with a server over the Internet while resisting censorship, (iii) describe an evaluation stack that underscores a layered approach to evaluate LCs, and (iv) systemize and evaluate existing censorship resistance systems that provide link circumvention. We highlight open challenges in the evaluation and development of LCs and discuss possible mitigations.Comment: Content from this paper was published in Proceedings on Privacy Enhancing Technologies (PoPETS), Volume 2016, Issue 4 (July 2016) as "SoK: Making Sense of Censorship Resistance Systems" by Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swanson, Steven J. Murdoch and Ian Goldberg (DOI 10.1515/popets-2016-0028

    The Bits of Silence : Redundant Traffic in VoIP

    Get PDF
    Human conversation is characterized by brief pauses and so-called turn-taking behavior between the speakers. In the context of VoIP, this means that there are frequent periods where the microphone captures only background noise – or even silence whenever the microphone is muted. The bits transmitted from such silence periods introduce overhead in terms of data usage, energy consumption, and network infrastructure costs. In this paper, we contribute by shedding light on these costs for VoIP applications. We systematically measure the performance of six popular mobile VoIP applications with controlled human conversation and acoustic setup. Our analysis demonstrates that significant savings can indeed be achievable - with the best performing silence suppression technique being effective on 75% of silent pauses in the conversation in a quiet place. This results in 2-5 times data savings, and 50-90% lower energy consumption compared to the next better alternative. Even then, the effectiveness of silence suppression can be sensitive to the amount of background noise, underlying speech codec, and the device being used. The codec characteristics and performance do not depend on the network type. However, silence suppression makes VoIP traffic network friendly as much as VoLTE traffic. Our results provide new insights into VoIP performance and offer a motivation for further enhancements, such as performance-aware codec selection, that can significantly benefit a wide variety of voice assisted applications, as such intelligent home assistants and other speech codec enabled IoT devices.Peer reviewe

    TORKAMELEON. IMPROVING TOR’S CENSORSHIP RESISTANCE WITH K-ANONYMIZATION MEDIA MORPHING COVERT INPUT CHANNELS

    Get PDF
    Anonymity networks such as Tor and other related tools are powerful means of increas- ing the anonymity and privacy of Internet users’ communications. Tor is currently the most widely used solution by whistleblowers to disclose confidential information and denounce censorship measures, including violations of civil rights, freedom of expres- sion, or guarantees of free access to information. However, recent research studies have shown that Tor is vulnerable to so-called powerful correlation attacks carried out by global adversaries or collaborative Internet censorship parties. In the Tor ”arms race” scenario, we can see that as new censorship, surveillance, and deep correlation tools have been researched, new, improved solutions for preserving anonymity have also emerged. In recent research proposals, unobservable encapsulation of IP packets in covert media channels is one of the most promising defenses against such threat models. They leverage WebRTC-based covert channels as a robust and practical approach against powerful traf- fic correlation analysis. At the same time, these solutions are difficult to combat through the traffic-blocking measures commonly used by censorship authorities. In this dissertation, we propose TorKameleon, a censorship evasion solution de- signed to protect Tor users with increased censorship resistance against powerful traffic correlation attacks executed by global adversaries. The system is based on flexible K- anonymization input circuits that can support TLS tunneling and WebRTC-based covert channels before forwarding users’ original input traffic to the Tor network. Our goal is to protect users from machine and deep learning correlation attacks between incom- ing user traffic and observed traffic at different Tor network relays, such as middle and egress relays. TorKameleon is the first system to implement a Tor pluggable transport based on parameterizable TLS tunneling and WebRTC-based covert channels. We have implemented the TorKameleon prototype and performed extensive validations to ob- serve the correctness and experimental performance of the proposed solution in the Tor environment. With these evaluations, we analyze the necessary tradeoffs between the performance of the standard Tor network and the achieved effectiveness and performance of TorKameleon, capable of preserving the required unobservability properties.Redes de anonimização como o Tor e soluções ou ferramentas semelhantes são meios poderosos de aumentar a anonimidade e a privacidade das comunicações de utilizadores da Internet . O Tor é atualmente a rede de anonimato mais utilizada por delatores para divulgar informações confidenciais e denunciar medidas de censura tais como violações de direitos civis e da liberdade de expressão, ou falhas nas garantias de livre acesso à informação. No entanto, estudos recentes mostram que o Tor é vulnerável a adversários globais ou a entidades que colaboram entre si para garantir a censura online. Neste cenário competitivo e de jogo do “gato e do rato”, é possível verificar que à medida que novas soluções de censura e vigilância são investigadas, novos sistemas melhorados para a preservação de anonimato são também apresentados e refinados. O encapsulamento de pacotes IP em túneis encapsulados em protocolos de media são uma das mais promissoras soluções contra os novos modelos de ataque à anonimidade. Estas soluções alavancam canais encobertos em protocolos de media baseados em WebRTC para resistir a poderosos ataques de correlação de tráfego e a medidas de bloqueios normalmente usadas pelos censores. Nesta dissertação propomos o TorKameleon, uma solução desenhada para protoger os utilizadores da rede Tor contra os mais recentes ataques de correlação feitos por um modelo de adversário global. O sistema é baseado em estratégias de anonimização e reencaminhamento do tráfego do utilizador através de K nós, utilizando também encap- sulamento do tráfego em canais encobertos em túneis TLS ou WebRTC. O nosso objetivo é proteger os utilizadores da rede Tor de ataques de correlação implementados através de modelos de aprendizagem automática feitos entre o tráfego do utilizador que entra na rede Tor e esse mesmo tráfego noutro segmento da rede, como por exemplo nos nós de saída da rede. O TorKameleon é o primeiro sistema a implementar um Tor pluggable transport parametrizável, baseado em túneis TLS ou em canais encobertos em protocolos media. Implementamos um protótipo do sistema e realizamos uma extensa avalição expe- rimental, inserindo a solução no ambiente da rede Tor. Com base nestas avaliações, anali- zamos o tradeoff necessário entre a performance da rede Tor e a eficácia e a performance obtida do TorKameleon, que garante as propriedades de preservação de anonimato

    Detection of encrypted traffic generated by peer-to-peer live streaming applications using deep packet inspection

    Get PDF
    The number of applications using the peer-to-peer (P2P) networking paradigm and their popularity has substantially grown over the last decade. They evolved from the le-sharing applications to media streaming ones. Nowadays these applications commonly encrypt the communication contents or employ protocol obfuscation techniques. In this dissertation, it was conducted an investigation to identify encrypted traf c ows generated by three of the most popular P2P live streaming applications: TVUPlayer, Livestation and GoalBit. For this work, a test-bed that could simulate a near real scenario was created, and traf c was captured from a great variety of applications. The method proposed resort to Deep Packet Inspection (DPI), so we needed to analyse the payload of the packets in order to nd repeated patterns, that later were used to create a set of SNORT rules that can be used to detect key network packets generated by these applications. The method was evaluated experimentally on the test-bed created for that purpose, being shown that its accuracy is of 97% for GoalBit.A popularidade e o número de aplicações que usam o paradigma de redes par-a-par (P2P) têm crescido substancialmente na última década. Estas aplicações deixaram de serem usadas simplesmente para partilha de ficheiros e são agora usadas também para distribuir conteúdo multimédia. Hoje em dia, estas aplicações têm meios de cifrar o conteúdo da comunicação ou empregar técnicas de ofuscação directamente no protocolo. Nesta dissertação, foi realizada uma investigação para identificar fluxos de tráfego encriptados, que foram gerados por três aplicações populares de distribuição de conteúdo multimédia em redes P2P: TVUPlayer, Livestation e GoalBit. Para este trabalho, foi criada uma plataforma de testes que pretendia simular um cenário quase real, e o tráfego que foi capturado, continha uma grande variedade de aplicações. O método proposto nesta dissertação recorre à técnica de Inspecção Profunda de Pacotes (DPI), e por isso, foi necessário 21nalisar o conteúdo dos pacotes a fim de encontrar padrões que se repetissem, e que iriam mais tarde ser usados para criar um conjunto de regras SNORT para detecção de pacotes chave· na rede, gerados por estas aplicações, afim de se poder correctamente classificar os fluxos de tráfego. Após descobrir que a aplicação Livestation deixou de funcionar com P2P, apenas as duas regras criadas até esse momento foram usadas. Quanto à aplicação TVUPlayer, foram criadas várias regras a partir do tráfego gerado por ela mesma e que tiveram uma boa taxa de precisão. Várias regras foram também criadas para a aplicação GoalBit em que foram usados quatro cenários: com e sem encriptação usando a opção de transmissão tracker, e com e sem encriptação usando a opção de transmissão sem necessidade de tracker (aqui foi usado o protocolo Kademlia). O método foi avaliado experimentalmente na plataforma de testes criada para o efeito, sendo demonstrado que a precisão do conjunto de regras para a aplicação GoallBit é de 97%.Fundação para a Ciência e a Tecnologia (FCT

    Context-driven encrypted multimedia traffic classification on mobile devices

    Get PDF
    The Internet has been experiencing immense growth in multimedia traffic from mobile devices. The increase in traffic presents many challenges to user-centric networks, network operators, and service providers. Foremost among these challenges is the inability of networks to determine the types of encrypted traffic and thus the level of network service the traffic needs to maintain an acceptable quality of experience. Therefore, end devices are a natural fit for performing traffic classification since end devices have more contextual information about device usage and traffic. This paper proposes a novel approach that classifies multimedia traffic types produced and consumed on mobile devices. The technique relies on a mobile device’s detection of its multimedia context characterized by its utilization of different media input/output (I/O) components, e.g., camera, microphone, and speaker. We develop an algorithm, MediaSense, which senses the states of multiple I/O components and identifies the specific multimedia context of a mobile device in real-time. We demonstrate that MediaSense classifies encrypted multimedia traffic in real-time as accurately as deep learning approaches and with even better generalizability.Peer reviewe

    Context-driven encrypted multimedia traffic classification on mobile devices

    Get PDF
    The Internet has been experiencing immense growth in multimedia traffic from mobile devices. The increase in traffic presents many challenges to user-centric networks, network operators, and service providers. Foremost among these challenges is the inability of networks to determine the types of encrypted traffic and thus the level of network service the traffic needs to maintain an acceptable quality of experience. Therefore, end devices are a natural fit for performing traffic classification since end devices have more contextual information about device usage and traffic. This paper proposes a novel approach that classifies multimedia traffic types produced and consumed on mobile devices. The technique relies on a mobile device’s detection of its multimedia context characterized by its utilization of different media input/output (I/O) components, e.g., camera, microphone, and speaker. We develop an algorithm, MediaSense, which senses the states of multiple I/O components and identifies the specific multimedia context of a mobile device in real-time. We demonstrate that MediaSense classifies encrypted multimedia traffic in real-time as accurately as deep learning approaches and with even better generalizability.Peer reviewe

    Transmissão de video melhorada com recurso a SDN em ambientes baseados em cloud

    Get PDF
    The great technological development of informatics has opened the way for provisioning various services and new online-based entertainment services, which have expanded significantly after the increase in social media applications and the number of users. This significant expansion has posed an additional challenge to Internet Service Providers (ISP)s in terms of management for network, equipment and the efficiency of service delivery. New notions and techniques have been developed to offer innovative solutions such as SDN for network management, virtualization for optimal resource utilization and others like cloud computing and network function virtualization. This dissertation aims to manage live video streaming in the network automatically by adding a design architecture to the virtual network environment that helps to filter video packets from the remaining ones into a certain tunnel and this tunnel will be handled as a higher priority to be able to provide better service for customers. With the dedicated architecture, side by side, a monitoring application integrated into the system was used to detect the video packets and notify the SDN server to the existence of the video through the networkOs grandes avanços tecnológicos em informática abriram o caminho para o fornecimento de vários serviços e novos aplicações de entretenimento baseadas na web, que expandiram significativamente com a explosão no número de aplicações e utilizadores das redes sociais. Esta expansão significativa colocou desafios adicionais aos fornecedores de serviços de rede, em termos de gestão de rede, equipamento e a eficácia do fornecimento de serviços. Novas noções e técnicas foram desenvolvidas para oferecer soluções inovadoras, tais como redes definidas por software (SDN) para a gestão de rede, virtualização para a optimização da utilização dos recursos e outros, tais como a computação em nuvem e as funções de rede virtualizadas. Esta dissertação pretende gerir automaticamente a emissão de vídeo ao vivo na rede, através da adição de uma arquitetura ao ambiente de rede virtualizado, que auxilie a filtragem de pacotes de vídeo dos do restante tráfego, para um túnel específico, que será gerido com uma prioridade maior, capaz de fornecer melhor serviço aos clientes. Além do desenho da arquitectura, scripts de Python foram usados para detectar os pacotes de vídeo e injetar novas regras no controlador SDN que monitoriza o tráfego ao longo da rede.Mestrado em Engenharia de Computadores e Telemátic

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco
    corecore