
Context-driven Encrypted Multimedia Traffic
Classification on Mobile Devices⋆

Mohammad A. Hoquea,1, Benjamin Finleya,∗, Ashwin Raoa, Abhishek
Kumarb,a, Pan Huie,d,a, Mostafa Ammarc, Sasu Tarkomaa,b

aUniversity of Helsinki, Helsinki, Finland
bUniversity of Oulu, Oulu, Finland

cGeorgia Institute of Technology, Atlanta, USA
dThe Hong Kong University of Science and Technology, Hong Kong SAR,

eThe Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

Abstract

The Internet has been experiencing immense growth in multimedia traffic
from mobile devices. The increase in traffic presents many challenges to
user-centric networks, network operators, and service providers. Foremost
among these challenges is the inability of networks to determine the types
of encrypted traffic and thus the level of network service the traffic needs to
maintain an acceptable quality of experience. Therefore, end devices are a
natural fit for performing traffic classification since end devices have more
contextual information about device usage and traffic. This paper proposes
a novel approach that classifies multimedia traffic types produced and con-
sumed on mobile devices. The technique relies on a mobile device’s detection
of its multimedia context characterized by its utilization of different media
input/output (I/O) components, e.g., camera, microphone, and speaker. We
develop an algorithm, MediaSense, which senses the states of multiple I/O
components and identifies the specific multimedia context of a mobile device
in real-time. We demonstrate that MediaSense classifies encrypted multime-
dia traffic in real-time as accurately as deep learning approaches and with

⋆The work is an extension of a paper published in the proceedings of PerCom 2022.
∗Corresponding Author
Email addresses: mohammad.a.hoque@helsinki.fi (Mohammad A. Hoque),

benjamin.finley@helsinki.fi (Benjamin Finley), ashwin.rao@helsinki.fi (Ashwin
Rao), abhishek.kumar@oulu.fi (Abhishek Kumar), panhui@ust.hk (Pan Hui),
ammar@cc.gatech.edu (Mostafa Ammar), sasu.tarkoma@helsinki.fi (Sasu Tarkoma)

1This work was done when Mohammad Hoque was employed at the University of
Helsinki.

Preprint submitted to Pervasive and Mobile Computing December 16, 2022

even better generalizability.

Keywords: encrypted traffic classification, mobile context, multimedia
applications, mobile components

1. Introduction

Mobile devices have been generating 60% of all Internet traffic, and a
significant portion of this traffic comes from multimedia applications that
involve streaming and interactive video and audio. Along with the content
from popular content providers, user-generated content is also on the rise. In
2017, the Cisco Visual Network Index predicted that traffic from various ser-
vices such as video broadcast, live streaming, augmented reality (AR), and
virtual reality (VR) applications would grow five-to-seven fold by 2022 [1].
This growth was aggravated during the corona pandemic that required mil-
lions of people to engage in remote work, interactive online education, and
consuming entertainment at home [2].

While ubiquitous devices enable a diverse set of multimedia activities
[3], users generally have limited control over their traffic after it leaves their
device. Consequently, a new set of personalized or user-centric networking
applications are emerging, such as Personal Virtual Network (PVN) [4] and
Middle Box Zero (MBZ) [5]. These solutions perform traffic inspection [6],
and monitor network performance [7] on mobile devices. Some approaches
also rely on root certificates to perform deep packet inspection on encrypted
packets [8, 6] or certificate pinning to perform similar inspection [9, 10].
Naturally, such approaches incur significant privacy concerns. Furthermore,
they currently lack a privacy-aware traffic classification mechanism to as-
sist in performing networking activities, such as performance monitoring,
protecting privacy, and requesting quality of service (QoS). Alternatively,
deep learning algorithms that learn very application-specific features, such
as Deep Packet [11] leverages application signatures from the initial Secure
Sockets Layer (SSL2) and Transport Layer Security (TLS) packets. How-
ever, they require large training datasets and the classification and training
requires significant energy making them sub-optimal for mobile devices. Fur-
thermore, an application can be responsible for different types of traffic: a
video conferencing solution can suggest users to switch off the video when

2SSL and TLS are widely adopted cryptographic protocols used by many internet
applications.

2

multimedia
production

multimedia
consumption

AudioRecord AudioCast

audio video
audio

VideoRecord VideoCast LocalAudio AudioStream

audio video
audio

LocalVideo VideoStream

conversational
multimedia

audio video
audio

1 2 3

GSM/VoLTE AudioConv VideoConv

Lo
ca
l

Lo
ca
l

gs
m
/v
olt
e

Lo
ca
l

Lo
ca
lIP IP

IP IP

IP IP

Figure 1: Multimedia interaction types on mobile devices. Our devices can produce
multimedia, consume multimedia, or use multimedia during conversations. The second
layer denotes the typical content types produced, consumed, or exchanged during the
interaction. The third layer represents the context according to the multimedia type and
their medium of use: ‘local’ implies on-device media production and consumption, while
‘IP’ denotes the use of IP for multimedia production and/or consumption.

the network connectivity is poor, thus resulting in drastically different net-
work traffic characteristics. This problem is aggravated by the increasing
prevalence of Domain Name System (DNS3) over TLS which is aimed at
eliminating opportunities for eavesdropping and in-network modifications of
DNS queries and responses [12]. Therefore, we need an energy-efficient, ac-
curate, and privacy-aware traffic classification mechanism on mobile devices.

In this article, we detail our approach that classifies multimedia traffic
into specific multimedia activity categories (such as streaming, broadcasting,
and conversation) using a set of general (non app-specific) features. Our
approach leverages on a mechanism to identify such multimedia activities,
which we call multimedia contexts. PVNs or MBZs can employ our approach
to detect multimedia traffic types and then perform various optimizations
(such as network selection, performance monitoring for different traffic types,
traffic padding for preserving privacy, or route optimization for improved
QoS) in a more privacy-preserving fashion.

A device’s multimedia context describes whether the device is used for
producing content, consuming content, or conversing (thus both producing
and consuming content). We present a unique sensing algorithm, Medi-
aSense, to accurately detect eleven such multimedia contexts of a device.
MediaSense can be used to identify various multimedia traffic scenarios in
real-time on mobile devices, and it relies on the answers to the following

3DNS is an internet naming system that, for example, translates human-readable do-
main names (such as google.com) to the actual routable internet protocol (IP) addresses
of servers.

3

questions:

(i) what are the content types users interact with?;

(ii) how do users interact with each type of content?;

(iii) which I/O components are utilized during such interactions on smart
devices; and

(iv) what are the states of these I/O components while interacting with
different content types?

Our two key contributions are as follows.
(1) Context Definition and MediaSense. To the best of our knowl-

edge, we are the first to a) define multimedia contexts, and b) propose
a method to detect and use such contexts on mobile devices. We study
sixty-two popular multimedia applications on Android and iOS devices and
classify them according to how users interact with different multimedia con-
tents using these applications (Section 2). We use our analysis to define
eleven multimedia contexts. These contexts can be abstracted into three
high-level multimedia contexts: (i) multimedia production, (ii) multimedia
consumption, and (iii) conversational multimedia, as demonstrated in Figure
1.

Next, we explore how these contexts use several media I/O hardware
components on mobile devices and present a multimedia context sensing al-
gorithm called MediaSense. Through an extensive evaluation using over
62 applications, we demonstrate that with flow-level information Medi-
aSense identifies the correct multimedia contexts with 97-100% accuracy.
Furthermore, it identifies the corresponding voice/video over IP, live broad-
cast, and multimedia streaming network flows in real-time with an accuracy
higher than 93% (Section 4) with negligible energy.

(2) Comparison with state-of-the-art approaches We further eval-
uate the performance of state-of-the-art deep learning approaches, such as
1D/2D Convolutional Neural Networks (CNNs) [13, 14, 11], for encrypted
multimedia traffic classification (Section 5). We capture the network traffic
of the target multimedia applications and label them according to six IP-
based multimedia contexts presented in Figure 1 and train the CNNs. Our
evaluation shows that these approaches perform poorly or have inadequate
generalization performance (e.g., to new applications in a multimedia con-
text). In contrast, MediaSense is generic across different multimedia types
and for new apps, and very energy efficient.

4

The rest of the article is organized as follows. We detail the contexts
of various multimedia applications and their usage of I/O components in
Section 2. MediaSense is presented and evaluated in Sections 3 and 4 re-
spectively. Section 5 investigates the performance of CNNs for encrypted
multimedia traffic classification and compares with MediaSense. Section 6
highlights the potential use cases of MediaSense, and the related works are
discussed in Section 7. The paper concludes in Section 8.

2. Multimedia Applications and Contexts

In this section, we detail how an application’s use of I/O components on
mobile devices can be leveraged for describing multimedia contexts. For our
analysis, we focus on the following I/O components: camera, microphone,
speaker, display, and the network. Across all the multimedia applications
we observe that the state of these I/O components can be leveraged to
identify the multimedia context. We investigate the utilization of these I/O
components by sixty two multimedia applications (see Tables 2, 3, and 4)
on Android and iOS devices; we used Nexus 6, LG G5, and iPhone 6/6s for
this study. Of the 62 applications, 35 are available on both Android and iOS
devices, 17 are only available for Android devices, and 10 are only available
for iOS devices.

All the required I/O components are typically initialized simultaneously
depending on the application’s characteristics. Since the user needs to
launch an app via the touch screen, it is intuitive that the screen is busy
when the application is launched. Therefore, the initial states of the I/O
components for all the multimedia applications are the same: the camera
is not in use, the microphone is not in use, the speakers are not in use, the
display is in use, and the network is not in use. In Table 1 and Figures
2-4, we represent the status of the I/O components with ‘1’ and ‘0’, where
the bits represent the busy and free status of the corresponding I/O compo-
nents. For instance, a 1 for camera implies that at least one of the cameras
is being used by the application, while a 0 implies that the application is
not using the cameras. In practice, a free I/O component can be physically
off, e.g., as with a display. In contrast, the network I/O status does not
represent the status of the network interface. Rather the status depends
on network activities, such as the bit rates of the applications in terms of
sending, receiving, or both.

We do not assume that only one application is running at any given
time. In Section 2.4 we detail mixed multi-contexts, i.e., scenarios where
multiple applications use the same resources; we argue that such mixed

5

contexts continue to be quite rare because they tend to affect the quality of
experience.

2.1. Multimedia Production Contexts

C

M

S

D

N

T0 T1time

0

0

0

0
b

0
1

1

1

VideoRecord AudioRecord

VideoCast AudioCast AudioCast

AudioRecord

Camera (C)
Microphone (M)
Speaker (S)
Display (D)
Network (N)

(b) I/O states for Periscope live video broadcast(a) Media Production Contexts and I/O States

1 1 0 1 1 0 1 0 1 1 0 1 0 0 1

0 1 0 0 00 1 0 1 01 1 0 1 0

0 0 0 1 0
C M S D N Initial State

Figure 2: The media production contexts and the corresponding I/O states.
(a) AudioRecord and VideoRecord refer to local (on-device) recording of audio and video,
whereas AudioCast and VideoCast refer to live audio and video broadcast from a device
using a microphone and camera. (b) States of the I/O components while broadcasting
live with Periscope.

A mobile device is in a production context when an application records
audio/video on local storage or broadcasts live to remote consumers. Voice
Memos and Camera are the default audio and video production applica-
tions on iOS devices. Similarly, Android devices have built-in microphone
and camera applications. In addition to these applications, Mixlr, Periscope,
and StreamLab are popular live audio and video broadcasting applications
as presented in Table 2. By investigating these applications, we derive four
media production contexts emerging from the initial state as shown in Fig-
ure 2(a).

Firstly since video recording typically requires users’ attention, appli-
cations primarily remain in the foreground while recording so the user can
monitor the video in real-time.4 If the user switches to another app or turns
off the display, the camera and microphone typically become free. In con-
trast, audio recordings and live audio broadcasts more often continue in the
background. Thus, the states of I/O components for the recording appli-
cations differ from those of the live broadcasting applications only by the

4Even in cases where video recording applications do not stay in the foreground, only
Android allows display-off recording and such recording is not supported in mainstream
apps (due to privacy concerns). Therefore, such recording is not a major use case.

6

C M S D N Context

0 0 0 0 0 N-A (Background process)
0 0 0 0 1 N-A (Background process)
0 0 0 1 0 N-A (Phone display active)
0 0 0 1 1 N-A (Non multimedia app/service)
0 0 1 0 0 Media Consumption (Local Audio)
0 0 1 0 1 Media Consumption (Audio Stream)
0 0 1 1 0 Media Consumption (Local Audio)
0 0 1 1 1 Media Consumption (Audio Stream)
0 1 0 0 0 Media Consumption (Audio Record)
0 1 0 0 1 Media Consumption (Audio Cast)
0 1 0 1 0 Media Consumption (Audio Record)
0 1 0 1 1 Media Consumption (Audio Cast)
0 1 1 0 0 Media Production (Audio Recording and Playback)
0 1 1 0 1 Conversation (Audio Conversation)
0 1 1 1 0 Media Production (Audio Recording and Playback)
0 1 1 1 1 Conversation (Audio/Video Conversation)
1 0 0 0 0 Media Production (Local Image Capture)
1 0 0 0 1 Media Production (Video Cast)
1 0 0 1 0 Media Production (Local Image Capture)
1 0 0 1 1 Media Production (Video Cast)
1 0 1 0 0 Media Production (Local Image Capture)
1 0 1 0 1 Media Production (Video Stream)
1 0 1 1 0 Media Production (Local Image Capture)
1 0 1 1 1 Media Production (Video Stream)
1 1 0 0 0 Media Production (Video Record)
1 1 0 0 1 Media Production (Video Cast)
1 1 0 1 0 Media Consumption (Video Record)
1 1 0 1 1 Media Production (Video Cast)
1 1 1 0 0 Media Production (Video Record)
1 1 1 0 1 Conversation (Audio/Video Conversation)
1 1 1 1 0 Media Production (Video Record)
1 1 1 1 1 Conversation (Audio/Video Conversation)

Table 1: Multimedia Context The state of the I/O determines the multimedia context.
Note that a change in state does not always imply a change in context. For instance,
a device can enter the Audio Cast context with the display turned on (0 1 0 1 1), and
continue to be in that context even after the display is switched off (0 1 0 0 1).

7

AudioRecord Voice Memes(i), Voice Recorder(a), Dolby On(a), Hi-
Q Recorder(a), RecForge II(a), ASR Recorder(a), Wear
Recorder(a).

AudioCast Mixlr(a/i), Spreaker(a/i).

VideoRecord Open Camera(a), Camera(i), Dolby On(a), HD Cam-
era(a), Camera MX(a), Camera360(a).

VideoCast Periscope(a/i), StreamLab(a/i), BroadcastMe(a/i),
Facebook Live(a/i).

Table 2: Multimedia production contexts and the corresponding 19 applications
for Android (a) and iOS (i) devices. The Periscope service has been discontinued
from March 2021.

network (as they do not transmit).
Figure 2 (b) shows the states of the I/O components during a live video

broadcasting session of Periscope. We observe that the live broadcast be-
gins at T0, and the application initializes the camera and microphones. The
output component, the display, is also used, and data transmission begins.
The broadcasting terminates at T1. Periscope also initiates transport con-
trol protocol (TCP) connections. We observed that the uplink bit rates of
Periscope and Mixlr are 459 kbps and 128 kbps for broadcasting live video
and audio, respectively.

2.2. Multimedia Consumption Contexts

LocalAudio Vox(i), Flacbox(i), Radsone(i), jetAudio(i), Stezza(i),
Music Player Go(a), Poweramp(a), Omnia(a), Pulsar(a),
VLC(a), AIMP(a).

AudioStream Spotify(a/i), TuneIn(a/i), Tidal(a/i), qobuz(a/i), Ida-
gio(a/i), ShoutCast(a/i), Soundcloud(a/i).

LocalVideo VLC(a/i), MX Player(a/i), PlayerXtreme(a/i), KM-
Player (a/i), OPlayer Lite(i), 8Player (i).

VideoStream YouTube (a/i), Vimeo(a/i), Dailymotion(a/i),
HBO(a/i), Netflix(a/i), Twitch(a/i), Prime Video
(a/i), Periscope(a/i).

Table 3: 32 applications/services of four multimedia consumption contexts for Android
(a) and iOS (i) devices.

A mobile device is in a consumption context when an end-user plays
multimedia content from local storage or streams from a remote service

8

C

M

S

D

N

T0 T1 T2time T3

0

0

0
1

0
1

0
b

Camera (C)
Microphone (M)
Speaker (S)
Display (D)
Network (N)

LocalVideo LocalAudio

VideoStream AudioStream AudioStream

LocalAudio

0 0 1 1 1

0 0 1 1 0

0 0 0 1 0
C M S D N

0 0 1 01 0 0 1 00

0 0 1 11 0 0 1 10

(b) I/O states for TuneIn Audio Streaming(a) Media consumption Contexts and I/O states

Initial State

Figure 3: The media consumption contexts and the states of the I/O components. (a)
LocalAudio and LocalVideo refer to audio and video playback from the local (on-device)
storage, whereas AudioStream and Video Stream refer to streaming audio and video from
remote services. (b) States of the I/O components while streaming audio with TuneIn.

provider.
Both Android and iOS devices have default applications for audio/video

playback from local storage. In addition, we investigated popular streaming
applications, such as YouTube, TuneIn, Periscope live streaming, and many
others presented in Table 3. Through this exploration, we derive four media
consumption contexts, as shown in Figure 3(a). For watching videos from
local storage or video streaming, display and speaker are mandatory; i.e., the
playback stops when the user switches to another application. In contrast,
audio applications can still play audio while in the background. Further-
more, streaming applications download content from a remote server and
thus require IP connectivity. Despite the diverse set of multimedia streaming
applications, such as on-demand streaming and live/pseudo-live streaming,
we observe that audio and video consumption exhibit the same I/O states.
Overall the media consumption applications vary significantly: some apps
play with negligible initial playback delay, whereas some continue to cache
and depend on the user’s input.

Figure 3(b) shows that only speaker and network activities begin when
a TuneIn audio streaming session starts at T0. The display is turned off at
T1 and turned on again at T2. Finally, the user terminates the streaming
session at T3. TuneIn initiates multiple TCP flows as soon as the playback
begins. The bitrates of the TuneIn audio streams vary from 24 kbps to 320
kbps. We also observe that the downlink bit rate of Periscope, i.e., the bit
rate when viewing a Periscope live stream of other Periscope users, is similar
to the uplink bit rate. Along with the application-specific bit rates, we also

9

AudioConv WhatsApp(a/i), IMO(a/i), Viber(a/i), Kakao Talk(a/i),
Line(a/i), Skype(a/i), Messenger(a/i), Duo(a/i),
VoLTE/GSM(a/i), Snapchat (a/i).

VideoConv WhatsApp(a/i), IMO(a/i), Viber(a/i), Kakao Talk(a/i),
Line(a/i), Skype(a/i), Messenger(a/i), Duo(a/i),
Snapchat (a/i), FaceTime (i).

Table 4: Conversational contexts and 11 applications on Android (a) and iOS (i) devices.
Only VoLTE/GSM calls are responsible for non-IP AudioConv context.

observed different ON/OFF patterns in the network traffic [15].

2.3. Conversational Multimedia Contexts

C

M

S

D

N

T0 T1 T2 T3time

0

0

0

0
1

0

b

1

1

1

VideoConv

AudioConv

Initial State

VideoConv

AudioConv

0 0 0 1 0
C M S D N

0 1 1 1 1 0 1 1 0 1

1 1 1 1 1 0 1 1 1 1

Camera (C)
Microphone (M)
Speaker (S)
Display (D)
Network (N)

(b) I/O states for WhatsApp audio call(a) Conversation contexts and I/O states

Figure 4: The conversation contexts and the states of the corresponding I/O components.
(a) AudioConv and VideoConv represent Audio and Video call contexts respectively. (b)
States of the I/O components during a WhatsApp audio conversation.

A device is in a conversation context when a user engages in an audio-
visual conversation with another remote user using a conversational appli-
cation.

In addition to GSM and VoLTE calls, we also experiment with the pop-
ular VoIP applications presented in Table 4. Figure 4 (a) shows that the
states of the I/O components change according to the conversation types.
An audio conversation does not need the display to be active during the call.
In contrast, a video call uses all the media I/O components.

Conversational applications have two media contexts, i.e., audio or video
conversations. Figure 4(b) demonstrates that a WhatsApp VoIP call begins

10

at T0, and all the I/O components become busy, except the camera. The
display turns off at T1 and turns on again at T2. Finally, the call terminates
at T3. WhatsApp initiates both TCP and User Datagram Protocol (UDP)
flows as soon as the call begins. The TCP flows are mostly used for signaling,
and UDP flows carry the media. The bitrate of the audio flow in each
direction ranges from 17-22 kbps, and the bitrate increases to a few hundred
kbps during video conversations.

A video conversation can also proceed without an active camera on either
the caller’s or callee’s device. When the caller initiates a video call, all the
media sensors are activated on the callee’s device. If the caller turns off the
camera after the call is established, the user still needs to keep the display
active, as the caller’s device receives video from the other end. When both
users turn off their cameras, the media context changes to an audio call
(Figure 4).

2.4. Mixed Multimedia Contexts

A mixed multimedia context is a context wherein multiple apps pro-
duce multimedia contexts simultaneously (e.g., using Skype (Video Conv)
while also watching a YouTube video (Video Stream)). Such contexts are, in
theory, limited because multiple applications cannot utilize some I/O com-
ponents simultaneously. For example, on Android, multiple applications
cannot use the same (physical or logical) camera simultaneously.

However, multiple applications can use the same display, speaker, and,
in limited circumstances, microphone5 simultaneously. Thus, many types
of mixed multimedia contexts are, in practice, possible. We experimentally
validate this by testing the simultaneous use of several different types of
multimedia apps on Android 13 (using a Pixel 6a). We were able to validate
all mixed context combinations except for those in which two apps try to use
the same or even different logical cameras at the same time (e.g., a Video
Conv on the front camera and a Video Cast on the rear camera). Thus,
Android devices still have some limitations in terms of mixed contexts.

Generally, we estimate that mixed contexts are still quite rare because
they have significant downsides such as needing to use split screen mode.
Thus using a single app designed for these more complex use cases is more
likely (as the experience can be better tailored than trying to use several
apps simultaneously). For completeness, we note that on iOS multiple appli-

5See https://developer.android.com/guide/topics/media/sharing-audio-input

11

cations cannot use the same camera6 or microphone simultaneously but can
use the same display or speaker simultaneously. Thus in general a similar
though somewhat more restrictive logic applies to iOS devices.

The main justification for limiting the simultaneous use of a microphone
or camera is privacy. Specifically, users may inadvertently disclose private
information if, for example, they are not aware that a background app con-
tinues using a component even after switching to a different foreground
multimedia app.

2.5. Summary

In this section, we have investigated many multimedia applications for
mobile devices. We have shown that the utilization of the I/O components
by multimedia applications can be generalized across both Android and iOS
devices. This requirement of I/O components also allows us to extend the
generalization to an arbitrary number of applications for media consump-
tion, production, or conversation.

At the first level (Figure 1), the distinct usage of the microphone and
speaker components differentiates the production, conversational, and con-
sumption contexts. While at the second level, the camera separates video
from audio contexts for production and conversational media, whereas the
display separates video from audio for media consumption. All the con-
texts are separated at the third level according to network activities, i.e.,
transmitting, receiving, or exchanging traffic.

Note that augmenting a phone with a headset via Bluetooth or cable
does not affect the state of the I/O components; it only changes the route
of the audio signal. Thus, being outdoors, indoors, or mobile does not
change the need for these I/O components. This also applies to adjusting
brightness, camera focus, or adjusting volume. However, a loss of signal or
poor signal may disrupt a VoIP call, streaming session, or live broadcast
and may terminate the media context.

3. MediaSense

Given that a user interacts with an arbitrary multimedia application,
we devise MediaSense (Algorithm 1) that scans the states of five I/O com-
ponents to infer the resulting multimedia context. We implement Medi-
aSense as a user-level service for Android devices. The service runs as a

6See https://developer.apple.com/documentation/avkit/accessing_the_camera_

while_multitasking

12

Algorithm 1: MediaSense

▷ Comment 1: Pre-computed features.;
mediaFeatures = Map(mediaContext, bitrate);
while true do

trafficstat = getTXRXbytes();
mic = sampleMicrophone() ∈ {1,0};
speaker = sampleSpeaker() ∈ {1,0};
camera = sampleCamera() ∈ {1,0};
display = sampleDisplay()∈ {1,0};
▷ Comment 2: Audio/Video media contexts.
mediaContext = camera|mic|speaker|display;
media = camera|mic|speaker;
Tmedia = gettimeoftheday();
▷ Comment 3: IP-based media contexts
if (mediaContext(!network)) then

▷ Comment 3.1: Compute network features based on network
stats and other I/O

mediaVec = computeFeatures(trafficstat, mediaContext);
▷ Comment 3.2: Lookup the conditions (e.g., thresholds) for
considering context as using the network

mediaFet = getConditions(mediaContext, mediaFeatures);
▷ Comment 3.3: If the features meet the conditions then
consider an IP-based media context

if (mediaVec ≈ mediaFet) then
mediaContext = mediaContext|network;

end
end
▷ Comment 4: Updating Video to Audio consumption.
if ((mediaContext == V ideoStream)&&(!display)) then

mediaContext = mediaContext|(!display);
end
▷ Comment 5: Voice/Video call state changes.
if ((mediaContext == V ideoConf)&&(!camera)) then

mediaContext = mediaContext|(!camera);
end
if (media==0) then

▷ Comment 6: MediaContext duration.
Mediasession = gettimeoftheday()− Tmedia

end
end

13

Table 5: Android APIs for detecting media contexts and utilization of Media I/Os.

Android API
I/O
component

User
Permission

AudioManger.getMode() Micrphone,
Speaker

No

AudioManager.getMode(),
CameraManager.
registerAvailabilityCallBack()

Camera,
Microphone,
Speaker

No

AudioManager.isMusicActive() Speaker No

CameraManager.
registerAvailabilityCallBack()

Camera,
Microphone

No

MediaRecorder.record() Microphone Yes

background service and looks for multimedia contexts periodically at 1Hz.
Whenever one or more I/O components changes states, MediaSense ini-
tiates a new multimedia context. The algorithm first checks whether the
media context is audio or video-related with the camera and display (Com-
ment 2 in Algorithm 1). Then, the algorithm checks the traffic flow statistics
in the uplink and downlink to separate IP-based contexts from local media
(Comment 3 in Algorithm 1). We describe these steps in detail below.

3.1. Separating Audio/Video Contexts

The algorithm periodically scans the states of the I/O components using
on-device system application programming interfaces (APIs) to determine
the media context.

(1) Conversational Multimedia Context. Fortunately, Android
provides APIs for applications to indicate their modes of operation to the
AudioManager [16], thus allowing other applications to query the status
of the AudioManager via getMode() API. AudioManager operates in one
of three modes; IN CALL, IN COMMUNICATION, and RINGTONE. These
modes indirectly indicate that an ongoing context is conversational and
that both the microphone and speaker are busy. TelephonyManager has
getCallState() to indicate a GSM/VoLTE call [17] and thus expresses the
states of the microphone and speaker. Table 5 summarizes the mapping
between Android APIs and the corresponding media I/O components. Me-
diaSense characterizes a context as a video conversation if the AudioMan-
ager is in one of the modes and one of the cameras is initialized at the same

14

time. MediaSense implements registerAvailabilityCallback() from Camera-
Manager [18] to poll camera status, i.e., available/unavailable, exactly when
the audio mode changes.

(2) Multimedia Consumption Contexts. The isMusicActive() API
from AudioManager helps to differentiate music playback contexts from
VoIP/GSM calls or other media production contexts on the device. This API
provides the speaker information. However, the API does not differentiate
whether the playback is audio or video. In other words, it could be an audio-
only application or a video application that uses the speaker for the audio
track. We also could not find APIs hinting about streaming. In Figure 3, we
notice that distinguishing between audio and video consumption contexts is
not straightforward, given just the statuses of the I/O components. The
reason is that audio applications require only speakers and can work while
keeping the display active or inactive. Therefore, the algorithm first assumes
a media consumption context is video type. Then when the display turns off,
the media context is changed to audio type as the media session continues.

(3) Multimedia Production Contexts. MediaSense uses APIs which
do not require explicit user permission to detect the earlier described media
contexts. Similarly, the algorithm uses registerAvailabilityCallback() from
CameraManager to detect the video production contexts from the Camera
or Periscope like applications. This API initializes the camera and micro-
phone together. However, detecting the state of the mic is not possible
without explicit user permission. MediaSense implements MediaRecorder
APIs with user permission to detect the audio production contexts due to
the applications presented in Table 2.

3.2. Separating Local/IP-based media contexts

MediaSense distinguishes IP-based contexts from the local media con-
text by identifying the traffic flows from a set of live flows using flow-level
information, as presented in Table 6. It relies on the Android virtual pri-
vate network (VPN) API to gain access to such information from live flows.
There is no other feasible way to access network traffic information on An-
droid mobile devices. This API was also used by Mopeye [7] and AntMonitor
[19]. Unlike these, MediaSense neither installs root certificates nor performs
deep packet inspection. The algorithm uses five tuples as the flow identifier.
MediaSense does not compute all the features in the table for a media con-
text. It rather computes media context-specific features. These features are
derived from our observations in Section 2 with the following reasoning.

(1) Conversational Multimedia Contexts. Unlike the other appli-
cations, conversational traffic carries voice or video data in both directions.

15

Table 6: Features considered for identifying the media contexts. faststartbyte denotes the
amount of data downloaded during the first 10 seconds of streaming and up and down
rate are bitrates.

up
rate

down
rate

if Features
then Context

✓ X if (bitrate≥8 kbps, microphone)
then AudioCast else AudioRecord

✓ X if (bitrate ≥8 kbps, microphone, camera)
then VideoCast else VideoRecord

✓ ✓ if (bitrate ≥8 kbps, microphone, speaker)
then AudioConv else GSM/LTE

✓ ✓ if (bitrate ≥8 kbps, microphone, speaker, camera)
then VideoConv

X ✓ if (faststartbytes ≥100 KB, bitrate >300kbps, speaker, display)
then VideoStream else LocalVideo

X ✓ if (faststartbytes ≥100 KB, bitrate <300kbps, speaker, !display)
then AudioStream else LocalAudio

Voice traffic has a minimum bit rate of 14 kbps. However, the bitrates of
these applications depend on the underlying codec [20], which can be as low
as 8 kbps in one direction [21]. A GSM/VoLTE call be identified using the
getMode() API and by noting that there is no uplink and downlink traffic
(see Table 6).

(2) Multimedia Consumption Contexts. On-demand streaming ap-
plications, e.g., YouTube, Spotify, begin streaming with a fast start phase
and download 10-40 seconds of equivalent playback content. Spotify streams
audio via persistent hypertext transfer protocol (HTTP) connections over
TCP, regardless of the device type [22]. The audio streams are encoded
at 96-360 kbps, and the selection depends on the subscription type. The
size of the first segment is 139.53 KB [22]. YouTube downloads more than
one megabyte during the fast start phase. Periscope downloads content
at a constant bit rate after the fast start. Therefore, MediaSense relies
on isMusic() API and the flow features presented in Table 6 to separate
streaming contexts from local music playback.

(3) Multimedia Production Contexts. Periscope’s outgoing bitrate
is 459 kbps. A 64 kbps outgoing bitrate is very common for live audio
broadcasting. Mixlr supports 32-128 kbps. We consider a lower bound of
8 kbps as the context feature. Overall MediaSense uses the bitrate feature

16

along with the CameraManager & MediaRecorder APIs to separate the
IP-based based contexts from the local recording contexts.

4. Performance Evaluation

We installed MediaSense on an LG G5 (Android 8.0) with an LTE con-
nection for evaluation. The data plan allowed a maximum of 45 Mbps and 20
Mbps speed for downlink and uplink, respectively. The device had 101 ap-
plications installed, including 62 multimedia apps. However, we interacted
with only one multimedia application at a time, and the session duration
remained between 30-60 seconds. We denote this as a media session or
the duration of a media context. The device was fully charged during the
experiments to avoid any system-assisted performance degradation [23].

We evaluate MediaSenseon how accurately it can differentiate local ver-
sus IP-based media contexts in the media sessions and how accurately it
can identify the corresponding network flows. We estimate flow detection
accuracy as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

We define the proportions in the equation as follows. True positive (TP)
denotes the number of cases correctly identified as IP-based contexts. False
positive (FP) denotes the number of cases incorrectly identified as IP-based
contexts. True negative (TN) denotes the number of cases correctly identi-
fied as local contexts. And False negative (FN) denotes the number of cases
incorrectly identified as local contexts.

The accuracy in identifying an IP-based context is expressed by the pre-
cision, which estimates the proportion of true positives in the corresponding
sessions. This can be stated as:

Precision = TP/(TP + FN) (2)

In contrast, the recall expresses the local context accuracy, which esti-
mates the proportion of true negatives in the IP-based context that resemble
local media contexts. This can be stated as:

Recall = TN/(TN + FP) (3)

For network flow identification or traffic classification performance, we
only use the accuracy measure.

17

Table 7: MediaSense correctly identified 100% (all true positives) of multimedia sessions
and network flows for audio/video broadcasts during the first 10 seconds of broadcasts.

VideoCast AudioCast

App TP/
#sess

TP/
#flow

bitrate-
mbps

App TP/
#sess

TP/
#flow

bitrate-
kbps

Periscope 53/53 53/53 0.4-0.7 Mixlr 76/76 76/76 16-128
Streamlabs 39/39 39/39 0.5-1.5 Spreaker 20/20 20/20 16-128
BroadcastMe 26/26 26/26 0.2-0.7 - - - -
FacebookLive 29/29 29/29 0.6-1.4 - - - -

4.1. Multimedia Production Contexts.

We first experiment with the multimedia production applications pre-
sented in Table 2.

Local/non-IP production context identification. There are 220
sessions for 11 local media production applications. MediaSense did not
identify any media network flows during these local media production con-
texts. In other words, MediaSense correctly identified all the AudioRecord
and VideoRecord sessions without any FNs, and therefore, the recall is 100%.

IP-based production context identification. We experimented with
six applications. The bitrates of the audio broadcasts varied between 16 and
128 kbps. Periscope and BroadcastMe had the average bitrates for medium-
quality videos, whereas Streamlabs and Facebook Live transmitted high-
definition videos. Network traffic should be generated by the broadcasting
applications when the media context is initiated or later on based on user
interaction with the application. MediaSense correctly identified all 243
media contexts as presented in Table 7. Consequently, there were no FPs
while detecting the broadcast contexts, and the precision is 100% for both
AudioCast and VideoCast.

Traffic Classification. The very high precision in detecting IP-based
media contexts (see Table 7) also indicates that MediaSense detects the
relevant flows. However, it can generate TPs (detecting the actual flow),
FPs (detecting a wrong flow), or FNs (not detecting a flow). Note that TNs
are not possible for flow detection. Therefore, we use eq. (1) to determine
the flow detection accuracy. Table 7 shows that MediaSense identified 243
audio/video live broadcast flows during 243 sessions of Mixlr, Spreaker,
Periscope, Streamlabs, BroadcastMe, and Facebook Live. There were no
FP or FN, and MediaSense is 100% accurate in identifying the broadcasting
flows.

18

Table 8: MediaSense’s performance in identifying VideoStream contexts and network flows
in real-time.

VideoStream

Sessions Flows

App TP FN TP FP FN bitrate-mbps

YouTubeLive 49 3 52 0 0 0.35-4.7
Periscope 48 4 47 5 0 0.2-3.01
Twitch 53 0 53 0 0 0.6-6.3
Vimeo 47 0 47 0 0 0.4-6.2
Dailymotion 42 3 38 5 0 0.35-11
Netflix 43 0 43 0 0 3.5-29
Prime Video 36 0 36 0 0 0.35-4.7
HBO Nordic 29 0 29 0 0 0.5-9.1

Table 9: MediaSense’s performance in identifying AudioStream contexts and network flows
in real-time (display-off).

AudioStream

Sessions Flows

App TP FN TP FP FN bitrate-mbps

TuneIn 52 0 47 5 0 0.03-0.44
ShoutCast 43 0 38 5 0 0.03-0.44
Qobuz 50 0 49 1 0 0.6-4.1
Idago 39 0 37 2 0 0.5-5.0
Tidal 33 0 31 2 0 1.2-5.2
Spotify 29 0 26 3 0 2.5-7.5
SounCloud 23 0 22 1 0 0.8-4.5

4.2. Multimedia Consumption Contexts.

Media consumption contexts relate to live streaming, pseudo-live stream-
ing, or on-demand streaming applications and other local playback appli-
cations (see Table 3). In the streaming cases, since the content is first
downloaded and then played, there is an initial playback delay of 3-5 sec-
onds [15]. Therefore MediaSense considers this absolute time difference, i.e.,
|tmedia − tflow|, in filtering the flows. In addition to display status, we also
consider 16-300 kbps bitrates to indicate audio streams and higher bitrates
to indicate video streams. The absence of network flows with such features
indicates a local media consumption context.

Local/non-IP context identification. We did not observe FNs for
the local audio and video playbacks from the ten applications, as Medi-
aSense associates the flow initiation time with context beginning and consid-
ers the flow bitrates. Therefore, it identifies 200 local audio/video playback
contexts from 10 applications with 100% recall.

19

Table 10: MediaSense’s performance in identifying VideoConv contexts and network flows
in real-time.

VideoConv

Sessions Flows

App TP FN TP FP FN bitrate-mbps

WhatsApp 50 0 50 0 0 0.3-0.51
Skype 50 0 50 0 0 0.4-0.8
Viber 50 0 50 0 0 0.9-2.2
IMO 50 0 50 0 0 0.3-0.7
Kakao 28 0 28 0 0 0.3-0.5
Duo 26 0 26 0 0 0.35-1.8
Messenger 25 0 25 0 0 0.4-1.1
Snapchat 25 0 25 0 0 0.3-0.7
Line 25 0 25 0 0 0.3-0.7

IP-based video consumption context and Traffic Classification.
Table 8 shows that MediaSense correctly identified 97% of 357 VideoStream
contexts from eight applications. Three YouTube, four Periscope, and three
Dailymotion sessions were identified as AudioStreams, as the bitrates were
below 300 kbps. Likewise, MediaSense correctly detected 95% of the mul-
timedia flows during VideoStream contexts as shown in Table 8. However,
MediaSense incorrectly detected additional flows in ten sessions (FPs), in-
cluding during Dailymotion and Periscope contexts. MediaSense also re-
vealed that Twitch, Vimeo, and Prime Video use multiple flows to download
content. More than 70% of the 48 Twitch sessions and all the 47 Vimeo ses-
sions had two flows, and 36 Prime sessions had four flows per session. Table
8 shows that MediaSense identified their network flows with 97% accuracy.

IP-based audio consumption context and Traffic Classification.
Table 9 shows that MediaSense identified 269 AudioStream contexts from
seven applications with 100% accuracy as there were no FNs. However,
it identified some of the corresponding network flows as FPs. The FPs
occurred due to unrelated background flows during streaming. Likewise,
MediaSense detected the corresponding network flows with 93% accuracy
due to some false positives resulting from background flows.

4.3. Conversational Multimedia Contexts.

We investigated the performance of MediaSense with all the conversa-
tional applications in Table 4. Since the delay requirement of conversation
multimedia is very strict, MediaSense considers the flows initiated within
three seconds of the media contexts, i.e., |tmedia − tflow| ≤ 3s.

Local/non-IP context identification. Conversational contexts have

20

Table 11: MediaSense’s performance in identifying AudioConv contexts and network flows
in real-time.

AudioConv

Sessions Flows

App TP FN TP FP FN bitrate-kbps

WhatsApp 50 0 50 0 0 10-23
Skype 50 0 50 0 0 43-73
Viber 50 0 50 0 0 10-18
IMO 50 0 50 0 0 14-18
Kakao 22 0 22 0 0 10-24
Duo 26 0 26 0 0 40-55
Messenger 23 0 23 0 0 8-23
Snapchat 25 0 25 0 0 14-18
Line 25 0 25 0 0 10-40

data exchange in both directions. However, GSM and VoLTE data do not
follow the same path as normal application data. Therefore, the absence of
flows with at least eight kbps bitrates in both directions indicates an ongoing
GSM/VoLTE call. On LG-G5, the algorithm identified 20 conversational
sessions due to 20 GSM calls without any FN; thus, the recall is 100%.

IP-based context identification and Traffic Classification. Medi-
aSense identified 329 AudioConv and 329 VideoConv contexts with similar
features with 100% precision on LG G5, as shown in Tables 10 and 11.
There were no FPs. Although there could be rate control by these appli-
cations [24, 25], an 8 kbps bitrate (and an active camera) are sufficient for
detecting video calls and flows. A conversational context can switch to a hy-
brid mode when the camera is off/on during a conversation. Consequently,
MediaSense also accurately identifies such hybrid contexts via camera status
and flow bitrate features. Similarly to the audio/video broadcasting flows,
MediaSense identified 658 conversational flows with 100% accuracy without
any FP or FN (see Tables 10 and 11).

4.4. Energy Consumption

We further measured the electric current consumption of MediaSense on
the Nexus 6. Although Power Monitor [26] would provide better estimates,
modern mobile devices come with difficult-to-access batteries, and thus,
instrumenting these devices is very challenging. We instrumented Medi-
aSense with Android API to sample the run time current consumption at 1
Hz and tested on the Nexus 6. The device had 101 applications installed,
including the 62 multimedia applications connected to a WiFi access point.
The device was fully charged during the measurements. MediaSense con-

21

Audio Productio
n

Video Productio
n

Audio C
onversatio

n

Video C
onversatio

n

Audio C
onsumptio

n

Video C
onsumptio

n
0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

local/non-IP context (recall) IP-based context (precision)

Figure 5: MediaSense performance in identifying the 11 multimedia contexts from Figure
1. Note that the local/non-IP context for audio conversation represents GSM and VoIP
calls.

sumes 70 mA on average while the device is idle. Table 12 compares the
average current consumption of the Nexus 6 for nine applications with eleven
media contexts in the absence (baseline) and presence of MediaSense. Dur-
ing the video contexts, the display was ON, and the front camera was used
for the VideoConv and VideoCast contexts. The display was off during the
audio contexts. MediaSense computes flow statistics, tracks media contexts,
and associates contexts with the flows. We notice MediaSense does not
consume considerably more energy compared to the baseline. Though we
also note that this energy consumption analysis is primarily a sanity check
as we perform only a few measurements over a short period (60 seconds).
Therefore inherent variations on this timescale mean in a few cases we mea-
sure MediaSenseas using less energy than the baseline, however this is likely
not the case. We plan to perform a more comprehensive energy analysis in
future work.

5. Performance Comparison

In this section, we compare the performance of MediaSense with state-of-
the-art deep learning methods for traffic classification [13, 14, 11]. We note
that since these deep learning methods are for network traffic classification
we can only compare performance for the six IP-based contexts as the five
local contexts do not produce network traffic (by definition).

22

AudioCast

VideoCast

AudioConv

VideoConv

AudioStre
am

VideoStre
am

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Figure 6: Real-time flow classification performance of MediaSense for different IP-based
multimedia contexts.

0.00 0.02 0.00 0.00

0.00 0.96 0.00 0.00 0.04 0.01

0.05 0.01 0.79 0.02 0.02

0.25 0.00 0.05 0.69 0.00 0.00

0.00 0.00 0.00 0.03

0.00 0.02 0.00 0.00 0.04

0.83

0.86

0.94

0.15

0.11

0.11

Predicted Label
AudioCast

AudioConv

AudioStream

VideoCast

VideoConv

VideoStream

AudioCast

AudioConv
Audio

Stream

VideoCast
VideoConv

Video
Stream

Tr
ue

 L
ab

el

(a) 1D-CNN (Flow)

0.00 0.03 0.00 0.00 0.97 0.00

0.00 0.03 0.00 0.00 0.00 1.0

0.00 0.00 0.00 1.0 0.00 0.00

0.43 0.00 0.49 0.04 0.00 0.03

0.00 0.97 0.00 0.00 0.03 0.00

AudioCast

AudioConv

AudioStream

VideoCast

VideoConv

VideoStream

Predicted Label

0.98 0.00 0.00 0.02 0.00 0.00

AudioCastAudioConvAudioStream

VideoCast

VideoStream

Tr
ue

 L
ab

el

VideoConv

(b) 1D-CNN (Packet)

Figure 7: Confusion Matrices for Session and Packet Level 1D-CNN Models.

5.1. Deep Learning Approaches

We evaluate the performance of session and flow-level 1D and 2D Convo-
lution Neural Networks (CNN)s and a packet-level 1D-CNN to classify en-
crypted multimedia traffic. The session and flow-level 1D-CNN models have
two 1D convolution layers with 32 and 64 filters, respectively. Each convo-
lution layer is followed by a 1D max-pooling and terminated by two fully

23

Table 12: The average current consumption of Nexus 6 over the periods 60 seconds for
the multimedia applications.

Application Context Baseline (mA) MediaSense (mA)

Voice Recorder AudioRecord 110 119
Camera VideoRecord 700 800
Mixlr AudioCast 140 139
BroadcastMe VideoCast 439 440
TuneIn AudioStream 140 200
YouTubeLive VideoStream 525 540
WhatsApp AudioConv 222 231
Phone AudioConv(GSM) 135 155
WhatsApp VideoConv 743 700
VLC LocalVideo 545 579
VLC LocalAudio 130 122

0 20 40 60 80 100

AudioCast

AudioConv

AudioStream

VideoCast

VideoConv

VideoStream

Generalization Performance

MediaSense Packet (1D-CNN) Session (1D-CNN)

Figure 8: Generalization Performance of Different Models

connected layers. The session and flow-level 2D-CNN model is constructed
by replacing 1D convolution and pooling layers with the corresponding 2D
layers. Further details of the models can be found in [13, 14]. In contrast,
the packet-level 1D-CNN has two 1D convolution layers also each followed

24

by 1D max-pooling and a final three fully connected layers. Further details
of this model can be found in [11]. These deep models train on actual byte
data (as we discuss further), thus flow, or packet-level feature engineering is
not required.

5.2. Dataset & Training the Networks

The total size of the training dataset is 6.7 GB in pcap format. It contains
the traces for the subsets of applications of six IP-based classes (contexts)
discussed in the previous sections. A traffic session is defined by a 5-tuple
(source IP, source port, destination IP, destination port, and transport pro-
tocol). A flow is similar and considers traffic direction (so the IP and port
are not reversible).

We use 80% of total flows or sessions for the flow and session-level models
to train the 1D and 2D-CNN models and the remainder for testing. Each
flow or session is represented (to the model) by the first 784 bytes of the
pcap file containing only that session or flow (as in the original model [13])
and thus includes the first few packets of the flow or session along with
packet metadata (which is part of the pcap file format) such as their capture
timestamps.

Whereas for the packet-level model, we also use 80% of the packets for
training and the remainder for testing. Each packet is represented (to the
model) by the first 1500 bytes of the packet (with zero-padding or trunca-
tion if necessary). We note that some packets are larger than 1500 bytes due
to capturing before TCP segmentation offload, large segment offload, and
generic segment offload features of network interfaces [27]. Additionally, we
need to consider the high-class imbalance due to the significant differences
in packet volumes for different multimedia classes (e.g., video vs. audio).
Therefore, we perform random undersampling of the training data to equal-
ize the class frequencies. In contrast, the testing dataset is not undersampled
to maintain a realistic evaluation. Finally, we provide the complete confu-
sion matrix results, as only accuracy values can be misleading.

For all models, we additionally test model generalization concerning new
apps in categories by testing with different apps in the training data and
the testing data (e.g., for video streaming, we have Netflix and Vimeo in the
training data and YouTube in the testing data). In this additional test, for
the session-level model, we also mask the IP address due to concerns that
this can unfairly imply or leak app identity [14].

We train the CNN models using Tensorflow for the flow and session-level
models and PyTorch for the packet level model on a Linux server with an

25

Nvidia Tesla K80 GPU. In terms of metrics, we train the flow and session-
level models for about 30 epochs until the performance levels, and similarly,
we train the packet-level model for five epochs.

5.3. Evaluation

Figures 7a, and 7b illustrates the test confusion matrices for the 1D-
CNN session and packet-level model respectively. We omit the flow-level
and 2D-CNN model results because their performance is similar to those
presented in the figure. The results show that all the deep learning ap-
proaches achieve reasonable accuracy (whether on a flow or packet level).
However, the session-level methods have difficulty distinguishing VideoCast
from AudioCast sessions as both contexts resemble constant bitrate traffic
and have similar packet header attributes. In contrast, the packet-level ap-
proach faces difficulty distinguishing AudioStream sessions from AudioCast
sessions.

Furthermore, in Figure 8, we find that the generalization performance
for both deep learning models is significantly worse compared to the base
evaluations (from Figures 7a and 7b) and MediaSense. Specifically, we find
that the accuracies of 1D-CNN session-level model for categories are 76%,
79%, 30%, 39%, 67%, and 34% (compared to 89%, 96%, 79%, 56%, 89%,
95% for the base evaluation) for a new application. Likewise, the 1D-CNN
packet-level model the accuracies are 95%, 55%, 95%, 60%, 80%, and 88%
(compared to 98%, 97%, 49%, 100%, 97%, 100% for the base evaluation).
This suggests that these models are learning app-specific features, for ex-
ample from the first few bytes of the SSL/TLS exchange, rather than the
more general category-specific features of multimedia traffic. Ref. [14] also
notes similar findings for the packet-level model.

Next, we estimate a few of these app-specific features for these deep
learning models. Specifically, we focus on the packet-level model and apply
several different explainable AI (eAI) algorithms to determine which parts
of the packets (i.e., parts of the header and payload) are most important for
classification. We use the Captum eAI library (over PyTorch) and apply the
integrated gradients, deeplift, and saliency methods to the trained7 model
[28]. We then calculate the mean attribution values for each byte (of the
1500 bytes) over the testing dataset across the three methods.

We find that the most important bytes (all in the top ten) include those

7Specifically the model trained over our original training dataset, not the generalization
training dataset.

26

dealing with TCP ports, TCP options (such as the TCP option kind and
timestamp8) and TLS length. This further suggests that changes in the
networking aspects of these apps (for example during app updates) will
significantly impact classification performance.

Overall, by determining and associating contexts, MediaSense identifies
such traffic with similar or higher accuracy and better generalization (for new
apps) on mobile devices without any training as demonstrated in Figure 6,
and with negligible energy cost.

6. Discussion

There are many potential uses of information about a device’s multime-
dia context, and in this section we discuss some implications of our work
and the potential avenues for future work.

In Section 6.1, we discuss how MediaSense can be used on non-mobile
devices such as smart televisions. We build on this discussion in Section 6.2,
where we discuss MediaSense and augmented reality (AR), virtual reality
(VR) and extended reality (XR) applications and services. As discussed in
Section 2.4, our algorithm is largely agnostic to the available APIs. However,
we do acknowledge that the implementation of MediaSense will be governed
by the APIs provided by the operating systems running on these devices
and this constitutes a limitation of MediaSense. In Section 6.3, we discuss
how MediaSense can be used for on-device optimizations such as network
selection and smart energy consumption. Finally, in 6.4, we discuss how
MediaSense can be leveraged by the different stakeholders controlling and
managing the networks used by our devices.

6.1. MediaSense on non-mobile devices

In this work, we demonstrated how multimedia context information
could be used to classify encrypted multimedia traffic in real-time on mobile
devices. Desktop computers, laptops, and other handheld devices have sim-
ilar I/O components. Therefore, our methodology for building MediaSense
could potentially be extended to support such devices as well. The key
challenge will be to identify the usage of the I/O devices during multimedia
production and consumption and to find analogous APIs for their respective

8We note that these bytes are important even if the specific timestamps are set to zero
during preprocessing.

27

OSes9. Furthermore, mixed multimedia contexts might be more prevalent
given the potentially different sizes of these devices (thus removing some of
the downsides to split screen mode) and limitations (like the potential to
have different apps use cameras simultaneously).

6.2. Media Context and Extended Reality Applications.

Recent advances in sensor technologies have enabled a new breed of ap-
plications that operate in three-dimensional space: AR, VR, and mixed
reality (MR). 360-degree/volumetric videos streamed by these devices have
stringent QoS requirements in terms of latency and bandwidth which cur-
rent mobile networks may not be able to support [29]. MediaSense can
aid in optimized resource allocation for these applications. For example,
in a VR-based collaborative gaming application, players communicate over
VoIP, thereby using a speaker and microphone. Though, mobile headsets
like Oculus Quest 2 are also equipped with many additional sensors (than
available on traditional mobile devices), such as depth sensors which Me-
diaSense does not currently consider and which may require different QoS
than RGB cameras. Thus this is a current limitation of MediaSense.

In terms of XR, meetings are likely to be done with holographic tech-
niques, where the participants are present through their holographs, which
gives the impression that everyone is present in the same room. MediaSense
should already classify such sessions as video conversations but new contexts
(e.g., holographic conversation) and corresponding bitrate thresholds may
be required due to required QoS differences.

6.3. Leveraging MediaSense for On-device Optimizations

Mobile multimedia contexts can be used by mobile devices for on-device
optimization of application performance, device performance, and energy
consumption.

Intelligent network selection. Most devices have multi-homing capabilities,
i.e., they are capable of using multiple communication technologies concur-
rently. For instance, smart phones can concurrently use cellular and Wi-Fi
networks, and each of the connected networks can offer a wide range of
network quality. A mobile network can offer 5G and 4G connectivity to
its clients, and Wi-Fi network can offer connectivity over a family of IEEE

9Though, for example, in some cases the move towards unified mobile and desktop
APIs such as with iOS and MacOS means even the same (or very similar) API calls might
work. Furthermore, we believe that our algorithm is agnostic to the underlying APIs.

28

802.11 protocols. Identifying the mobile multimedia context, can enable the
mobile device to select a network based on the network capabilities and the
demands of the applications. Specifically, on-device traffic conditioning ac-
cording to signal strength and multimedia context can improve the quality
of experience.

Smart Energy Consumption. The multimedia context can also provide mo-
bile operating systems hints on the usage of computation, storage, and net-
working resources. For instance, video streaming is more compute-intensive
than audio streaming. The CPU governor can therefore plug/unplug the
cores and scale CPU frequency according to the context resulting in en-
ergy savings. Similarly, the devices can schedule tasks according to the
media context. Specifically, user applications can also use such contexts for
energy-aware scheduling of background traffic [30, 31].

6.4. Network Management

Different stakeholders in the networks also can benefit from MediaSense.
In 5G, the access networks classify traffic and send the QoS policies to mobile
devices to apply [32]. The policies include dropping packets, routing packets
according to the addresses, and marking flows with Differentiated Service
Code Points (DSCPs). We believe that MediaSense is a practical approach
that can be leveraged to extend DiffServ on mobile devices to complement
the QoS architecture in 5G. As a result, the network operators do not have
to perform multimedia traffic classification, as the traffic can be marked even
before arriving at the access network. Furthermore, the operators can map
the DSCP marked traffic to core or radio network slices [33] or leverage such
information in determining the QoS Identifier of the 5G QoS flow (which
can contain multiple network flows).

Similarly, Multiple Access Management Services (MAMS) framework en-
ables networks and devices to negotiate uplink and downlink network paths
based on the application needs and the characteristics and available re-
sources on different network connections [34]. Thus MAMS can leverage
MediaSense to identify the application needs. Furthermore, network ser-
vice providers can further use such information for billing, network plan-
ning/provisioning, and security.

Finally, as mentioned, MediaSense could be useful to user-centric net-
working solutions. These solutions allow personalizable on-device network
traffic shaping (thus acting before traffic actually leaves the device). A
prominent example of these solutions is Middle Box Zero (MBZ). MBZ lever-
ages the VPN API (similar to MediaSense) to act as an on-device middlebox

29

(allowing services such as a user-defined firewall, fine-grained traffic routing,
and network troubleshooting).

MBZ could leverage MediaSense as a multimedia traffic classifier (thus
avoiding the aforementioned privacy intrusive methods). Therefore, users
could personalize the shaping of their different types of multimedia traffic
(by, for example, routing different media contexts through different network
interfaces). Specifically, in terms of integration, MBZ has a plugin archi-
tecture thus allowing a custom MediaSense plugin that could both classify
traffic and subsequently perform the multimedia traffic shaping. In the An-
droid case, each MBZ plugin is essentially just an Android activity with an
associated GUI layout and native c++ code (typically for the traffic shaping
code). We plan to investigate such integration in future work.

7. Related Work

Identifying multimedia traffic is essential. Significant works have been
done that are most suitable for network service providers to manage their
networks. Different traffic classification methods can be divided into three
categories.

Deep Packet Inspection. The MIMIC system [35] looks into HTTP
logs of the adaptive streaming requests to estimate the average bitrates,
bitrate switch, and the playback buffer status. Similarly, BUFFEST [36]
investigates the HTTP logs. Lumen [8], and VPNGuard [6] investigate the
encrypted packet payloads with the help of a VPN service and using cus-
tom root certificates. Several approaches investigated the codec formats
of encrypted VoIP packets from Skype [37]. However, modern multimedia
services, such as Periscope, and Netflix, communicate over HTTPS [38].
Therefore, the traditional port-based classification techniques do not work,
and deep packet inspection [39] is difficult given the encryption.

Statistical Methods. Statistical methods rely on flow features, such as
packet size distribution, packet gap, burstiness, and packet headers [40].
These features can be used to understand VoIP applications’ traffic patterns,
such as Skype [41]. Bonfiglio et al. [37] first looked into the statistical
properties of message content and then matched with the Skype voice traffic
sources by using Naive Bayesian techniques. Do and Branch used inter-
packet gaps to classify VoIP traffic in real-time [42]. However, the flow
features can vary with speech codecs and ambient noise [43].

Machine Learning. We have already evaluated two deep learning ap-
proaches in Section 5 using packet [11] and flow [13, 14] level features. Some

30

recent studies identified YouTube videos of different qualities from the en-
crypted traffic by modeling the relationship between burstiness, i.e., chunk
size and gaps, and videos’ quality [44]. The basic flow features can be used
by machine learning algorithms, such as K-nearest neighbor clustering, to
classify encrypted multimedia traffic [45]. Kim et al. [46] showed that Sup-
port Vector Machine achieves more than 98% accuracy with less training
data than other machine learning algorithms.

Summary. The deep packet inspection methods are difficult on encrypted
traffic. The various machine learning approaches require retraining the
models, large training data, and energy consumption as the traffic pattern
changes. In contrast, MediaSense is specifically for user-centric networks
on end-devices. It performs much better with the help of media contexts.
MediaSense is as accurate as of the existing deep learning approaches as
demonstrated in Section 5.

8. Conclusions

This article introduces the multimedia context concept and presents a
novel algorithm to identify the corresponding encrypted multimedia traf-
fic on mobile devices in real-time. MediaSense computes and leverages the
media context-specific flow features for finding and identifying the corre-
sponding multimedia flows. The approach is energy efficient and can gen-
eralize across multimedia applications without training. MediaSense is also
privacy-preserving, as it neither infers the application nor examines the ac-
tual packet data nor leaks the contexts. MediaSense opens the door for
context-aware system and traffic optimization on mobile devices.

Acknowledgment

The work was supported by the Academy of Finland IDEA-MILL project
(Grant Number 335934), 5GEAR project (Grant Number 319669), Nokia
Foundation Grant, Walter Ahlström Foundation Grant, and FIT project
(Grant Number 325570). Mostafa Ammar’s work was partially supported
by NSF grant NETS: 1909040. In addition, the authors wish to thank the
Finnish Computing Competence Infrastructure (FCCI) for supporting this
project with computational and data storage resources.

References

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology,
2016−–2021, Tech. rep. (2017).

31

[2] A. Feldmann, Others, The Lockdown Effect: Implications of the
COVID-19 Pandemic on Internet Traffic, in: Proceedings of the ACM
Internet Measurement Conference, IMC ’20, ACM, New York, NY,
USA, 2020, p. 1–18. doi:10.1145/3419394.3423658.
URL https://doi.org/10.1145/3419394.3423658

[3] M. A. Hoque, A. Rao, A. Kumar, M. Ammar, P. Hui, S. Tarkoma,
Sensing multimedia contexts on mobile devices, in: Proceedings of the
30th ACM Workshop on Network and Operating Systems Support for
Digital Audio and Video, NOSSDAV ’20, ACM, New York, NY, USA,
2020, p. 40–46. doi:10.1145/3386290.3396935.
URL https://doi.org/10.1145/3386290.3396935

[4] D. Choffnes, A case for personal virtual networks, HotNets ’16, ACM,
New York, NY, USA, 2016, p. 8–14. doi:10.1145/3005745.3005753.
URL https://doi.org/10.1145/3005745.3005753

[5] J. Newman, A. Razaghpanah, N. Vallina-Rodriguez, F. E. Bustamante,
M. Allman, D. Perino, A. Finamore, Back in control – an extensible
middle-box on your phone, CoRR (2020).

[6] Y. Song, U. Hengartner, Privacyguard: A vpn-based platform to de-
tect information leakage on android devices, in: Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices, SPSM ’15, ACM, New York, NY, USA, 2015, pp.
15–26. doi:10.1145/2808117.2808120.
URL http://doi.acm.org/10.1145/2808117.2808120

[7] D. Wu, R. K. C. Chang, W. Li, E. K. T. Cheng, D. Gao, MopEye:
Opportunistic Monitoring of Per-app Mobile Network Performance, in:
Proceedings of USENIX ATC ’17, USENIX Association, 2017, pp. 445–
457.

[8] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
P. Gill, M. Allman, V. Paxson, Haystack: In Situ Mobile Traffic Anal-
ysis in User Space, CoRR (2015).
URL http://arxiv.org/abs/1510.01419

[9] Study on encrypted traffic detection and verification, Technical Speci-
fication (TS) 23.787, 3rd Generation Partnership Project (3GPP), ver-
sion 16.0.0 (03 2018).

32

[10] Certificate Pinning, https://www.symantec.com/content/dam/

symantec/docs/white-papers/certificate-pinning-en.pdf

(2017).

[11] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, M. Saberian, Deep
packet: A novel approach for encrypted traffic classification using deep
learning, Soft Computing 24 (3) (2020) 1999–2012.

[12] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, P. E. Hoffman,
Specification for DNS over Transport Layer Security (TLS), RFC 7858
(May 2016). doi:10.17487/RFC7858.
URL https://www.rfc-editor.org/info/rfc7858

[13] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Mobile encrypted traf-
fic classification using deep learning: Experimental evaluation, lessons
learned, and challenges, IEEE Transactions on Network and Service
Management 16 (2) (2019) 445–458. doi:10.1109/TNSM.2019.2899085.

[14] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,
in: 2017 IEEE International Conference on Intelligence and Security
Informatics (ISI), 2017, pp. 43–48.

[15] M. A. Hoque, M. Siekkinen, J. K. Nurminen, M. Aalto, S. Tarkoma,
Mobile multimedia streaming techniques: Qoe and energy saving
perspective, Pervasive and Mobile Computing 16 (2015) 96 – 114.
doi:https://doi.org/10.1016/j.pmcj.2014.05.004.
URL http://www.sciencedirect.com/science/article/pii/

S1574119214000807

[16] Android AudioManager, https://developer.android.com/

reference/android/media/AudioManager (2020).

[17] Android TelephonyManager, https://developer.android.com/

reference/android/telephony/TelephonyManager (2020).

[18] Android CameraManager, https://developer.android.com/

reference/android/hardware/camera2/CameraManager (2020).

[19] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka,
A. Markopoulou, AntMonitor: A System for Monitoring from Mobile
Devices, in: Proceedings of C2B(1)D ’15, ACM, 2015, pp. 15–20.

33

[20] A. Rämö, H. Toukomaa, Voice Quality Characterization of IETF Opus
Codec, in: INTERSPEECH, 2011.

[21] Voice Over IP - Per Call Bandwidth Consumption, https:

//www.cisco.com/c/en/us/support/docs/voice/voice-quality/

7934-bwidth-consume.html (2016).

[22] A. Schwind, F. Wamser, T. Gensler, P. Tran-Gia, M. Seufert, P. Casas,
Streaming characteristics of spotify sessions, in: 2018 Tenth Inter-
national Conference on Quality of Multimedia Experience (QoMEX),
2018, pp. 1–6. doi:10.1109/QoMEX.2018.8463372.

[23] M. A. Hoque, A. Rao, S. Tarkoma, Network and application perfor-
mance measurement challenges on android devices, SIGMETRICS Per-
form. Eval. Rev. 48 (3) (2021) 6–11. doi:10.1145/3453953.3453955.

[24] X. Zhu, R. Pan, NADA: A Unified Congestion Control Scheme for Low-
Latency Interactive Video, in: 2013 20th International Packet Video
Workshop, 2013, pp. 1–8.

[25] G. Carlucci, L. De Cicco, S. Holmer, S. Mascolo, Analysis and de-
sign of the google congestion control for web real-time communication
(webrtc), in: Proceedings of the 7th International Conference on Mul-
timedia Systems, MMSys ’16, Association for Computing Machinery,
New York, NY, USA, 2016. doi:10.1145/2910017.2910605.
URL https://doi.org/10.1145/2910017.2910605

[26] Monsoon Power Monitor, https://www.msoon.com (2020).

[27] J. C. Mogul, TCP Offload is a Dumb Idea Whose Time Has Come, in:
Proceedings of the 9th Conference on Hot Topics in Operating Systems -
Volume 9, HOTOS’03, USENIX Association, Berkeley, CA, USA, 2003,
pp. 5–5.
URL http://dl.acm.org/citation.cfm?id=1251054.1251059

[28] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh,
J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, et al., Cap-
tum: A unified and generic model interpretability library for pytorch,
arXiv preprint arXiv:2009.07896 (2020).

[29] B. Han, Mobile immersive computing: Research challenges and the
road ahead, IEEE Communications Magazine 57 (10) (2019) 112–118.
doi:10.1109/MCOM.001.1800876.

34

[30] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, V. N. Padmanabhan, Bartendr: A practical
approach to energy-aware cellular data scheduling, in: Proceedings of
the Sixteenth Annual International Conference on Mobile Computing
and Networking, MobiCom ’10, ACM, New York, NY, USA, 2010, pp.
85–96. doi:10.1145/1859995.1860006.
URL http://doi.acm.org/10.1145/1859995.1860006

[31] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, Q. Li,
Optimizing Background Email Sync on Smartphones, in: Proceeding of
the 11th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’13, ACM, New York, NY, USA, 2013,
pp. 55–68. doi:10.1145/2462456.2464444.
URL http://doi.acm.org/10.1145/2462456.2464444

[32] 3GPP, System Architecture for 5G, Technical Specification (TS) 23.501,
3rd Generation Partnership Project (3GPP), version 15.0.0 (12 2017).

[33] R. Ferrus, O. Sallent, J. Perez-Romero, R. Agusti, On 5G Radio Ac-
cess Network Slicing: Radio Interface Protocol Features and Con-
figuration, IEEE Communications Magazine 56 (5) (2018) 184–192.
doi:10.1109/MCOM.2017.1700268.

[34] S. Kanugovi, F. Baboescu, J. Zhu, J. Mueller, S. Seo, Multiple Access
Management Services Multi-Access Management Services (MAMS),
RFC 8743 (Mar. 2020). doi:10.17487/RFC8743.
URL https://www.rfc-editor.org/info/rfc8743

[35] T. Mangla, E. Halepovic, M. Ammar, E. Zegura, Mimic: Using passive
network measurements to estimate http-based adaptive video qoe met-
rics, in: 2017 Network Traffic Measurement and Analysis Conference
(TMA), 2017, pp. 1–6. doi:10.23919/TMA.2017.8002920.

[36] V. Krishnamoorthi, N. Carlsson, E. Halepovic, E. Petajan, Buffest:
Predicting buffer conditions and real-time requirements of http(s) adap-
tive streaming clients, in: Proceedings of the 8th ACM on Multimedia
Systems Conference, MMSys’17, ACM, New York, NY, USA, 2017, pp.
76–87. doi:10.1145/3083187.3083193.
URL http://doi.acm.org/10.1145/3083187.3083193

[37] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, P. Tofanelli, Revealing Skype
Traffic: When Randomness Plays with You, SIGCOMM Comput. Com-

35

mun. Rev. 37 (4) (2007) 37–48. doi:10.1145/1282427.1282386.
URL http://doi.acm.org/10.1145/1282427.1282386

[38] A. Reed, M. Kranch, Identifying HTTPS-Protected Netflix Videos in
Real-Time, in: Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, CODASPY ’17, ACM, New
York, NY, USA, 2017, pp. 361–368. doi:10.1145/3029806.3029821.
URL http://doi.acm.org/10.1145/3029806.3029821

[39] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. Turner, Algorithms
to Accelerate Multiple Regular Expressions Matching for Deep Packet
Inspection, SIGCOMM Comput. Commun. Rev. 36 (4) (2006) 339–350.
doi:10.1145/1151659.1159952.
URL http://doi.acm.org/10.1145/1151659.1159952

[40] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, Class-of-service map-
ping for qos: A statistical signature-based approach to ip traffic clas-
sification, in: Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement, IMC ’04, ACM, New York, NY, USA, 2004, p.
135–148. doi:10.1145/1028788.1028805.
URL https://doi.org/10.1145/1028788.1028805

[41] K. Suh, D. R. Figueiredo, J. Kurose, D. Towsley, Characterizing and
detecting relayed traffic: A case study using Skype, IEEE Infocom
(2006).

[42] P. Branch, L. H. Do, Real time voip traffic classification, Tech. rep.,
Centre for Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia (2009).

[43] M. A. Hoque, P. Nurmi, M. Siekkinen, P. Hui, S. Tarkoma, The bits of
silence: Redundant traffic in voip, MMSys ’20, ACM, New York, NY,
USA, 2020. doi:10.1145/3339825.3391854.

[44] F. Li, J. W. Chung, M. Claypool, Silhouette: Identifying youtube video
flows from encrypted traffic, in: Proceedings of the 28th ACM SIGMM
Workshop on Network and Operating Systems Support for Digital Au-
dio and Video, NOSSDAV ’18, ACM, New York, NY, USA, 2018, pp.
19–24. doi:10.1145/3210445.3210448.
URL http://doi.acm.org/10.1145/3210445.3210448

36

[45] W. Jiang, M. Gokhale, Real-time classification of multimedia traffic
using fpga, in: 2010 International Conference on Field Programmable
Logic and Applications, 2010, pp. 56–63. doi:10.1109/FPL.2010.22.

[46] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, K. Lee,
Internet traffic classification demystified: Myths, caveats, and the
best practices, in: Proceedings of the 2008 ACM CoNEXT Confer-
ence, CoNEXT ’08, ACM, New York, NY, USA, 2008, pp. 11:1–11:12.
doi:10.1145/1544012.1544023.
URL http://doi.acm.org/10.1145/1544012.1544023

37

