
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Alaa
Rashed AlZailaa

Transmissão de video melhorada com recurso a
SDN em ambientes baseados em cloud

Enhanced Video Transmission Using SDN in
Cloud-based Environment

“If you want to be successful, you must respect one rule: never lie
to yourself ”

— Paulo Coelho

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Alaa
Rashed AlZailaa

Transmissão de video melhorada com recurso a
SDN em ambientes baseados em cloud

Enhanced Video Transmission Using SDN in
Cloud-based Environment

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Alaa
Rashed AlZailaa

Transmissão de video melhorada com recurso a
SDN em ambientes baseados em cloud

Enhanced Video Transmission Using SDN in
Cloud-based Environment

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Prof.
Rui Luís Andrade Aguiar, Catedrático da Universidade de Aveiro do Depar-
tamento de Eletrónica, Telecomunicações e Informática da Universidade de
Aveiro, e do Doutor Daniel Nunes Corujo, Investigador Doutorado da Univer-
sidade de Aveiro
.

Global Platform for Syrian Stu-
dents Scholarship

o júri / the jury

presidente / president Professor Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Doutor Sérgio Miguel Calafate de Figueiredo
Engenheiro Sénior, Altran Portugal

Doutor Daniel Nunes Corujo
Investigador Doutorado da Universidade de Aveiro

agradecimentos /
acknowledgements

First of all, I would like to thank my supervisor, Professor Rui Luís Andrade
Aguiar for his continuous support, exceptional supervision, mentoring. I also
thank Doctor Daniel Nunes Corujo for all help and administration, in addition
to review my thesis with expert opinion.
I would like to thank the Global Platform for Syrian Students represented by
the former President Jorge Sampaio and his Diplomatic Adviser Dr. Helena
Barroco. I am really grateful to the Portuguese for the enormous opportunity
that was given to me for achieving my goal by proceeding the higher studies.
Thank you very much. I am grateful to all my colleagues at IT for providing
technical assistance and friendly working environment. Last but not least, my
heartiest gratitude goes to all my family, my wife and my friends for their love,
trust, affection, patience and support throughout this study period.

Palavras Chave Redes Definidas por Software, Virtualização de Funções de Rede, Cloud
Computing, Virtualização, OpenStack, Monitoramento, Análise de Pacotes de
Rede, Qualidade de Serviço.

Resumo Os grandes avanços tecnológicos em informática abriram o caminho para o
fornecimento de vários serviços e novos aplicações de entretenimento base-
adas na web, que expandiram significativamente com a explosão no número
de aplicações e utilizadores das redes sociais. Esta expansão significativa
colocou desafios adicionais aos fornecedores de serviços de rede, em ter-
mos de gestão de rede, equipamento e a eficácia do fornecimento de servi-
ços. Novas noções e técnicas foram desenvolvidas para oferecer soluções
inovadoras, tais como redes definidas por software (SDN) para a gestão de
rede, virtualização para a optimização da utilização dos recursos e outros,
tais como a computação em nuvem e as funções de rede virtualizadas. Esta
dissertação pretende gerir automaticamente a emissão de vídeo ao vivo na
rede, através da adição de uma arquitetura ao ambiente de rede virtualizado,
que auxilie a filtragem de pacotes de vídeo dos do restante tráfego, para um
túnel específico, que será gerido com uma prioridade maior, capaz de forne-
cer melhor serviço aos clientes. Além do desenho da arquitectura, scripts de
Python foram usados para detectar os pacotes de vídeo e injetar novas regras
no controlador SDN que monitoriza o tráfego ao longo da rede.

Keywords Software-Defined Networking, Network Function Virtualization, Cloud Com-
puting, Virtualization, OpenStack, Monitoring, Network Packets Analysis,
Quality of Service.

Abstract The great technological development of informatics has opened the way for
provisioning various services and new online-based entertainment services,
which have expanded significantly after the increase in social media applica-
tions and the number of users. This significant expansion has posed an addi-
tional challenge to Internet Service Providers (ISP)s in terms of management
for network, equipment and the efficiency of service delivery. New notions and
techniques have been developed to offer innovative solutions such as SDN for
network management, virtualization for optimal resource utilization and oth-
ers like cloud computing and network function virtualization. This dissertation
aims to manage live video streaming in the network automatically by adding a
design architecture to the virtual network environment that helps to filter video
packets from the remaining ones into a certain tunnel and this tunnel will be
handled as a higher priority to be able to provide better service for customers.
With the dedicated architecture, side by side, a monitoring application inte-
grated into the system was used to detect the video packets and notify the
SDN server to the existence of the video through the network.

Contents

Contents i

List of Figures v

Glossary vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Thesis Structure . 2

2 Key Enablers and State of the Art 3

2.1 Virtualization . 3

2.1.1 What is Virtualization? . 4

2.1.2 Why Virtualization? . 4

2.1.3 Properties of Virtualization . 5

2.1.4 Types of Virtualization . 5

2.1.5 Benefits of Virtualization . 6

2.2 Cloud Computing . 7

2.2.1 Cloud Computing Architecture . 7

2.2.2 Cloud Deployment Model . 8

2.2.3 Cloud Computing Service Model . 9

2.3 Software Defined Network (SDN) . 10

2.3.1 Software Defined Network (SDN) Architecture 10

2.3.1.1 OpenFlow . 12

2.3.2 Cloud Computing vs. Software-Defined Networks 14

2.4 OpenStack . 14

2.4.1 Introduction to OpenStack . 14

2.4.2 Components of OpenStack . 15

i

2.4.3 Advantages of OpenStack . 16

2.5 Network Function Virtualization (NFV) . 18

2.5.1 What is Network Function Virtualization NFV? 18

2.5.2 The need for Network Function Vertualization (NFV) 19

2.5.3 NFV Architecture . 19

2.5.4 SDN Vs. NFV . 22

2.6 Video Streaming Technologies . 23

2.6.1 H.264 . 23

2.6.2 High Efficiency Video Coding (H.265) . 23

2.6.3 Real-Time Transport Protocol . 24

2.6.4 Real-Time Streaming Protocol . 24

2.6.5 Real-Time Messaging Protocol . 24

2.6.6 Real-Time Media Flow Protocol . 25

2.6.7 Adaptive Bitrate Streaming . 25

2.6.8 Session Traversal Utilities for NAT . 26

2.6.8.1 Session Traversal Utilities for NAT (STUN) transactions 26

2.6.8.2 Binding method in STUN transactions 27

2.6.8.3 STUN Messages exchange overview 27

2.6.8.4 STUN Message Structure: . 28

2.6.9 Web Real-Time Communication . 28

2.7 Quality of Service . 30

2.7.1 Quality of Service (QoS) in video streaming 30

2.7.2 Qos in Software Defined Networks . 30

2.7.3 Differentiated Services (DiffServ) . 31

2.7.4 Differentiated Services Code Point Differentiated Services Code Point (DSCP) 31

2.7.5 DSCP Background . 32

2.7.6 DSCP Distortion . 33

2.7.7 Recommendations for DSCP usage in WebRTC 33

2.8 Related Works . 33

2.9 Conclusion . 37

3 Design of the Solution Environment 39

3.1 Solution Design . 39

3.2 Architecture . 40

3.2.1 OpenStack Environment Architecture . 40

3.2.2 Video detection scripts . 42

3.3 Internal Design . 42

3.3.1 Initializing OpenStack Environment . 43

ii

3.3.2 Implemented Python scripts . 44

3.3.3 Points to be considered in design and implementation 45

3.4 Use Cases . 45

3.4.1 Requirements . 46

3.5 Conclusion . 47

4 Implementation 49

4.1 Experimental Validation . 49

4.2 Conclusion . 57

5 Conclusion 59

5.1 Future work . 60

References 61

iii

List of Figures

2.1 Traditional Architecture Vs Virtualization Architecture 4

2.2 Types of Virtualization . 5

2.3 Cloud Computing Architecture . 7

2.4 Cloud Deployment Model . 8

2.5 Cloud Computing Service Model . 9

2.6 SDN Architecture . 11

2.7 OpenFlow Protocol Virsions . 13

2.8 Open vSwitch Overview . 14

2.9 OpenStack Overview . 15

2.10 Most companies using OpenStack work in the IT industry. However, the open platform is

used in most other industries as well, even in the movie industry, insurance or manufacturing. 17

2.11 NFV Architecture . 20

2.12 Virtualization environment alterations for VNFs . 22

2.13 Using Real-Time Messaging Protocol (RTMP) in communication 25

2.14 Using Real-Time Media Flow Protocol (RTMFP) in communication 25

2.15 One Possible STUN Configuration . 28

2.16 Media exchange using STUN . 29

2.17 Media exchange using Traversal Using Relay NAT (TURN) 29

2.18 SDN Architecture . 37

3.1 Open vSwitch Overview . 40

3.2 The Internal Design on the System . 43

3.3 Use case diagram: User Request video stream service . 46

3.4 Use case diagram: monitoring application response to the use’s request 46

3.5 Use case diagram: the core system sends flow entries to Open vSwitches 46

4.1 Used case scenario . 50

4.2 DSCP value for Television (TV) broadcast . 50

4.3 Packets in bridge2 after detecting video stream . 51

v

4.4 Packets in bridge1 after detecting video stream . 52

4.5 RTMP Server initial the video stream configuration . 53

4.6 Exchange video packets between RTMP server and RTMP client 53

4.7 Packets in bridge2 between RTMP server and client . 54

4.8 Packets in bridge1 between RTMP server and client . 55

4.9 User sends request to initialize Facebook messenger video call 55

4.10 STUN server responds to the user’s request . 56

4.11 User send request to STUN server to initiate live video broadcasting 57

vi

Glossary

ABR Adaptive Bitrate Streaming
AF Assured Forwarding
AMD Advanced Micro Devices
API Application Programming Interface
AT & T American Telephone and Telegraph
AVC H.264-Advanced Video Coding
BT British Telecom
COTS commercial off-the-shelf
CAPEX Capital Expenditure
CRM Customer Relationship Management
CS Class Selector
DC Data Center
DNS Domain Name System
DPI Deep Packet Inspection
DSCP Differentiated Services Code Point
DT Deutsche Telekom
ECN Explicit Congestion Notification
EM Element Manager
EMS Element Management System
ERP Enterprise Resource Planning
ETSI The European Telecommunications

Standards Institute
EF Expedited Forwarding
GRE Generic Routing Encapsulation
HAL Hardware Abstraction Layer
HEVC High Efficiency Video Coding
IaaS Infrastructure as a Service
IANA Internet Assigned Number Authority
IBM International Business Machines

Corporation
ICE Interactive Connectivity Establishment
IDR Instantaneous Decoding Refresh
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IP Internet Protocol

IPS Intrusion Prevention System
IPV6 Internet Protocol version 6
ISP Internet service provider
IT Information Technology
LCU Largest Coding Unit
MANO Management and Orchestration
MTU maximum transmission unit
MIT Massachusetts Institute of Technology
MPLS Multiprotocol Label Switching
NAL Network Abstractin Layer
NAT Network Address Translation
NFV Network Function Vertualization
NFVI Network Function Virtualization

Infrastructure
NFVO NFV Orchestrator
NIST National Institute of Standards and

Technology
N-PoP Network Point of Presence
ONF Open Networking Foundation
OPEX Operating Expense
OVS Open vSwitch
PaaS Platform as a Service
PAD Programmable Abstraction of Datapath
PHB Per Hop Behaviour
PNF Physical Network Function
PoC Proof of Concept
QoS Quality of Service
RED Random Early Detection
ROFL Revised OpenFlow Library
RTC Real-Time Communications
RTCP RTP Control Protocol
RTMFP Real-Time Media Flow Protocol
RTMP Real-Time Messaging Protocol
RTP Real-Time Transport Protocol
RTSP Real-Time Streaming Protocol
SaaS Software as a Service
SANs storage area networks

vii

SDN Software Defined Network
SSL Secure Sockets Layer
STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TLS Transport Layer Security
TO Telecommunications Operators
ToS Type of Service
TURN Traversal Using Relay NAT
TV Television
UDP User Datagram Protocol

VCL Video Coding Layer

VDI virtual desktop infrastructure

VIM virtualized Infrastructure Manager

VLAN virtual LAN

VM Virtual Machine

VNF virtualized Network Functions

VNFM VNF Manager

WAN Wide Area Network

WebRTC Web Real-Time Communication

viii

CHAPTER 1
Introduction

1.1 Motivation

The rapid growth of Social Media and the higher demand for media content conjugated
with the fast growth in the industry of smart devices, has become a vital part of the digital
transformation that is occurring across almost all industries today, which increases the
challenges facing the service providers such as: complicated management and low operation
efficiency. In addition to the above, there are also difficulties to meet the new requirements
by the existing computing infrastructure and service modes.
All these challenges push to develop new computing innovations as a step to bridge the gap
between the existent technology and the new requirments.
Furthermore, SDN has been announced as the means to provide simple and centralized control
for network management. The most important features presented for SDN are: network
programmability, greater flexibility, ease in QoS policies management and the ability to create
policy driven network supervision. All these advantages give SDN the opportunity for networks
to keep updated with the rapid changes. There is also Virtualization technology which allows
IT environments to become more scalable and flexible. Virtualization is considered as one of
the key concepts for cloud computing. Cloud computing has been shown as a solution to unify
the networked resources via a resource pool to provide virtual processing, storage, bandwidth,
and so on. Cloud computing platforms have high performance with good scalability and
large bandwidth capacity while maintaining a high level of quality of service (QoS). The
combination between SDN, Virtualization and cloud computing forms an appealing mode for
companies while it requires minimal investments when it comes to run a certain application
or service. This will decrease the cost of operation and maintenance, in addition to minimize
the risk to support new services.
The main motivation for this thesis is to clarify the strength of using SDN and virtualization
to control the network and manage the QoS policies, in addition to profit from the flexibility
and scalability provided by cloud computing.

1

1.2 Objectives

The main objective of this study is to design an SDN system able to provide better
conditions to the video streams. The SDN system designed in a cloud computing platform.
This environment is provided with a mechanism to detect a video stream in the network
and supply new policies in an SDN solution. The video detection mechanism supports the
ability to detect different types of video streaming depending on the monitoring application.
Moreover, the monitoring application needs a short response time to detect the video and
notify the system to take the convenient decision.
As a result, the importance of adding a new route for the video stream is to separate video
packets from other packets flows in the network, which provides better QoS for users connected
to the network.

1.3 Contributions

The work in this dissertation mainly contributes with detecting the packets and filtering
the video streams from the other packets, in addition to design an appropriate environment
by using the services of SDN and virtualization, while taking advantage of the main features
of cloud computing such as flexibility and scalability. It will also contribute to an Proof of
Concept (PoC), that seeks to show the integration among modern technologies.
It can also be used in other systems located on cloud platforms, furthermore it could be
used in some real demonstrations to prove its main objective and used from actual audiences
(students at the university of Aveiro).

1.4 Thesis Structure

This document is divided into five chapters, where the first one (Introduction) was already
presented, the remaining chapters are organized as follows:

• Chapter 2: presents an overview of the key enablers, state of the art and background
knowledge required to implement the proposed environment. These will focus on SDN,
Virtualization, and cloud computing with multimedia protocols.

• Chapter 3: presentation of all analysis which led to the proposed solution, and the
ensuing implementation of cloud architecture as well as the studied use cases.

• Chapter 4: focuses on the performance of the system, highlighting it’s results in the
domain of video detection.

• Chapter 5: presents the conclusions, contributions and future work.

2

CHAPTER 2
Key Enablers and State of the Art

This chapter introduces the state of the art and key concepts relevant to this thesis.

2.1 Virtualization

According to [1] the idiom "Virtualizarion" first appearance was in the late 1960s to
the early 1970s, due to the research and development done by Massachusetts Institute
of Technology (MIT) and International Business Machines Corporation (IBM) on shared
compute resource usage between large groups of users. The first virtual machine was designed
by IBM for the hardware platform CP-40 mainframe and M44/44X. These versions led to the
CP-76 mainframe system which represented the first commercially mainframe that supported
virtualization. The initial use of virtualization to unified the efforts of servers, data recovery
and test the operating system kernel [2].
In the period between the late of 1970s into the 1980s, virtualization become a used standard
in mainframe systems, but the use of it decreased with the appearance of personal computers
and client/server computing. The interest of virtualization was renewed in the late 1990s
and into the early 2000s, because of difficulties of power and coolling efficiency problems
in underutilized data center systems in an optimal way. The developers started creating
hypervisor platforms.

There are many generations of hypervisor platforms appeared, namly:
• The first virtual PC was added to a Macintosh platform in 1997.
• After one year, VMware launched the VMware Virtual Platform for the A-32 architecture.
• In 2001, AMD Advanced Micro Devices (AMD) and Virtutech released Simics/x86-64
which supported 64-bit architectures for x86 chips.

• In 2003, the University of Cambridge released its x86 hypervisor, Xen [3].
• In 2005, Sun Microsystems released Solaris OS, which included Solars Zones, a con-
tainerization product.

3

• In 2008, a beta version of Microsoft’s Hyper-V was released.
• In March of 2013, Docker Inc. released its namesake containerization product for x86-64

platforms.

2.1.1 What is Virtualization?

According to VMware: "Virtualization is the process of transforming a physical infras-
tructure (such as a server, network, storage or application) in a software form". This reduces
IT expenses and supports agility and energy efficiency. Utilizing virtualization allows orga-
nizations to use a single server for hosting multiple operating systems and applications as
depicted in figure 2.1.

Figure 2.1: Traditional Architecture Vs Virtualization Architecture
Source:[4]

From a logic perspective, virtualization allows to assign different physical resources that
can abstract the application and its underlying components from supporting hardware.

2.1.2 Why Virtualization?

Servers were initially designed to host a single operating system, running single applications
at a time, forcing companies with multiple applications to deploy a dedicated server for
each of these applications, as well as, implementing the corresponding infrastructure and
connections to enable an efficient functional system. This was reflected even on small Data
Centers (DCs) which had to have multiple servers to keep pace with the increasing demand on
storage and processing capabilities, despite that only 12 percent of each server capacity was
indeed in use. According to Gartner: “Efficient Data Center Design Can Lead to 300 Percent
Capacity Growth in 60 percent Less Space” [5]. Additionally, this excessive use of hardware
lead IT infrastructures to become larger, complicated, more technologically challenging and
energy inefficient. A power consumption analysis on data centers was performed in [6], which
concluded that a typical DC consumed as much energy as 25,000 households. Its spaces may
consume up to 100 to 200 times as much electricity as standard office space. Moreover, the
cost of energy for a typical DC doubles every five years. The limitations of traditional servers,
inefficiencies and excessive operating costs lead telecom operators to adopt novel technologies,
such as virtualization, to enable optimum performance and better usage of available resources.

4

In addition; simplifying the IT infrastructure management, improving resource utilization,
and reducing the level of coupling between consumer and resource is one of the main goals of
virtualization [7]. Furthermore; The general trend towards preserving the environment and
reducing global warming requiring good corporate efforts to meet greenhouse gas reduction
targets, creates an added incentive for virtualization.

2.1.3 Properties of Virtualization

Applying virtualization technology provides many features, summarized in:
• Partitioning:

– Allowing to run multiple operating systems on one physical machine.
– Distribute system resources between virtual machines.

• Isolation:
– Provide fault and security isolation at the hardware level.
– Preserve performance with advanced resource controls.

• Encapsulation:
– Save the entire state of a virtual machine to files.
– Move and copy virtual machines easily like moving and copying files.

• Hardware Independence:
– Provision or migrate any virtual machine to any physical server.

2.1.4 Types of Virtualization

There are many concepts (e.g. software virtualization or hardware virtualization) that
could be used to categorize Virtualization in different types, the main types of virtualization
according to [1] as shown in 2.2, and summarized in:

1. Server Virtualization: Today’s most common type of virtualization. Server virtualiza-
tion is now possible by using a virtual machine manager that is called "hypervisor" which
enables several virtual servers with multiple operating systems to run simultaneously on
a single physical server as highly efficient virtual machines.
Key benefits include:

Figure 2.2: Types of Virtualization
Source:[8]

5

• Greater IT efficiency.
• Reduced operating costs.
• Faster workload deployment.
• Increased application performance.
• Higher server availability.
• Eliminated server sprawl and complexity.

2. Network virtualization: By completely reproducing a physical network, network
virtualization combines all physical networking equipment into a single, software-based
resource. That allows to divide bandwidth into multiple, independent channels, each of
which can be assigned to servers and devices in real time as if they were running on a
physical network with greater operational benefits and all the hardware independence
of virtualization.
Companies which need to keep their systems up and running at all times and have a
large number of users would benefit from network virtualization. Using distributed
channels will increase network speed, allowing to deliver services and applications faster
[1].

3. Storage virtualization: This technique is used to abstract information about all of
the storage hardware resources on storage area networks (SANs).
This type of virtualization is easy and cost-effective to implement, it includes compiling
physical hard drives into a centralized system and separates the storage-management
software from the underlying hardware infrastructure in order to provide more flexibility
and scalability. Storage virtualization considered an efficient way for disaster recovery,
since the data could be stored on virtual storage and replicated and transferred to
another location.

4. Desktop virtualization: Separates the desktop environment from the physical device
and configured as a virtual desktop infrastructure (VDI). Deploying desktops as a
managed service enables IT organizations to respond faster to changing workplace needs
and emerging opportunities. It also lowers the cost of software licensing and updates.
Maintenance and patch management are simpler, since all of the virtual desktops are
hosted at the same location.

5. Application virtualization: This is a process where applications are virtualized and
delivered from a server to the end user’s device, such as laptops, smartphones, and tablets.
So instead of logging into their computers at work, users will be able to gain access
to the application right from their device, provided an Internet connection is available.
This is particularly popular for businesses that require the use of their applications on
the go.

2.1.5 Benefits of Virtualization

Using virtualization reduces the difficulties of IT management and makes it less costly to
own and operate. Virtualization provides more IT agility, flexibility and scalability, as well as
increased performance and availability of resources and automated operations [1]. Benefits
also cover:

6

• Increased IT productivity, efficiency, agility and responsiveness.
• Faster provisioning of applications and resources.
• Minimized or eliminated downtime.
• Greater business continuity and disaster recovery.
• Simplified data center management.
• Reduced capital and operating costs.

2.2 Cloud Computing

Cloud Computing has been shown as a new technology using a common way of providing
infrastructure services, applications and general computing and storage resources on-demand.
Clouds perform a step forward in the development chain of computing and in communication
technologies by introducing a new type of services and a new abstraction layer for the general
infrastructure services virtualization, portability and automatic provisioning.
The definition of cloud computing according to National Institute of Standards and Technology
(NIST) is: “Cloud computing is a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction.”[9]

2.2.1 Cloud Computing Architecture

The architecture of cloud computing is composed by four layers from bottom to top: the
hardware layer, the infrastructure layer, the platform layer and the application layer, as shown
in figure 2.3. Here is the description of each layer [10]:

1. The hardware layer: This layer contains the raw hardware level resources of the cloud
such as physical servers, routers, switches, power and cooling systems. Implementing the
hardware layer usually is done in datacenters DCs. The challenges in this area normally
include hardware configuration, traffic management, fault tolerance, power and cooling
resource management.

Figure 2.3: Cloud Computing Architecture
Source:[10]

7

2. The infrastructure layer: In this layer the resources have been virtualized by par-
titioning the hardware layer resources and creating a pool of storage and computing
resources. The main responsibility of infrastructure layer is dynamic resource assignment
using virtualization technologies.

3. The platform layer: Provides a development and deployment platform on top of the
infrastructure layer. The platform layer contains operating systems and application
frameworks, it helps to minimize the burden of deploying applications directly into
Virtual Machine (VM) containers. This could be used in both VMs and containers.

4. The application layer: Containing the applications that would prevail in the clouds,
cloud applications can benefit from the automatic-scaling feature to achieve better
performance, availability and lower operating cost.

2.2.2 Cloud Deployment Model

The deployment model of Cloud computing includes four models [11], as shown in 2.4.
1. Public Clouds: The infrastructure is available as a services for general public and

usage. Public clouds represent an optimal solution for service providers allowing them
to dispense decreased initial capital investment on infrastructure and shifting of risks to
infrastructure providers. Nevertheless, public clouds suffer from many issues like network
and security settings and the flow control of data, which limits their effectiveness in
many business scenarios.

2. Private Clouds: The cloud is available mainly for a single organization and provides
security to its resources. The computing infrastructure could be hosted and managed in
the same organization or by external providers. Private clouds offer the highest level of
security, reliability and control of performance.

Figure 2.4: Cloud Deployment Model
Source:[12]

8

3. Hybrid Clouds: It is a combination between public and private clouds that tries to
exceed the insufficiency in each model, hosting most important applications on the
private cloud to keep them more secure and secondary applications runs in public clouds.
Hybrid clouds provide flexibility in management and control, but in the other hand
hybrid clouds require careful design to draw borders between public and private cloud
components.

4. Community Cloud: It is similar to public cloud but the access to the cloud is limited
to a specific community of cloud consumers. The community cloud infrastructure may
be owned by the community members or by a third-party cloud provider.

2.2.3 Cloud Computing Service Model

The Service model of Cloud computing containes three models [11], as shown in 2.5.
1. Software as a Service(SaaS): Represents fully functional web-based applications.

The users will be able to access the services by using a web browser over the Internet.
Also the users don’t need to have attention for underlying cloud infrastructure or
operating systems, network configuration, servers and storage. Software as a Service
(SaaS) applications are used in web conferencing, Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM) and email, etc. Example of SaaS application
can be web Mail, Google Docs, Microsoft online.
Benefits of SaaS Solutions are:

• Rapid Scalability.
• Accessibility from any location with Internet.
• Eliminates infrastructure concerns.
• Custom levels of service offerings.
• Bundled maintenance and Support.

2. Platform as a Service(PaaS): In addition to provide infrastructure, Platform as a
Service (PaaS) also provides a computing platform including operating system support,

Figure 2.5: Cloud Computing Service Model
Source:[13]

9

run-time system libraries and programming languages. Like in SaaS costumers do
not have to concerns about underlying infrastructure and network management but
they need to control over the deployed applications and their own hosting environment
configurations. Examples of PaaS providers include Google App Engine [14] and
Microsoft Windows Azure [15].
Benefits of PaaS Solutions are:

• Lower cost: While companies just rent what they need from PaaS providers, there
will be no risk in resource management in hardware or software. In addition
resources can be allocated and deallocated on demand.

• Always upgraded: PaaS providers are responsible for updating or upgrading the
infrastructure software and handling all patches and routine software maintenance.

3. Infrastructure as a Service (IaaS): Infrastructure as a Service (IaaS) represents
cloud-based computing infrastructure which provides processing capabilities, storage
and networks including pre-installed and configured hardware or software through a
virtualized interface. IaaS users can deploy any applications, software or operating
systems on the infrastructure. Examples of IaaS providers include Salesforce.com CRM
[16] and Rackspace [17].
Benefits of IaaS Solutions are:

• Reduces the investment ownership of infrastructure and capital costs.
• Costumers pay-as-you-go pricing model.
• Access to enterprise-grade IT resources and infrastructure.
• Costumers can scale requirements up and down at any time.

2.3 Software Defined Network (SDN)

First generations of network devices were complex and difficult to manage. Typically at
that period most of control software used in routers or switches was complex and distributed.
Furthermore, this software was mostly closed and proprietary and if there was an ability to
configure these devices the administrator would need to access each network device individually
using specific configuration interfaces that vary from one vendor to the other. The internal
structure of network devices consists in two parts. The first one is the Data plane and the
second is the Control plane. These two parts are tightly coupled and modifications in these
parts was not possible[18]. All previous factors made innovation slow down plus increasing the
complexity of operations that leaded the costs to be inflated in both capital and operational
of operating the network.
SDN appeared to overcome the above limitations by changing the way of network designing
and managing. The main idea of SDN is separating the control plane from the Data plane
and providing a flexible way to control the network.

2.3.1 SDN Architecture

Typically the SDN architecture contains three variant layers: the application layer, the
control layer and the data-plane layer [19]; the SDN Architecture depicted in figure 2.6, and
is composed by the following:

10

Figure 2.6: SDN Architecture
Source:[20]

1. Application layer: containing the typical network applications providing network
services such as routing policies, intrusion detection systems, load balancing or firewalls
instead of using specialized network devices in a traditional network. The application
layer exploits the decoupling between control plane and data plane to manage data
plane behaviors by using the controller. Applications in the application layer use a
northbound interface of the control plane to communicate with a controller.

2. Control-plane layer: Also known as controller, the Control plane intermediates be-
tween applications and the Data plane. It represents the centralized core of SDN
controller software that logically manipulates the forwarding devices by receiving instruc-
tions or requirements from the SDN Application layer. The control layer communicates
with the data-layer by using southbound interface.
a) Southbound interface (southbound Application Programming Interface (API)[21]):

SDN uses southbound as a bridge to relay information from control to the forwarding
elements (switches and routers). Southbound is considered as the actual tool for
achieving the functionality separation between Control plane from Data plane.
Many southbound APIs exist, with OpenFlow representing the first API standard
for SDN and still as the most used protocol.
Notwithstanding, there are many other API proposals for southbound interfaces
used in SDN such as Open vswitch database [22], Opflex [23], Hardware Abstraction
Layer (HAL), Programmable Abstraction of Datapath (PAD) [24], OpenState [25],
Revised OpenFlow Library (ROFL) [26], ForCES [27], and POF [28].

b) Northbound interface (Northbound API[21]): Is a high-level API used by the
SDN controller to communicate with applications and other business logic in the
application layer. [29] defines Northbound APIs as "an abstraction of network
functions with a programmable interface for applications to consume the network
services and configure the network dynamically. They allow the applications to

11

dictate the behaviour of the network." According to [30] till now the discussions to
define new standard for northbound is too slow, and use-cases for northbound still
under preparation[31].

3. Data-plane Layer: represents the infrastructure that made up of the physical switches,
routers and other network devices, most of these devices are programmable and supports
shared protocol (e.g., OpenFlow) and standard interfaces.

2.3.1.1 OpenFlow

It was developed by the Open Networking Foundation (ONF) as a first Southbound API
industry standard to provide directly interact communication protocol between the SDN
controller and the forwarding plane of the network OpenFlow-enabled appliances (switches
and routers) in physical and virtual (hypervisor-based) environment [21]. OpenFlow is one
way of controlling network-wide forwarding behavior under an SDN concept. For this purpose
the SDN controller uses flow tables to handle incoming packets. Each flow table consists of
many flow entries that contain a set of components which are [30]:

1. match fields: to match against packets. These consist of the ingress port and packet
headers, and optionally metadata. The main matching fields are:

• Ethernet: Destination/ Source/ Type.
• virtual LAN (VLAN): Id/ Priority.
• Internet Protocol (IP): Destination/ Source/ Protocol/ Type of service.
• Transmission Control Protocol (TCP): Destination port/ Source port. When a

match happens for a flow entry, a set of actions will be applied on the packets (e.g.,
sendout-port, modify TCP src/dst-port, modify IP address src/dst, flood or drop).

2. priority: matching precedence of the flow entry.
3. counters: gathering statistics about specific types of flow (e.g., number of packets and

number of transmitted bytes). These counters are updated when packets are matched.
4. instructions: to modify the action set or pipeline processing.
5. timeouts: maximum amount of time or idle time before flow is expired by the switch.
6. cookie: opaque data value chosen by the controller. May be used by the controller to

filter flow statistics, flow modification and flow deletion. Not used when processing
packets.

When receiving a packet that does not match any of flow entries, this causes a miss in the
forwarding table matching process. Table-miss flow entry will take an action that might be
forwarding to the controller, pass the packet to the next flow table or drop the packet. In
the case the packet is to be sent to the controller, the controller can drop the packet or can
add a new flow entry in the switch to handle similar packets in the same way in the future.
Many versions of OpenFlow were issued [30], all supporting multiple flow tables, but each new
version differing from the previous ones by adding new match fields and new actions related
to ports and protocols. OpenFlow version 1.1 supports multiple flow tables and pipeline
processing. OpenFlow version 1.2 supports a more flexible matching structure, which used to
be a static fixed-length structure, and more protocols such as IPv6. OpenFlow version 1.3
provides more support for protocols such as Multiprotocol Label Switching (MPLS) BoS bit

12

and Internet Protocol version 6 (IPV6) extension headers.
OpenFlow version 1.4 also supports optical ports. The differences between OpenFlow versions
are summarized in figure 2.7. Network operating systems get information about the flow level
of data in the network by three information source messages [30], namely:

Figure 2.7: OpenFlow Protocol Virsions
Source:[30]

1. Event-based message: This message is sent from the forwarding device to the controller
when a link or port change is triggered.

2. Flow statistics message: This message is generated from the forwarding device and
gathered by the controller.

3. packet-in message: This message is sent from the forwarding device to the controller
when there is an unmatched entry for new incoming flow or when there is a distinct
action "actions=controller" for a matching entry of a flow table.

OpenFlow is also supported by the existance of several open source tools such as Open
vSwitches, figure 2.8.

• Open vSwitch: The OpenFlow switches implement exclusively the data plane functions,
acting as a traffic forwarding device. Open vSwitch (OVS) is an open source implemen-
tation of a distributed virtual multilayer switch and it was created to enable massive
network automation through programmatic extension, while still supporting standard
management interfaces and protocols, such as, Netflow and sFlow. Its use focuses in
virtualized server environments and it is capable of forwarding traffic between multiple
Virtual Machine VM in the same physical machine or between the VM and the physical
network, facilitating the configuration or monitoring of the virtualized network.

13

Figure 2.8: Open vSwitch Overview
Source:[32]

2.3.2 Cloud Computing vs. Software-Defined Networks

Herein, the functional goals of Cloud Computing and Software-Defined Networks SDN
will be clarified to show the differences between them: on the one hand, the functions of cloud
computing aim to provide users with access to critical data on anytime and anywhere. on
the other hand, the SDN gives the network admin the possibilty to form, build and manage
network resources, in addition to traffic, bandwidth and so on. This will be done directly from
a central controller without dealing with modifying individual part of the network devices.
The cloud is designed to access the data in a simple way through remote servers, therfore it is
considered as a backbone computing infrastructure.

2.4 OpenStack
The hardware limitation of a normal physical server becomes a main obstacle towards improving
its performance to meet up the rapidly increasing demand on resources. This time, the solution
is offered by OpenStack, and again by adding a new layer after abstracting all the available
resources and moving them into a shared pool that can be used by all the virtual instances in
the system, and by doing so, controlling and managing the more complex systems becomes
easier than before since the type of the server or the hypervisor running under the OpenStack
is irrelevant and the admins just need to request a virtual machine that can be run on any
machine included in the system.

2.4.1 Introduction to OpenStack

OpenStack makes it a very easy and efficient task to manage a cloud environment by
allowing users to create all the needed instances in the form of virtual machines. Horizontal
scaling is another main feature of using OpenStack, which allows concurrently executing tasks
to serve multiple users just by adding up new instances. Like in the case when the remote

14

server needs to communicate with different users each of them is running a mobile application,
OpenStack makes it possible to distribute the communicating load with each user among
multiple instances each of which is able to communicate with all the others with the server
able to scale very efficiently to the new users joining the application [33]. In addition to all
its benefits, OpenStack is an open source software with all the advantages that accompany
this property like having thousands of keen developers working nonstop to make OpenStack
stronger, more secure and more efficient.
Clouding is basically allowing end users to run applications not on their own devices but
rather on reliable servers that provide the software as a service [34]. Running items (software,
platforms, and infrastructure) as “a service” is the main property of Cloud Computing even
though the term can refer to many different things. Infrastructure as a Service (IaaS) is where
OpenStack belongs, since it allows fast and easy adding of new instances for other cloud
components to run, for instance and in the typical case a “platform” is run on the created
infrastructure that allows software developers to create applications and share it later with
the end users.

2.4.2 Components of OpenStack

Although OpenStack is very flexible in terms of the possibility of adding any extra number
of components, the OpenStack community has defined the “core” of OpenStack to consist of
nine key components as depicted in figure 2.9, to be part of any OpenStack system and to be
maintained and developed by the OpenStack community itself [35].

Figure 2.9: OpenStack Overview
Source:[36]

1. Nova: Deploys and manages virtual machines and other instances to handle computing
tasks. It represents the primary computing engine behind OpenStack.

2. Swift: Is a storage system for objects and files. It allows developers to use a unique
identifier to refer to any file or piece of information and lets OpenStack take care of the

15

rest of the process, instead of the traditional way of referring to files by their location on
a disk drive, which means that the system -not the user- is responsible for data backup
and restoration in case of any machine failure or a drop in the network connection, as
well as improving the scalability of the system since it is not the developers task to
manage the capacity on a single system behind the software.

3. Cinder: Is a block storage component, more similar to the traditional method of
allowing devices to access particular locations on a disk drive, which makes it a prefered
method in applications where the speed of reaching the data is the main requirement.

4. Neutron: Provides the networking capability for OpenStack. It guarantees fast and
efficient communication between the OpenStack components.

5. Horizon: Is the dashboard behind OpenStack that provides an application programming
interface (API) for allowing developers to access all the OpenStack components through
a graphical interface, which makes it a very helpful tool for new users who want to
discover OpenStack. It gives the system administrators the ability to mentor the cloud
and manage it as needed.

6. Keystone: Provides identity services for OpenStack. It is basically a list that includes
all the OpenStack users and all the cloud services that every user has the permission to
use. It also allows different means of access, which makes it possible for the developers
to easily map their existing user access methods against Keystone.

7. Glance: Provides image services to OpenStack. Where “images” in this context means
images (or virtual copies) of hard disks. The most important use of Glance is to use
these images as templates to install new virtual machine instances.

8. Ceilometer: Provides telemetry services, allowing to provide billing services to the
cloud users as well as counting each user’s system usage of all the OpenStack cloud
components.

9. Heat: Is the orchestration component of OpenStack, it helps to manage the infrastruc-
ture needed for a cloud service to run by allowing the developers to save all the resources
and requirements needed by an application in a file specified for that application.

2.4.3 Advantages of OpenStack

The key advantages of OpenStack are clarified as follows [37]:

1. Scaling is easier than ever: OpenStack is originally designed to handle scaling, the
feature that becomes a fundamental argument to promote cloud computing. Scaling
is a manner of modifying computing capabilities to the requirements of a specific task.
For instance, if a website has a particular time of the day with a spike in the number
of visitors while having a lower number for the rest of the day, if a user needs to run
multiple complex calculations at the same time but just for some time, or if a web-based
app is mostly used in the morning. While any of the mentioned tasks can exhaust a
traditional physical server, a cloud based service can follow up the changing situation
and support the virtual servers with sufficient resources to run any number of instances.
A deployer might need providing at any time the ability of adding and deleting any of

16

these instances which have a positive effect on the ease of the admins’ work. Adapting
to the temporary absence or losing some parts of infrastructure is another main base
design aspect of OpenStack which adds another point to its reliability and trust.

2. Rule the cloud through automatization: OpenStack equip admins with a set of
very powerful tools for managing and maintaining the cloud, among which is the ability
of using its user friendly API to completely control the entire cloud and automize many
of the admin’s usual tasks like creating a program to switch on or off another virtual
machine which reflects on the simplicity and cost of implementing OpenStack.

3. Open platform allows fast development: One of the largest advantages OpenStack
has is the fact that it’s an open platform. Because the source code is publicly available,
the development of the platform has seen experts from all around the world pitching in.
This also means that OpenStack is not a child of a specific company that could use it as
a license to print money because of the lack of competition. Even though the behemoths
of IT industry like Intel, IBM or Dell are taking part in developing OpenStack, any
company or a start-up can bring out its own products based on the platform. It’s a
similar system to Linux. There are many different “distributions” of the operation
system, each with its own features, even though they mostly share the same core.

4. Advantage for businesses: Ready-made OpenStack: Even if running OpenStack
on any kind of hardware is reachable and doable for everyone, but it still needs some

Figure 2.10: Most companies using OpenStack work in the IT industry. However, the open platform
is used in most other industries as well, even in the movie industry, insurance or
manufacturing.

Source:[38]

skills and experience which is only possessed by a few number of experts who don’t
have any control on the prices they charge for their services, the thing that can be
avoided by buying or renting a ready-to-go OpenStack cloud that includes all the
implementation complicated processes done by experts qualified by the service provider.
This solution can be very beneficial for small companies since they can have their efforts
directed into running their work and just relatively easily manage the cloud and then
deploy it themselves when they get more experience rather than putting their time and
money into building, configuring and completing the platform.

17

2.5 Network Function Virtualization (NFV)

This chapter gives a summary about NFV technology and its architecture, in addition to
a brief comparison between the NFV and the SDN.

2.5.1 What is Network Function Virtualization NFV?

In [39] The term NFV was originally proposed by over twenty of the world’s largest
Telecommunications Operatorss (TOs) such as American Telephone and Telegraph (AT & T),
British Telecom (BT) and Deutsche Telekom (DT). According to The European Telecom-
munications Standards Institute (ETSI), the idea of NFV is recognized as a network archi-
tecture which transforms the way of building and operating networks by leveraging stan-
dard Information Technology (IT) virtualization technologies and consolidating proprietary
hardware based network functions into standard commercial devices (e.g., x86 architecture
machines) [40].
As mentioned before the main idea of SDN is to decouple control plane from forwarding plane
to provide centralized network management. NFV is considered as a complementary approach
to SDN, which focuses on enhancing network services by decoupling network functions from
closed proprietary devices providing the ability to run the software as services for networks.

• NFV Main terminologies:
1. Physical Network Function (PNF): Refers to hardware box built to provides

specialized networking function.
2. Network Function Virtualization Infrastructure (NFVI): The hardware

and software combined together as a platform environment to deploy, manage
and execute virtualized Network Functionss (VNFs). NFVI could be located in
multiple geographic areas.

3. Element Management System (EMS): Consists of many Element Managers
(EMs), these EMs responsible for the functional management of VNFs instances in
terms of instantiation, execution and deployment during their life cycles.

4. Management and Orchestration (MANO): NFV changed the way of net-
work management, MANO represents architectural framework for manage and
orchestrate VNFs. MANO containing three entities, they are:
– virtualized Infrastructure Manager (VIM).
– VNF Manager (VNFM) and NFV Orchestrator (NFVO).
– these entities responsible for NFVI management.
– resource allocation, function virtualization, etc.

5. VNF: It is the virtualized network element that provides network functions taken
out of dedicated hardware devices into a software runs on a hardware as PNF does.

6. Network Point of Presence (N-PoP): N-PoPs mentions to the location where
PNF and VNF were implemented. by using N-PoPs VNF can access the identically
resources such as memory and storage.

18

2.5.2 The need for NFV

The first generations of networks environment were depending on middle-boxes which
considered as devices owned by a certain vendor that has its own configuration needs and
may differ from one vendor to another, these middle-boxes are used to manage and control
traditional networks services (e.g. transforms, filters, inspects, or controls network traffic).
Before using these appliances, these devices should be integrated into the network infrastructure
through a complicated manually configuration process by the work of technically trained person
and consumes lots of time [41]. Example of middle-boxes: Network Address Translation (NAT)
(modify packet source and destination addresses), firewall (firewalls that filter unwanted
or malicious traffic), Wide Area Network (WAN) optimizer, proxy, Flow Monitor (FM)
(Monitoring, capturing, logging, Intrusion Detection System (IDS) and Intrusion Prevention
System (IPS) (Monitoring, logging, reporting or blocking)), Deep Packet Inspection (DPI)
(Packet classification and content inspection, etc.). The major diversity and increasing
requirements in network services have led to increase the number of emergence middle-box as
solutions for a specific purposes.
Middle-boxes are closed and proprietary by vendors. In a case of failure, middle-boxes need to
diagnose the issue and execute maintenance to solve the problem. Launching new Middle-boxes
for a new network service faces a set of troubles that be summarized in:

• New middle-boxes could be incompatible with old protocols that were designed without
taking into account the ability of creating new middle-boxes.

• In a case of new middle-boxes may be the reconfiguration process or patch procedures
are inevitable.

• Network operators have to pay for the purchase of new middle-boxes and the usual
maintenance of old middle-boxes, which increase both the Capital Expenditure (CAPEX)
and Operating Expense (OPEX).

• Integration process between the old and the new middle-boxes need long time and high
cost for the technician.

• Middle-boxes are fixed to a certain place in the network, immovable and not shared
easily.

With increasing demand on network services, the need for new middle-boxes is raising which
making the networks more and more rigid and inflexible. All details listed earlier in addition
many other reasons formed the motivation to start NFV to get rid of difficulties faces providing
network services.

These elements are discussed in more detail in section 2.5.3.

2.5.3 NFV Architecture

The NFV Architecture is composed by several different layers [41], as described next:
1. Network Function Virtualization infrastructure layer NFVI: Matches the data

plane functionality that forwards data and provides resources for running network services.
NFVI achieves the main objective of NFV by providing essential services. NFVI deploys
network appliances located in different areas that provide service requirements such as

19

Figure 2.11: NFV Architecture
Source:[41]

latency and locality and reduce network expenditure CAPEX and OPEX. In addition,
NFVI allows VNF deployment and execution by providing a virtualization environment.
The architecture of NFVI is divided into three separated layers as shown in figure 2.11.
The layers are: physical infrastructure, virtualization layer and virtual infrastructure
which are introduced respectively:

a) Physical infrastructure layer: Consists of servers providing compute and storage
capacities. These servers are able to communicate with other network elements by
using internal interfaces. According to this environment the physical infrastructure
layer can also be divided into three kinds as follows: compute hardware, storage
hardware and network hardware.

b) Virtualization layer: This layer is located between the physical infrastructure and
the virtual infrastructure. The virtualization layer forms an isolated environment
by using a hypervisor to separate the physical resources (e.g., VMs). Hypervisors
in SDN are located between the Data plane and the Control plane, while in NFV
the hypervisor is located between the physical infrastructure and the virtual infras-
tructure. This difference indicates that the NFV hypervisor should be focused on
the physical resources and Network Function Virtualization. The NFV hypervisor
could be considered as a proxy between the Data plane and the Control plane that
allows the controllers to manage and control the underlying forwarding appliances
in easy way. Examples of hypervisors: KVM[42], Microsoft Hyper-V[43], VMware
ESXi[44] and Citrix Xen[45].

c) Virtual infrastructure layer: It is located on top of the virtualization layer. This
layer provides virtualization environment in NFV by three different types of virtual
resources, and these virtual resources are: virtual compute, virtual storage and
virtual networking.

2. NFV management and orchestration layer: In figure 2.11 at the right side there

20

is the architecture of NFV MANO that presented by ETSI as three elements: the
Virtualization Infrastructure Manager VIM, the VNF Manager (VNFM) and the NFV
Orchestrator NFVO. The main responsibility of NFV MANO is to manage the whole
virtualized context that contains the virtualization mechanism, hardware resource
orchestration, life cycle management of VNF instances, interface management between
modules in the framework of NFV. The direct function of the NFVO is to orchestrate
the NFVI resources and manage the life cycle of VNFs. NFVO defines the way to
orchestrate and combine many VNFs to provide the network services. The relationship
from VNFM to manage VNFs instances could be described like one to many in the point
of view of the VNFM side, and one to one in the point of view of the VNFs instance
side. VNFMs have the ability to host any type of VNFs besides managing tasks such as
instantiation, updating, searching, extension and termination.
The function of VIM is to manage and control the resources of NFVI (compute, network
and storage). In addition VIM has the ability to address with one specific kind of NFVI
resource (compute-only, network-only, or storage only) (by exposing the interfaces to
the corresponding resource controllers.) A perfect example about specialized VIM is
the manager of WAN infrastructure that structures the connection through diverse
endpoints in the network.

3. Virtual Network Function Layer: The VNF layer is considered as a fundamental
part in the NFV structure. NFV main work is to extract the underlying PNFs, then
implement them as a software (i.e., VNF). VNFs have the ability to provide network
functionalities that were originally provided by proprietary network devices, and these
network functionalities are expected to be executed on the commercial off-the-shelf
(COTS) hardware. The structure of the VNF layer, may consist of many isolated VNF
instances located on the top of 2.11, and each VNF combines multiple VNF Components
(VNFCs) which are managed by the corresponding EMs. EMS is formed by many
EMs grouped in the same domain. EMS responsibility is to manage several VNFs,
and considers as a kind of VNF not as a part of MANO. Not only EMS is responsible
for VNFs but also VNFM in terms of instantiation, updating, querying, scaling and
termination. EMS has to cooperate and exchange the information concerning to VNF
with VNFM to perform management functions in a better way. Essentially, PNFs located
within the network infrastructure, such as border gateway, firewall and dynamic host
configuration protocol, need perfectly defined external interfaces and the corresponding
models of behaviors. Network functions are provided by PNFs in the physical network,
likewise; VNFs apply the same functions in virtual network environment. In this domain,
a service chain could be formed by linking multiple VNFs located in various positions
in the network. According to the practical needs by enterprises, the VNF locations
could be selected dynamically. To implement VNFs there are two kinds of environments,
which are:

• VM environment: Offered by virtualization technologies such as VMware, KVM,
XEN, HyperV. VM provides the ability to have many isolated duplicated environ-

21

Figure 2.12: Virtualization environment alterations for VNFs
Source:[41]

ments of a real computer machine for running VNFs.
• Container environment: Offered by Docker, for example. Containers just include

the necessary elements for running VNFs.
Besides VM and container, there are many other technologies for VNF implementation,
which are compared in figure 2.12.

2.5.4 SDN Vs. NFV

SDN and NFV are used for network abstraction, which could be considerd as the essential
similarity between both of them. Each one has different purposes, where SDN aims to make
network control functions isolated from network forwarding functions, while NFV aims to
make the hardware devices which run on it totally free from the network forwarding and
other networking functions. Consequently, the virtualization is an important dependence, to
give the network design and infrastructure the possibility to be abstracted in software, then
by using the defined software across hardware platforms and devices for being implemented.
SDN is able to forward data packets from one network device to another, in case of running
the SDN on an NFV infrastructure. Simultaneously, SDN’s networking control functions
for routing, policy definition and applications are implemented in a virtual machine in an
unspecified place on the network. Therefore, the basic network functions are provided by
NFV, while SDN controls and orchestrates them for certain purposes. SDN also allows
configuration and behavior to be defined and modified programmatically.

However, the method of separation between functions and abstract resources for SDN and
NFV is different. SDN seeks to abstract the physical networking resources such as switches,
routers and so on, thus the process of decision making is moved to a virtual network control
plane. Therfore the control plane has the ability to determine where it will be able to send
traffic, in this case the hardware will continue in orienting and handling the traffic. While
NFV with a hypervisor seeks to virtualize all physical network resources. This gives the
network the permission to grow without adding any extra devices. SDN and NFV are both
able to make the networking architectures more flexible and dynamic, although they have
different functions in terms of determining those architectures and the infrastructure they
support.

22

2.6 Video Streaming Technologies
As streaming media increased after the widespread of the Internet, many streaming protocols
have been mainly developed to simplify the transfer of multimedia content to end user. The
word streaming itself means in the domain of computer science: "the ability to send and receive
media data (usually audio and video) and start processing this data by the end user before the
download completes". There are many protocols for video stream like Real-Time Streaming
Protocol (RTSP), Real-Time Transport Protocol (RTP), RTMP (Adobe) and H.264-Advanced
Video Coding (AVC).

2.6.1 H.264

Also known as Advanced Video Coding (AVC), consists of two layers: Video Coding
Layer (VCL) and Network Abstractin Layer (NAL). The first layer is used to produce the
coded representation of the source content, in addition to provide flexibility and adaptability
to video transmission. The second layer is used to shape the VCL data and to supply header
information on how to use the data for network video delivery. The work idea of H.264 is to
divide each image into smaller coding units called macroblocks in VCL (these macroblocks
are independently parsable slices). Also these slices are divided into three groups for flexible
partitioning of a image. The NAL units are video data encoded and by adding a one-byte
header that defines the type of data included in the NAL unit. In each transport packet one
or more NAL units can be encapsulated.
Each encoded video sequense of NAL unit bit stream is decoded independentently and
starts with an Instantaneous Decoding Refresh (IDR) access unit. The IDR access unit and
subsequent access units are able to be decoded without decoding any previous images of the
bit stream. The payload of NAL is transmitted with different priority.

2.6.2 High Efficiency Video Coding (H.265)

High Efficiency Video Coding (HEVC) is a standard used to decrease the bandwidth
requirements for video services by increasing compression efficiency 50% comparing with AVC
standard and keeps the same level of perceptual visual quality. H.265 is similar to H.264-AVC
and consists of the same two layers: VCL and NAL. The main difference between the two
standards is the way of encoding in VCL layer. In H.264/AVC, each image is divided into
macroblocks (16x16 luma samples) in the first stage and then smaller blocks in the second
stage(16x8, 8x16, 8x8, 8x4, 4x8 and 4x4), while in H.265/HEVC the image is divided into
Coding Units (CU) treeblocks with luma samples up to 64x64. The highest level of the
treeblock structure is called Largest Coding Unit (LCU). Three block structures can be
recursively split into smaller CUs through a quad-tree segmentation structure – CUs can vary
from squared 8x8 to 64x64 luma samples. Using intra-prediction and transforms can be used
to achive higher compression gain by appling larger CUs on homogeneity regions within an
image with little or no motion between two adjacent images.

23

2.6.3 Real-Time Transport Protocol

RTP Protocol is a network protocol for delivering audio and video over IP networks.
It specifies the structure to send audio and video and typically runs over User Datagram
Protocol (UDP). RTP is used with RTP Control Protocol (RTCP). The responsibility of
RTP is to carry the media streams (video and audio) and RTCP is responsible for monitoring
the transmission statistics and QoS that empowers the ability of synchronization of multiple
streams. RTP extends UDP adding more functionalities and behavior like TCP. RTP doesn’t
provide QoS, it only notifies about the changes in the terminals and the adjustments to achive
better QoS. If Quality of Service is important, other protocols should be collaborated to do
what is necessary.

2.6.4 Real-Time Streaming Protocol

RTSP is an application level protocol used to initiate and control the streams of continuous
media [46]. RTSP leans on Transmission Control Protocol (TCP) for reliable delivery. Both
RTSP and TCP have very similar functions and syntax to Hypertext Transfer Protocol
(HTTP) and is used by the client application to communicate with the server information
aspects such as, the media file being requested, the type of application used by client, the
mechanism of delivery UDP or TCP, control information commands such as DESCRIBE,
SETUP and PLAY and allows to create a side channel to make user-control operations: play,
stop and pause. RTSP is a stateful protocol and a session is maintained from the server by
using an identifier. RTSP is composed from two protocols: RTP and RTCP which working
together to deliver the content to the end user. RTP is used for transport multimedia in
real-time. If a medium suffers from high packet loss RTP can use TCP, but if the goal is to
solve the delay of a sensitive delivery RTP can use UDP. The flows of RTP are unidirectional
from the server to the client and the source port used by the server is always even. RTCP
considers a complementary protocol to RTP. RTCP is a bidirectional UDP-based mechanism
that allows the client to deliver information about the stream quality to the server. RTCP
uses the next UDP source port above the one used by the RTP stream to communication,
and the port is always odd.

2.6.5 Real-Time Messaging Protocol

RTMP is an application-level protocol developed by Macromedia (owned by Adobe).
RTMP has designed over TCP for multiplexing and packetizing multimedia transport streams.
The main goal of RTMP is to avoid the latency in communication and deliver audio or video
streams smoothly, by splitting them in fragments[47]. In RTMP when the connection is
established with the server and during the exchange of data (video, audio streams and data
messages) with associated time, information is sent through it using the TCP port number
1935 as shown in figure 2.13.

According to [49], RTMP becomes available to community since 2009, moreover RTMP
has also multiple variations, like, "plain" RTMP protocol (without any security), RTMPS
(RTMP over Secure Sockets Layer (SSL)/Transport Layer Security (TLS)), RTMPE (RTMP

24

Figure 2.13: Using RTMP in communication
Source:[48]

encrypted using Adobe’s own security mechanism) and RTMPT (encapsulated within HTTP
requests to traverse firewalls). There are platforms using RTMP, such as Facebook1 and
YouTube2.

2.6.6 Real-Time Media Flow Protocol

Another communication protocol from Adobe is RTMFP which is used for multimedia
delivery in peer-to-peer model by using client-server (RTMP). In RTMP the clients extchange
data through the server, but in RTMFP the server maintains the identification for the clients
over UDP and then the clients connect directly to extchange data using UDP protocol as
depicted in figure 2.14. RTMFP uses less bandwidth and uses UDP protocol instead of TCP
protocol comparing to RTMP, which provides more efficiency with lower latency and greater
tolerance for packets that are missed or dropped.

Figure 2.14: Using RTMFP in communication
Source:[48]

2.6.7 Adaptive Bitrate Streaming

Adaptive Bitrate Streaming (ABR) is a adaptive streaming technology designed to transfer
video with highest quality to the end user according to the used device screen properties [50].
The video file for ABR consists of a single video file to be streamed over the Internet.
ABR progressive streaming faces problems represented in:

1https://www.facebook.com
2https://www.youtube.com

25

https://www.facebook.com
https://www.youtube.com

• quality problems: if the image will be stretched there is a possibility that the pixels are
shown when the screen resolution is higher than the video resolution.

• Buffering problem: in case the Internet bandwidth is low the user may need to pause
the video to accomulate more data from the video stream.

These two problems may cause poor quality of service to the end users. To solve the above
problems, ABR progressive streaming encoded the source video into separated file segments
identified as "fragments" or "chunks". In each segment there is video data, audio data or
other data (e.g. 3 seconds from video) then this segment hosted on an HTTP server, which
serves all clients and the clients downloaded segments as a series of progressive downloads. As
mentioned in[51], the sequence of segments is called a profile and the same video content could
be linked to different profiles which vary from each other by resolution, bit rate and codecs.
The profiles are stored in the manifest file and help to solve resolution problems and buffering
problems that are detected in the progressive streaming. In ABR, when the connection is
poor the video stream will turn into smaller video files size to keep the video playing, and the
video quality will vary depending on the connection to network. According to [50], when the
user changes his location, the device will keep playing the video at a medium quality with no
buffering. There are many examples of ABR-based solutions:

• Dynamic Adaptive Streaming over HTTP (DASH) is an ABR implementation designed
by the MPEG group.

• HTTP Live Streaming (HLS) implemented by Apple Inc., for iOS-based devices, such
as iPhone, iPad and Apple TV.

• Microsoft Smooth Streaming (MSS) is a hybrid media delivery method and the imple-
mentation designed by Microsoft.

2.6.8 Session Traversal Utilities for NAT

According to Internet Engineering Task Force (IETF) as mentioned in (RFC-5389)[52]
STUN is: "a protocol that serves as a tool for other protocols in dealing with Network Address
Translator NAT traversal." STUN has the ability to work with the existence of many NATs,
and there is no need for any special behaviour required from NATs side. STUN is not a NAT
traversal solution, neither is considered as a complete solution, as presented in (RFC 3489)[53].
Alternatively, STUN is a tool used in the context of a NAT traversal solution. With STUN,
the endpoint could use it to determine the IP address and port assigned to it by a NAT that
matches to the endpoint private IP address and port. STUN could be used not only to check
connectivity between two endpoints but also to maintain NAT bindings by checking keep-alive
protocols.

2.6.8.1 STUN transactions

There are two transactions supported by STUN, which are:
• Request/Response transaction: In this transaction, a request is sent by the client to the

server, and the server replies with a response.
• Indication transaction: In which the client or server are able to send an indication that

does not generate response.

26

A transaction ID which is a number from 96-bit randomly selected, is included in both types
of transaction. The transaction ID in request/ response transactions allows the client to assign
the response with the request that generates the response; while the transaction ID in the
indication transaction serves as a debugging aid.

2.6.8.2 Binding method in STUN transactions

This method could be used not only in request/ response transactions but also in indication
transactions. In the request/ response transactions case the binding method could be used to
locate the certain "binding" for the STUN client, that has allocated by a NAT. The Binding
method could be used also to keep the "bindings" alive for either request/response or in
indication transactions.

2.6.8.3 STUN Messages exchange overview

In Binding request/response transaction case, the following exchange occurs:
• The STUN client sends a Binding request to a STUN server.
• The Binding request may have passed through one or more NATs to arrive from STUN
client to STUN server, as depicted in 2.15

• When the Binding request message is sent through a NAT, the NAT is going to modify
the source transport address which is the packet (source IP address and the source port
).

• The server will receive the source transport address of the request that contains the
public IP address and port created by the NAT closest to the server. This process is
called a reflexive transport address.

• The STUN server will apply an XOR-MAPPED-ADDRESS in that received source
transport address and set the result in the STUN Binding response, then sends the
Binding response back to the STUN client.

• When the packet on the way back to the STUN client; the NAT will modify the
destination transport address in the IP header, on the contrary of that; the transport
address in the XOR-MAPPED-ADDRESS attribute inside the body of the STUN
response will remain untouched.

27

Figure 2.15: One Possible STUN Configuration
Source:[52]

This is the way that the client will learn its reflexive transport address given by the
external NAT with respect to the STUN server.

2.6.8.4 STUN Message Structure:

All STUN messages MUST start with a 20-byte header followed by zero or more Attributes.
The STUN header includes a STUN message type besides a magic cookie, transaction ID,
and message length. In each STUN message the most significant 2 bits MUST be zeroes, so
the STUN packets are differentiated from other protocols in case that STUN is multiplexed
with other protocols in the same port.
In a STUN message there are the message class (request, success, response, failure response,
or indication) and the message method (the primary function) which are defined by the
message type. Even so, a STUN message has four message classes, and there are only two
types of transactions in STUN, and they are: request/response transactions (which includes
request message and a response message) and indication transactions (which consist of a single
indication message). The Response classes are divided into error and success responses.

2.6.9 Web Real-Time Communication

According to [54]: "Web Real-Time Communication (WebRTC) is a free, open source
standard, open project that provides browsers and mobile applications with Real-Time
Communications (RTC) capabilities via simple APIs. The WebRTC components have been
optimized to best serve this purpose". The model of WebRTC allows two end users to run
application from a Web server. Also a peer connection configures the media path where the
flows are exchanged without any interfere from the server between the peers, and grants
the two end users to reach each other directly, as shown in figure 2.16. To achive the peer
connection, WebRTC uses Interactive Connectivity Establishment (ICE) protocol along side
with STUN server to find out the port number and the mapped IP address that NAT assigned
to the UDP connections. In case that the calling party is unable to initiate the connection
to the other peer because the firewall or other box blocks the connection [56], the solution

28

Figure 2.16: Media exchange using STUN
Source:[55]

will be using TURN server like in figure 2.17 which relays the voice packets between the
two peers. As mentioned in [57], ICE allows browsers and mobile applications to find out

Figure 2.17: Media exchange using TURN
Source:[55]

information about the topology of the network to find the best communication route and
prevent untrusted applications or web pages from sending data to the end users. By using the
WebRTC framework there will be no need to download or install proprietary applications and
plugins in the client browser and lower bandwidth will be required. As a result, there will be
less latency and high quality of audio and video. The most relevant users of WebRTC and
STUN are Google Hangouts3 and Facebook Messenger4.

3https://hangouts.google.com
4https://www.facebook.com

29

https://hangouts.google.com
https://www.facebook.com

2.7 Quality of Service

QoS is defined as the ability of a network to guarantee better service to particular packet
loss or delay sensitive frames of data, in order to prioritize them while maintaining the other
flows of traffic normally running. This process is done by managing the network to distribute
the bandwidth over the flows according to the importance and requirements of each flow,
which needs configuring QoS components in the data infrastructure, [58]:

• Classification and marking: Packets identification based on IP addresses or network
interfaces by setting up parameters in the packet headers in order to group them.

• Congestion management: Using queuing methods to control congestion by prioritizing
traffic based on their classification and characteristics.

• Congestion avoidance: Preparing the network for the full queues situation by applying
different techniques of dropping data such as Tail Drop or Random Early Detection
(RED).

• Policing and shaping: Limits the traffic flow. Policing drops traffic that exceeds the
network boundaries. Shaping is delaying or queuing the traffic in order to regulate it.

• Link efficiency: Aims to reduce delay on slow connections by fragmenting and interleaving
large data packets.

2.7.1 QoS in video streaming

Video quality and delay are the main requirements for video streaming applications, which
implies minimal needs to achieve such as a maximum video packets loss percentage of 5% [59],
and a minimized latency. With the above mentioned video streaming QoS requirements, it is
very important to differentiate between types of services and their requirements such as voice,
video and special data applications [59].

2.7.2 Qos in Software Defined Networks

According to [60] SDN first started to solve some limitations of traditional network
architectures, some of these limitations are related to QoS:

• QoS-motivated routing allows using different routing algorithms, which means generating
various forwarding tables for different types of flows and the possibility of applying
dynamic routing because of the decoupling of forwarding and control functions.

• Network operators can deploy resource reservation, queue management and packet
scheduling to achieve a more powerful and easier to use automated QoS management
comparing to the traditional network architecture.

• By providing the ability of monitoring a set of metrics per packet, per port, per table;
SDN helps detecting problems in real time and even predicting future network events.

• SDN allows multiple ways to provide the required QoS, such as via QoS policy manage-
ment and content delivery mechanisms based on its characteristics, for example, per-flow
control concept.

30

2.7.3 Differentiated Services (DiffServ)

Differentiated Services (DiffServ) was proposed in 1998 to permit different Internet flows
to receive a particular QoS treatment [61], and to overcome the obstacles of more fine-grained
architectures by treating the traffic with similar QoS requirements properly. Along 20 years,
DiffServ has been merged with all major network technologies, implemented in access and
core networks and all main operating systems. However, its current use is mostly bounded to
network operator domains.
DiffServ can easily be used in a DiffServ domain, but also can be used across multiple domains
along an Internet path. Recently, the argument about the correlation between DiffServ
domains was regenerated at the Internet Engineering Task Force IETF with the publication
of Geib and Black [62]. It explains the importance of maintaining Differentiated Services
Code Point (DSCP) markings across correlated domains and suggests some interconnection
classes on MPLS (Multi-protocol Label Switching) networks to support inter-operation.
One of the main required conditions for end-to-end QoS across the Internet is maintaining
coherent DSCP markings . DiffServ Per Hop Behaviours (PHBs) enhance the robustness of
the service in over-provisioned core networks (e.g., to mitigate the impact of DDoS traffic)[63].
We can observe some reasons that cause loss of class marking in some edges and datacenter
networks, where some of them reset the DSCP value of every packet when entering their range.
those reasons precludes use of appropriate PHBs further along the path.
There is a debate that inconsistent modification affects the proper functioning of DiffServ
and jeopardises the ability to provide new traffic classes. A recent IETF work is specifying a
DSCP value for the Lower Effort (LE) service [64], it needs an accurate study to decrease the
effect of remarking pathologies.

2.7.4 Differentiated Services Code Point DSCP

DSCP is a header value that can be used to set the traffic delivery type (ex. High priority
or best effort). It allows a continuous QoS treatment for all inbound and outbound traffic as
it flows through the network.
Different levels of service requires different types of DSCP markings:

• DSCP marked traffic allows the intermediate network devices -between the firewall and
the client- to enforce priority rather than just shaping the traffic as it passes the firewall
in a normal QoS configuration.

• Expedited Forwarding (EF): Guarantees highest priority packets delivery by requesting
low loss, low latency and guaranteed bandwidth for traffic that has EF codepoint value.

• Assured Forwarding (AF): AF codepoint packets has lower priority than EF codepoint
packets, but still receive higher priority treatment than best effort service provides.

• Class Selector (CS): Can be used to provide backward compatibility with network
devices that use the IP precedence field to mark priority traffic.

• IP Precedence (Type of Service (ToS)): Can be used by legacy network devices to mark
priority traffic (the IP Precedence header field was used to indicate the priority for a
packet before the introduction of the DSCP classification).

31

• Custom Codepoint: Creates a custom codepoint to match to traffic by entering a
Codepoint Name and Binary Value.

2.7.5 DSCP Background

In the beginning, classification of Internet traffic was supported by the 8-bit ToS field in the
IPv4 header. The field contained two sub-fields: the three most important bits assigned the
packet to one of eight priority classes, the five less priority bits specified traffic characteristics.
But then the ToS field started to carry a DSCP [61] in the top 6 bits and the Explicit
Congestion Notification (ECN) [65] field in the bottom 2 bits.
The 6 bit DSCP field provides 64 codepoints. They are devided into 3 groups by the Internet
Assigned Number Authority (IANA). The 32 codepoints with a zero least significant bit (even
codepoints) defines standard DiffServ classes. The 16 codepoints with the two least significant
bits “11” are available for private use. The remaining 16 codepoints are currently reserved.
The codepoints are named according to the PHB or redirecting treatment correlated with
them. Compatibility with previous ToS specifications has been maintained by assigning 8
codepoints (CS0-7) to the old ToS priority classes.
The Network that performs DiffServ treats EF better compared to AF or BE traffic, i.e. PHBs
are ordered. This arrangement represents a potential obstacle to inter-domain use if the DSCP
modification reassigned the EF DSF to DSCP for a lower class, as leaving other DSCP values
without any change. This would cause the suffering of priority inversion to the EF traffic (a
broken behaviour where a higher priority is remarked to a lower priority, while other priorities
not remarked.) To avoid this problem DSCP remapping needs to be redesigned in a proper
way.
An old analysis of ToS [66] estimated the distribution of codepoints in the Internet, taking
in consideration the rare use of non-default traffic classes. A study [67] of 14,373 routers
using Tracebox [68] reported a per-hop modification ratio of the DiffServ field of 5.75%. The
point was to determine the quantity of middlebox interference, Consequently, the details of
these modifications were not investigated. Results of per-hop DSCP modification ratio [69]
showed an in-flight modification ratio of 2.9% for the ToS byte from analysing quotations
resulting from ICMP probes to 84,393 web servers via tcptraceroute. A smaller study using
Fling [70] in specific wireless access networks found high disruption to DSCP value, packet
drops, problems in the connectivity and DSCP modification dependent upon the DSCP. These
studies didn’t give statistics on the affected DSCP/ToS domains and did not attempt to
classify observational pathologies. Another studies of ECN [71] [72]support took a part in
distinguishing the routers that continue to use ToS semantics. A study using PATHspider [73]
reported 2.1% of IPv4 and 18.1% of IPv6 sampled hosts negotiated ECN, but never generated
an ECN-marked packet. Proposing a possible bleaching of the ECN codepoint. Later this
was confirmed by a study for UDP traffic [74].
There are several ways that the operator can use DSCP in packets that are redirected across
its domain:

• An operator could allocate all the traffic to one PHB, regardless of the DSCP.

32

• An operator could reassign the DSCP without changing and assign the traffic to a group
of PHBs.

• An operator can perform a policy that redirect certain DSCP values to another DSCP
value, then assign that traffic to the corresponding PHB within their network.

2.7.6 DSCP Distortion

As stated in 2.7.5, there are types of actions causing distortion for the value of DSCP field,
and these actions described below:

1. DSCP bleaching: This acation causes to resets the DSCP field to zero. This case returns
all flows to the default traffic class.

2. ToS bleaching: This action resets the upper 3 bits of the DSCP field (the former ToS
precedence field) to zero, and keep the other bits unchanged. This behavior is specific
for non-DiffServ sentient routers.

3. ToS bleaching except CS6/CS7: This action is a varied of ToS bleaching, where the
ToS high priority field is reset only in case the ToS is not 110 or 111. These markings
matches to the CS6 (Network Control) and CS7 (Internetwork Control) codepoints,
where CS6 and CS7 used for critical Internet traffic. This is also specific for non-DiffServ
sentient routers.

4. DSCP remarking and multiple remarking: This action resets the DSCP field to a specific
codepoint or to a pool of few codepoints. This may be a result of DiffServ traffic
conditioning.

2.7.7 Recommendations for DSCP usage in WebRTC

IETF [75] recommends using DSCP values to support the work of WebRTC for Internet
in general. As mention in section WebRTC, typically WebRTC is used as a peer-to-peer
application, and therefore would benefit from edge-to-edge support for DSCP markings. The
recommendations from IETF are:

• use the default class (DSCP 0) for low priority.
• use the EF class for voice.
• use a set of AF class markings for video traffic.
• use of CS1 for traffic with a “very low” application priority.

2.8 Related Works

In the same domain of detecting video streams using SDN-based applications there has
been a many study done previously, I choose three of them:

In the first study [76], the detection of video stream process uses an application based
on machine learning in addition to database. The whole study was designed in a traditional
infrastructure. The main work of the machine learning application is to monitor (packets and
ports) in the network, and analyze the behaviours of flows that pass through the network.
After that stage, the monitoring application finds out if the flows are a video streams or not. If
there is a video, the monitoring application will notify the system that there is a video stream,

33

so the system sends a decision to handle this flow and provide new roles to achieve better
QoS for this flow. In addition, the monitoring application will save the network behaviour in
the database to be used other times to match similar behaviours in the network.
Furthermore; in addition to the network behaviours stored in database, the database also
includes a table of ports used by multimedia streaming protocols. These protocols are always
using the same ports to transport audio and video packets. Moreover, the database also
contains a table for keywords used in video streaming such as (video, stream, and livestream).
The tables stored in the database are used by the monitor application to find out if there is a
video stream in the network. In the study mentioned before, five mechanisms were used to
detect video streams, namely:

1. Whitelists: Whitelists contain actions for flows that were defined previously by the
monitoring application as video stream, which allow the monitoring system to respond
immediately to the existence of a video stream.

2. Blacklists: Contains actions for flows that were defined previously by the system in
the database as non-video streams, which allow the monitoring system to ignore these
flows and keep them in the normal process.

3. Network Port Analysis: As mentioned before, some multimedia streaming protocols
used fixed ports for transport audio and video packets. The monitoring application
matches the ports number with the ports listed in data base, and if a match happens
the monitoring application notifies the system that there is a video flow.

4. Hostname Analysis: For this case, there is a list for key words in the database and
also there is need to do a reverse IP lookup. This process returns the attribute of
hostname, then the system sends a positive or negative response.

5. Periodicity Analysis: The last case used for detecting video depends on analyzing
the frequency of packets arrival in the flow. This frequency arrivals generates patterns
according to the time intervals between arriving packets witch allows to periodicity
analysis and calculate periodogram then make a match with the behaviours saved before
in the database to serve that flow with new policy or not. After detecting video by the
monitoring application, the next step is to help the process of QoS management during
a live stream, optimizing it.

The mentioned study focuses on video detection in the network by using an application that
monitors packets to provide better service. Similarly, this thesis aims to detect video streams
in the network by monitoring packets and ports in the network at realtime. Alternatively of
implementing the solution in traditional infrastructure environment like the previous study,
the implementation of the solution in this thesis was designed in OpenStack environment with
SDN switches to clarify the importance of cloud computing with virtualization, moreover to
prove the objective of the work. The network monitoring application uses separated Python
scripts working together in parallel, while in the mentioned study did not determine the used
programing language to develop the monitoring application. The techniques used in this
thesis for monitoring process differ from the mechanisms mentioned in the previous study in
these points:

34

1. White/Black lists: In this thesis there is no mechanism to have Whitelists or Blacklists
according to behaviours happened before in the network, because there is no machine-
learning application with database. The monitoring process is realtime and depends on
an application that processes sniffed packets from the network and applies the filtering
categories on different arguments such as DSCP type of service value to find out if the
flows are video stream or not.

2. Network Port Analysis: Network Port Analysis is used to filter video streams using
RTSP protocol with TCP port. Furthermore this mechanism allows the monitoring
application to catch the video stream for Facebook messenger live video chat and
Facebook live video broadcast, both of them use (STUN) fixed ports to initialize the
video stream.

3. Hostname Analysis: This mechanism did not prove the required objective in this
thesis. Distinguishing key words in realtime from URLs exchanged through HTTPS
protocol is not applicable, and apply the reverse Domain Name System (DNS) IP
lookup just shows the main domain names for websites without details about the used
application. A really important example about host name analyze is Youtube, where
applying reverse DNS lookup IP for any of Google applications such as (Youtube, Gmail
or Google photos) will return the same domain name. For example applying rDNS on
Youtube or Google photos links will return respectively (lax17s14-in-f14.1e100.net) and
(lax02s23-in-f206.1e100.net) which has no evidence about the name of the requested
website if it is Youtube or not, which is according to Google [77] is a measure used by
them to protect their servers, Applications, and customers privacy from hackers and
other types of attacks.

4. Periodicity Analysis: The Periodicity Analysis is not compatible with other mecha-
nisms because there is no Database to store previous experiences neither controller to
make the decision according to the current flows comparing with the saved flows in the
Database.

The next step after video detection is to apply new policies in the system to reallocate the
video stream into new route. This new route has higher bandwidth and higher priority, which
allow to present better service to the clients.
The integration between SDN and virtualization that was implemented on cloud platform
makes control and monitor the network more flexible and programmable which provides more
options to better services.

Where the second study [78] was done discusses programmable networks for video stream,
In this study the objective was to improve the quality of service and the experience of the user.
The mentioned study creates a testbed to prioritize the uplink and requests more bandwidth
or priority for the service from providers.
The used architecture in the above mentioned consistes of:

1. Central node responsible for control and orchestrating with other two elements.
2. SDN controler gathers statistics about the flows passes though the switches.
To achieve the described architecture above, free tools were used; namely:

35

• Mininet emulator to create the network that the user will send video stream through it.
• Doucker container which holds the controller and the monitoring application.
• OpenDayLight controller: to apply the flows and policies sent by the central node.
• Open vSwitch: SDN switch to pass packets and execute the flows provided by the

OpenDayLight controller.
• nginx video server proxy: used to generate video packets based on RTMP protocol.
The clarify the study objective, a testbed was implemented using the tools described in

above section , and two scenarios were used; one of them with WiFi and the other one with
physical interface provided by Raspberry Pi. The testbed environment was designed only
to prove the concept of this study, and in the design of the environment, there were two
routes previously defined. The first route which is the default route has bandwidth limited at
10Mbps, and used for normal traffic, and the second route has bandwidth limited at 50Mbps,
which used for video stream traffic.
The executing of the two scenarios were following these steps:

1. A mobile phone streams a video to nginx video server proxy.
2. The monitoring application detects the video packets and notifies the central core of the

system which takes a decision to prioritize that flow stream.
3. The central core sends an order to the OpenDayLight controller.
4. The receiver located in Mininet environment, starts to receive the stream video flow

from the video server proxy after a request.
The results focus on how long takes to a service to be prioritized and the number of the

lost packets. The first case uses the default route without using QoS priority, and the second
case uses the second route with using QoS priority in addition to video detection application.
The final results were as follows:

• the average time to prioritiz the the service around 4.3 ms.
• The lost packets without monitoring tool were around 68.45%.
• The lost packets with monitoring tool were around 1%.

The next paragraph will summarize the differences and similarities between the above men-
tioned study and this dissertation.

• The differences are presented as follow:
1. The study creates a testbed to prove the consept of their work by using Mininet

emulator, while in the dissertation, the environment was designed and tested on
real environment which interactive with real-time actions connected to the Internet.

2. In the one hand, the study uses controller to add new flow entries to the Open
vSwtich dissertation, In the other hand; in the dissertation there is no controller and
adding new flow entries done by the Python scripts integrated in the monitoring
application.

3. The above mentioned study there is no any clarifing about the used mechanism to
detect video. On the contrary, in the dissertation there are monitoring mechanism
such as: Network Port Analysis and analysis TCP headers were used by the
monitoring application to detect video streams.

36

4. Docker was used by in the study to optamize the poerformance and host the
controller in addition to the Mininet emulator, but Docker was not used in the
dissertation. It could be on of the steps in the future work.

5. The study case in the the study uses nginx server to generate video packets, while
in the dissertation it was used a real Internet service.

• The similarities are as follow:
1. Using open source tools as a base to implement the environment.
2. Using two different routes, one for normal traffic and the second route to provide

the prioritization for video streams.
3. using number of packets as a variable to make the final evaluation.

In the last study [79], The goal of the proposed system is to alleviate cellular network
congestion by offloading parts of video traffic to a WiFi network while improving video quality
of service for all users by efficiently and fairly sharing the limited long-term evolution (LTE)
resources. The authors have applied SDN-architecture to the wireless network environment to
enable the proposed system to promptly respond to a dynamic network states and provide a
real-time offloading policy through the programmable interface in the SDN controller. The
solution is illustrated in Figure 2.18

Figure 2.18: SDN Architecture
Source:[79]

2.9 Conclusion

All of the above is an attempt to give a brief idea of the new technologies and how to
collaborate with each other to optimize the use of available resources.The following section
shows how to take advantage of these techniques to build the solution for this dissertation.

37

CHAPTER 3
Design of the Solution Environment

This chapter describes the steps that were taken to set the virtual environment in OpenStack.
This environment separates the network traffic into normal traffic and video traffic. The video
traffic will be associated to new flows which allows to assign high priority and better conditions
for these flows.
The previous part is half of the solution, the other half of the solution is composed of scripts
written in Python code which work separately in a synchronized way to monitor the network.
The python scripts monitor the network traffic and detect the video stream. In this chapter
the section 3.2 describes the structure used in the OpenStack environment, the changes were
made in the servers and the configuration in Open vSwitch.
In section 3.3.2, a description of Python scripts, how they work and the way the video stream
is detected. Section 3.4 describes use cases in the detection process.

3.1 Solution Design

The proposed solution design is implemented in a cloud computing environment that
includes SDN components and virtual instances. The objective detecting video streams in the
network is accomplished by monitoring application uses separated Python scripts working
together in parallel to check packets and ports in the network in realtime and applies the
filtering categories on different arguments such as:

• Check DSCP value: the DSCP type of service value is used to find out if the flows are a
video stream or not.

• Check Network port number: this mechanism allows the monitoring application to
define the video stream for Facebook messenger live video chat and Facebook live video
broadcast, both of them use (STUN) fixed ports (UDP port = 40002 or 40003) with
other parameters to notify th system about the existence the video stream.

When the system detects the video streams, the system will notify the server to apply new
rules in the system to reallocate this video stream into a new route.
The advantage of the new route is separate video streames from other types of streames and

39

allotment higher bandwidth and a higher priority for this route which allows presenting better
service to the clients. The implemented system in the cloud platform based on the integration
between SDN components, virtual instances, and the monitoring application allows controlling
and monitoring the network streams in a flexible and programmable way which provides more
options to better services.

3.2 Architecture

The used architecture to implement this dissertation is divided into two part as follows:

3.2.1 OpenStack Environment Architecture

The virtual environment used in this thesis built in a OpenStack platform. It can be
considered as a virtual data center to manage traffic flows in the network. The environment
consists of four major parts which are: Core servers, Open vSwitches, Internal networks and
hosts as shown in figure 3.1.

1. Core servers:
The basic building block of this structure is the servers. There are two servers which
are used as one cooperative block to detect the video packets and initialize the tunnels
to transmit the packets through.
The first server (Server-1) represents the gateway that all hosts are connected to. The
server hosts an Open vSwitch and all data traffic passes through this Open vSwitch.
The main work of this Open vSwitch is to isolate the hosts from the external networks
which is necessary to prove the concept of thesis.
The second server (Server-2) is considered as a border-server which isolates the internal
environment components from the external environment and the connection to the
Internet must be done just through this server. Also this server contains an Open
vSwitch which plays an important role to allow the connection between the internal

Figure 3.1: Open vSwitch Overview

40

hosts and the Internet. The second server is used in network monitoring and in video
stream detection process which results in new decisions that led to inject new flow
entries in the Open vSwitches.
The two servers are connected to the same internal network but not connected directly
to each other. Two Generic Routing Encapsulation (GRE) tunnels are used to transfer
data between the servers and the same tunnels will be used to transfer the separated
video packets from other packets in the network.

2. Open vSwitch:
As shown in 3.2, there are two Open vSwitches: bridge1 located in server1 and bridge2
located in server2. Open vSwitch bridge1 has one interface and two GRE tunnels. The
main interface of server1 is grabbed and assigned to a port in bridge1. That means all
traffic coming to the server1 must be passed through this interface and then the traffic
passes from the interface to one of the GRE tunnels upon the flow entries that were
previously configured to reach server2. Server2 also has one interface and two GRE
tunnels, but the interface is connected to the external environment (Internet) and the
two GRE tunnels are connected with their counterparts in bridge1. The GRE tunnels
(GRE10 and GRE20) have the following capacities respectively: 100 mbps and 200 mbps.
Open vSwitch provides this feature to limit traffic ((QoS) Rate Limiting) to control the
performance of the entire network.
Another feature from Open vSwitch used in this thesis is related to flow entries, where
Open vSwitch allows to set the expire time for flow entry by using the parameter
(idle_timeout).

3. Internal networks:
The OpenStack environment contains three Internal networks used to isolate the inner
part (hosts) from the management part (servers) to determine the flow that the network
traffic should pass in. The three networks are:

• Inner network: the hosts inside the OpenStack environment connected to this
network besides server1 by the main interface which is connected to Open vSwitch
bridge1.

• Middle Network: this Network used to hold the two GRE tunnels. Server1 and
Server2 use Middle network to exchange the network traffic by two GRE tunnels.

• External network: used by server2 to reach the router that is connected to the
Internet.

4. Hosts:
In the OpenStack environment there are two virtual instances (hosts) used from inside
OpenStack. These hosts are unable to reach Internet unless following the determined
route. These hosts are used to prove the concept of video detection in this thesis.

The network traffic route from the hosts in the internal environment to the Internet and
vice versa works as follows:

• The host requests a web page or a service.
• When the request reaches bridge1 Open vSwitch from the main interface.

41

• The request is passed to bridge2 Open vSwitch in server2 by using one or two GRE
tunnels.

• In server2 the request passes from bridge2 virtual port to the external interface that is
connected to the External network.

The reply flows, use the same route in opposite way. In server2 the process of detecting video
packets starts and if a video stream is discovered new roles will be applied to bridge2 Open
vSwitch flow tables.

3.2.2 Video detection scripts

The detection of live video stream in this thesis depends on four different scripts. Each
one of these scripts has its own mechanism to detect one kind of online live stream. The four
categories used in the scripts to detect video are:

1. Live TV Broadcasting: Latterly some TV channels have online live streaming to
broadcast using Internet. These channels add the right value of DSCP field which is
CS4 or 128 in decimal through their server provider as shown in figure 4.2. The first
script is able to detect this value and other variables to decide what is the type of the
video streaming.

2. Facebook Video call: Making video calls using Facebook is very common nowadays.
The second script detects Facebook video calls by detecting the call initialization process
and reading other variables to ensure that the live stream is video.

3. Facebook Live Broadcast: The previous item also makes live video streaming, which
is common for entertainment or commercial purposes. The third script detects Facebook
live broadcasting by detecting the initialization process to start the broadcast and read
other variables to validate that there is live video broadcasting through Facebook.

4. Port analysis for RTMP protocol: Some applications use RTMP protocol to transfer
Audio and video to avoid latency in the network. The fourth script detects the video
stream between two ends who are using RTMP in the video exchange process.

3.3 Internal Design

Figure 3.2 shows the overall view of the proposed solution. The architecture can be split
in two different parts: Initializing OpenStack environment and join the monitoring application
which includes four Python scripts to work in the same plateform as one component.

42

Figure 3.2: The Internal Design on the System

3.3.1 Initializing OpenStack Environment

Virtual OpenStack instances are used to create the final design.
• Servers:
In OpenStack there are two servers (Server1 and Server2) to monitor the traffic and
analize network packets. Server1 represents the gateway of the ISP that receives all
traffic from clients or virtual instances in this case. Server1 has an OS Ubuntu server
16.04, 32G of RAM and two network cards each one is connected to a different network.
In this server is located one Open vSwitch (bridge1) which uses OpenFlow protocol V1.3.
The main function of bridge1 is to transfer network packets that come from internal
hosts (client) who are connected to the internal network and transfer these packets to
the middle network through another port which is connected with the middle netwok.
This way of locating bridge1 gurantee that the internal hosts are not connected in any
way to the external network and all packets will pass from the internal network to the
middle network.
Server2 represents the core of the ISP and Server2 also has an instance in OpenStack
initialized with Ubuntu server16.04 operating system, 32G of RAM and two network
cards each one is connected to a different network. The networks that Server2 is
connected to are: middle network and external network. In Server2 there is an Open
vSwitch bridge2 that extracts the two interfaces from the server and uses them in
monitoring and controlling the packets. All packets come from Server1 are transfered to
Server2 by the middle network. Bridge2 contains the basic flow tables which control
the packets exchange from/to the internal instances (hosts). Between Server1 and
Server2 there is no direct connection even if both of them are connected to the middle
network. For connecting the servers, two GRE tunnels (gre10 and gre20) are used to
make the connection available in bridge1 and bridge2. Gre10 and gre20 have the same
source/destination IP address but with different key values. The key values are the
identifiers of the channels so the traffic does not miss the right route inside the internal
networks. In this environment, the two GRE tunnels are set and configured to be ready
for packets exchange between the two Open vSwitches. The default route is gre10, in a

43

case of video stream detection the video packets will be transfered to gre20 and the rest
of the packets will stay in gre10.

• Hosts:
The hosts used inside the OpenStack are two instances based on linux Ubuntu16.04
Desktop destribution. The main purpose of the hosts is to be used in the cases of testing.
The requests of video streaming starts from the host to Server1 by bridge1 and then to
Server2 through bridge2.
The default gateway address for the hosts is the IP address of bridge1 interface and the
hosts are able to reach the Internet and each other in this structure.

• RTMP server:
This instance is used as a server to generate video flows based on RTMP protocol. this
server and the clients have VLC application [80], which allows to stream video from the
server to the host using RTMP protocol.

3.3.2 Implemented Python scripts

The monitoring application consists of four Python scripts located in Server2 to integrate
with the virtualization environment to create a monitoring and controlling system.

• Python script for TV channel video detection: When client wants to watch a TV show
in his Web browser, after requesting the link of the TV channel and the ISP replays to
this request, the video stream starts from the servers of the TV channel to the clients
device. If the TV channel provides its packets with DSCP equal to CS4, then server2
which runs the tv-script will detect the video stream and add two new rule to the flow
tables in both bridges: bridge1 and bridge2 Open vSwiches. These flows have higher
priority than other flows which helps to provide more quality to the broadcasting service.

• Python script for video call from Facebook messenger application: In this case the script
in server2 detects the video call by catching the sequence of packets exchanged between
the client and the Facebook server that provides video call service. The initialization of
the video call follows certain packet exchange sequence, which starts with TCP packets
requests followed by UDP packets with port number 40002 sent from the client side to
the server to configure the video call. When the two clients start the conversation, a new
set of TCP packets starts to be exchanged between the client and the server. Script2
plays the role of detecting the video call and notify server2 to add new flow table in
(bridge1 and bridge2) Open vSwitch as mentioned previously.

• Python script for live video broadcast from Facebook application: This case is very
similar to the previous case but the difference is that the client side in the initialization
process of the live video broadcast in the UDP stage addresses port 40003 instead of
port 40002 and all other steps are followed as before.

• Video Streaming Connection using RTMP protocol: Occurs when two clients use
applications that use RTMP protocol to transfer Audio and video to avoid latency in
the network. The fourth script detects the video stream between the two ends who are
using RTMP in the video exchange process.

44

3.3.3 Points to be considered in design and implementation

During the process to build the final core system, there are some important points that
must be clarified, namely:

1. Why not using SDN controller:
The controller is a cornerstone of SDN environment. Herein the proposed solution, the
SDN controller should be considered as a gateway located in the server, and its mission
to analysis packets pass through the network in real-time. But the controller was not
able to handle the accelerating number of packets which lead the controller to be broken
and unable to execute any process.

2. Separation of GRE tunnels:
The normal work for Open vSwitche is to send any incoming packet from on any one of
it’s ports to all other ports, except the port that brought the packet. While the system
has two Open vSwitches and two GRE tunnels that connect the switches together, this
way of connection will cause infinite loop between the two GRE tunnels, because each
GRE tunnel has a different key which lets the Open vSwitch broadcast incoming packets
to all other ports. Thus, the system will be broken because of the huge number of
exchanged packets between the two Open vSwitches.
The solution summerized by allocating each GRE tunnel in a different switch table
which prevents the loop between GRE tunnels.

3. The size of maximum transmission unit (MTU):
While the whole designed environment created inside OpenStack platform, the size of
MTU should be considered in the configuration of the hosts because the size of MTU in
OpenStack is 1400 bytes but in the hosts is equal to 1500 bytes. This issue allows to
have packets exchange with other instances and with the Internet through using ping
check, while in a case of using normal browsing or any other service the result will be
having connection without visual content according to the fragmentation procedure
applied on the packets in the hosts.
To solve this issue, the size of MTU in the hosts should be set to 1300 bytes to exceed
the fragmentation procedure.

3.4 Use Cases

To clarify the features provided by the video detection scripts, there is one scenario for
all the cases but the response is different from one script to another while each script could
detect one type of video stream according to its function.

1. Request video stream service: The first case described in figure 3.3, which starts
when a user requests a video service, such as TV channel based on Internet or making
a live video call using Facebook messenger application. When the reply to the user’s
request comes back, the monitoring scripts will check the packets to detect the video
stream, depending on the used mechanisms. Then the monitoring application notifies
the system about existence of video or not.

45

Figure 3.3: Use case diagram: User Request video stream service

2. Check the flows to detect the existence of video or not: The second case starts
after the sniffing stage, where the application analysis captured packets, and issues the
final decision if there is a video stream or not according to the discovered state as shown
in figure 3.4. If there is a video stream, the application notifies the system to take a
step forward. If no video stream found, the system keep working normally.

Figure 3.4: Use case diagram: monitoring application response to the use’s request

3. The system handled the video stream: When the application informs the system
about the existence of video, the system recieves information about the detected flow.
The system will transfter the video stream to another route, which has higher priority
and provid higher bandwidth from the normal route as depicted in figure 3.5.

Figure 3.5: Use case diagram: the core system sends flow entries to Open vSwitches

3.4.1 Requirements

In a chance to reach the ideal performance of the described system in section 3.3, there
are requirements should be taken in consideration as follow:

• Video Detection:
Taking into consideration the purpose of the monitor application, the main requirement is
detecting the video, through the capture of network packets, using multiple mechanisms,
in order to notify the system about the existence of video or not.

46

• Fast Responsiveness:
The main requirement to be satisfied in a real-time application or platform is fast
responsiveness. Therefore, the objective is always to grant a fast response, in order to
satisfy every user of the application and to optimize the network as soon as possible.

• Efficiency:
The accuracy to define and detect the video streams is one of the most needed requirement
that the monitoring application should be able to provide, In order to have a great
percentage of certainty when it detects video streams.

• Performance:
Performance is an important requirement in this solution. The monitor application
should be able to work with a large number of flows without losing performance, when
it is running.

3.5 Conclusion

This chapter presented an overview about the proposed solution to build the core system
and the details of each used instance in addition to the use case scenarios used in the video
detection to test the whole environment. The next chapter, the proposed design and the
deployed application are evaluated to present the benefits of the proposed solution.

47

CHAPTER 4
Implementation

This chapter presents the tests conducted and results to use virtualization and cloud computing
in network monitoring as presented in the previous chapter. The architecture was evaluated
by measuring performance indicators such as latency, throughput and number of packets.
Afterwards, use cases were implemented and tests conducted to evaluate and compare the
results in the normal situation and with video packet separation. Lastly, the measurements
and performance results of the proposed testbed were analyzed.

4.1 Experimental Validation

As mentioned in chapter 3, all used scenarios are depicted in figure 4.1. The normal case
is having video stream in traditional way without any categorizing for video packets.
Each one of the Python scripts in the monitoring application has one objective to achieve, as
mentioned in section 3.3.2:

• First python script: this script is used to detect online TV streaming by checking the
DSCP value in the header of the IP packet.

• Second Python script: this script is able to detect the chat video streams caused by
Facebook messenger application.

• Third Python script: in addition to detect the video chat streaming, this script is able
to detect the live video broadcast from Facebook application.

• Fourth Python script: The last script used to detect video streams transferred using
RTMP protocol.

The last thing to be announced that the monitoring application is located in Server2.

49

Figure 4.1: Used case scenario

A hint about the figures (4.3, 4.4, 4.7, 4.8) that contain charts: In all these figures there
are two vertical axises. The left axis represents the number of packets passes through the
tunnel gre10, while the right axis represents the number of packets passes through the tunnel
gre20. The horizontal axis represents the time, that measured in seconds. In addition, there
are two lines (blue and orange), the blue line represents the number of packets per second
passes through the tunnel gre10, and the orange one represents the number of packets per
second passes through the tunnel gre20.

1. Video Stream from TV Internet Based:
Client requests a TV channel: When the client wants to watch a TV channel in his
device, after requesting the link of the TV channel and the Internet service provider (ISP)
replays to this request, the video stream starts from the servers of the TV channel to the
clients device. If the related servers of the TV channel provide its packets with DSCP
value equals to CS4 as shown in figure 4.2, and the value of DSCP passes through the
network without being manipulated as mentioned in section 2.7.6. Then, server2 which
runs the monitoring application, will detect the video stream and adds new flow entries
in both Open vSwitches.

Figure 4.2: DSCP value for TV broadcast

50

The first flow entry will be added into bridge2 which is located in server2, this flow
entry determins the route should be passed by packets to reach the client’s device. The
second flow entry will be added into bridge1 which is located in server1, this flow entry
determines the route that should be passed by packets as a responce from the client
who receives the service. Both new flow entries pass throught gre20 tunnel which has
higher bandwidth from gre10, and these flows have higher priority than other flows in
Open vSwitches which helps to provide more quality to the broadcasting service.
Each flow entry has the necessary variables in addition to source/destination IP address
and port number. The two flow entries have idle_timeout parameters which allow to
delete the flow entry automatically when the session terminates by the user so Open
vSwitches flow tables are not full to allow other entries and roles to be added to control
the network. In a case that the same video stream was detected again by the monitoring
application, this will only affects the idle_timeout parameter in both flow tables in
bridge1 and bridge2. If the monitoring application detects the same video stream again
and notifies server2 to add new flow entries in both bridges. At the moment that the
bridges have the order from server2 to add the new flow entry, this order is not going to
add new flow entries in the bridges, it will just rest the value of idle_timeout parameter
to zero again which increase the session time in gre20. Figure 4.3 shows traffic passing
through bridge2 in both channels.

Figure 4.3: Packets in bridge2 after detecting video stream

From zero to sixty seconds, all the traffic passes through tunnel gre10, and the
number of packets is accelerating rapidly till the second sixty. This point (at second
sixty) where server2 injected new flow in bridge2 after a notification from the monitoring
application confirms that there are video packets. Tunnel gre20 starts recieving packets
from the second sixty, where the number of packets in the orange line starts to increase
rapidly around 3000 packet in 30 seconds. On the contrary at the tunnel gre10, the
blue line was increasing smoothly and the number of the packets passed through tunnel
gre10 in the same 30 seconds where just around 100 packets.

The tunnel gre10 keeps handling the normal traffic including control packets for the

51

video stream, while video stream packets use the tunnel gre20. This way of exchanging
data between the user and the server is not going to couse any loss of packets because
both GRE tunnels have the same source and destination IP address.

In the other side of the core system in server1, bridge1 is the second half of the
solution. Figure 4.4 illustrates the exchanged packets in both tunnels (gre10 and gre20).
The traffic passes just through tunnel gre10 from zero to sixty seconds in a rapid way,
while there is no any packet in gre20. When server2 injectes a new flow in bridge1 at the
second sixty after a notification from the monitoring application confirms that there are
video packets. The video flow starts to pass through gre20 and the orange line shows
that the number of the packets is accelerating rapidly till 3000 packets in 30 seconds. In
the other hand, the blue line from sixty to ninty seconds is increasing in smooth way
and shows that the number of the packets in gre10 were just around 100 packets.

Figure 4.4: Packets in bridge1 after detecting video stream

2. Video Streaming Connection using RTMP protocol:
To start a video connection using RTMP protocol, the server and the client should
be agreed to use this protocol between them. The initiation for the connection starts
by packets sent from the server to the client using TCP protocol and destination port
number 8554, the server keeps sending packets to the client using three protocols TCP,
RTSP and RTP to setup the configuration of the connection as shown in figure 4.5.

52

Figure 4.5: RTMP Server initial the video stream configuration

The client replies to the server using TCP and RTSP protocols with sourceEx-
perimental validation port number 8554. When the client and the server finish the
initialization of connection, the packet exchange starts using IP and RTP protocols with
different port numbers as shown if figure 4.6.

Figure 4.6: Exchange video packets between RTMP server and RTMP client

The fourth Python script in the monitoring application detects the packets exchanged
which are using the TCP port 8554, then the application alert server2 to transfer video
stream based RTMP to gre20 and add new flows to bridge1 and bridge2 Open vSwitches.
Each new flow entry has the source and destination IP address of the user and the server
to determine the new route which the packets are going to pass by.
In bridge2, the exchanged packets between the RTMP server and client were presented
in figure 4.7 which illustrate that: at the first ten seconds, In both tunnels there is no
any traffic, after the ten seconds the packets start to pass through the tunnel gre10 and
the blue line increases rapidly till seconds twenty where the orange line which represents
the number of packets in the tunnel gre20 starts to increase in accelerated way. In the
seconds from 20 to 164 , both lines were increasing, but the difference between them is
the number of packets passes through each one of the tunnels. While the tunnel gre10

53

transfers around 90 packets, on the contrary the tunnel gre20 transfered around 40000
packets in the same period of time.

Figure 4.7: Packets in bridge2 between RTMP server and client

From 164 to 185, the figure 4.7 shows that both lines are horizontal which means that
there is no packets passes in any of the tunnels and the video stream is finished. The
orange line after this period is fall down directly to zero. The horizontal part from the
orange line is caused by the parameter idle_timeout in the flow entry. This parameter
keep increasing if there is no packets passing through the flow entry till reache the value
causing the flow entry to be expired and then deleted from bridge2 flow table.
Figure 4.8 shows the exchanged packets between RTMP server and client in bridge1,
the description about the blue and orange lines is completely matched to the mentioned
above for figure 4.7.

The orange line in both photos represents the situation followed by the video packets,
and could be divided into four stages, namely:
a) first stage: there are no packets in gre20 and the line is horizontal.
b) second stage: video packets were detected by the monitoring application, and the

tunnel gre20 starts to receive video packets. The orange line is accelerating rapidly.
c) third stage: the video stream is finished and no packets passing through gre20 and

the idle_timeout parameter is increasing, the orange line is horizontal again.
d) fourth stage: the orange line falls directly to zero, which means that the flow entry

is deleted, and the time for the flow entry has expired.

54

Figure 4.8: Packets in bridge1 between RTMP server and client

3. Video call from Facebook messenger application:
In this case the monitoring application in server2 detects the video call by catching the
sequence of packets exchanged between the client and Facebook server that provides the
video call service. As mentioned in section 2.6.9, the initialization of video call which
using WebRTC protocol follows a certain sequence of packet exchange which starts with
TCP packets requests followed by STUN packets with port number 40002 sent from
the client side to the STUN server side requesting for its public IP address as shown in
figure 4.9.

Figure 4.9: User sends request to initialize Facebook messenger video call

The STUN server responds to the client request with the public IP address and port
number as shown in figure 4.10, the client is going to use this public IP address and
the port number to initiate the call with other client and the public IP of other peer to
configure the video call. When the two clients start the conversation, a new set of TCP
packets starts to be exchanged between the two peers. The STUN server always returns
the same public IP address to the user while the port number can be changed many
times to the same client as illustrated in the blue rectangular at figure 4.10.

55

Script2 from monitoring application plays the role of detecting the video call and
notify server2 to add new flow entries in bridge1 and bridge2 Open vSwitch. In bridge2
Open vSwitch two new flow entries will be added by script2. First the flow entry from
host to server will be added in bridge2 and the second flow entry will be from the server
to the host. In bridge1, a new flow entry will be added to exchange packets between
user and bridge2.

Each new flow entry has five parameters to determine the route, the parameters are:
Source and destination IP address, source and destination port and the protocol which
is TCP mostly used.

Figure 4.10: STUN server responds to the user’s request

Also the new flow entries have idle_timeout parameters which allow to delete the
flow automatically when the session terminates by the user so the two bridges flow
tables are able to accept new entries and roles to be added to control the network.

4. Live video broadcast from Facebook application:
The third case starts when the user wants to make a live video broadcasting by using
Facebook application. the process starts by a sequence of packets exchanged between
the client and Facebook server that provide video service. As mentioned in section 2.6.9,
the first step of initialize the live video broadcast which using WebRTC protocol is to
exchange TCP packets between the user and the Facebook server. The second stage
after request connection by using TCP protocol is STUN packets with port number
40003 sent from the client side to STUN server side requesting for the users public
IP address as shown in 4.11. The STUN server responds with the public IP and port
number, the client is going to use this public IP address and the port number to make
the live video broadcasting. Now the user starts the live video broadcast, and each
period of time the user send new STUN request to the STUN server just to refresh the
session and keep exchange data with the Facebook server. The monitoring application
detects the live video broadcasting and notifies server2 to add new flow entries in bridge1
and bridge2 Open vSwitch. The new flow entries pass data through tunnel gre20.

56

Figure 4.11: User send request to STUN server to initiate live video broadcasting

Each new flow entry has five parameters to determine the route, the parameters
are: Source and destination IP address, source and destination port and the protocol
which is TCP mostly used. As mentioned previously, the flow entries have idle_timeout
parameter which allow to delete the flow automatically when the session terminates by
the user.

The two cases 3 and 4 could not be applied in this designed environment inside OpenStack
platform because the hosts are virtual instances and there is no cameras or microphones to be
detected by Facebook application to make any video connection experiment or even a voice
call.
The same python scripts (the second and the third) from the monitoring application for video
detection were tested many times in a real environment with Facebook application and the
obtained results reflect that, if it was possible to do the test in the designed environment, the
results would be matched.

4.2 Conclusion

This chapter presents the evaluation for the proposed environment including the designed
architecture and the monitoring application. Different scenarios were deployed to prove the
concept of the dissertation and the performance of the system were evaluated.
The obtained results illustrates the benefits of the designed systemin Openstack platform and
the possibility to separate video flows from other network flows, and provide the video flows
higher bandwidth and priority.

57

CHAPTER 5
Conclusion

The great technological development in informatics has opened the way for provisioning
various services and new online-based entertainment services, which have expanded significantly
after the increase in social media applications and the number of users. Nowadays, the social
media platforms give the opportunity for using live video calling beside the traditional
communication ways such as: voice call, messaging and email. Furthermore, the advanced
technologies is still motivating the multimedia market to use Internet for live video stream
broadcast. This significant expansion has posed an additional challenge for ISPs in terms of
management for network and equipment and the efficiency of service delivery.
New notions and techniques have been developed to offer innovative solutions such as:

• SDN to automate the network through dynamically optimizations.
• Virtualization to provide optimal resource utilization, increase performance and avail-
ability of resources and significant cost savings.

• Cloud computing platforms: which cooperate with virtualization and SDN to provide
management flexibility, scalability and reduce operation costs.

• Other mechanisms: VNF and NFV.
This thesis aims to manage live video streaming in the network Automatically by adding

a design architecture to the virtual network environment helps to pickup video packets from
the whole packets into a certain route, which has higher bandwidth than other routes and the
new route will be handled as a higher priority than other routes to be able to provide better
service for customers.
Besides the design architecture, monitoring application were used to detect video packets and
inject new roles in the SDN server that monitoring traffic through the network.

In the result, it is very important to clarify the overview for how the implementation works
by presenting all steps taken to implement the designed system with adopted tchnologies to
achieve better performance. Besides the system architecture, there is a monitoring application
which guarantees checking the packets and detects a video stream passing through the system.
The monitoring application depends on python scripts where joined together to pick up the

59

targeted packets, with the mechanisms that were implemented to detect video streams.

Finally, through the implementation of the presented solution, different results were taken
which allows to conclude all the capabilities of the application. These results which taken from
chapter 4 were analyzed taking into account four different scenarios where the application
was tested, running it in different cases, with different approaches. Lastly, the huge difference
at the number of packets between gre10 and gre20 clarifies that the system achieves the
required objective which is separating the video flows from the normal flows. In addition, the
video screen did not show any cuts or flickering at the time that the monitoring application
reallocates the flow stream from the normal tunnel gre10 to the video tunnel gre20, because
the two tunnels have the same source/destination IP addresses as mentioned in the section
3.3.1. The designed architecture of the core system allows to add many GRE tunnels, with
the possibility to assign different metrics to each tunnel, such as: bandwidth, priority and
MTU. After that, it is possible to allow a certain kind of flows to pass through a certain
tunnel which increases the control on the network.

5.1 Future work

In the future work the goal is to apply these steps in a real environment and check the
performance and efficiency for this kind of ideas to gain more insight. The most important
functionalities that should be implemented or improved in the future are:

1. Discover new mechanisms for video detection:
According to the great diversity in presented video services, there is a need to cover all
probable possiblelties which are used in providing video services.

2. Using Controller in the core system:
While controller is considered the main feature offered by SDN, it is necessary to add
the controller to the core system for achieving the best performance given via SDN.

3. Searching for the best approach in designing the system:
This will be focused on Cloud platforms by testing many different structures to achieve
the best way for using the core system.

4. Apply the system in a real environment: The core system can be used in some
demonstrations, such as Students@deti to prove its main objctive and use from actual
audiences.

60

References

[1] A. Masood, M. Sharif, M. Yasmin, and M. Raza, “Virtualization tools and techniques: Survey”, Nepal
Journal of Science and Technology, vol. 15, no. 2, pp. 141–150, 2014.

[2] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current technology and future trends”,
Computer, vol. 38, no. 5, pp. 39–47, May 2005, issn: 0018-9162. doi: 10.1109/MC.2005.176.

[3] Home - xen project, https://xenproject.org/.

[4] 11 points to consider when virtualizing security, Jan. 2018. [Online]. Available: https://resources.
infosecinstitute.com/11-points-consider-virtualizing-security/#gref.

[5] Virtualization essentials: Vmware, inc. [Online]. Available: https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/ebook/gated-vmw-ebook-virtualization-essentials.pdf.

[6] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey”, IEEE
Communications Surveys Tutorials, vol. 18, no. 1, pp. 732–794, 2016, issn: 1553-877X. doi: 10.1109/
COMST.2015.2481183.

[7] Vmware-journey-itaas-customer-survey.pdf. [Online]. Available: https://www.vmware.com/files/pdf/
cloud-journey/vmware-journey-ITaaS-customer-survey.pdf.

[8] The different types of virtualization in cloud computing – explained, https://www.redswitches.com/
blog/different-types-virtualization-cloud-computing-explained/.

[9] P. Mell and T. Grance, “The nist definition of cloud computing”, no. 800-145, Sep. 2011. [Online].
Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[10] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art and research challenges”,
Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7–18, May 2010, issn: 1869-0238. doi:
10.1007/s13174-010-0007-6.

[11] M. I. Alam, M. Pandey, and S. S. Rautaray, “A comprehensive survey on cloud computing”, International
Journal of Information Technology and Computer Science (IJITCS), vol. 7, no. 2, p. 68, 2015.

[12] Cloud computing – types of cloud, https : / / www . esds . co . in / blog / cloud - computing - types -
cloud/#sthash.SysRAEcA.dpbs.

[13] Cloud computing service models and ownership | download scientific diagram, https : / / www .
researchgate.net/figure/Cloud-computing-service-models-and-ownership_fig1_327248382.

[14] Google app engine. [Online]. Available: http://code.google.com/appengine.

[15] Microsoft azure cloud computing platform and services. [Online]. Available: https://azure.microsoft.
com/en-us/.

[16] Application development from salesforce lightning platform - salesforce.com. [Online]. Available: https:
//www.salesforce.com/products/platform/overview.

[17] Rackspace: Managed dedicated and cloud computing services. [Online]. Available: https : / / www .
rackspace.com/.

[18] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of programmable
networks”, SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014, issn: 0146-4833.
doi: 10.1145/2602204.2602219. [Online]. Available: http://doi.acm.org/10.1145/2602204.2602219.

61

http://dx.doi.org/10.1109/MC.2005.176
https://xenproject.org/
https://resources.infosecinstitute.com/11-points-consider-virtualizing-security/#gref
https://resources.infosecinstitute.com/11-points-consider-virtualizing-security/#gref
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/ebook/gated-vmw-ebook-virtualization-essentials.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/ebook/gated-vmw-ebook-virtualization-essentials.pdf
http://dx.doi.org/10.1109/COMST.2015.2481183
http://dx.doi.org/10.1109/COMST.2015.2481183
https://www.vmware.com/files/pdf/cloud-journey/vmware-journey-ITaaS-customer-survey.pdf
https://www.vmware.com/files/pdf/cloud-journey/vmware-journey-ITaaS-customer-survey.pdf
https://www.redswitches.com/blog/different-types-virtualization-cloud-computing-explained/
https://www.redswitches.com/blog/different-types-virtualization-cloud-computing-explained/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1007/s13174-010-0007-6
https://www.esds.co.in/blog/cloud-computing-types-cloud/#sthash.SysRAEcA.dpbs
https://www.esds.co.in/blog/cloud-computing-types-cloud/#sthash.SysRAEcA.dpbs
https://www.researchgate.net/figure/Cloud-computing-service-models-and-ownership_fig1_327248382
https://www.researchgate.net/figure/Cloud-computing-service-models-and-ownership_fig1_327248382
http://code.google.com/appengine
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.salesforce.com/products/platform/overview
https://www.salesforce.com/products/platform/overview
https://www.rackspace.com/
https://www.rackspace.com/
http://dx.doi.org/10.1145/2602204.2602219
http://doi.acm.org/10.1145/2602204.2602219

[19] Y. Li and M. Chen, “Software-defined network function virtualization: A survey”, IEEE Access, vol. 3,
pp. 2542–2553, 2015.

[20] An introduction to software-defined networking (sdn) | service engineering (icclab & splab), https:
//blog.zhaw.ch/icclab/an-introduction-to-software-defined-networking-sdn/.

[21] H. Farhady, H. Lee, and A. Nakao, “Software-defined networking: A survey”, Computer Networks, vol.
81, pp. 79–95, 2015, issn: 1389-1286. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128615000614.

[22] Open vswitch database (ovsdb). [Online]. Available: https://www.ietf.org/rfc/rfc7047.txt.

[23] IETF, Opflex control protocol draft-smith-opflex-00, Oct. 2014. [Online]. Available: https://tools.ietf.
org/html/draft-smith-opflex-00.

[24] B. Belter, D. Parniewicz, L. Ogrodowczyk, A. Binczewski, M. Stroiñski, V. Fuentes, J. Matias, M. Huarte,
and E. Jacob, “Hardware abstraction layer as an sdn-enabler for non-openflow network equipment”,
pp. 117–118, Sep. 2014, issn: 2379-0350. doi: 10.1109/EWSDN.2014.16.

[25] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: Programming platform-independent
stateful openflow applications inside the switch”, SIGCOMM Comput. Commun. Rev., vol. 44, no.
2, pp. 44–51, Apr. 2014, issn: 0146-4833. doi: 10.1145/2602204.2602211. [Online]. Available: http:
//doi.acm.org/10.1145/2602204.2602211.

[26] M. Suñé, V. Alvarez, T. Jungel, U. Toseef, and K. Pentikousis, “An openflow implementation for network
processors”, Sep. 2014. doi: 10.1109/EWSDN.2014.17.

[27] IETF, Forwarding and control element separation (forces) protocol specification, Mar. 2010. [Online].
Available: https://www.ietf.org/rfc/rfc5810.txt.

[28] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn through a future-proof forwarding
plane”, Aug. 2013. doi: 10.1145/2491185.2491190.

[29] P. Tijare and D. Vasudevan, “The northbound apis of software defined networks”, Oct. 2016. doi:
10.5281/zenodo.160891.

[30] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-
defined networking: A comprehensive survey”, Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[31] J. Dix, Clarifying the role of software-defined networking northbound apis, 2013. [Online]. Available:
https://www.networkworld.com/article/2165901/clarifying-the-role-of-software-defined-
networking-northbound-apis.html.

[32] What is open vswitch? — open vswitch 2.11.90 documentation, http://docs.openvswitch.org/en/
latest/intro/what-is-ovs/.

[33] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an open-source solution for cloud
computing”, International Journal of Computer Applications, vol. 55, no. 3, pp. 38–42, 2012.

[34] What is openstack?, https://www.openstack.org/software/.

[35] Openstack components | vmoksha, https://vmokshagroup.com/tag/openstack-components/.

[36] Openstack components, https : / / www . openstack . org / assets / openstack - map / openstack - map -
v20190601.svg.

[37] S. Bonner, C. Pulley, I. Kureshi, V. Holmes, J. Brennan, and Y. James, “Using openstack to improve
student experience in an h.e. environment”, in 2013 Science and Information Conference, Oct. 2013,
pp. 888–893.

[38] Explained: How openstack works and six reasons you should have a cloud on this platform - blog
masterdc.com, https://www.masterdc.com/blog/openstack-explained-how-does-openstack-work-
advantages-reasons-for-cloud/.

[39] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying middlebox policy
enforcement using sdn”, SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, Aug. 2013,

62

https://blog.zhaw.ch/icclab/an-introduction-to-software-defined-networking-sdn/
https://blog.zhaw.ch/icclab/an-introduction-to-software-defined-networking-sdn/
http://www.sciencedirect.com/science/article/pii/S1389128615000614
http://www.sciencedirect.com/science/article/pii/S1389128615000614
https://www.ietf.org/rfc/rfc7047.txt
https://tools.ietf.org/html/draft-smith-opflex-00
https://tools.ietf.org/html/draft-smith-opflex-00
http://dx.doi.org/10.1109/EWSDN.2014.16
http://dx.doi.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2602204.2602211
http://dx.doi.org/10.1109/EWSDN.2014.17
https://www.ietf.org/rfc/rfc5810.txt
http://dx.doi.org/10.1145/2491185.2491190
http://dx.doi.org/10.5281/zenodo.160891
https://www.networkworld.com/article/2165901/clarifying-the-role-of-software-defined-networking-northbound-apis.html
https://www.networkworld.com/article/2165901/clarifying-the-role-of-software-defined-networking-northbound-apis.html
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
https://www.openstack.org/software/
https://vmokshagroup.com/tag/openstack-components/
https://www.openstack.org/assets/openstack-map/openstack-map-v20190601.svg
https://www.openstack.org/assets/openstack-map/openstack-map-v20190601.svg
https://www.masterdc.com/blog/openstack-explained-how-does-openstack-work-advantages-reasons-for-cloud/
https://www.masterdc.com/blog/openstack-explained-how-does-openstack-work-advantages-reasons-for-cloud/

issn: 0146-4833. doi: 10.1145/2534169.2486022. [Online]. Available: http://doi.acm.org/10.1145/
2534169.2486022.

[40] Etsi, network function virtualisation-white paper3, sdn and openflow world congress, 2014. [Online].
Available: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf.

[41] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive survey of network function
virtualization”, Computer Networks, vol. 133, pp. 212–262, 2018, issn: 1389-1286. doi: https://doi.
org/10.1016/j.comnet.2018.01.021. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128618300306.

[42] Kvm. [Online]. Available: http://www.linux-kvm.org/page/Main_Page.

[43] Server virtualization software | vsphere | vmware. [Online]. Available: https://www.vmware.com/
products/vsphere.html.

[44] Server virtualization software | vsphere | vmware. [Online]. Available: https://www.vmware.com/
products/vsphere.html.

[45] Citrix hypervisor - server virtualization and consolidation - citrix - citrix. [Online]. Available: https:
//www.citrix.com/products/citrix-hypervisor/.

[46] A. R. H. Schulzrinne and R. Lanphier, Real time streaming protocol (rtsp), Apr. 1998. [Online]. Available:
https://www.ietf.org/rfc/rfc2326.txt.

[47] H. A. Parmar and E. M. Thornburgh, “Adobe’s real time messaging protocol”, Dec. 2012. [Online].
Available: https://pdfs.semanticscholar.org/939e/e4e3744c779cc5e7b74750a3782e20e485f3.pdf.

[48] Rtmfp faq adobe media server 5 extended, https://www.adobe.com/products/adobe-media-server-
extended/rtmfp-faq.html.

[49] M. Thornburgh, Adobe’s rtmfp profile for flash communication, Dec. 2014. [Online]. Available: https:
//tools.ietf.org/html/rfc7425.

[50] Adaptive streaming - a simple explanation of how it works, https : / / bitmovin . com / adaptive -
streaming/.

[51] Y. Fisher, “An overview of http adaptive streaming protocols for tv everywhere delivery”, 2014. [Online].
Available: https://www.nctatechnicalpapers.com/Paper/2014/2014- an- overview- of- http-
adaptive-streaming-protocols-for-tv-everywhere-delivery.

[52] IETF, Session traversal utilities for nat (stun), Oct. 2008. [Online]. Available: https://tools.ietf.
org/html/rfc5389.

[53] C. H. J. Rosenberg J. Weinberger and R. Mahy, Stun - simple traversal of user datagram protocol (udp)
through network address translators (nats), Mar. 2003. [Online]. Available: https://tools.ietf.org/
html/rfc3489.

[54] Webrtc home webrtc. [Online]. Available: https://webrtc.org/.

[55] How voip apps skype, whatsapp, and facebook messenger work- routerfreak, https://www.routerfreak.
com/how-voip-apps-skype-whatsapp-facebook-messenger-work/.

[56] S. P. Romano and S. Loreto, “Real-time communication with webrtc peer-to-peer in the browser”, May
2014. [Online]. Available: http://subnets.ru/books/real-time-communication-with-webrtc-peer-
to-peer-in-the-browser.pdf.

[57] F. Karpisek, I. Baggili, and F. Breitinger, “Whatsapp network forensics: Decrypting and understanding
the whatsapp call signaling messages”, Digital Investigation, vol. 15, pp. 110–118, 2015, Special Issue: Big
Data and Intelligent Data Analysis, issn: 1742-2876. doi: https://doi.org/10.1016/j.diin.2015.09.
002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1742287615000985.

[58] Qos components: A closer look, https://searchnetworking.techtarget.com/tip/QoS-components-
A-closer-look, Mar. 2007.

63

http://dx.doi.org/10.1145/2534169.2486022
http://doi.acm.org/10.1145/2534169.2486022
http://doi.acm.org/10.1145/2534169.2486022
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.01.021
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.01.021
http://www.sciencedirect.com/science/article/pii/S1389128618300306
http://www.sciencedirect.com/science/article/pii/S1389128618300306
http://www.linux-kvm.org/page/Main_Page
https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
https://www.citrix.com/products/citrix-hypervisor/
https://www.citrix.com/products/citrix-hypervisor/
https://www.ietf.org/rfc/rfc2326.txt
https://pdfs.semanticscholar.org/939e/e4e3744c779cc5e7b74750a3782e20e485f3.pdf
https://www.adobe.com/products/adobe-media-server-extended/rtmfp-faq.html
https://www.adobe.com/products/adobe-media-server-extended/rtmfp-faq.html
https://tools.ietf.org/html/rfc7425
https://tools.ietf.org/html/rfc7425
https://bitmovin.com/adaptive-streaming/
https://bitmovin.com/adaptive-streaming/
https://www.nctatechnicalpapers.com/Paper/2014/2014-an-overview-of-http-adaptive-streaming-protocols-for-tv-everywhere-delivery
https://www.nctatechnicalpapers.com/Paper/2014/2014-an-overview-of-http-adaptive-streaming-protocols-for-tv-everywhere-delivery
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc3489
https://tools.ietf.org/html/rfc3489
https://webrtc.org/
https://www.routerfreak.com/how-voip-apps-skype-whatsapp-facebook-messenger-work/
https://www.routerfreak.com/how-voip-apps-skype-whatsapp-facebook-messenger-work/
http://subnets.ru/books/real-time-communication-with-webrtc-peer-to-peer-in-the-browser.pdf
http://subnets.ru/books/real-time-communication-with-webrtc-peer-to-peer-in-the-browser.pdf
http://dx.doi.org/https://doi.org/10.1016/j.diin.2015.09.002
http://dx.doi.org/https://doi.org/10.1016/j.diin.2015.09.002
http://www.sciencedirect.com/science/article/pii/S1742287615000985
https://searchnetworking.techtarget.com/tip/QoS-components-A-closer-look
https://searchnetworking.techtarget.com/tip/QoS-components-A-closer-look

[59] Enterprise qos solution reference network design guide - quality of service design overview [design zone
for ipv6] - cisco, https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/WAN_and_MAN/
QoS_SRND/QoS-SRND-Book/QoSIntro.html.

[60] M. Karakus and A. Durresi, “Quality of service (qos) in software defined networking (sdn): A survey”,
Journal of Network and Computer Applications, vol. 80, pp. 200–218, 2017, issn: 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2016.12.019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1084804516303186.

[61] F. B. K. Nichols S. Blake and D. Black, Rfc 2474 - definition of the differentiated services field (ds field)
in the ipv4 and ipv6 headers, https://tools.ietf.org/html/rfc2474, Dec. 1998.

[62] E. R. Geib and D. Black, Rfc 8100 - diffserv-interconnection classes and practice, https://tools.ietf.
org/html/rfc8100, Mar. 2017.

[63] C. Filsfils and J. Evans, “Deploying diffserv in backbone networks for tight sla control”, IEEE Internet
Computing, vol. 9, no. 1, pp. 66–74, Jan. 2005, issn: 1089-7801. doi: 10.1109/MIC.2005.12.

[64] Draft-bless-tsvwg-le-phb-01 - a lower effort per-hop behavior (le phb), https://tools.ietf.org/html/
draft-bless-tsvwg-le-phb-01, Feb. 2017.

[65] S. F. K. Ramakrishnan and D. Black, Rfc 3168 - the addition of explicit congestion notification (ecn) to
ip, https://tools.ietf.org/html/rfc3168, Sep. 2001.

[66] D. Murray and T. Koziniec, “The state of enterprise network traffic in 2012”,

[67] K. Edeline and B. Donnet, “Towards a middlebox policy taxonomy: Path impairments”, in 2015 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), Apr. 2015, pp. 402–407.
doi: 10.1109/INFCOMW.2015.7179418.

[68] Y. V. Gregory Detal Benjamin Hesmans and B. Donnet, Revealing middlebox interference with tracebox,
https://conferences.sigcomm.org/imc/2013/papers/imc032s-detalA.pdf, Oct. 2013.

[69] D. Malone and M. Luckie, “Analysis of icmp quotations”, S. Uhlig, K. Papagiannaki, and O. Bonaventure,
Eds., pp. 228–232, 2007.

[70] R. Barik, M. Welzl, and A. Elmokashfi, “How to say that you’re special: Can we use bits in the ipv4
header?”, in Proceedings of the 2016 Applied Networking Research Workshop, ser. ANRW ’16, Berlin,
Germany: ACM, 2016, pp. 68–70, isbn: 978-1-4503-4443-2. doi: 10.1145/2959424.2959442. [Online].
Available: http://doi.acm.org/10.1145/2959424.2959442.

[71] M. Kühlewind, S. Neuner, and B. Trammell, “On the state of ecn and tcp options on the internet”, in
Passive and Active Measurement, M. Roughan and R. Chang, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 135–144, isbn: 978-3-642-36516-4.

[72] P. Richter, N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger, “Distilling the internet’s
application mix from packet-sampled traffic”, in Passive and Active Measurement, J. Mirkovic and
Y. Liu, Eds., Cham: Springer International Publishing, 2015, pp. 179–192, isbn: 978-3-319-15509-8.

[73] B. Trammell, M. Kühlewind, D. Boppart, I. Learmonth, G. Fairhurst, and R. Scheffenegger, “Enabling
internet-wide deployment of explicit congestion notification”, in Passive and Active Measurement,
J. Mirkovic and Y. Liu, Eds., Cham: Springer International Publishing, 2015, pp. 193–205, isbn:
978-3-319-15509-8.

[74] S. McQuistin and C. S. Perkins, “Is explicit congestion notification usable with udp?”, in Proceedings
of the 2015 Internet Measurement Conference, ser. IMC ’15, Tokyo, Japan: ACM, 2015, pp. 63–69,
isbn: 978-1-4503-3848-6. doi: 10.1145/2815675.2815716. [Online]. Available: http://doi.acm.org/10.
1145/2815675.2815716.

[75] S. Dhesikan, D. Druta, P. Jones, and C. Jennings, “Dscp packet markings for webrtc qos”, Internet
Engineering Task Force, Internet-Draft draft-ietf-tsvwg-rtcweb-qos-18, 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-tsvwg-rtcweb-qos-18.

[76] R. L. d. Cunha, “Uplink video traffic determination and network optimization”, 2017. [Online]. Available:
http://hdl.handle.net/10773/23487.

64

https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoS-SRND-Book/QoSIntro.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoS-SRND-Book/QoSIntro.html
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2016.12.019
http://www.sciencedirect.com/science/article/pii/S1084804516303186
http://www.sciencedirect.com/science/article/pii/S1084804516303186
https://tools.ietf.org/html/rfc2474
https://tools.ietf.org/html/rfc8100
https://tools.ietf.org/html/rfc8100
http://dx.doi.org/10.1109/MIC.2005.12
https://tools.ietf.org/html/draft-bless-tsvwg-le-phb-01
https://tools.ietf.org/html/draft-bless-tsvwg-le-phb-01
https://tools.ietf.org/html/rfc3168
http://dx.doi.org/10.1109/INFCOMW.2015.7179418
https://conferences.sigcomm.org/imc/2013/papers/imc032s-detalA.pdf
http://dx.doi.org/10.1145/2959424.2959442
http://doi.acm.org/10.1145/2959424.2959442
http://dx.doi.org/10.1145/2815675.2815716
http://doi.acm.org/10.1145/2815675.2815716
http://doi.acm.org/10.1145/2815675.2815716
https://tools.ietf.org/html/draft-ietf-tsvwg-rtcweb-qos-18
https://tools.ietf.org/html/draft-ietf-tsvwg-rtcweb-qos-18
http://hdl.handle.net/10773/23487

[77] What is 1e100.net? - google help, https://support.google.com/faqs/answer/174717?hl=en.

[78] A. R. d. C. Ferreira, “Programmable networks for video”, 2017. [Online]. Available: http://hdl.handle.
net/10773/23630.

[79] D. Ho, G. S. Park, and H. Song, “Mobile data offloading system for video streaming services over
sdn-enabled wireless networks”, in Proceedings of the 9th ACM Multimedia Systems Conference, ser.
MMSys ’18, Amsterdam, Netherlands: ACM, 2018, pp. 174–185, isbn: 978-1-4503-5192-8. doi: 10.1145/
3204949.3204977. [Online]. Available: http://doi.acm.org/10.1145/3204949.3204977.

[80] Vlc: Official site - free multimedia solutions for all os - videolan, https://www.videolan.org/index.
html.

65

https://support.google.com/faqs/answer/174717?hl=en
http://hdl.handle.net/10773/23630
http://hdl.handle.net/10773/23630
http://dx.doi.org/10.1145/3204949.3204977
http://dx.doi.org/10.1145/3204949.3204977
http://doi.acm.org/10.1145/3204949.3204977
https://www.videolan.org/index.html
https://www.videolan.org/index.html

	Contents
	List of Figures
	Glossary
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Structure

	Key Enablers and State of the Art
	Virtualization
	What is Virtualization?
	Why Virtualization?
	Properties of Virtualization
	Types of Virtualization
	Benefits of Virtualization

	Cloud Computing
	Cloud Computing Architecture
	Cloud Deployment Model
	Cloud Computing Service Model

	Software Defined Network (SDN)
	SDN Architecture
	OpenFlow

	Cloud Computing vs. Software-Defined Networks

	OpenStack
	Introduction to OpenStack
	Components of OpenStack
	Advantages of OpenStack

	Network Function Virtualization (NFV)
	What is Network Function Virtualization NFV?
	The need for NFV
	 NFV Architecture
	SDN Vs. NFV

	Video Streaming Technologies
	H.264
	High Efficiency Video Coding (H.265)
	Real-Time Transport Protocol
	Real-Time Streaming Protocol
	Real-Time Messaging Protocol
	Real-Time Media Flow Protocol
	Adaptive Bitrate Streaming
	Session Traversal Utilities for NAT
	STUN transactions
	Binding method in STUN transactions
	STUN Messages exchange overview
	STUN Message Structure:

	Web Real-Time Communication

	Quality of Service
	QoS in video streaming
	Qos in Software Defined Networks
	Differentiated Services (DiffServ)
	Differentiated Services Code Point DSCP
	DSCP Background
	DSCP Distortion
	Recommendations for DSCP usage in WebRTC

	Related Works
	Conclusion

	Design of the Solution Environment
	Solution Design
	Architecture
	OpenStack Environment Architecture
	Video detection scripts

	Internal Design
	Initializing OpenStack Environment
	Implemented Python scripts
	Points to be considered in design and implementation

	Use Cases
	Requirements

	Conclusion

	Implementation
	Experimental Validation
	Conclusion

	Conclusion
	Future work

	References

