

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is understood

to recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without the author's prior consent.

User-Centric Quality of Service Provisioning in IP Networks

by

Mark Culverhouse

A thesis submitted to Plymouth University

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Mathematics

Faculty of Technology

In collaboration with

France Telecom Orange Group.

July 2012

v

Abstract

User-Centric Quality of Service Provisioning in IP Networks

Mark Culverhouse

The Internet has become the preferred transport medium for almost every type of

communication, continuing to grow, both in terms of the number of users and delivered

services. Efforts have been made to ensure that time sensitive applications receive sufficient

resources and subsequently receive an acceptable Quality of Service (QoS). However, typical

Internet users no longer use a single service at a given point in time, as they are instead engaged

in a multimedia-rich experience, comprising of many different concurrent services. Given the

scalability problems raised by the diversity of the users and traffic, in conjunction with their

increasing expectations, the task of QoS provisioning can no longer be approached from the

perspective of providing priority to specific traffic types over coexisting services; either through

explicit resource reservation, or traffic classification using static policies, as is the case with the

current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of

static resource allocation and traffic shaping methods reveals a distinct lack of synergy between

current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting

the user services.

The aim of this thesis is to investigate and propose a novel QoS architecture, which considers

the activities of the user and manages resources from a user-centric perspective. The research

begins with a comprehensive examination of existing QoS technologies and mechanisms,

arguing that current QoS practises are too static in their configuration and typically give priority

to specific individual services rather than considering the user experience. The analysis also

reveals the potential threat that unresponsive application traffic presents to coexisting Internet

services and QoS efforts, and introduces the requirement for a balance between application QoS

and fairness.

This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS),

which manages and controls traffic at the point of service aggregation, in order to optimise the

overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS

alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS

policies to each individual’s Internet traffic profile and dynamically controls the ratio of user

services to maintain an optimised QoS experience. The rationale behind this approach was to

enable a QoS optimised experience to each Internet user and not just those using preferred

vi

services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are

managed fairly while minimising their impact on coexisting services.

The CAPS architecture has been validated through extensive simulations with the topologies

used replicating the complexity and scale of real-network ISP infrastructures. The results show

that for a number of different user-traffic profiles, the proposed approach achieves an improved

aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and

Weighted-RED configurations. Furthermore, the results demonstrate that the proposed

architecture not only provides an optimised QoS to the user, irrespective of their traffic profile,

but through the avoidance of static resource allocation, can adapt with the Internet user as their

use of services change.

vii

Table of Contents

Table of Figures .. xii

List of Tables ... xv

Acknowledgements ...xvi

Glossary .. xvii

1. Introduction ..1

1.1. Aims and Objectives ..3

1.2. Thesis Contents ..4

2. Quality of Service – The State of the Art ...7

2.1. Introduction ..7

2.2. Defining Quality of Service ..8

2.2.1. Quality of Service from the user or service perspective..8

2.2.2. Quality of Service from the protocol perspective ... 11

2.2.3. Summary of Quality of Service Introduction .. 20

2.3. Current methods of QoS Provisioning at the Network Layer ... 20

2.3.1. Queuing Models ... 20

2.3.2. Integrated Services (Intserv) ... 24

2.3.3. Differentiated Services (Diffserv) .. 25

2.3.4. Multi-Protocol Label Switching & Diffserv Integration ... 33

2.3.5. QoS Routing ... 34

2.3.6. Traffic shaping ... 35

2.3.7. Summary of QoS at the Network Layer ... 36

2.4. QoS at the Transport Layer – Congestion control and Fairness .. 38

2.4.1. UDP and Unreliable Congestion Controlled Protocols ... 38

2.4.2. QoS Enhancements to TCP-based protocols... 40

viii

2.4.3. Response to Changing Traffic Dynamics ... 41

2.4.4. Summary of Transport layer QoS mechanisms .. 42

2.5. QoS Provisioning at the Application Layer .. 43

2.5.1. Real-time Transport Protocol ... 43

2.5.2. Packet Loss Concealment (PLC) .. 45

2.5.3. Codec adaptation .. 45

2.6. Summarising the State-of-the-art for QoS provisioning ... 46

3. An Empirical Study into Internet Services ... 49

3.1. Introduction .. 49

3.2. Web Browsing .. 50

3.3. Streaming media ... 57

3.4. Peer-to-Peer Systems .. 62

3.4.1. Peer-to-Peer properties of Skype .. 63

3.4.2. Spotify .. 69

3.4.3. BitTorrent ... 71

3.4.4. Methodology of BitTorrent Analysis .. 74

3.5. Voice over IP.. 79

3.6. Summary .. 85

4. A Novel Approach to QoS Provisioning .. 87

4.1. Introduction .. 87

4.2. Motivations for the novel approach .. 87

4.3. The requirements for a novel approach to QoS provisioning ... 89

4.3.1. Ideal Solution ... 89

4.3.2. Pragmatic approach to providing the ideal solution .. 91

4.4. Proposed User-centric QoS Provisioning Architecture ... 92

ix

4.4.1. Ingress and Egress Interfaces.. 93

4.4.2. Traffic Classifier... 94

4.4.3. User / Service Information Store .. 94

4.4.4. Services Profile Store ... 95

4.4.5. Network State Monitor ... 95

4.4.6. Traffic Manager .. 96

4.4.7. Packet Scheduler .. 96

4.5. Design Trade-offs ... 97

4.6. Design of the Traffic Manager ... 100

4.6.1. Traffic Management of UDP-based Applications ... 101

4.6.2. Traffic Management of TCP-based Applications ... 109

4.7. Additional assumptions for Concurrent Internet Services .. 119

4.8. Integrating User-centric QoS provisioning into Diffserv .. 120

4.9. Enhancing the Diffserv Edge Router .. 121

4.9.1. Traffic Policy Enforcement .. 122

4.9.2. Queue Scheduling Algorithm ... 126

4.10. Summary of the Novel Approach to Traffic Management.. 127

5. Validation of CAPS through Simulation .. 129

5.1. Differentiated Services in ns2... 130

5.1.1. Limitations of the Standard ns2 Diffserv Implementation .. 131

5.2. Simulation Methodology .. 132

5.2.1. Simulated Traffic Sources .. 132

5.2.2. Validation Cases ... 137

5.3. Simulation Phase-1 – Demonstrating the features of CAPS ... 140

5.3.1. Simulated Network Topology... 140

5.4. Analysis of Phase-1 Results ... 141

x

5.4.1. Performance Analysis for VoIP traffic ... 142

5.4.2. Performance Analysis for FTP traffic ... 143

5.4.3. Performance Analysis for P2P traffic ... 145

5.4.4. Performance Analysis for HTTP traffic .. 148

5.4.5. Analysis of Per-RTT Handling of TCP Flows .. 150

5.4.6. Summary of Phase-1 Results .. 153

5.5. Simulation Phase 2 – Evaluation of CAPS for a large scale network 155

5.5.1. Simulated Network Topology for Phase-2.. 155

5.5.2. Traffic Sources ... 157

5.5.3. Traffic Profiles ... 158

5.6. Analysis of Phase-2 Results ... 159

5.6.1. Performance Analysis for ‘VoIP only’ users .. 159

5.6.2. Performance Analysis for ‘FTP only’ users .. 160

5.6.3. Performance Analysis for ‘P2P only’ users .. 162

5.6.4. Performance Analysis for ‘VoIP & FTP’ users .. 163

5.6.5. Performance Analysis for ‘VoIP & P2P’ users ... 165

5.6.6. Performance Analysis for ‘VoIP, FTP & P2P users ... 167

5.6.7. Performance Analysis for HTTP Traffic .. 170

5.6.8. Summary of Large Scale Simulations... 172

6. Discussion and Conclusions ... 173

6.1. Achievements and Contributions .. 173

6.2. Areas for Future Work ... 179

6.3. Concluding Remarks .. 181

References .. 182

Appendices .. 190

Appendix A – Traffic Analysis Data & Scripts .. 190

xi

Appendix B – Modified ns2 Source Code .. 190

Appendix C – Simulation TCL Scripts... 190

Appendix D – Analysis and Processing Scripts .. 190

Appendix E – Publications ... 191

xii

Table of Figures

Figure 2.1: IETF Internetwork Layers and corresponding QoS mechanisms 8

Figure 2.2: TCP Duplicate Acknowledgements following packet loss....................................... 13

Figure 2.3: TCP Reno Congestion Window Evolution. Theoretical (top) and Simulated (bottom)

 ... 15

Figure 2.4: Illustration of bandwidth obtained by TCP and UDP flows 17

Figure 2.5: Throughput achieved by two concurrent TCP connections. 17

Figure 2.6: Observation of cwnd for two TCP flows, a). Short RTT ~ 150ms b). Long RTT ~

300ms... 18

Figure 2.7: Illustration of the distribution of bandwidth between FTP and P2P applications 19

Figure 2.8: Drop Function for Taildrop and Random Early Detection Queues 22

Figure 2.9: Example Diffserv Topology with an expanded view of edge router operations 27

Figure 2.10: TCP responding to AF packet dropping ... 29

Figure 3.1: Cumulative Distribution Function for the size of the Top 100 UK websites 52

Figure 3.2: Cumulative Distribution Function for the number of objects within a web page 53

Figure 3.3: Cumulative Distribution Function for the number of TCP connections established

per webpage ... 54

Figure 3.4: Cumulative Distribution Function for the number of GET requests per TCP

connection .. 54

Figure 3.5: Cumulative Distribution Function for the volume of data per TCP connection 55

Figure 3.6: Cumulative Distribution Function for the Number of packets per TCP connection 56

Figure 3.7: Distribution of video file size for 100 of YouTube's most popular videos 58

Figure 3.8: Tcptrace output for Skype super-node connections with greater than 400 packets

sent ... 67

Figure 3.9: Excerpt of a TCPdump output showing the relaying of UDP packets between two

hosts via Super-node .. 68

xiii

Figure 3.10: Observed incoming data bursts for Spotify application.. 70

Figure 3.11: Established TCP connections over time for 100 BitTorrent transfers (one colour

per connection) .. 75

Figure 3.12: Cumulative Distribution Function for the volume of data uploaded to downloaded

 ... 77

Figure 3.13: Cumulative Distribution Function for connection duration 78

Figure 3.14: Scatter plot for payload sizes of packets from a VoIP call 84

Figure 4.1: Block diagram of the proposed QoS architecture ... 93

Figure 4.2: 3D plot showing decreasing VoIP quality (R-factor z-axis) as a function of delay and

packet loss .. 103

Figure 4.3: Pseudo-code for the novel management of VoIP traffic by the Traffic manager ... 106

Figure 4.4: The impact of increasing loss rate on the payload size and bit rate of Skype packets

using three different codecs. (Image source: (Huang, Huang et al. 2010)) 108

Figure 4.5: Mean Opinion Scores for VoIP codecs for varying bitrates and packet loss (Image

Source: (Skype 2010)) ... 109

Figure 4.6: Pseudo-code for the novel management of Streaming Video traffic by the Traffic

manager.. 113

Figure 4.7: Process of passively estimating the RTT for a TCP flow 116

Figure 4.8: Pseudo-code for the novel management of TCP traffic by the Traffic manager..... 119

Figure 4.9: Integration of the CAPS traffic management system within a Diffserv Edge Router

 ... 122

Figure 5.1: Comparison of Real-World HTTP Request/Response Flow Sizes with Simulated

Equivalents .. 135

Figure 5.2: Queue configuration for Traditional Diffserv and Service mapping 139

Figure 5.3: Simulated Network Topology for Trial A .. 140

Figure 5.4: Average R-factor over time for a G.711 VoIP flow ... 143

Figure 5.5: Average throughput over time for an FTP application ... 144

xiv

Figure 5.6: Average Aggregated Throughput over time for a P2P application 146

Figure 5.7: Average Throughput over time for concurrent FTP and P2P TCP connections 147

Figure 5.8: Distribution of bandwidth between FTP and P2P applications, with and without

CAPS ... 147

Figure 5.9: Cumulative Distribution of HTTP Request-to-completed-Response time (seconds)

 ... 149

Figure 5.10: Heterogeneous TCP flows achieving dissimilar throughputs in Best-effort

conditions ... 152

Figure 5.11: Comparison of Throughput for heterogeneous TCP flows under different policing

mechanisms .. 153

Figure 5.12: Simulated Network Topology .. 157

Figure 5.13: Average R-factor over time for 'VoIP only' users .. 160

Figure 5.14: Average FTP throughput for ‘FTP only’ users ... 161

Figure 5.15: Average aggregated P2P throughput for 'P2P only' users 162

Figure 5.16: Average R-factor over time for 'VoIP & FTP' users .. 163

Figure 5.17: Average FTP throughput for 'VoIP & FTP' users .. 164

Figure 5.18: Average R-factor over time for ‘VoIP & P2P’ users ... 165

Figure 5.19: Average aggregated P2P throughput for 'VoIP & P2P' users 166

Figure 5.20: Average R-factor over time for 'VoIP, FTP & P2P' users 168

Figure 5.21: Average FTP throughput for 'VoIP, FTP & P2P' users .. 169

Figure 5.22: Average aggregated P2P throughput for 'VoIP, FTP & P2P' users 170

Figure 5.23: Cumulative Distribution of HTTP Request-to-completed-Response time (msec) 171

xv

List of Tables

Table 2.1: MOS / R-Factor mappings ... 9

Table 2.2: Performance Metrics for Internet Services .. 10

Table 2.3: ITU-T End-user QoS categories .. 10

Table 3.1: YouTube video resolution and associated bitrates... 59

Table 3.2: Approximate volume of data transferred for streaming videos.................................. 60

Table 3.3: Default configurations for the Top 5 BitTorrent clients .. 73

Table 3.4: Popular VoIP clients and their associated voice codec parameters 80

Table 4.1: Requirements for a Novel QoS Architecture ... 91

Table 4.2: Delay bounds for given varying degrees of packet loss, while maintaining an R-factor

of 75 ... 107

Table 4.3: YouTube video formats and associated bitrate .. 112

Table 4.4: RED Queue Parameters for CAPS architecture ... 126

Table 5.1: RED Queue parameters for Traditional Diffserv Configuration 139

Table 5.2: RED Queue parameters for WRED configuration... 139

Table 5.3: Link Parameters for Phase-1 network topology .. 141

Table 5.4: Number of Packet Drops observed for the FTP traffic .. 145

Table 5.5: Packet drops and average delay for HTTP traffic .. 150

Table 5.6: Comparison of per-Packet and per-RTT Policing Downgrade Events 153

Table 5.7: Link Parameters for Phase-2 Network Topology .. 157

xvi

Acknowledgements

This research was made possible by the funding awarded to me by the France Telecom Orange

Group. I wish to extend my gratitude to the organisation for their support and giving me the

opportunity to conduct the work.

I would like to thank Dr. Bogdan Ghita, my Director of Studies, for first making me aware of

the project funding and for his unconditional support and guidance during the research

programme, without his dedication to me as his student this work would not have been possible,

and for this, I am indebted to him.

I also wish to extend my profound thanks to Professor Paul Reynolds, my supervisor, whose

passion and willingness to help has been truly inspirational. I am sincerely grateful to have been

under his supervision.

I thank my colleagues at the Centre for Security, Communications and Network Research for

their encouragement and friendship throughout the duration of the research.

Finally, I owe my deepest gratitude to my family and Tracey, my girlfriend, for their support

and patience over the past five years. I am sure they thought my life as a student would never

end.

xvii

Glossary

AF Assured Forwarding

AQM Active Queue Management

AS Autonomous System

CAPS Congestion Aware Packet Scheduler

CBR Constant Bit Rate

CIR Committed Information Rate

CWND TCP Congestion Window

DCCP Datagram Congestion Control Protocol

Diffserv Differentiated Servics

DNS Domain Name Service

DSCP Diffserv Code Point

DSL Digital Subscriber Line

ECN Explicity Congestion Notification

EF Expedited Forwarding

FIFO First In First Out

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

Intserv Integrated Services

IP Internet Protocol

ISP Internet Service Provider

ITU International Telecommunications Union

MOS Mean Opinion Score

MPLS Multi-Protocol Label Switching

MSS Maximum Segment Size

xviii

NAT Network Address Translation

P2P Peer-to-Peer

PHB Per Hop Behaviour

PIR Peak Information Rate

QoS Quality of Service

RED Random Early Detection

RIO Red with In and Out

RSVP Resource Reservation Protocol

RTCP Real Time Control Protocol

RTO Retransmission Timeout

RTP Real Time Protocol

RTT Round Trip Time

SLA Service Level Agreement

TCP Transmission Control Protocol

TFRC TCP Friendly Rate Control

TOS Type of Service

UDP User Datagram Protocol

URL Uniform Resource Locator

VoD Video on Demand

VoIP Voice over IP

VTC Video Teleconferencing

WAN Wide Area Network

WRED Weighted Random Early Detection

WWW World Wide Web

xix

AUTHOR'S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award without prior agreement of the Graduate Committee.

This study was financed with funding from the France Telecom Group.

Relevant scientific seminars and conferences were regularly attended at which work was often

presented. Contacts from France Telecom provided technical advice and feedback during the

early stages of the project. Details of the published papers are listed in the Appendices.

Word count of main body of thesis: 50,248

Signed …………………………………………….

Date ……………………………………………….

1. Introduction

The Internet today provides a worldwide delivery network to an ever expanding array of

multimedia enriched services for an estimated 2.2 Billion users (Miniwatts-Marketing-Group

2012). Over the past decade many services have migrated from dedicated delivery

infrastructures towards the Internet. Services such as Voice over IP (VoIP), Video on Demand

(VoD), Video-Teleconferencing (VTC) and online gaming are now highly integrated in the

modern lifestyle. This integration has been further facilitated by the advent of Internet-enabled

mobile phones and mobile broadband for laptops. Historically, users purchased connectivity, a

link between their premises and a service provider’s network, but the ubiquity of the Internet

and reliance on Internet services have changed the requirement from one of solely connectivity

to one with an expectation of the quality of the delivered media.

The Internet Protocol (IP) (ARPA 1981), which was designed over 30 years ago, provides a

best-effort delivery system, simply concerned with forwarding packets from their source to

destination, and any requirement for additional functionality such as end-to-end reliability,

prioritisation, sequencing or flow control must be provided by accompanying protocols.

Traditional applications were not excessively affected by adverse network conditions, packet

loss could be compensated for at a layer higher, which offered a reliable delivery service, for

example the Transport Control Protocol (TCP), and therefore allowed for a best-effort delivery

system from IP. An email could be delayed by a few seconds or the throughput of a file transfer

may have been reduced causing an increase in the download time, but both would have little

impact on the user experience. However, real-time applications demand more from a delivery

network. Real-time applications, traditionally implemented using circuit switched networks,

introduced many challenges when transported by packet switched technologies, with finite

buffer space, multiplexing and queuing. Excessive delay or packet loss during a VoIP

2

conversation would severely impair its Quality of Service (QoS) and therefore, efforts were

needed to improve the best-effort nature of IP to accommodate these new traffic types.

The task of deploying an effective QoS implementation has been argued as a non-issue by some,

who consider that the answer lies in ensuring a network has sufficient capacity to handle all the

traffic that transits it. Indeed, upgrading capacity can be seen as a quick and easy solution to

overcoming a congested network. However, increasing network bandwidth is expensive in

terms of time and money, and should not be seen as a long term strategy to avoid successfully

implementing QoS. , Although core bandwidth capacities are relatively easy to increase, access

technologies such as xDSL and mobile/wireless networks face greater challenges to overcome,

and in the end, a network connection is as fast as the slowest link. From a strictly philosophical

point of view The Tragedy of The Commons (Hardin G. 1968) describes a dilemma whereby a

shared resource is exhausted by a number of individuals who each act in their own short-term

interest. Despite it not being in any of their individual interests or long term aim to deplete the

resource, unmanaged use of the common resource will ultimately lead to its exhaustion. It is

therefore analogised in this thesis that the utilisation of a network will always reach its capacity

and therefore introduce QoS challenges unless managed in an appropriate manner.

In contrast to simply increasing bandwidth, many enhancements to the best-effort performance

of IP for QoS provisioning purposes have been extensively researched over the past 20 years.

While a Type of Service (TOS) field was defined in the IPv4 specification, it has remained

largely unused on the Internet, and as such IPv4 treated each packet to be of equal importance.

Two main philosophies were proposed by the Internet Engineering Task Force (IETF):

Integrated Services (Intserv) (Braden R., Clark D. et al. 1994) and Differentiated Services

(Diffserv) (Blake, Black et al. 1998). The Integrated Services model provides an architecture

that enables network level guarantees in order to provide a requested level of service for a

specific application. However, Intserv requires that each node in the forwarding plane is Intserv

3

enabled, and for each of these nodes to maintain states for each application requiring guaranteed

delivery. These limitations restricted the scalability of the architecture and motivated the

development of Differentiated Services. Diffserv, which classifies packets into levels of

precedence, is currently the most widely accepted approach of providing QoS to IP networks.

Despite the success of Diffserv, may be too static in its configuration to accurately reflect the

changing usage dynamics of the Internet today. Furthermore, the very structure of the Internet

(interconnected Autonomous Systems) inhibits the effectiveness of Intserv and Diffserv beyond

operating within a single Autonomous Systems. In summary, the problem is that while Diffserv

has worked well in environments where traffic profiles can be determined and subsequently

used to tailor the configuration, the rapidly changing usage of ISP customers makes profiling

and configuring QoS policies far more challenging, particularly when following a ‘one-size-fits-

all’ approach. This challenge is further complicated when attempting to satisfy the diverse

requirements of ISP customers while also striving to balance QoS provisioning with fairness

among Internet flows, applications and customers.

It is proposed that an ideal solution would be an architecture that requires no reservation of

resources, but instead be able to dynamically evaluate current traffic flow and adjust resource

allocation as a real-time response to changing network conditions. This would involve a move

away from the static, configuration model of Diffserv, enabling a more user-centric approach to

QoS. The following section expands on this idea and defines the aim and objectives for this

research.

1.1. Aims and Objectives

The aim of this research was to propose and investigate a novel QoS architecture that can

evaluate network conditions and manage application traffic in response to network congestion

from a user-centric perspective (rather than the traditional focus on a single service).

In order to achieve this aim the following objectives should be met:

4

- To review the state of the art for QoS mechanisms, and identify the shortfalls of current

solutions that have limited their success.

- To examine and characterise the properties of a selection of modern Internet services

that together represent the multimedia enriched Internet.

- To propose a novel user-centric QoS architecture aware of the requirements and

behaviour of Internet services, and can make informed decisions to provide an optimum

QoS for all the services in use by an Internet user.

- To investigate the impact of the proposed architecture on traffic and application

performance

- To benchmark the performance of the proposed architecture against the identified state

of the art.

1.2. Thesis Contents

Chapter 2 presents a detailed review of the state-of-the-art of QoS mechanisms. The chapter

begins by considering the need for QoS provisioning, highlighting the impact network

impairments have from both the protocol and end-user perspective, and also the issue of

applications operating in a selfish manner. Having firmly established a need for QoS

provisioning the chapter provides a review of related research and current QoS technologies

operating at the network, transport and application layers of the TCP/IP model. The chapter

concludes by bringing together the merits and shortfalls of these methods, summarising the

motivations for a novel approach to QoS provisioning.

Chapter 3 presents a detailed study into modern day Internet services, consisting of a number of

the most popular Internet services, HTTP, streaming video, streaming audio, P2P services, and

VoIP. Each service is analysed in detail from a packet, flow and application perspective,

identifying how applications today adapt and respond to network conditions. This investigation

reveals not only the characteristics of each service from an operational perspective, but also

highlights the different methods used by content providers to deliver their media.

5

Chapter 4 builds upon the findings of the previous two chapters to reflect and affirm the

motivations for a novel QoS architecture. These motivations are used to produce a detailed

specification of an ideal solution to user-centric QoS, which is then realised in to a pragmatic

specification, which is described in detail and contextualised in a network. A discussion of the

design trade-offs that were made is also provided, highlighting a need for a balance between the

level of control over Internet traffic and the complexity of the overall system. The chapter

continues with a description of the proposed management techniques for VoIP, web, streaming

video, FTP and P2P traffic, using the findings from chapter 3 to ensure synergy between the

operation of a service and its management. The final part of Chapter 4 describes the integrating

and enforcement of the proposed traffic management policies into the Diffserv framework,

which together provides the Congestion Aware Packet Scheduler (CAPS). This part of the

chapter also includes a discussion on the optimal queue design for the architecture, detailed a

number of queuing alternatives that could be used for policy enforcement. Finally, the chapter

describes the approach used for queue scheduling by CAPS, proposing a move away from

priority queuing on the grounds of fairness.

Chapter 5 presents the validation of the CAPS architecture using the ns2 simulation

environment. The chapter begins by detailing the simulation methodology and describes how

the findings from chapter 3 were used to define realistic traffic sources. The validation was

divided into two phases, the first focusing on demonstrating the functionality of the CAPS

architecture for each of the considered traffic types. The performance of CAPS for each traffic

type was then benchmarked against three alternative network configurations, and the results

interpreted and presented. The second validation phase focussed on benchmarking the

performance of CAPS against the three alternative configurations, for a medium-large scale

topology. The chapter concludes with a discussion of the results from both validation phases,

which provided encouraging results that successfully demonstrated the dynamic management of

network resources for user traffic.

6

Chapter 6 presents the key achievements and contributions from this research in the area of QoS

provisioning, and dynamic traffic management. The chapter continues to present areas of future

research that were identified during the project. Finally, a number of appendices are provided as

supported material to the main content, including simulation source code, simulation topology

scripts, analysis script files and published papers arising from the project.

7

2. Quality of Service – The State of the Art

2.1. Introduction

Efforts to improve the best-effort nature of the Internet have approached the problem from many

different perspectives, encompassing every layer of the TCP/IP model (IETF 1989). This

literature survey covers four main areas. Firstly, the discussion focuses on the need for QoS in

IP based networks, which also goes on to provide typical QoS metrics for a range of Internet

based applications, giving insight into how QoS is measured. The section also investigates

changes in application behaviour and expectation are considered, particularly focusing on the

rise of so-called misbehaving applications, such as software that uses peer-to-peer architectures,

which present threats towards network stability.

Secondly, a review of current methods to provide QoS at the link and network layer is provided,

describing many of the difficulties encountered by QoS provisioning solutions.

Following the review of network layer solutions, the chapter leads onto evaluating the transport

layer mechanisms that aim to maintain network stability, through congestion avoidance and

fairness algorithms.

The fourth main section of this chapter describes a number of application layer technologies that

enable services to optimise the QoS delivered to the user in spite of an absence of QoS

mechanisms within the underlying network.

Throughout this thesis network functionality and technologies are referred to as operating at

specific layers. For continuity purposes the layer name and number are clarified in Figure 2.1,

which includes a mapping of QoS mechanisms discussed in this thesis to their respective layer.

The layer naming and numbering conforms with the IETF document defining the

communication layers required for Internet hosts (IETF 1989).

8

Figure 2.1: IETF Internetwork Layers and corresponding QoS mechanisms

2.2. Defining Quality of Service

2.2.1. Quality of Service from the user or service perspective

The resulting application performance of QoS mechanisms is largely a subjective measure of an

individual’s satisfaction for a particular service. For example, the performance of voice services

will primarily be based upon the clarity of the call, requiring a timely delivery of the voice data

packets, which can reproduce clear, comprehensible speech to the receiver. One common

approach to subjectively assessing telephony quality is using the Mean Opinion Score (MOS),

which requires a test subject to rate the quality of a call from 1 (bad) to 5 (perfect). Similarly,

the performance of a video conferencing service relies on a level of synchronicity between the

audio and video streams. For non real-time services, such as web browsing or file downloading,

the overall performance is likely to be judged on how quickly the web-page loads, or the length

of time taken for a file to download.

However, subjectively assessing the quality of a service using either real life subjects or semi-

automated perceptual evaluation techniques, for example the Perceptual Evaluation of Speech

Quality methodology (ITU-T. 2001) is often neither practical nor desirable, and typically

expensive to conduct for the majority of situations. Therefore, a quantitative approach based

upon network parameters that can reflect or describe the subjectively experienced quality is

often more attractive. For example, the performance of a voice service is influenced by not only

9

codec choice but network parameters such as, bit-rate, delay, jitter (variance of inter-packet

arrival times) and packet loss. The performance of video conferencing services rely on the audio

and video streams experiencing similar end-to-end delays, with low jitter, allowing for

synchronicity to be upheld during reassembly at the destination. In contrast, for non real-time

services such as Web browsing or file downloading, the overall performance is the achieved

throughput, which subsequently is a function of packet loss, end-to-end delay, and endpoint-

related parameters.

Closely comparable with the MOS system of subjectively rating a voice call, the ITU-T G.107

E-Model (ITU-T. 2000) offers the ability to rate the performance of a voice call as a function of

quantitative metrics, including packet loss and delay, a reduction of which, suitable for VoIP

calls is given by (Cole and Rosenbluth 2001). The E-Model (and Cole’s reduction) provides an

R-Factor that scores the quality of a voice call between 0 and 100. Table 2.1 provides the

relationship between the R-Factor, Mean Opinion Scores, the experience call quality and the

expected level of user satisfaction.

R-Factor MOS VoIP Call Quality User Satisfaction at lower limit

90-100 4.3-5 Best Very satisfied

80-90 4.0-4.3 High Satisfied

70-80 3.6-4.0 Medium Some users dissatisfied

60-70 3.1-3.6 Low Many users dissatisfied

50-60 2.3-3.1 Poor Nearly all users dissatisfied

Table 2.1: MOS / R-Factor mappings

Equation 1 provides an estimated conversion from R-factor values to the corresponding MOS

values (Reguera, Álvarez Paliza et al. 2008).

1

Table 2.2 provides a summary of typical performance metrics for a number of Internet services.

While this list of services is not exhaustive, it covers a significant proportion of the most

10

popular Internet services in use today, accounting for over 90% of all Internet traffic (Schulze

and Mochalski 2009).

Service Subjective Performance Metrics Quantitative Performance Metrics

Voice call clarity, acceptable delay,

unbroken speech

bit-rate, end-to-end delay, jitter, packet

loss

Video conferencing voice clarity, smooth video,

acceptable delay, synchronicity

between audio and video

bit-rate, steady throughput (video

smoothness), end-to-end delay, jitter,

packet loss, low variance between audio

and video stream arrivals

File downloading time taken to fully download a file packet loss, achieved throughput

Web browsing fast loading of web pages packet loss, end-to-end delay, response

time

Peer-to-Peer time taken to fully download a file packet loss, combined throughput of

incoming flows

Streaming Video smooth playback, no waiting maintained minimum throughput

Gaming smooth in-game motion, low lag delay, jitter, packet loss
Table 2.2: Performance Metrics for Internet Services

Table 2.2 describes the quantitative metrics that impact services, highlighting packet loss and

delay as the two main contributing factors. However, it does not consider sensitivity of the

application to these respective factors. Recommendation G.1010 (ITU-T. 2001) provides a

model for End-user QoS categories Table 2.3, which classifies user activities into four groups,

based upon their sensitivity to delay and whether they are error tolerant or intolerant, which

describes if the service requires 100% of the transmitted data to be received, or if there is

tolerance for data loss.

Interactive

(delay << 1s)

Responsive

(delay ~2s)

Timely

(delay ~ 10s)

Non-critical

(delay >>10s)

Error

Tolerant

Conversational

voice and video

Voice/Video

messaging

Streaming

audio/video

Error

Intolerant

Command/control

(e.g. Telnet,

Messaging,

interactive games)

Transaction based

(e.g. E-commerce,

WWW browsing,

Email access)

Downloads –

FTP, HTTP

Background (e.g.

Peer-to-peer)

Table 2.3: ITU-T End-user QoS categories

11

2.2.2. Quality of Service from the protocol perspective

The previous sub-section introduced delay and packet loss as the two main factors that affect the

performance of a service and its perceived QoS. This sub-section considers the impact that

packet loss and delay have on performance from the perspective of the transport protocol.

2.2.2.1. Impact of network loss and delay on the UDP-based Applications

The simplicity of UDP means that packet loss and delay have no effect on the behaviour of the

protocol itself; rather any effect will only be noticed at a higher level. For example, in the case

of a UDP-based voice service, the loss or delaying of a packet will not impact the manner in

which UDP delivers subsequent packets. However, from the application perspective missing or

excessively delayed packets will impact the playback of the speech to the user, as described in

section 2.2.1. Application layer mechanisms designed to minimise the impact of packet loss for

UDP-based traffic, such as payload redundancy are reviewed later in this thesis in section 2.5.

2.2.2.2. Impact of network loss and delay on the TCP protocol

In direct contrast to UDP, the behaviour of TCP is fully dependant on the delay and packet loss

experienced by the connection. TCP uses the additive increase multiplicative decrease (AIMD)

algorithm (Allman, Paxson et al. 1999) to reach and maintain the maximum throughput

possible, given the available bandwidth. Frequent packet drops or excessive delays inhibit the

growth of the TCP congestion window (cwnd - the number of bytes that are in flight without

acknowledgement), limiting the throughput that can be achieved. Over the years a number of

modifications and improvements to TCP have been proposed and implemented, both for the

congestion control and loss recovery components. Namely, AIMD (Jacobson 1995), CUBIC

(Ha, Rhee et al. 2008) and Compound TCP (Tan, Song et al. 2006) for congestion control, and

Reno (Allman, Paxson et al. 2009), New Reno (Floyd, Henderson et al. 2004) and SACK

(Mathis, Mahdavi et al. 1996) for loss recovery. Little research is known of that describes the

popularity of these components across modern Internet servers, and to this end the description

12

of TCP behaviour that follows is based upon a TCP Reno implementation with AIMD

congestion control, which can be considered a base implementation.

The TCP sender begins with the slow start algorithm, transmitting one segment and then

waiting for its acknowledgement (ACK). Upon receiving the ACK (which describes the next

expected segment. For example, having received the first segment, the receiver would send an

ACK requesting the second segment) for the first segment, cwnd is increased from one to two,

and the next two segments of data are sent. When the sender receives ACKs for these two

segments cwnd is increased to four, and four segments are sent. This behaviour during slow

start provides an exponential growth of cwnd, and continues until cwnd reaches the pre-defined

threshold of ssthresh, or the advertised receiver window. If loss is inferred before cwnd reaches

either of these thresholds then ssthresh is set to half of cwnd at the time loss was detected.

The sender infers that loss has occurred if three duplicate acknowledgements are received or if

the retransmission timeout (RTO) expires. A duplicate acknowledgement occurs when the

sender receives an acknowledgement for a segment, numbered lower than the last transmitted

segment. Figure 2.2 illustrates this process.

13

Figure 2.2: TCP Duplicate Acknowledgements following packet loss

The second method that a TCP sender may use to infer that loss has occurred is using a

retransmission timer (RTO), which is estimated by the sender using the Round Trip Time (RTT)

– the time taken for a segment to be sent and for its associated ACK to return to the sender. At

the start of a TCP connection, (prior to the sending being able to estimate the RTT), the RTO is

set at 3 seconds. Upon the sender receiving an ACK the RTT measurement R can be made, from

which a value for RTO is calculated using Equations 2, 3 and 4, where SRTT is the smoothed

RTT, G is the minimum value for RTO and k is set to 4, (Paxson and Allman 2000).

 2

3

 4

14

Following the subsequent RTT measurement R , the sender uses the following formula to

calculate RTO, where α = ⅛, β = ¼ , G is the minimum value for RTO and k remains at 4.

) 5

 6

 7

Using these two methods of loss inference the slow start algorithm (shown in Figure 2.3),

increments cwnd for each received acknowledgement, until either packet loss is inferred or

cwnd reaches the advertised receiver window. If packet loss is inferred before cwnd reaches the

advertised receiver window then the current value of cwnd is recorded as ssthresh and TCP will

restart the slow start algorithm until ssthresh is reached again, after which it will enter

congestion avoidance and cwnd is increased each RTT (providing a linear growth, rather than

exponential). There are many variants of TCP, but TCP Reno is the most widely deployed,

therefore the following description refers to the behaviour of TCP Reno. If three (or more)

duplicate ACKs are received by the sender while in congestion avoidance, the sender employs

Fast Recovery setting cwnd to half of ssthresh and retransmitting the lost packet without waiting

for RTO to expire (Fast Retransmit). The connection will remain within congestion avoidance,

increasing cwnd each RTT, and avoiding resetting cwnd to the initial value. However, if the

sender fails to receive an ACK for a segment prior to RTO expiring (i.e. if the ACK is lost),

cwnd is reset to the initial small value and the connection must restart from slow start again.

This behaviour is illustrated in Figure 2.3-a, where the impact of RTO expiring can be seen to

be far greater than the sender response to receiving three duplicate ACKs.

15

Figure 2.3: TCP Reno Congestion Window Evolution. Theoretical (top) and Simulated (bottom)

From Figure 2.3-b
1
 the congestion window is shown to increase exponentially at the start of the

connection, increasing until packet loss occurs. Following this loss cwnd is reduced to half of

the maximum value before loss occurred and the connection enters congestion avoidance,

1
 The simulated representation of the TCP congestion window was produced using ns2 (ns2, 2010). A

simple topology was used, including a traffic source and destination, coupled with an intermediate node,

which was configured with a loss-module, enabling controlled packet loss to model the TCP cwnd.

16

continuing to increase cwnd but linearly as opposed to exponentially, until just after 10 seconds

another loss occurs. At this point cwnd is again halved as TCP enters Fast Recovery, still

increasing cwnd linearly by 1 MSS for every ACK received. Over the course of the transmission

a number of subsequent packet drops can be seen, which consequently result in cwnd being

reduced by half each occurrence.

Furthermore, it is noted that during the slow start the performance of the connection can be

severely degraded if loss occurs. As discussed, the loss of a data packet during slow start will

cause cwnd to be reset back to the initial value; however, even more detrimental to the

connection performance during slow start is the loss of an ACK. In such a case, the sender

would be required to wait for the expiration of RTO, which during slow start is unlikely to have

been accurately smoothed towards the RTT, and may be as great as 3 seconds. For an

exceptionally lossy link, repeated losses of ACKs may introduce substantial delay, and

drastically impair the user experience.

The steady-state behaviour of TCP Reno has been described mathematically by, (Padhye, Firoiu

et al. 2000). Provided in equation 8, Padhye et al. show the relationship between the sending

rate of the connection T, given a loss rate p, a TCP retransmit timeout value of TRTO and a packet

size of s.

 8

2.2.2.3. The Issue of Fairness

It is widely accepted that self-limiting sources, such as TCP, will achieve a far lower throughput

when competing against high-throughput unresponsive flows, such as UDP. This effect is

illustrated in Figure 2.4, which shows the result of a simulation (as per section2.2.2.2, these

simulations were also conducted using the ns2 simulator (ns2 Network Simulator 2010)) of two

homogeneous TCP flows obtaining an equal share of bandwidth (graph on the left), and

conversely the graph on the right shows that a high-throughput UDP flow maintains a

17

disproportionate share of the bandwidth due to the lack of a mechanism to throttle back the

transmission rate when congestion is detected within the network. Recently proposed congestion

controlled alternatives to UDP at the transport layer are reviewed later in this study (section

2.4.1).

Figure 2.4: Illustration of bandwidth obtained by TCP and UDP flows

However, the problem of unfairness is not limited to between responsive and unresponsive

flows. From the description of TCP behaviour in the previous section it can be appreciated that

two flows with different RTTs will achieve different throughputs, since the flow with a smaller

RTT will increase cwnd more rapidly, given the potentially higher rate ACKs will be received.

Furthermore, two TCP clients with different advertised windows will also achieve dissimilar

throughputs. Figure 2.5 and Figure 2.6 illustrate this unfairness between heterogeneous TCP

connections.

Figure 2.5: Throughput achieved by two concurrent TCP connections.

a). Homogeneous flows b). Heterogeneous flows (different RTTs)

18

Figure 2.6: Observation of cwnd for two TCP flows, a). Short RTT ~ 150ms b). Long RTT ~ 300ms

Recognising the impact that heterogeneous path characteristics have on protocol performance is

discussed throughout this thesis, specifically when attempting to control Internet flows

proportionally to their achieved throughputs.

2.2.2.4. Changing Traffic Dynamics

The increasing threat posed by unresponsive transport protocols was addressed in the previous

section. However, the popularity of Peer-to-Peer (P2P) distributed architectures has placed an

additional demand on networks. P2P technologies have been primarily promoted by file sharing

applications and assisted by the increased availability of residential broadband Internet access.

As a result, in 2009 P2P was reported to account for almost 70% of all Internet traffic (Schulze

and Mochalski 2009). In recent years the dominance of P2P has drastically declined to around

20% of Internet traffic, making way for Video on Demand (VoD) services, which overtook P2P

as the largest contributor of Internet traffic in 2010 and represented 25-40% of all traffic in 2011

(Sandvine 2011). This shift in trend is possibly due to the instantaneous nature of VoD services,

whereas media acquisition via P2P allows for storage and replay, VoD requires a download-per-

view. However, despite this decline, P2P still represents approximately 20% of all Internet

traffic, and due to its aggressive nature is still considered highly relevant when addressing QoS

for the Internet.

Within P2P architectures, all participants (peers) act as both providers and consumers of

resources (these resources include but are not restricted to, processing power, bandwidth,

available memory or data), the P2P model contrasts with traditional client-server architectures.

19

In the context of P2P-based file sharing, peers take advantage of large numbers of participants

having an identical copy (or portion) of a file. Using a P2P architecture peers can exploit these

multiple copies of a file in multiple locations to potentially achieve a greater throughput than

would be possible under a traditional client-server model. P2P-based file sharing applications

open numerous TCP connections with other peers and begin downloading pieces of the file from

these peers. As a user obtains more and more pieces of the file being downloaded, it too will

begin to upload these pieces to other peers, thus creating a swarm of peers exchanging pieces of

a file. The behaviour of P2P applications is looked at more closely in section 3.4 with a detailed

study of the most popular P2P file sharing protocol, BitTorrent and also P2P properties of other

P2P-based applications.

The behaviour of P2P-based applications raises significant concern over the assumption that

TCP-based applications operate fairly with coexisting traffic. Even if each TCP flow shares

similar parameters (RTT, RTO, Wmax and packet loss), and hence should behave relatively fairly

to each other, at the application level, P2P-based systems obtain a far greater share of the

network bandwidth compared with applications that only establish single TCP connections,

Figure 2.7 illustrates this scenario.

Figure 2.7: Illustration of the distribution of bandwidth between FTP and P2P applications

To further threaten network stability, P2P-based applications are also claimed to use UDP for

signalling purposes(John, Tafvelin et al. 2008), which, while are typically very short (less than 3

packets), still contribute to the rising volume of unresponsive Internet traffic.

20

In addition to obtaining an unfair share of the bandwidth over other applications through

multiple TCP connections, the rise of P2P has changed the direction of bandwidth demand from

heavily asymmetrical to a more symmetrical model, however, consumer connections have

remained largely unchanged in design.

2.2.3. Summary of Quality of Service Introduction

This section has introduced the performance requirements of a selection of Internet services, and

how these can be mapped to network parameters. It is highlighted that the dissimilar

requirements of Internet services conflict with the uniform forwarding of IPv4, and therefore the

need for an enhanced service that can take into account an applications needs is clear.

This section has described in detail the relationship between the throughput of a TCP connection

and the experienced delay and packet loss. This relationship was further examined to

demonstrate how the performance of TCP flows with different properties (RTT, RTO, p and

duration) varies greatly, highlighting the need to consider the application as well as the protocol

requirements when provisioning for QoS.

The following sections of this chapter review the current methods of QoS provisioning at the

network, transport and application layer, in order to satisfy the QoS requirements of Internet

services, as described in this section.

2.3. Current methods of QoS Provisioning at the Network Layer

This evaluation of QoS provisioning at the network layer covers four main areas of interest:

router queuing models, end-to-end QoS solutions such as Integrated and Differentiated services,

QoS aware packet routing, and traffic management techniques, such as traffic shaping and

policing.

2.3.1. Queuing Models

Packet loss in under provisioned packet switched networks (where under provisioned is defined

as total throughput of flows being greater than bottleneck capacity) is unavoidable given the

21

finite nature of buffers (queues) within network nodes. The impact of packet drops on

application and protocol performance were introduced earlier, however, the nature of the drops,

which are ultimately determined by the queuing models used within the network, were not

considered. This section of the thesis provides an overview of queuing models that are

commonly used within networks. Within this section each queuing model is simply described, a

discussion of the best queuing model for the novel architecture is given later in the thesis

(section 4.9.1).

The most simplistic queuing model that can be implemented is the First In First Out (FIFO)

queue, also known as a taildrop queue. As the name suggests, arriving packets enter the queue

sequentially, dequeuing in the order of their arrival. As the simplest queuing model available,

taildrop is often cited as the most widely implemented queuing model in Internet routers

(however, no definitive study has been identified to confirm this assumption). Although simple

in its design and operation, in the event of persistent congestion a taildrop queue can result in

higher delays and prolonged periods of congestion, furthermore when the queue reaches

capacity packet drops can occur in bursts. This bursty packet loss can be detrimental to protocol

performance, in particular causing TCP global synchronisation. This term describes a scenario

when a number of TCP connections sharing a mutual congested link experience simultaneous

packet loss and all suspend transmission together, and then restart transmission simultaneously,

causing the network to oscillate between under-utilised and congested. Furthermore, taildrop

queues do not implement any form of traffic precedence, which may lead to low priority packets

remaining in the queue, while packets from higher priority services are dropped due to

congestion. In response to these shortfalls of using taildrop queues a number of alternative

queuing models have been developed over the past 20 years.

Random Early Detection (RED) (Floyd S. and Jacobson V. 1993), is an Active Queue

Management (AQM) algorithm that was proposed to provide early warning to end hosts that the

network is congested and that they should reduce their transmission rates. The theory behind

RED suggests that early notification of congestion can prevent the queue from reaching its

22

maximum capacity and hence addresses the bursty loss effect of a congested Taildrop queue,

which would also prevent the global synchronisation of TCP connections (given that TCP

connections would share the same cwnd evolutionary state at the same time). A RED queue is

configured with two thresholds, MinThres and MaxThres, where MaxThres is less than the size

of the queue. The RED algorithm computes the moving average queue size avg. If avg is less

than MinThres then packets are forwarded as per usual, if avg lies between MinThres and

MaxThres the router calculates the Pb , which varies linearly between 0 and Maxp where Maxp is

the maximum value for Pb. Equation 9 summarises the packet drop probabilities for RED, and

Figure 2.8 illustrates the drop functions for the Taildrop and RED queuing algorithms.

 9

If the average queue size is greater than MaxThres then all arriving packets are dropped. The

probability of dropping a packet is described as being approximately proportional to the flow’s

share of bandwidth, and is more evenly spaced compared with Taildrop, which prevents global

synchronisation.

Figure 2.8: Drop Function for Taildrop and Random Early Detection Queues

23

A well documented challenge when using RED queues is how to choose the optimal parameters

for the traffic in question (Lin and Morris 1997; Firoiu and Borden 2000; Floyd S., Gunmamadi

R. et al. 2001). Tuning the values of minth, maxth and maxp is a task left to the network operator,

but whether or not typical queue lengths are known is questionable; setting minth too low will

inadvertently trigger premature packet drops; setting it too high may render the RED

implementation ineffective. Furthermore, Floyd and Gummadi discuss that setting maxp too low

can results in reduced utilisation as fewer flows packets are dropped as a result of early

detection and many drops occur once maxth has been reached. Floyd and Gummadi also discuss

in their 2001 paper that the queue averaging coefficient needs to be considered when trying

optimise the averaging function; if calculated too often then the avg will reflect the queue for a

fraction of a RTT and not be fully representative of TCP behaviour. In light of these challenges,

Floyd and Gummadi proposed Adaptive RED, which adjusts the value of maxp dynamically in

order to maintain the avg halfway between minth and maxth. Adaptive RED also includes a

mechanism to smooth packet drops when avg exceeds maxth; Gentle RED (Floyd S. 2000)

varies the drop probability linearly between maxp and 1 when maxth < avg < 2 x maxth, rather

than immediately being set to 1.

As an extension to the RED queuing algorithm, Explicit Congestion Notification (ECN) was

proposed to inform end hosts of congestion rather than simply dropping packets and allowing

the end host to infer congestion (Ramakrishnan, Floyd et al. 2001). ECN requires both end-

points to recognise when the ECN flag has been set in the TOS field within the IPv4 header.

Despite the potential gain in network stability, ECN has failed to be deployed on a large scale.

A paper by (Matowidzki 2003) discusses some of the reasons for the poor deployment of ECN,

which in 2004 was employed by just 2.4% of servers worldwide, (Medina, Allman et al. 2005).

Matowidzki describes one limiting factor as the possibility for misbehaving end-points to ignore

ECN flags and not respond to congestion notification, which, without the ability to enforce ECN

response, raises concerns over whether ECN is worth the deployment challenges. A second

24

remark from Martowidzki’s article suggests a change in the Internet pricing model, from a best-

effort model to a QoS orientated model, whereby service level agreements (SLA’s) are the basis

upon pricing schemes. If such a change in Internet model were to be fully implemented then

difficulties may arise as to how services should be charged for in the event of ECN flags being

set. For example, with ECN flags having been set it can be assumed the network is facing

congestion, therefore there is a highly probable possibility for degradation in service quality,

and therefore the question of whether a reduction in services charges is applicable is raised. A

major shortfall which can be attributed to the poor widespread deployment of enhancements of

established protocols such as ECN proposed to IP is highlighted by (Kuzmanovic 2005),

suggesting that if ECN was deployed incrementally across the Internet how should ECN flagged

packets should be treated when multiplexed with packets from sources not supporting ECN to

ensure a fairness between ECN-capable clients/servers and those not supporting the feature.

RED addresses the problem of bursty loss and global synchronisation of TCP flows however, it

does not offer the ability to provide precedence or QoS to specific traffic types, Weighted-RED

can provide such functionality. In principle Weighted-RED operates in exactly the same manner

as RED, but allows the use of the precedence field (TOS) within the IP header to influence the

drop probabilities of the queuing packets. Using the TOS field a router can offer a higher drop

probability to less favoured services while protecting preferred packets. Weighted-RED is

available on commercial routers from Cisco Systems.

2.3.2. Integrated Services (Intserv)

As introduced briefly in the previous chapter, Intserv (Braden R., Clark D. et al. 1994) was one

of two key philosophies for providing QoS to IP networks proposed by the IETF. Intserv,

focuses on the explicit reservation of network resources between a source and destination. Every

router between source and destination is required to implement Intserv, and each application

requiring a level of QoS must request its own resource reservation. This resource reservation is

performed using a flow specification (Flow Spec), which is distributed throughout the network

25

using the Resource Reservation Protocol (RSVP). Given that the resource reservation is

requested by the application, the information within the Flow Spec very accurately describes the

nature of the traffic. A Flow Spec consists of two elements, a TSPEC and an RSPEC. The

former describe the traffic characteristics from a token bucket perspective, for example the

expected packet rate of the service (token rate) and its burstiness (token bucket depth). The

latter, the RSPEC, describes the type of reservation required, for which three options exist;

Best-effort, Controlled Load and Guaranteed. Best-effort, as the name suggests provides no

explicit resource reservation, and the flow is subject to the same handling as it would receive in

a non-QoS network. Controlled load ensures the flow receives a better-than-best-effort service,

analogous of a lightly loaded network, likely to experience low delays and infrequent packet

loss. The Guaranteed service provides bounded delays and zero packet loss, designed primarily

for sensitive real-time services such as VoIP and Video conferencing.

While Intserv proved feasible on small-scale networks, maintaining flow states within routers

restricted its deployment on the Internet at a time when the growth of the Internet was rapidly

increasing. The explicit end-to-end reservation of resources introduces the need for each

intermediate node to support Intserv, and further still maintain a state for each application

requiring a guaranteed service. This design is cumbersome at a medium scale, but in the case of

the Internet, the end-to-end path will almost certainly cross multiple Autonomous Systems;

being able to maintain Inter-AS states on every node from source to destination is simply not

implementable. Various modifications to aggregate resource reservations at the network edge

were proposed, including (Bernet, Ford et al. 2000; Baker, Iturralde et al. 2001), however, the

focus of providing QoS had shifted away from per-flow handling, towards per-aggregate.

2.3.3. Differentiated Services (Diffserv)

In contrast to the high granularity of the Intserv model, the IETF proposed Differentiated

services (Diffserv) (Blake, Black et al. 1998), which featured a lower granularity than Intserv,

adopting a class-based traffic management mechanism for a per-aggregate handling. Diffserv is

26

typically configured to provide two Per-Hop Behaviour groups traffic, Expedited Forwarding

(EF) (Davie, Charny et al. 2002) and Assured Forwarding (AF) (Heinanen, Baker et al. June

1999), in addition to the standard best-effort delivery of IP. Expedited Forwarding provides

guarantees on delay, jitter and loss parameters and also queuing priority, while AF provides

guarantees on packet loss and throughput, providing the traffic source stays within a committed

information rate (CIR).

The Diffserv architecture adheres to the original design principle of the Internet, maintaining

intelligence at the edge of the network, and simplicity within the core. Diffserv edge routers are

responsible for four primary functions: classifying, metering, marking and shaping incoming

traffic flows.

- Packet classification is performed by examining information within the protocol

headers. Attributes used for classification include port numbers (application type),

protocol type, source/destination addresses and layer 7 application signatures, identified

through the use of Deep Packet Inspection (DPI). A combination of the use of port

numbering and DPI recognition is the most common technique used.

- Flows classified as belonging to the AF PHB are also metered by the edge router to

determine if they are conforming to the CIR, describing those packets within the CIR as

in-profile (IN), and those beyond the CIR as out-of-profile (OUT).

- The marker component marks each packet with an appropriate Diffserv Code Point

(DSCP) based on its classification and whether it is IN or OUT. The DSCP is stored in

the Type of Service (TOS) field of the IP header, describing the PHB that the packet

belongs to and its required precedence level.

- For flows not conforming to their CIR, packets may be passed through a traffic

conditioner to shape the transmission rate of the flow, or in the event of congestion,

drop OUT packets.

Figure 2.9 illustrates an example Diffserv topology, where an edge router connects a Diffserv

domain to the core network. The operations of an edge router are expanded for clarity. It should

27

be noted that DSCP markings of incoming packets are untrusted and are subject to re-marking

by the edge router.

Figure 2.9: Example Diffserv Topology with an expanded view of edge router operations

The core routers are responsible for forwarding packets to their destination based upon the PHB

described by the DSCP.

Diffserv allows network administrators to define their own traffic classification and forwarding

policies for use within their own administrative systems, giving priority to the traffic that they

deem to be the most important. However, it is normally recommended that the EF PHB is used

for real-time services (such as VoIP) in order to meet the stringent QoS requirements of such

services.

The AF PHB was designed for elastic traffic, providing a guaranteed throughput to a flow,

provided it remains within its target throughput. AF can be configured for individual application

flows, or to manage flow aggregates. Examples of applications that may use this PHB are

streaming video and predictable periods of prolonged file transfer, i.e. overnight backups. The

AF PHB uses RED queues with IN and OUT (RIO) (Clark and Fang 1998), to provide

28

protection to IN packets and if necessary drop OUT packets. The AF PHB supports a maximum

of four traffic classes, with each class featuring a maximum of three levels of drop precedence.

It is common practice to use the three-colour system to describe IN packets as green, and OUT

packets as yellow and red, providing two degrees of dropping for OUT packets (thus utilising

three levels of drop precedence).

While the configuration of a Diffserv network is left to the discretion of the network

administrator, guidelines have been provided based upon the ITU-T recommendation G.1010

(ITU-T. 2001). Using these ITU-T recommendations, (Babiarz J., Chan K. et al. 2006) present a

suggested order of precedence for IP traffic within a Diffserv network, in descending order of

precedence; Telephony, Real-time interactive, Broadcast video, Streaming multimedia, High-

throughput data and Standard (all other traffic). This recommendation for QoS is considered

flawed in a number of aspects, firstly, for those users not using premium services their traffic

may not receive a fair allocation of network resources. Secondly, providing QoS from solely an

application / class perspective does not consider a user’s concurrent activities and therefore the

quality of the overall user experience is not considered, only that of the favoured services.

2.3.3.1. Adaptive Diffserv markers

Despite not considering the overall user experience the EF PHB satisfies the requirements of

real-time services well, however, the suitability of the AF PHB for TCP traffic has been the

topic of much controversy over the past decade (Seddigh, Nandy et al. 1999; Lochin and Anelli

2009).

This concern stems from two main issues, firstly a lack of awareness by TCP as to whether a

packet is IN or OUT. If a TCP connection is exploiting excess bandwidth that is available on the

network, all packets beyond the CIR of a flow are marked as OUT. If the network then becomes

congested, these OUT packets have a high probability of being dropped, and hence TCP will

consequently reduce its throughput. However, TCP has no knowledge that these packets were

opportunistically exploiting excess bandwidth, and therefore simply responds as normal by

29

reducing its throughput, possibly below the CIR and hence incurring a delay while cwnd

increases again and the throughput is allowed to return to the CIR.

Figure 2.10: TCP responding to AF packet dropping

The second issue that is claimed to limit the effectiveness of AF provisioning for TCP is the

marking process, a topic that has been the subject of much research over recent years. The

standard DSCP marking process is argued to operate in a way that does not reflect the dynamics

of TCP, raising concerns of fairness, which has led to efforts focussing on how the marking rate

should be proportional to the throughput, target rate, packet loss, RTT and Wmax.

Motivated by these shortfalls, many enhancements to the marking algorithm have been

proposed, aiming to control the number of losses of OUT packets proportionally to the

throughput of the flow, by adjusting the probability of marking a packet as OUT. The majority

of this work has enhanced the Two Rate Three Colour Marker (TRTCM) and the Time Sliding

Window Three Colour Marker (TSW3CM) – the two standard Diffserv marking schemes.

TRTCM is based on the token bucket, determining if a packet is IN or OUT based on four

service parameters; CIR, Committed Burst Size (CBS), Peak Information Rate (PIR) and Peak

30

Burst Size (PBS). The TSW3CM marks packets probabilistically as a function of the estimated

throughput of the parent flow and the agreed CIR and PIR.

An early improvement to an enhancement of both TRTCM and TSW3CM was given by (Yeom

and Reddy 2001), who propose a marking algorithm that dynamically adjusts the target rate of a

flow given the current network conditions. The algorithm reduces or increases the target rate of

the flow when the network is respectively over or under subscribed, managing the proportion of

IN and OUT packets given the current network conditions. A similar proposal was the

Enhanced Time Sliding Window Three Colour Marker (ItswTCM) (Su and Atiquzzaman 2003),

which marks packets in proportion to the CIR of the flow. Similar to the proposal by Yeom and

Reddy this algorithm improves on the sharing of excess bandwidth compared with the standard

TSW3TCM algorithm. A number of modified versions of ItswTCM have also been recently

proposed (Elshaikh, Othman et al. 2008; Sudha, Maddipati et al. 2008) each improving upon

the fairness achieved among TCP aggregates, and the latter considering fairness between TCP

and UDP flows, which is achieved through a more aggressive marking probability for UDP

traffic. However, none of these proposals consider the effect heterogeneous TCP flows have on

the respective marking algorithms, for example flows with different RTTs, and therefore the

effectiveness of these algorithms in real networks with highly varied flows is questionable.

Extensively building upon the work outlined above, is a proposal from (El-Gendy and Shin

2003). The Equation Based Marker (EBM) uses the TCP throughput equation presented by

(Padhye, Firoiu et al. 2000), which was presented in 2.2.2.2. Gendy et al. Use the inverse of

Padhye’s TCP equation to provide their algorithm with the loss probability needed to control a

TCP flow at a specific throughput. The EBM algorithm requires an estimate of the RTT and T0

for each flow, which is determined using TCP timestamps within the TCP header. Also

estimated by EBM is the current loss probability of the network, measured by counting loss

events within a period of time. Observing a loss event is relatively easy in the case of loss being

inferred by three duplicate ACKs, but the authors fail to describe a method to identify packet

loss that triggers a timeout. Gendy also suggests that TCP flows and UDP flows should not

31

experience the same management techniques, given that TCP is responsive and UDP is

unresponsive. It is proposed that two queues, one for TCP traffic and a second for UDP,

combined with a weighted round-robin scheduler to service each queue proportionally based on

the CIRs of the flows in each queue. Despite vastly improving on the fairness and accuracy of

alternative markers, the algorithm remains an incomplete solution. Padhye’s TCP equation

models only TCP connections in steady-state - that is those which have exited slow start and are

in congestion avoidance. Furthermore, Padhye’s equation models the behaviour of TCP Reno,

which, while among the most popular TCP variants implemented today, would require the

algorithm to either be able to detect alternative TCP implementations and adapt its marking

accordingly, or provide sub-optimal marking to non Reno flows.

Another proposed improvement to the Assured Forwarding PHB from recent years focuses less

on attempting to integrate a TCP-like model into the marking algorithm, but instead aimed to

protect the packets of a TCP flow during so-called vulnerable periods, i.e. during slow-start and

fast recovery. (Mellia, Stoica et al. 2003) present two main implementations of the TCP-aware

algorithm, firstly modifying the TCP stack of the host, and secondly at the ingress of an edge

router. Acknowledging the difficulties in deploying changes to the TCP stack the router-based

implementation is considered the most feasible in reality. However, assumptions are made by

the router-based implementation as to the value of ssthresh and cwnd. While the results

presented show a notable improvement in the completion times for short-flows, and a reported

20% increase in the throughput of long-flows, the entire study focused heavily of web-like

traffic, with the longest flow being 90kB (158 packets). A similar proposal to achieve QoS for

HTTP traffic within a Diffserv network is given by (Alcaraz, Gilly et al. 2007). A three colour

marking algorithm is described that provides preferential treatment to short flows over medium

and long flows, which reduces the probability of packet loss to vulnerable short flows.

32

2.3.3.2. Dynamic Diffserv Proposals

In contrast to these recommended guidelines there have also been dynamic, user-oriented

Diffserv configurations proposed within research. (Kung and Kuo 2006) and (Molnar and Vrba

2008) present similar concepts that introduce a user interface to the Diffserv architecture. The

framework presented by Kung et al. describes the configuration of traditional Diffserv from a

very similar perspective given by this thesis, largely too static and detached from the end-user’s

perception. To address this problem, Kung et al. propose a hybrid framework that combines

Intserv Local Area Networks (LANs) with a Diffserv Wide Area Network (WAN). The

framework also provides a user interface that allows the user to request a specific level of

service for each of their individual applications. The granularity of this request can vary

depending upon the technical knowledge of the user, ranging from a basic four colour traffic

classifier (Premium, Gold, Silver and Bronze), to specifying high level information such as

audio sampling rate. The framework then negotiates the required resources using Intserv/RSVP

within the network in order to guarantee the QoS for the user’s application, and mapping the

specified application requirements to the “most appropriate” Diffserv traffic class. Molnar et al.

again argue that traditional Diffserv is too static in its configuration, and that the edge router

may fail to correctly classify user traffic to the desired traffic class. To address this problem, a

framework is presented that utilises the Simple Network Management Protocol (SNMP) to

retrieve the Diffserv traffic classes from the network, and presents them to the user, outlining

the DSCP value, minimum guaranteed throughput, maximum tolerated throughput, packet

treatment for out-of-profile packets and the relative priority compared with alternative classes. It

is proposed that using (some or all of) these parameters a user can have more control over their

traffic, ensuring it receives the treatment they consider most appropriate. A similar proposal is

made by (Schumacher, Dobler et al. 2010), whereby a mobile end system estimates the

perceived quality of experience for the current services using the current network connection,

and then the user is requested to confirm this estimate by rating their experience. This rating is

33

then used to determine if an alternative network connection (i.e. 3G, UMTS, WiFi etc) could

provide an improved QoE.

However, whilst these concepts do attempt to move away from the traditional static Diffserv

configurations, a number of limiting factors can be identified. The first limiting factor is that

both proposals require a degree of user interaction, which on one hand does allow for a more

user-centric approach to be adopted but also may be intrusive for the user while potentially

introducing an element of confusion for inexperienced users if asked to configure their QoS

settings. Aside from requiring explicit user interaction both of these proposed frameworks

consider Intra-domain networks, and do not consider the additional complexities of provisioning

for QoS on the wider Internet where end-to-end control of the network is not possible.

Furthermore, both proposals are realised in networks that are able to accommodate user traffic

without considering the additional complexities of an over-subscribed network or a scenario

when the requested level of service could not be guaranteed by the network.

A recent proposal (Cruvinel and Vazao 2011) describes an adaptive Diffserv architecture, in

which core Diffserv routers periodically inform edge Diffserv routers of their queues utilisation.

If congestion is detected by an edge router, and it [the edge router] is responsible for forwarding

a large volume of traffic towards the core then the edge router may adjust its Diffserv policies to

reduce the allocation of resources to non-priority traffic. Conversely, once the periodic reports

from the core indicate utilisation levels have subsided, the edge router may once again increase

the resource allocation for non-priority traffic. Although this research advocates a more

dynamic Diffserv configuration, it does so at an aggregate coarse granularity, and with no

regard for user fairness.

2.3.4. Multi-Protocol Label Switching & Diffserv Integration

While not strictly a network layer technology, the Multi-Protocol Label Switching (MPLS)

standard, a label based core-network switching technology boasts QoS and traffic engineering

capabilities. The marking of IP packets performed by Diffserv edge node (using the DSCP field)

34

can be upheld within an MPLS core, as defined by (Heinanen J., Le Faucheur et al. 2002). Two

proposals are described to aggregate the marked Diffserv packets into appropriate MPLS

tunnels. Firstly, Label inferred LSP (L-LSP) suggests a predefined 1:1 mapping from DSCP

values to MPLS labels. The label value is the only factor in defining the scheduling class for the

packet when aggregated into a MPLS tunnel. The use of L-LSP theoretically allows for 64

different L-LSPs to be defined (bound by the DSCP field size), although the likelihood of

having 64 distinct QoS classes is doubtful. An alternative approach of mapping Diffserv QoS

provisioning into MPLS LSPs makes use of the experimentation (EXP) field within the MPLS

header. EXP-Inferred-PSC LSPs (E-LSPs) provides eight distinct labels to mark packets

according to the DSCP value. The EXP value is used by transit nodes to determine the per-hop-

behaviour of packets within the LSP. The latter alternative has in recent years proved to be the

widely implemented option, offering the ability for devices at the edge of an MPLS network to

map the DSCP value of incoming IP packets into one of eight EXP values, for use over the

MPLS core. This coarse granularity of QoS across the core of a network further advocates the

practise of class-based QoS, and promotes a move away from a user-centric approach.

2.3.5. QoS Routing

In addition to the above solutions that provide QoS to IP networks, a smaller number of

alternative efforts have been made to enhance the routing of IP packets. One such method

proposed is to include QoS constraints within the parameters used during routing decisions

(Crawley, Nair et al. 1998). Extensions to the interior routing protocol OSPF were suggested

which facilitated QoS-informed routing decisions, (Apostolopoulos, Williams et al. 1999). For

example, if an application has a low delay budget, then a router aware of the delay on each

connected link could make an informed decision on the path packets should be sent along.

However, the scalability of monitoring path properties such as bandwidth, delay and utilisation

coupled with propagating these properties amongst neighbouring routers has limited such

proposals from achieving widespread success. This method of QoS provisioning is further

35

restricted when considered for an ISP network, where much of the traffic will be requested from

devices external to the ISP’s Autonomous System, and therefore from locations which are

unlikely to be operating within the same IGP domain, thus making IGP cost parameters

unavailable for external traffic sources.

2.3.6. Traffic shaping

Due to the complexity of Internet peering arrangements many Internet Service Providers (ISPs)

choose not to implement dedicated QoS infrastructures on their networks such as Intserv or

Diffserv. Instead, they opt to implement traffic management techniques that control the traffic

entering their network. Based on summaries of UK ISPs (Kitz.co.uk 2009; Vuze 2010), it is

apparent that many implement a form of traffic shaping to control the traffic on their network.

For those offering “Quality of Service” or prioritised services a form of traffic shaping is

performed using Deep Packet Inspection (DPI) coupled with class-based forwarding. Although

DPI operates beyond the network layer (typically focussing at the transport and application

layer parameters) the device and data forwarding are performed at the network, hence the

inclusion of such techniques within this section of the thesis.

These traffic management techniques aim to alleviate many of the concerns raised by

unresponsive traffic (specifically P2P), enabling ISPs to gain a level of control over the traffic

on their network. For example, BT (the ISP with the largest subscriber size in the UK

(ISPReview 2010)) admit to controlling the usage of P2P traffic at their discretion, depending

on network conditions (information retrieved from “BT Total Broadband Fair Usage Policy”

(BT 2012)). BT are not alone in taking this view of P2P traffic, six of the UK’s top ten ISPs (as

listed in (ISPReview 2010)) are reported to implement a form of traffic shaping against P2P

protocols, according to information from on the support pages of the most popular P2P client

(Schulze and Mochalski 2009) Vuze (Vuze 2010). It is also common practice for ISPs to operate

a fair usage policy which specifies a limit to the bandwidth a user can consume within a given

time period (through either uploading or downloading), upon reaching this limit the user’s

36

connection is restricted to a fraction of its original capacity, affecting all of a user’s subsequent

activities, not just P2P.

2.3.7. Summary of QoS at the Network Layer

This section has reviewed the state of the art for Quality of Service provisioning at the network

layer. Many mechanisms and approaches have been proposed over the past decade, all striving

to improve upon the best-effort delivery of IP. This section focused heavily on the

Differentiated Services architecture, which despite more than ten since it was first proposed still

remains the widely accepted approach for QoS provisioning and subject of current research.

Diffserv originally offered a scalable solution where Intserv had failed, however, as highlighted

in this section many issues still exist.

Firstly, there exists the Diffserv model of prioritising traffic, which may be acceptable in

managed environments such as Enterprise networks, but the rigid prioritisation of a single

selected traffic types is a philosophy that contradicts that of this research project (See section

1.1 for the project aims). Aside from these philosophical disagreements, a large amount of

research has considered how appropriate the Assured Forwarding PHB is for TCP traffic, given

the complexity of TCP congestion avoidance and the relative simplicity of marking algorithms.

This has led to attempts to integrate TCP models into the AF marking algorithm however, these

proposals were often limited in considering either only the vulnerability of short flows or

longer, steady-state flows, rarely addressing the needs of a realistic mix of TCP flows as likely

to be found on the Internet. Moreover, the enhancements to the AF PHB frequently consider the

question of fairness between flows and aggregates, but rarely consider provisioning resources

from the perspective of application-layer QoS. In addition to improving the marking algorithms

of Diffserv’s AF PHB, a review was also given for a small number of dynamic Diffserv

proposals, which aim to move away from the traditional static configuration. The limitations of

these dynamic proposals provided insight when designing the specification for the novel

architecture later in the thesis (section 4.3).

37

A common observation of all the proposed enhancements to Diffserv was an agreement that the

coarse, purely-aggregate based handling of Diffserv cannot provide an optimal QoS for every

traffic type, suggesting a compromise needs to exist between the granularity traffic is managed

with and the simplicity of QoS solutions. It is also recognised that technological advances, such

as routing in hardware and Deep Packet Inspection allow for more complexity than was feasible

during the early designs of Diffserv, and therefore possibly present new opportunities for novel

QoS solutions, which are considered during the design of the proposed solution in section 4.3.

While Intserv and Diffserv were described as methods of providing QoS within a managed

environment, whether it is a single Autonomous System or a number of cooperating Systems,

they fail to extend to the global Internet model (i.e. have the capability to extend beyond a

single Autonomous System). Additional QoS solutions operating at the network layer were also

reviewed in this section, highlighting the practise of traffic shaping in ISP networks. These non-

end-to-end alternatives typically prioritise traffic in accordance with the business model of the

ISP, favouring premium traffic types rather than aiming to provide an optimal user-experience.

Some ISPs market this solution as an Olympic colouring system to traffic, where user traffic is

classified as Titanium, Gold, Silver, Bronze and Best-effort. An interesting point was noted

regarding the ‘top’ package offered by such a model, which promotes all of a user’s traffic to

the Titanium or Gold service class. This places P2P in the same classes as Web Browsing,

Email and Streaming Video services, which due to the aggressive nature of P2P services could

in effect degrade the quality of the other services in use by the user since they would be

competing within the same traffic class. Furthermore, it is not stated whether this traffic

classification model places all traffic of a specific colour into a single class, as this would allow

a premium customer’s “Gold P2P” to infringe on other user’s Gold traffic.

38

2.4. QoS at the Transport Layer – Congestion control and Fairness

The previous section considered approaches towards QoS provisioning that are located at the

network layer. It was highlighted that there is a lack of synergy between how traffic is handled

within the network layer and how the transport layer responds to this handling, specifically

referring to UDP traffic not responding to network congestion and TCP operating at a different

granularity (per RTT) to the (per packet) handling at the network layer. This section of the

chapter reviews recently proposed developments at the transport layer, which reconsider the

functionality of transport layer protocols to aid QoS provisioning and introduce congestion

controlled UDP-like protocols.

2.4.1. UDP and Unreliable Congestion Controlled Protocols

Section 2.1 introduced the rising number of services that are migrating towards IP networks, the

growth in volume of real-time (such as VoIP and VTC) and streaming traffic (IPTV) has in turn

resulted in a growth application data using the User Datagram Protocol (UDP), the small

overhead combined with the fact that real-time applications ordinarily do not require the

reliability (there is little value in recovering lost voice packets) favours UDP over TCP for real-

time services. Recent studies conducted on Internet backbones observed more than 3 times as

many UDP flows as TCP (Min, Dusi et al. 2009), illustrating a dramatic increase since 2002 and

2006, when UDP/TCP ratios were 0.11:1 and 1.06:1 respectively. This notable change in

Internet traffic characteristics has raised concern over the fairness and stability of the Internet.

As a result there have been a number of proposals that aim to provide congestion control to

unreliable transport protocols.

In response to this rise in UDP traffic and the associated fairness issues (section 2.2.2.1), a

number of TCP-friendly protocols have been developed over recent years, where a protocol is

considered TCP-Friendly if its long-term arrival rate does not exceed that of a conforming TCP

flow under similar network conditions (Floyd S. and Fall K. 1999). TCP-Real (Zhang and

Tsaoussidis 2001) for example, extends the acknowledgement based binary feedback of

39

standard TCP and estimates contention within the bottleneck link of a path by computing the

receiving rate of back-to-back packets to measure network conditions. The resulting estimate is

fed back to the sender as an attachment to the acknowledgements to inform the congestion

control process, a larger inter-packet arrival gap indicates congestion within the network and

instructs the source to reduce the transmission rate. A similar functionality is provided by TCP-

Friendly protocols TCP-Westwood (Mascolo, Casetti et al. 2001) and TCP-Westwood+

(Mascolo, Grieco et al. 2004), which continuously measure the rate of incoming ACKs to

measure and estimate the rate of a connection. TCP-Friendly Rate Control (TFRC) (Handley,

Floyd et al. 2003), presents yet another alternative that adjusts the sending rate of data according

to the level of congestion, inferred from the loss rate. Originally designed for applications

sending packets of fixed size, a further enhancement to TFRC, TFRC-SP (TFRC small-packet)

(Floyd S. and Kohler E. 2006) makes TFRC-SP a suitable transport protocol for future

multimedia applications such as VoIP.

Whilst implementing congestion control in TCP-like protocols assists in congestion control and

makes applications TCP-friendly, a compromise must be made between how responsive the

congestion control algorithm is (in terms of how rapidly the application decreases its

transmission rate) and how smooth the transmission rate is. The harsh sawtooth-like effect of

the additive increase/multiplicative decrease (AIMD) algorithm can result in severe oscillations

in transmission rates and in worst case scenarios transmission gaps, none of which are desirable

for the close to constant bit rate characteristics of multimedia applications. As described by

(Tsaoussidis and Zhang 2005) according to AIMD, a sender increases the congestion window

(cwnd) by α packets each Round Trip Time (RTT) – given no packet loss, until the network

capacity is reached. Following capacity being reached, a multiplicative decrease ratio is applied

to prevent congestion collapse of the network decreasing the congestion window by βW.

Tsaoussidis and Zhang document that within TCP-Friendly protocols the multiplicative decrease

ratio β is increased to soften the sawtooth oscillations of traditional TCP’s response to

congestion. However, as investigated by (Chiu and Jain 1989; Lahanas and Tsaoussidis 2003)

40

there is a fundamental trade-off between responsiveness (low α) and smoothness (high β), with

different application types demanding different configurations of α and β.

Another congestion controlled unreliable protocol that has been proposed recently is the

Datagram Congestion Control Protocol (DCCP) (Kohler, Handley et al. 2006). DCCP provides

application flexibility in terms of the congestion control algorithm it can adopt. Using

Congestion Control IDs (CCIDs) one of two integrated congestion control algorithms can be

chosen. CCID2 provides a TCP-like AIMD congestion control algorithm that adapts quickly to

make use of available bandwidth. Conversely, CCID3 selects TFRC congestion control,

providing a smoother throughput adjustment at the cost of responsiveness.

The development of DCCP for real-time congestion aware transport functions has naturally led

researchers to investigate the performance of applications such as VoIP when using DCCP

compared with the traditional UDP approach. (Balan, Eggert et al. 2007) describes how when

implementing VoIP over DCCP quality is less than VoIP over UDP, in light of this the authors

propose a number of improvements to the DCCP specification that may alleviate this

disappointing performance. One must keep in mind that DCCP was not developed for optimal

VoIP call quality, a protocol that offers no transfer rate adaptation during congestion (i.e. UDP)

is likely to provide a better perceived quality than one that adjusts to operate fairly.

2.4.2. QoS Enhancements to TCP-based protocols

Limited research has been conducted with regard to modifying the behaviour of TCP to

introduce an awareness of QoS mechanisms within the network. This lack of research is likely

to be due to there not being a single adopted solution to QoS at the network layer, thus making

any such enhancements at the transport layer very specific to one particular QoS

implementation at the network layer.

One example of a proposed TCP-like protocol is given by (Jourjon, Lochin et al. 2007), who

describe the QoS-aware Transport Protoocl (QSTP). A variation of the TCP Friendly Rate

Control (TFRC) algorithm is presented, which uses a selective acknowledgement mechanism to

41

provide reliability. In addition to adding reliability the Jourjon et al. integrates a target rate

parameter into the algorithm used by the sender when determining the transmission rate of the

sender, resulting in their Guaranteed TCP Friendly Rate Control (gTFRC) congestion control

algorithm. gTFRC is then demonstrated to address the problem of a congestion controlled host

reducing its throughput below its target rate following congestion in an AF network, as

introduced in section 2.3.3.1. The problem was described as being caused by a lack of

awareness by the transport protocol that the dropped packets were indeed out-of-profile packets,

exploiting excess available bandwidth. The gTFRC protocol proposes that through making the

sender aware of the target rate, the transmission rate can be controlled to always be greater than

the target rate.

This modification goes some way towards bridging the gap between network layer events and

the subsequent response at the transport layer, by placing a minimum transmission rate (linked

to the desired target rate) within the congestion control algorithm. However, this proposal is

limited in a number of ways. Firstly, the details of the target rate for each flow are determined

between the sender and the receiver, and are not inferred from the configuration of the QoS

architecture within the network. This assumes that the network is over-provisioned and typically

has sufficient capacity to accommodate of the users’ traffic, given that the target rates calculated

by the sender are not determined by the load of the network. Secondly, the target rate is used to

control the throughput of each (gTFRC) flow, which assumes each application using the new

transport protocol would require knowledge of its own desired target rate.

2.4.3. Response to Changing Traffic Dynamics

A limited number of proposals have been made to improve on the unfairness of applications

opening and maintaining multiple TCP connections. Two examples are the congestion manager

(Balakrishnan and Seshan 2001) and Weighted TCP (Ou. G. 2008), which essentially both

present similar methods to aggregate TCP connections at the end host into per-application

connections. For example, applications such as FTP or VoIP clients that only establish a single

42

connection would operate as usual. However, applications such as P2P that establish multiple

connections would have their connections placed into a virtual wrapper, which restricts the

combined throughput to be closer to that of single connection-based applications.

One drawback severely limits the likely success of these approaches, that is, these proposals are

modifications to the operating system of an end-host, and there simply is no incentive for a user

of an application that establishes multiple connections (e.g. P2P clients) to update their

operating system to employ a restriction on the throughput of their applications. From the

perspective of the service provider, such solutions would provide a fairer distribution of

bandwidth among flows within their network, potentially increasing the speed for non-P2P

users.

2.4.4. Summary of Transport layer QoS mechanisms

This section of the chapter has introduced a number of enhancements to transport layer

protocols. The majority of the novel protocols introduced in this section have provided

alternatives to UDP, which integrate congestion control mechanisms for services not requiring

the reliability or complexity that TCP offers. The Datagram Congestion Control Protocol

(DCCP) is notably the most promising solution to alleviating concerns of rising levels of

unresponsive UDP traffic, providing flexibility to application developers with regard to the

congestion control algorithm that best suits their application. However early experimentation

with the protocol demonstrates a lower performance index for VoIP services compared with

UDP, and therefore further development is clearly required before DCCP will become a viable

choice for the transport of real-time data.

In addition to enhanced transport layer functionality for unreliable protocols, this section

described an attempt to integrate the target rate parameter from a Diffserv AF policy into the

transmission rate equation of a TFRC sender. While this approach enables a sender to guarantee

a transmission rate that is at least equal to a network defined SLA, the proposal operates on a

per-flow basis and assumes the same per-flow configuration within the network. This renders

43

the approach rather static in its design, given that the application behaviour at the end host must

reflect the configuration within the network.

This review of recent developments at the transport layer has highlighted the realisation that

congestion control is essential to network stability. Significant efforts have been made to present

alternatives to using UDP for transport functionality, motivated by the advent of real-time

services such as VoIP and VoD. However, all of the proposed solutions require modification to

the end host, which given the number of end hosts currently estimated to be connected to the

Internet considerably impedes the future deployment of such proposals. Moreover, to date the

performance of these UDP alternatives has been demonstrated to be unable to equal or better

that of UDP, further limiting their uptake by application developers.

2.5. QoS Provisioning at the Application Layer

Due to the lack of QoS mechanisms having been implemented on the Internet, applications have

been developed to accept this best-effort nature and directed many to operate adaptively

according to network conditions. This section of the review takes VoIP as an example to

presents a number of application layer mechanisms that can be implemented to provide

improved QoS to the end-user irrespective of an absence of QoS provisioning at lower layers.

2.5.1. Real-time Transport Protocol

Among the current standards for delivering audio and video over the Internet is through the use

of the Real-time Transport Protocol (RTP) (Schulzrinne, Casner et al. 2003). RTP together with

the Session Initiation Protocol (SIP) are reported to account for over 60% of all VoIP traffic on

the Internet in all areas of the world aside from Eastern Europe and the Middle East, where

Skype dominates, possibly due to low bandwidth connections (Schulze and Mochalski 2009).

Although RTP is strictly defined as a transport layer protocol, nearly all implementations have

been at the application layer, and therefore this review falls under the section detailing

application layer mechanisms for QoS provisioning.

44

RTP operates on top of UDP and provides an application layer framework for delivering audio

and video across an IP network. This framework offers a number of features that enable the

protocol to deliver time-sensitive services over the best-effort Internet, while maintaining an

acceptable level of QoS. These features include:

- Multicast and Unicast delivery of real-time application data

- Timing recovery between separate audio and video streams (synchronisation)

- Loss detection and correction

- Reception quality management

- Audio/video session management, e.g. management of participants

 RTP is usually implemented alongside the Real-Time Control Protocol (RTCP), which is

responsible for managing periodic out-of-band control messages, used by the RTP framework to

manage the media transmission and for QoS purposes. Of the five types of RTCP message,

three provide QoS information, they are:

- Sender Report (SR): Sent periodically from active senders containing absolute

timestamps used to synchronise separate audio and video streams at the receiver.

- Receiver Report (RR): Periodic reports from non sending participants reporting on the

received QoS of the RTP data, including statistics on the cumulative number of packets

lost,the loss fraction and inter-arrival jitter.

- Source Description (SDES): Descriptive information about the data source (name, email

address – not relevant within the context of QoS provisioning)

The original RTP/RTCP specification included capability to exchange QoS information between

participants; it did not however include any recommendations regarding congestion control. A

revised document (Schulzrinne and Casner 2003) advises that RTP receivers should monitor the

level of packet loss, ensuring that packet loss is at an acceptable level. The level of packet loss

is considered acceptable if a TCP flow across the same path and experiencing the same network

conditions would achieve an average throughput not less than the RTP flow achieves. It is

suggested that RTP receivers implement congestion control to ensure that transmission rates can

45

be adapted to satisfy this throughput fairness during congestion. However, this is only a

suggestion that RTP receivers should adhere to, and not a requirement that they must meet.

Moreover, there is no relationship between how RTP handles the QoS and congestion control

information provided by RTCP, meaning RTP may adapt a flow to ensure it behaves in a TCP-

friendly manner but at the detriment of the QoS.

2.5.2. Packet Loss Concealment (PLC)

Packet Loss Concealment (PLC) is one technique for reducing the impact of packet loss on

VoIP services. The latest codec to be added to the library of codecs used by popular VoIP client

Skype, SILK (Vos, Jensen et al. 2010) describes its use of Forward Error Correction (FEC) to

protect against packet loss. The SILK codec claims to detect onsets and transients within the

speech, to perceptually determine important speech information. These important segments of

speech information are encoded more than once and appended to subsequent packets, ensuring

that if packet loss occurs there remains a high probability the important speech segments will

still be delivered. FEC is only one method to conceal packet loss, a comprehensive survey of

PLC techniques is given in (Perkins, Hodson et al. 1998) and are categorised into sender or

receiver oriented. Sender oriented techniques include, Forward Error Correction (FEC),

interleaving (re-ordering data units to reduce the impact of packet loss) and retransmission.

Receiver oriented techniques include, packet repetition, silence or noise substitution,

interpolating surrounding packets to cover loss, or regenerating lost audio using model-based

recovery. The specific operations of these techniques are beyond the scope of this research, but

can be found in (Perkins, Hodson et al. 1998) and cited materials.

2.5.3. Codec adaptation

A second mechanism that can be used to adapt voice data according to the network conditions is

through the use of adaptive codecs. Applications can also use feedback information about the

state of the network from control protocols; for example an RTP/RTCP VoIP application may

use the feedback from the Real-Time Control Protocol (RTCP) to adjust the codec in use and

46

better suit the network conditions. Experimental results performed in more recent studies

provided evidence that adaptive VoIP applications offer a higher call quality and a reduction in

packet loss as a result of codec switching, (Ng, Hoh et al. 2005; Usman and Sheikh 2005). It

should be noted that codec adaptation is not a standard function of RTP/RTCP, and these works

make informed decision of the optimal codec given network conditions described from these

control messages. Again taking Skype as an example, a number of codecs are available to the

application. Based upon the current network conditions Skype will choose the codec it considers

the most appropriate. The SILK codec for instance supports four different modes, each of which

provide a different audio sampling rate, frame size and bitrate, thus allowing Skype to evaluate

the network conditions and choose appropriately.

2.6. Summarising the State-of-the-art for QoS provisioning

This chapter has provided an evaluation and critical assessment for the state of the art for QoS

provisioning over IP networks. It began by defining what QoS is likely to be for a range of

common IP services, both from the user and protocol perspective, discussing the impact

network imperfections can have on service and protocol performance. Insight was also given

into the changing nature of traffic dynamics, in particular the growth of P2P-based applications.

This rise in bandwidth intensive applications, such as P2P, raises the issue of fairness between

applications, when previously TCP-based applications could have been thought to be relatively

fair to one another. These definitions clarified that there is a growing need for QoS provisioning

in IP-based networks, but also a consideration for fairness at multiple levels, per-flow, per-

application and per-user, given the ever increasing heterogeneity of services.

The chapter then focussed on a review of QoS provisioning efforts at the network layer,

beginning with a study into how alternatives to taildrop queuing can be used to alleviate

congestion. The negative effects of taildropping a large number of packets were identified,

highlighting the benefits of preemptive mechanisms such as RED and ECN. Following on from

queuing mechanisms was a review of Integrated Services, which although capable of providing

47

end-to-end service guarantees, had two major shortcomings (scalability and a requirement for

Intserv support end-to-end), which limited the deployment of Intserv to only small scale

environments. The main focus of the research at the network layer expanded on Diffserv, the

typical current method employed for QoS provisioning. Prior studies have shown Diffserv

works well operating at an aggregate level for managed Enterprise environments, which have

predictable traffic characteristics. Subsequently, this allows for QoS modelling and capacity

planning to reflect the known services on the network. However, providing QoS over the

ungoverned Internet is far more challenging, requiring ISP networks to provision for a far more

diverse array of services and user expectations, and it is argued that no single service should be

given explicit priority over others. Furthermore, although successful at an aggregate level,

section 2.3.3.1 expanded on efforts which have aimed to improve Diffserv’s ability to accurately

manage traffic at a flow level. Also included in the network layer review were the results of an

investigation into current ISP QoS practises. Although information surrounding ISP QoS

policies and network configurations were understandably limited, it was ascertained that the

common approach of managing user traffic is some form of traffic shaping at the edge, with a

coarse Diffserv configuration across the core. The traffic policies used by ISPs are reported to

give VoIP and Video services scheduling precedence over non favoured elastic services such as

P2P, FTP and messaging (Kitz.co.uk 2009), illustrating a very different reality to the ideal

scenario.

The chapter then focussed on the relationship between QoS and congestion control at the

transport layer. The main focus of developments located at the transport layer has been to

address the impact that rising volumes of unresponsive (UDP) cross traffic has on congestion

controlled services. In response to this trend, a number of congestion controlled UDP

alternatives have been proposed for real-time traffic. However, the main conclusions were that

the proposals to date result in a reduction of service performance when compared with UDP,

and therefore it is unlikely that application developers (or users) will opt to implement these

transport protocols at the cost of application performance. Moreover, QoS provisioning efforts

48

that require global protocol deployment to the estimated 2.1 Billion end hosts presents the

equally taxing task of deployment.

A brief discussion of application layer mechanisms that optimise the performance of an

application given the network conditions was also given. This section was provided primarily as

a reference and to introduce the notion that without implementing QoS provisioning within the

network, mechanisms at higher layers can only go so far towards absorbing the impact of loss

and delay on Internet services.

In summary, it is believed fair to say that while many efforts have been made towards

improving QoS for specific traffic types over IP networks, these solutions address individual

services or scenarios. To date, none have been found that consider the task of QoS provisioning

from the perspective of managing the entire multimedia user experience in a dynamic manner

that reflects the current services that are in use.

Drawing on the above sections, a number of key attributes for a novel QoS provisioning

approach can be established.

- Static AF configurations are not suitable for guaranteeing unknown activities

- Assured Forwarding for Diffserv can provide a guaranteed level of service to TCP,

which is suitable for bulk transfers and continuous multimedia streaming in managed

networks.

- TCP is unaware of whether a packet loss is in or out of profile.

- Blanket policies against P2P and large file downloads are not fair solutions

- All methods of controlling TCP operate at a per packet granularity, when TCP responds

at a per-RTT granularity.

- P2P traffic is reportedly controlled through the use of Traffic Shapers, restricting the

bandwidth available for such services.

- Priority services should not be exempt from congestion control.

49

3. An Empirical Study into Internet Services

3.1. Introduction

The previous chapter introduced the increasing need for QoS provisioning within IP networks,

given the growing diversity of Internet services. To gain a better understanding of this diversity,

this chapter provides an empirical study into a selection of current Internet services, which is

later used when designing the novel architecture. A significant amount of research from the past

decade has provided a number of mathematical models that describe Internet traffic, particularly

at the aggregate level. Many have highlighted self-similarity and long-range dependence within

traffic aggregates, as summarised in (Karagiannis, Molle et al. 2004), however, less research has

considered the individual characteristics of multimedia Internet services, which is the

perspective taken by this study. A combination of empirical data and related work is used to

analyse and characterise each of the selected Internet services. This characterisation will later be

used to aid and inform the novel QoS provisioning approach.

As described by the Ipoque study (Schulze and Mochalski 2009), Web browsing, file downloads

(via HTTP/FTP), VoIP, Streaming video, gaming and P2P file transfers comprise over 90% of

all Internet traffic. Of particular interest to this study were Web browsing, streaming video, P2P

file transfers and VoIP. The analysis of traffic produced by online gaming was considered to be

too complex to address at this time, given the large number of games across many different

platforms. Therefore, it was not included as part of this study but is recommended to be the

focus of future research.

The data was collected from four sources, Plymouth University and three residential locations

each with a different ISP. Firstly a PC running Windows Vista was used to collect data on Web

browsing and Streaming Video, but due to restrictions on the activities permitted on the

University Network this PC could not be used to monitor P2P-based activities. Therefore, three

further systems were used from residential locations to collect data for P2P-based services. The

reason for collecting P2P data from three different locations was to ensure that any traffic

50

shaping being performed on the P2P traffic by the ISPs could be identified (for example if one

collection of data showed significant poorer performance than the others). Furthermore, two of

the connections were ADSL and the third a cable connection. This study analysed 500 of the

most popular webpages, the top 100 YouTube videos, a selection of on-demand programmes,

400MB of Skype traffic, traffic from 7 days of Spotify activity, more than 20GB of data via the

BitTorrent protocol and a number of VoIP calls using four of the most popular free VoIP

clients. It is fair to say that repeating this study at a larger scale would indeed provide a more

comprehensive insight into the behaviour of Internet services. However, since the primary focus

of this project is on QoS and not the characterisation of Internet services, the study is considered

sufficient to obtain an up-to date overview of the behaviour of Internet services.

3.2. Web Browsing

Web browsing is the second largest contributor to Internet traffic, with HTTP being the

dominant protocol in terms of usage on the Internet. The Ipoque study states that the average

size of a website has continued to grow, no doubt supported by increasing Internet connection

speeds. However, Ipoque merely state in their 2009 report that news portal websites measure

approximately between 1-2MB in size, although go into no further detail of the average

webpage. In fact there is very little academic research from recent years that has considered how

the average webpage looks like, in terms of size (bytes), number of web objects (example

objects being an HTML file, a styling file, an image, etc) or the behaviour of the protocols.

The first factor that could influence the behaviour of a web browsing session is whether version

1.0 or 1.1 of the Hyper Text Transfer Protocol (HTTP) is implemented at the web server. From

a traffic analysis perspective the key differences between these two versions is the persistent

connection feature in the latter. This feature allows a client to make multiple requests to a web

server without the need to establish a TCP connection for each request. This dramatically

changes the potential characteristics of the traffic generated from web browsing, given that the

connection between the client and the server will serve all of the objects on a webpage

51

(assuming all objects are located on the same server), hence the size and duration of a flow at

the IP level now is dependent on the number of objects requested from the server and the size of

each of them. Analysing each of the 500 most popular webpages (Alexa.com 2010), over 26,000

HTTP GET requests were made to web servers, of which 95% replied using HTTP 1.1.

Identifying this instantly revealed a potential discrepancy in the well used assumption that

HTTP traffic is predominantly characterised as short flows of less than 13kB, if all of the GET

requests/responses for a webpage are carried through a single connection. The following

analysis was aimed at verifying this hypothesis by establishing the average number of objects

and the combined average size of a webpage.

The most recently known statistics that describe the average webpage are from 2008

(WebsiteOptimization.com), which present a comparison between findings from a 2007 paper

by Domenech et al. and figures obtained from Gomez.com – a division of Compuware, who

focus on web performance and experience management. WebsiteOptimization.com reports the

average size of a webpage to have increased between 2003 and 2008, from 93.7kB to 312kB

respectively. They also comment on the number of objects per page to have increased from 25.7

to 49.9 over the same time period. Using a list of the then top 100 visited URLs (Alexa.com

2010) and HTTP Analyzer v5 (IEInspector Software LLC 2010), a batch program was produced

to visit each of the top 100 webpages in turn and obtain the average size and number of web

objects of a webpage in 2010.

Based on these top 100 visited webpages within the UK it was observed that over 90% were

below 500kB in size, with the remaining 10% ranging between 500kB and 1300kB. The mean

of the 100 websites is 250kB, although this figure can be seen to have been skewed by a few

large webpages when considering the mean for the top 95% of sites, which is 201kB. Figure 3.1

depicts this distribution of webpage sizes.

52

 Figure 3.1: Cumulative Distribution Function for the size of the Top 100 UK websites

For the same top 100 webpages Figure 3.2 shows the distribution for the number of objects

within each webpage, of which the mean number of objects per page is 60.

53

Figure 3.2: Cumulative Distribution Function for the number of objects within a web page

As introduced previously, if all of the data for a webpage is transferred over a single TCP

connection then this study presents a significant difference between the widely used 13kB

average webpage and a typical webpage visited today. Therefore, further analysis at the

transport layer was also conducted, to reveal in particular the number of TCP connections that

are established during the retrieval of the average webpage, in other words, does the prolific use

of HTTP v1.1 mean that only a single connection is established, for which all data is sent along?

TCPdump was used to capture the incoming traffic for each of the sampled webpages, and

tcptrace (Ostermann 2003) to aggregate the data per TCP connection, Figure 3.3 illustrates that

despite the high implementation of HTTP v1.1, data is not sent from a single source, using a

single TCP connection. In fact, only one site from the top 100 (paypal.com) opened a single

TCP connection to transmit its data, with the mean number of connections per webpage being

26 (Figure 3.3) with the number of GET requests per TCP connection ranging from 1-10, and a

mean of 2.7.

54

Figure 3.3: Cumulative Distribution Function for the number of TCP connections established per webpage

Figure 3.4: Cumulative Distribution Function for the number of GET requests per TCP connection

55

The study went on to consider the volume of data transferred by each HTTP-initiated TCP

connection, illustrated by Figure 3.5. There is a difference of an order of magnitude between the

range of volumes of data sent from the client to the server, and the amount of data uploaded. In

the direction client to server, 95% of the connections are ≤ 6kB in size, with a mean volume of

1kB. In the reverse direction 95% of connections are ≤ 85kB, with a mean volume of 11kB,

indicating that the average HTTP flow is still very close to the 13kB figure, despite the

evolution of web content over recent years. It should be noted that this area of the study only

considered opening the homepage for each of the websites involved.

Figure 3.5: Cumulative Distribution Function for the volume of data per TCP connection

a). Client to Server b). Server to Client

The final characteristic of HTTP traffic that was considered was the number of packets per TCP

connection. Figure 3.6 shows the distribution for the number of packets per connection for the

observed websites. In both directions the number of packets transferred is very similar, with

95% of flows in the direction of Client to Server consisting of 50 or fewer packets, with a mean

of 10.26. For flows in the opposite direction the number is slightly higher, at 70 or fewer

packets with a mean of 11.79 for 95% of the flows.

56

Figure 3.6: Cumulative Distribution Function for the Number of packets per TCP connection

This study into the size of the average webpage revealed that the size of the average webpage in

2010 has not changed dramatically since 2008. However, the results are limited to the homepage

for each of the websites visited, if the nature of each of these websites is considered then the

characteristics of web browsing change once again.

For example, 5 of the top 100 were search engines and 12 of the top 100 websites of 2010 were

social networking sites. Both of these web site categories suggest that the user intends to

perform a task by visiting the site, either through searching or logging in to a personal page. The

web page analyser script was not programmed to provide any log in credentials or search

criteria and therefore only recorded the size of the first page (typically a fast-loading page with a

few graphics and a username and password form). However, it is highly unlikely that a user

would visit Google.com or Facebook.com, and then not proceed to either search or log in and

continue to browse through their online social network.

57

Taking Facebook as an example, the index page for Facebook.com is only 43kB in size and

consists of 20 objects, but upon logging in an account the homepage is 185kB and consists of 57

objects. Based on viewing 50 random profile pages (from within a list of known friends), the

average size of a profile page was 148kB, comprising of 31.4 objects. Visiting these 50 profile

pages on Facebook a total of 10.1MB were transferred, via 1570 objects, and 256 TCP

connections. Therefore, possible future research could consider how long a typical user spends

on each website and how many pages from a site are subsequently visited.

3.3. Streaming media

The Ipoque study excludes streaming media websites from the category of web browsing,

instead it is reported that streaming video (including Flash, Quicktime, Real Media, RTSP)

represented on average7.65% of all Internet traffic in 2009, with Adobe’s Flash platform

contributing to between 60-83% of all streaming media in all regions, except the Middle East.

As highlighted earlier in this thesis this figure has since grown substantially , with reports from

2011 indicating streaming video now represents as much as 40% of all Internet traffic (Sandvine

2011). While such traffic has been differentiated from regular web browsing, online video

services are a rapidly growing sector and therefore cannot be ignored when characterising

today’s Internet traffic. Furthermore, video files are significantly larger in size than other types

of web objects, and yet the user has the expectation the audio and/or video should play smoothly

without interruption. Therefore, understanding the properties of streaming audio and video is

essential when provisioning for QoS.

Without doubt, the most popular and well known online video repository is YouTube (YouTube

2010), which allows users to upload their own videos as well as view the videos uploaded by

others. It was reported that in 2009 YouTube served over one billion video requests per day

(Telegraph.co.uk 2009) and every minute 24 hours of new video is uploaded to YouTube

(YouTube 2010), these figures have since grown significantly and now YouTube report

58

themselves that 60 hours of video are uploaded to their servers every minute, and over 4 billion

videos are viewed each day (YouTube 2012)

According to a study by (Gill, Arlitt et al. 2007), it is estimated that the average video size on

YouTube is approximately 10MB, based on over 300,000 unique videos requested on a

University Campus. The average duration of a video from YouTube was observed to be just

over 4 minutes, and the bit-rate was estimated to be 394Kbps. A second study into YouTube

suggests that despite the ever increasing number of videos on YouTube, the top 10% contribute

toward towards over 80% of all views (Cha, Kwak et al. 2007). To obtain a perspective of

current YouTube videos the traffic monitor requested and recorded statistics for 100 videos on

YouTube, which were listed as being the most popular videos of all time by the site itself.

Figure 3.7 shows the distribution of video file size for these files, where the median video size is

7MB and the mean size is 10.49MB. These figures support the findings of Gill’s study,

indicating little change in the characteristics of the most popular videos on YouTube between

the two observations.

Figure 3.7: Distribution of video file size for 100 of YouTube's most popular videos

59

Gill et al. presented the average bitrate of a video on YouTube was 394kbps, it is hypothesised

in this thesis that this figure is likely to be increasing. This hypothesis is based on recent

additions to the supported bitrate YouTube allows users to upload at, coupled with the fact that

higher resolution video recorders are now commonly integrated into mobile phone and media

players. The video resolutions currently supported by YouTube along with their associated

bitrates are provided in Table 3.1 below.

 Video Format

240p 360p 480p 720p 1080p

Approximate bitrate

ranges (kbps)
200-300 300-600 600-1200 1100-1800 >1800

Table 3.1: YouTube video resolution and associated bitrates

Although the figure of 10MB for the average video size appears to have not changed over the

last 3 years it should be noted that it represents videos added solely by individuals or

promotional companies. Over the past 3 years television broadcasters have turned to the Internet

for delivering on-demand content. The five major broadcasters in the UK (BBC, ITV, Channel

4, Five and Sky) all provide online video services. More recently Channel 4 and Five have

partnered with YouTube to provide on-demand programs via the YouTube website, while the

BBC, ITV and Sky currently use bespoke delivery systems, (although all are variants of

Adobe’s Flash Platform).

This advent of full length broadcasting over the Internet changes the nature of streaming video,

whereas previously the average length of a YouTube video was just over 4 minutes, with

broadcasters using the Internet to deliver programmes this figure is likely to rise as these

services become more popular, as is apparent from the following details on the BBC iPlayer.

The BBC iPlayer has been publically accessible for the past 5 years and according to BBC

statistics has seen more than a 100% increase in programme requests for the month of January

since 2009 to 2010, going from 30.8 million TV requests to 67.4 million respectively (BBC-

iStats 2010). This number increased to 116 million TV requests in January 2011 (BBC-iStats

60

2011), indicating a significant growth year-on-year. From a media perspective, the BBC state

that their standard videos when viewed through an Internet browser are streamed at 800kbps,

using the H.264 codec. The iPlayer distribution servers are reported to be capable of detecting if

a user’s connection can accommodate an 800kbps stream, if the user’s connection cannot

support 800kbps or in the presence of congestion, the service reduces the video quality to

500kbps – although it is stated that the video quality will not be increased should more

bandwidth become available (this is listed as a future feature). A user also has the option to view

the video in High Quality, upgrading the bit-rate to 1500kbps. Furthermore, both YouTube and

BBC’s iPlayer have recently began providing videos in High Definition, at resolutions of

1280x720, and at bit-rates of 3.2Mbps with an accompanying audio stream at 192kbps. Using

these figures Table 3.2 below provides the volume of data transferred for a 30, 60 and 90minute

programme, illustrating the requirements of delivering such services over the Internet. (bitrates

for BBC’s iPlayer obtained from (BBC-iStats 2009))

 Duration of Video (minutes)

 30 60 90

V
id

eo

b
it

-r
at

e

(k
b
p
s)

 500 110MB 220MB 330MB

800 (default) 175MB 350MB 525MB

1,500 329MB 660MB 989MB

3,500 700MB 1,400MB 2,100MB
Table 3.2: Approximate volume of data transferred for streaming videos

Aside from the vast difference in size compared with an average video on YouTube, a second

key difference that should be noted is that videos on YouTube that are not provided by

broadcasters (which represented, at the time of writing, the majority of the clips hosted by the

website), are delivered in a pseudo streaming fashion. This means the video file is downloaded

to the user’s system as a discrete file, and through the use of Adobe’s progressive download

technology can begin playback before the file transfer is complete. Traditional streaming differs

from this by establishing a streaming session between the user’s system and the media server,

which then sends the video stream in real-time. Traditional streaming methods facilitate the user

to jump to a specific section of the video without having to wait for that portion of the video to

61

have downloaded (as would be the case with pseudo streaming). However, traditionally

streamed videos are not cached by the user’s system and therefore if the user wishes to watch

the video again the data stream will be transmitted again.

As with the HTTP analysis, the study also considered the characteristics of streaming media

services from the perspective of the transport layer, specifically considering the number of

connections established and the packet size.

When viewing a programme using the BBC iPlayer website, 7 connections were established, of

which 6 were used to retrieve the web page (text, imagery, formatting and javascript files) and a

single connection to a media server that provided the media stream using Adobe’s Real-Time

Messaging Protocol (RTMP) (Adobe Systems Incorporated 2010), over a TCP connection.

Depending upon whether the client’s system is behind a firewall or not influenced the port that

the media stream was established on. In the absence of a firewall the connection used the

standard RTMP port 1935, however, in the presence of a firewall blocking this port the

connection was made using the standard HTTP port 80.

For all levels of quality the media stream connection sent full sized packets (1460 bytes),

excluding the Live broadcast service, which operated at a reduced bitrate of 368kbps, and with a

mean packet size of 597 bytes. These figures were observed to be constant for a number of

recorded and live programmes and are therefore assumed to be indicative of the properties for

all recorded and live transmissions.

Similarly for a video provided by a broadcaster, but hosted on YouTube (e.g. 4OD or Five), a

number of connections are made “setting up” the page, complemented by a TCP connection to a

media server, which again uses RTMP, and port 1935 if available, resorting to port 80 if

necessary.

Since these measurements were made a study has been published that presents observations of

the network characteristics for YouTube video streams (Rao, Legout et al. 2011). This study

considers the characteristics of data transfer rather than the typical size or bitrate of a video,

however, some interesting observations are made. The most notable is that YouTube servers

62

appear to use mechanisms that delivers data in one of three fashions, buffering followed by

steady state with no ON-OFF phases, buffering followed by a steady state of short ON-OFF

phases and buffering followed by a steady state of long ON-OFF phases. These transfer

strategies clearly deviate from the traditional behaviour of a file transfer, and were observed to

vary depending upon platform (Web browser or dedicated mobile application), encoding bitrate

and media container (Adobe Flash or HTML5). It was also observed that YouTube servers may

artificially retain TCP window sizes during OFF periods, rather than reducing window sizes

following an idle period and begin probing for available bandwidth at the next ON period. The

maximum transmission rate from YouTube servers was also reported to be limited, possibly as a

response to reports that a large proportion of users fail to view a video in its entirety (Gill, Arlitt

et al. 2007).

The observations from the study presented in this thesis combined with those from related

publications provide an important insight into streaming video characteristics. The identification

of file size distribution, encoding rates, flow characteristics and adjustments to traditional TCP

behaviour all provide crucial input for a novel QoS solution.

3.4. Peer-to-Peer Systems

In section 2.2.2.4 Peer-to-Peer (P2P) systems were introduced as presenting a threat towards

network stability and fairness, largely through establishing multiple TCP connections to

maximise throughput over coexisting applications. This section of the study into Internet

services aimed to observe P2P applications in operation in order to characterise and better

understand their behaviour. P2P architectures are implemented by many systems including,

Sky’s Anytime Player, Skype (VoIP client, with value added services such as Video calling, file

transfer, instant messaging and VoIP-to-PSTN calling), Spotify (a free on-demand music

streaming service) and probably the most notorious use of P2P networks is for file sharing, for

example Direct Connect, eDonkey, Gnutella and the most popular P2P protocol BitTorrent.

63

This study began by considering the P2P properties of proprietary systems such as Sky’s

Anytime player, Skype and Spotify. This process was complicated by the use of encryption and

anti-reverse engineering techniques by the developers. However, some information can be

inferred about their behaviour from observing and analysing the applications in use, which was

the approach used in this study.

3.4.1. Peer-to-Peer properties of Skype

3.4.1.1. Overview of Skype’s Peer-to-Peer Architecture

The development of Skype over the past 7 years has without a doubt promoted VoIP

technologies into the consumer market. With Skype reporting over 500million registered

accounts, and frequently exceeding 20million concurrent online users
2
 the success of the

application is evident. According the Ipoque study on Internet services, Skype represented an

average of 35% of all VoIP protocols for all geographical areas considered, excluding Eastern

Europe and the Middle East where over 80% of all VoIP traffic is attributed to Skype (Schulze

and Mochalski 2009).

A number of characteristics of Skype have motivated the research community to hypothesis

how the protocol, application and the P2P network operate, from which a picture can be

established, although as Skype continues to evolve the operation remains partially unknown.

Skype was developed by the same organisation that developed the early P2P file-sharing

application, Kazaa, and adopts a similar P2P architecture. Featured in literature (Baset and

Schulzrinne 2004; Guha, Daswani et al. 2006; Bonfiglio, Mellia et al. 2009), and also

identifiable through packet capturing, is the use of two-tiered overlay network, consisting of

standard hosts and so-called super-nodes. The majority of systems with the Skype software

installed will operate as standard hosts however, if a system has a public IP address (i.e. not

2
 Figures obtained from the Skype website and through information provided by the Skype client

software.

64

behind a router with NAT) and has sufficient CPU power and a ‘fast’ Internet connectivity then

it may be promoted to become a super-node. Super-nodes form the control plane of the Skype

P2P network, to which standard hosts send availability information, instant messages, file

transfers and VoIP session requests (Guha, Daswani et al. 2006). For VoIP calls, Skype

attempts to establish a direct connection between the participants, using a number of techniques

to circumvent NAT devices and firewalls, if these methods fail then the call is relayed via a

super-node. Therefore to fully identify the P2P traffic characteristics of Skype, the operation of

both standard nodes and super-nodes need to be observed.

3.4.1.2. Standard Skype node activity

Using a detailed previous study of the Skype protocol (Guha, Daswani et al. 2006), and

verifying this behaviour using a number of packet captures from standard hosts operating the

latest Skype software, it is observed that a standard Skype client sends/receives very little data

(<1MB per day) when simply idle. Using packet captures from 5 separate locations, each lasting

24 hours and repeated for 10 consecutive days, the mean number of connections for a 24 hour

period was 220. Over 95% of these connections were unidirectional flows containing only a few

packets, sent from the local host and therefore likely to be control messages sent to super-nodes.

In addition to the packet captures, the shared.xml file was copied from each system following

the Skype application being restarted every 24 hour period - this file contains a list of 200 Skype

super-nodes that the client updates periodically. When cross-examining the IP address of each

super-node (from shared.xml) with the hosts from the list of established connections,

approximately 25% of these connections were with known super-nodes, suggesting that the

client updates the list of super-nodes more frequently than once every 24 hours, however this

was not confirmed.

3.4.1.3. Skype Super-node activity

Having observed the connection properties of a standard Skype host, it was necessary to piece

together some observations of Skype super-nodes. This aspect of the study is more inferred than

65

characterising the traffic for a standard host for a number of reasons. Firstly, it can only

assumed that a system is acting as a super-node after observing an increase in traffic volumes

over time (given Skype is the only application operating). Secondly, the algorithm that retrieves

the addresses of super-nodes when a Skype client starts is unknown, and therefore it is unknown

whether certain super-nodes are preferred over others, raising the question, “Is there an average

super-node?” Finally, the criteria for becoming a super-node are rather vague and therefore it

cannot be guaranteed that a system will be promoted to a super-node, or how long it will remain

a super-node having been promoted.

Despite these challenges some information about the behaviour of a super-node can be

assembled from previous studies and observations from packet captures. In two early studies

into Skype, figures of super-node bandwidth usage have been offered. In 2006 (Suh, Figueiredo

et al. 2006) a 20 day capture revealed over 1GB of relayed Skype data, including control

information and relayed VoIP calls. A parallel study states over 13GB of data was observed

over a period of 135 days (Guha, Daswani et al. 2006), this second study goes further to

segregate the traffic relayed by the super-node as either control/IM traffic or relayed VoIP. This

segregation suggests that the vast majority of traffic sent via a super-node is within the control

plane, rather than relayed VoIP data. In addition to these figures published in academic

literature, Skype users frequently enquire via online forums and support groups as the

bandwidth usage of Skype, with figures of 1-2GB per month not being uncommon.

To gain an insight into the behaviour of a super-node a system running Skype was left running

on a 10Mbps Internet connection for 10 days. Although behind a router with NAT ports 80, 443

and the random port selected by Skype during installation were opened for the system within the

router, thus emulating the known requirements for a Skype super-node. For control purposes a

second system with Skype was left running for the same period, but without any port

forwarding configured at the router.

After approximately 1 hour the volume of traffic observed at the control system was less than

1MB (it should be noted this initial figure include traffic generated during the login process),

66

whereas the intended super-node had observed over 10MB of traffic. Following the experiment

the total volume of traffic captured for the control node was ~ 11MB, which coincides with the

figures observed during the earlier standard-node analysis. The second system, which featured

the port openings at the router, observed a far greater volume of traffic, totalling just short of

400MB, indicating that it was highly probable this node had been operating as a super-node.

Over the 10 day period, the super-node witnessed 33,171 flows, of which 27,060 were TCP and

the remaining 6111 UDP, a significant difference compared with the average 220 connections

the standard node was observed to establish during 24 hours. Tcptrace (Ostermann 2003) was

used to further analyse the packet captures, and revealed that 60% of the TCP connections were

between 10 and 20 packets (in either direction), while the UDP flows were more evenly

distributed, with 85% being less than 50 packets in length, despite there being fewer UDP

connections in total. Tcptrace also revealed that 97% of the TCP flows were between 10 bytes

and 10kB in length, which suggests the majority of TCP data at the super-node appears to be

control information from other Skype users, rather than any form of relayed traffic. A similar

distribution of flow size was observed for UDP flows, where 99% of flows were below 10kB.

While the increase in traffic volume suggested Skype had been more active on the “super-node”

it was not sufficient to categorically say whether or not the system had been used to relayed data

between Skype users’ systems. Due to the large number of short flows with similar

characteristics, in terms of number of packets and bytes sent, identifying relayed traffic among

short flows was proved rather difficult. However, when filtering the traces to show only those

flows with more than 400 packets the ability to identify potentially relayed traffic was greatly

improved. Figure 3.8 provides an excerpt from the tcptrace output, where a selection of

connections with more than 400 packets in either direction is shown. As tcptrace parses the

packet capture it gives each new connection (determined by source and destination address,

transport protocol and source and destination ports) a number, which are ordered sequentially.

Therefore, when looking to initially identify a pair of relayed connections, two connections that

appear adjacent in the tcptrace output, with a similar number of packets, provides a strong first

67

impression that they could be relayed traffic. For example, Figure 3.8 shows seven pairs of

connections that show signs of possibly being correlated.

Connection

Number
Host A Host B

Number

of

Packets

A B

Number

of

Packets

B A

51 90.205.6.208:1644 192.168.1.9:52382 513 690

52 90.202.7.103:51418 192.168.1.9:52382 497 673

161 70.153.84.116:65233 192.168.1.9:52382 1273 1511

162 92.3.148.167:55320 192.168.1.9:52382 2070 2002

520 88.224.189.224:13416 192.168.1.9:52382 630 642

521 85.108.15.19:3715 192.168.1.9:52382 575 637

640 212.183.140.53:7112 192.168.1.9:52382 10442 23268

641 94.253.228.208:52067 192.168.1.9:52382 23741 9643

1344 78.54.33.40:2421 192.168.1.9:52382 446 722

1406 78.54.33.40:3371 192.168.1.9:52382 655 749

1408 217.92.116.164:37554 192.168.1.9:52382 525 617

1537 78.54.33.40:4831 192.168.1.9:52382 446 512

1538 193.175.118.59:2651 192.168.1.9:52382 449 536

1620 212.183.140.53:52833 192.168.1.9:52382 1131 1276

1621 94.253.228.208:1080 192.168.1.9:52382 1313 1440

Figure 3.8: Tcptrace output for Skype super-node connections with greater than 400 packets sent

In order to prove/disprove any relationship between each pair of connections the analysis

applied a filter to the original packet captures to display only each pair of connections. Then the

trace for each connection pair was further analysed using metrics described by (Suh, Figueiredo

et al. 2006) to identify relayed traffic. These metrics were:

- - the difference between the start times of flow i and j

- - the difference between the end times of flow i and j

-

 - the ratio of bytes carried by flow i and j

Using these metrics 115 pairs of TCP connections were identified as having a very high

probability of being correlated with one another. While 230 connections represent a very small

percentage of the overall number of TCP connections, this figure does not suggest that these

were the only TCP connections to be relayed via the super-node. Moreover, connections of

fewer packets are more difficult to categorically prove correlation between.

68

Due to TCP dynamics the TCP connection between Host A and the super-node was never

perfectly symmetrical to the TCP connection between the super-node and Host B. However,

when repeating the above method to identify potential pairs of UDP connections
3
, the simplicity

of UDP made identifying traffic relayed by the super-node far easier.

Firstly, UDP connections were filtered to show only those with more than 400 packets in either

direction. This identified a number of potential pairs of connections (using the same visual

identification methods associated with Figure 3.8). Following this initial identification each pair

of connections was filtered from the original packet capture using TCPdump. An example of the

TCPdump output is shown in Figure 3.9, which shows UDP packets arriving at the super-node

(Host 192.168.1.9) and within a fraction of a second being relayed to the remote destination.

Timestamp of packet

observed by monitor
Protocol Source Address Destination Address

Payload

Length
(Bytes)

10:57:39.938422 UDP/IP 86.11.1.125.46258 192.168.1.9.52382 97

10:57:39.938461 UDP/IP 192.168.1.9.52382 62.254.7.27.4119 97

10:57:39.943523 UDP/IP 86.11.1.125.46258 192.168.1.9.52382 80

10:57:39.943560 UDP/IP 192.168.1.9.52382 62.254.7.27.4119 80

10:57:39.953977 UDP/IP 62.254.7.27.4119 192.168.1.9.52382 75

10:57:39.954019 UDP/IP 192.168.1.9.52382 86.11.1.125.46258 75

10:57:39.958809 UDP/IP 86.11.1.125.46258 192.168.1.9.52382 78

10:57:39.958845 UDP/IP 192.168.1.9.52382 62.254.7.27.4119 78

10:57:39.988002 UDP/IP 86.11.1.125.46258 192.168.1.9.52382 91

10:57:39.988057 UDP/IP 192.168.1.9.52382 62.254.7.27.4119 91

10:57:39.990746 UDP/IP 62.254.7.27.4119 192.168.1.9.52382 71

10:57:39.990787 UDP/IP 192.168.1.9.52382 86.11.1.125.46258 71

10:57:40.003492 UDP/IP 86.11.1.125.46258 192.168.1.9.52382 94

10:57:40.003537 UDP/IP 192.168.1.9.52382 62.254.7.27.4119 94

 Figure 3.9: Excerpt of a TCPdump output showing the relaying of UDP packets between two hosts via

Super-node

The nature of the relayed traffic, for both TCP and UDP connections is largely left to

assumptions. However, a variety of relayed traffic was collected and analysed, which included,

TCP flows which could be files transfers and paired UDP connections with almost symmetrical

3
 Although UDP is by definition, a connectionless protocol, in this case a UDP connection is defined as

communication between a source / destination pair (identified by IP and port numbers).

69

characteristics, which could be two-way VoIP/Video calls. Also observed were paired

connections that were heavily asymmetric, which are hypothesised to be one-way video (e.g.

webcam video) during an Instant Messaging session via Skype.

This section of the study has provided an insight into the P2P properties of the Skype

application, while much is left unknown about the Skype protocol this study focussed on the

network and transport layer properties rather than attempting to reverse engineer the actual

operations of the application. Further characterisation of the VoIP features within Skype is

provided later in this chapter, in section 3.5.

3.4.2. Spotify

Spotify is an on-demand streaming music application, which allows a user to search for and

listen to music through the Spotify application. The terms of use for Spotify specify that users

allow the ‘Spotify network’ to use their Internet connection and system to assist in the operation

of the service, suggesting the possible use of a P2P-like architecture.

After analysing packet captures collected while using the Spotify application, it was determined

that data is sent in 500kB bursts, over a single TCP/IP connection (resolved to show a

zzz.Spotify.com address), Figure 3.10 illustrates this bursty behaviour. Data is sent using TCP

over port 80, although is not traditional HTTP traffic despite using the same port, the packet

payloads are encrypted. Periodically the application would establish TCP connections with

(presumed) other Spotify peers, (this presumption is made given that resolving a selection of the

IP addresses revealed hostnames describing ISP customers e.g. f048184058.adsl.alicedsl.de).

However, these connections did not stay established for more than a few seconds and typically

carried less than 5 packets in either direction. Spotify streams media at 160kbps for free user

accounts and at a higher 320kbps for premium accounts
4
, resulting in 4.8MB file for a 4minute

song being transferred at standard quality and just under 10MB per song at premium quality.

4
 Figures obtained from Spotify’s Wikipedia page.

70

Figure 3.10: Observed incoming data bursts for Spotify application

During this study no evidence was collected of the Spotify client uploading to other users,

however, it was noted that the media played through Spotify appeared to be cached locally in

pieces ranging from 250kB to 1.5MB. The cached files also appeared to be encrypted and

therefore the exact nature of these files is unknown, however, it is hypothesised that this caching

may form the basis of Spotify’s P2P operations, possibly indicating a similar architecture to

Skype, where nodes with sufficient bandwidth relay their cached media to other users, although

this remains to be proven/disproven in future research. A more recent separate study (Ellis,

Strowes et al. 2011) has revealed that peer-to-peer activity between Spotify peers has been

observed. The number of established peerings from a single Spotify client ranged between 20-

40, and data transfer was recorded for a subset of those peerings (in addition to the client-server

transfers identified from the aforementioned study). This indicated that the Spotify architecture

can employ some level of peer-to-peer functionality to facilitate the delivery of media.

However, the circumstances which invoke peer-to-peer behaviour were not identified, and a

71

change in Spotify user policy has also taken affect between the two investigations. It is

questioned whether or not Spotify’s architecture makes use of Skype-like Super-nodes to

distribute media, but without a larger scale investigation this cannot be confirmed.

3.4.3. BitTorrent

While proprietary applications using a P2P system are difficult to fully characterise, the

behaviour of P2P file sharing protocols has been studied intensely over the past decade. Since

2006 the most popular P2P file sharing protocol has been BitTorrent, which contributes to over

40% of all P2P traffic (Schulze and Mochalski 2006; Schulze and Mochalski 2007; Schulze and

Mochalski 2009).

Downloading a file via BitTorrent involves the user downloading a torrent from a torrent listing

site or torrent search engine (such as BTJunkie.org, thepiratebay.se, mininova.org…). This

torrent requires the user to have a BitTorrent client installed on their system, which can open the

torrent and read the metadata held within. Amongst this metadata the torrent will provide the

address of a tracker (a server on the Internet that maintains a database of clients downloading a

specific file). The tracker provides the BitTorrent client with a list of peers that have (part of)

the desired file. The BitTorrent client then negotiates with these peers via the BitTorrent

protocol the exchange of 256kB pieces (further broken into 16kB chunks) of the desired file.

The exchange of pieces between peers comprises of a number of on-going processes, which aim

to provide the client with the fastest possible download rate. Firstly, a connection to each of the

peers obtained from the tracker is established, and information about the pieces each peer

currently has is exchanged. Although established, these connections with peers do not guarantee

the client will begin receiving data from connected peers. For each connection the client

72

maintains four states variables, am_choked5, am_interested6, peer_choked, peer_interested, and

keep-alive messages are sent (by default) every 120seconds to maintain the TCP connections.

The process of choking is performed to limit the number of concurrent upload connections for a

peer, to maximise TCP performance. Based on throughput measurements of the download rates

of connected peers (who are uploading to the client), the client unchokes the four peers who

have provided the fastest download rates and are interested in the pieces the client currently has

– enabling reciprocation. This choking and unchoking is performed every 10 seconds by default

to ensure the client is downloading from the peers who provide the fastest connection, and in

return uploads to each peer. Peers with better upload rates compared with the four unchoked

peers, but aren’t interested in downloading from the client are unchoked, to increase the

download rate for the client. If one of these peers becomes interested in the client then they

replace the slowest unchoked peer.

Periodically, (every 30 seconds by default), the client optimistically unchokes a single peer

regardless of whether they are interested or not. This process is performed to provide newly

connected peers a better chance of obtaining a complete piece, which can subsequently be used

to upload.

The operation of the BitTorrent protocol demonstrates reciprocity in terms of data exchange,

those peers providing the best upload rates are rewarded with an unchoked connection. If the

client fails to receive any data from an unchoked peer for 60 seconds then it will assume it has

been choked by the peer, and in response the client stops uploading.

5
 Choking refers to a peer temporarily refusing to upload to the client (or vice versa) while maintaining

the connection open.

6
 A client will maintain whether it is interested in the pieces the remote peer has. This informs the remote

peer downloading will begin if unchoked. Similarly, the peer informs the client if it is interested in pieces

the client has.

73

The performance of the BitTorrent protocol is heavily dependent on a number of factors, which

include:

- The connection rates of the peers provided by the tracker

- The popularity of the torrent listing site (less popular will result in fewer peers)

- The accuracy of the metadata provided by the tracker (the less often the tracker updates

its records the higher the probability it will contained expired peers)

- The configuration of the BitTorrent client

- Any traffic shaping measures implemented by the service provider

While a user may be interested in finding the most popular torrent search engine (to increase the

size of the peer-pool) it is doubtful that a typical user would consider the accuracy of the data

provided by the tracker, therefore from here on its effect on the traffic characteristics is

considered negligible. The top three torrent search sites were reported to be isohunt.com,

thepiratebay.org and BTJunkie.org with 12.5million, 11million and 4.5million unique monthly

visitors respectively (eBizmba.com 2010). These sites provided the sample torrent files for this

study.

With regards to the configuration of the BitTorrent client used, Table 3.3 provides the default

configurations for the top 5 BitTorrent clients (according to the survey of BitTorrent users by

About.com (About.com 2010)).

BitTorrent

Client

Download

rate limit

Upload

rate limit

Max

concurrent
Torrents

Max

Connectio
ns (per-

torrent)

Max

Connectio
ns (total)

Upload

Connectio
n limit

Seed Limit

μTorrent Unlimited Unlimited 8 50 200 4 Seed while

Ratio

<=150%

Vuze Unlimited Auto (2%

of

measured
download

rate)

4 Unlimited Unlimited Unlimited Min

600second

s

Deluge Torrent Unlimited Unlimited 8 Unlimited 200 4 Seed

forever

ABC Unlimited Unlimited 2 Unlimited Unlimited 5 Seed while

ratio

<=100%

Transmission Unlimited Unlimited 60 240 Unlimited Seed

forever

Table 3.3: Default configurations for the Top 5 BitTorrent clients

74

The aim of this study into the BitTorrent protocol was to observe a number of characteristics

that describe the protocol’s behaviour:

- The number of connections established with peers throughout the download

- The duration of each of these connections

- How the distribution of established connections vary during the file transfer period

- Ratio of uploaded data to downloaded data

- Ratio of upstream connections to downstream

3.4.4. Methodology of BitTorrent Analysis

The monitoring of P2P (BitTorrent) traffic was limited by a number of factors. Firstly, due to

the bandwidth intensive nature of P2P applications, the use of P2P protocols within the

Plymouth University network is prohibited. To alleviate this constraint all of the experiments

described in this section were performed on residential broadband connections. The second

limiting factor was that ISPs often implement traffic shaping measures against P2P traffic

during peak-hours (for example the evenings). To minimise any impact that ISP traffic shaping

may inflict on the results a number of test downloads were performed throughout the day

recording the average throughput during a 10-minute download period. It was established

through a series of preliminary measurements that the BitTorrent protocol performed at its best

between 12:00 and 15:00, and therefore all subsequent tests were performed during this

“unshaped window”.

It was decided that a 10-minute window of observation per downloaded file would be sufficient

to observe connection characteristics. The only preserved files were TCPdump traces, which

had had the packet payloads stripped to leave only the headers – required for analysis. Over 100

unique files were partially downloaded using BitTorrent, which provided sufficient data to be

able to ascertain a traffic profile. These 100 files were comprised largely of Linux ISO files (a

75

typical Linux distribution provides a number of unique files, e.g. DVD image, CD images, Live

images, USB images) and open source software packages.

The first characteristic to be investigated was how many TCP connections were established

throughout the duration of the download. Using the TCPdump traces collected during the

experiment, tcptrace (Ostermann 2003) was used to analyse the captures and determine the

number of fully established connections that were open at an interval of 5 seconds, for the

duration of the download. Within Figure 3.11 between 60-80 established connections is the

most densely populated region of the graph. It is noted that Figure 3.11 indicates that the

number of established connections exceeded the prescribed limit imposed by the BitTorrent

client (See Table 3.3). This is attributed to the limit imposing a restriction on the number of

concurrent active downstream connections, thus allowing additional connections to be

established providing they are currently choked, this behaviour describes Figure 3.11 where

more than the maximum number of connections are reported as being established.

Figure 3.11: Established TCP connections over time for 100 BitTorrent transfers (one colour per connection)

76

The variation of the number of connections over time is observed to be very low after the first

15 seconds, when the number of connections exponentially increases. Following this start-up

period the standard deviation for the number of connections is just 2.5 throughout the remainder

of the observed period. It should be noted that the number of open connections does not

describe how many of these are actively engaged in the exchange of BitTorrent pieces. It is

known that the BitTorrent protocol will open many connections but unless a peer unchokes the

connection, it may well see no traffic. However, the sending of keep-alive messages restricted

the ability to filter the traces to only those connections exchanging pieces of the file. Despite

this constraint, the study does go on to investigate the size of each flow, which reveals some

information as to the number of active flows.

From the BitTorrent protocol specification, it is known that despite the large number of

connections that are established, only those peers that unchoke the client will provide data.

Therefore, the majority of data is downloaded from a small number of the connections, leaving

the remaining connections exchanging keep-alive messages and control information. Based on

the BitTorrent traces analysed, 10% of the flows were responsible for 99.9% of the total data

transferred. 90% of the flows recorded were less than 10kB in size (as shown in Figure 3.12),

which indicates a high proportion of the flows sent only control data. The upper 10% of flows

were of lengths between 10kB and 446MB, of which 67% of these flows were less than 1MB

and 95% less than 10MB, which demonstrates that a very small number of connections are

responsible for the majority of the data transferred. Furthermore, Figure 3.12 also illustrates that

for the upper 10% of connections the sizes for flows upstream are of an order of magnitude less

than the downstream connections. It is noted that the volume of data transferred is a reflection

of the capacity of the Internet connection used.

Next was to determine the ratio of data uploaded to data downloaded, therefore also obtaining

the ratio of upstream connections to downstream. The Tshark (Wireshark 2009) program was

used to calculate the volume of data in each direction for each flow observed. From these

77

statistics it was observed that for 90% of the connections the ratio of uploaded to downloaded

data was approximately 1:3. This statistic alone provides a misleading impression of the traffic,

given that these flows predominantly carried only control traffic between peers, and therefore

carried very little data. In terms of data observed in each direction, over 28GB of data was

analysed, of which 92% was downstream traffic, indicating a much lower upload to download

ratio from the perspective of data volumes. It should be noted that these figures are

representative of the ratio of traffic transferred during a file download using BitTorrent.

Whether a user opts to continue uploading (seeding) pieces of a file after he/she has acquired the

complete file is their prerogative, although this will naturally impact the ratios.

Figure 3.12: Cumulative Distribution Function for the volume of data uploaded to downloaded

Further investigations into the characteristics of BitTorrent flows led the study towards

determining the duration of each established connection. This area of the study was complicated

by the use of keep-alive messages, as detailed earlier in the description of the BitTorrent

protocol, this made filtering out connections sending more than just keep-alives very difficult.

78

However, despite this, the distribution is given in Figure 3.13, which indicates that the majority

(80%) of connections lasted for less than 60 seconds. The upper limit of 600 seconds is bound

by the observation period, and so does not suggest an upper limit for connections.

Figure 3.13: Cumulative Distribution Function for connection duration

With regard to the underlying transport layer protocols used by BitTorrent, all of the

connections analysed using the packet captures were TCP. This is contrary to the findings of

(John, Tafvelin et al. 2008) were small (less than 3 packets) UDP flows accounted for 4% of the

P2P traffic analysed in a similar study. Possible explanations for this presence of UDP traffic

include that other P2P protocols were involved that use UDP, or that the traffic captures

included the client loading the .torrent file which involves contacting a server via HTTP and

therefore involves a DNS lookup (over UDP), however, this study only observed the data

transferred during the download period and as a result no UDP traffic was identified.

79

3.5. Voice over IP

As introduced earlier in this chapter the use of Voice over IP technologies has witnessed

considerable growth over recent years as a cost-efficient alternative to traditional voice-call

technologies. Skype has already been introduced as the leading application for VoIP within the

consumer marker, however alternative software based VoIP clients exist. This section of the

Internet traffic study details the characteristics of a number of leading VoIP applications in use

today, specifically, Skype, Windows Live Call (Messenger), Yahoo Messenger and Google

Talk, which were responsible for over 50% of all VoIP traffic on the Internet(Schulze and

Mochalski 2009).

Many of the details of these VoIP clients are unknown, given that they are all closed-source

proprietary applications. However, unlike Skype, Google Talk, Yahoo Messenger and Windows

Live call are all reported to use a derivative of SIP/RTP for their VoIP functionality, and do not

use a P2P architecture like Skype. Both Microsoft and Yahoo make no official statements on the

audio codecs that are used by their products, although third party information suggest that

Yahoo uses the Truespeech and the Internet Low Bit Rate Codec (iLBC), and Microsoft use the

Siren 7 codec, which is a slightly modified implementation of G.722.1. Google and Skype

report that their clients support a number of different codecs, any of which may be selected

given current network conditions and the support of the remote client. The algorithms used by

each client to determine which codec is selected are unknown for all clients. Previous versions

of Skype (prior to version 4.0) could be engineered to use a specific codec, however, this ability

appears to have been removed from version 4.0 onwards. This information for each of the four

VoIP clients is summarised and presented in Table 3.4.

80

VoIP Client Codec
Sampling Frequency

(kHz)
Frame Size (ms) Bitrate (kbps)

Google Talk

iLBC 8 20 / 30 13.33 / 15.2

PCMA

(G.711)
8 20 64

G.723.1 8 30 5.3 / 6.3

Speex 8 / 16 / 32 30 / 34 2 - 44

Skype

SILK
(default for PC-to-PC)

8 / 12 / 16 / 24 25 6 - 40

iLBC 8 20 / 30 13.33 / 15.2

G.729

(default for PC-to-
PSTN)

8 10 8

iPCM-wb 16 10 / 20 / 30 / 40 80

Windows Live
Siren 7

(G.722.1)
16 20 16, 24, 32

Yahoo

Messenger
iLBC 8 20 / 30 13.33 / 15.2

Table 3.4: Popular VoIP clients and their associated voice codec parameters

The aim of this element of the Internet traffic study was to profile each service from the network

and transport layer perspective, identifying application layer features (such as silence

suppression) where and when possible.

The method used to evaluate each VoIP client involved placing a call over the Internet between

two residential locations. The capacity of each Internet connection was measured using two

leading speed test websites, speedtest.net and broadbandspeedchecker.co.uk - each connection

had at least a 2Mbps downstream connection with at least 0.5Mbps upstream. The tests for each

VoIP client were performed between the hours of 2pm and 4pm, to avoid peak-time traffic

spikes. Prior to each VoIP-client being tested the speed tests were repeated at each location to

ensure the connection remained relatively constant for each test. Located at one end of the

connection was a network monitor running TCPdump to capture both data leaving the local host

and the incoming data from the remote destination.

To ensure the packet captures for each VoIP client were as similar as possible two pre-recorded

sound clips were used to simulate a conversation between the two locations. The sound clips

used were approximately 4minutes long, featuring on-off periods of voice with a mean on

period of 10 seconds, separated by increasing periods of silence, ranging from 1 second to 15

81

seconds. This approach was used to identify the behaviour of each client given varying periods

of silence.

Having collected the packet captures for each of the tests the captures were filtered to contain

only traffic originating from the local source. Figure 3.14 shows a scatter plot of payload sizes

for each of the VoIP clients. For each of the clients the on-off periods of speech and silence

clearly have a visible effect on the payload size. Starting with GoogleTalk (Figure 3.14-a) the

majority of payloads are distributed between 70-150bytes. Two continuous streams of packets

of 56 and 68 bytes are also visible, which upon further analysis were revealed as STUN

request/response packets, used to negotiate NAT routers. Additional packets of 25 and 20 byte

payloads are also visible every 300ms, both of which are assumed to be control data being sent

to the remote destination. These control packets were filtered out of the capture to consider the

packet and bit rate of the voice data. During speech periods GoogleTalk had a mean packet rate

of 33 packets/second, and a bitrate of 25kbps, although the bitrate is highly variable. The packet

rate dropped to between 2-10 packets/second during silent periods, and the bitrate consequently

was reduced to approximately 10kbps. Referring back to Table 3.4 the observed behaviour of

GoogleTalk correlates to the properties of the Speex codec, which suggests this was the codec

used.

The second plot represents the payload sizes for traffic sent by the Skype client. In contrast to

GoogleTalk traffic there appeared to be significantly less control traffic being sent, although it is

not known whether control data is appended to speech packets. There is however a 3 byte

packet sent every 10 seconds, which is assumed to be some form of control data. The payload

plot shows two discrete populations, which correlate to the on-off periods of the sound clip.

During speech payloads are distributed between 90-140, and during silent periods the payload is

reduced to between 60-90, indicating that a form of silence suppression is in use. Applying a

filter to remove any assumed control data the packet rate and bitrate for the Skype voice traffic

was inferred. The packet rate was almost constant at 50 packet/second (± 1 packet). The mean

82

bitrate during periods of speech was 44kbps, which was reduced to 30kbps during silent periods,

indicating that silence suppression was not used by Skype during the test call.

The plot for the third VoIP client, Windows Live Call, shows discrete bursts of packets with

very little data transmitted in between these bursts. The packet bursts again correlate to the

periods of speech, and indicate that Windows Live Call is implementing a form of silence

suppression. In addition to this three potential control streams are also visible on the plot, with

packets of 24, 28 and 224 bytes being sent periodically throughout the trace. Regarding the

voice data, the packet payloads are higher compared with the alternative clients, tightly

distributed between 125 – 190 bytes during speech periods. For silent periods greater than 5

seconds (illustrated at ~45 seconds in Figure 3.14-c) a distinct gap in transmission occurs, this

behaviour is repeated for all subsequent silent periods, suggesting a threshold of 5 seconds of

silence is required before transmission is suppressed. Applying a similar filter as with the

previous two captures, the control traffic was removed to investigate the packet rate and bitrate

of the voice data. Similar to Skype, Windows Live Call had an almost constant packet rate of 50

packets/second (±1 packet), which provided a mean bitrate of 60kbps during speech periods.

Interestingly this bitrate did not correlate with the characteristics of the Siren 7 codec, however,

the Siren 14 codec (also a derivative of G.722.1) can provide a 64kbps bitrate, possibly

indicating that this codec is used by Windows Live Call, however this hypothesis is unproven.

The final VoIP client that was evaluated was Yahoo Messenger, for which the payload scatter

plot is given in Figure 3.14-d. A number of initial observations can be made about the plot,

firstly two streams of (assumed) control data can be identified with payloads of 12 and 64 bytes.

The second observation is a clear difference between the data sent during speech periods and

silent periods. During speech periods the payload size is distributed between 80-150 bytes,

while during silent periods the payload size is constant at 21 bytes. During a speech period the

packet rate (excluding control data) was almost constant at 33 packets/second (± 1 packet),

providing a bitrate of approximately 40kbps. Subsequently, during silent periods the packet rate

reduced to 10 packets/second, which resulted in a bitrate of 2kbps. Similar to Windows Live

83

Call the characteristics of the traffic for Yahoo Messenger did not correlate with the codec in

Table 3.4, which indicates that an alternative codec is being used.

a) GoogleTalk VoIP Client

b) Skype PC-to-PC VoIP Client

c) Windows Live VoIP Client

84

d) Yahoo Messenger VoIP Client

Figure 3.14: Scatter plot for payload sizes of packets from a VoIP call

These observations were made using a test topology with sufficient bandwidth for the traffic

involved. However, a number of previous studies have considered the performance of Skype

and MSN messenger (an early version of Windows Live Messenger) in more bandwidth-

constrained networks. For example, (Chiang, Xiao et al. 2006) presents an evaluation of both

Skype and MSN messenger under constrained network conditions. Chiang et al. observe that

over a low bandwidth connection (< 32kbps) Skype reduces both its sending rate and packet

size, maintaining a smooth transmission of packets, with low jitter. On the other hand MSN is

observed not to reduce either its sending rate or the packet size, and as a result has a lower

performance (MOS score) than Skype. Chiang et al. also investigated both clients in lossy

environments, concluding that the MSN Messenger client featured no error resilience

mechanism, whereas Skype increased its packet size (from approximately 100 bytes to 200-300

bytes) in the presence of loss. This increase in packet size is likely to be attributed to a form of

Forward Error Correction (FEC) being used by Skype, although Chiang observes beyond 10%

packet loss the performance of the VoIP call decreased while the throughput continued to

increase, suggesting the FEC mechanisms in use were not optimised.

A similar, more recent study into the behaviour of Skype under varying network conditions is

presented by (Bonfiglio, Mellia et al. 2009), which again observes Skype decreasing the packet

85

size and increasing the inter-packet gap in bandwidth constrained networks. Bonfiglio also

presents results illustrating Skype increasing the packet size during lossy periods, again

suggesting the used of FEC to compensate for packet loss.

At this time, no studies have presented a complete comparison of the four major VoIP clients

evaluated in this section of the thesis. Windows Live Call (MSN Messenger) is generally agreed

to provide poorer performance than Skype, however, a further comparison including

GoogleTalk and Yahoo Messenger has not been identified, and therefore as future work this

study is likely to be extended to provide such a comparison. Similarly, the video-call features of

each client have not been evaluated but could form part of future research.

3.6. Summary

This chapter of the thesis provides a detailed insight into a number of Internet services, which

together contribute towards a large proportion of the Internet-based activities performed today.

Using a combination of empirical data collected for a variety of services and drawing upon

observations from related research, a comprehensive description of the “multimedia Internet”

has been provided, not only from the application layer perspective, but also considering the

network and transport layer characteristics of these services.

A number of key observations were made by this study, for instance the surprisingly distributed

nature of website content, which results in many short connections being established to retrieve

a typical webpage. Further analysis of (non-live) streaming media over the Internet revealed two

primary methods of content delivery, the first approach being pseudo-streaming where data is

buffered (as fast as possible) on the user’s system ready for playback in real-time, and the

second approach, which operates more closely to the word streaming, removing the storing of

media locally. Recognising the nature of Internet traffic and the underlying delivery

mechanisms are considered a key factor for the novel QoS architecture.

The primary purpose of this study was to obtain an application and protocol level understanding

of a selection of modern Internet services. It was recognised that despite the large number of

86

users, and content providers there appears to exist a number of prevailing technologies that are

responsible for a large proportion of Internet traffic. The application and protocol characteristics

determined in this chapter provided the opportunity to integrate this knowledge into a novel

QoS architecture. This architecture is presented in the following chapter.

87

4. A Novel Approach to QoS Provisioning

4.1. Introduction

The previous chapters examined existing approaches of providing QoS within IP networks and

also presented an in depth analysis of current Internet traffic. The outcomes from these chapters

were used to design a novel architecture for user-centric QoS provisioning. The architecture is

located at the network layer of the Internetworking model. This decision to develop at this layer

was taken based on the previously described difficulties related to deploying modifications to

the protocol implementations within end-hosts, and the inability to enforce the uptake of such

modifications across the Internet. It is also believed that within the network layer, the

architecture can fully evaluate the current network conditions, and directly control traffic flows.

Although located at the network layer and concerned with managing IP packets, the novel

architecture operates a cross-protocol approach, acknowledging the transport and application

layer mechanisms implemented by different Internet services, which provided a more intelligent

method of management.

4.2. Motivations for the novel approach

Chapter 2 examined the merits and shortfalls of the current approaches that are available for

QoS provisioning. The challenge of providing QoS within IP networks continues to be the

subject of much research, with efforts focussing across all the layers of the Internetworking

model. One of the most prevalent methods for QoS provisioning was reviewed as the Diffserv

architecture, which has widely been adopted within large managed network environments (e.g.

Enterprise networks). QoS provisioning in such an environment allows for certain luxuries, such

as being able to dictate traffic policies, control (or even outlaw) specific protocols and tune the

QoS configuration according to known traffic profiles – a process that can be repeated

periodically or following the addition of a new network service.

88

For unmanaged networks, such as those of ISPs, the services in use are less predictable, with

new services continually emerging, altering user behaviour and expectations, complicating the

task of tuning a QoS configuration to match the current network traffic. Moreover, the capacity

of Enterprise networks is typically the result of forward-planning, with knowledge of the

services that will be used. This contrasts highly with the traditional ISP network, designed to

exploit a high contention ratio, based on the assumption not every user would be using their

connection simultaneously, and traditional Internet services, such as web browsing, are bursty in

nature. The emergence of new services over the Internet, such as VoIP, VoD, media purchasing

and gaming has transformed the usage pattern of home Internet connections, pressuring ISPs to

consider some form of traffic management on their networks. However, this has generally been

performed using traffic shaping techniques at the ingress of the ISP network to provide

precedence only for premium services, rather than adopting a system that considers the entire

spectrum of user services.

While this approach has allowed real-time services such as VoIP to be marketed over ISP

networks, it fails to address the QoS requirements for those users not subscribed to premium

services or those services which may be falsely classified as non real-time. For example,

securing an online purchase in the last remaining seconds is a real-time activity, but is unlikely

to be regarded as such, and hence not receive the desired precedence across the network. This

concept of providing a more user-centric QoS model was reviewed in section 2.3.3.2, where

Diffserv-based frameworks were presented that allow the user to configure the QoS parameters

for their individual applications. Despite their described limitations, these user-centric

frameworks do advocate a move away from static, policy driven QoS solutions, and a move

towards integrating user expectations into the provisioning process.

Moreover, Internet users are no longer using single services at any one time; instead they are

engaged in many concurrent services expecting each to receive an acceptable level of service.

This draws attention to the inadequacies of the methods used by ISPs to manage their user

traffic, favouring individual traffic types. Based on this review of existing QoS mechanisms a

89

distinct need exists for a QoS provisioning method that can adapt to the needs of each user;

optimising their entire Internet experience, not solely focussing on a single preferred traffic,

therefore only serving one user-group an optimised service.

4.3. The requirements for a novel approach to QoS provisioning

4.3.1. Ideal Solution

The ideal solution for QoS over the Internet would satisfy the expectations of each and every

user, irrespective of the services they choose to use. As mentioned in the chapter 1, if the

capacity of the network could always exceed the bandwidth demand of the users then there

would be no requirement for QoS provisioning. However, since bandwidth is a finite resource

and multi-streamed applications (such as P2P) are designed to obtain any available bandwidth,

this is neither a practical substitute nor a long term solution. Therefore, an ideal QoS solution,

which addresses the limitations of static pre-configured solutions, such as Diffserv, would be to

have advanced knowledge describing which of the concurrent activities a user is engaged in

they consider being the most important, and providing priority to that service. This approach

would ideally have the following functionality:

- The network would interact with the user to obtain their perspective of their service

precedence.

- This interaction would have to be non-intrusive, to avoid disrupting the user experience.

- The QoS policies within the network should adapt as the user’s usage varies, not be

statically configured and require manual evaluation.

- The user’s service precedence would have to be upheld from end-to-end.

- The desired QoS for one user must not impair that of others.

- Consider the entire user experience and not solely focus on providing QoS to a single

service.

While this level of synergy between user expectations and delivered QoS would provide the

ideal user-centric QoS solution, the practicality of such as system needs to be considered.

90

Firstly, obtaining a user level opinion regarding the level of precedence for a service is

particularly challenging. The only guaranteed method to obtain the order of precedence for the

services in use by a user would be to consult them. However, examples of this method were

reviewed in section 2.3.3, and were concluded as being intrusive to the user experience –

contradicting the second ideal functionality. A more pragmatic alternative would be to recognise

the services in use by the user and evaluate how best to maximise the user experience based on a

number of assumptions about the concurrent usage of Internet services. The assumptions

required to maximise the quality of the user experience are discussed later in this chapter, in the

design of the traffic management component of the architecture (see section 4.6).

The fourth ideal functionality was to uphold the user’s order of service-precedence from end-to-

end. While Intserv and Diffserv may provide end-to-end QoS, they are typically restricted to

within a single Autonomous System or among cooperating Autonomous Systems. The complex

peering agreements of the Internet impede the ability to guarantee end-to-end QoS, however,

analysis of flows transiting an Internet node can be used to infer the current network conditions

of the end-to-end path.. For example, knowing the behaviour patterns of a TCP flow under

normal, delayed and lossy conditions (as described in section 2.2.2.2) would allow the

architecture to monitor the behaviour of TCP flows and infer the health of the network from

end-to-end. As a result the architecture could adjust the handling of a flow in order to counter-

act the adverse conditions.

The fifth functionality listed for the ideal solution is a matter of enforcing fairness among users.

It has previously been highlighted that certain applications can behave unfairly, and therefore

require management within the network. However, it has also been highlighted that traditional

static QoS configurations, such as Diffserv, can result in an unfair distribution of resource

among users. Therefore, a method to ensure fairness among user traffic is critical for the novel

architecture.

91

The final ideal function stated that the solution should consider the entire user experience and

not solely focus on optimising the performance of a single service, this is one of the primary

objectives for the research and so the proposed architecture should meet this requirement.

4.3.2. Pragmatic approach to providing the ideal solution

Using the motivations for a novel approach to QoS provisioning from section 4.2, and

considering the constraints of the ideal solution from the previous sub-section, a specification

for the novel architecture can be produced. The architecture requirements are defined under five

headings; functionality, reliability, usability, performance and supportability. These

requirements are the result of considering the shortfalls of previous QoS alternatives and the

constraints of an ideal QoS solution based in reality, also in conjunction with discussions and

meetings with members of the UK ILAB of France Telecom, and are presented in Table 4.1.

Functional Requirements

F.1 Adjust network QoS policies to reflect the services in use by the user.

F.2 Buffer and schedule outgoing packets according to the inferred user expectations.

F.3 Acknowledge the impact queuing and scheduling techniques may have on application QoS.

F.4 Employ rate control techniques on application traffic if necessary - controlling the ratio of traffic

under congested conditions.

F.5 Instruct congestion controlled traffic sources of the need to adjust transmission rates if the network

is becoming or has become congested.

F.6 Manage application access to the network ensuring the balance between QoS with fairness is

maintained.

F.7 Identify/Infer network conditions through network/traffic monitoring techniques.

Usability Requirements

U.1 The allocation of resources between end point application traffics reflects changes at the end

points, however, remain transparent to the user(s).

Performance Requirements

P.1 The adjustment of traffic conditioning should be harmonised with changes in application usage by

the user.

Supportability Requirements

S.1 The architecture requires no change to the underlying IP protocols, or application layer

functionality.

S.2 Processed packets must be routable by current Internet routers, and conform to Internet Protocol

standards (including but not limited to RFC 1122, (IETF 1989)

Table 4.1: Requirements for a Novel QoS Architecture

92

4.4. Proposed User-centric QoS Provisioning Architecture

The requirements in the previous section provide the specification for the novel architecture,

defining a new network layer architecture, capable of providing an adaptive user-centric QoS

solution. These requirements were used further to develop an abstract architecture, which can be

integrated into existing IP infrastructures, optimising network traffic from the perspective of the

user-experience and based upon the current state of the network.

To be able to manage user-traffic with respect to the entire user-experience the architecture must

be located at a point within the network where services aggregate together. In order to condition

traffic optimally, the architecture should condition the aggregating services prior to them

reaching the bottleneck link, which as previously discussed is typically located at the

‘contended-by-design’ access network. The bottleneck of a network is a much disputed topic,

with many factors involved when trying to specify its location. For the purposes of this research

it is considered appropriate to state the core uplink from the aggregation node at the edge of the

access network as the network bottleneck. This is the location where multiple end users

aggregate at a single point, and where the sum of their individual connections exceeds the

uplink capacity. The conditioning of traffic at the bottleneck may be complimented with support

from subsequent network nodes, i.e. within an ISPs network however, this functionality is not a

necessity since the conditioning is primarily achieved at the ingress of the bottleneck.

Figure 4.1 illustrates the intended location of the architecture at the edge of the ISP network,

and also gives an expanded view of the logical architecture, where the solid dark arrows

represent the flow of packets through the system, and the broken white arrows represent control-

plane information within the architecture.

93

Figure 4.1: Block diagram of the proposed QoS architecture

The following sub-sections provide a description for each of the architectural components,

expanding on its functionalities and interactions with the other elements in Figure 4.1. A

reference to the associated design requirement (as defined in Table 4.1) is provided where

applicable.

4.4.1. Ingress and Egress Interfaces

The ingress and egress interfaces describe the entry and exit points of the architecture for user

data. The terms ingress and egress are noted as logical labels, since a single physical interface

will act as both ingress and egress depending upon whether the attached host is the source or

94

destination of the data. For packets arriving at the ingress interface they are passed onto the

Traffic Classifier component. The ingress interface is also responsible for measuring the packet

arrival rate of incoming packets and forwarding this control plane information to the Network

State Monitor. Similarly, the egress interface monitors its current utilisation and forwards this

information to the Network State Monitor.

4.4.2. Traffic Classifier

The traffic classifier component is responsible for identifying the incoming packets in terms of

protocol and application type. This identification can be achieved using a number of techniques,

for example identifying traffic coming from known source IP addresses, well known layer 4

port numbers (i.e. 80 = HTTP, HTTPS = 443, 21 = FTP..), or using more complex methods of

Deep Packet Inspection (DPI) to identify layer 7 attributes or traffic signatures. For the scope of

this research it is sufficient to acknowledge such identification methods exist. The traffic

classifier is also responsible for updating the User / Service Information Store with a record that

describes new incoming services.

4.4.3. User / Service Information Store

This component is responsible for maintaining two data structures, one that describes each

service in use (FlowTable), and also an aggregated summary of the traffic for each user

(UserTable)
7
. These data structures store information describing service usage and performance,

which enable the Traffic Manager to evaluate this performance against the current network

health. The exact design of these structures will be dependant on the services the architecture is

configured to manage. However, an example is provided in Appendix D for VoIP, HTTP, FTP

7
 Throughout the subsequent sections field names from the FlowTable are denoted by the subscript i .

Fields from the UserTable are denoted by the subscript j.

95

and P2P, which were the traffic types used during the validation of the architecture in section 5.

As part of the maintenance of these data structures, the User / Service Information Store is

responsible for periodically scanning the records and removing any data relating to expired

services
8
.

The final responsibility of this component is to answer the queries of the Traffic Manager,

providing performance statistics when required, for example average throughput, average delay

and packet drop history.

4.4.4. Services Profile Store

The purpose of the services profile store is to maintain a record of the properties for known

Internet services. These properties can include expected bitrate, packet sizes, adaptability (i.e.

codec adaptation or F.E.C.). The services profile store is responsible for informing the Traffic

Manager of these properties to enable an informed management decision to be made with

regard to quality of service. The service profile store can be updated either with service

properties provided by content providers, or through the monitoring of new Internet services.

The details surrounding the online, real-time learning of new Internet services is out of the

scope of this research, but could provide a promising avenue for future study.

4.4.5. Network State Monitor

The network state monitor plays a critical role in the operation of the proposed architecture. It is

responsible for receiving control plane information (e.g. link utilisation and packet arrival rate)

from both the ingress and egress interface, in order to evaluate and report to the Traffic

Manager the current state of the network. Further information regarding the granularity of the

information that is collected and evaluated by this component is provided in section 0.

8
 A service is considered expired if no traffic has been observed beyond a defined expiration period.

96

4.4.6. Traffic Manager

The traffic manager is the central component in the proposed architecture, responsible for

aggregating together the information provided by the Network State Monitor, User / Service

Information Store and Service Profile Store. This information is used by the User-centric QoS

engine (part of the traffic manager) to make an informed and dynamic decision about how best

to handle incoming traffic. A detailed description of the decision process is provided in section

4.6. Following the decision (and if necessary subsequently action) of the traffic manager, the

packet is forwarded to the Packet Scheduler component, ready to be queued for the egress

Interface.

4.4.7. Packet Scheduler

The packet scheduler is responsible for managing the outbound buffer(s), where the conditioned

packets await forwarding towards their destination. A number of considerations were made in

the design of the queuing and scheduling for the proposed architecture, these are provided in

sections 4.9.1 and 4.9.2 respectively.

Having expanded on the overall architecture of the proposed system the next section presents a

number of trade-offs that were made during its development. These trade-offs describe the need

to balance granularity of the control plane data collected and processed, with the overall system

complexity.

97

4.5. Design Trade-offs

The previously reviewed study on Internet services (Schulze and Mochalski 2009) suggests that

a very high proportion of Internet usage is accounted for by a relatively small number of

discrete services. Standardisation of application protocols results in a relatively small number of

underlying technologies and platforms being responsible for the delivery of the majority of

Internet services. The level complexity of a user-centric architecture compared with that of a

coarsely granular class based approach is understandably higher, however, observations like

those by Schulze can be advantageous to the proposed design. For example, rather than each

flow having individual QoS requirements (as per the design of Intserv), the new architecture can

cross-reference a store of common service profiles. Once a matching profile is identified, the

QoS requirements for the flow can be interpreted.

Taking Video on Demand (VoD) as an example application, there are a finite number of

commonly used bitrates (as presented in Section 3.3). The novel QoS management architecture

can store a profile for each of these bitrates (also including information such as adaptable

codec), which can then be used to inform the traffic management component how a particular

flow should be handled.

The User / Service Information Store and the Network State Monitor are both responsible for the

storing and collection of information on network traffic and conditions, which enables the

Traffic Manager to optimise user-traffic given the current conditions. This data collection is

conducted in a passive manner, meaning the data is collected through monitoring incoming

traffic flows, and measuring interface utilisation. A more active method of information

collection could have been used for example; injecting test flows into the network between

dedicated devices may have offered an increase in the accuracy and detail of the information

collected. However, would have also meant that the traffic from which performance information

was based upon was not real user-data.

98

The User / Service Information Store maintains a record of the services that are in use by each

user. The exact information held for each user’s services will vary depending upon the

individual service, but example fields may include a flow ID, source and destination IP

addresses, application type, average throughput and VoIP quality rating (more detailed

consideration of the data required for each service is given later in this chapter). The decision to

maintain information about traffic flows and users raised scalability concerns in terms of the

volume and granularity of the information being recorded. However, it was concluded that any

shift from a coarse class-based QoS architecture towards the desired user-centric approach

would introduce an intrinsic requirement to monitor and store characteristics for flows and

applications in a stateful manner. The limits in terms of how far the architecture could scale

were decided to be reserved for future research, given that such limits are likely to be bound by

hardware (ASIC) capabilities. Incidentally, it is believed that although this is an area for future

consideration, the stateful storing of information about Internet traffic flows would not

fundamentally inhibit the success of the architecture. This belief is based upon the fact that there

are a number of technologies and network appliances that rely upon the collection (and in some

cases interaction) with live Internet flows, for example, Intrusion Detection / Prevention

Systems, Cisco’s Netflow accounting feature (Cisco Systems Inc. 2010) and server load-

balancing devices.

One alternative active approach could have been to modify either the end-user system (i.e. the

operating system) or by integrating cooperation with the gateway device of the user’s network.

For example, the operating system could be modified to send periodic summaries of the services

currently in use by the user to the QoS architecture within the network. While this method may

have provided a description of the applications in use without monitoring and inspection at the

edge node, a number of limitations out-weighed this benefit. Firstly, this approach would

require modification to the operating system, which as discussed throughout this thesis presents

a significant deployment issue. In addition, as with any method of active measurement, this

approach would inject additional data onto the network, which during periods of high utilisation

99

would add to the problem of congestion. Furthermore, using information provided by external

nodes opens the QoS system to the possibility of receiving rogue control information, which

could be used against the system, disrupting the management of user-traffic.

The Network State Monitor could also increase the variety and accuracy of the data it collects by

actively engaging with other network nodes. For example, rather than modifying the end-user’s

system, simply installing a piece of software on their system that could be probed periodically to

provide information such as bottleneck bandwidth, delay, and loss statistics of the network path.

However, once again this active approach of measuring the network condition injects additional

data onto the network, and only describes the path taken by that specific flow, which is unlikely

to be indicative of the conditions experienced by all other flows.

With regard to measuring and inferring the network health many trade-offs must be made in

terms of the accuracy and proportion of the network that is measured. The more knowledge

about the network that is known, the more complex the architecture becomes, and the less

scalable the solution. Therefore, given that it was assumed that the access network is the most

likely location for congestion, and that the routers at the edge of the ISP network can be

informed of link capacities, the method of determining link/network utilisation was to compare

the arrival rate of the incoming packets to the capacity of the egress interfaces.

Although this provides a very limited perspective of the network health investigating the benefit

that using additional network parameters could have on the efficiency of the Traffic Manager is

reserved for future work.

This section has highlighted the compromises that were needed to realise the specification given

in section 4.3.2, and develop it into a feasible architecture, capable of delivering user-centric

QoS. The following section expands on the design and operation of the traffic management

component. The section describes the performance metrics used in decision process of the

traffic manager and defines the how each traffic type is controlling and conditioned.

100

4.6. Design of the Traffic Manager

The novel architecture is required to optimise the QoS for each user service, rather than simply

providing precedence to specific traffic types, with the aim to consider the entire user-

experience. Given that bandwidth is a finite resource and it is not possible to create additional

bandwidth, only reduce the amount a service uses, the role of the Traffic Manager is to employ

the most appropriate control mechanism to each service, ensuring any degradation of quality is

distributed across all services, in a manner that minimises the overall impact on the user-

experience.

In the first instance the architecture ensures the bottleneck capacity is shared equally among

users, ensuring per-user fairness rather than favouring premium service users. This allocation is

described by equation 10, where C is the bottleneck capacity and r(i)AS is the bottleneck

entitlement for user i, given n users. denotes a weighting function that reflects the subscription

plan of user i, however, from here on it shall be assumed all users have an equal subscription,

and omitted.

10

Equation 10 gave r(i)AS as the fair share entitlement of the bottleneck bandwidth for user i, which

assumes each user will utilise all of their share of the bandwidth. In the (likely) case that every

user does not saturate their connection, the bandwidth available to user i can be described as an

equal share of the bottleneck capacity, Ctotal plus an equal share of any unused bandwidth from

other users, Cresidual.

11

This approach of resource allocation is similar to the per-aggregate Assured Forwarding in

Diffserv networks, in the sense that it guarantees a proportion of the bandwidth to a flow

aggregate (in this case the traffic for a single user). However, the novelty of the architecture

101

comes from if the network becomes congested and r(i) > r(i)AS . Under these conditions the Traffic

Manager reduces r(i) so that r(i) ≤ r(i)AS , by combining the information about the services a user

is currently engaged in (stored in the User / Service Information Store) with the requirements

and characteristics of each service (stored in the Service Profile Store), to provide an

application-aware, user-centric traffic management system.

There are two approaches to managing network traffic, loss management and delay

management; for example, if one wishes to improve the quality of a service then packets for that

service can either be given queuing priority over concurrent services (delay management), or

packets from other services can be dropped (loss management).

The following sections outline the traffic management policies for a variable mix of web

browsing, single source file downloads (via FTP/HTTP), VoIP, streaming video, and P2P file

transfers. While this list does not encompass every Internet service, these services are

responsible for over 90% of all Internet traffic (Schulze and Mochalski 2009) and are therefore

considered sufficient to demonstrate the principles of the architecture. Moreover, the Service

Profile Store enables the architecture to be updated to recognise the latest protocols and

applications. Following this outline of the management policies, the next chapter describes how

the novel architecture could be integrated into existing network infrastructures, and the

mechanisms required to implement and enforce these policies.

4.6.1. Traffic Management of UDP-based Applications

As introduced in section 2.4.1 the transmission rate of an application using UDP is not affected

by loss or delay, however, it has also been highlighted that typical services that use UDP, for

example VoIP, are highly sensitive to loss and delay. Therefore, it is the responsibility of the

Traffic Manager to maintain such services at a point of equilibrium between network health and

acceptable QoS. Of the services studied in Chapter 3 (VoIP, web browsing, streaming media

and P2P), only web browsing and VoIP were observed to send packets over UDP. For web

102

browsing activities, the UDP traffic refers to DNS resolutions that are performed in order to

acquire the IP address for the desired web server. While this process does not involve the

transmission of actual webpage-data, the process is critical to the retrieval of a webpage, and on

account of this packets associated with this process are protected as part of the browsing

experience.

4.6.1.1. Management of VoIP traffic

The traditional approach used for QoS provisioning for VoIP traffic is to allocate the required

amount of bandwidth to accommodate the voice flow(s), and implement priority queuing to

ensure delay is kept to a minimum. While this is one possible method, the Traffic Manager must

be able to optimise the use of the available bandwidth, which may require compromising the

proportion of bandwidth VoIP traffic is allocated. In section 2.2, the E-model was introduced as

providing one method of evaluating the quality of a VoIP call, its R-Factor - derived using

quantitative measurements (including packet loss and one way delay). Only when a VoIP call

has an R-Factor ≤ 70 does user dissatisfaction being to occur, therefore it is proposed that

during congestion the Traffic Manager aims not to reserve a fixed amount of bandwidth for a

VoIP flow, but rather consider this quality rating, and aim to maintain an R-Factor ≥ 75.

The reduction of the E-Model provided by (Cole and Rosenbluth 2001) is given in equation 12,

where Ie (13) and Id (14) are the impairment factors for packet loss and delay respectively. In

equation 13 λ1, λ2 and λ3 are codec specific parameters derived by Cole and Rosenbluth, and e

represents the current loss rate of the flow. In equation 14, the One Way Delay
9
 is given by d

and H(x) is a step function where H(x) = 0 if x< 0 or H(x) =1 if x ≥ 0.

9
 The One Way Delay is assumed to be equal to half the estimated RTT.

103

 12

 13

 14

Figure 4.2 shows the decreasing R-factor of a G.711 VoIP flow as a function of the experienced

packet loss and delay. Two distinct gradients can be seen in Figure 4.2, the first where delay <

177ms and the other where delay > 177ms, which is attributed to the step function used in

equation 14.

Figure 4.2: 3D plot showing decreasing VoIP quality (R-factor z-axis) as a function of delay and packet loss

Integrating the E-Model into the Traffic Manager is possible using two methods. The first and

recommend method is by using RTCP Extended Reports (RTCP XR) (Friedman, Caceres et al.

2003), an extension of the standard RTCP functionality, (introduced in section 2.5.1). RTCP XR

include a number of metrics that enable the evaluation of a VoIP call, including loss rate, round

trip delay, signal level, noise level, MOS values and E-Model’s R-Factor. As a VoIP flow

supporting RTCP XR traverses the Traffic Manager the flow’s performance statistics are

104

recorded by the Traffic Manager and determine how packets from that flow should be treated

as a function of the current QoS for the call.

If RTCP XR is not implemented, then inferring the QoS for a VoIP requires additional

computation within the architecture to determine the packet loss rate, one way delay and voice

codec– this computation is performed by the VoIP QoS Engine, a sub-component of the Traffic

Manager.

The packet loss and voice codec can be easily determined using information carried within

standard RTCP Sender Reports (SR) and the RTP header. Each SRi+1 provides the fraction of

packets lost since SRi was generated, and the voice codec is described by the Payload type field

of the RTP header. However, standard RTCP reports do not provide sufficient information to

determine the RTT between VoIP call participants. Despite each RTCP report having a

Timestamp field this cannot be used to calculate the RTT since the starting point for these

timestamps is chosen randomly by each RTP participant at the start of the session, which makes

calculating the RTT since the timestamping impossible. Furthermore, the receipt of an RTCP

SR or RR does not trigger an instant response, and so no method exists to observe the delay

between a request and response to infer a flow’s RTT (as can be used as a method of inferring

the RTT for a TCP flow, later described in section 4.6.2.2). To this end, inferring the RTT

between VoIP participants cannot be achieved passively, and therefore there is a requirement to

periodically probe the participants of the VoIP call, using ICMP echo-request packets,

measuring the response time from the novel architecture within the network to both VoIP

parties.

Using this method to obtain an estimate for the one way delay, and the packet loss and codec

determined from the RTCP and RTP packets, the Traffic Manager can calculate the current R-

factor for the VoIP call. Since the fraction of lost packets can be misleading (1 drop from a total

of 5 packets is less significant than 200 drops from a total of 1000), the significance is

105

determined using the cumulative packets sent value, also in the SR, allowing the Traffic

Manager to gauge the severity of the loss.

A moving R-factor is calculated for the previous 10 seconds, to provide insight into the recent

call quality. It was considered that 10 seconds was enough of a period to evaluate given that

events that happened beyond n seconds ago in a real-time service bear little impact on the

current QoS, however this was balanced with a need to assess a period long enough to ensure a

level of control. The moving calculation is performed on a time-basis rather than a per-packet

one, given that the average will decay at the same rate for every VoIP flow, irrespective of its

sending rate.

This integration of the E-Model allows the Traffic Manager to use the calculated current R-

factor, current packet loss and current one way delay values in the decision process for how

each VoIP flow should be treated. This permits for an intelligent management of VoIP packets

with an understanding of the impact that further queuing or dropping will have on the perceived

QoS, avoiding the traditional static reservation of resources that is typically implemented.

Figure 4.3 provides the pseudo-code for the management of VoIP traffic by the Traffic

Manager. Initially the current utilisation of the bottleneck is used to determine whether or not

the network is congested. During periods of no congestion the R-factor is evaluated to ensure

the VoIP flow is above an acceptable level (recommended to be an R-factor ≥ 75). In the event

that the R-factor is lower than the acceptable limit, the Traffic Manager queries the packet loss

for the VoIP flow to determine whether the flow has experienced excessive loss, in which case

it can be assumed there is congestion elsewhere on the end-to-end path between the VoIP

parties, and the Traffic Manager aims to alleviate this by adapting its management of other

services in use by the user. If the packet loss is acceptable but the one way delay is greater than

a delay threshold the Traffic Manager will increase the priority given to the VoIP packets in an

effort to reduce the delay and increase the R-factor above 75. In an uncongested state, where the

106

VoIP flow has an R-factor greater than or equal to 75 the VoIP packets are simply forwarded

under normal operating conditions.

If the bottleneck utilisation indicates that there is congestion the Traffic Manager first evaluates

the current R-factor for the VoIP flow. For cases when the R-factor is less than the lower VoIP

threshold (e.g. R-factor = 75), other concurrent services for the user in question are conditioned

more intensively to make available additional resources, in an effort to increase the R-factor.

For cases when the bottleneck is congested but the VoIP flow is maintaining an R-factor greater

than a specified upper threshold (e.g. R-factor = 80) then the Traffic Manager calculates the

packet loss budget using an inverse E-Model, which is derived from the standard equation

 factoring in either the current packet loss or delay with a target R-factor to

determine the upper limit for either packet loss or delay respectively.

 Inputs: CurrentUtil, UtilThreshold, LowerVoIPThreshold, UpperVoIPThreshold, DelayThreshold,

LossThreshold,
R-factori, PacketLossi, OWDi,

1 if CurrentUtil < UtilThreshold

2 then

3 if (R-factori ≤ LowerVoIPThreshold) AND (PacketLossi > LossThreshold) AND (OWDi <
DelayThreshold)

4 then reduce priorities of other services from this user & forward VoIP packets as normal

5 else if (R-factori ≤ LowerVoIPThreshold) AND (PacketLossi < LossThreshold) AND (OWDi >

DelayThreshold)

6 then increase VoIP packets priority

7 else if (R-factori >= LowerVoIPThreshold)

8 then forward VoIP packets as normal

9 else

10 if (R-factori <= LowerVoIPThreshold)

11 then increase VoIP packets priority and reduce priorities of other services from this user

12 else if (R-factori > UpperVoIPThreshold)

13 then calculate LossBudgeti

14 Drop packets based on LossBudgeti

Figure 4.3: Pseudo-code for the novel management of VoIP traffic by the Traffic manager

 - 15

 -

16

 F(Target R-factor, packet loss, codec parameters)

17

107

The calculations for the loss_budget or delay_budget can be performed using one of two

methods. The Traffic Manager can either calculate periodically for each VoIP flow an exact

figure using the inverse E-Models given in 16 and 17, or a less computationally intensive method

is to maintain a profile for a range of popular VoIP codecs, which describes the loss/delay

budgets required to achieve the desired R-factor. Table 4.2 provides an example of such a

profile for the G.711 codec to achieve an R-factor of 75.

Packet Loss Experienced (%) One Way Delay bounds (ms)

0-1% 285 - 256

1-2% 256 – 230

2-3% 230 – 205

3-4% 205 - 183

Table 4.2: Delay bounds for given varying degrees of packet loss, while maintaining an R-factor of 75

The study into Internet services given in Chapter 3 revealed that many of the most popular VoIP

clients employ encryption techniques often on proprietary protocols, thus restricting ability to

evaluate call quality. However, also presented in section 3.5 were methods to infer packet loss

and additional delay by analysing variation in the packet arrival rate and packet payload size.

(Huang, Huang et al. 2010) studied a number of Skype codecs under varying loss conditions,

observing adjustments made by the Skype application to the bitrate and payload size, Figure 4.4

shows their results (the red line represents packet loss ranging from 0-10% in 1% increments

increasing every 180seconds). Huang et al. observed that each of the three codecs reacts to an

increase in packet loss by increasing the packet size and also the bitrate, indicating the use of

Forward Error Correction techniques. For example, the iSAC codec sends packets with a

payload between 50-150 bytes for up to 4% packet loss, beyond which the payload is increased

to between 150-300 bytes. The bitrate lies within the range of 20-40kbps for up to 3% packet

loss, increasing to 40-50kbps at 4% loss, and further increasing to 50-70kbps for loss above 5%.

While these observations alone do not provide indication of the QoS, by way of an R-factor,

they can be used by the Traffic Manager as an indication of congestion, and a method of

inferring the loss characteristics for the VoIP flow.

108

Figure 4.4: The impact of increasing loss rate on the payload size and bit rate of Skype packets using three

different codecs. (Image source: (Huang, Huang et al. 2010))

While being able to infer the approximate packet loss or delay for an encrypted VoIP flow is a

step closer to dynamic QoS management, the ability to integrate a more comprehensive

109

assessment of the call quality (e.g. The ITU-T E-Model) would be more desirable. One solution

would be for the codec developers to release call quality guidelines that describe the

performance of their protocol under varying loss conditions. For example, Skype provides two

graphs that illustrate the MOS score for a VoIP call using the SILK codec at varying bitrates

and under different packet loss conditions (Figure 4.5). This information could be combined

with the method of inferring loss for a Skype flow to estimate the QoS of a call, which could

subsequently be used by the Traffic Manager.

Figure 4.5: Mean Opinion Scores for VoIP codecs for varying bitrates and packet loss (Image Source: (Skype

2010))

4.6.2. Traffic Management of TCP-based Applications

Previous methods of QoS provisioning for TCP flows were reviewed in sesction 2.3.3.1, which

primarily focused on improving the fairness of resource allocation between heterogeneous

flows, by managing the throughput of flows or aggregates. While each of the following sections

describe in detail the management for a number of TCP-based services, the fundamental metric

being controlled is throughput. Once again a compromise must be made between the degree of

accuracy the throughput of a flow is controlled with, and the resulting system complexity. At

one extreme, a full TCP model can be integrated into the Traffic Manager, enabling accurate

calculations of the loss and delay budgets to condition a TCP flow to achieve a precise target

throughput, a technique similar to that reviewed in section 2.3.3.1 by (El-Gendy and Shin 2003).

110

However, as highlighted in the earlier review, this approach requires the estimation of TCP

variables, including RTT, RTO, ssthresh and the Receiver window, severely adding to the

system complexity, with ssthresh and the Receiver window not being able to be calculated

without end-point cooperation. Furthermore, this approach only models steady-state TCP-Reno

flows (assuming the well known ‘Padhye’ model is used (Padhye, Firoiu et al. 2000)), this

approach was considered to be too complex, while still incomplete as it did not encompass all

variants of TCP, nor does it begin to take into consideration the diverse application layer

requirements of modern Internet services. To this end, the Traffic Manager chooses arguably

less accurate methods of controlling the throughput of a flow, but instead, combines features

from TCP-aware packet handling (Mellia, Stoica et al. 2003) with application-layer

requirements.

The operations of the Traffic Manager for Streaming video, HTTP, FTP and Peer-to-Peer are

described in the following sections.

4.6.2.1. Management of Streaming Video traffic

Streaming video, although not strictly a real-time service does have an explicit requirement for a

minimum level of service beyond which the user-experience is noticeably impaired. Two

primary delivery techniques for streaming video were identified in Chapter 3, pseudo-streaming

and traditional streaming, the key difference being the former allows video data to be

transmitted at a rate greater than the playback speed, utilising temporary caching and buffering

of the entire video on the receiver host, whereas traditional streaming may buffer only a few

seconds worth of video at a time. Fundamentally, the throughput of the video stream is the

critical factor that determines the QoS perceived by the user - less than the bitrate of the video

and playback will be intermittent while sufficient data is buffered to allow playback to

commence. While this delivery style provides more resilience against adverse network

conditions, (Lei, Songqing et al. 2005) suggest that 87% of all streaming media is abandoned by

the user within the first 10seconds, wasting up to 20% of the server’s bandwidth; which could

111

be allocated to other services during periods of congestion. It was discussed in Chapter 3 that

YouTube servers have been observed to limit the maximum throughput of certain video streams

(Rao, Legout et al. 2011), however this behaviour cannot be assumed across all platforms or

content providers. Furthermore, there exists no known mechanism that ensures a video stream

receives sufficient Internet bandwidth to operate smoothly and without interruption, and for

these reasons the following proposal is provided. This section describes how the Traffic

Manager manages both pseudo-streaming and traditional video streams to ensure an acceptable

level of service is delivered to the user.

Introduced in Chapter 3, YouTube is undoubtedly the most popular online video repository,

primarily using pseudo-streaming delivery for its videos (traditionally streamed videos via

YouTube are considered later in this section). When uploading a video to YouTube the source

video is encoded into a number of formats, which provide different bit rates for the viewer. The

video quality requested by the user can be obtained within the network by analysing the Request

URI field, within the HTTP GET request packet, and identifying the fmt argument (an example

capture of this field is provided below, taken from a Wireshark capture from July 2010).

HTTP GET /get_video?video_id=yQ5U8suTUw0

 &t=vjVQa1PpcFOryuogR5j6U8OEtSozhbUS1cfQYNDq1RI=

 &el=detailpage

 &ps=

 &fmt=37

 &asv=2

 &noflv=1

Using the value of fmt from the HTTP GET Request, combined with a Service Profile for

YouTube videos (stored in the Service Profile Store), the Traffic Manager knows the typical

bandwidth requirements for a video of the desired quality. Knowing the approximate bitrate of

the video, the Traffic Manager ensures that during a period of congestion, the TCP connection

for the video stream maintains a throughput as close to the required bitrate, providing smooth

playback while limiting any buffering to provide other services access to resources. Table 4.3

112

provides an example of a Service Profile for YouTube based on the characteristics collected in

section 3.3.

 Video Format

240p 360p 480p 720p 1080p

fmt value 5 34 35 22 37

Approximate bitrate

ranges (kbps)
200-300 300-600 600-1200 1100-1800 >1800

Table 4.3: YouTube video formats and associated bitrate

To further improve the treatment of streaming video data, the Traffic Manager can also

determine the size, in bytes, of the video, using the content length field in the packet sent by the

server in response to the GET request. This value can be stored in the User / Service

Information Store in conjunction with a cumulative sum of the packet sizes to date, which

enables the Traffic Manager to determine the percentage of the video that has been transferred

to-date. This information can then be used if a period of low utilisation occurs, determining if a

short acceleration of the transmission rate would complete the transfer, freeing network

resources for subsequent services.

When addressing the management of traditional streaming video, client-side caching is minimal,

therefore cannot be relied on. However, from the perspective of QoS provisioning, traditional

methods of video streaming allow for a simpler style of management. Based on the findings

from section 3.3, traditional streaming is favoured by broadcasters over pseudo-streaming for

the delivery of television programmes. The method of management for these video streams

involves identifying the quality (bitrate) of the requested video, using the same method of

packet inspection described earlier in this section for standard YouTube videos, and ensuring

the video stream achieves a throughput approximately equal to the video bitrate. It is believed

based on observations of 30 YouTube videos that the asv argument refers to the streaming

delivery method to be used, where asv=2 and asv=3 relate to pseudo-streaming and traditional

streaming respectively.

113

HTTP GET /get_video?noflv=1

 &t=vjVQa1PpcFPupTQhBdOOT_UKHm6U1sqXhesyZHooyew=

 &fmt=34

 &asv=3

 &video_id=4bUKGqNjPFk

 &el=detailpage

In contrast to the streaming services currently provided by YouTube, ITV and Sky, the BBC

iPlayer features additional functionality that enables it to detect the connection speed of a user,

and if necessary lower the quality of the video to ensure a smooth playback is maintained.

During periods of prolonged congestion the Traffic Manager exploits this server-side quality

adaptation, along with the known bitrates for the different qualities support (provided by the

Service Profile Store) to restrict the throughput of the media stream to a lower alternative. This

provides the user with continuous viewing, while also aiding towards easing network congestion

by reducing the bandwidth requirements of their service.

 Inputs: CurrentUtil, UtilThreshold, DataDeliveredi, PacketSize, LowerBitrate,

1 RequiredBitrate ← Retrieved using HTTP GET analysis

2 ContentLength ← Retrieved using HTTP GET analysis

3 DataDeliveredi = DataDeliveredi + PacketSizei

4 if CurrentUtil > UtilThreshold

5 Switch (Streaming method)

6 case 1: pseudo-streaming

7 Maintain ratei ≈ RequiredBitrate

8 case 2: traditional-streaming but not adaptive bitrate

9 Limit/maintain ratei ≈ RequiredBitrate

10 case 3: traditional-streaming and adaptive bitrate

11 Reduce ratei ≈ LowerBitrate

12 else if CurrentUtil < UtilThreshold

13 then

14 if (ratei < RequiredBitrate)

15 then increase video priority and reduce priorities of other services for this user

16 else if pseudo-streaming

17 Calculate CompletionTime = F(ContentLength, RequiredBitrate, DataDelivered)

18 if CompletionTime < AcceleratedCompletionThreshold

19 then expedite packet to accelerate download

20 Else Forward packets as normal

21 Else Forward packets as normal

Figure 4.6: Pseudo-code for the novel management of Streaming Video traffic by the Traffic manager

114

4.6.2.2. Management of HTTP/FTP traffic (Web browsing and File Transfers)

The QoS perceived by a user engaged in web browsing was described as being the culmination

of many parameters, (section 2.2.1). However, since traffic management techniques are unable

to address aesthetic or usability issues, the focus is limited to ensuring the timeliness of the data

delivery process. A method of TCP-aware packet handling is presented by (Mellia, Stoica et al.

2003), which provides protection to TCP flows during vulnerable periods (slow-start and Fast

Recovery). Mellia proposes that the first 5 packets of a flow should be protected, to assist the

flow in exiting the sensitive slow start phase, and a number of packets protected following the

detection of a loss event, to assist a flow during Fast Recovery. The novel architecture extends

this protective method of packet handling, to better reflect the characteristics of HTTP traffic

that were observed in section 3.2. Rather than protecting the first 5 packets, it is proposed that

the first 12 packets should be protected, as a reflection of the average number of packets per

TCP connection for web browsing.

In addition to this adjustment, Mellia’s proposal is further extended to be able to distinguish

between a file transfer via HTTP, and a legitimate HTTP v1.1 connection, where the persistent

connection mechanism may result in a number of sequential, but discrete transactions over a

single TCP connection. In both these cases the number of packets is likely to exceed the 12-

packet threshold associated with short HTTP flows (packet_counti > HTTPflowsize). To this

end, the Traffic Manager records the time that the last packet for each flow was observed, to

identify idle periods between HTTP v1.1 packet bursts, which do not appear in the continual

stream of packets when downloading a file. At this stage the value of idle_threshold has not

been considered, (given that the implemented prototype does not consider HTTP flows of this

nature), and so remains for future investigation.

In the case of the file downloads via HTTP/FTP, the user-perceived QoS solely reflects the time

taken for the file transfer to complete, which is dependent on TCP maximising a steady

throughput, with minimal packet losses or excessive delay. For multiple TCP connections to

115

maximise their throughput there must be a degree of fairness enforced, which alleviates the

problem of heterogeneous TCP flows achieving different throughputs (reviewed in section

2.2.2.2). Therefore, in addition to protecting a number of packets at the start of the flow (to

allow exit from slow start) the Traffic Manager also aims to provide fairness between

heterogeneous TCP flows, by using the equation given by 18 and subsequently dividing this

value by the number of TCP flows currently established.

Bandwidth

available for

TCP services

= r(i) – (VoIP_throughput + Streaming_throughput + HTTP_throughput)10
 18

On the arrival of a packet the average arrival rate for that packet’s TCP flow is calculated and

compared with the fair share, and if found to exceed this fair share the Traffic Manager queues

the arriving packet with a higher drop probability, with the aim that if the queue is highly

congested the packet will be dropped and TCP will reduce its throughput. This behaviour is

similar to the Assured Forwarding PHB, however, it addresses the previous shortfall of AF

marking not operating on the same timescale as TCP. Traditionally AF operates on a per-packet

basis, despite TCP reacting to network conditions on a per-RTT basis. To overcome this the

Traffic Manager periodically estimates the RTT for long-lived TCP flows and waits 2xRTT

between induced packet drops, which gives TCP opportunity to respond to the loss and reduce

its throughput without unnecessarily dropping packets which have already been transmitted.

The RTT for the flow is estimated by recording the sequence number, TCP-header timestamp

(t1) and current time (t2) of the arriving TCP packet. The sequence number for each subsequent

ACK is compared with the recorded sequence number, and if greater the TCP-header timestamp

(t3) and current time (t4) of the ACK is recorded. Subtracting the arrival times from the

10
 The calculation for bandwidth available to long-lived TCP flows is based upon the assumptions for

concurrent Internet services, provided in section 4.7.

116

timestamps within the TCP-headers provides an estimate of the time taken to travel from either

the server or client to the Traffic Manager. The sum of these times can be multiplied by 2 to

estimate the RTT for that packet, which can then be used to calculate the average RTT (SRTT)

using the same equation that is used by the TCP sender 19. This process is illustrated in Figure

4.7.

 Figure 4.7: Process of passively estimating the RTT for a TCP flow

 19

 20

Given that TCP flows with short-RTTs can achieve a higher throughput than a flow with a

larger RTT (due to the rate cwnd is increased), the per-RTT management of TCP flows aims to

take one step towards alleviating this, in the sense that the rate at which a flow is actively

managed is a function of its RTT as well as packet arrival rate.

The Traffic Manager provides further control over TCP flows by considering its congestion

history. This term refers to recording the behaviour of a flow for a specified period of time. For

example, each time a flow is policed in response to it exceeding its fair share of the available

bandwidth, the Traffic Manager records this policing event, providing an insight into how

responsive/well-behaved a flow has been over time. This information is then used to determine

117

the severity of any subsequent policing that is required, i.e. a flow that has repeatedly exceeded

its fair share of bandwidth will be policed more aggressively. Similarly, as a flow responds to

being policed, its congestion history will be updated to reflect this, thus calming subsequent

policing.

4.6.2.3. Management of Peer-to-Peer traffic

The QoS of Peer-to-Peer downloading is very similar to HTTP/FTP file downloads, in the sense

that the user’s primary desire is to complete the file transfer as quickly as possible. However,

rather than downloading from a single source, pieces of the file are acquired from many peers,

of which the four fastest peers are also uploaded to in return (reciprocation). The nature of P2P

allows the application to obtain a disproportionate share of the network bandwidth, and

therefore, the Traffic Manager aggregates the throughput of all P2P flows (for a user), and aims

to achieve a fair share of bandwidth between applications, rather than between flows. For

example, if a file is being downloaded via HTTP and via P2P then it is the goal of the Traffic

Manager that each application should receive an equal share of the bandwidth, not each TCP

flow.

The key finding from the study presented in section 3.4 on the BitTorrent protocol was that

despite a BitTorrent application establishing on average 60-80 TCP connections with other

peers, only a very small percentage of these connections were responsible for the delivery of the

majority of data. In fact, less than 10% of the connections transferred more than 5MB of data.

From a management perspective it is imperative that the Traffic Manager control each flows

proportionally to its achieved throughput. Furthermore, there is no benefit in terms of QoS from

dropping packets containing control information sent between peers, such as keepalives, since

these packets do not impact the throughput of the flows responsible for obtaining large amount

of the bandwidth.

The reciprocal nature of P2P can be exploited to maximise the performance of the BitTorrent

network, while also conserving bandwidth for additional services. If a user limits the rate they

118

upload to other peers, then they risk being choked by the peer and impairing their own

download rate. However, the client maintains more than just reciprocal connections with peers,

and opens connections with other peers willing to provide BitTorrent pieces without them

having to upload and data in return. Since limiting the upload rates of reciprocal connections

may lead to impairing two peers QoS (the client and also the remote peer), it is recommended

the Traffic Manager limits the “gratuitous” connections, where the client is merely downloading

to increase their own download rate.

4.6.2.4. Pseudo-code for the novel management of TCP-based traffic

The pseudo-code that follows describes the novel handling of TCP-based applications

(excluding streaming video, which was provided separately in section 4.6.2.1), field names from

the FlowTable are denoted by the subscript i . Fields from the UserTable are denoted by the

subscript j. As introduced in the previous section the term CongestionHistory is used to record

the responsiveness of a flow over time – those flows that repeatedly fail to behave fairly will be

managed more aggressively than those doing so for the first time.

119

 Inputs: Linkspeed, UserCount, FTPThroughputj, VoIPThroughputj, StreamingThroughputj, HTTPThroughputj,

FTPCountj, now, FlowTimestampi, PacketCounti, HTTPFlowsize, ratei, RTTEstimatei, CongestionHistoryi,

LastTimePolicedi, P2PThroughputj, P2PCongestionHistoryj

1 UserFairShare = linkspeed / UserCount

2 FlowFairShare = (VoIPThroughputj + StreamingThroughputj + HTTPThroughputj)

3 P2PFairShare = (FTPThroughputj / FTPCountj)

4 Switch (Traffic type)

5 case 1: HTTP

6 If (PacketCounti ≤ HTTPflowsize)

7 Then
8 Packet_counti + 1

9 FlowTimestampi = now
10 Forward packet as normal

11 Else if (PacketCounti > HTTPFlowSize) AND ((now-FlowTimestampi) > IdleThreshold))

12 Then

13 PacketCounti +1

14 FlowTimestampi = now
15 Forward packet as normal

16 Else if (ratei > FlowFairShare) AND ((now-LastTimePolicedi) > 2*RTTEstimatei))

17 Then

18 PacketCounti +1

19 Police packet as a function of CongestionHistoryi

20 CongestionHistoryi +1

21 LastTimePolicedi = now

22 Else

23 Forward Packet as normal

24 case 2: FTP

25 if (ratei > FlowFairShare) AND ((now-LastTimePolicedi) > 2*RTTEstimatei))

26 Then

27 PacketCounti +1

28 Police flowi as a function of CongestionHistoryi

29 CongestionHistoryi +1

30 LastTimePolicedi = now

31 Else

32 Forward Packet as normal

33 case 3: P2P

34 if (P2PThroughputj > P2PFairShare) AND ((now-LastTimePolicedi) > 2*RTTEstimatei))

35 Then

36 PacketCounti +1

37 Police flowi as a function of CongestionHistoryi and P2PCongestionHistoryj

38 CongestionHistoryi +1

39 P2PCongestionHistoryj +1

40 LastTimePolicedi = now

41 Else

42 Forward Packet as normal

Figure 4.8: Pseudo-code for the novel management of TCP traffic by the Traffic manager

4.7. Additional assumptions for Concurrent Internet Services

Ordinarily, the Traffic Manager aims to minimise the over-all negative effect of traffic

management by distributing any delay or packet loss across all of the user’s services, while

120

ensuring application-specific thresholds are achieved. However, there may be periods of

extreme network congestion when the Traffic Manager cannot meet the minimum requirements

for a user’s services
11

. During these periods it is necessary to make some assumptions about

which services the user would favour over others since actively involving the user in this

process would conflict with the required transparency of the architecture.

Web browsing, VoIP, and streaming video are described as interactive services, each having a

minimum level of service, below which renders the service unusable for the user. In contrast the

user requirement for a file download is to retrieve the file as quickly as possible. In the event

that a user is downloading one or more files, while also engaged in VoIP, Video and Web

browsing sessions, it is proposed they will accept an increase in the time taken for their

download to complete, providing the interactive services they are engaged in remain within the

bounds of acceptability.

This traffic management is considered to improve upon traditional static QoS provisioning

methods, such as Diffserv or simply class based queuing by initially aiming to proportionately

degrade services to their respective minimum acceptable levels, prior to discriminating against

non-interactive services.

4.8. Integrating User-centric QoS provisioning into Diffserv

The previous sections have described the novel traffic management policies that will provide a

more application-aware, user-centric approach to QoS provisioning. The remaining sections

within this chapter present the integration and enforcement of these policies into the Diffserv

framework, which together provides the Congestion Aware Packet Scheduler (CAPS). The

11
 Repeated occurrences of this situation may be the result of a heavily over-subscribed ISP network or

the result of a user reaching the limit of their subscription, in the case of the former it would be in the

interest of the ISP to consider upgrading the capacity of their network, or in the case of the latter the user

should consider upgrading their subscription – after all, the proposed architecture can only optimise

bandwidth usage, it cannot create additional bandwidth.

121

decision to integrate the novel traffic management policies into the Diffserv framework was

based primarily upon the prevalence of Diffserv support by router manufacturers (irrespective of

whether it is currently in use or not). This provided an existing platform that could simply be

updated with the CAPS algorithm with relative ease. Furthermore, a full Diffserv

implementation (edge and core routers), is not explicitly needed in order to utilise the CAPS

traffic management policy; since the management is performed solely at the network edge, it

does not rely on Diffserv core router functionality, although having a network core that can

interpret and act upon Diffserv markings would naturally be advantageous.

It is stressed that the proposed architecture was designed to allow integration into any existing

IP infrastructure, either as the presented enhancement to the Diffserv edge router, or

implemented as a standalone device situated at the network edge. That is, the traffic

management is performed at the edge of the network with knowledge of the end-to-end

characteristics for each service, rather than relying on end-to-end control over each service. This

extends to being able to work transparently with any additional traffic management mechanisms

that may be employed between the source and destination, since from the perspective of the

novel architecture, any benefits these provide will simply be observed in the end-to-end

characteristics of the traffic.

4.9. Enhancing the Diffserv Edge Router

The typical Diffserv edge router framework was presented as featuring four operational

components, a classifier, meter, marker and a shaper/dropper (section 2.3.3). The components

of the edge router are easily analogised to those of the novel architecture, described in the

previous chapter. The classifier is comparable with the Traffic Classifier, the shaper/dropper

performs the same role as the Packet Scheduler, and the roles of the meter and the marker are in

the Traffic Manager. Specific details of the queuing mechanisms employed by the

shaper/dropper were not covered in the previous sections, this was done in order to separate the

traffic management philosophy from the enforcement techniques used.

122

In order for the traditional edge router components to conduct traffic management in accordance

with the CAPS policy a number of enhancements are required. The classifier requires

modification to include Deep Packet Inspection (DPI), which enables the retrieval of

application-layer properties from incoming packets required by the CAPS policy. The use of

both Internet service profiles and historical flow/user data requires for the two data stores, the

Service Profile Store and the User/Service Information Store, to be also integrated into the edge

router framework. The integration within the edge router is illustrated in Figure 4.9, which

shows the addition of the two data stores, and also indicates the interaction between the

components presented in the novel architecture and the integrated solution, the flow of packets

is illustrated by the dark arrows, while control data within the architecture is represented by the

white arrows.

Figure 4.9: Integration of the CAPS traffic management system within a Diffserv Edge Router

4.9.1. Traffic Policy Enforcement

In essence, the CAPS traffic management policy aims to protect the most sensitive packets

within a flow, making informed decisions regarding how packets should be queued or dropped

during periods of congestion. The traditional queue configuration in a Diffserv network features

the EF, AF and Best Effort traffic classes, with the network operators deciding the priority of an

Internet service and assigning it to an appropriate class. A decision was made not to use the EF

123

PHB in the novel architecture since its operation is considered to conflict with one of the

fundamental aims of this research – that is to deliver QoS to Internet users in a fair and non-

preferential manner. This statement is justified by the fact that when using the EF PHB two

configurations are possible, both of which are considered to violate the aim of user fairness. The

first configuration when using the EF PHB is to implement strict priority over all other traffic

classes, with no upper limit on the proportion of bandwidth allocated to the EF PHB. In a worst

case scenario this configuration will lead to resource starvation for all other traffic types. In the

second configuration an upper limit can be imposed on the proportion of bandwidth the EF PHB

can occupy. Although other traffic types are now protected against resource starvation there is

an intrinsic risk of denial of service (or absence of QoS guarantee) for any EF traffic arriving at

the router once this upper limit has been reached. For these reasons the use of an EF PHB in the

CAPS traffic management system has been excluded.

Similarities can however be drawn between the AF PHB and the philosophies of the proposed

traffic management approach, in the sense that the AF PHB allows traffic to benefit from a

service guarantee, providing the traffic complies with the parameters defined within a Service-

Level Agreement (SLA). The management system is designed to maintain traffic above a

minimum QoS threshold, which is deemed to be this aforementioned SLA. The earlier

description of the AF PHB (section 2.3.3) describes how traffic is expected to adhere to a

Committed Information Rate (CIR), compliance will result in incoming packets being marked

with a particular DSCP value relating to a transmission queue and drop precedence (RED with

IN and OUT (Clark and Fang 1998)), conversely, violating the CIR will result in the incoming

packets being marked with a less favourable DSCP value (relating to a transmission queue with

a higher drop probability). Shortfalls in the standard operation of the AF PHB were highlighted

as being a lack of acknowledgement for the impact on transport and application layer protocols

at a micro-level during the marking process. This meant in its standard form, AF PHB was only

suitable for low granular aggregate flow handling.

124

However, the additional information collected and calculated by the User / Service Information

Store, Service Profile Store and Traffic Manager (including the User-Centric QoS Engine)

allows the AF PHB to be extended within the novel architecture to provide a higher granularity

of protocol information, which enables a more user-centric QoS solution. The traditional AF

PHB considered only whether or not a flow (or aggregate of flows) was adhering to a

configured CIR. It is presented herein that an extension of this behaviour allows the CAPS

traffic management system to dynamically adjust the QoS policy to ensure the evaluated

parameters are relevant to the current mix of user traffic. For example, a VoIP flow achieving a

specific R-value, FTP/P2P flow(s) achieving a fair share of bandwidth and Video flows

achieving a throughput ≥ the video bitrate – the minimum acceptable level of QoS that was

defined in section 4.6.

The synergy between the AF PHB, RED queues and the proposed management techniques of

CAPS provided a promising queue configuration to be explored, while also raising a number of

questions. As mentioned earlier in section 2.3.1, the tuning of RED parameters is a challenge in

itself, one which is lessened by self-tuning variants such as Adaptive RED (Floyd S.,

Gunmamadi R. et al. 2001), but beyond this point, a question of suitability remained over

whether RED (or similar AQM techniques) are indeed appropriate for multimedia traffic – after

all, VoIP traffic is typically placed into a simple (albeit expedited) taildrop queue. A number of

previous studies have investigated the impact of various AQM techniques on multimedia and

VoIP traffic flows. Evidence can be found in (Hollot C. V., Misra V. et al. 2002; Wydrowski B.

and M. 2002) that suggests AQM techniques can in fact provide a reduction in queue length

(delay) and queue oscillations (jitter) for multimedia traffic flows when comparing against

taildrop configurations. Extending this research to consider the perceived user QoS of VoIP

flows (Reguera, Álvarez Paliza et al. 2008) evaluated the performance of various AQM

techniques using the MOS scale, again concluding that AQM techniques can offer a significant

improvement on user perceived QoS for VoIP, with Adaptive RED and Adaptive Virtual

125

Queues (AVQ) (Kunniyur S. and Srikant R. 2003) offer the best VoIP performance (from a

user’s perspective).

In addition to considering the suitability of AQM for VoIP traffic, further studies have also

evaluated the performance offered for HTTP traffic, with two widely cited studies being (Le,

Aikat et al. 2003; Weigle, Jeffay et al. 2006). Both of these works conclude that AQM

techniques can offer an improvement to HTTP response times over taildrop queuing, but in both

cases the use of Adaptive RED with ECN enabled sources providing the best results, standard

RED queues offered little improvement over taildrop configurations.

It is highlighted that although these studies conclude certain AQM techniques can offer

significant improvement for multimedia services, standard RED queues were not the best

performing configuration, rather self-tuning and adaptive AQM techniques out-performed

standard RED. Despite this it was decided that the novel architecture would employ RED

queues for traffic management enforcement. This decision was based upon 3 main points; 1.

Although other AQM mechanisms out-performed RED, at no point did RED perform worse

than taildrop; 2. No one single AQM mechanism served all traffic types optimally - employing

the optimal AQM mechanism for each traffic type would rely upon the appropriate

interoperability between mechanisms, which to date has not been explored; 3. While RED has

been widely implemented in production routers, a number of the alternative AQM mechanisms

remain as mathematical models, only implemented in network simulation packages. This could

limit real-world development of CAPS.

Following the decision to use standard RED queues for CAPS, the next step in the design was to

determine how many RED queues would be needed in order to achieve sufficient control over

the traffic, and the values of minth, maxth, and maxp for each queue. In section 4.6 the outlined

operation of CAPS describes a multi-stage approach to penalising flows, which is enabled

through recording the CongestionHistory for each flow – a variable that records the number of

126

times a flow has had its packets downgraded in service. In the first instance all packets are

assigned to the default queue. In the event that congestion occurs packets from misbehaving

flows are placed into a stricter queue with a higher drop probability. In the event a traffic source

does not respond to this action by reducing its throughput then packets from offending flows

will be placed into an even stricter queue. This operation dictates there are at least three RED

queues, with increasingly stricter parameters. For the purposes of providing proof of concept to

the CAPS design three RED queues were used. It was considered that little gain could be

achieved through adding further degradation queues.

When deciding the values of the RED parameters guidance was taken from two publications by

Sally Floyd (Floyd S. 1997; Floyd S., Gunmamadi R. et al. 2001) and also from sampling a

large number of research papers that implement RED queues. In accordance with Floyd’s

recommendation the chosen value of maxth was 3x that of minth, and maxp was chosen to be

0.02, 0.05 and 0.1 for each of the three RED queues (in ascending strictness). Table 4.4 below

provides the specific values for each RED parameter (the unit of minth and maxth is packets).

RED Queue minth maxth maxp

Default 40 120 0.02

Downgrade level 1 15 45 0.05

Downgrade level 2 10 30 0.1

Table 4.4: RED Queue Parameters for CAPS architecture

4.9.2. Queue Scheduling Algorithm

Following the development of the queuing mechanisms used in the CAPS architecture some

thought had to be given regarding the scheduling of the packets from each of the three RED

queues. The primary purpose for having more than one queue is to enforce the traffic

management policy, rather than segregate different types of traffic. However, any packets

queued in either of the penalty queues still has a greater chance of being forwarded than

dropped, and in which case it would be detrimental to the overall QoS of the service to

127

excessively delay their transmission. For this reason a simple round robin scheduling system

was considered the most appropriate method to service each of the queues.

4.10. Summary of the Novel Approach to Traffic Management

This chapter has reflected upon the findings from chapters 1 and 3 to revise and affirm the

motivations for a novel approach to QoS provisioning. The chapter began by expanding on

these motivations to construct a specification for an ideal solution for user-centric QoS, which

although idealistic required realisation in order to produce a pragmatic design. This

specification was then used to develop an architectural blueprint, defining each component of

the proposed solution in detail. The role and function of each component were described in turn,

considering both data plane and control plane responsibilities. Following the introduction of the

proposed architecture the chapter continued, describing design trade-offs that were needed to

balance a desirable degree of granularity and control, with the overall complexity of the system.

The second part of the chapter considered the design of the traffic management component, and

specifically focussed on the management of five popular Internet services, VoIP, streaming-

video, FTP, HTTP and P2P. Using performance metrics that can be monitored and measured for

incoming flows, a key new threshold for each service was realised. The minimum acceptable

level of service is derived from network, transport and application layer measurements, and

represents the minimum performance a service can be delivered to the user, without introducing

dissatisfaction or unfairness. These thresholds were; R-Factor for VoIP, throughput aligned to

bitrate for Video-on-Demand, bandwidth shared fairly among single and multi-flow TCP

applications (i.e. FTP and P2P) and protection for the first 12 packets of an HTTP flow (to

prevent loss during the early stages of TCP). It is the role of the proposed traffic manager to

ensure these thresholds are adhered to in a dynamic fashion, offering QoS for the entire

multimedia user experience. The chapter continued to discuss additional assumptions regarding

traffic management should these thresholds not be achievable in extreme network conditions.

128

Following from the design of the traffic management policies, the chapter considered how these

policies should be enforced, and how such functionality could be integrated within a network

architecture. The decision was made to take advantage of the architecture of a Diffserv edge

router, given existing level of support. A number of considerations were made when deciding

the optimal enforcement technique, balancing complexity with supportability. The decision was

made to implement a number of RED queues to provide policy enforcement, configured in a

manner that would provide a multi-tiered management approach. The chapter concluded with a

brief justification of the round robin scheduling algorithm chosen to service the aforementioned

RED queues.

129

5. Validation of CAPS through Simulation

Following the integration of the CAPS algorithm into the Diffserv edge router, functional

validation was required to demonstrate the key aspects of the novel approach to traffic

management, these were:

- An ability to provision for QoS without prior per-user configuration, for any Internet

user, irrespective of the services that are in use.

- Evaluate Internet services using application-layer QoS metrics (e.g. E-model’s R-factor,

video bitrate)

- Manage Internet services based on application-layer information. (e.g. Ensure the R-

factor of a VoIP flow remains above the lower threshold, and during congested periods

is managed to be between the upper and lower thresholds).

- Limit the throughput of P2P traffic to be equal to any concurrent FTP/HTTP services

from the same user.

- The benefit that performing TCP traffic management on a per-RTT basis has compared

with the standard per-packet approach.

- The ability to police flows that repeatedly exceed their fair share more aggressively than

those that comply with the traffic policy.

The decision was made to perform the validation of the CAPS algorithm using the ns2 Network

Simulator (ns2 Network Simulator 2010), a discrete event-driven simulator, developed at the

University of California, Berkeley. The simulation engine is implemented in C++, and uses

OTcl as the command and configuration interface. Thus, modifications made to the simulator

are made to the C++ source code (see Appendix B), which then requires recompiling, and

simulation topologies and configurations are written in Tcl (see Appendix C), which are then

interpreted by the simulator. This decision to use ns2 for the modelling of the CAPS algorithm

was based on a number of factors:

130

- ns2 has been in development for over 20 years, and continues to be developed with

substantial contributions from the research community.

- ns2 is the leading network simulator used within academic research.

- The popularity of ns2 has resulted in an active online development community, which

not only offers technical support for developers, but the widespread use of ns2 allows

for peer validation of implemented prototypes.

- Although ns3 was available at the time the validation was undertaken, it remained less

mature in terms of documentation and support compared with ns2.

- The commercial funding from France Telecom made this research project ineligible for

an academic license of OPNET (OPNET 2010), which would have otherwise been an

alternative option for a development environment.

An alternative to validation through simulation would have been to implement the CAPS

algorithm as part of a real-life Diffserv router. One method of achieving this would have been to

use the Traffic Control framework (tc), part of the Linux operating system. While this

implementation would have enabled validation with live Internet traffic, which could have

provided a subjective method of evaluation, this method was not pursued for the main reasons

that the equipment budget would not have permitted validation beyond more than a few

terminals, preventing essential testing at larger scales, and subjective testing is also expensive in

terms of the time needed.

5.1. Differentiated Services in ns2

The validation work made extensive use of the Differentiated Services framework for ns2,

developed by Nortel Networks (Pieda, Ethridge et al. 2000), and is included with the standard

ns2 installation. The Nortel Diffserv implementation focuses largely on the AF PHB, servicing

incoming packets across multiple RED queues according to their conformance with the agreed

policy, providing an ideal foundation to implement the CAPS algorithm on. However, a full

Diffserv configuration can also be modelled using the Nortel framework to include the EF and

131

BE PHBs by configuring additional queues, which are then serviced according to a priority-

based scheduling algorithm (this configuration is described in further detail in section 5.2.2).

This framework provided both a platform to implement the CAPS algorithm and also the ability

to benchmark its performance against alternative traffic management schemes (including

traditional Diffserv).

5.1.1. Limitations of the Standard ns2 Diffserv Implementation

Although the ns2 framework offered basic Diffserv functionality, it was limited in a number of

aspects, which required addressing prior to the validation of the CAPS algorithm.

- By default the edge router requires one traffic policy for each source-destination pair

(up to a maximum of 40 pairs), no method existed to apply a policy to multiple source-

destination pairs. While the CAPS algorithm does not required per-source-destination

configuration, the traditional Diffserv configuration does, and therefore, ns2 was

modified to allow large-scale topologies to be created for evaluating against Diffserv.

- Packet marking based upon the service type was not possible, instead marking was

performed by source-destination pair only; for example, using the standard ns2

implementation all traffic between nodes A and B will be marked the same irrespective

of the traffic type. To resolve this issue an enhancement allowing marking based also on

traffic type was made (see Appendix B for the modified ns2 source code).

- The only traffic sources that could be simulated were UDP (CBR, Pareto ON-OFF and

exponential sending rates), FTP (via TCP) and HTTP. The FTP traffic source is further

limited since it can only be configured to start and stop at specific times, rather than

specifying a volume of data to transfer and the source stop transmitting once this

volume has been delivered. A number of enhancements were made to address these

traffic limitations, details of which are provided in section 5.2.1.

132

- Further modifications were needed to extract performance metrics for later analysis and

evaluation. These included VoIP R-factor, One-way delay, Round Trip Time, aggregate

P2P throughput and fair bandwidth share.

5.2. Simulation Methodology

In order to fully demonstrate the functionality of CAPS the simulation trials were divided into

two phases. The first simulation was designed to exhibit the key features of the novel

framework for a single user, highlighting the novel management of different traffic types. The

second phase of simulations was designed to evaluate the overall performance of the CAPS

algorithm when considering it in the context of a medium-large scale hierarchical Internet

topology.

Each of the simulations from Phase-1 were ran a minimum of 10 times, with the mean

performance value given in this results section. For Phase-2, the results provided are the

arithmetic mean for a number of simulated nodes (i.e. users/destinations). The exact number of

simulated nodes varies depending upon traffic type, but was always within the range of 30-90

hosts. This representation of results was considered to better represent the overall performance

of CAPS rather than focusing on a single user.

5.2.1. Simulated Traffic Sources

As introduced previously, the standard installation of ns2 offers a relatively limited selection of

possible traffic sources, namely; FTP over a variety of TCP implementations (e.g. Tahoe, Reno,

New Reno), Constant Bit Rate (CBR) / Pareto / Exponential over UDP, and HTTP-like traffic

using the Packmime-HTTP Web Traffic framework (Cao, Cleveland et al. 2004). While VoIP

services, FTP file transfers and HTTP traffic were easily achieved using ns2 extensive

enhancement to the simulation software would have been required in order to validate the CAPS

algorithm modelling all of the Internet services reviewed to this point. Based on the evaluation

of current streaming video techniques (section 3.3), it was decided not to model streaming video

in ns2, and subsequently only include traffic models for VoIP, FTP, HTTP and P2P in the

133

simulations. This decision to exclude a traffic model for streaming video was made given that

from the transport layer perspective, streaming video is in essence an HTTP transfer over a TCP

connection. The CAPS algorithm is described to aim to ensure in the case of traditional

streaming methods the TCP connection maintains a throughput in keeping with the approximate

bitrate, which is inferred using DPI, and in the case for pseudo streaming video flows the bitrate

is limited to no less than the inferred approximate bitrate. Given that the novelty of this

management approach is the bitrate inference method and not the throughput management of a

TCP flow, it was considered an acceptable compromise to make.

5.2.1.1. Simulated VoIP Parameters

The simulated VoIP traffic was based on the G.711 codec (ITU-T. 1988), using a CBR traffic

source over UDP. The CBR source was configured to transmit packets of 160 bytes at a rate of

64Kbps, in line with the standard parameters for the codec. Although this configuration features

a higher bitrate than many of the VoIP codecs evaluated in section 3.5, a large number of these

have been developed from the G.711 PCM algorithm, using compression and silence

suppression techniques, hence the reduction in bitrate. Furthermore, the G.711 codec has been,

and still is, used prolifically throughout research, which includes but is not limited to (Balan,

Eggert et al. 2007; Reguera, Álvarez Paliza et al. 2008), and so for these reasons was considered

a suitable VoIP codec to model. For simplicity reasons when evaluating the QoS of the VoIP

traffic, the simulated flows were uni-directional, with speech travelling in one direction only,

however, this did not hinder the validation of using the R-factor of the call for QoS

provisioning. No additional speech mechanisms, such as silence suppression, Forward Error

Correction or adaptive bitrates were implemented.

5.2.1.2. Simulated FTP Parameters

Long-lived FTP transfers over TCP were configured to represent the rising trend of one-click

hosting services for large file transfers, such as RapidShare and MegaUpload. Despite these

services operating over HTTP in reality, TCP file transfers within ns2 are modelled using the

134

FTP traffic source, which for the purposes of this validation did not present a problem. Each

host was configured with the TCP Reno implementation, sending full sized packets with

payloads of 1460 bytes.

5.2.1.3. Simulated HTTP Parameters

Whereas all other traffic sources within ns2 generate traffic for a single application, the

Packmime HTTP traffic source represents a cloud of HTTP clients or servers, requesting and

responding to multiple HTTP connections at any given time.

This limits the ability to simulate HTTP traffic on an individual user basis, as part of a larger

network topology. However, during validation two Packmime clouds (one HTTP clients and the

other servers) were configured to provide HTTP cross traffic within the simulated network,

which although not destined toward individual users / destinations, could be evaluated to

determine the performance of the CAPS policy in handling HTTP traffic.

Each pair of HTTP clouds were configured to represent, as accurately as possible, typical HTTP

cross traffic, given the scale of the simulation. The configuration parameters were chosen in

accordance with the data collected in section 3.2 that describes the “average webpage”. The

HTTP request and response flow sizes were configured as Pareto distributed random variables,

with mean values of 1.5kB and 22kB respectively. Comparing the CDF plots for the synthetic

web traffic with the observed real-world traffic (Figure 5.1), the Pareto distributions are highly

similar, with comparable 95% percentiles of approximately ≤ 6kB for the request size, and ≤

85kB for the response flow sizes.

135

Real-world Observations Simulated Traffic

Real-world Observations Simulated Traffic

Figure 5.1: Comparison of Real-World HTTP Request/Response Flow Sizes with Simulated Equivalents

The rate at which new HTTP connections were established was dependant on the number of

users the HTTP clouds were intended to represent, which varied between simulation trials. More

precise details are provided in the description of the simulations, later in this section.

5.2.1.4. Simulated P2P Parameters

The standard installation of ns2 does not provide the capability to simulate P2P-like traffic. A

number of modular solutions have been developed within the research community, namely

“Gnutellasim” (He 2003) and “BitTorrentSim” (Eger, Hoßfeld et al. 2007). The former of these

options was dismissed due to it being heavily designed around the Gnutella P2P architecture,

which has been in steady decline as a popular P2P architecture over the past four years (Schulze

136

and Mochalski 2006; Schulze and Mochalski 2007; Schulze and Mochalski 2009), and so was

not considered overly relevant to represent current Internet services. The latter offering is

designed around the BitTorrent P2P protocol, which as discussed in Chapter 3 is currently the

most popular P2P technology according to the Ipoque Internet study(Schulze and Mochalski

2009). However, while this offering provided a high-level replication of the complex BitTorrent

mechanisms, including the choking/unchoking algorithms, the framework was designed to

evaluate the performance of the protocol itself under varying configurations, rather than simply

providing a BitTorrent traffic source.

The inclusion of P2P-like traffic was considered paramount to the validation of the CAPS

algorithm, and therefore a bespoke BitTorrent-like configuration was developed. The decision

to focus on the BitTorrent protocol was made based on its prevalence on the Internet, and a

better understanding of the operations compared with alternatives. The BitTorrent-like traffic

model was simplified to emulate only the following attributes of the real-life protocol:

- Simulate both Seeds (uploaders only) and Peers (upload and downloaders)

- Each Seed/Peer should select four other peers at random.

- TCP connections should be established with each of these selected peers and data

transferred for a given period of time (defined by a random variable).

While this functionality is simplified compared with the full BitTorrent protocol, it does provide

a traffic model that emulates the exchange of data between a swarm of peers. The selection of

four peers is reflective of the limit imposed by the choking algorithm, (which allows a

maximum of four simultaneous uploads to current peers by default), while the randomised

nature of the peer selection process results in some peers receiving more incoming flows than

others.

The BitTorrent-like implementation did not consider the role of the tracker, nor was it

considered necessary to establish connections with larger numbers of peers purely to facilitate a

model for control traffic. These decisions are justified by the negligible proportion of bandwidth

consumed by control traffic and during communication with the tracker, as detailed in section

137

3.4.3, and the fact that the CAPS algorithm focuses on managing the BitTorrent flows

responsible for the majority of the data transfer.

5.2.2. Validation Cases

For both simulation phases the “ISP network segment” simulated network topologies (later

presented in sections 5.3.1 and 5.5.1) were configured to represent four different traffic

management schemes, Best-effort (no traffic management policy), Traditional Diffserv, static

Weighted-RED (WRED) and using the novel CAPS algorithm. A static Weighted-RED

configuration was included to differentiate between the dynamic user-centric provisioning

methods of the CAPS algorithm and the static preconfigured methods of WRED, which was

questioned on a number of occasions during the development of the novel architecture. It should

be noted that the performance of Traditional Diffserv and WRED is entirely dependent on the

mapping of services to traffic classes (queues). Thus, the presented results are reflective of the

chosen configurations, which were based upon the known traffic models of the simulated

network, combined with common consensus for traffic preference models, where VoIP is

primarily considered the most critical traffic type, and P2P is frequently cited as the least

favoured. This challenge of configuring Diffserv and WRED further emphasises the benefit of

the CAPS architecture and algorithm, in the sense that no prior knowledge or configuration is

required.

A description and justification for the configuration of each of the alternative validation cases

follows, while CAPS was implemented according to the recommendations in the previous

chapter.

Best Effort Configuration

The Best-effort configuration was achieved with a single RED queue configuration, which all

traffic was associated with. This configuration was used to represent the Best-effort Internet,

where by design (i.e. assuming no additional traffic management systems are being used) every

138

IP packet is forwarded with equal importance. As per the design of the RED parameters for the

CAPS architecture (section 4.9.1) the Best-effort RED queue was configured in accordance with

(Floyd S. 1997), with minth = 40, maxth = 120 and maxP = 0.02, where the threshold limits are

expressed in packets (default queue unit within ns2).

Traditional Diffserv Configuration

As described in section 5.1 the Nortel Diffserv framework can provide a full Diffserv

configuration, with Expedited, Assured and Best-effort Forwarding (EF, AF and BE PHBs).

This configuration was achieved during the validation by configuring three physical RED

queues, one for each PHB. These physical queues are then serviced in accordance with the

Weighted Round Robin algorithm, which provides preferential treatment to the EF queue, and

least favours the BE queue (a strict priority scheduler was not available in ns2 and as such a

WRR approach was used instead, heavily weighted in favour of the EF queue). The AF PHB is

implemented using one physical queue, with a multiple virtual queues, which provide the

IN/OUT-of-profile handling. This queue configuration along with service mappings is

illustrated in Figure 5.2. While the configuration of a Diffserv network is at the discretion of the

network operator this configuration was in line with the traffic prioritisation models in use by

ISPs (summarised earlier in section 2.3.7) and therefore considered a fair representation of

Diffserv.

139

Figure 5.2: Queue configuration for Traditional Diffserv and Service mapping

Similar to the configuration of the Best-effort RED queues, the RED parameters for the Diffserv

configuration were chosen based upon the recommended settings, and are summarised in Table

5.1.

Queue minth maxth maxp

EF 40 120 0.02

AF Virtual Queue 1 (IN of Profile traffic) 40 120 0.02

AF Virtual Queue 2 (OUT of Profile traffic) 10 30 0.1

BE 20 60 0.02

Table 5.1: RED Queue parameters for Traditional Diffserv Configuration

Weighted-RED Configuration

The WRED configuration was achieved using three RED queues, for which the RED parameters

were increasingly more aggressive. VoIP traffic was associated with the highest priority queue,

FTP and HTTP to the second queue, with marginally stricter RED parameters than the first, and

P2P to the third queue. The RED parameters are summarised in Table 5.2.

Queue minth maxth maxp

Queue 1 (VoIP traffic) 40 120 0.02

Queue 2 (FTP and HTTP traffic) 40 120 0.05

Queue 3 (P2P traffic) 40 120 0.1

Table 5.2: RED Queue parameters for WRED configuration

140

5.3. Simulation Phase-1 – Demonstrating the features of CAPS

5.3.1. Simulated Network Topology

The network topology used for the simulations in Phase-1 (Figure 5.3) was designed to

represent a user of each type of Internet service (FTP, VoIP, HTTP and P2P), and demonstrate

the operations of the CAPS algorithm when provisioning for each of these services over a

congested network link (between E1 & E2 and highlighted red in Figure 5.3).

Figure 5.3: Simulated Network Topology for Trial A

The topology was based upon the well known “dumbbell network”, with traffic sources and

destinations either side of a congested bottleneck link, which in this case is the ISP network,

analogous to the typically contended access network that occurs within real-world networks.

Each of the destination nodes were connected to the ISP network via two simplex links. The

downstream link for each destination was configured at 4Mbps with 10ms delay, and the

upstream at 400kbps with 10ms delay. These values were chosen as an accurate representation

of a typical UK Broadband connection, according to (Ofcom 2008). The capacity of the ISP

network was deliberately scaled down from the real-world equivalent in order to cause

congestion, thus providing means to evaluate the performance of the CAPS algorithm.

Furthermore, the capacity of the ISP network reflects the scale of the topology (i.e. four

141

destinations compared with the likely thousands a real-world ISP network would support).

Table 5.3 summarises the link capacities and delay values for the Phase-1 network topology.

Link Bandwidth (Mbps) Delay (ms)

FTP Source ↔ ISP Edge Router (E1) 10 20

VoIP Source ↔ ISP Edge Router (E1) 10 20

P2P Source ↔ ISP Edge Router (E1) 10 20

HTTP Server Cloud ↔ ISP Edge Router (E1) 10 20

E1 ↔ C1 1.5 20

C1 ↔ E2 1.5 20

E2 Destination node 4 10

Destination node E2 0.4 10

Table 5.3: Link Parameters for Phase-1 network topology

The traffic sources used were as described previously in section 5.2.1, with the exception of the

P2P traffic. Due to the reduced scale of this topology, the BitTorrent-like traffic model could

not be used. Therefore, the traffic destined for the P2P user was modelled using a collection of

five FTP servers, all configured to send data to a common destination (the P2P user). This

design modelled sufficiently the use of multiple TCP connections, destined for a single user-

application. All traffic sources were started at 0.1 seconds and terminate at 450 seconds (the

duration of the simulation).

5.4. Analysis of Phase-1 Results

This section presents the results and observations obtained from the Phase-1 simulation trials,

which were conducted to demonstrate the key aspects of the CAPS architecture and traffic

management algorithm. These features are presented through performance evaluation of the

simulated traffic sources - a comparison between the results obtained using the CAPS algorithm

and each of the alternative configurations is given. A number of analysis scripts were used to

compute the presented performance metrics from the ns2 trace files; these are provided in

Appendix D.

142

5.4.1. Performance Analysis for VoIP traffic

The first aspect that is presented is the novel management of VoIP traffic by CAPS, which uses

a moving average of the R-factor(s) for the VoIP flow(s) to determine the handling of VoIP

packets, in contrast to explicitly allocating bandwidth. Figure 5.4 provides a plot of the R-factor

over time for each of the simulation cases. As expected, the traditional Diffserv configuration

achieves the highest average R-factor of 87.9, given that under this configuration sufficient

bandwidth (64kbps) is explicitly reserved for the flow, and the EF queue is serviced at a ratio of

4:2:1 compared with the AF and BE queues respectively. There were no packet drops for the

Diffserv configuration, so the small degradation in quality was introduced via delay only (this

was unavoidable due to a lack of strict priority scheduling within ns2). Finally, a relative

standard deviation of 5.7% and a modal scale of 91.4 indicate the low variation of the R-factor

over time under traditional Diffserv.

With regard to the VoIP performance using CAPS Figure 5.4 illustrates the flow being actively

managed based upon its current average R-factor, aiming to maintain an average moving R-

factor of 75, to avoid user dissatisfaction. In fact, CAPS achieves a mean R-factor of 74.8,

demonstrating this aim of providing an acceptable quality of VoIP to the user was achieved

without any static configuration or reservation. The relative standard deviation under CAPS is

marginally higher compared with Diffserv, at 9.4%, however this can be attributed to the active

management technique, which in the event of congestion introduces controlled packet drops /

additional queuing to VoIP flows, to prevent resource starvation to other users.

Both the Best-effort and WRED configurations struggle to deliver the VoIP traffic with any

degree of acceptable quality (later observed to be due to the aggressive nature of the concurrent

P2P flows on the network, section 5.2.1.4). The poor performance from the WRED

configuration highlights the difference between merely placing traffic in weighted RED queues

(WRED) and actively managing with regard to application/user –layer metrics.

143

Figure 5.4: Average R-factor over time for a G.711 VoIP flow

5.4.2. Performance Analysis for FTP traffic

The second traffic type to be evaluated is FTP traffic, which modelled the long lived TCP

connections established during FTP/HTTP file downloads. Figure 5.5 illustrates the average

throughput over time of the FTP transfer for each of the validation cases, where the performance

under CAPS is noticeably better than the alternative configurations. CAPS achieved a mean

throughput over the duration of the simulation of 0.55Mbps, with a standard deviation of 25%,

compared with 0.25Mbps for Diffserv and WRED, and 0.21Mbps under Best-effort conditions.

The relative standard deviations for the alternative configurations were also poorer at 24%, 36%

and 44% for Best-effort, Diffserv and WRED respectively.

The cause of the poor performance from the alternative configurations is once again due to the

aggressive nature of the concurrent P2P traffic on the network, which obtains a disproportionate

share of bottleneck bandwidth by establishing multiple TCP connections, (this behaviour is

discussed in detail in the next section 5.4.3). However, one of the aims of the CAPS algorithm

is, “to ensure each user receives a fair share of the bandwidth, plus an equal share of any

residual”, Figure 5.5 confirms this aim has been achieved. In the simulated topology there are

four users, three of whom are using TCP-based services (FTP, HTTP and P2P), and one VoIP

144

client. The previous section presented how the VoIP user’s traffic was managed with regard to

the R-factor, which once satisfied leaves the remainder of the 1.5Mbps bottleneck capacity

available to the other three users (approximately 1.45Mbps). Therefore, CAPS can allocate just

under 500kbps to each user’s traffic (plus any further residual that arises from any of these

sources not utilising their full allocation). The 0.55Mbps obtained by the FTP user is evidence

that this method of fair bandwidth allocation was achieved. It is noted that FTP traffic performs

significantly closer to the fair bandwidth share of 0.5Mbps using CAPS compared with the three

alternative configurations. This performance is largely attributed to the per-application fairness

that CAPS aims to achieve, which prevents applications using multiple TCP flows (i.e. P2P)

from obtaining a disproportionate share of resources.

Figure 5.5: Average throughput over time for an FTP application

To further evaluate the performance of the FTP traffic the number of packets received by the

FTP client and the number of FTP packets dropped under each configuration is provided in

Table 5.4. Two observations can be made from this data; firstly, by controlling the aggressive

nature of P2P traffic the FTP source was able to send more than double the amount of data

145

compared with the alternative configurations. Secondly, less than half the number of

proportionate packet drops were observed when compared with the alternative simulations,

demonstrating a more efficient and fairer operation for FTP traffic.

Configuration Number of FTP

packets sent from the

source

Number of packet

drops observed

Best-effort 7693 198

WRED 8534 179

Traditional Diffserv 8686 115

CAPS 20216 109

Table 5.4: Number of Packet Drops observed for the FTP traffic

5.4.3. Performance Analysis for P2P traffic

The previous discussions on the management of VoIP and FTP traffic has suggested that the

uncontrolled P2P traffic on the network was responsible for degrading the QoS of other user

services in the Diffserv, WRED and Best-effort configurations. The aggressive nature of P2P

traffic is a topic that has been heavily reviewed throughout this thesis, and the configuration of

the alternative scenarios were chosen to reflect the discriminatory viewpoint that is apparent of

network operators. However, despite P2P being configured as the least favoured traffic for both

Diffserv and WRED, the poor performance of the FTP service indicated that the P2P traffic is

still degrading the QoS for other, concurrent users.

Figure 5.6 provides the average aggregated throughput for P2P traffic, for each of the validation

cases. The aggregated throughput using CAPS is noticeably lower than the alternative

configurations, averaging 0.45Mbps over the simulated period, compared with 0.89Mbps,

0.86Mbps and 0.79Mbps for the Best-effort, WRED and Diffserv scenarios. It should be noted

that under the Diffserv configuration the aggregated throughput is marginally lower than under

Best-effort or WRED, given that FTP and HTTP are favoured over P2P by Diffserv, so the P2P

management is slightly more aggressive.

146

Figure 5.6: Average Aggregated Throughput over time for a P2P application

To further demonstrate how CAPS manages P2P traffic in a fair manner Figure 5.7 provides the

throughput over time for the FTP flow and also the individual throughputs over time for each of

the component P2P flows. Recalling that CAPS will police the component P2P flows for a user

to ensure their combined throughput does not exceed that of a coexisting FTP/HTTP flow

(section 4.6.2.3), Figure 5.7 shows each of the five P2P flows being maintained well below the

throughput of the single FTP flow, in the knowledge that at the application-level FTP and P2P

perform almost equally.

147

a) b)

c) d)

Figure 5.7: Average Throughput over time for concurrent FTP and P2P TCP connections
a) Best-effort; b) Weighted-RED; c) Traditional Diffserv; d) CAPS

In section 2.2 the aggressive nature of P2P application was introduced and illustrated to show

the disproportionate share of bandwidth such applications can obtain when coexisting with

traditional services. Figure 5.8 shows how CAPS changes this distribution of bandwidth

between the two applications.

Figure 5.8: Distribution of bandwidth between FTP and P2P applications, with and without CAPS

148

5.4.4. Performance Analysis for HTTP traffic

The final Internet service that was simulated in phase-1 was HTTP. The CAPS algorithm aims

to optimise the handling of HTTP traffic by protecting the first 12 packets of an HTTP flow to

minimise risk to the application-level performance during the sensitive slow start phase of the

TCP connection. The Packmime HTTP web traffic framework outputs an additional trace file

along with the standard ns2 trace, which provides the response time for each simulated HTTP

request-response event. Given that this is a key metric relating to application performance for

HTTP traffic, the cumulative distribution function for request-response times were plotted.

Figure 5.9 below shows the CDF plot for the simulated HTTP traffic. There is a noticeable

difference in the performance of CAPS when compared with the alternative configurations. It is

observed that under the management of CAPS, 90% of the HTTP flows completed in

approximately 5.5seconds, whereas for the alternative configurations the plot indicates that it’s

closer to 12.5seconds for 90% of the flows to complete, demonstrating a sharp increase in

performance under the novel management.

Further investigation was conducted to understand how CAPS achieved this sharp difference in

performance.

149

Figure 5.9: Cumulative Distribution of HTTP Request-to-completed-Response time (seconds)

Further analysing the trace files from the simulations revealed the number of HTTP packet

drops that occurred throughout the simulation. Table 5.5 provides the number of packet drops

for each of the tested configurations. The results show that for Best-effort and WRED

configurations there were 380 and 422 packet drops respectively, whereas for the Diffserv and

CAPS configurations this number was approximately reduced by 50%. It is highlighted that

despite the reduction in packet drops for Diffserv and CAPS, the number of discrete HTTP

flows is almost identical across all configurations; dispelling the possibility that lower number

of packets could be due to fewer active HTTP flows.

Rather, for Best-effort the poor performance is not unexpected, there exists no preference for

any of the traffic types, resulting in packets drops across all traffic types due to the network

congestion. For WRED the poor performance is attributed to a number of limiting factors of this

configuration. Firstly, although three traffic classes are defined with varying drop probabilities

this doesn’t offer any explicit protection for sensitive traffic types, it merely raises the

probability that packets from less favoured services will be dropped first. In a congested

150

network packets are still dropped from all of the traffic classes, just with varying probabilities.

Looking more closely at the number of packets dropped for each traffic type under WRED, it

can be seen that both VoIP and HTTP flows experienced higher drop rates than FTP and P2P,

which is not expected behaviour. Further investigation revealed that the ns2 WRED algorithm

calculates the queue size using the number of packets in the queue, without regard for the size of

these packets, inadvertently favouring flows with larger packets (a traffic source sending a large

number of small packets will occupy more of the queue than a source sending fewer larger

packets). For both VoIP and HTTP traffic the packet sizes were a lot smaller than for FTP and

P2P, resulting in an unfair distribution of drops for these traffic types.

Configuration Number of HTTP

Flows

Number of Dropped

HTTP Packets

Mean Request-Response

Delay (seconds)

Best-effort 659 380 9.65

WRED 658 422 8.73

Traditional Diffserv 662 179 8.1

CAPS 669 212 4.49

Table 5.5: Packet drops and average delay for HTTP traffic

In summary for the handling of HTTP traffic, CAPS successfully provides protection to short

TCP flows, protecting from packet drops due to policing during the slow-start phase of TCP.

This combined with the ability to prevent aggressive applications to obtain an unfair share of the

bandwidth resulted in a significant improvement in HTTP response times over alternative

configurations.

5.4.5. Analysis of Per-RTT Handling of TCP Flows

The last feature of the CAPS algorithm to be discussed is the effectiveness of the per-RTT

handling for TCP flows. Earlier in this thesis in section 2.2.2.2 the damaging effects of packet

loss to a TCP flow were explored, primarily focussing on TCP Reno, which was considered a

good base-implementation. It was observed that following a loss event (duplicate

151

acknowledgements due to packet drop or expiration of the RTO timer) when using TCP Reno

the congestion window would be reduced by either 50% or reset to 1, depending upon the type

of loss event. During the development of the CAPS algorithm (section 4.6.2.2) it was proposed

that traditional methods of traffic policing were too aggressive, given that they operate on a per-

packet basis, while TCP requires at minimum one round trip time to react to packet loss

(indicating congestion). To this end it was proposed that the CAPS algorithm would estimate

the RTT of the TCP connection and use this to determine the frequency that traffic management

would be enforced at. The aim of this method is to prevent dropping additional packets from a

TCP flow before the sender side has had the opportunity to detect the first loss and react.

However, the decision to use RED queues for traffic management in the CAPS architecture

reduced the effectiveness of per-RTT handling of TCP. This was because packets from

misbehaving flows were not explicitly dropped, but rather enqueued into a more aggressive

RED queue. The random drop characteristics of RED make it highly unlikely that two adjacent

packets are dropped from a single flow. Although the original intentions of per-RTT based

handling were reduced somewhat by the use of RED queues, a comparison between a traditional

per-packet based policing approach and the novel per-RTT approach is included in the

following text to investigate any impact on TCP performance.

A set of simulations were conducted in which two heterogeneous TCP flows were configured,

one with a round-trip time of 150ms and the second of 300ms (flows 1005 and 1006

respectively in Figure 5.10). In the absence of any traffic management mechanisms (best-effort

behaviour) it was observed, as expected, that the flow with a shorter RTT obtained a great share

of the bandwidth, Figure 5.10

152

Figure 5.10: Heterogeneous TCP flows achieving dissimilar throughputs in Best-effort conditions

The same flows were then simulated using a Traditional Diffserv per-packet policer and the per-

RTT policing of CAPS, with each scenario attempting to police the flows evenly. Figure 5.11

provides the throughput for each flow under each scenario. The per-packet handling of

Traditional Diffserv resulted in almost constant policing of the ‘shorter’ flow (1005) to allow

the ‘longer’ flow (1006) to obtain an equal share of the bandwidth, with average throughputs

being 0.73Mbps and 0.69Mbps for flow 1005 and 1006 respectively. The plot for per-RTT

handling (Figure 5.11 (b)) shows significantly fewer oscillations between the two flows, yet the

average throughputs for each flow were almost identical to the per-packet handling, at

0.74Mbps and 0.685Mbps for flows 1005 and 1006 respectively. In recognition that a pure

average throughput can sometimes misrepresent the performance of a flow, the total volume of

data delivered to each destination node was also calculated for each scenario. Under per-packet

handling the destination for flow 1005 received 41.2Mbytes, and the destination for flow 1006

38.5Mbytes; whereas using per-RTT handling 41.6Mbytes were delivered to the destination of

153

flow 1005 and 38.4Mbytes to the destination of flow 1006, demonstrating that a gentler policing

mechanism can provide fairness between heterogeneous flows at no cost to flow performance.

(a) Traditional Diffserv per-packet policing

(b) CAPS per-RTT policing

Figure 5.11: Comparison of Throughput for heterogeneous TCP flows under different policing mechanisms

This behaviour is quantified in Table 5.6 which provides the number of times a flow was policed to a

more aggressive RED queue and the number of subsequent packet drops for each scenario.

Flow Total

Packets Sent

Number of Downgrade

Events

Number of Packet

Drops

Short-RTT Per-packet handling (1005) 28,874 2,963 67

Long-RTT Per-packet handling (1006) 26,998 1,357 10

Short-RTT Per-RTT handling (1005) 29,149 1,719 48

Long-RTT Per-RTT handling (1006) 26,842 449 3

Table 5.6: Comparison of per-Packet and per-RTT Policing Downgrade Events

5.4.6. Summary of Phase-1 Results

This section of the thesis has provided the results from the first evaluation phase of the CAPS

architecture. The architecture was developed using the ns2 simulation package, and a small-

scale network topology was created to demonstrate how CAPS handles four different traffic

154

types: VoIP, FTP, P2P and HTTP. The first test case that was considered was for VoIP traffic.

The proposed architecture was shown to be able to evaluate the current performance of a VoIP

flow through the calculation of its R-factor. The traffic manager then used this metric as a

target, adjusting resource allocation among co-existing flows, to ensure an acceptable R-factor

was achieved. The results from this section provide evidence that this management was

successful, with CAPS being able to provide an average R-factor of 74.8, without the need for

static resource reservation. When compared against best-effort and weighted-RED, CAPS

performed significantly better, and only marginally behind traditional Diffserv, despite placing

no precedence on VoIP traffic.

The second test-case considered the management of FTP traffic, for which CAPS aimed to

ensure a throughput at least equal to the fairshare of bandwidth entitled to the service. The

results confirmed that CAPS was able to allocate at least this fairshare, also permitting FTP to

exploit any residual bandwidth when available. When comparing the performance of CAPS

against the alternative configurations it was clear that the explicit priority placed on VoIP traffic

by Diffserv was at the detriment of co-existing flows, with FTP being able to achieve only a

fraction of its entitlement. Similarly, an absence of control or management over P2P traffic led

to a reduced performance for FTP under all alternative configurations.

The third test-case considered P2P applications, which CAPS aimed to ensure could not achieve

a disproportionate share of available bandwidth simply through establishing multiple TCP

connections. The results from the simulation successfully demonstrated the management of P2P

traffic, restricting the aggregate application throughput did not exceed that of an FTP

application, however, without explicitly discriminating against users wishing to engage in such

services. The alternative services were demonstrated to allow each TCP flow to obtain a per-

flow share of the bandwidth, resulting in a significant unbalance between FTP and P2P

throughput.

The final traffic type to be evaluated was HTTP, for which the CAPS architecture aimed to

protect the first 12 packets of each flow. This protection reduced the likelihood of packet drops

155

for short HTTP flows, which rarely exit the vulnerable slow-start phase of TCP. The measures

taken were shown to result in less than half the number of packet drops observed under best-

effort and weighted-RED configurations, and a similar number to the Diffserv configuration.

However, the average request-response time observed under CAPS was 50% faster than that of

Diffserv, which is hypothesised to be due to explicit priority for VoIP traffic provided by

Diffserv.

The final test-case to be reviewed in this section was evaluating the performance of the per-RTT

handling provided by the CAPS architecture, compared with the per-packet handling of

traditional mechanisms. The proposed mechanism was shown to be able to provide a similar

level of control over the throughput of a flow, with fewer packet drops. However, the decision

to integrate RED queues into the proposed architecture vastly reduced the likelihood of bursty

packet drops, which reduced the effectiveness of the proposed method.

5.5. Simulation Phase 2 – Evaluation of CAPS for a large scale network

The previous section demonstrated the operation of the CAPS algorithm for a number of key

traffic types. For each of the traffic types CAPS was able to provide an acceptable level of

service to the user without the need for explicit resource reservations or prior knowledge of the

network traffic profile.

Having proven that CAPS can provide an optimised delivery for a mixed user base the next

stage of evaluation was to increase the scale of the simulations.

This section of the thesis presents the second phase of the simulations, which involved

simulating a multi-ISP network with thousands of simultaneous flows between hundreds of

customer nodes.

5.5.1. Simulated Network Topology for Phase-2

This large scale network topology is illustrated in Figure 5.12, it consisted of three ISP networks

that were interlinked via an Internet Exchange Point (IXP) (for simplicity the IXP was a router

156

with sufficient capacity and negligible delay to ensure that no loss or meaningful delay was

incurred transiting this node). Attached to the backbone were three FTP servers, responsible for

sourcing FTP application data to client nodes upon request. In the previous section the

Packmime HTTP framework was used to generate web-like traffic for evaluation. However, it

was not possible to use this framework to simulate large scale HTTP services for the purpose of

evaluating CAPS. This was due to the Packmime framework using just two ns2 nodes as the

source and destination of all HTTP traffic (each node is simulating a ‘cloud’ of HTTP users).

While the source node could be configured to generate a higher volume of traffic, thus

representing more HTTP users than the previous phase, as far as the CAPS algorithm and the

alternative ns2 QoS configurations were concerned, all HTTP traffic would be for a single

destination, invalidating any per-user QoS calculations. Unfortunately, because the standard

FTP/TCP traffic model in ns2 can not be configured to send a specific volume of traffic (rather

a start and a stop time are used to turn the source on or off) this could not be used as an

alternative to the Packmime framework given that the performance indicator for HTTP is

request-response time. In an attempt to circumvent this issue, 90 HTTP sources were also

attached to the IXP router, and 30 HTTP sinks were attached to the customer-side of each ISP

network. Each source/sink pair were configured as per the previous simulation, each

representing a single HTTP user.

VoIP and BitTorrent traffic was sent between ISP client nodes, to best simulate the nature of

such traffic.

157

Figure 5.12: Simulated Network Topology

Each ISP network had 100 clients attached, via two simplex links, to model an asymmetric

Internet connection of 4Mbps downstream and 400Kbps upstream (again by way of reflecting

the average UK residential Internet connection as described in (Ofcom 2008)). Core link

capacities within the network were increased accordingly; however, bottleneck links remained

contended enough to ensure congestion. The individual bandwidth and delay parameters for

each link within the topology are provided in Table 5.7.

Link Bandwidth Delay

ISP Edge Router - > ISP Core Router 10Mb 20ms

ISP Core Router -> ISP Edge Router 10Mb 20ms

ISP Edge -> Internet Core 10Mb 20ms

File Server -> Internet Core 50Mb 0.1ms

HTTP Server Cloud -> Internet Core 50Mb 0.1ms

HTTP Client Cloud -> ISP Network 10Mb 5ms

Table 5.7: Link Parameters for Phase-2 Network Topology

5.5.2. Traffic Sources

To bring the phase-2 simulation closer to a realistic environment the configuration of the traffic

sources were enhanced from the previous simulation. Instead of constant traffic flows from the

158

start of the simulation trial to the end, the traffic sources were randomly distributed throughout

the simulated time. The randomisation of start and stop times for the traffic sources was

configured in a manner that was consistent across all of the alternative configurations, to ensure

the same traffic load was observed in each case, meaning each QoS configuration was presented

with the same volume and mix of traffic. Furthermore, to ensure that traffic sources were not

configured for too short a period, or were distributed too sparsely so that the bottleneck never

became congested, certain limits were placed on the random time generator. FTP traffic started

within 0 – 150 seconds and had durations lasting between 30-240 seconds, BitTorrent flows

started between 0 – 150 seconds and lasted between 30-200 seconds, VoIP flows started

between 0 – 150 seconds and lasted between 60 – 180 seconds. Finally, the HTTP clouds began

their flow generation at 5 seconds and continued throughout the duration of the simulation.

Aside from start and stop times, all of the traffic sources were configured with the same

parameters as were described in section 5.2.1.

The pairing of customer nodes for the exchange of VoIP and BitTorrent traffic was configured

to ensure that traffic transited between ISP networks where possible, this was to ensure limited

amounts of local-routing occurred whereby any QoS configuration on the ISP edge would not

be applicable.

5.5.3. Traffic Profiles

To further contextualise the simulation closer to reality, each ISP was configured to have

customers with different traffic profiles, with the aim to observe how CAPS serves users

engaged in concurrent services. In total seven different traffic profiles were simulated; VoIP,

FTP, P2P, VoIP & FTP, VoIP & P2P, VoIP FTP & P2P and finally HTTP.

159

5.6. Analysis of Phase-2 Results

This section of the thesis presents the results from the phase-2 simulations, using a large scale

simulated environment. The presentation and analysis has been divided into 7 sub-sections, one

for each of the traffic profiles, followed by a summary of the overall performance for each

configuration.

5.6.1. Performance Analysis for ‘VoIP only’ users

The first traffic profile includes users that engaged in solely VoIP services. As per the previous

analysis the evaluation for VoIP QoS is conducted by plotting the R-value over time for each of

the QoS configurations. Figure 5.13 below illustrates the mean R-factor over time for users

only engaged in VoIP. At 50 seconds the network bottleneck began to congest, resulting in a

noticeable drop in performance for all configurations. Under a Best-effort configuration a sharp

and continued drop in achieved R-factor is observed as the network bottleneck becomes

congested and the delivered QoS for the VoIP traffic falls below acceptable bounds. Weighted-

RED also struggled to provide an acceptable level of service to the VoIP-only customer traffic,

only marginally improving on the behaviour of Best-effort. Unsurprisingly, the traditional

Diffserv configuration achieved the highest average R-factor throughout the simulation by

providing adequate bandwidth guarantees and favouring the EF queue during queue servicing.

The slight reduction in R-factor for the VoIP traffic under the Diffserv configuration was caused

by a small number of packet drops and largely an increase in delay, both of which occurred

during periods of high congestion. The CAPS algorithm performed closely behind Diffserv,

maintaining a mean R-factor of 78.4 between 50 and 250 seconds, which was highest period of

most congestion, this is a 10% and 17% improvement on the performance of WRED and Best-

effort respectively. The achieved R-factor is comfortably above the target value of 75 and

further validates that the dynamic application-level method of management for VoIP traffic still

performs as desired in larger scale environments.

160

Figure 5.13: Average R-factor over time for 'VoIP only' users

5.6.2. Performance Analysis for ‘FTP only’ users

The second traffic profile used simulated users of only FTP services, the average throughput

over time for each configuration is plotted in Figure 5.14 along with the statistical bandwidth

share that each user was entitled to. The first observation is the poor performance under

Traditional Diffserv, which achieved a mean throughput of just 0.15Mbps throughout the

simulation, just 40% of the statistical fairshare for that flow. Although steady at this rate, the

explicit priority provided to guarantee VoIP performance contributes towards bandwidth

starvation for co-existing traffic. Furthermore, the chosen configuration of Diffserv attempted to

offer an assured service for FTP and HTTP traffic (target CIR) however, it is clear that this

configuration struggles to enable flows to rapidly exploit any residual bandwidth that may

become available.

The average FTP throughput during congestion (between 50-250seconds) under the CAPS

configuration is 0.78Mbps. Although this value is above the statistical fairshare it can be seen in

161

Figure 5.14 that the throughput is policed on a number of occasions (at 80-105 seconds and 155

seconds) closer to the fairshare. This behaviour demonstrates how CAPS allows for residual

bandwidth to be benefited from when possible, but that the algorithm retains control over these

flows to reclaim bandwidth when needed in order to satisfy the fairshare requirements of other

users / flows.

Best-effort and WRED configurations performed very similarly with respect to FTP throughput.

For both of these configurations the FTP throughput far exceeded the fairshare, claiming more

than 300% of the user’s fairshare during the highest period of congestion. Although utilising

available bandwidth is a positive attribute from the perspective of the FTP application (and

user), this result has been achieved at the detriment of co-existing user traffic (as seen in the

previous section and is also seen in the following sections).

Figure 5.14: Average FTP throughput for ‘FTP only’ users

162

5.6.3. Performance Analysis for ‘P2P only’ users

The third traffic profile represented users of only P2P traffic, which compared with the previous

two profiles differs in the sense that the traffic is composed of multiple TCP flows from

multiple sources (as per the P2P model). Figure 5.15 provides the average throughput achieved

by P2P-only users.

Figure 5.15: Average aggregated P2P throughput for 'P2P only' users

The aggressive, bandwidth hungry nature of P2P traffic is demonstrated in the Best-effort

configuration, where the mean P2P throughput was close to 1Mbps for the full duration of the

simulation – far exceeding the fairshare the users were entitled to. Weighted RED was

configured to favour P2P traffic the least, the benefit of this is illustrated in Figure 5.15 where

the average throughput is shown to be approximately 50% of that achieved in the Best-effort

environment. In the case of Traditional Diffserv the achieved throughput remains below the

fairshare value for the entire simulation, averaging around 0.15Mbps, just 50% of the fairshare.

The Traditional Diffserv configuration was designed to limit the throughput of P2P traffic (in

addition to guaranteeing VoIP performance) and the negative effect of this approach for users of

163

‘less preferred’ traffic is clear from this test. The CAPS configuration achieved an average

throughput within 10% of the fairshare for the duration of the simulation, which demonstrates

the ability to manage aggressive application traffic without the need for static configurations.

There is a clear drop in throughput across all configurations around 120 seconds, this was

attributed to a number of the P2P sources completing their transfers, which in turn resulted in a

drop in aggregated throughput. This was not due to external policing or traffic management.

5.6.4. Performance Analysis for ‘VoIP & FTP’ users

Having considered three traffic profiles for users of a single service the results that follow

describe how the CAPS algorithm performs when a user is engaged in multiple activities at

once. The first traffic profile that is considered is for users engaged in VoIP and FTP services;

Figure 5.16 provides a plot for the average R-factor over time for these users.

Figure 5.16: Average R-factor over time for 'VoIP & FTP' users

164

The performance of VoIP traffic under Best-effort and WRED configurations continually

degraded in quality (achieved R-factor) as the level of congestion increased, following a similar

trend to the previous similations. Traditional Diffserv once again sustained the highest R-factor

throughout the simulation, with a mean value of 85, degraded only marginally due to a few

packet drops and increased delay (due to having to use WRR scheduling rather than a strict

priority implementation). In a manner similar to that shown for users of just VoIP services,

CAPS managed to successfully maintain the R-factor close to the target of 75, producing a mean

R-factor of 78.

Figure 5.17 below plots the average FTP throughput achieved by the users of VoIP and FTP

along with the statistical bandwidth share.

Figure 5.17: Average FTP throughput for 'VoIP & FTP' users

The first point to note from the above graph is that again Traditional Diffserv has failed to

provide adequate resource to the FTP traffic, limiting its throughput by ensuring guarantees for

VoIP performance. Throughout the simulation the Traditional Diffserv configuration prevents

165

the FTP flows from obtaining its fairshare of bandwidth, once again resulting in an unfair

service delivery for unfavoured traffic types.

In contrast to this, Figure 5.17 shows how Best-effort, WRED and CAPS allow the FTP traffic

to achieve a far greater throughput, averaging approximately 1Mbps for Best-effort and WRED

and 0.85Mbps for CAPS during the period 50 – 250 seconds. Although under CAPS the FTP

traffic typically exceeded the fairshare, there are occasions (75–100 seconds and 150-175

second) when CAPS can be seen to reduce the throughput of FTP in order to reallocate

resources.

5.6.5. Performance Analysis for ‘VoIP & P2P’ users

The fifth traffic profile that was simulated represented users of VoIP and P2P applications, with

Figure 5.18 and Figure 5.19 below illustrating the performance of each traffic type.

Figure 5.18: Average R-factor over time for ‘VoIP & P2P’ users

Comparing the graph above with the previous VoIP performance plots, Figure 5.18 illustrates

the negative effect P2P traffic has when co-existing with VoIP flows is evident. For all

166

configurations the performance of VoIP has been negatively affected. Unsurprisingly Best-

effort and WRED perform the worst, managing an average R-factor of 64.8 and 68.5

respectively for the period between 50 and 200 seconds. Although Traditional Diffserv did

experience a number of short periods of degradation it again achieved the highest R-factor

value, averaging 82.5 during the highest period of congestion, 50-200 seconds. For the CAPS

configuration there was a short period between 50-75seconds where the R-factor was below 70.

This is accounted as due to a delay in CAPS being able to sufficiently police co-existing traffic,

for which TCP had already established itself and was exploiting available bandwidth. Despite

this initial behaviour the average R-factor achieved by CAPS between 50-200 seconds was 74.7,

again remarkably close to the target R-factor of 75. Beyond 200 seconds the overall level of

network congestion was reducing, which allowed all configurations to benefit from additional

network resource.

Figure 5.19: Average aggregated P2P throughput for 'VoIP & P2P' users

Figure 5.19 provides the average aggregate throughput over time for VoIP and P2P users for

each of the configurations. As has been observed in the previous results, Best-effort does

167

nothing to limit or restrict the throughput of multi-sourced applications, such as P2P. As a result

it can be seen that the P2P traffic under Best-effort conditions was able to obtain far beyond its

fairshare of bandwidth, for the first 125 seconds averaging 1.2Mbps, nearly 4 times its fairshare.

Beyond 100 seconds the randomly distributed sources begin to tail off, which is evident by the

drop in throughput after this point. Weighted RED demonstrated that its mechanism for

dropping P2P traffic over co-existing traffic assisted in limiting its throughput, although it only

managed to restrict P2P to 0.66Mbps for the first 125 second, which was still more than twice

the statistical fairshare.

In contrast to Best-effort and WRED, Traditional Diffserv continued to starve non-favoured

services of bandwidth, with P2P achieving a steady throughput of approximately 0.2Mbps,

slightly below the fairshare allocation.

 In keeping with the previous results CAPS managed to maintain the average throughput of P2P

close to the fairshare, preventing P2P from disproportionately obtaining any residual bandwidth.

As with the other configurations beyond 100 seconds the number of traffic sources reduced,

which accounts for the tailing seen in the graph.

5.6.6. Performance Analysis for ‘VoIP, FTP & P2P users

The last composite traffic profile was designed to see how CAPS would perform if given the

task of managing a user’s traffic if they engage in all three services at once.

168

Figure 5.20: Average R-factor over time for 'VoIP, FTP & P2P' users

The first traffic type to be evaluated is VoIP, which Figure 5.20 provides a similar result to the

previous evaluations. Best-effort and WRED offered the worst performance, averaging an

approximate R-factor of 60 during periods of high congestion, and with Best-effort dropping to

below 50 on two occasions. In such situations this level of QoS delivered to a user would cause

serious dissatisfaction, and in all likeliness result in the user terminating the service, therefore, it

is not an acceptable delivery. In contrast to how Traditional Diffserv has performed in previous

tests, when faced with provisioning for multiple services at once, there were fluctuations in the

delivered R-factor. In a real-world implementation of Diffserv this fluctuation is unlikely to

have occurred, since a strict priority queuing model would have been used. However, this being

said, serving EF traffic with strict priority could only have a negative impact of co-existing

traffic, so while VoIP may have performed better the same can not be said for all traffic.

The performance of VoIP flows for this traffic profile when using CAPS was marginally lower

than previous results, with an average R-factor of 73.2 for the period 50-225 seconds. However,

169

this proves that CAPS can maintain an R-factor very close to the target, even under network

conditions that proved difficult for Traditional Diffserv to handle.

Figure 5.21: Average FTP throughput for 'VoIP, FTP & P2P' users

Figure 5.21 shows the throughput for the co-existing FTP services, and for Traditional Diffserv

the results echo those from previous traffic profiles – explicit guarantees for VoIP lead to

resource starvation and poor performance for non-favoured traffic. Best-effort and WRED

performed very closely under these circumstances, both achieving approximately 0.5Mbps

between 50-200 seconds, which was the most heavily congested period. The performance of the

FTP traffic under CAPS appears at first to loosely follow the trend of Best-effort and WRED,

however, differences can be identified when Figure 5.21 is considered alongside Figure 5.22

(average aggregated P2P throughput for VoIP, FTP & P2P users). It is observed that CAPS

manages the FTP and P2P services in a manner that ensures they each achieve similar

throughputs of 0.49Mbps and 0.42Mbps respectively for the period of high congestion (50-

200seconds).

170

Figure 5.22: Average aggregated P2P throughput for 'VoIP, FTP & P2P' users

The performance results of Best-effort, WRED and Traditional Diffserv were very similar to

those presented in section 5.6.5, with Best-effort and WRED failing to prevent P2P traffic from

obtaining far beyond its fairshare. The plot for Traditional Diffserv throughput illustrates once

again the configuration to guarantee QoS for VoIP combined with actively discriminating

against P2P traffic results in an unfair delivery to users of such services.

5.6.7. Performance Analysis for HTTP Traffic

The last traffic type to be evaluated in the large scale topology was HTTP. In section 5.4.4

CAPS was demonstrated to provide a significant improvement to the request-response time for

web-like traffic, simulated by the Packmime framework for ns2. As mentioned in section 5.5.1

there were a number of difficulties in scaling the HTTP configuration. The method chosen for

evaluation was to use 30 HTTP source/sink pairs for each ISP network, and configure each pair

171

as a single HTTP user. Although this allowed for each HTTP pair to be considered a discrete

end-user from the perspective of the QoS algorithms, the results were not as had been hoped.

Figure 5.23 provides the distribution for the average request-response times for each validation

case, which is significantly different to the results from phase 1 (see section 5.4.4). In addition

to CAPS performing almost identically to Best-effort, Traditional Diffserv and WRED behave

in an almost identical manner.

Figure 5.23: Cumulative Distribution of HTTP Request-to-completed-Response time (msec)

Following a detailed analysis of the simulation trace files the cause of the anomaly was

identified. For all four validation cases the HTTP flows were modelled identically, that is to say

the cause was not due to varying traffic models, rather the issue was caused by three main

factors; 1) the volume of short TCP flows involved in the HTTP simulation (resulting in a large

number of 40byte ACKs being sent from the HTTP sink back to the source); 2) CAPS and Best-

effort both using a single physical RED queue for all traffic types, whereas Traditional Diffserv

and WRED placed HTTP into a separate RED queue and 3) a limitation in the ns2 Diffserv

implementation of RED queues that restricted the calculation of the average queue size to be

172

calculated in packets rather than bytes. These three factors resulted in a disproportionate number

of ACKs (generated by the HTTP sinks) being dropped by the RED queues, which in turn

caused the increase in request-response time. This anomaly could have been rectified by altering

the ns2 source code, however, the additional effort required was considered too great given that

the Packmime framework was not ideally suited to per-user HTTP modelling.

5.6.8. Summary of Large Scale Simulations

The results from the large-scale simulations provided further validation of the CAPS algorithm,

demonstrating that even when scaled it can successfully manage traffic flows of varying type

with the aim of optimising end-user QoS.

The novel method of managing VoIP traffic was shown to be able to deliver VoIP to the

destination at an acceptable level of QoS, without any static bandwidth configurations,

something believed to be unique to this architecture. This behaviour was achieved in all

scenarios, even when co-existing with bandwidth intensive services such as P2P.

The handling of TCP-based applications such as FTP and P2P at large-scale were supportive of

the results provided in section 5.3, with bandwidth being distributed fairly among applications

rather than the flows. This resulted in a noticeable performance increase for users of single-flow

applications such as FTP, since their applications were not starved of bandwidth by aggressive

applications such as P2P. Similarly, the dynamic traffic management of CAPS removed the

need to statically allocate bandwidth proportions among applications, which meant that each

user’s traffic received a fair share of the bandwidth, with no single traffic being discriminated

against – as was the case in Traditional Diffserv environments. The negative implications of

static bandwidth allocation among traffic types were demonstrated by the simulations for

Traditional Diffserv, when despite excelling in being able to offer the highest level of QoS for

VoIP this came at the cost of all other traffic types.

173

6. Discussion and Conclusions

This chapter concludes the thesis by summarising the achievements of the research. The chapter

proceeds with a discussion of areas for future research that have been identified during this

project and that extend the work presented herein.

6.1. Achievements and Contributions

This research programme began with an investigation into the various efforts made to provide

Quality of Service in IP networks, exploring the effect network degradation can have on Internet

protocols and traffic. It also identified the need to consider QoS as more than simply the

prioritisation of a single service, focussing on the combined user experience as a whole. The

study evaluated the characteristics of a number of popular Internet services that could

subsequently be used as inputs for a novel QoS architecture. The proposed architecture

addresses the need to shift QoS provisioning from a static pre-configured design, towards a

dynamic, user-centric model. Simulation was used in order to evaluate the capabilities of the

novel architecture against several alternative QoS mechanisms.

The overall aim of this study was to investigate and propose a novel architecture capable of

evaluating and adapting to changing network conditions and traffic levels, from a user-centric

perspective. Through a series of experimental studies and simulations this study has been

successful. There were four significant outcomes from this research, details of which follow:

1. Chapter 3 presented the analysis and characterisation of a selection of modern Internet

services from a number of different observation points (Internet connection types). The

analysis considered characteristics for HTTP, VoIP, Video-on-demand, and P2P

applications, identifying packet, flow (TCP/UDP) and application layer characteristics.

These included average packet-rate and size, the number of TCP connections for a

given online activity, connection duration / activity and ratio of downstream to

upstream traffic. The analysis included a method of observing how an application that

174

chooses to obfuscate its payload can be observed to react to packet loss and delay,

providing a novel mechanism to infer performance degradation for encrypted flows,

which is subsequently used as an input for the dynamic QoS engine (See section 3.5).

One surprising, yet important observation was made for HTTP traffic, where it was

revealed that despite mechanisms such as persistent connection and HTTPv1.1, the

majority of webpage-content came from a number of distributed sources (See section

3.2) – resulting in many short TCP flows. This was contrary to the assumption that

HTTPv1.1 was prolifically deployed and used to deliver the majority of data over a

single connection. The abundance of short TCP flows motivated a specific need for

protection from unnecessary packet drops, given the increased impact adverse network

conditions have during the early stages of a connection. A study into the delivery of

YouTube content identified key methods of passively inferring the characteristics of the

video stream, such as bitrate, resolution and content length (size), which can be used to

inform the proposed QoS architecture. This allowed for dynamic resource allocation

aligned to the specific properties of a video stream, without the need for prior or static

configuration (See section 3.3).

2. Chapter 4 presented the development of a novel user-centric QoS architecture, which

featured awareness of the requirements and behaviour of Internet services. The

Congestion Aware Packet Scheduler (CAPS) offers a user-centric approach to the

challenge of QoS for an ISP network, whereby an optimum QoS is provided for all the

concurrent services in use by an Internet user rather than prioritising a single service at

the network level. CAPS combines real-time performance evaluation with traffic

management in order to dynamically adjust QoS policies to reflect changing network

conditions and traffic variations. The architecture included several novel elements, such

as proposing the use of a minimum acceptable level of QoS. This threshold defined a

target that the CAPS architecture would try to achieve for each traffic type, enabling a

175

dynamic management of resources with direct effect on application performance,

without the need for a static class-based pre-configuration.

The concept was first developed and exemplified for VoIP traffic, measuring the R-

factor of a call to determine user satisfaction (See section 4.6.1.1). In the event the R-

factor was below an acceptable value, CAPS would adjust the ratio of co-existing

services in order to increase the R-factor (thus improve the QoS). Similarly, if the

network was congested and the R-factor was far exceeding an upper limit, CAPS would

reclaim resources used by the VoIP flow in order to benefit co-existing services, while

still ensuring an acceptable level of QoS was achieved by VoIP.

Once the concept had been proven for VoIP traffic, thresholds for additional services

were defined, these were; throughput aligned to bitrate for Video-on-Demand and

bandwidth shared fairly among single and multi-flow TCP applications (i.e. FTP and

P2P).

Further to using these thresholds as traffic management targets, CAPS recognises the

impact of network events (loss and queuing) on upper-layer protocols. For example,

based on the findings from Chapter 3 CAPS protects the first 12 packets of an HTTP

flow in order to prevent loss during the early stages of TCP, which would severely

affect TCP performance.

Another novelty of the CAPS architecture is its ability to combine performance

evaluation of user traffic with traffic management - whereas traditional QoS

architectures only react to local congestion, if the CAPS architecture detects a

degradation in delivered quality it will adjust the ratios of co-existing traffic (for a user)

with the aim to improve the delivered QoS.

3. Chapter 5 began by presenting the results from an investigation into the impact of the

proposed architecture on traffic and application performance. A prototype of the CAPS

architecture was developed within ns2. Four different users were configured within the

176

ns2 prototype, namely, VoIP, FTP, P2P and HTTP, all competing for a share of the

highly contended bottleneck bandwidth. It was shown that without any prior

configuration of the network, and solely through real-time monitoring and dynamic

management of user traffic, CAPS was successfully able to provision between the four

users in a non-discriminatory manner.

The traffic management for VoIP traffic was designed to maintain a moving average R-

factor of 75, which was identified as an acceptable threshold before user dissatisfaction

occurs. Through the use of real-time monitoring and traffic management CAPS

successfully provided an average R-factor of 74.8 (See section 5.4.1), this was achieved

without the need for priority queuing or dedicated bandwidth allocation. CAPS was also

successful in the management of resources among concurrent FTP and P2P

applications. Once again, without the need for a preferential policy or prior

configuration, CAPS was able to dynamically monitor the performance (throughput) for

each of these applications, actively managing the flows to ensure each application

received a fair share of the bottleneck bandwidth, irrespective of the number of TCP

flows the application established (See section 5.4.2 and 5.4.3).

The final traffic type to be evaluated under CAPS was HTTP, for which chapter 3 had

identified a number of key characteristics. As previously mentioned, despite

mechanisms such as HTTPv1.1 and persistent connection, it was observed that HTTP

delivery still features many short TCP connections. Due to the sensitive nature of short

TCP connections the CAPS architecture provides protection for the first 12 packets of

an HTTP flow, in order to minimise the risk of packet loss and TCP retransmission

timeouts. It was observed that the protection of short flows, combined with the

management of P2P traffic, and a non-preferential management policy, allowed CAPS

to complete 90% of HTTP transactions 50% faster than the next best alternative QoS

configuration, reducing request-response times from approximately 10 seconds to under

5 seconds (See section 5.4.4).

177

The CAPS architecture also proposed a novel method of traffic management for TCP

based applications. It was hypothesised that the use of per-RTT rather than per-packet

management would reduce the number of adjacent packet-drops, while providing the

TCP sender sufficient time to react before the connection experienced a subsequent

loss. It was demonstrated that using per-RTT management two heterogeneous TCP

connections could be controlled to behave fairly towards each other with 30% fewer

packet drops with no reduction in flow performance (See section 5.4.5).

4. Chapter 5 also provided the results from tests benchmarking the performance of CAPS

against alternative QoS solutions, identified from within the state of the art. A large

scale topology was developed using ns2, which allowed the evaluation of CAPS in a

scaled environment, featuring hundreds of users, configured with a mix of seven

different traffic-profiles, all competing for a share of a highly contended bottleneck. The

large scale simulations proved that CAPS can successfully provision network resources

between users, applications and flows without prior configuration or a preferential

management policy. The novel method for managing VoIP QoS was consistently

successful in achieving the objective of maintaining an average R-factor of 75, even for

users engaged in VoIP, FTP and P2P simultaneously (See sections 5.6.1, 5.6.4, 5.6.5

and 5.6.6). The performance of VoIP under CAPS was seen to be typically 10-20%

better compared with Best-effort and WRED configurations, and only marginally

behind Traditional Diffserv, despite its explicit prioritisation of VoIP traffic.

The issue of fairness was stated as one of the primary objectives for the novel

architecture, ensuring that a user receives a fair share of network resources regardless of

the services they choose to use. Even in a scaled environment CAPS was successful in

its management of aggressive P2P traffic, policing the aggregate throughput of a P2P

application to within a user’s fairshare of the bottleneck. It was shown that CAPS could

manage P2P traffic to remain within a user’s fairshare, while under Best-effort and

178

WRED configurations P2P obtained up to 300% of its fairshare, reducing the bandwidth

available for concurrent users and services. The preferential model of Diffserv severely

restricted the bandwidth available for P2P services, meaning users were able to only

achieve 50% of their fairshare of the bandwidth, highlighting the fairness deficiency of

this configuration (See sections 5.6.3, 5.6.5 and 5.6.6).

The successful management of aggressive P2P traffic enables CAPS to ensure fairness

can also be provided to traditional TCP based services, such as FTP. Sections 5.6.2,

5.6.4 and 5.6.6 illustrate that FTP throughput under CAPS is typically closer to a user’s

fairshare of bandwidth than was possible with alternative configurations. In contrast to

Traditional Diffserv, the absence of static pre-configuration and preferential policies

allows flows under CAPS to take advantage of residual bandwidth. This was evident

from the performance of FTP flows, which can be seen to burst above the fairshare

when possible, however, unlike Best-effort and WRED this exploitation of residual

bandwidth is controlled, with throughputs seen to be reduced back towards the fairshare

when necessary.

In summary, it is believed that this research programme has reached all of the objectives defined

in Chapter 1, and achieved the research aim.

179

6.2. Areas for Future Work

Throughout the research a number of tangents were identified, each of which provides an area

for future research:

1. Expansion of the study of Internet services included in Chapter 3 would provide a

number of benefits; Firstly, analysing Internet content over a lengthened period of time

would allow the evolution of services to be assessed, identifying whether or not a

service profile has a predictable validity. The study included in this research only

considered a subset of Internet services, therefore it would benefit from further research

to characterise additional traffic types, such as online gaming and video-calls, in order

to determine QoS requirements for these services. The question of how to manage

traffic from a user whose system is acting as a relay for other Internet users still

remains. On one hand it is unfair to discriminate against the relayed traffic, but it

doesn’t contribute towards the user-experience for the owner of the relaying system. In

addition to a study on Internet services it is considered a study into the distribution of

current TCP implementations would be greatly beneficial to the research community,

particularly those considering novel QoS mechanisms and traffic management

solutions.

2. An extension of the CAPS prototype in an alternative development environment will

provide further performance results for the architecture. The restrictions of the traffic

sources available in ns2 were described in section 5.1.1, resulting in only a subset of the

traffic analysed in Chapter 3 from being reproduced (with an acceptable degree of

realism). Future work in this area could make use of newer simulation environments,

such as ns3 or OPNET, and may involve the inclusion of live (or replayed) traffic

streams (rather than simulated traffic models), from which subjective evaluation of the

delivered QoS could be investigated. Further development could also explore more

scalable methods of simulating HTTP traffic for the ns2 / ns3 environments.

180

3. Additional methods of inferring network health to inform resource allocation. In the

proposed architecture the method of inferring network health focuses on the bottleneck

link utilisation, with the assumption being that the architecture is located on an edge

node, adjacent to the bottleneck. Future research could include a method for detecting

non-adjacent bottlenecks, which appear in the path of transiting flows. This information

would then be used to manage Internet flows based upon their path. Additional

parameters to link utilisation would also be inferred and collected, possibly through an

out-of-band distributed communication mechanism. This would then be able to evaluate

the reliability of a path over time to predict network conditions. The prediction of

network health could make use of neural networks in the identification of recurring

trends.

4. Alternatives to dropping packets. It is hypothesised that there is a point in the data path

where dropping a packet from a responsive flow does not aid to relieve congestion, and

is certainly detrimental to QoS. For example, nearing the destination of the packet the

majority of the forwarding path has already been transited. In the event of a congested

link, a router may chose to drop the packet, invoking TCP to reduce its transmission

rate, at the cost of a retransmission. Alternatively, it is proposed that deliberately

delaying a packet will increase the measured RTT at the sender, also invoking a

reduction in the transmission rate. However, this method does not require

retransmission of a packet, so does not further contribute network congestion, but does

still deliver the packet. The thresholds of buffering a packet for an increased period of

time would require investigation, along with any impact on application performance.

181

6.3. Concluding Remarks

The integration of the Internet into every aspect of modern day life brings with it many

challenges, such as content providers having to ensure their media lives up to user expectations.

The shift from simply purchasing access from a service provider to now purchasing a

connection with multimedia capabilities has already begun, with over-the-top services being

released to market constantly. Furthermore, mobile devices have evolved from a simple

communication tool into a multimedia hub, capable of not only acquiring services from the

Internet, but also being the source of new online content. Tasked with the role of delivering the

ever increasing volume of data to the world lies the Internet, which without the addition of an

intelligent mechanism to manage resources, in real-time, will continue to operate as best-effort.

This research has focussed on the subject of User-Centric Quality of Service, a shift from the

traditional service-led approach of QoS. This research has two main beneficiaries, firstly the

ISP, who can use the Internet traffic analysis, combined with the proposed architecture to

evaluate the value their network delivers to the user. Secondly, the end users stand to benefit

from any subsequent optimisation of the ISP’s network. It is hoped that an ISP would

acknowledge that a change of the QoS paradigm to a user-centric model (CAPS) would result in

satisfying a larger proportion of customers, rather than only a handful with a static, rigid QoS

design.

182

References

About.com. (2010). "The Best Torrent P2P software - About.com " Retrieved 03-03-2010,

2010, from http://netforbeginners.about.com/od/peersharing/tp/best_torrent_software.htm.

Adobe Systems Incorporated. (2010). "Real-Time Messaging Protocol (RTMP) Specification."

Retrieved 02/03/2010, 2010, from http://www.adobe.com/devnet/rtmp/.

Alcaraz, S., K. Gilly, C. Juiz and R. Puigjaner (2007). Handling HTTP flows over a DiffServ

framework. Proceedings of the 4th international IFIP/ACM Latin American conference on

Networking, ACM: 95-101.

Alexa.com. (2010). "The Web Information Company." Retrieved 01/03/2010, 2010, from

http://www.alexa.com.

Allman, M., V. Paxson and E. Blanton (2009). TCP Congestion Control. IETF RFC 5681.

Allman, M., V. Paxson and W. Stevens (1999). TCP congestion control. IETF RFC 2581.

Apostolopoulos, G., D. Williams, S. Kamat, R. Guerin, A. Orda and T. Przygienda (1999).

"QoS Routing Mechanisms and OSPF Extensions". IETF RFC 2676.

ARPA (1981). "Internet Protocol". IETF RFC 791.

Babiarz J., Chan K. and Baker F. (2006). Configuration guidelines for Diffserv service classes

IETF RFC 4594.

Baker, F., C. Iturralde, F. Le Faucheur and B. Davie (2001). Aggregation of RSVP for IPv4 and

IPv6 Reservations. IETF RFC 3175.

Balakrishnan, H. and S. Seshan (2001). "The Congestion Manager". IETF RFC 3124.

Balan, H. V., L. Eggert, S. Niccolini and M. Brunner (2007). An Experimental Evaluation of

Voice Quality Over the Datagram Congestion Control Protocol. INFOCOM 2007. 26th IEEE

International Conference on Computer Communications., Anchorage, USA.

Baset, S. A. and H. Schulzrinne (2004). An Analysis of the Skype Peer-to-Peer Internel

Telephony Protocol. Technical Report CUCS-039-04. Computer Science Department, Columbia

University, New York, NY.

BBC-iStats. (2009). "BBC iPlayer goes HD and adds higher quality streams." Retrieved 21-04-

2010, 2010.

BBC-iStats. (2010). "BBC iPlayer Publicity Pack for March 2010." Retrieved 21-04-2010,

2010, from

http://www.bbc.co.uk/blogs/bbcinternet/img/BBC_iPlayer_Publicity_pack_March_2010.pdf.

BBC-iStats. (2011). "BBC iPlayer Monthly Performance Pack, July 2011." Retrieved 31-03-

2012, 2012, from

http://www.bbc.co.uk/blogs/bbcinternet/2011/08/18/BBC_iPlayer_performance_monthly_1107

_FINAL.pdf.

183

Bernet, Y., P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie, J.

Wroclawski and E. Felstaine (2000). "A Framework for Integrated Services Operation over

Diffserv Networks". IETF RFC 2998.

Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss (1998). An architecture for

differentiated services. IETF RFC 2475.

Bonfiglio, D., M. Mellia, M. Meo and D. Rossi (2009). "Detailed Analysis of Skype Traffic."

IEEE Transactions on Multimedia 11(1): 117.

Braden R., Clark D. and Shenker S. (1994). "Integrated Services in the Internet Architecture: an

Overview", Request For Comments 1633.

BT. (2012). "Broadband Usage Policy, BT.com." Retrieved 25-03-2012, 2012, from

http://bt.custhelp.com/app/answers/detail/a_id/10495/~/broadband-usage-policy.

Cao, J., W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith and M. C. Weigle (2004). "PackMime:

Synthetic web traffic generation in ns-2, Available from: http://dirt.cs.unc.edu/packmime."

Cha, M., H. Kwak, P. Rodriguez, Y. Y. Ahn and S. Moon (2007). I tube, you tube, everybody

tubes: analyzing the world's largest user generated content video system. Proceedings of the 7th

ACM SIGCOMM conference on Internet Measurement, ACM: 14.

Chiang, W. H., W. C. Xiao and C. F. Chou (2006). A Performance Study of VoIP Applications:

MSN vs. Skype. Proceedings of Multicomm 2006. Instanbul, Turkey.

Chiu, D. M. and R. Jain (1989). "Analysis of the increase and decrease algorithms for

congestion avoidance in computer networks." Computer Networks 17(1): 1-14.

Cisco Systems Inc. (2010). "Cisco IOS Netflow." Retrieved 01-08-2010, 2010, from

http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html.

Clark, D. D. and W. Fang (1998). "Explicit allocation of best-effort packet delivery service."

IEEE/ACM Transactions on Networking (TON) 6(4): 373.

Cole, R. G. and J. H. Rosenbluth (2001). "Voice over IP performance monitoring." ACM

SIGCOMM Computer Communication Review 31(2): 9-24.

Crawley, E., R. Nair, B. Rajagopalan and H. Sandick (1998). A framework for QoS-based

routing in the Internet. IETF RFC 2386.

Cruvinel, L. and T. Vazao (2011). Profile-Based Adaptive DiffServ Policing with Learning

Techniques. Internation Conference on Computer Communications and Networks (ICCCN).

Maui, Hawaii, IEEE: 1-7.

Davie, B., A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le Boudec, W. Courtney, S. Davari, V.

Firoiu and D. Stiliadis (2002). An expedited forwarding PHB (per-hop behavior). IETF RFC

3246.

eBizmba.com. (2010). "Top 15 torrent websites - April 2010." Retrieved 01-04-2010, 2010,

from http://www.ebizmba.com/articles/torrent-websites.

184

Eger, K., T. Hoßfeld, A. Binzenhöfer and G. Kunzmann. (2007). "BitTorrent Implementation

for ns2 Network Simulator." from http://www.tu-

harburg.de/et6/research/bittorrentsim/index.html.

El-Gendy, M. A. and K. G. Shin (2003). "Assured forwarding fairness using equation-based

packet marking and packet separation." Computer Networks 41(4): 435-450.

Ellis, M., S. Strowes and C. Perkins (2011). An Experimental Study of Client-side Spotify

Peering Behaviour. IEEE Local Computer Networks 2011. Bonn, Germany.

Elshaikh, M. A., M. Othman, S. Shamala and J. M. Desa (2008). "A new fair marker algorithm

for DiffServ networks." Computer Communications 31(14): 3064-3070.

Firoiu, V. and M. Borden (2000). A study of Active Queue Management for Congestion

Control. INFOCOM 2000. 19th IEEE International Conference on Computer Communications.

, Tel Aviv, Israel.

Floyd, S., T. Henderson and A. Gurtov (2004). The NewReno Modification to TCP's Fast

Recovery Algorithm. IETF RFC 3782.

Floyd S. (1997). "Random Early Detection queue parameters." Retrieved 05/12/2009, 2010,

from http://www.icir.org/floyd/REDparameters.txt.

Floyd S. (2000). "Recommendation on using the gentle variant of RED: Technical note."

Retrieved 14/04/2010, 2010, from http://www.icir.org/floyd/red/gentle.html.

Floyd S. and Fall K. (1999). "Promoting the use of end-to-end congestion control in the

Internet." IEEE/ACM Transactions on Networking (TON) 7(4): 458-472.

Floyd S., Gunmamadi R. and S. S. (2001). "Adaptive RED: An Algorithm for Increasing the

Robustness of RED's Active Queue Management." Retrieved 10/06/2010, 2010, from

http://www.icir.org/floyd/papers/adaptiveRed.pdf.

Floyd S. and Jacobson V. (1993). "Random early detection gateways for congestion avoidance."

IEEE/ACM Transactions on Networking (TON) 1(4): 397-413.

Floyd S. and Kohler E. (2006). TCP Friendly Rate Control (TFRC): The Small-Packet (SP)

Variant. Internet Draft.

Friedman, T., R. Caceres and A. Clark (2003). RTP control protocol extended reports (RTCP

XR). IETF RFC 3611.

Gill, P., M. Arlitt, Z. Li and A. Mahanti (2007). Youtube traffic characterization: a view from

the edge. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, ACM.

Guha, S., N. Daswani and R. Jain (2006). "An experimental study of the Skype peer-to-peer

VoIP system."

Ha, S., I. Rhee and L. Xu (2008). "CUBIC: A New TCP-Friendly High-Speed TCP Variant."

ACM SIGOPS Operating System Review 42(5): 64-74.

Handley, M., S. Floyd, J. Padhye and J. Widmer (2003). "TCP Friendly Rate Control (TFRC):

Protocol Specification". IETF RFC 3448.

185

Hardin G. (1968). "The Tragedy of the Commons." Science 162(3859): 1243-1248.

He, Q. (2003). "Packet-level peer-to-peer simulation framework and gnutellsim." Retrieved

January 2010, from http://www.cc.gatech.edu/computing/compass/gnutella/.

Heinanen, J., F. Baker, W. Weiss and J. Wroclawski (June 1999). Assured forwarding PHB

group. IETF RFC 2597.

Heinanen J., F. Le Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan and P.

Cheval (2002). "Multi-Protocol Label Switching (MPLS) Support of Differentiated Services",

Request for Comments 3270.

Hollot C. V., Misra V., Towsley D. and G. W. (2002). "Analysis and Design of Controllers for

AQM Routers Supporting TCP Flows." IEEE Transactions on Automatic Control 47(6): 945-

959.

Huang, T. Y., P. Huang, K. T. Chen, A. Sinica and P. J. Wang (2010). "Could Skype Be More

Satisfying? A QoE-Centric Study of the FEC Mechanism in an Internet-Scale VoIP System."

IEEE Network: 3.

IEInspector Software LLC. (2010). "IEInspector HTTP Analyser v5." Retrieved 01/03/2010,

2010, from http://www.ieinspector.com/httpanalyzer/download.html.

IETF (1989). Requirements for Internet Hosts - Communication Layers. (Editor Braden R.).

IETF RFC 1122.

ISPReview. (2010). "ISPReview - Top 10 UK ISPs." Retrieved January 2010, from

http://www.ispreview.co.uk/review/top10.php.

ITU-T. (1988). Pulse Code Modulation (PCM) of voice frequencies.

ITU-T. (2000). The E-Model, a computational model for use in transmission planning.

ITU-T. (2001). End-user multimedia QoS categories, ITU-T Recommendation G.1010.

ITU-T. (2001). ""Perceptual evaluation of speech quality (PESQ): An Objective method for

end-to-end speech quality assessment of narrow-band networks and speech codecs", ITU-T

Recommendation P.862, Study group 12."

Jacobson, V. (1995). "Congestion avoidance and control." ACM SIGCOMM Computer

Communication Review 25(1): 157-187.

John, W., S. Tafvelin and T. Olovsson (2008). "Trends and differences in connection-behavior

within classes of internet backbone traffic." Passive and Active Network Measurement: 192-

201.

Jourjon, G., E. Lochin and P. Sénac (2007). "Design, implementation and evaluation of a QoS-

aware transport protocol." Computer Communications 31(9): 1713-1722.

Karagiannis, T., M. Molle and M. Faloutsos (2004). "Long-range dependence ten years of

Internet traffic modeling." IEEE Internet Computing 8(5): 57-64.

Kitz.co.uk. (2009). "Kitz.co.uk - UK ADSL/Broadband Consumer Information Site."

Retrieved 15/02/2010, 2010, from http://www.kitz.co.uk.

186

Kohler, E., M. Handley and S. Floyd (2006). Designing DCCP: congestion control without

reliability. SIGCOMM '06 Proceedings of the 2006 conference on Applications, technologies,

architectures, and protocols for computer communications, Pisa, Italy, ACM Press New York,

NY, USA.

Kung, H. Y. and F. W. Kuo (2006). Dynamic user-oriented QoS specification and mapping for

multimedia differentiation services. 5th IEEE International Conference on High Speed

Networks and Multimedia Communications.

Kunniyur S. and Srikant R. (2003). "Analysis and design of an adaptive virtual queue (AVQ)

algorithm for active queue management." Transactions from Networks 12(2): 286-299.

Kuzmanovic, A. (2005). The power of explicit congestion notification. Proceedings of the 2005

conference on Applications, technologies, architectures, and protocols for computer

communications, Philadelphia, USA.

Lahanas, A. and V. Tsaoussidis (2003). "Exploiting the efficiency and fairness potential of

AIMD-based congestion avoidance and control." Computer Networks 43(2): 227-245.

Le, L., J. Aikat, K. Jeffay and F. D. Smith (2003). The effects of active queue management on

web performance. Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications, Karlsruhe, Germany ACM.

Lei, G., C. Songqing, X. Zhen and Z. Xiaodong (2005). Analysis of multimedia workloads with

implications for internet streaming. Proceedings of the 14th international conference on World

Wide Web. Chiba, Japan, ACM.

Lin, D. and R. Morris (1997). Dynamics of Random Early Detection. Proceedings of the ACM

SIGCOMM '97 conference on Applications, technologies, architectures, and protocols for

computer communication, Cannes, France.

Lochin, E. and P. Anelli (2009). "TCP throughput guarantee in the DiffServ Assured

Forwarding service: what about the results?" Annals of Telecommunications 64(3): 215-224.

Mascolo, S., C. Casetti, M. Gerla, M. Y. Sanadidi and R. Wang (2001). TCP westwood:

Bandwidth estimation for enhanced transport over wireless links, ACM Press New York, NY,

USA: 287-297.

Mascolo, S., L. A. Grieco, R. Ferorelli, P. Camarda and G. Piscitelli (2004). Performance

evaluation of Westwood+ TCP congestion control. Proceedings of Internet Performance

Symposium (IPS 2002), Taipei, Taiwan, Elsevier.

Mathis, M., J. Mahdavi, S. Floyd and A. Romanow (1996). TCP Selective Acknowledgement

Options. IETF RFC 2018.

Matowidzki, M. (2003). ECN is fine- but will it be used? 21 st IASTED International Multi-

Conference on Applied Informatics.

Medina, A., M. Allman and S. Floyd (2005). "Measuring the evolution of transport protocols in

the internet." ACM SIGCOMM Computer Communication Review 35(2): 37-52.

Mellia, M., I. Stoica and H. Zhang (2003). "TCP-aware packet marking in networks with

DiffServ support." Computer Networks 42(1): 81-100.

187

Min, Z., M. Dusi, W. John and C. Changjia (2009). Analysis of UDP Traffic Usage on Internet

Backbone Links. 9th Annual International Symposium on Applications and the Internet, 2009.

SAINT '09. .

Miniwatts-Marketing-Group. (2012). "World Internet usage statistics news and population

stats." Retrieved 25-03-2012, 2012, from http://www.internetworldstats.com/stats.htm.

Molnar, K. and V. Vrba (2008). DiffServ-based user-manageable quality of service control

system. Proceedings of the 7
th

 International Conference on Networking, Cancun, Mexico, IEEE

Computer Society.

Ng, S. L., S. Hoh and D. Singh (2005). Effectiveness of adaptive codec switching VoIP

application over heterogeneous networks. 2nd International Conference on Mobile Technology,

Applications and Systems, 2005.

ns2 Network Simulator (2010). Available from: http://isi.edu/nsnam/ns/.

Ofcom (2008). UK broadband speeds: initial findings of consumer experience of broadband

performance.

OPNET. (2010). "OPNET Modeler." Retrieved 05/05/2010, 2010, from

http://www.opnet.com/solutions/network_rd/modeler.html.

Ostermann, S. (2003). TCPtrace, available from http://www.tcptrace.org.

Ou. G. (2008). "Fixing the unfairness of TCP congestion Control." Retrieved 01/04/2008,

2008, from http://blogs.zdnet.com/Ou/?p=1078&page=4.

Padhye, J., V. Firoiu, D. F. Towsley and J. F. Kurose (2000). "Modeling TCP Reno

performance: a simple model and its empirical validation." IEEE/ACM Transactions on

Networking (ToN) 8(2): 133-145.

Paxson, V. and M. Allman (2000). Computing TCP's Retransmission Timer. IETF RFC 2988.

Perkins, C., O. Hodson and V. Hardman (1998). "A survey of packet loss recovery techniques

for streaming audio." IEEE Networks 12(5): 40-48.

Pieda, P., J. Ethridge, M. Baines and F. Shallwani (2000). "A network simulator differentiated

services implementation open IP, Nortel Networks."

Ramakrishnan, K., S. Floyd and B. D. (2001). "The Addition of Explicit Congestion

Notification (ECN) to IP". IETF RFC 3168.

Rao, A., A. Legout, Y. Lim, D. Towsley, C. Barakat and W. Dabbous (2011). Network

characteristics of video streaming traffic. Proceedings of the Seventh Conference on emerging

Networking Experiments and Technologies. Tokyo, Japan, ACM.

Reguera, V. A., F. Álvarez Paliza, W. Godoy Jr and E. M. García Fernández (2008). "On the

impact of active queue management on VoIP quality of service." Computer Communications

31(1): 73-87.

Sandvine. (2011). "Global Internet Phenomena Report 2011." Retrieved 08-08-2011, 2011,

from http://www.sandvine.com/downloads/documents/10-26-

188

2011_phenomena/Sandvine%20Global%20Internet%20Phenomena%20Report%20-

%20Fall%202011.pdf.

Schulze, H. and K. Mochalski. (2006). "Ipoque P2P Survey 2006." Retrieved January 2010,

from http://www.ipoque.com/resources/internet-studies/p2p-survey-2006.

Schulze, H. and K. Mochalski. (2007). "Ipoque Internet study." Retrieved January 2010, from

http://www.ipoque.com/resources/internet-studies/internet-study-2007.

Schulze, H. and K. Mochalski. (2009). "Ipoque Internet study." Retrieved January 2010, from

http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009.

Schulzrinne, H. and S. Casner (2003). ""RTP Profile for Audio and Video Conferences with

Minimal Control"." IETF RFC 3551

Schulzrinne, H., S. Casner, R. Frederick and V. Jacobson (2003). "RTP: A Transport Protocol

for Real-Time Applications". IETF RFC 3550.

Schumacher, J., M. Dobler, E. Dillon, G. Power, M. Fiedler, D. Erman, K. De Vogeleer, M. O.

Ramos and J. R. Argente (2010). Providing an User Centric Always Best Connection. Second

International Conference on Evolving Internet (INTERNET) 2010, IEEE: 80-85.

Seddigh, N., B. Nandy and P. Pieda (1999). Bandwidth assurance issues for TCP flows in a

differentiated services network. Proceedings from GLOBECOM 1999, Rio de Janeireo, Brazil.

Skype. (2010). "SILK: Super Wideband Audio Codec from Skype." Retrieved 02/02/3010,

2010, from

http://developer.skype.com/silk?action=AttachFile&do=get&target=SILKDataSheet.pdf.

Su, H. and M. Atiquzzaman (2003). "ItswTCM: a new aggregate marker to improve fairness in

DiffServ." Computer Communications 26(9): 1018-1027.

Sudha, S., S. Maddipati and N. Ammasaigounden (2008). A new adaptive marker for bandwidth

fairness between TCP and UDP traffic in DiffServ. IEEE Region 10 Conference TENCON

2008-2008, TENCON 2008: 1-5.

Suh, K., D. R. Figueiredo, J. Kurose and D. Towsley (2006). Characterizing and detecting

relayed traffic: A case study using Skype. INFOCOM 2006. 25th IEEE International

Conference on Computer Communications., Barcelona, Spain.

Tan, K., J. Song, Q. Zhang and M. Sridharan (2006). A Compound TCP approach for High-

Speed and Long Distance Networks. IEEE Infocom, Barcelona, Spain.

Telegraph.co.uk. (2009). "YouTube hits one billion views a day." Telegraph Retrieved 24-04-

2010, from http://www.telegraph.co.uk/technology/google/6281439/YouTube-hits-one-billion-

views-a-day.html.

Tsaoussidis, V. and C. Zhang (2005). "The dynamics of responsiveness and smoothness in

heterogeneous networks." IEEE Journal on Selected Areas of Communications 23(6): 1178-

1189.

Usman, M. and N. M. Sheikh (2005). Performance Analysis of Adaptive Source Rate Control

Algorithm (ASRC) for VoIP. TENCON 2005 2005 IEEE Region 10.

189

Vos, K., S. Jensen and K. Soerensen (2010). SILK Speech Codec draft-vos-silk-01, available

from http://tools.ietf.org/html/draft-vos-silk-01.

Vuze. (2010). "A list of ISPs reported to implement a form of traffic management against P2P

protocols." Retrieved January 2010, 2010, from http://wiki.vuze.com/.

Weigle, M. C., K. Jeffay and F. D. Smith (2006). "Quantifying the Effects of Recent Protocol

Improvements to Standards-Track TCP." Computer Communications 29: 2853-2866.

Wireshark (2009). available from http://www.wireshark.org/.

Wydrowski B. and Z. M. (2002). GREEN: An Active Queue Management Algorithm for a Self

Managed Internet. Proceedings from IEEE Internation Conference on Communications, ICC

2002. New York, USA. 4: 2368-2372.

Yeom, I. and A. L. N. Reddy (2001). Adaptive marking for aggregated flows. Proceedings from

IEEE Globecom 2001, Texas, USA.

YouTube. (2010). "YouTube - Broadcast Yourself." from www.youtube.com.

YouTube. (2010). "YouTube Fact Sheet." from http://www.youtube.com/t/fact_sheet.

YouTube. (2012). "YouTube Statistics." Retrieved 31-03-2012, 2012, from

http://www.youtube.com/t/press_statistics.

Zhang, C. and V. Tsaoussidis (2001). TCP-real: improving real-time capabilities of TCP over

heterogeneous networks, ACM Press New York, NY, USA: 189-198.

190

Appendices

The following appendices contain work supporting this thesis. Appendices A – D are provided

on the accompanying DVD, provided at the back of this thesis, while Appendix E is printed.

Appendix A – Traffic Analysis Data & Scripts

Appendix A includes a number of packet captures files for the Internet services evaluated in

Chapter 3, along with various shell scripts that were used to analyse the captures.

Appendix B – Modified ns2 Source Code

Appendix B.1 – Modified ns2 diffserv package

Appendix B.2 – Modified n2 trace package

Appendix B.3 – Output from diff against original ns2 source code

Appendix B.4 – FlowTable and UserTable Data Structures integrated into ns2

Appendix C – Simulation TCL Scripts

Appendix C.1 – Phase 1 Simulation scripts

Appendix C.2 – Per RTT TCP Tests

Appendix C.3 – Phase 2 Simulation scripts

Appendix D – Analysis and Processing Scripts

Appendix D.1 – Phase 1 Processing Scripts

Appendix D.2 – Phase 2 Processing Scripts

191

Appendix E – Publications

Culverhouse M., Ghita B., Reynolds P., Wang X., (2010) Optimising quality of service through

the controlled aggregation of traffic, In Proceedings of The Seventh International IEEE

Conference for Internet Technology and Secured Transactions, United Kingdom, November

2010.

Culverhouse M., Ghita B., Reynolds P., (2011) User-Centric Quality of Service Provisioning, In

Proceedings of The 37th IEEE Conference on Local Computer Networks (LCN), Bonn,

Germany, November 2011.

1

Optimising quality of service through the controlled aggregation of

traffic

M. E. Culverhouse, B. V. Ghita, P. Reynolds and X. Wang

Centre for Security, Communications, and Network Research, University of Plymouth,

UK

info@cscan.org

Abstract

The multimedia enriched transport supported by

the Internet today continues to pose a challenge

to engineers who attempt to provide QoS for its

users. The popular method of using Diffserv

solutions is typically too static to meet the mixed

user traffic model. This paper introduces a

novel user-centric approach of dynamically

evaluating and policing incoming Internet flows

to control the ratio of traffic types for individual

users. After describing its theoretical rationale,

the proposed method is presented as an

integrated architecture (Congestion Aware

Packet Scheduler – CAPS), which allows

seamless integration with existing Diffserv

networks. An ns2 implementation of the CAPS

architecture is presented and investigated for a

number of different scenarios. The evaluation of

CAPS indicates that the architecture

outperforms best effort, traditional Diffserv and

weighted-RED alternatives, providing a better,

dynamic QoS balance for a wide range of traffic

profiles without the need for explicit

predetermined precedence on traffic types.

1. Introduction

The Internet has evolved into a ubiquitous

communications network with an estimated 1.6

Billion users [1]. Throughout its evolution,

many different methods were proposed to

improve the best-effort nature of IP and to

provide the user with a satisfactory level of

Quality of Service (QoS). It is suggested that

merely configuring a service provider’s network

to give predetermined precedence to specific

traffic types, as can be seen with traditional

Differentiated Services (Diffserv)

implementations [2], can result in an unfair

level of service for customers who may produce

a different traffic mixture. Furthermore, it

should not be assumed that real-time services

such as VoIP will always be considered a

priority over other traffic from a single user; for

example, real-time online purchases may be

incorrectly classified as a non real-time activity

and not get the priority a user may desire. The

change in nature of Internet traffic has also

made provisioning for QoS progressively

difficult. An increase in UDP-based traffic,

which is unresponsive to congestion, has meant

that there is no regard for coexisting flows,

which can lead to impairing the performance of

congestion controlled traffic when they compete

for available bandwidth.

The Diffserv architecture is a popular choice

for service providers to offer QoS on their

networks. Diffserv comprises of edge and core

routers, where the former are responsible for

inspecting incoming flows and mark the IP

header of the packet with a Diffserv Code Point

(DSCP). The DSCP is determined according to

a policy defined by the network operators, with

Diffserv core routers using the DSCP to

determine with what precedence the packet

should be forwarded within the presence of

congestion. Typically a Diffserv network will be

configured to map different traffic types onto

one of three different Per Hop Behaviours

(PHBs): Expedited Forwarding (EF) [3],

Assured Forwarding (AF) [4] and Best Effort

(BE). It is recommended to map real-time

services onto the EF PHB to meet the stringent

QoS requirement (low packet loss, jitter and

delay) of such services. Diffserv AF is

traditionally a static, policy based traffic

management system which can be configured

by the network operators to provide a specific

level of service to a customer. It supports up to

four different traffic classes, each of which has

up to three drop precedence levels. A flow that

adheres to its agreed policy (for example

remains within its committed information rate

(CIR)) is said to be in-profile and receives a

default level of service. If a flow fails to adhere

to its policy (for example exceeding its CIR)

then it is described as being out-of-profile, and

its packets are marked with a lower precedence

DSCP value, thus facing a higher drop

probability in the event of congestion.

Although a good starting point, specific

services should not automatically be given

priority at the cost of concurrent flows, based on

2

the philosophy that QoS should consider the

entire user experience and not necessarily

favour just a single traffic type. Additional

reasons for not following the trend of using the

EF PHB for VoIP traffic (or other real-time

conversational services) are given by [5] where

it is suggested that the EF configuration is

limited by a number of aspects, such as having a

load limit on the EF capacity (to prevent

starvation of capacity to other traffic types),

which could result in high priority traffic

connections being refused even when residual

capacity is available in lower priority classes.

Moreover, this configuration is static and

predetermined by the network operator rather

than a dynamic system that acknowledges the

current user activities and network climate.

The architecture introduced in this paper aims

to overcome this limitation by proposing a

dynamic approach of classifying and prioritising

traffic, through the continuous observation of

the user traffic levels. There have been many

proposed improvements to the original

operation of Diffserv over the past 10 years,

which suggest a more dynamic approach to

resource management; for example [6] presents

a user-oriented QoS framework which provides

the user with an application-layer interface to

control resource allocation among applications

in a friendly, easy-to-user manner. This

information is used to dynamically configure

the Diffserv network. Whilst such research

promoted user-oriented QoS, the method

employed requires user-interaction which can be

intrusive from the user experience perspective.

In [7], the authors proposed a modification to

the static Diffserv configuration to use

bandwidth measurements from the network to

influence the edge routers during the metering

and policing process, however the architecture

does not provide policing mechanisms to

enforce fairness or control over misbehaving

hosts. The research in [8] describes a method for

dynamically configuring the bandwidth between

the traffic classes within a Diffserv network,

ensuring over or under provisioning is

minimised. It is noted that a large amount of

research has focussed on improving specific

aspects of Diffserv architectures, such as

admission control and link utilisation; however,

there has been a very limited amount of research

conducted in offering user-centric Diffserv

solutions, further emphasising the novelty of

this research.

Inadequacies in these proposed enhancements

motivated the conception of a new approach of

providing QoS and the development of this

concept. By moving away from a static,

predetermined prioritisation scheme, the

presented architecture considers the combined

multimedia experience of a single ‘Internet

user’ rather than focussing on a ‘single service’.

The bandwidth management system aims to

balance resources between flows, applications

and ultimately each paying customer to ensure

fairness between coexisting traffic is

maintained.

To enable this novel architecture it is

necessary to consider the combined multimedia

experience of each user. In order to achieve this,

CAPS must recognise how network-oriented

events (such as delay and packet drops) impact

the QoS of each user service.

For example, TCP-based applications benefit

from low packet drop rates to allow the additive

increase multiplicative decrease algorithm to

reach and maintain the maximum throughput

possible, given the available bandwidth [9].

Frequent packet drops prevent the growth of the

TCP congestion window and therefore CAPS

should be cautious when dropping packets from

TCP applications to avoid preventing a flow

from obtaining a maximum throughput. [10]

models the performance of TCP Reno to give

Equation (1), which describes the relationship

between the sending rate of the TCP Reno

connection T, given a loss rate p, TCP

retransmit timeout value TRTO and packet size of

s.

(1)

Real-time applications, such as VoIP, are

sensitive to a number of factors which can

seriously degrade the quality received by a user.

The performance metrics of interest for such

applications are delay, packet loss ratio and

jitter (inter-packet delay). A widely accepted

method to assess the QoS of a voice call is the

ITU-T G.107 E-Model [11] which rates the QoS

between 0 (incomprehensible) and 100 (perfect)

- depending upon the impairment by delay and

packet loss ratio (PLR). [12] presents a

reduction of the E-Model for use in packet

switched networks and provides the equation

used by the CAPS architecture. This formula is

given in equation (2). Where Ie (3) and Id (4) are

the impairment factors given the PLR (e) and

delay (d) respectively, λ1, λ2 and λ3 are codec

specific parameters derived in [12], (which for

the G.711 codec later described as having been

used in this work are 0, 30 and 15 respectively).

H(x) is a step function where H(x) = 0 if x< 0 or

H(x) =1 if x ≥ 0.

 (2)

 (3)

 (4)

The monitoring/policing functionality of the

CAPS architecture needs to be located at the

3

point of aggregation within the network, where

traffic from multiple content providers can be

conditioned prior to transiting across the core

network. Placing the system at this point of

aggregation means that modifications to Internet

end-hosts are avoided and the need to assume

end hosts can be trusted to behave in a

respectful manner to other hosts is also

removed. Incorporating CAPS within a Diffserv

edge router allows traffic to be conditioned on

the ingress interface before it transits the core

network towards the destination, and also

facilitates the integration and utilisation of

existing Diffserv infrastructures. However,

unlike Diffserv, CAPS does not require a pre-

emptive configuration and features a far more

dynamic mode of operation, as highlighted in

section 2.

The rest of the paper is organised as follows:

Section 2 provides an overview of the features

and functionality of the CAPS architecture.

Section 3 describes the development of the

architecture within the ns2 simulation software.

Section 4 presents and analyses the results. A

summary of the paper’s findings will be given

in section 5 along with a future direction for the

research.

2. Architecture overview

The CAPS architecture comprises of edge

routers to classify and police traffic, and core

routers for subsequent forwarding. It is loosely

based upon the AF PHB group [4], providing an

assured level of service if certain conditions are

adhered to, and utilises a Random Early

Detection (RED) queue management [13]

system to schedule outgoing packets. The CAPS

architecture enhances the original operation of

an AF edge router to consider all traffic to be

within a single traffic class and aims to

maximise the QoS for each flow, through the

recognition of how network events impact

application QoS, as discussed in the

introduction of this paper. The CAPS algorithm

has been designed to work with this

understanding to identify the point of

equilibrium where the QoS of each service can

be maximised. CAPS aims to ensure that each

TCP flow operates at a transmission rate no

greater than its statistical fair share (available

link bandwidth divided by number of TCP

flows) and that any active VoIP flows achieve

an R value between 70 and 80. If a VoIP call is

present and has an R value lower than 70 then

coexisting TCP flows are policed more

aggressively in order to make available

additional resource and increase the R value of

the VoIP flow. Maintaining the R-value of a

VoIP call between 70 and 80 has been chosen

based upon recommendation G.107 [11], which

states that an R-value of 70 is the lower limit

before dissatisfaction amongst users occurs (A

traditional PSTN call has a target R-value of

70). Therefore, the value to a user of a VoIP call

with an R-value below 70 is considered

unacceptable from the user experience

perspective.

Unlike previous QoS provisioning

alternatives, the traffic policing approach

employed by CAPS does not give explicit

priority to VoIP flows. Instead, the edge routers

balance the performance of each flow, to

achieve an overall improvement to an Internet

user’s experience, and in the case of VoIP

traffic ensures the service remains valuable to

the user.

The policing of traffic is performed using of a

series of RED queues with increasingly more

aggressive RED parameters (lowering the maxth

and increasing the packet drop probability). This

use of RED ensures that during times of high

utilisation packets will inevitably be dropped.

The dropped packets will, in turn, instruct

congestion controlled transport protocols (such

as TCP) to throttle back their transmission rates,

and control the transmission rates of

unresponsive flows (such as VoIP) from

exceeding what is needed to achieve a

satisfactory level of QoS.

A flow table is held by the edge router that

stores statistics on currently active flows. For

each arriving flow the following statistics are

maintained: the most recent arrival timestamp of

a packet belonging to the flow, the congestion

history of the flow (CHV), time of the last

degradation, and average rate of the flow.

Furthermore, statistics solely for VoIP flows,

average one way delay, packet loss ratio and the

calculated R value for that flow are also stored.

The term congestion history (CHV) refers to

whether a TCP flow has behaved fairly to

coexisting flows. As a packet arrives at the edge

router the performance metric(s) for the parent

flow of that packet are checked. If the flow is

misbehaving (i.e. a TCP transmitting beyond its

fair share) and the network is congested

(bottleneck utilisation exceeds a configurable

threshold) the edge router will assign the packet

a degraded DSCP, instructing the router (and

subsequent core routers) to enqueue the packet

in a more aggressive queue. The CHV is

incremented and a timestamp for when this

DSCP marking occurred is appended in the flow

table. If subsequent packets from that flow

arrive within a round trip time (RTT) of the last

degradation then these packets will not be

placed in the more aggressive queue and simply

enqueued in the default queue. This back-off

routine allows the sending node to act upon any

packet loss which has occurred as a result of

enqueuing the degraded packet in a higher drop-

probability queue. In the event that all existing

VoIP flows are maintaining an R value of 80 or

4

above TCP flows with a CHV greater than 10

are subject to a decreasing function to the CHV.

Pseudo code for the CAPS optimisation

algorithm is given in Figure 1, which describes

the traffic policing performed by CAPS. Within

Figure 1 current_util refers to the current

utilisation of the bottleneck link, util_threshold

is the threshold beyond which CAPS will begin

policing the traffic. R-valuei is the E-model R-

value for flow i. ICP is the Initial Code Point

that is the default DSCP marking which is

associated to the default queue.
1: For VoIP Flows

2: if current_util < util_threshold

3: then DSCP = ICP

4: if (current_util > util_threshold)

 & (R-valuei >UpperVoIPThreshold)

5: then DSCP = ICP + 1

6: For TCP flows

7: if (current_util > util_threshold)

 & (ratei > BW/Flowcount)

 & (< LowerVoIPThrehold)

 & (TimeSinceLastDegradei > RTT)

8: then

9: case (CHVi < CHVThreshold1)

10: CHVi ++

11: LastDegradedTime = now

12: DSCP = ICP

13: case (CHVi <= CHVThreshold2)

14: CHVi ++

15: LastDegradedTime = now

16: DSCP = ICP + 1

17: case (CHVi <= CHVThreshold3)

18: CHVi ++

19: LastDegradedTime = now

20: DSCP = ICP + 2

21: case (CHVi > CHVThreshold3)

22: CHVi ++

23: LastDegradedTime = now

24: DSCP = ICP = 3

25: else if (> UpperVoIPThrehold)
26: then CHVi --

27: DSCP = ICP

28: else

29: DSCP = ICP

Figure 1: The CAPS Optimisation Algorithm

ICP+1, ICP+2 and ICP+3 refer to the

subsequent DSCP markings for the increasingly

aggressive RED queues. CHVi is the congestion

history value for flow i.

It is acknowledged that the use of the flow

table could become computationally and

memory expensive, increasing the workload of a

router. However, the CAPS algorithm is within

an edge router, which in comparison with a core

router serves only a fraction of Internet clients.

Furthermore, to alleviate future scalability

issues the architecture could adopt Netflow [14]

(or similar) functionality, a proven flow-based

system used to maintain large Internet-flow

tables.

3. Testing and validation

3.1. CAPS Implementation

The CAPS architecture was implemented

using the ns2 network simulator [15], using the

Nortel Networks Differentiated Services

Implementation framework [16]. The network

topology created in ns2 features the CAPS

architecture embedded within the edge router,

configured with four precedence (RED) queues.

Within the simulations the edge router has the

role of maintaining a record of packet loss ratios

and one way delays for each VoIP flow used to

calculate the R values. However, in a real-life

scenario this calculation could utilise extended

RTCP report between the VoIP call participants,

which would give access to the R value of the

call without having to calculate it at the router

[17].

3.2. Simulation topology and traffic

parameters

The network topology in Figure 2 includes a

number of traffic sources aggregating at the

edge router of a service provider’s network (E1)

via 1Mb duplex links with 10ms of delay. They

share a bottleneck through the Diffserv network

towards the client destination (D), it is

appreciated that a bottleneck of this capacity is

not analogous to a true Internet core. However,

this configuration represents only a single

destination (client) node and an estimation of a

single user’s share of an ISP’s network.

The traffic sources in the simulation have

been configured to represent two VoIP calls, 3

long-lived FTP transfers over TCP, HTTP cross

traffic using the Packmime web traffic generator

for ns2 [18], and a variety of non specific

background traffic (BGT in Figure 2). The two

VoIP sources and are simulated using constant

bit rate sources each operating at 64kbps with a

packet size of 160bytes, making them

comparable with the popular G.711 speech

codec [19]. The FTP file transfers are based

upon the TCP Reno implementation, and the

non specific background traffic feature two

CBR sources and a Pareto on-off traffic source,

configured with mean on-off periods of 1500ms

and 1000ms respectively. This traffic source is

analogous of a VoIP codec using Voice Activity

Detection (VAD) [20].

The simulation duration is 315seconds with

traffic sources starting between 0-200 seconds

and ending between 215-315 seconds. The

simulation was run using four traffic

management schemes, Best effort, traditional

Diffserv, WRED and the CAPS architecture.

The Traditional Diffserv configuration featured

three traffic classes, EF, AF and BE. The two

VoIP flows were assigned to the EF group

providing they adhered to their CIR, the FTP

flows and non-specific background traffic were

5

assigned to the AF group. The HTTP traffic was

assigned to the BE group, the justification for

this is that short-lived HTTP flows will not

achieve such high throughputs as the long-lived

FTP flows and therefore required less

precedence under this model. The WRED

configuration featured three queues, the two

VoIP flows and the HTTP traffic were assigned

to their own queues, and the remaining traffic

was assigned to the third queue. The VoIP

queue had a higher maximum threshold and a

lower drop probability than the other queues.

The Best Effort configuration featured a single

RED queue, to which all traffic was assigned.

The CAPS configuration featured a single

traffic class with four precedence queues within

that class. No single traffic type was given

explicit priority prior to the simulation

beginning, nor were any CIR values declared

for any of the flows. Two configurations of

traffic sources were ran the first with the two

VoIP flows active; the second was without these

VoIP flows.

Figure 2: Simulation Topology

4. Analysis of results

The performance metrics of interest were

throughput for TCP flows and packet loss, delay

and jitter for the real-time VoIP flows

(contributing factors to the R-value). Figure 3

shows the mean throughput (in kbps) for each of

the three long-lived FTP flows. The results

illustrate that the CAPS algorithm managed to

allow each of the FTP flows to reach a similar

throughput achieved by each of the alternative

configurations (within 10%).

Figure 4 and 5 show that, while the CAPS

algorithm resulted in a 5-10% performance

reduction for the long-lived FTP flows, the

network resource reclaimed by this policing is

utilised by CAPS to achieve a significantly

noticeable improvement on the QoS for both the

VoIP flows, averaging an R-value 20% higher

than achieved by any of the alternate

configurations. Both Figure 4 and 5 illustrate

both VoIP flows maintaining an R-value above

70 (the minimum threshold for acceptable

VoIP) throughout the duration of the simulation.

It should also be noted that as congestion in the

network increases CAPS lowers the R-value of

the VoIP flows to lie within the upper and lower

VoIP thresholds. The introduction of additional

traffic flows throughout the simulation is

indicated by the vertical lines, representing the

three FTP start times and the start and stop

times for the HTTP cloud.

The 20% performance increase of the VoIP

flows under CAPS is despite VoIP offering no

explicit priority over coexisting traffic, in

contrast to the traditional Diffserv

configuration. The relative poor performance of

traditional Diffserv is believed to be due to

Diffserv attempting to serve the CIR for not

only the EF VoIP flows but also those flows

within the AF group under such oversubscribed

conditions. Whereas under the CAPS

architecture, flows were not guaranteed a

proportion of bandwidth to any traffic, but

instead CAPS aims to guarantee an acceptable

level of QoS for each flow.

As expected, a WRED configuration does not

result in the same performance as when RED

queues are coupled with the CAPS traffic

management algorithm, differentiating the

operation of CAPS from a standard WRED

environment.

To validate the performance of the CAPS

algorithm when VoIP flows were not present, a

second set of simulations were ran with the two

VoIP flows disabled. Figure 6 shows that

without VoIP present the long-lived FTP flows

achieved throughputs equal to that of a best-

effort network. This result is due to the CAPS

algorithm trying to ensure that the available

bandwidth is shared amongst the existing TCP

flows fairly, something which the TCP

congestion avoidance algorithm already

achieves, and therefore since there are no VoIP

flows to maintain R-values for, CAPS does not

intervene.

Figure 3: Throughput (Kbps) for the long-

lived FTP flows

6

Figure 4: R-value against Time for the

VoIP flow1

Figure 5: R-value against Time for the VoIP

flow2

 Figure 6: Throughput (Kbps) for FTP flows

without VoIP present

5. Conclusions

This paper introduced a novel approach for

QoS provisioning for multimedia-rich traffic.

Unlike the traditional approach of statically

configuring networks to provide tightly bound

resource allocation for various traffic types, the

presented architecture recognises the changing

nature of Internet traffic, and the differing needs

of individual users rather than traffic types.

Furthermore, the architecture requires no

modification to Internet end-hosts, operating at

the point of aggregation within a service

provider’s network, drastically reducing

potential deployment difficulties.

The simulation results have shown that the

user-centric CAPS algorithm successfully

observes the services in use and dynamically

controls the ratios of traffic across the

bottleneck to maximise the received QoS across

the applications in use. In contrast to a

traditional Diffserv configuration no bandwidth

allocations or reservations are required by the

CAPS algorithm, nor does the algorithm require

prior configuration. Further differences include

the fact that even in the presence of VoIP flows

no priority is given to individual packets and all

packets are treated equally regardless of the

type.

Future work will include extending the CAPS

algorithm to accommodate larger network

topologies and a wider variety of services being

simulated – namely Peer-to-Peer traffic. CAPS

will also be developed to include per-user and

per-application fairness in addition to the per-

flow fairness presented herein, in order to

ensure that fairness can be balanced with QoS at

a number of levels.

6. References

[1] Miniwatts-Marketing-Group, "World Internet

usage statistics news and population stats." vol.

2010, 2010, p. Internet User Statistics.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z.

Wang, and W. Weiss, "An architecture for

differentiated services." vol. IETF RFC 2475,

1998.

[3] B. Davie, A. Charny, J. C. R. Bennett, K.

Benson, J. Y. Le Boudec, W. Courtney, S.

Davari, V. Firoiu, and D. Stiliadis, "An
expedited forwarding PHB (per-hop behavior)."

vol. IETF RFC 3246, 2002.

[4] J. Heinanen, F. Baker, W. Weiss, and J.
Wroclawski, "Assured forwarding PHB group."

vol. IETF RFC 2597, June 1999.

[5] Q. Yang and J. M. Pitts, "Guaranteeing
Enterprise VoIP QoS with Novel Approach to

DiffServ AF Configuration," in IEEE

International Conference on Communications,

2007, pp. 640-645.

[6] K. Hsu-Yang and K. Fu-Wen, "The Dynamic

User-oriented QoS Specification and Mapping

for multimedia Differentiation Services," in
IEEE International Conf. on High Speed

Networks and Multimedia Communications,

2002, pp. 365-369.

[7] T. Ahmed, R. Boutaba, and A. Mehaoua, "A

measurement-based approach for dynamic QoS

adaptation in DiffServ networks," Computer

Communications, vol. 28, pp. 2020-2033, 2005.

[8] H. Shimonishi, I. Maki, T. Murase, and M.

Murata, "Dynamic fair bandwidth allocation for

DiffServ classes," in IEEE International Conf.
on Communications, 2002, pp. 2348-2352.

[9] M. Allman, V. Paxson, and W. Stevens, "TCP

congestion control." vol. IETF RFC 2581, 1999.

[10] J. Padhye, V. Firoiu, D. F. Towsley, and J. F.

Kurose, "Modeling TCP Reno performance: a

simple model and its empirical validation,"
IEEE/ACM Transactions on Networking (ToN),

vol. 8, pp. 133-145, 2000.

[11] ITU-T., "The E-Model, a computational model

for use in transmission planning," 2000.

[12] R. G. Cole and J. H. Rosenbluth, "Voice over IP
performance monitoring," ACM SIGCOMM

Computer Communication Review, vol. 31, pp.

9-24, 2001.

[13] S. Floyd and V. Jacobson, "Random early

detection gateways for congestion avoidance,"

7

IEEE/ACM Transactions on Networking (TON),

vol. 1, pp. 397-413, 1993.

[14] Cisco Systems Inc., "Cisco IOS Netflow," 2007.

[15] ns2 Network Simulator, "Available from:

http://isi.edu/nsnam/ns/," 2010.

[16] P. Pieda, J. Ethridge, M. Baines, and F.

Shallwani, "A network simulator differentiated

services implementation open IP, Nortel

Networks," 2000.

[17] T. Friedman, R. Caceres, and A. Clark, "RTP

control protocol extended reports (RTCP XR)."

vol. IETF RFC 3611, 2003.

[18] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D.

Smith, and M. C. Weigle, "PackMime: Synthetic

web traffic generation in ns-2, Available from:
http://dirt.cs.unc.edu/packmime," 2004.

[19] ITU-T., "Pulse Code Modulation (PCM) of voice

frequencies," 1988.

[20] J. Ramírez, J. M. Górriz, and J. C. Segura,

"Voice Activity Detection. Fundamentals and

Speech Recognition System Robustness," Proc.
Robust Speech Recognition and Understanding,

pp. 460 - 482, 2007.

1

User-Centric Quality of Service

Provisioning
M. E. Culverhouse, B. V. Ghita and P. Reynolds.

Centre for Security, Communications & Network Research

University of Plymouth

Plymouth, United Kingdom

info@cscan.org

Abstract— This paper presents a novel extension

to the Assured Forwarding per-hop-behaviour for

a Diffserv-based network, enabling a more user-

centric approach when provisioning for Quality of

Service over IP networks. Presented is the

Congestion Aware Packet Scheduler (CAPS), a

novel traffic management algorithm that uses

application performance metrics to adjust

resource allocation. The CAPS algorithm has been

validated through extensive simulations of a large

Internet topology coupled with realistic traffic

models. The results show that irrespective of the

combination of user traffic, the CAPS algorithm

successfully manages the allocation of bandwidth

across applications to provide the optimal

aggregate-QoS, offering an improvement over

alternative network configurations.

Keywords- QoS, Dynamic, User-centric Diffserv,

Congestion Aware Packet Scheduler, Adaptive QoS

INTRODUCTION

The Internet today provides a worldwide
delivery network to an ever expanding array of
multimedia services used by an estimated 1.6
Billion users [1]. However, this growth could
not have been foreseen almost 30 years ago
when the Internet Protocol (IP) was designed as
a best-effort delivery service. Despite services
such as Voice and Video services migrating to
the Internet, IP offers no service guarantees and
still only operates as best-effort. Therefore, a
significant amount of research focussed on
providing Quality of Service (QoS) for the
various traffic types transiting the Internet. Two
main philosophies were developed by the IETF,
Intserv (Integrated Services) [2] and Diffserv
(Differentiated Services) [3]. Diffserv, which
marks and forwards IP packets based on their
traffic type, prevailed and is currently proving to
be the accepted approach of providing QoS
across the Internet.

Within Diffserv networks, edge routers
monitor incoming IP packets and mark them
with a Diffserv Code Point (DSCP) determined
by a policy defined by the network operators.
The DSCP value then indicates to core routers of
its forwarding requirements, typically relating to
onto one of three different Per Hop Behaviours
(PHBs): Expedited Forwarding (EF) [4],
Assured Forwarding (AF) [5] and Best Effort
(BE). It is normally recommended to use the EF
PHB for real-time services, such as Voice over
IP (VoIP), in order to meet the stringent QoS

requirements (low packet loss, jitter and delay)
typically associated with such services. The AF
PHB provides an assured level of service to a
flow providing it adheres to an agreed policy. If
the flow exceeds a committed information rate
(CIR) then it stands to receive a lower priority
DSCP marking and is queued accordingly. The
BE PHB operates as the name suggests and
makes no guarantees to deliver the packets.

While traditional Diffserv configurations
have until now provided a popular mechanism
for operators to offer service guarantees across
their networks, it is argued in this paper that
simply configuring a Diffserv network to offer a
predetermined precedence to specific traffic
types can result in unfairness for customers not
using favoured traffic types. For example, a
stock-broker may consider transactional data to
be their most important traffic type, but such
traffic may be marked as a non-real-time service
and hence not receive the desired priority.

There have been a number of proposed
methods for providing a more dynamic, user-
centric approach to QoS configurations. For
example, [6] and [7] present similar concepts
that introduce a user interface that allows a user
to evaluate the Diffserv traffic classification for
their traffic and adjust if necessary. However,
whilst these concepts do attempt to move away
from the traditional static Diffserv
configurations, it does require user interaction
which may be intrusive to the user experience or
add an element of confusion for inexperienced
users if asked to configure their QoS settings. A
less intrusive modification to a Diffserv network
is proposed by [8], which, presents a dynamic
bandwidth allocation algorithm that achieves
per-flow bandwidth guarantees based upon user-
subscribed rates, coupled with an allocation
algorithm for any residual bandwidth.

Diffserv implementations may also utilise a
Bandwidth Broker for admission control
purposes, only granting EF flows access to the
network if sufficient resources are available to
satisfy its requirements. Dynamic admission
control within Diffserv networks is also a topical
research area. Presented in [9] is an architecture
where Diffserv edge routers consult a broker
when determining how to handle out of profile
packets. The decision made by the broker is
based on periodic network statistics provided
from the network routers. Alternative methods of

2

enhancing the bandwidth broker have been
proposed, however, it is more common for
admission control mechanisms to focus on
adjusting resource allocation in order to
maximise bottleneck utilisation without regard
for the resulting QoS of the services in use.

To further complicate the task of providing
QoS the nature of Internet traffic has changed
over recent years, meaning protocols that could
have previously been accepted to operate
harmoniously with concurrent flows now can no
longer be assumed to do so. Unresponsive real-
time applications are no longer the only threat to
network congestion, the rise in popularity of
Peer-to-Peer (P2P) architectures have placed an
additional demand on networks. P2P
technologies have been promoted by file sharing
applications and now account for almost 70% of
all Internet traffic [10]. In essence, all
participants (peers) act as both providers and
consumers of resources. A P2P-based file
sharing application will open numerous
connections with other peers who have an
identical copy of the desired file, and download
pieces of the file from these peers. As a user
obtains more and more pieces of the file being
downloaded, it will also upload these pieces to
other peers, creating a swarm of peers
exchanging pieces of a file. In addition to
obtaining an unfair share of the bandwidth over
other applications (through multiple TCP
connections), the rise of P2P has changed
Internet traffic dynamics from asymmetric to a
more symmetrical model. The apparent result of
this is that many ISPs now implement traffic
shaping or throttle back P2P traffic. For
example, BT has the largest broadband
subscription size in the UK [11] and claim to
throttle the usage of P2P traffic at their
discretion, depending on network conditions
(information retrieved from “BT Total
Broadband Fair Usage Policy”). BT are not
alone in taking this view of P2P traffic, six of the
UK’s top ten ISPs [11] are reported to
implement a form of traffic shaping against P2P
protocols, according to [12] (a support page from
the P2P client ‘Vuze’, the most popular P2P
client [10]). It is also common practice for ISPs
to operate a fair usage policy, which specifies a
limit to the bandwidth a user can consume
(through either uploading or downloading),
which upon reaching invokes a restriction on the
user’s connection to a fraction of its original
capacity, affecting all of a user’s subsequent
activities, not just P2P.

These enhancements to Diffserv networks,
whilst a good starting point, often focus on
making Diffserv more dynamic from the
perspective of reallocating unused bandwidth
from traffic classes to where they it can be most
profitable to the ISPs, and not necessarily by
focussing on satisfying the demands of each
user. Any form of brokering in a network
introduces an inherent risk of denial of service
(access), and is therefore not considered to be

fair to all users. Limitations in these proposals
and the generally negative attitude towards P2P
traffic have motivated a new philosophy when
providing QoS. The Congestion Aware Packet
Scheduler (CAPS), which was first introduced in
[13], can be incorporated into a Diffserv edge
router, allowing for seamless integration with
existing networks. The algorithm moves away
from placing precedence on a single traffic type,
and instead focuses on maximising the combined
QoS of all user services. This paper presents and
builds extensively on the preliminary proposals
given in [13], and details how the CAPS
architecture has been developed and validated
using the ns2 simulation software [14] with large
scale network topologies and realistic traffic
modelling.

The rest of this paper is organised as follows:
Section 2 gives an overview of the features and
functionality of CAPS. Section 3 describes the
development of the architecture within the ns2
simulation software, detailing the validation
scenarios that were used. Section 4 presents the
results from these simulations, followed by a
summary of the findings of the research and
concluding remarks in Section 5.

ARCHITECTURE OVERVIEW

The CAPS algorithm is located within
Diffserv edge routers, classifying, policing and
marking packets for subsequent forwarding by
core routers. CAPS is based upon the AF PHB
[5] and aims to provide a guaranteed minimum
level of service (a fair share of the available
bandwidth) to Internet flows. The CAPS
architecture is designed to operate without an
EF PHB, and instead all traffic belongs to a
single class but is metered, policed and
scheduled across Random Early Detection
(RED) managed queues for an optimal
aggregate-QoS. The decision not to use EF for
real-time services was taken because it is
suggested by the authors that the EF PHB
cannot provide the optimum aggregate QoS for
all users. This statement is justified by the fact
that when using the EF PHB an upper limit of
bandwidth is allocated to the PHB in order
prevent starvation to other classes. Therefore,
when this volume of EF traffic has been reached
there is a risk of denial of service to subsequent
flows. Furthermore, as highlighted in the
introduction, using the EF PHB may impose an
unfair advantage over users not using real-time
services. The packet queuing component of the
CAPS architecture utilises a number of RED
queues, each configured with increasingly more
aggressive parameters (by lowering the
maxthreshold and increasingly the drop
probability). Each queue is associated with a
DSCP value, hence when the CAPS algorithm
marks a packet with an appropriate DSCP value
this instructs subsequent routers of the RED
queue that the packet should be placed in.

3

Quality of Service Metrics

In order to optimise the combined QoS for a
user the CAPS algorithm must recognize the
factors which contribute to the perceived quality
of each service. For example, TCP-based
applications such as FTP benefit from low
packet loss rates to allow the Additive Increase
Multiplicative decrease (AIMD) algorithm to
reach and maintain the maximum possible
throughput for the bandwidth available [15].

Real-time services such as VoIP are far more
sensitive to network conditions, requiring low
delay, low packet-loss and low jitter levels in
order to obtain a good overall quality of service.
The actual perceived QoS of a real-time service
is largely a subjective measure, based on the
expectations of the users. However, a widely
accepted parameter based method to express the
QoS of a voice call is the ITU-T E-Model [16]
and has been adapted for packet switched
networks [17]. The E-Model expresses the
quality of a voice call as having an R-value
between 0 and 100, with 0 being
incomprehensible and 100 perfect). The formula
to which is given in (1), where Ie (2) and Id (3)
are the impairment factors for the voice call
given the loss rate (e) and delay (d) respectively,
λ1, λ2 and λ3 are codec specific parameters
derived in [17]. H(x) is a step function where
H(x) = 0 if x< 0 or H(x) =1 if x ≥ 0.

R = 94.2 − Ie – Id (1)

Ie = λ1 + λ2 ln(1 + λ3 e) (2)

Id = 0.024d + 0.11(d – 177.3)H(d –

177.3)
(3)

The CAPS Policy

For regular TCP-based applications the
CAPS algorithm assumes the congestion
avoidance and control mechanism within TCP
will enforce a moderate level of equilibrium
between co-existing TCP-based flows.
Therefore, unless the total aggregate throughput
for all a user’s TCP flows exceeds their
statistical share of the bandwidth (link capacity
divided by the number of users) CAPS will not
intervene. However, if the bottleneck link is
congested and a TCP flow exceeds its statistical
fair share of bandwidth, then CAPS may chose
to place packets from the flow into a more
aggressive RED queue, which may result in a
packet drop and instruct TCP to throttle back its
transmission rates.

Typical HTTP traffic (associated with web
browsing and not large file downloads over
HTTP) can be described as being relatively short
flows (≤ 10 packets per web object). Due to the
interactive nature of HTTP the user expects
HTTP request-response transactions to be
completed as quickly as possible. Furthermore,
due to the short-lived nature of HTTP traffic the
flows do not possess the longevity for the AIMD
algorithm to establish a fast transfer rate.
Therefore, for packets identified as being short-

lived HTTP, CAPS will always mark with the
default DSCP value, aiming for the optimal
service for HTTP.

As suggested by our earlier research, it is
argued by the authors whether a VoIP call with
an R-value < 75 has any usefulness or value to
the user, given that below 75 dissatisfaction
amongst users typically occurs [16]. Therefore,
whilst the CAPS algorithm makes no explicit
resource reservation for VoIP traffic, if a user is
using VoIP CAPS will maintain the R-value of
the service above 75. In recognition of the fact
VoIP flows typically use the unresponsive
transport protocol UDP, CAPS also imposes an
upper threshold on the R-value of a VoIP call in
the event of network congestion to permit other
active flows to achieve a maximised
performance.

The threat that P2P applications, such as the
BitTorrent protocol pose to a network was
previously highlighted. Typically used to
download large files from multiple sources, such
applications establish multiple TCP connections
in order to obtain a disproportionate share of the
available bandwidth [18], leading to the frequent
use of traffic shaping by ISPs. However, the
CAPS algorithm approaches P2P traffic from a
different perspective and suggests that users of
P2P applications are doing so in order to
download a file as quickly as possible.
Therefore, placing a blanket throttling or shaping
policy over this traffic is not providing the user
with the best possible QoS for their traffic.
CAPS aims to manage a user’s traffic to ensure
the aggregate throughput doesn’t exceed a user’s
share of the bottleneck capacity, and as a result if
a user is using solely a P2P application then
his/her aggregate throughput may reach but not
exceed their fair share (given the network is
experiencing congestion). In addition to this
handling of P2P traffic when a user uses a P2P
based application concurrently with a regular
TCP-based application during a period of
congestion, CAPS controls the P2P traffic to
limit its aggregate throughput to be not greater
than that achieved by the co-existing TCP-based
applications.

The policing mechanisms for the different
traffic types described above are performed by
CAPS using an evaluative method on arriving
packets at an edge router. The CAPS architecture
meters the incoming packets and maintains a
flow table for currently active flows (having
been observed within the last x seconds – finding
the optimal x with regards to router load is for
future investigation). The statistics held on each
flow are: packet count, last time observed,
congestion history value (CHV), last time
policed and average arrival rate for the flow.
These statistics are stored for all types of flow,
with some addition statistics stored for VoIP
flows in order to calculate the flow’s R-value;
CHV refers to the number of times a flow has

4

been observed to have been behaving in an
unfair manner.

The CAPS algorithm

The pseudo code for the operations
performed by the CAPS algorithm on each
arriving packet is given in Fig.1, where ICP is
the default, or Initial Code Point (ICP) that a
packet will receive under normal network
conditions. ICP + 1, ICP +2 and ICP +3 refer to
downgraded DSCP values associated with more
aggressive RED queues. The term CHVi
represents the Congestion History Value for
flowi, and describes whether flowi has been
policed in the past. Upon a flow being policed (a
packet receives a downgraded DSCP value)
CHVi will be incremented by 1. The use of dst
within the algorithm refers to the variable value
for a particular destination. For example
Flowcountdst represents the number of flows
observed that were destined for a specific host.

1 For VoIP Flows

2 if current_util < util_threshold

3 then DSCP = ICP

4 if (current_util > util_threshold)

 & (R-valuei >UpperVoIPThreshold)

5 then DSCP = ICP + 1

6 For TCP flows not identified as P2P

7 if (packet_counti < HTTPflowsize)

8 then DSCP = ICP

9 else if (current_util > util_threshold)

 & (ratei > BWShare/Flowcountdst)

 & (< LowerVoIPThrehold)

10 then

11 for (j = 1; j++; j ≤ 3))

12 if CHVi < CHVThresholdj

13 CHVi ++

14 DSCP = ICP + j

15 done

16 else

17 DSCP = ICP

18 For TCP flows identified as P2P

19 if (current_util > util_threshold) &

(FTPCountdst= 0) & (BTThrputdst< (BWShare –VoIPThrputdst)||

(FTPCountdst>0) & (BTThrputdst< (FTPThrputdst/FTPCountdst)

20 then

21 for (j = 1; j++; j ≤ 3))

12 if CHVi < CHVThresholdj

23 CHVi ++

24 DSCP = ICP + j

25 done

26 else

27 DSCP = ICP

Figure 1: CAPS Optimisation Algorithm

TESTING AND VALIDATION

CAPS Implementation

As presented in [13] the CAPS algorithm
was implemented in the ns2 network simulator
environment [14], using the Nortel Networks
Differentiated Services Implementation
Framework [19]. Also previously highlighted,
the calculation of R-values for VoIP flows does
not necessarily have to be performed by edge
routers; instead CAPS could make use of QoS
reports sent by real-time protocols. For example,
the extended RTCP report calculates and
distributes the R-value between participants [20].
Furthermore, how traffic is identified as a

particular application type has not been explored
within this paper as it is beyond the scope of this
work.

Simulation Design

The network topology shown in Fig. 3 was
designed to represent a subsection of a
hierarchical Internet topology, with end-users
connected to regional ISP networks which are
interconnected via an Internet backbone, which
in turn has a number of connected content
providers. Each ISP network consists of 100
clients, two edge routers and a single core router.
The links between these edge routers and the ISP
core network will provide the bottlenecks within
the topology. This assumption is based upon the
belief that the ISP access network is the most
likely location for a bottleneck in this topology
given the aggregating end-user traffic. It is also
noted that routing protocols were not
implemented in the simulations since routing
algorithms are not the focus of this research.
Clients are connected to the ISPs via an
asymmetric link with up- and down-stream
capacities of 400Kbps and 4Mbps respectively,
modelling residential Internet connectivity [21].

For the purposes of testing the CAPS
algorithm the simulations featured a simulated
VoIP traffic source, a long-lived FTP download,
HTTP traffic and a P2P-like application. These
traffic sources represent a real-time service, a
long-lived congestion controlled TCP
connection, interactive traffic and a multi-
streamed Peer-to-Peer application, the
combinations of which are deemed suitable to
test the effectiveness of the proposed algorithm,
and encompass popular Internet services.

The VoIP call traffic was simulated between
hosts from different ISP networks using a
Constant Bit-Rate (CBR) traffic source, with a
sending rate of 64Kbps and packetsize of 160
bytes, this traffic source closely models the
G.711 codec [22]. The FTP downloads were
simulated between the FTP servers and ISP
clients. This traffic source was used to represent
the rising trend of one-click-hosting services
(such as RapidShare) where users download
large files via FTP and HTTP [23].

When simulating P2P traffic in ns2, a
number of modular solutions are available, [24]
and [25] are two examples that provide P2P and
BitTorrent (a P2P protocol) functionality.

Figure 2: Simulated Network Topology

5

Since the evaluation of CAPS only requires
the establishment of connections and exchange
of data between P2P peers it was decided to
implement a P2P-like traffic source that would
instruct a peer to establish a number of
connections with a random selection of peers,
and download data for a random period of time.
This random nature of data exchange between
peers is considered to emulate P2P-like traffic
sufficiently enough to evaluate CAPS.

The simulations were conducted using five
different “traffic profiles” which describe a
number of combinations of services, which
included VoIP, FTP and P2P traffic. The aim
was to prove the CAPS algorithm can provide an
improvement to the overall QoS delivered to a
user, irrespective of the applications or services
in use. The simulation was run using four traffic
management schemes, Best effort, traditional
Diffserv (TDS), WRED and the CAPS
architecture. The TDS configuration featured
three traffic classes, EF, AF and BE. VoIP was
assigned to the EF group providing explicit
precedence over other traffic types. The FTP and
HTTP flows were assigned to the AF group,
guaranteeing a predetermined level of service
providing each flow stayed within its CIR. The
P2P-like traffic was assigned to the BE group,
the justification for this was based on the
perceived attitudes of ISPs towards P2P, as per
the discussion in the introduction.

The WRED configuration featured three
weighted RED-queues, VoIP flows are assigned
to the highest priority queue with the most
conservative RED parameters. HTTP and FTP
traffic was assigned to a second queue with
marginally more aggressive RED parameters.
The remaining P2P-like traffic was assigned to
the third queue, which was configured with the
most aggressive RED parameters of the three
queues. The Best Effort configuration featured a
single queue, to which all traffic was assigned.
The CAPS configuration featured a single traffic
class with four precedence queues within that
class. No single traffic type was given explicit
priority prior to the simulation beginning, neither
were any CIR values declared for any of the
flows. The four traffic management
configurations were simulated using ns2, with
each simulation lasting 5minutes.

DISCUSSION OF SIMULATION RESULTS

To avoid repeating the discussion for each
separate ISP, only the results for a single ISP
(ISPA) are presented, with supporting figures on
the following pages. It should be noted that due
to the symmetrical design of the simulations, the
results for each ISP are very similar.

The average R-value for users only using
VoIP is given in Fig. 3. Unsurprisingly, the
highest rated VoIP quality was achieved using
TDS, which provided VoIP with explicit
priority. However, between 60 and 240 seconds,
when the network became heavily congested,

CAPS successfully maintained the R-value of
the VoIP flows above 75, averaging 78.4 during
this period, an improvement of 10% and 17%
over WRED and Best effort respectively.

Fig. 4 shows the average throughput
achieved by FTP over time, for users only using
this service. The impact of giving VoIP traffic
explicit priority under TDS resulted in
concurrent traffic being starved of resources,
achieving an average throughput of 0.15Mbps,
only 40% of what the users’ fair share of the
bottleneck would have been (0.38Mbps). Under
CAPS the average throughput was 0.78Mbps,
which despite being more than the fair share can
be seen to be policed back on a number of
occasions, whereas the flows under WRED and
Best effort achieve average throughputs of more
than 300% greater than the user’s fair share.

For users solely using P2P services the
average throughput shown in Fig. 5. The static
traffic precedence of TDS again limits the
performance for less-favoured services, in this
case restricting the total P2P throughput per user
to less than 50% of their fair share of the
bandwidth. While CAPS maintained the total
P2P throughput within 10% of the user fair
share. Both WRED and Best effort
configurations allowed for P2P services to
consume far beyond the fair share. It should be
noted that the drop in throughput across all
scenarios from 150 seconds is due to the number
of active peers declining over time.

Fig. 6, 7 and 8 represent the respective
performance for users engaged in VoIP, P2P
and FTP services. CAPS manages to maintain
the R-value of the VoIP flow within 4% of the
target 75, while also balancing the throughput
achievable by FTP and P2P services, ensuring
P2P does not obtain an unfair proportion of
resource. Whereas TDS provides an
improvement of almost 10% over CAPS for
VoIP traffic, FTP and P2P traffic achieved only
14% and 50% of the throughput achieved using
CAPS.

The final simulated traffic type was HTTP,
for which CAPS achieved the lowest average
request-response time of 170ms, an
improvement of 34%, 30% and 24% on TDS,
Best effort and WRED respectively. Fig. 9
shows a CDF plot for HTTP response times for
each of the four scenarios.

6

Figure 3: Average VoIP performance for users only using

VoIP

Figure 4: Average FTP throughput for users only using FTP

Figure 5: Average P2P throughputfor users using only P2P

Figure 6: Average VoIP performance for users using VoIP,

FTP & P2P

Figure 7: Average P2P throughput for users using VoIP,

FTP & P2P

Figure 8: Average FTP throughput for users using VoIP,

FTP & P2P

Figure 9: Cumulative Distribution of HTTP Request-

Response times (ms)

CONCLUSIONS

This paper has presented a novel
architecture for providing QoS within IP
networks from a user-centric perspective. The
CAPS architecture aims to introduce a dynamic
resource management system within Diffserv
based infrastructures that can equilibrate QoS
with the fairness of resource allocation among
users and application traffic.

The CAPS algorithm has been developed to
meter, police and schedule user traffic, ensuring
each user receives, at minimum, a fair share of
the available bandwidth, irrespective of the
services they are using. Within a user’s share of
bandwidth, CAPS will maintain the QoS of
VoIP traffic (if present) above a threshold rather
than explicitly reserving bandwidth for
individual services.

Through extensive simulations using large
scale topologies and realistic Internet traffic the
CAPS algorithm has been validated to show that
for a number of different traffic profiles the
aggregate QoS for a user is improved using
CAPS compared with traditional Diffserv
configuration, a Weighted-RED and Best-Effort
scenario. CAPS ensures that the aggregate
throughput of “greedy” applications, such as
P2P, is maintained within a user’s fair share and
if necessary restricts this throughput to allow an
equal distribution of resources between a user’s
applications, irrespective of how many
connections an application establishes.

7

It is noted that controlling the throughput of
TCP can be quite difficult, and while the
throughput under CAPS is maintained closer
towards the fair share threshold, the fast
recovery mechanisms of TCP Reno make the
protocol quick to claim any unused bandwidth,
Therefore, further work will be conducted to
identify the optimal method of controlling TCP.

REFERENCES

[1] Miniwatts-Marketing-Group, "World Internet usage

statistics news and population stats," 2010,

http://www.internetworldstats.com/stats.htm, accessed

02-02-2010

[2] R. Braden, D. Clark, and S. Shenker, "Integrated

services in the Internet architecture," IETF RFC1633,

1994

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,

and W. Weiss, "An architecture for differentiated

services," IETF RFC 2475, 1998

[4] B. Davie, A. Charny, J. C. R. Bennett, K. Benson, J. Y.

Le Boudec, W. Courtney, S. Davari, V. Firoiu, and D.

Stiliadis, "An expedited forwarding PHB (per-hop

behavior)," IETF RFC 3246, 2002

[5] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski,

"Assured forwarding PHB group," IETF RFC 2597,

June 1999

[6] H. Y. Kung and F. W. Kuo, "Dynamic user-oriented

QoS specification and mapping for multimedia

differentiation services," IJCSNS, vol. 6, p. 116, 2006.

[7] K. Molnar and V. Vrba, "DiffServ-based user-

manageable quality of service control system," in Proc.

of the 7th Int. Conf. on Networking, 2008, pp. 485-490.

[8] J. Elias, F. Martignon, A. Capone, and G. Pujolle, "A

new approach to dynamic bandwidth allocation in

quality of service networks: performance and bounds,"

Computer Networks, vol. 51, pp. 2833-2853, 2007.

[9] T. Ahmed, R. Boutaba, and A. Mehaoua, "A

measurement-based approach for dynamic QoS

adaptation in DiffServ networks," Computer

Communications, vol. 28, pp. 2020-2033, 2005.

[10] H. Schulze and K. Mochalski, "Ipoque Internet Study

2008/2009," January 2010.

[11] ISPReview, "ISPReview - Top 10 UK ISPs," 2010,

http://www.ispreview.co.uk/review/top10.php,

accessed January 2010

[12] Vuze, "A list of ISPs reported to implement a form of

traffic management against P2P protocols.," 2010,

http://wiki.vuze.com/, accessed January 2010

[13] M. E. Culverhouse, B. V. Ghita, P. Reynolds, and X.

Wang, "Optimising Quality of Service through the

controlled aggregation of traffic," 2010, Unpublished

[14] ns2 Network Simulator, "Available from:

http://isi.edu/nsnam/ns/," 2010

[15] M. Allman, V. Paxson, and W. Stevens, "TCP

congestion control," IETF RFC 2581, 1999

[16] ITU-T., "The E-Model, a computational model for use

in transmission planning," ITU-T Recommendation

G.107, 2000.

[17] R. G. Cole and J. H. Rosenbluth, "Voice over IP

performance monitoring," ACM SIGCOMM Computer

Communication Review, vol. 31, pp. 9-24, 2001.

[18] J. J. Martin and J. M. Westall, "Assessing the impact of

BitTorrent on DOCSIS networks," in IEEE Broadband

Communications, Networks and Systems 2007, 2007,

pp. 423-432.

[19] P. Pieda, J. Ethridge, M. Baines, and F. Shallwani, "A

network simulator differentiated services

implementation open IP, Nortel Networks," 2000.

[20] T. Friedman, R. Caceres, and A. Clark, "RTP control

protocol extended reports (RTCP XR)," IETF RFC

3611, 2003

[21] Ofcom, "UK broadband speeds: initial findings of

consumer experience of broadband performance,"

2008.

[22] ITU-T., "Pulse Code Modulation (PCM) of voice

frequencies," ITU-T Recommendation G.711, 1988.

[23] H. Schulze and K. Mochalski, "Ipoque Internet Study

2008/2009," 2009,

http://www.ipoque.com/resources/internet-

studies/internet-study-2008_2009, accessed

[24] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G.

Kunzmann, "BitTorrent Implementation for ns2

Network Simulator," 2007, http://www.tu-

harburg.de/et6/research/bittorrentsim/index.html,

accessed

[25] Q. He, "Packet-level peer-to-peer simulation

framework and gnutellsim," 2003,

http://www.cc.gatech.edu/computing/compass/gnutella

/, accessed January 2010

