566 research outputs found

    Fourier-Splitting methods for the dynamics of rotating Bose-Einstein condensates

    Get PDF
    We present a new method to propagate rotating Bose-Einstein condensates subject to explicitly time-dependent trapping potentials. Using algebraic techniques, we combine Magnus expansions and splitting methods to yield any order methods for the multivariate and nonautonomous quadratic part of the Hamiltonian that can be computed using only Fourier transforms at the cost of solving a small system of polynomial equations. The resulting scheme solves the challenging component of the (nonlinear) Hamiltonian and can be combined with optimized splitting methods to yield efficient algorithms for rotating Bose-Einstein condensates. The method is particularly efficient for potentials that can be regarded as perturbed rotating and trapped condensates, e.g., for small nonlinearities, since it retains the near-integrable structure of the problem. For large nonlinearities, the method remains highly efficient if higher order p > 2 is sought. Furthermore, we show how it can adapted to the presence of dissipation terms. Numerical examples illustrate the performance of the scheme.Comment: 15 pages, 4 figures, as submitted to journa

    On the ground states and dynamics of space fractional nonlinear Schr\"{o}dinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions

    Get PDF
    In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schr\"{o}dinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation \cite{EMZ2015}. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method \cite{AD1} and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian coordinates transform \cite{BMTZ2013}, we first reformulate the FSE into a new equation without rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new FSE

    Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates

    Get PDF
    In this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations. The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations illustrating the strength of the proposed approach

    High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger /Gross-Pitaevskii equations

    Get PDF
    International audienceThe aim of this paper is to build and validate some explicit high-order schemes, both in space and time, for simulating the dynamics of systems of nonlinear Schrödinger /Gross-Pitaevskii equations. The method is based on the combination of high-order IMplicit-EXplicit (IMEX) schemes in time and Fourier pseudo-spectral approximations in space. The resulting IMEXSP schemes are highly accurate, efficient and easy to implement. They are also robust when used in conjunction with an adaptive time stepping strategy and appear as an interesting alternative to time-splitting pseudo-spectral (TSSP) schemes. Finally, a complete numerical study is developed to investigate the properties of the IMEXSP schemes, in comparison with TSSP schemes, for one-and two-components systems of Gross-Pitaevskii equations

    Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques

    Full text link
    We review phase space techniques based on the Wigner representation that provide an approximate description of dilute ultra-cold Bose gases. In this approach the quantum field evolution can be represented using equations of motion of a similar form to the Gross-Pitaevskii equation but with stochastic modifications that include quantum effects in a controlled degree of approximation. These techniques provide a practical quantitative description of both equilibrium and dynamical properties of Bose gas systems. We develop versions of the formalism appropriate at zero temperature, where quantum fluctuations can be important, and at finite temperature where thermal fluctuations dominate. The numerical techniques necessary for implementing the formalism are discussed in detail, together with methods for extracting observables of interest. Numerous applications to a wide range of phenomena are presented.Comment: 110 pages, 32 figures. Updated to address referee comments. To appear in Advances in Physic

    Newton-based alternating methods for the ground state of a class of multi-component Bose-Einstein condensates

    Full text link
    The computation of the ground states of special multi-component Bose-Einstein condensates (BECs) can be formulated as an energy functional minimization problem with spherical constraints. It leads to a nonconvex quartic-quadratic optimization problem after suitable discretizations. First, we generalize the Newton-based methods for single-component BECs to the alternating minimization scheme for multi-component BECs. Second, the global convergent alternating Newton-Noda iteration (ANNI) is proposed. In particular, we prove the positivity preserving property of ANNI under mild conditions. Finally, our analysis is applied to a class of more general "multi-block" optimization problems with spherical constraints. Numerical experiments are performed to evaluate the performance of proposed methods for different multi-component BECs, including pseudo spin-1/2, anti-ferromagnetic spin-1 and spin-2 BECs. These results support our theory and demonstrate the efficiency of our algorithms

    Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates

    Get PDF
    International audienceIn this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations. The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations illustrating the strength of the proposed approach
    • …
    corecore