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Abstract

We present a new method to propagate rotating Bose-Einstein condensates subject to explicitly time-dependent trap-
ping potentials. Using algebraic techniques, we combine Magnus expansions and splitting methods to yield any order
methods for the multivariate and nonautonomous quadratic part of the Hamiltonian that can be computed using only
Fourier transforms at the cost of solving a small system of polynomial equations. The resulting scheme solves the
challenging component of the (nonlinear) Hamiltonian and can be combined with optimized splitting methods to yield
efficient algorithms for rotating Bose-Einstein condensates. The method is particularly efficient for potentials that can
be regarded as perturbed rotating and trapped condensates, e.g., for small nonlinearities, since it retains the near-
integrable structure of the problem. For large nonlinearities, the method remains highly efficient if higher order p > 2
is sought. Furthermore, we show how it can be adapted to the presence of dissipation terms. Numerical examples
illustrate the performance of the scheme.

Keywords: Gross-Pitaevskii equation, rotating Bose-Einstein condensate, splitting, non-autonomous potentials,
near-integrable systems

1. Introduction

The centerpiece of this work is the construction of an efficient geometric integrator for the two-dimensional har-
monically trapped rotational Schrödinger equation in atomic units (~ = m = 1) subject to periodic boundary condi-
tions

i∂tψ(r, t) = HA(t)ψ(r, t), ψ(r, 0) = ψ0 ∈ L2([−π, π]2), (1)

with the explicitly time-dependent Hamiltonian

HA(t) = 1
2 pT p + 1

2

(
ωx(t)2x2 + ωy(t)2y2

)
+ ΩLz,

where r = (x, y)T , p = (px, py)T , Lz = xpy − ypx denotes the angular momentum operator and pk = −i∂k, k = x, y.
This includes the case of unbounded domains since the solution vanishes up to round-off at sufficiently large spatial
intervals due to the harmonic trapping potential. For simplicity of the presentation, we have chosen a simple form of
the Hamiltonian (1), but our methodology also applies to virtually all relevant polynomial Hamiltonians of degree ≤ 2
in any dimension with arbitrary time-dependencies and we will show how to extend the presented techniques for more
general quadratic and linear time-dependencies which are used to model collisions of atoms and molecules [22, 30].
The generalization to three dimensions is straightforward and will be briefly addressed in section 2.

The efficient solution of (1) is of paramount importance to the computation of the dynamics of rotating Bose-
Einstein condensates as we will see below, and in contrast to previous efforts [2, 3, 9–11, 18, 19, 24, 28, 33], time-
dependent (trapping) potentials and non-linearities can be treated without tempering the algebraic structure of the
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problem. The presence of such time-dependencies impedes a simple transformation to a rotating system of coordinates
which would eliminate the rotation term Lz for autonomous HA. We want to stress that this is also the reason why
we do not discuss methods that are concerned with ground state computations, such as imaginary time propagation or
minimizing the energy functional. Nevertheless, these methods are highly relevant in order to obtain suitable initial
conditions for the numerical integration.

At any given time t and for any order p > 1, we show that, for a sufficiently small time-step h, there exist cheaply
computable coefficients f j(t, h), gk(t, h), el(t, h) ∈ iR obeying a small system of polynomial equations such that

e f0 x2
e f1y2+g1 p2

x−e1ypx e f2 x2+g2 p2
y+e2 xpy e f3y2+g3 p2

x−e3ypx = ϕHA
t,t+h + O

(
hp+1

)
, (2)

where ϕHA
t,t+h denotes the exact flow of (1) from t to t+h. By virtue of this decomposition, named Φ

[p]
t,t+h, the position and

moment coordinates are decoupled and can be diagonalized using Fourier transforms. After discretization, only six
(one-dimensional) changes from coordinate to momentum space and vice versa per time-step exponents are required.
These changes are performed by Fast Fourier Transforms (FFT) and hence suggest the name Fourier-splitting. The
approximation preserves unitarity (and thus the L2-norm) and gauge invariance of the exact solution and hence, it
can be considered a geometric integrator in the sense of Ref. [21]. Furthermore, one can associate a time-dependent
Hamiltonian with the decomposition which is exactly solved at each step.

The method is particularly successful for perturbed problems of the form

H = HA(t) + εB(t, r, |ψ|), ε � 1, (3)

with a small parameter ε, and some real-valued function B, which includes the Gross-Pitaevskii equation (GPE)
for Bose-Einstein condensates as special case. The (nonlinear) Hamiltonian H with B = g|ψ|2 + V describes the
evolution of a rotating Bose-Einstein condensate (BEC) subject to a harmonic (parabolic) trapping potential plus
some perturbation εV . After the first experimental realization of BECs [1, 17, 20] and the consequently awarded
Nobel prize in 2001, continuous attention of numerical analysts [3, 9–11, 18, 24, 28, 33] has been drawn to the
solution of the autonomous version of (1), which is obtained by dropping all time-dependencies in the Hamiltonian.

The flow of the perturbation B can be easily computed since B is diagonal in coordinate space and leaves the
modulus |ψ| constant, see Lemma 2.1 for details. Using (2), the exact flow can be approximated by Strang’s method
to

ϕεB̃(t+h)
h/2 ◦ Φ

[p]
t,t+h ◦ ϕεB̃(t)

h/2 = ϕH
t,t+h + O

(
εh3 + hp+1

)
, (4)

where the tildes, B̃, indicate frozen (nonlinear) operators, i.e., ϕB̃(s)
h is the flow of iu̇(t) = B(s)u(t). The term pro-

portional to hp+1 originates from the error in the approximation of the part HA by the pth order method Φ[p] (2).
Observe that the outer exponentials of (2) are diagonal in coordinate space and no further FFT is necessary to
solve the full problem (4). An alternative approach [9, 33] splits the system into simultaneously diagonalizable parts
Tx = 1

2 p2
x −Ωypx, Ty = 1

2 p2
y + Ωxpy, W = 1

2

(
ωx(t)2x2 + ωy(t)2y2

)
+ εB(t) and then

ϕW̃(t+h)
h/2 ◦ ϕTx

h/2 ◦ ϕ
Ty

h ◦ ϕTx
h/2 ◦ ϕW̃(t)

h/2 = ϕH
t,t+h + O

(
h3

)
, (5)

which also requires six FFTs but the small factor ε in the error is lost. If the time is frozen in HA, Laguerre transforms
[10, 11, 24, 28] or a decomposition similar to (2) [18] can be used to advance HA without recovering the small factor
and even lose the property [B, [B, [B,HA]]] = 0 which simplifies the design of highly efficient splitting methods [15].

Eventually, the method will be embedded in such a splitting framework that generalizes (4) and by comparing
with (5), it becomes clear that the number of flows ϕ that have to be treated individually is reduced to two which
will enable us to use optimized splitting methods from the literature. In consequence, we will see in the numerical
experiments that the new procedure is efficient even for non-perturbed settings

H = HA(t) +
1
ε

B(t, r, |ψ|), ε � 1.

The decomposition is built upon earlier works for rotating but autonomous BEC [18] and explicitly time-dependent
one-dimensional harmonic oscillators [5], where Fourier-splittings have been used for simpler Hamiltonians.
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In the following section, we give a short introduction to some numerical concepts which will culminate in the
derivation of our method. As described, the method addresses the solution of the dominant part in the Hamiltonian,
i.e., kinetic energy, trapping and rotation, HA. Its form is closely related to a splitting method, in fact, if the coefficients
f , g, e were taken to be

f0 = 0, f1 =
1
4
ωy(t)2, g1 =

1
4
, e1 =

1
2

Ω, f2 =
1
2
ωx(t)2, g2 =

1
2
, e2 = Ω, f3 = f1, g3 = g1, e3 = e1,

we would recover a second order Strang splitting. We show how to modify these scalar coefficients in order yield an
any-order approximation using the same number of exponentials. Once we have established how to solve this part of
the Hamiltonian as a whole, we can use it as building block in a splitting method for nonlinear Hamiltonians or in the
presence of (time-dependent) perturbations.

In such perturbative settings, the algorithm can demonstrate its efficiency as seen from (4) and (5) because an
additional factor ε can be gained in the error. We will elaborate on splittings for such near-integrable systems subject
to explicit time-dependencies since the time coordinate has to be treated in a particular way in order to preserve the
smallness in the error.

It turns out, that the rotation Hamiltonian HA(t) cannot be frozen, as e−ihHA(t), but has to be propagated accurately
in time using the flow ϕHA

t,t+h. For this purpose, we introduce the Magnus expansion that will produce an approximation
to the exact flow to any desired order using only manipulations in the algebra generated by the Hamiltonian.

Since this algebra is finite dimensional, all commutators in the Magnus expansion can be expressed in a simple
basis which will then be used to construct our decomposition.

The efficiency of the method is demonstrated by a series of numerical examples.

2. Derivation of the new method

For the construction of our algorithm (2), a variety of tools are employed which will be briefly discussed in this
section.

Splitting methods are frequently recommended for the integration of (nonlinear) Schrödinger equations due to
their fast computability and high accuracy [8, 29, 32]. Furthermore, they preserve geometric features of the exact
solution, such as norm-conservation (unitarity) and gauge-invariance.

2.1. Splitting methods

For a Hamiltonian H = A + B, suppose that the flows for one time-step h of the parts A, B are available as ϕA
h and

ϕB
h , respectively, then, a pth-order s-stage approximation Ψ

[p,s]
h of the full solution ϕH can be computed as

Ψ
[p,s]
h = ϕB

b1h ◦ ϕA
a1h ◦ ϕB

b2h ◦ ϕA
a2h · · · ◦ ϕB

bsh ◦ ϕA
ash = ϕH

h + O
(
hp+1

)
, (6)

for a suitable choice of coefficients a j, b j ∈ R. The choice a1 = 1, a2 = 0 and b1 = b2 = 1/2 with s = 2 corresponds
to Strang’s second-order method (4). Higher-order methods can be designed using the Baker-Campbell-Hausdorff
(BCH) formula, ehAehB = ebch(hA,hB), whose first terms are given by

bch(hA, hB) = h(A + B) + h2

2 [A, B] + h3

12 ([A, [A, B]] − [B, [A, B]]) + O(h4), (7)

for operators A, B in some Lie algebra. The formula allows to derive a modified vector field, hH̃ = h(A+ B)+O(hp+1),
for any such Ψ

[p,s]
h , solely in terms of commutators, whose exact solution ϕH̃

h coincides with the result of the method
and the discrepancy between this modified vector field and the original problem is called backward error. Notice that
H̃ is sometimes called modified Hamiltonian and since it describes the flow of the numerical method, its energy is
conserved.

Typically, the split is done such that A = 1
2 pT p and B = B(t, r, |ψ|) because then,

ϕA
h (ψ0) = F e−ih(k2

x+k2
y )F −1ψ0,
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where F is the Fourier transform w.r.t. all spatial variables,

F [ψ](kx, ky) =
1√
2π

∫ π

−π

∫ π

−π
ψ(x, y)ei(kx x+kyy)dxdy.

After spatial discretization, the integral can be evaluated using Fast-Fourier transforms and it remains to compute the
exponential of a diagonal matrix constituted by the wave-numbers −ih(k2

x + k2
y ).

The flow of part B can be computed as detailed in the following well-known lemma,

Lemma 2.1. Let B(t, r, |ψ|) be a real-valued function, then

iψ̇(t) = B(t, r, |ψ(t)|)ψ(t), ψ(0) = ψ0

has the solution

ψ(t) = exp
(
−i

∫ t

0
B(s, r, |ψ0|)ds

)
ψ0.

The proof relies on the simple calculation that d
dt |ψ|2 = ψ̇∗ψ + ψ∗ψ̇ = 0, after plugging in the definition of the

derivative. Then, the system reduces to a linear non-autonomous ODE.

Explicit time dependence. Suppose now, that the Hamiltonian has explicit time-dependencies, H = HA(t)+εB(t, r, |ψ|).
Introducing time as two new coordinates t1, t2 makes the system treatable with splitting methods. We write the Lie-
derivative corresponding to the (nonlinear) vector field Hψ as

LH = HA(t1)
(
ψ

d
dψ

+ ψ∗
d

dψ∗

)
+

d
dt1

+ εB(t2, r, |ψ|)
(

d
dψ

+
d

dψ∗

)
+

d
dt2

. (8)

The derivatives d/dt j are responsible for the evolution of the time-coordinates t j. Readers that are not familiar with
Lie derivatives can use an analogy with a system of ODEs that is augmented by new time-coordinates,

d
dt

y(t) = HA(t1)y(t) + εB(t2)y(t),
d
dt

t1(t) = 1,
d
dt

t2(t) = 1, (y(0), t1(0), t2(0)) = (y0, 0, 0).

There are several possibilities to split this enhanced operator (or system of equations): the computationally sim-
plest pairs operators depending on t j with the evolution of ti, i , j, e.g., HA(t1) with d/dt2 and εB(t2) with d/dt1. In
this way, the splitting works exactly as for the autonomous situation since, in each internal step, the main operator
HA(t1) (or B(t2)) is frozen and the other time-coordinate t2 (or t1) is advanced accordingly. Using the ODE analogy,
this corresponds to a split into two systems

d
dt

y(t)
t1(t)
t2(t)

 =

HA(t1)y(t)y(t)
0
1

 , d
dt

y(t)
t1(t)
t2(t)

 =

εB(t2)y(t)
1
0

 .
A closer look at the error terms1, which are obtained through computing the commutators (7), reveals that this split,
albeit simple, is by a factor ε less accurate since the derivatives w.r.t t j mix large and small terms and we briefly
examine how it can be recovered [15] after a short interlude on higher-order compositions in presence of a small
parameter.

Near-integrable structure. Recall that we are considering the perturbed problem (3). The appearance of the extra
factor ε in the error terms is due to the separation of large and small parts in the splitting and extremely successful
composition methods have been developed for this problem class [16, 27]. The basic idea is to express the error in a
power series in the time-step and in the small parameter,

Φh − ϕh =
∑
j≥1

∑
k≥s j

e j,kε
jhk+1 as (h, ε)→ (0, 0),

1Cf. [4, Sect. 1] for an explicit computation. A similar treatment without Lie derivatives can be found in [15].
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where the s j start from the first non-vanishing error coefficient and such a method Φh is said to be of generalized order
(s1, s2, . . . , sm) (where s1 ≥ s2 ≥ · · · ≥ sm). Then, the coefficients a j, b j of a splitting method (6) can be chosen to
construct methods of any generalized order, given that either of the two parts A or B is proportional to ε.

This proportionality automatically carries over to the commutators [A, B] ∝ ε but some additional consideration
is required in the presence of time-dependencies since the operators causing the time-evolution are not necessarily
proportional to ε. The simplest treatment makes use of the formulation in Lie derivatives (8), for which we have
already pointed out that freezing both parts will necessarily reduce the generalized order of a scheme. On the upside,
there is a remedy which has motivated this study: if the large part is advanced non-autonomously, the generalized
error is preserved [15]. In terms of Lie derivatives, this corresponds to taking the large part of (8) to be either
A = HA(t1) + d/dt1 or A = HA(t1) + d/dt1 + d/dt2. The latter option implies freezing the remainder B and is usually
preferred for simplicity and efficiency. Our aim is to apply the highly efficient splitting methods for near-integrable
systems [27] to the problem at hand which is of similar structure. As discussed above, however, a proper application
of splittings means to solve ϕHA

t j,t j+a jh
for a fractional time-step a jh.

We stress that a propagation of HA in the autonomous (or frozen) setting using Laguerre-polynomials [8, 10, 24]
would be (at least) by a factor ε less accurate and the basis would have to be recomputed in each internal step. In
consequence, the proposed algorithm which leaves the dominant part ϕHA

t j,t j+a jh
intact is the only way to preserve the

generalized order of a given splitting method.

2.2. Time averaging

From the considerations above, it is clear that instead of simply propagating frozen operators, we need to find
good approximations to the exact flow ϕHA

t j,t j+a jh
. A cornerstone of the construction is the formal solution of a non-

autonomous (linear) initial value problem, ∂tu(t) = A(t)u(t), in the form u(t + h) = exp(Θ(t, t + h))u(t). The Magnus
expansion [26] gives an expression for the exponent Θ using integrals of commutators of increasing length of the
operator A evaluated at different instances of time. Its first two terms are

Θ(t, t + h) =

∫ t+h

t
A(s)ds +

1
2

∫ t+h

t

∫ s1

t
[A(s1), A(s2)]ds2 ds1 + · · · ,

and recursive procedures exist to obtain higher-order corrections [14]. The integrals can be efficiently computed by
quadrature rules [14, 25] which will be exemplified in the numerical section.

It is easy to verify that the components of HA generate, via commutation, a ten-dimensional Lie algebra g with
basis

{x2, p2
x, y

2, p2
y , xpy, ypx, xy, px py, xpx + pxx, ypy + pyy},

and since the Magnus expansion only operates by summation and commutation, we have Θ,Θ[p] ∈ g at any truncation
order p, where the truncation is performed within the algebra, s.t., Θ[p] = Θ + O(hp+1). We stress that this yields a
geometric integrator as staying in the correct algebra g assures unitarity of the exponential.

Evaluating the commutators, the (truncated) Magnus expansion can be interpreted as averaged Hamiltonian, H̃[p]
h ,

Θ
[p]
t,t+h = −ihH̃[p]

h = −ih
(

1
2

(mx p2
x + my p2

y) +
wx

2
x2 +

wy

2
y2 + Ωxxpy −Ωyypx + αxpx + βypy + γxy + δpx py

)
∈ g, (9)

for some coefficients mx,my,wx, etc. that depend on h, p and on the integrals of ωx(s)2, ωy(s)2 over the interval
[t, t + h]. Fixing the time-step h, it is clear that the flow e−itH̃[p]

h of

i∂tψ(r, t) = H̃[p]
h ψ(r, t)

coincides with the truncated Magnus expansion exp(Θ[p]
t,t+h) at t = h. In principle, one could think about using some

standard splitting method for this operator, but the mixed terms xpx, ypy cannot be diagonalized by means of Fourier
transforms. Notice the relationship between the decomposition (2) and commutator-free Magnus methods [13] since
the computationally difficult terms arise after commutation only. These methods, however, require a higher number
of FFTs (double for order 4).
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2.3. The decomposition method
After having obtained a pth-order approximation to the averaged Hamiltonian and thus Θ[p] for a time-step h, we

will now show how to accurately compute eΘ[p]
without having to evaluate mixed operators. The key to our endeavor

is the finiteness of the underlying algebra to which any such Θ belongs.

Theorem 2.2. Let ψ(x, y) be a sufficiently smooth wave function2, then, for sufficiently small h > 0 and Θ
[p]
t,t+h from

(9), there exist scalars e j, fk, gl such that

e f0 x2
e f1y2+g1 p2

x−e1ypx e f2 x2+g2 p2
y+e2 xpy e f3y2+g3 p2

x−e3ypx ψ(x, y) = eΘ
[p]
t,t+h ψ(x, y). (10)

Proof. Together with the BCH formula (7), we deduce that for sufficiently small h, the left-hand side of (10) is
summable and can be expressed as a single exponential of a linear combination of the basis elements [34, 35]. The
scalar coefficients in (10) are determined by equating the resulting exponent to the averaged Hamiltonian −ihH̃[p]

h in
(9). The missing operators xpx, ypy, can be generated by the following commutators,

[x2, p2
x], [y2, p2

y], [px py, xy], [xpy, ypx],

only. Our ansatz hence includes two free variables multiplying x2 ( f0, f2), y2 ( f1, f3), p2
x (g1, g3) and ypx (e1, e3). One

in each pair will satisfy the equation for the corresponding basis element, whereas the other can be used to create the
terms xy, px py, xpx and ypy.

The BCH formula, however, is of very limited use for the actual computation of this equation since the number of
appearing commutators grows exponentially with the order.

Instead, we propose an alternative procedure to derive the coefficients e j, fk, gl, which extends results from Ref. [5]
and relies on finding a faithful (injective) representation of the operator Lie algebra g. This Lie algebra isomorphism
drastically simplifies all calculations since we will be able to verify the decomposition (2) by computations in a (low-
dimensional) matrix setting. The correspondence principle i[·, ·] → {·, ·} between the quantum Lie bracket and the
Poisson bracket gives an elegant method to find the isomorphism by considering the equivalent classical Hamiltonian
system for H̃(x, y, px, py). For convenience of the reader, we recall that the classical equations of motion are given by

ṙ =
∂H
∂p

, ṗ = −∂H
∂r

,

which translates for our Hamiltonian H̃[p]
h from (9) to

d
dt


x
y
px

py

 = M


x
y
px

py

 =


α −Ωy mx δ
Ωx β δ my

−wx −γ −α −Ωx

−γ −wy Ωy −β




x
y
px

py

 . (11)

The injectivity is a consequence of the uniqueness of each matrix element w.r.t. the coefficients in H̃ and it is easy to
verify that the matrices indeed form an isomorphic Lie algebra with the standard matrix commutator.

Although it is too cumbersome to evaluate the solution operator exp(hM) in closed form, it is a straightforward
numerical task.

Next, we take a look at the left-hand side of (2), and for illustration, we compute the rightmost exponent,
exp( f3y2 + g3 p2

x − e3ypx) in the matrix algebra which solves the equation

d
dt


x
y
px

py

 =


0 −e3 2g3 0
0 0 0 0
0 0 0 0
0 −2 f3 e3 0




x
y
px

py

 = N


x
y
px

py

 ,

2The smoothness is a generic requirement to ensure efficiency of Fourier methods for the approximation of the derivatives, e.g., the Laplacian.
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and hence exp ( f2x2 + g2 p2
y + e2xpy) = exp(N) = 1 + N. The remaining matrices in the exponents of Φ

[p]
t,t+h are also

nilpotent and can be trivially exponentiated,

e f0 x2/2e f1y2/2+g1 p2
x/2−e1ypx e f2 x2/2+g2 p2

y/2+e2 xpy e f3y2/2+g3 p2
x/2−e3ypx =

1 −e3 g3 0
0 1 0 0
0 0 1 0
0 − f3 e3 1




1 0 0 0
e2 1 0 g2
− f2 0 1 −e2
0 0 0 1



1 −e1 g1 0
0 1 0 0
0 0 1 0
0 − f1 e1 1




1 0 0 0
0 1 0 0
− f0 0 1 0
0 0 0 1

 . (12)

Notice that we have changed the exponents by introducing factors 1/2 in the previous equation to get a more compact
notation. Later on, we revert to the original form for better readability. Furthermore, the multiplication order of the
matrices had to be reversed w.r.t. the exponentials to account for their nature as Lie derivatives (cf. Vertauschungssatz
[23]) and equality holds if both sides are understood as flows.

Multiplication of the matrix exponentials (12) according to (2) yields a 4×4 matrix of multivariate polynomials of
maximum degree four that has to be equated to exp(hM). The system u′ = Mu, u = (x, y, px, py)T has ten degrees of
freedom, originating from the linearly independent basis terms and the same number of variables has been introduced
in (2). It is clear that if we had allowed the appearance of the mixed terms xpx, ypy, the composition could be solved
easily since we have a free variable for each basis element [34, 35].

With the aim of obtaining a Fourier-diagonalizable decomposition, i.e., terms that are diagonal after Fourier
transform, we examine the structure coefficients of the algebra. It turns out that xpx, ypy, can be generated by the
following commutators,

[x2, p2
x], [y2, p2

y], [px py, xy], [xpy, ypx],

only. Our ansatz hence includes two free variables multiplying x2 ( f0, f2), y2 ( f1, f3), p2
x (g1, g3) and ypx (e1, e3). One

in each pair will satisfy the equation for the corresponding basis element, whereas the other can be used to create
the terms xy, px py, xpx and ypy. We deduce that all basis terms can be generated and thus, for sufficiently small
h, a solution of the only formally overdetermined 4 × 4 nonlinear algebraic system can be computed, e.g., with the
Gauss-Newton algorithm.

With the help of a Gröbner basis and simple algebra, the number of variables can be reduced to accelerate the
algorithm.

Notice that there are multiple choices of possible compositions. For example, at the same cost, we could have
replaced the outer exponential by e f0 xy or introduced the terms ekpx py before and after the center exponential (setting
f0 = 0). It is not clear whether other choices for the decomposition are more advantageous.

For simplicity of the presentation, we have chosen a simple form of the Hamiltonian (1), but using our method-
ology, analogous methods can be derived for virtually all3 relevant polynomial Hamiltonians of degree ≤ 2 in any
dimension with arbitrary time-dependencies.

A full time-step of the algorithm is summarized in Table 1. For clarity and as implementation aid, the following
flow-chart describes the application of a splitting method to a problem of the form (3) which includes the GPE with
rotational term.

1. For H = HA(t) + εB(t, r, |ψ|),
choose splitting method (6), i.e., the coefficients a j, b j:
If ε � 1, pick a method that keeps the near-integrable structure from [27].
If B cannot be considered a perturbation, use a highly optimized method for this problem from [12].

2. For the time-stepping, we need to alternately propagate the nonlinear and linear parts. Notice that we freeze
the time coordinate in the nonlinearity and only advance it together with the rotation term as discussed in the
paragraph preceding section 2.2.

3Excluding certain pathological cases, e.g., absence of kinetic energy etc.

7



Algorithm to evolve i∂tψ = HA(t)ψ:

1 Compute the Magnus expansion (9) of HA up to the desired order p. We refer to the review [14] for the
expansion algorithm as well as for explicit formulae for order four and six methods [14, pp. 205-206].

2 Rewrite the resulting commutators in the basis of the Lie algebra to obtain the modified Hamiltonian (9).
3 Solve the resulting (small) polynomial system exp(M) = E, where M is defined in (11) and E is the

right-hand-side of (12) to obtain the coefficients e j, fk, gl.

4 Apply the composition Φ
[p]
t,t+h (2) using six one-dimensional FFTs Fx,Fy to diagonalize the exponentials,

Φ
[p]
t,t+h(ψ(x, y)) = e f0 x2F −1

x e f1y2+g1 p̂2
x−e1yp̂xFxF −1

y e f2 x2+g2 p̂2
y+e2 xp̂yFyF −1

x e f3y2+g3 p̂2
x−e3yp̂xFx ψ(x, y)

Note that the momentum operators pk have been replaced by p̂k to indicate that they correspond to their
(diagonal) representation in the momentum space.

Table 1: Algorithm for the computation of ϕHA
t,t+h. Expressions for steps 1 and 2 can be precomputed and only need to be updated with the current

values of the time coordinate. The steps can be followed at a concrete example in section 3.

Initialize:
t = 0, step counter k = 0
number of steps n,
initial condition: ψ0(x),
method a j, b j (1 ≤ j ≤ s)

Main loop:
k = k + 1,

l = 0

Splitting
loop:

l = l + 1

Advance nonlinearity
(cf. Lemma 2.1):
ψk = e−ihb jB(t,x,ψk)ψk

The time t is frozen.

Advance rotation term
(cf. Table 1):

ψk = ϕA
t,t+ha j

ψk

Advance time: t = t + ha j

Output: ψn

k ≤ n l ≤ s

It is worth pointing out that the extra effort is virtually independent of the order choose for the Magnus expansion and
can be neglected as the number of grid points increase.

In total, one step of the algorithm requires the application of two 1D and two 2D Fourier transforms, which can
be implemented at the cost of three 2D-FFTs, and prior to evolving the wave function, the coefficients are determined
through exponentiating a 4×4 matrix and solving a small nonlinear system. The effort for the solution of the (formally)
overdetermined system, which can be done by a least-square algorithm, is marginal since – for small time-steps – the
solution is not far from 0 ∈ R10.

2.3.1. Special cases
In passing, we mention some further cases, for which the algebra simplifies.

Isotropic trap.

H =
1

2m(t)

(
p2

x + p2
y

)
+

1
2

m(t)ω(t)2(x2 + y2) + Ω(t)Lz

Due to cancellations, the commutators of H at different instances lie in the span of{
p2

x + p2
y , x

2 + y2, Lz, (xpx + pxx) + (ypy + pyy)
}

and any Magnus integrator can be written as effective Hamiltonian

H̃t,t+h = at,t+h(p2
x + p2

y) + bt,t+h(x2 + y2) + ct,t+hLz + dt,t+h(xpx + ypy) + et,t+hxy.
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Linear interaction. For time-dependencies proportional to the linear components only,

H =
1
2

(
p2

x + p2
y

)
+
ω2

0

2

(
x2 + y2

)
+ ξx(t)x + ξy(t)y + ΩLz,

the following terms in algebra do not appear: xy, px py, xpx, ypy. It is therefore sufficient to employ a symmetric
composition including the linear terms in the exponent,

e f1y2+g1 p2
x−e1ypx+d1y+c1 px e f2 x2+g2 p2

y+e2 xpy+d2 x+c2 py e f1y2+g1 p2
x−e1ypx+d1y+c1 px .

The equations for the parameters have to be obtained in a slightly different way which is described below, preceding
eqns. (16).

General quadratics. For more complicated Hamiltonians,

H̃[p]
h =

15∑
j=1

α j(h)E j, (13)

in the algebra g with basis

E1 = x, E2 = px, E3 = 1
2 x2, E4 = 1

2 p2
x, E5 = 1

2 (xpx + pxx) ,

E6 = y, E7 = py, E8 = 1
2 y2, E9 = 1

2 p2
y , E10 = 1

2

(
ypy + pyy

)
,

E11 = xy, E12 = px py, E13 = xpy, E14 = ypx, E15 = 1,

in particular when linear terms are involved, the described procedure fails to a certain degree: As for the one di-
mensional harmonic oscillator problem [5], the phase relation cannot be recovered since the classical mechanical
equivalent does not enter the equations of motion. In principle, one could approximate the phase numerically, by in-
troducing a new variable proportional to the phase E15 and derive a system of differential equations for all parameters
by interpreting them as time-dependent functions and plugging the ansatz into the Schrödinger equation with Hamil-
tonian (13) after Magnus averaging. Then, the resulting scalar functions are evaluated using the presented algorithm
on a fixed grid which partitions the time-step interval [tn, tn + h] and then we finally solve the differential equation for
the free phase parameter numerically, or alternatively, we make use of the BCH formula.

This effort can be spared since only the global phase information is lost which is not observable. The polynomial
system to be solved then needs additional degrees of freedom to cater for the linear contributions and to close the
discussion, we conjecture that there exist (under mild assumptions4) imaginary coefficients, such that

Ψh = en1 x2+m1 xe f1y2+g1 p2
x−e1ypx+k1 px e f2 x2+g2 p2

y+e2 xpy+k2 py e f3y2+g3 p2
x−e3ypx+k3 px en2 x2+m2 x, (14)

is the solution of the SE with Hamiltonian (13) for small values of the α j. In the remainder of this section, we compute
the system of equations which will determine the scalar coefficients in the exponents. Note that a slightly different
methodology has to be applied to account adequately for the linear terms. The corresponding classical mechanical
system is

d
dt


x
y
px

py

 =


∇px

∇py

−∇x

−∇y

 H̃[p]
h =


α2 + α4 px + α5x + α12 py + α14y
α7 + α9 py + α10y + α12 px + α13x
−(α1 + α3x + α5 px + α11y + α13 py)
−(α6 + α8y + α10 px + α11x + α14 px)

 =


α5 α14 α4 α12
α13 α10 α12 α9
−α3 −α11 −α5 −α13
−α11 −α8 −α10 −α14

︸                                ︷︷                                ︸
=M


x
y
px

py

 +


α2
α7
−α1
−α6

 .

4In order to recover the mixed terms xpx, ypy, a pair of possible generators must be present in the Hamiltonian, e.g., x, p2
x can generate xpx

through commutation.
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The exact solution is obtained using the variation-of-constants formula which handles the linear contributions in the
Hamiltonian,

(x(t), y(t), px(t), py(t))T = etM (x(0), y(0), px(0), py(0))T + M−1
(
etM − 1

)
(α2, α7,−α1,−α6)T (15)

Similarly, the decomposition cannot be written anymore as a product of matrix exponentials, instead, the exponentials
are interpreted as flows and computed accordingly. For clarity, we describe how to compute the flows in (14). Take,
e.g., the Hamiltonian H = n1x2 + m1x with corresponding flow en1 x2+m1 x. Then, it is trivial to compute its action on
some initial value (x, y, px, py)T ,

en1 x2+m1 x(x, y, px, py)T = (x, y, px − (2n1x + m1), py)T ,

e f1y2+g1 p2
x−e1ypx+k1 px (x, y, px, py)T = (x + 2g1 px − e1y + k1, y, px, py − (2 f1y − e1 px))T ,

e f2 x2+g2 p2
y+e2 xpy+k2 py (x, y, px, py)T = (x, y + (2g2 py + e2x + k2), px − (2 f2x + e2 py), py)T ,

e f3y2+g3 p2
x−e3ypx+k3 px (x, y, px, py)T = (x + 2g3 px − e3y + k3, y, px, py − (2 f3y − e3 px))T ,

en2 x2+m2 x(x, y, px, py)T = (x, y, px − (2n2x + m2), py)T .

(16)

Composing in the order of (14), which means from bottom to top, and writing the result as a affine system in the initial
values, we equate with (15) to get

etM (x, y, px, py)T + M−1
(
etM − 1

)
(α2, α7,−α1,−α6)T = N(x, y, px, py)T + (a, b, c, d)T . (17)

Since this equality needs to hold for all initial values (x, y, px, py), we can read off the equations separately from the
homogeneous and inhomogeneous parts.

2.4. Higher dimensions
It is straightforward to generalize the results to arbitrary spatial dimensions n given that the potentials remain

quadratic. The only noteworthy detail is that the dimensions of the matrices that yield the polynomial system scale
with 2n × 2n. In the particular case of a harmonic trap in the z-axis – ceteris paribus – the Hamiltonian can be written
as a sum

H = HA + Hz + G(x, y, z),

where Hz = 1
2 p2

z + 1
2ω

2
z z2. A sensible splitting groups commuting terms A = HA + Hz, leaving the (small) remainder

B = G in order to compute one splitting step

e−iha jAe−ihb jB = e−iha jHA e−iha jHz e−ihb jG,

and e−ihHz can be solved using two FFTs in the z-direction since

e−ihHz = e−i tan(hωz/2)z2/2e−i sin(hωz)p2
z /2e−i tan(hωz/2)z2/2,

see [5, 18].

3. Numerical results

In this section, we will illustrate the performance of the algorithm in two settings. First, we consider the plain
decomposition method where we expect to recover the order of the underlying Magnus expansion. Second, we add a
small nonlinearity g and embedd the rotation Hamiltonian HA into a second order Strang splitting in order to illustrate
the recovery of the generalized order (4,2): Even though the method is of formal order 2, its error is proportional to
size of the (nonlinear) perturbation. Embedding the decomposition in a higher order splitting method would maintain
the full order while keeping the near-integrable structure.

To numerically verify the proposed algorithm, we choose the Hamiltonian

HA(t) =
1
2

(
p2

x + p2
y

)
+

1
2

(
ωx(t)2x2 + ωy(t)2y2

)
+ ΩLz, (18)
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where ωx(t)2 = ω2
0(1 + sin(t/2)), ωy(t)2 = (ω2

0 − sin(t/2)) and ω2
0 = 4, Ω = 1/10. The spatial domain is discretized

with 128× 128 grid points on [−10, 10]2 and we integrate the normalized initial condition ψ0 ∝ (x + iy)e−(x2+y2)/2 until
the final time T = 3. The first two steps are numbered as in Table 1.
Step 1: For the time-averaging we choose a fourth-order Magnus integrator that is in turn based on the fourth-order
Gauss-Legendre quadrature,

Θ
[4]
t,t+h = −i

h
2

(H(t1) + H(t2)) +
h2

4
√

3
[−iH(t1),−iH(t2)],

where t j = t + hc j with the standard Gauss-nodes c1,2 = (1 ∓ 1/
√

3)/2.
Step 2: Evaluating the commutator leads to the averaged Hamiltonian

iΘ[4]
t,t+h =

h
2

(
p2

x + p2
y

)
+

h
2
ωx(t1)2 + ωx(t2)2

2
x2 +

h
2
ωy(t1)2 + ωy(t2)2

2
y2 + hΩLz

+
h2

4
√

3

( xpx + pxx
2

(
ωx(t2)2 − ωx(t1)2

)
+

ypy + pyy
2

(
ωy(t2)2 − ωy(t1)2

))
+

h2

4
√

3
Ω

((
ωy(t2)2 − ωy(t1)2

)
−

(
ωx(t2)2 − ωx(t1)2

))
xy.

3.1. Rotating linear Hamiltonian

In a first experiment, we compare the split (2) against a standard symmetric approach which uses the same number
of FFTs per step:

Ψ
[2]
t,t+h = e−i h

2ω
2
x(t)x2

e−i h
2 (p2

x/2−Ωypx)e−ih(p2
y/2+Ωxpy)e−i h

2 (p2
x/2−Ωypx)e−i h

2ω
2
x(t+h)x2

. (19)

The results are shown in Fig. 1 and clearly show the correct order and high accuracy of the new method.

3.2. Rotating BEC with weak nonlinearity

In a second experiment, the Hamiltonian HA is perturbed by a cubic nonlinearity, yielding the Gross-Pitaevski
equation which is a fundamental model for the creation of vortices.

H(t) = HA(t) + g|ψ|2, (20)

with g = 1 and the experimental setup is taken as above with ω2
0 = 2, Ω = 1/5 and Nx = Ny = 256 grid points on

the mesh [−15, 15]2. Instead of embedding our method within a higher-order splitting, we chose a simple Strang-type
approach where the perturbation H − HA is appended on both sides of the method,

e−i h
2 g|ψ|2Ψe−i h

2 g|ψ|2 . (21)

We denote by ROT(2) the second order method from our construction with Ψ = Φ
[4]
t,t+h as in (4) and by STD(2) the

symmetric approach Ψ = Ψ
[2]
t,t+h from (5), respectively. Of course, despite the fourth-order Magnus expansion, we

only expect a second-order integrator, however, with much smaller error terms when compared to (19) due to the
smallness of the perturbation. The method, as well as the method of generalized order (4,2) from [27] are expected to
perform well for large step-sizes and small nonlinearities. At higher order, the benefits of our method are even more
pronounced: Taking into account that we are facing a multi-component splitting with explicit time-dependencies, it is
not trivial to derive an efficient splitting algorithm. The usual approach is to design a symmetric second order method
Ψh, e.g., (5) and then compose it with itself using fractional time-steps as in

Ψγh ◦ Ψ(1−2γ)h ◦ Ψγh,

where γ = 1/(2 − 21/3). This procedure is the well-known as triple jump [31, 36] and the resulting fourth-order
method Y(4) will be used for reference in the experiment. In our design, the flow of the linear (in the wave function)
and explicit Hamiltonian are efficiently computed together and thus, the split only contains two components A, B. We
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Figure 1: (color online) The rightmost column shows the efficiency curves for the 2D rotating harmonic oscillator (18) integrated using Nx = Ny =

128 equidistant grid points on [−10, 10]2. In the first row, the initial condition with imaginary (left) and real part (center) are displayed, whereas
the evolution at time T = 3 is depicted in the second row, both for imaginary (left) and real part (center). The real part is shown from above and the
colormaps are kept constant in each panel, i.e., the same color corresponds to the same value.

can thus use standard fourth-order methods such as the optimized SRKNb
6 (BM(4)) from [12] to illustrate the improved

performance in comparison with the triple-jump.
The results in Fig. 2 confirm the predicted behavior. At any given precision, roughly half of the steps are needed

by the new algorithm using the same number of FFTs. As the perturbation, in this case the nonlinearity, becomes
weaker, the benefits increase - on the other hand, when the remainder cannot be considered to be a perturbation, the
second-order curves will get closer and almost coincide.

3.3. Rotating BEC with strong nonlinearity
Using the setup from the previous experiment but with a strong interaction parameter g = 50, the method maintains

its advantages at higher precision as expected since it allows the use of optimized splitting methods in contrast to
the simple Yoshida composition for higher order. The results are shown in Fig. 3. At lower precision, both split
variants perform equally. However, when higher precision with higher order is sought, our methodology maintains
the advantage since optimized two-component splittings, e.g., from [12], can be used.

3.4. Rotating BEC in the presence of dissipation
Motivated by [9], we show how to adapt our method for a dissipative setup modeled by

(i − λ)∂tψ = HA(t)ψ + (g|ψ|2 + V(t))ψ. (22)

The dissipation, or loss in norm, is driven by the parameter λ > 0. Our methodology is straightforward to adapt to this
setting with the observation that the formal solution operator can be obtained by simply replacing h by ih/(i−λ) in the
Magnus averaged Hamiltonian. Note that this procedure is related to the imaginary time propagation where the time
axis is rotated such that the (normalized) solution evolves to an eigenstate of the system [2, 18, 19]. We conclude that
the coefficients can then be computed just as before, with the difference that the polynomial system and its solutions
have now become complex valued.
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Figure 2: (color online) For detailed captions, cf. Fig. 1. Results for the Hamiltonian (20) with a weak nonlinearity g = 1. The top row shows the
imaginary (left) and real part (center) of the initial condition, whereas the corresponding pictures for the exact solution at T = 5 are displayed in the
bottom row. The right panel demonstrates the smaller error constant for the proposed decomposition (red solid) in comparison with the standard
split (blue dashed). The circles correspond to second order methods ROT(2) from (21) and STD(2) (5).

Due to the dissipation, Lemma 2.1 is no longer valid and the nonlinearity has to be solved differently. First, we
stress that time is propagated together with HA, containing the Laplacian and thereby recovering the Runge-Kutta-
Nyström (RKN) structure of the algebra5. This has the additional benefit that more efficient splitting methods can be
considered [6]. Hence, as mentioned, the potential is frozen in the remaining part

(i − λ)∂tψ = (g|ψ|2 + V(x, t f rozen))ψ, ψ(x, 0) = ψ0.

Using a standard trick from the Ginzburg-Landau equation, it can be solved by noting that

d
dt
|ψ|2 = ψ̇∗ψ + ψ∗ψ̇ = − 2λ

1 + λ2

(
g|ψ|2 + V(x, t f rozen)

)
|ψ|2,

with solution

|ψ(x, t)|2 =
|ψ0|2V(x, t f rozen)

−g|ψ0|2 + exp
(

2λtV
1+λ2

) (
g|ψ0|2 + V

) .
The full remainder is then propagated as

ψ(x, t) = exp
(

1
i − λ

(
tV + g

∫ t

0
|ψ(x, s)|2 ds

))
ψ0 = exp

(
− i + λ

2λ
log

[
2λt

1 + λ2 φ

(
2λ

1 + λ2 tV
)

g|ψ0|2 + exp
(

2λ
1 + λ2 tV

)])
ψ0,

(23)
where φ(z) = (exp(z) − 1)/z. This formulation avoids numerical singularities around V ≈ 0 and ψ0 ≈ 0 and (23)
can be conveniently computed. This equation is related to the imaginary time propagation technique to compute
eigenstates of the Schrödinger equation [6, 7, 18]. Higher order splittings (including the triple jump) necessarily

5A Lie algebra generated by A, B is said to be of type RKN if [B, [B, [B, A]]] = 0.
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Figure 3: (color online) For detailed captions, cf. Fig. 2. Results for the nonlinear Hamiltonian (20) with strong nonlinearity g = 50 solved by
(21). The top row shows the imaginary (left) and real part (center) of the initial condition, whereas the corresponding pictures for the exact solution
at T = 5 are displayed in the bottom row. The right panel demonstrates the smaller error constant for the proposed decomposition (red solid) in
comparison with the standard split (blue dashed). The circles correspond to second order methods ROT(2) from (4) and STD(2) (5).

require negative time-steps and the consequent stability problems prohibit their use in this application. However,
complex time-steps could be – in principle – used to overcome this limitation. It has been shown in Ref. [4] how
to use complex coefficients for the GPE including this variant. The findings suggest that the necessary doubling of
the computational cost by introducing new variables in addition to the evaluation of at least three exponentials ϕHA

a jh
are less efficient than the simple use of Richardson extrapolation methods on the highly efficient new second order
method with real splitting coefficients. In Fig. 4, we show the performance of our method in comparison with the
reference second order method STD(2) where the nonlinearity has also been propagated according to (23). The used
an equidistant grid of Nx = Ny = 128 points on [−10, 10]2 and integrated until T = 3. The parameters are as in
section 3.2 with λ = 0.02.

4. Conclusions

We have designed an efficient algorithm to integrate explicitly time-dependent rotating BEC using only Fourier
transforms and an iterative solver for a small algebraic system. The method solves any quadratic Hamiltonian, such
as for example rotating condensates subject to time-dependent harmonic trappings, up to the desired precision and is
thus particularly useful if the full Hamiltonian can be regarded as a perturbation thereof. The method outperforms
literature splitting methods for small nonlinearities at any precision and for large nonlinearieties at higher order and
precision. Its adaption to dissipative Gross-Pitaevskii equation is shown to be straightforward. The algorithm is
related to splitting methods and Magnus expansions and as such preserves unitarity and gauge invariance of the exact
solution operator and a corresponding modified Hamiltonian can be easily identified. The proof technique is based
on the finiteness of the Lie algebra generated by the Hamiltonian on which Magnus averaging has been performed.
The quantum mechanical algebra has been identified with its classical mechanical counterpart from which a matrix
representation has been derived. The generalization of this technique to other quantum mechanical systems is subject
of future work.
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Figure 4: (color online) Results for the nonlinear Hamiltonian in the presence of dissipation (22). The top row shows the imaginary (left) and real
part (center) of the initial condition, whereas the corresponding pictures for the exact solution at T = 5 are displayed in the bottom row. The right
panel demonstrates the smaller error constant for the proposed decomposition (red solid) in comparison with the standard split (blue dashed). The
triangle indicates that the methods are of second order as expected.
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