242 research outputs found

    Constant-size threshold attribute based SignCryption for cloud applications

    Get PDF
    In this paper, we propose a novel constant-size threshold attribute-based signcryption scheme for securely sharing data through public clouds. Our proposal has several advantages. First, it provides flexible cryptographic access control, while preserving users’ privacy as the identifying information for satisfying the access control policy are not revealed. Second, the proposed scheme guarantees both data origin authentication and anonymity thanks to the novel use of attribute based signcryption mechanism, while ensuring the unlinkability between the different access sessions. Third, the proposed signcryption scheme has efficient computation cost and constant communication overhead whatever the number of involved attributes. Finally, our scheme satisfies strong security properties in the random oracle model, namely Indistinguishability against the Adaptive Chosen Ciphertext Attacks (IND-CCA2), Existential Unforgeability against Chosen Message Attacks (EUFCMA) and privacy preservation of the attributes involved in the signcryption process, based on the assumption that the augmented Multi-Sequence of Exponents Decisional Diffie-Hellman (aMSE-DDH) problem and the Computational Diffie Hellman Assumption (CDH) are hard

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    Coop-DAAB : cooperative attribute based data aggregation for Internet of Things applications

    Get PDF
    The deployment of IoT devices is gaining an expanding interest in our daily life. Indeed, IoT networks consist in interconnecting several smart and resource constrained devices to enable advanced services. Security management in IoT is a big challenge as personal data are shared by a huge number of distributed services and devices. In this paper, we propose a Cooperative Data Aggregation solution based on a novel use of Attribute Based signcryption scheme (Coop - DAAB). Coop - DAAB consists in distributing data signcryption operation between different participating entities (i.e., IoT devices). Indeed, each IoT device encrypts and signs in only one step the collected data with respect to a selected sub-predicate of a general access predicate before forwarding to an aggregating entity. This latter is able to aggregate and decrypt collected data if a sufficient number of IoT devices cooperates without learning any personal information about each participating device. Thanks to the use of an attribute based signcryption scheme, authenticity of data collected by IoT devices is proved while protecting them from any unauthorized access

    Footsteps in the fog: Certificateless fog-based access control

    Get PDF
    The proliferating adoption of the Internet of Things (IoT) paradigm has fuelled the need for more efficient and resilient access control solutions that aim to prevent unauthorized resource access. The majority of existing works in this field follow either a centralized approach (i.e. cloud-based) or an architecture where the IoT devices are responsible for all decision-making functions. Furthermore, the resource-constrained nature of most IoT devices make securing the communication between these devices and the cloud using standard cryptographic solutions difficult. In this paper, we propose a distributed access control architecture where the core components are distributed between fog nodes and the cloud. To facilitate secure communication, our architecture utilizes a Certificateless Hybrid Signcryption scheme without pairing. We prove the effectiveness of our approach by providing a comparative analysis of its performance in comparison to the commonly used cloud-based centralized architectures. Our implementation uses Azure – an existing commercial platform, and Keycloak – an open-source platform, to demonstrate the real-world applicability. Additionally, we measure the performance of the adopted encryption scheme on two types of resource-constrained devices to further emphasize the applicability of the proposed architecture. Finally, the experimental results are coupled with a theoretical analysis that proves the security of our approach

    Towards an efficient key management and authentication strategy for combined fog-to-cloud continuum systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fog-to-cloud systems have emerged as a novel concept intended to improve service performance by considering fog and cloud resources in a coordinated way. In such a heterogeneous scenario, security provisioning becomes necessary, hence novel security solutions must be designed to handle the highly distributed fog-to-cloud nature. In the security area, key distribution and authentication are referred to as two critical pillars for a successful security deployment. Unfortunately, traditional centralized key distribution and authentication approaches do not meet the particularities brought by a Fog-tocloud system due to its distributed nature. In this paper, we propose a novel distributed key management and authentication (DKMA) strategy to make Fog-to-cloud systems as secure as possible. The paper ends up presenting some results assessing the benefits of the proposed strategy in terms of traffic and delay reduction.Peer ReviewedPostprint (published version

    Identity‐based Schemes for a Secured Big Data and Cloud ICT Framework in Smart Grid System

    Get PDF
    Smart grid is an intelligent cyber physical system (CPS). The CPS generates a massive amount of data for efficient grid operation. In this paper, a big data‐driven, cloud‐based information and communication technology (ICT) framework for smart grid CPS is proposed. The proposed ICT framework deploys hybrid cloud servers to enhance scalability and reliability of smart grid communication infrastructure. Because the data in the ICT framework contains much privacy of customers and important data for automated controlling, the security of data transmission must be ensured. In order to secure the communications over the Internet in the system, identity‐based schemes are proposed especially because of their advantage in key management. Specifically, an identity‐based signcryption (IBSC) scheme is proposed to provide confidentiality, non‐repudiation, and data integrity. For practical purposes, an identity‐based signature scheme is relaxed from the proposed IBSC to provide non‐repudiation only. Moreover, identity‐based schemes are also proposed to achieve signature delegation within the ICT framework. Security of the proposed IBSC scheme is rigorously analyzed in this work. Efficiency of the proposed IBSC scheme is demonstrated with an implementation using modified Weil pairing over an elliptic curve

    A Comprehensive Survey on Signcryption Security Mechanisms in Wireless Body Area Networks

    Get PDF
    WBANs (Wireless Body Area Networks) are frequently depicted as a paradigm shift in healthcare from traditional to modern E-Healthcare. The vitals of the patient signs by the sensors are highly sensitive, secret, and vulnerable to numerous adversarial attacks. Since WBANs is a real-world application of the healthcare system, it’s vital to ensure that the data acquired by the WBANs sensors is secure and not accessible to unauthorized parties or security hazards. As a result, effective signcryption security solutions are required for the WBANs’ success and widespread use. Over the last two decades, researchers have proposed a slew of signcryption security solutions to achieve this goal. The lack of a clear and unified study in terms of signcryption solutions can offer a bird’s eye view of WBANs. Based on the most recent signcryption papers, we analyzed WBAN’s communication architecture, security requirements, and the primary problems in WBANs to meet the aforementioned objectives. This survey also includes the most up to date signcryption security techniques in WBANs environments. By identifying and comparing all available signcryption techniques in the WBANs sector, the study will aid the academic community in understanding security problems and causes. The goal of this survey is to provide a comparative review of the existing signcryption security solutions and to analyze the previously indicated solution given for WBANs. A multi-criteria decision-making approach is used for a comparative examination of the existing signcryption solutions. Furthermore, the survey also highlights some of the public research issues that researchers must face to develop the security features of WBANs.publishedVersio

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Systematic Review of Internet of Things Security

    Get PDF
    The Internet of Things has become a new paradigm of current communications technology that requires a deeper overview to map its application domains, advantages, and disadvantages. There have been a number of in-depth research efforts to study various aspects of IoT. However, to the best of our knowledge, there is no literature that have discussed specifically and deeply about the security and privacy aspects of IoT. To that end, this paper aims at providing a more comprehensive and systematic review of IoT security based on the survey result of the most recent literature over the past three years (2015 to 2017). We have classified IoT security research based on the research objectives, application domains, vulner-abilities/threats, countermeasures, platforms, proto-cols, and performance measurements. We have also provided some security challenges for further research
    corecore