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ABSTRACT

Smart grid is an intelligent cyber physical system (CPS). The CPS generates a massive amount of data for efficient grid
operation. In this paper, a big data-driven, cloud-based information and communication technology (ICT) framework
for smart grid CPS is proposed. The proposed ICT framework deploys hybrid cloud servers to enhance scalability and
reliability of smart grid communication infrastructure. Because the data in the ICT framework contains much privacy of
customers and important data for automated controlling, the security of data transmission must be ensured. In order to
secure the communications over the Internet in the system, identity-based schemes are proposed especially because of
their advantage in key management. Specifically, an identity-based signcryption (IBSC) scheme is proposed to provide
confidentiality, non-repudiation, and data integrity. For practical purposes, an identity-based signature scheme is relaxed
from the proposed IBSC to provide non-repudiation only. Moreover, identity-based schemes are also proposed to achieve
signature delegation within the ICT framework. Security of the proposed IBSC scheme is rigorously analyzed in this work.
Efficiency of the proposed IBSC scheme is demonstrated with an implementation using modified Weil pairing over an
elliptic curve. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Smart grid is a major evolution of the power grid. Modern
control with information and communication technology
(ICT) is vastly applied in smart grid. With the advanced
ICT infrastructure, two-way communications between cus-
tomers and service providers is achieved [1–4]. There-
fore, smart grid is an advanced cyber physical system
(CPS). The CPS generates various types of data by smart
meters and different sensors. Because of the massive scale
of deployment and real-time (or near real-time) moni-
toring/controlling requirements, communications in smart
grid carry a huge amount of data.

In this paper, we propose an ICT framework for smart
grid to cope with big data generated in the CPS. By pro-
cessing the big data (especially the metering data), smart
grid is to achieve efficient and effective demand-response
(DR) system [5–7]. DR system is one of the most important
components in smart grid. It smooths the power load of the

grid so that waste can be reduced in those fossil fuel-based
power stations while renewable power sources can be inte-
grated more efficiently. To achieve DR, energy forecast is
needed for utility companies to plan power generation and
price forecast is needed for customers to manage power
usage. In order to achieve high precision, large amount of
data is needed and refreshed frequently. Obviously, cur-
rent control centers provided by utility companies have
limited computing capabilities that cannot fulfill the tasks
in general. Therefore, in the proposed ICT framework,
big data analytics and cloud computing are introduced to
assist the utility company. Because of the large scale of
smart grid, hybrid cloud service is proposed in the ICT
framework. Private local cloud servers are established and
maintained by utility companies in a distributed fashion.
Smart grid operations rely on the massive amount of data
and information are exchanged within the ICT framework.

Data collection and information sharing in smart grid
has many security concerns. For instance, metering data

5262 Copyright © 2016 John Wiley & Sons, Ltd.
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from the customers may contain privacy of individuals
[8–10]. Inaccurate control data from service providers may
cause extra loss in the power grid, or even a blackout. As a
result, metering data is usually transmitted through private
networks in smart grid. Monitoring networks for power
transmission lines are also private networks [11]. In this
case, utility companies shall have more control over the
collected data and communication networks. Actions may
be taken quickly if abnormal situations occur. However,
with the introduction of cloud computing, some data must
be transmitted through public networks (e.g., the Internet)
[12–14]. Although public cloud service providers have cer-
tain security mechanisms within the cloud, data exchange
over the Internet still needs extra protection, because a util-
ity company would still mandate to have entire control
of the networks within its service area. It is inefficient if
not impossible to implement traditional cryptographic sys-
tems, symmetric or public, while providing full security
control over the data transmission for the utility compa-
nies. Identity-based (ID-based) security schemes [15–17]
fit here mainly for three reasons: (i) ID-based security
schemes utilize the identities of participants to generate
public keys so that public key distribution is simplified;
(ii) keys and other secret parameters can be updated easily
to accommodate status change of participants; and (iii) an
authentication center is required to control domain param-
eters as well as domain secrets. By adopting ID-based
security schemes, a utility company shall be in charge of
the network security efficiently even if the transmissions
are carried over the Internet, which is the case in the pro-
posed ICT framework. Therefore, an ID-based security
scheme is proposed in this work to enhance the security of
the ICT framework.

The core of the proposed security solution is an ID-
based signcryption (IBSC) scheme, which performs the
functions of both digital signature and encryption simul-
taneously. The proposed IBSC scheme utilizes public key
cryptography where the public key is computed mainly
based on the ID of each participant together with an expi-
ration indicator time. As a result, public keys and related
domain secrets can be refreshed easily after each session.
Furthermore, public keys can be computed locally by any
legitimate user in the domain. Therefore, key management
is simplified to fit the ICT framework. The proposed IBSC
scheme performs efficiently with carefully chosen bilin-
ear pairing operation and other system parameters. Despite
its simplicity, the proposed IBSC scheme provides confi-
dentiality, data integrity, and non-repudiation. The IBSC
scheme can be reduced to an ID-based digital signature
for those cases that do not require confidentiality. In order
to enhance the performance, the proposed IBSC is also
modified for session key distribution instead of direct mes-
sage encryption. In addition, the identity-based schemes
are also applied to achieve signing right delegation. With
this feature, a control center is able to hand its data con-
trol to another (or a few other) control center temporarily
in the situations of routine maintenance, system failure,
and others.

In summary, the main contributions in this work are as
follows:

� A big data-driven and cloud-based ICT framework is
proposed for smart grid CPS.

� An identity-based signcryption scheme is proposed
to secure data transmissions in the proposed ICT
framework.

� Signing right delegation from one control center to
another (or a few) control center is achieved by
identity-based schemes.

� Rigorous security analysis is presented for the pro-
posed IBSC scheme.

� Performance of the proposed IBSC scheme is evalu-
ated with numerical results.

The rest of the paper is organized as follows. In
Section 2, related work is discussed. In Section 3, the
proposed ICT framework is presented. In Section 4, the
proposed identity-based security scheme is illustrated. In
Section 5, security of the proposed schemes is analyzed. In
Section 6, performance evaluation of the proposed scheme
is presented. In Section 7, conclusion and future work are
presented.

2. RELATED WORK

Security in smart grid CPS has been widely studied, espe-
cially in the area of private networks [1,3,18]. Many of
the existing work focused on the advanced metering infras-
tructure (AMI) because of its importance to DR in smart
grid. Metering data collected in the AMI is undoubtedly
large in volume and refreshes frequently [1]. With more
deployment of renewable energy sources, a large vari-
ety of data will be introduced to smart grid additionally.
For example, ambient environmental status, energy stor-
age unit status, and weather forecast. Therefore, big data
analytics is expected to take action in smart grid [19,20].
Cloud computing has been introduced to smart grid so
that big data analytics can take place [10,14,19]. Com-
pared with the frameworks proposed in [10,19], the ICT
framework proposed in this work is more comprehensive.
There are private networks set by a utility company, a
hybrid cloud-based control center with sensitive data col-
lected and pre-processed at local control centers (LCCs)
and a visionary idea of harvesting data from various public
sources. In addition, this work focuses on providing secure
communications for the ICT framework.

The authors in [10] studied a similar framework with
security focus. Our work is distinguished in quite a few
aspects. First, our proposed security scheme provides
encryption and digital signature simultaneously that make
it a simpler solution. Second, our proposed scheme has a
mechanism to automatically refresh domain secrets (i.e.,
public keys and other domain public parameters) so that
secrets can be easily revoked when a participant leaves the
system. Third, more applications such as signing delega-
tion is considered in this work.

Security Comm. Networks 2016; 9:5262–5277 © 2016 John Wiley & Sons, Ltd. 5263
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Identity-based cryptographic schemes have been widely
studied [10,15–17] recently. Unlike well-known sym-
metric cryptographic schemes (e.g., advanced encryption
scheme), ID-based cryptographic schemes are relatively
inefficient. Thus, they need to be redesigned or modified
for different applications in the proposed ICT frame-
work based on specific requirements. For instance, some
data in our framework requires both confidentiality and
non-repudiation while the computation needs to be effi-
cient, some data requires non-repudiation only, the domain
secrets need to be refreshed frequently, and others.

3. INFORMATION AND
COMMUNICATION TECHNOLOGY
FRAMEWORK FOR SMART GRID

3.1. Overview of the information and
communication technology framework

Figure 1 depicts an overview of the proposed ICT frame-
work. Three types of networks are applied in this frame-
work, including local area networks (LANs) established by
customers, private networks established by utility compa-
nies (or service providers), and the Internet provided by a
third-party Internet service provider. The combination of
the aforementioned networks establish two-way commu-
nications between utility companies and customers. There
are four parties in the framework, namely, internal data
collectors (i.e., customers and grid monitoring sensors), a
service provider, power generators, and external informa-

tion sources. The first three parties are directly related to
smart grid. External information sources do not belong to
smart grid, nonetheless they provide insightful information
to smart grid operations.

3.2. Networks in the information and
communication technology framework

Communications in the ICT framework are achieved
through both private networks deployed by utility compa-
nies and the Internet. Specifically, internal data is gathered
and transmitted to utility companies through private net-
works. For example, metering data is uploaded through the
AMI. The wide area monitoring system for phasor mea-
surement unit (PMU) data consists of private networks.
Monitoring networks for power transmission lines are also
private networks [11].

Security is one important reason for deploying private
networks. For instance, metering data is gathered from
customers; thus, it contains much private and sensitive
information of customers. Life style of a customer may be
revealed if metering data is leaked. In the AMI, a home
area network is established within a household, connecting
a smart meter and smart appliances with sensors and actu-
ators. Each smart meter uploads data to a data aggregate
unit. data aggregate units in a neighborhood form a neigh-
borhood area network. Metering data finally reaches the
metering data management system through a high speed
backhaul wide area network.

Reliability is another important issue. For instance, real-
time monitoring in smart grid requires low latency (e.g.,

Figure 1. An overview of the proposed information and communication technology (ICT) framework.
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10 to 100 ms for PMUs in wide area monitoring system).
Public cellular networks or the Internet service providers
can hardly achieve the latency requirement because of their
complicated protocols and mechanisms. The private net-
works in smart grid are designed specifically to fulfill the
latency requirement.

Cost is also a major reason for private networks. Sub-
scription fees for public network service providers can be
overwhelmingly high in the long run. Moreover, power
grid may cover larger areas than what a public net-
work service covers. For instance, power transmission
line monitoring networks may cover remote areas that
have no public network access. The private networks are
built on different types of communication technologies,
including various types of wireless networks (e.g., Wi-
Fi, Zigbee, and WiMAX) and high speed wired networks
(e.g., optical fiber and Ethernet). Specific technologies
are chosen to balance optimal network performance with
hardware/maintenance cost.

3.3. Internal data collectors

Internal data is collected by sensors deployed in the power
grid. Specifically, smart meters are deployed at the cus-
tomer side by utility companies. Many types of sensors
are deployed by utility companies to monitor transmis-
sion lines, substations, and others. In smart grid, customers
are motivated to actively participate in DR. Therefore,
some of the information is given to customers while being
uploaded to utility companies. For instance, customers
are granted access to electricity usage data of their own
properties. In many cases, customers have self-established
LANs or wireless LANs (WLANs), for example, Wi-Fi
and bluetooth, which connect smart devices, smart appli-
ances, and corresponding smart meters in each household.
Smart devices can be smart phones, tablets, laptops, and
so on. Without loss of generality, smart phones will be
used for the indication of smart devices. From smart
phones, customers are able to monitor electricity consump-
tion of their appliances. With network access, customers
have remote control capability over their appliances. In
many cases, LANs/WLANs established by customers have
access to the Internet. Consequently, remote monitoring
and remote control can be applied by customers anywhere
with Internet access. Apart from fixed household appli-
ances, electrical vehicles (EVs) and plug-in hybrid EVs
are mobile appliances that have more resilient electric-
ity requirements. For example, an EV can be charged in
a household, it can also be charged in a public charging
station or a capable parking lot. Furthermore, some com-
panies and researchers are pushing to standardize batteries
for EVs. In that case, customers can go to battery exchange
station and replace an empty battery with a fully charged
one. The electricity consumption of EVs at charging ports
will be captured by smart meters. Other useful informa-
tion such as location and possible routes of EVs may be
gathered by some external agents with permission of the
customers. Such data will be considered as external data to
the ICT framework.

3.4. Control centers and power generators

Control centers are deployed and operated by utility com-
panies. Specifically, there are three types of control centers
in the proposed framework, LCCs, a cloud control center
(CCC), and an authentication server (AS) with a private
key generator (PKG). For simplicity, AS or PKG will be
used interchangeably indicating the group hereafter. It is
also reasonable to assume that PKG is a trusted third
party. In terms of responsibility, control centers as a whole
unit makes energy forecast to power generators and makes
price forecast to customers. In demand response, a control
center is also responsible of direct load control over both
power consumption from customers and electricity gener-
ation from power generators. Direct load control usually
apply to power companies themselves. For instance, they
cycle air conditioners(ACs) and water heaters on and
off during periods of peak demand to smooth the power
generation.

Undoubtedly, the power grid has a large scale. There-
fore, LCCs need to be distributed across the power grid for
better scalability and reliability in the proposed ICT frame-
work. For instance, an LCC can be deployed close to or
inside a power distribution substation. While each substa-
tion covers a relatively small area, an LCC is responsible
for the customers within that particular area. Substations
are currently connected by a high-speed private backhaul
network deployed by the utility company. With extra gate-
ways to the backhaul network, LCCs are interconnected
reliably. Although LCCs and private networks are con-
trolled by utility companies, it is safer to assume that LCCs
do not share collected data during normal operations. Some
necessary conditions for a LCC to share or pass data
to other LCCs include routine maintenance, temporary
system off-line because of cyber attacks or natural dis-
asters. Main functions of LCCs include (i) internal data
(i.e., metering data and sensor data) collection, (ii) pre-
processing for sensitive data so that privacy of customers
is protected, (iii) real-time direct control of the power grid
when needed, (iv) finalizing energy forecast for power
generators, and (v) generating price forecast for customers.

Different from LCCs, a CCC is a comprehensive unit
comprised with complicated and distributed hardware as
well as software. Different levels of services such as infras-
tructure as a service, platform as a service, and software as
a service can be provided. Nonetheless, such complexity
needs to be transparent to customers (i.e., the utility com-
pany). Therefore, the CCC is viewed as a powerful single
unit in the framework. The CCC is provided by a public
cloud service provider. It is connected internally by high
speed networks that are not controlled by the utility com-
pany. For instance, the Internet and private networks of
cloud service providers. Main functions of CCC include (i)
store data uploaded from the LCCs for a certain period, (ii)
fetch data from external sources, and (iii) perform big data
analytics to collected data and make raw energy forecast
for each area and the entire grid. Raw energy forecast is
sent back to LCCs for finalizing.

Power generators consist of conventional energy
sources and renewable energy sources. On one hand, if
energy forecast is provided for a sufficient time period,

Security Comm. Networks 2016; 9:5262–5277 © 2016 John Wiley & Sons, Ltd. 5265
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conventional power generators are able to optimally con-
trol fuel consumption. Transition between peak and off-
peak electricity generations can be more efficiently. On the
other hand, renewable energy sources appear to be less
profitable from energy forecast because of uncontrollable
sources. However, some kind of renewable resources are
predictable. For example, solar power is predictable with
accurate weather forecast. Therefore, in order to control
power generation optimally, estimated capacity of electric-
ity generation from renewable resources is fed back to the
service provider. A better energy forecast for conventional
power generators can be made after receiving that infor-
mation. Energy forecast in different granularity shall be
updated based on the latest collected data and the results
from data analysis.

3.5. External data sources

From the discussion earlier, we can see that, internal data
alone is not enough to make accurate energy forecast for
conventional power generators and energy storage units.
Different types of data from external sources are included
in the ICT framework. As mentioned earlier, for instance,
weather forecast can provide better estimation of electric-
ity generation from renewable energy sources. Locations
and routes of EVs can be used to estimate energy con-
sumption as well as the schedule. Useful information can
also be extracted in many other external sources. Smart
grid will certainly operate more efficiently with all those
external data.

3.6. Big data and cloud computing in
smart grid

Forecasting function of the ICT in smart grid is depicted
in Figure 2. It includes data input, big data analytics, and
information output. Input data of the ICT infrastructure
consists of internal data generated from smart grid and

external data from other sources. Internal data is gener-
ated from the infrastructures in smart grid. For example,
metering data is generated frequently (e.g., every 15 min)
by smart meters deployed in AMI. Metering data reveals
the electricity usage of the power grid. It is important
for the service provider to adjust electricity generations
from the power generators. Besides metering data, the
monitoring and control system in smart grid also gener-
ates various monitoring data from different sensors, such
as PMUs and transmission line monitoring sensors. Sens-
ing data that reveals the operational status of the power grid
is generated in real time (e.g., PMU generates data at high
frequency, for example, 60 to 120 frames per second for
60-Hz system [21]). It is important for the service provider
to be aware of any abnormal situation in the power grid
in real time. Therefore, actions can be taken to prevent a
blackout or to quickly recover from a blackout. With inter-
nal data, the service provider is able to monitor the power
grid and take actions if necessary.

External data from other sources is also an important
input for the ICT infrastructure. For example, the electric-
ity to be generated from conventional power generators
depends not only on energy requirements from customers
but also from the capacity of renewable sources and storage
units. The capacity of renewable sources (e.g., a solar farm)
is not likely controllable. Nonetheless a precise weather
forecast will be helpful for the predication of that capacity.
There are various types and sources of external data. For
example, it can be weather forecast, data from social net-
works, data from location-based tracking applications of
smart devices, and many others.

The collected data assists the service provider to opti-
mize the control over the power grid, such as giving energy
forecast in different granularity (e.g., daily, hourly, and per
minute) to power generators and price forecast in differ-
ent granularity to customers and smart appliances. In order
to achieve the optimal control, the service provider needs
to perform big data analytics in four steps, data collection,
data pre-processing, data storage, and data analysis [22].

Figure 2. Data processing procedure.
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For instance, the service provider models the energy con-
sumption of customers, and more importantly, the sched-
ule of their appliances. The energy consumption of each
appliance may depend on its load, for example, an air
conditioner uses more electricity if lower temperature is
set. However, the fluctuation of power is not too much
for many appliances (e.g., washing machine and coffee
machine). Besides, the schedule and energy consumption
is associated to surrounding environments, for example,
temperature and humidity. Furthermore, big data analyt-
ics in social networks is being widely studied [23] as well.
Useful information can be mined from the status posted by
customers to assist smart grid operations.

However, enormous computing and storage resources
are needed to extract useful information efficiently. How
can utility companies achieve it with a reasonable bud-
get? A feasible solution is to introduce cloud computing
into the ICT infrastructure [24]. Cloud computing brings
three major advantages to smart grid. Firstly, there is no
need to invest on the whole infrastructure, only the infras-
tructure for the private portion of the cloud is deployed
by utility companies. The resources from the public por-
tion of the cloud can be rent at a relatively low price. In
many cases, cloud computing uses a pay-as-you-go pric-
ing model. The maintenance cost is also low because it
only applies to the private portion. Secondly, it is easier
to implement applications in cloud. Public cloud comput-
ing has virtually unlimited resources. Therefore, the utility
companies need not worry about upgrading capacity for
large-scale system, which is no doubt a huge concern in
smart grid. The infrastructure in cloud can also be rescaled
according to adaptive requirements. Moreover, because of
the elasticity, feature updates/upgrades can be performed
in a short amount of time without disturbing users to
install major updates or extra packages. Thirdly, it is eas-
ier to access cloud service from a variety of smart devices.
Because of that, monitoring and controlling of the grid can
be more flexible. Once the security is provided over the
transmission, cloud service can be accessed from virtually
anywhere with authorization.

3.7. Security requirement of the framework

There are different types of information frequently
transmitted in the proposed ICT framework. General
security requirements are listed in Table I for each type of
information.

Because LANs are established for customers, the secu-
rity is protected by corresponding wireless protocols.
Because the utility company have control over the private
networks, information exchanged through private networks
is likely well protected. However, the utility company have
no control over Internet or the CCC; therefore, communi-
cations between LCCs and the CCC need more security
protection in addition to the default protection provided by
Internet protocol and cloud computing service providers.
Moreover, public cloud service may not fulfill the secu-
rity requirements from the utility company. Therefore,
we propose to apply identity-based security schemes for
power companies to secure the data transmission in the
aforementioned framework.

3.8. Applications of the proposed security
schemes

Encryption and digital signature: The proposed
security schemes can be applied directly to provide
both confidentiality and non-repudiation. For instance,
pre-processed metering data sent from LCCs to the
CCC is encrypted and signed to provide confidential-
ity and non-repudiation. Information generated by big
data analytics is also encrypted and signed before being
sent from the CCC to LCCs.
Session key distribution: If symmetric ciphers are
preferred in some applications, the proposed identity-
based scheme can be applied to achieve secure session
key distribution.
Signing right delegation from Li to Lj: If Li is subject
to a routine maintenance, it may delegate signing rights
to another LCC (e.g., Lj). As shown in Figure 3, the
PKG has the authority to delegate signing right from
Li to Lj. Alternatively, Li can delegate signing right
to Lj locally without involving another party for more
efficient operation.
Signing right delegation from Li to a group of LCCs:
The PKG can assign a group of LCCs as a group proxy
to sign for Li, as illustrated in Figure 4. Without loss
of generality, assuming a total number N LCCs are
chosen as a group in the rest of the paper.

Table I. Security requirements.

Confidentiality Data Integrity Non-repudiation

Metering data X X
Monitoring data X
Control message X X
Raw energy forecast X X X
Pre-processed data X X X
Price forecast X X
Energy forecast X X X
Other information X

Security Comm. Networks 2016; 9:5262–5277 © 2016 John Wiley & Sons, Ltd. 5267
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Figure 3. Signing right delegation from Li to Lj.

Figure 4. Signing right delegation from Li to a group of local control centers (LCCs).
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4. IDENTITY-BASED SECURITY
SCHEMES

In the ICT framework, each component has a unique ID.
The foundation of ID-based security scheme is public key
cryptography. However, instead of generating keys ran-
domly, ID-based security scheme utilizes the unique ID of
each participant. By doing so, key management might be
more convenient because some of the keys can be com-
puted locally or even ahead of time. Furthermore, privacy
and authentication can still be provided to the participants.

In the proposed ID-based security, we adopt (ID||time)
instead of ID for public key generation, where time is
the expiration time of current session. In the next session,
the entire participants will update corresponding secrets
and parameters accordingly. When a participant leaves the
system domain, secrets bared by this participant need to
be revoked. By adopting ID||time, if the PKG stops issu-
ing secret keys to the left participant, key revocation can
be performed automatically at the beginning of the next
session. New messages will not be disclosed to old keys.

ID-based security scheme has several applications in
the ICT framework. For example, privacy of the messages
(e.g., pre-processed data) sent from LCCs to the CCC
can be protected by ID-based encryption. Authentication
of the messages sent from control centers to customers
(e.g., pricing forecast) can be protected by ID-based digital
signature.

4.1. Preliminaries

The proposed ID-based security scheme is based on bilin-
ear map. Let G1 and G2 be groups of prime order q. Let g
be a generator of G1. Let Oe : G1 �G1 ! G2. We say that
(G1,G2) are bilinear map groups if Oe has the properties in
the following:

� Bilinearity: Oe(aP, bQ) = Oe(P, Q)ab for all P, Q 2 G1
and all a, b 2 Z�q .

� Non-degeneracy: For any P 2 G1, Oe(P, Q) ¤ 1 for all
Q 2 G1\{O} (indicated as G�1 hereafter).

� Computability: There is a polynomial time algorithm
for computing Oe(P, Q) for all P, Q 2 G1.

4.2. Identity-based signcryption

The proposed IBSC scheme comprises five algorithms:
Setup, Keygen, Signcrypt, Decrypt, and Verify. Without loss
of generality, let A (IDA = A) sends message M = {0, 1}n

to B (IDB = B). The detailed IBSC scheme is described in
the following:

Setup: The PKG chooses groups (G1,G2) of prime
order q, a generator g of G1, a randomly

chosen master key s
R
 � Z�q , a domain secret

g1 = sg 2 G1. The PKG also chooses three
cryptographic hash functions,

H1 : {0, 1}� ! G�1 ,

H2 : {0, 1}� ! Z�q ,

H3 : {0, 1}� ! {0, 1}n

The domain public parameters are

params =
˝
G1,G2, g, q, g1, H1, H2, H3, n

˛
The public/private keys of the AS are pAS =
H1(AS||time) and dAS = spAS.

Keygen: For a given string ID 2 {0, 1}� and a expi-
ration time stamp time, the algorithm builds a
public/private key pair pID/dID as follows.

� Public key: pID = H1(ID||time).
� Private key: dID = spID.

Note that time is converted into {0, 1}� and
is concatenated to ID in the illustration. Other
processes can be taken for the same purpose,
for example, time can also be XORed to ID.

Signcrypt: To signcrypt a message M, sender A

(1) randomly picks r
R
 � Z�q and sets

U = rg

(2) computes h1 = H2(M||A||U) and sets

V = dAh1 + rg1

(3) computes pB = H1(B||time) and h2 =
H2(A||B), and sets

X = h2U

(4) computes h3 = H3
�
X||Oe(rg1, h2pB)

�
and encrypts the message

W = M ˚ h3

(5) finally outputs a 4-tuple
˝
U, V , X, W

˛
.

Note that in the 4-tuple, � =
˝
U, V

˛
serves as

the digital signature and C =
˝
X, W

˛
serves as

the cipher text.
Decrypt: Upon receiving

˝
� , C

˛
, receiver B decrypts M

in the steps as follows.

(1) B computes h03 = H3
�
X||Oe(X, dB)

�
;

(2) decrypts M = W ˚ h03.
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Verify: With M recovered, B continues to verify the
digital signature in the steps as follows.

(1) computes pA = H1(A||time), and h1 =
H2(M||A||U);

(2) verifies if Oe(g, V) = Oe(g1, pAh1 + U).

This completes the description of the
IBSC scheme. We then verify consistency. To
Decrypt M, it must be h03 = h3. It can be
verified as follows:

Oe(X, dB) = Oe(h2rg, spB)

= e(rg, pB)sh2

= e(rg1, h2pB)

(1)

Therefore,

h03 = H3
�
X||Oe(X, dB)

�
= H3

�
X||Oe(h2rg, spB)

�
= h3

(2)

Algorithm Verify is consistent because

Oe(g, V) = Oe(g, dAh1 + rg1)

= Oe(g, pAh1 + rg)s

= Oe(g1, pAh1 + U)

(3)

From the illustration, we can see that sender A encrypts
the message with pB so that confidentiality is provided.
Sender A also signs the message with dA so that non-
repudiation is provided. Data integrity is also provided
with hash functions.

4.3. Identity-based signature

As discussed in previous section, not all messages
need encryption. Nonetheless, data integrity and non-
repudiation are still required. Therefore, the IBSC scheme
may be reduced to an identity-based signature scheme. The
IBS scheme comprises of two algorithms, Sign and Verify.
For consistency, let A sends M to B in the illustration as
follows:

Sign: For a given message M, sender A

(1) randomly picks r
R
 � Z�q and computes

U = rg

(2) computes h1 = H1(M||A||U) 2 Z�q and sets

V = dAh1 + rg1

(3) finally outputs � =
˝
U, V

˛
.

Verify: At the receiver side, B

(1) computes pA = H1(A||time) and h1 = H1(M||A||U);
(2) verifies if Oe(g, V) = Oe(g1, pAh1 + U).

This completes the description of the IBS scheme. The
consistency is proven by Equation (3).

4.4. Key distribution and symmetrical
cryptography

Although encryption is achieved in the IBSC scheme, some
may still prefer symmetric ciphers (e.g., advanced encryp-
tion standard) for data encryption. Because the proposed
identity-based schemes are based on bilinear pairing (over
elliptic curves) with large numbers, they are considerably
slow compared with well-established symmetric ciphers.
Therefore, the IBSC can be modified for session key dis-
tribution with symmetric ciphers (e.g., EK (�)) for the actual
data encryption.

Modified IBSC: To secure a message M with a session
key K, sender A

(1) randomly picks r
R
 � Z�q and sets

U = rg

(2) computes h1 = H2(M||K||A||U) and sets

V = dAh1 + rg1

(3) computes pB = H1(B||time) and h2 = H2(A||B),
and sets

X = h2U

(4) computes h3 = H3
�
X||Oe(rg1, h2pB)

�
and

encrypts the message

W = K ˚ h3

(5) encrypts M as C = EK (M);
(6) finally outputs a 5-tuple

˝
U, V , X, W, C

˛
.

Digital signature is provided in the same way that IBSC
does. The consistency of the modified IBSC follows
the original scheme.

4.5. Single proxy signing right delegation

Certificate distribution: Let cij be the certificate of
signing right delegated by Li to Lj. A simple exam-
ple of such certificate could be cij = AS||j||tij, where tij
be the expiration time of cij. A certificate can be valid
for one message, or for all messages before expiration
of the certificate. To delegate cij for a message M, the
LCC Li
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(1) randomly picks y
R
 � Z�q and sets

U = yg

(2) computes h = H1(M||cij) and sets

V = hUpj

(3) sets W = hdi + yg1.

Signing rights delegation is a 4-tuple �c =˝
U, V , W, cij

˛
.

Once Lj receives the �c, it verifies if Oe(V , W) =
Oe(hUdj, hpi + U). The consistency is shown in the
following:

Oe(V , W) = Oe(hUpj, hdi + yg1)

= Oe(hUpj, hpi + yg)s

= Oe(hUdj, hpi + U)

(4)

Single proxy signature: With certificate cij, Lj is ready
to sign message M on behalf of Li. To do so, Lj

(1) randomly picks z
R
 � Z�q and computes

� = zg,

� = H1(m||w||cij),

! = w + �dj + zg1

(2) finally outputs a 5-tuple �ij = {cij, u, w,�,!}.

The proxy signature is �ij = {cij, u, w,�,!} (note
that u, cij, and w are from Li). A receiver verifies �ij by
checking if

Oe(g,!) = Oe
�
g1, hpi + u + �pj + �

�
The consistency is shown in the following:

Oe(g,!) = Oe(g, w + �dj + zg1)

= Oe(g, hpi + yg + �pj + �)s

= Oe
�
g1, hpi + u + �pj + �

� (5)

Signing right delegation by the PKG: Alternatively,
the PKG is able to distribute a certificate cij to Lj. To
do so, the PKG

(1) randomly picks y
R
 � Z�q and computes

u0 = yg,

h0 = H1(m||cij),

v0 = hupj,

w0 = hdi + hdAS + yg1

(2) finally outputs a 5-tuple � 0c =
˝
u0, v0, u0, w0, cij

˛
.

The delegation � 0c is verified by Lj if Oe(v0, w0) =
Oe(h0u0dj, h0pi + h0pAS + u0). The consistency is shown
in the following:

Oe(v0, w0) = Oe(h0u0pj, h0di + h0dAS + yg1)

= Oe(h0u0pj, h0pi + yg)s

= Oe(h0u0dj, h0pi + h0pAS + u0)

(6)

4.6. Group proxy signing right delegation

Group proxy signing right of Li is delegated by the PKG to
a chosen group of LCCs (e.g., Ln for some n).

Certificate distribution: For each Ln, the PKG gener-
ates a partial signing right certificate cin and

(1) randomly picks yn
R
 � Z�q and computes

un = yng,

hn = H1(m||cin),

vn = hnupn,

wn = hndAS + yng1

(2) finally outputs a 5-tuple �n =
˝
un, vn, wn, cin

˛
.

Once Ln receives the �n, it verifies the certificate by
checking if Oe(vn, wn) = Oe(hudj, hpAS + un).
Partial signature: With �n, Ln can generate a partial
signature for message M. To do so, Ln

(1) randomly picks zn
R
 � Z�q and computes

�n = zng,

�n = H1(m||wn||cin),

!n = wn + �ndn + zng1

(2) finally outputs a 5-tuple � 0n =˝
cin, un, wn,�n,!n

˛
.

Group signature: After all the proxies have generated
partial signatures, one of the LCCs is chosen as the
gateway (e.g., Lj). To generate a group signature, Lj

(1) computes

�g =
NX

n=1

�n,

!g =
NX

n=1

!n,

wg =
NX

n=1

wn
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(2) finally outputs �g =
˝
�g,!g, wg, wn&cin 8n

˛
.

Upon receiving the group signature �g, a receiver
verifies by checking if

Oe(g,!g) = Oe

 
g1,

NX
n=1

(hnpAS + �npn) + ug + �g

!

The consistency can be verified such that

Oe(g,!g) = Oe

 
g,

NX
n=1

(wn + �ndn + zng1)

!

= Oe

 
g,

NX
n=1

(hdAS + yng1 + �ndn + zng1)

!

= Oe

 
g1,

NX
n=1

(hnpAS + yng + �npn + zng)

!

= Oe

 
g1,

NX
n=1

(hnpAS + �npn) + ug + �g

!

5. SECURITY ANALYSIS OF THE
PROPOSED SCHEMES

5.1. Assumptions for security analysis

The security of the IBSC and IBS schemes is based on the
following computational problems [16,17,25]:

Computational Diffie–Hellman (CDH) problem: given
P, aP, and bP 2 G1, to compute abP 2 G1 in
polynomial time.
Bilinear Diffie–Hellman (BDH) problem: given
P, aP, bP, and cP 2 G1, to compute Oe(P, P)abc 2 G2
in polynomial time.

Without loss of generality, time stamp time is viewed
as part of the identity ID in the analysis later. For bet-
ter illustration, the proposed IBSC scheme is separated
into identity-based encryption scheme and identity-based
signature for security analysis. Moreover, all the random
values are picked uniformly unless specified.

5.2. Identity-based encryption security

Security models

Definition 1 ((Semantic security for IBE schemes) [25]).
if no probabilistic polynomial time adversary has a non-
negligible advantage in this game:

(1) The challenger runs the setup algorithm to gener-
ate the system’s parameters and sends them to the
adversary.

(2) The adversary A performs a series of queries:

� Key extraction queries: A produces an identity
ID and receives the private key dID.

� Challenge: After a polynomial number of
queries, A outputs two equal-length plaintexts
M0 and M1 and a public key ID on which it
wishes to be challenged (ID has not appeared in
private key queries). The challenger picks a ran-
dom bit T 2 {0, 1} and encrypts Mb according
to the IBE scheme.

� More key extraction queries: A issues more key
extraction queries. The challenger responds as
before.

Finally, the adversary A outputs a guess T 0 2 {0, 1}, A
wins the game if T = T 0.

Security analysis

Lemma 1. Let H1 be a random oracle from {0, 1}� to
G�1 . An adversary A has � advantage against IBE. Then
there exists an adversary F that has advantage

�F �
�

e(1 + qE)
(7)

Proof. Let T be a random variable following Bernoulli
distribution, that is, T 2 {0, 1} with probability ı of being
0 and probability 1 – ı of being 1.

Setup: the challenger generates system parameters and

sends it to F . F picks a random value pID
R
 � G�1 .

Then A issues H1 queries.
Public key queries on H1: A queries oracle H1 at IDi,
F responds that,

� If H1(IDi) exists in L1 (which is a list kept by F),
then returns that stored value.

� If H1(IDi) does not exist in L1, then F randomly

choose T 2 {0, 1}, and vi
R
 � Z�q and sets

pi = H1(IDi) =

�
vig, T = 0
vipID, T = 1

(8)

F stores
˝
IDi, pi, vi, T

˛
in L1.

Challenge: A outputs IDc and two equal-length mes-
sages M0 and M1. F gives the challenger M0, M1, the
challengers randomly picks u 2 {0, 1} and encrypts
Mu ! C =

˝
X, W

˛
. F runs the response to H1 queries

to find pc such that H1(IDc) = pc. Then, F findsD
IDc, pc, vi, T

E
.

� If T = 0, then F aborts.
� If T = 1, then we have pc = vipID. Set C0 =D

v–1
i X, W

E
. Because
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Oe(v–1
i X, dc) = Oe(X, v–1

i spc)

= Oe(X, v–1
i svipID)

= Oe(X, dID)

therefore, C0 is IBE of Mu under IDc, and decryption
of C0 using dc is the same as decryption of C using dID.
Guess: F outputs a guess u0.

If F does not abort during the process, then |Pr[u =
u0] – 1/2| � �, where the probability is over the random
bits used by A, F and the challenger. Let

� E1 be the event that F aborts in private key
queries.

� E2 be the event that F aborts in challenge stage.

Then we have the probability of not aborting is

Pr(:E1 ^:E2) = Pr(:E1)Pr(:E2) = ıqE (1 – ı) (9)

The maximum probability is achieved at ıopt =
qE

qE+1 , which implies that

Pr(:E1 ^ :E2) = ıqE (1 – ı) �
1

e(1 + qE)
(10)

Thus, we can conclude that F has an advantage
�F � �

e(1+qE) .

Lemma 2. Let H3 be a random oracle from Z�q to
{0, 1}n. Then there is an algorithm F that solves the BDH
problem with advantage

�B �
2�

qH3

(11)

Proof. Given (g, P1, P2, P3) = (g, ag, bg, cg), F sets g1 =
P1 and pID = P2. A then issues H3 queries for hi.

H3 queries: Suppose that F keeps a list L2 for˝
hi, H3(hi)

˛
. If H3(hi) exists in L2, return that value.

Otherwise, F randomly picks v
R
 � {0, 1}n and sets

Hi(hi) = v.
Challenge: A outputs M0 and M1. F randomly picks

Y
R
 � {0, 1}n and defines C =

˝
P3, Y

˛
. F gives C to A.

Note that by definition, the decryption is

Y ˚ H3(Y ||Oe(Y , dID)) = Y ˚ H3(Y ||D)

where D = Oe(Y , dID).

Guess: A outputs u0
R
 � {0, 1}. F randomly picks˝

hj, H3(hj)
˛ R
 � L2 and outputs hj. Note that with Y and

hj, D can be computed because Y ||hj = D, where D is
the solution to the BDH problem.

Let EH be the event that A issues H3 queries for
H3(Y ||D), then from [25] we know that Pr[EH] � �

and thus �B �
2�

qH3
.

Theorem 1. Suppose H1 and H3 are random oracles,
A has advantage � against IBE within running time t. A
also makes qE private key extraction queries and qH3 H3
queries. Then there exists polynomial algorithm F that
solves the BDH problem with advantage

�0 �
2�

e(1 + qE)qH3

(12)

within a time t0 < t + (qH1 + qE + qH3 )tm where tm is the
time to compute a scalar multiplication in G�1 .

Theorem 1 follows Lemmas 1 and 2 directly.

5.3. Identity-based signature security

Security models

Definition 2 ((Strongly existentially unforgeable identi-
ty-based signature scheme under chosen-message attacks)
[16]). If no probabilistic polynomial time adversary has
a non-negligible advantage in this game:

(1) The challenger runs the setup algorithm to gener-
ate the system’s parameters and sends them to the
adversary.

(2) The adversary A performs a series of queries:

� Key extraction queries: A produces an identity
IDi and receives the private key di.

� Signature queries: A produces a message M
and an identity IDi and receives a signature
on M that was generated by the signature ora-
cle using the private key corresponding to the
identity IDi (i.e., di).

� After a polynomial number of queries, A pro-
duces a tuple (ID, M, � ) made of an identity
ID, whose corresponding private key was never
asked during stage 2, and a message signature
pair (M, � ) such that � was not returned by
the signature oracle on the input (M, ID) during
stage 2 for the identity ID.

A wins the game if the forged signature can be veri-
fied when the verification algorithms run on the tuple
(ID, M, � ). The forger’s advantage is defined to be its prob-
ability of producing a forgery taken over the number of
coin-flipping of the challenger and A.

Security analysis

Theorem 2. Let H1 and H2 be random oracles, A has
advantage � against IBS in running time t. A also makes
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qE private key extraction queries, qH2 H2 queries, and qS
signature queries. Then there is an algorithm F that solves
the CDH problem with advantage

�C �
� – qS(qH2 + qS)/q

e(qE + 1)
(13)

within running time t0 < t + (qH1 + qE + qH2 + 2qS)tm
+ (qS + 1)tmm, where tm is the running time for a scalar
multiplication in G�1 and tmm is the running time for a
multi-exponentiation in G�1 .

Proof. Let P1 = ag and P2 = bg be the input of the CDH
problem. Given (P1, P2). First, F initializes g1 = P1 as
the domain secret. From the perspective of the adversary,
the distribution of g1 secret is identical to the real one (i.e.,
g1 = sg). Let T be a random variable following Bernoulli
distribution, that is, T 2 {0, 1} with probability ı of being
0 and probability 1 – ı of being 1. Then, F issues a series
of queries as stated in the following:

(1) H1 queries: Suppose the adversary issues a query for

an identity IDi. F first picks a random number ui
R
 �

Z�q and decides the public key based on the outcome
of T , such that

pi =

�
uiP2, T = 1,
uig, T = 0

(14)

F then keeps (IDi, ui, T) in list L1.
(2) Private key queries: For IDi, F recovers ui and T

from L1, such that

(IDi, ui, T) L1

And the private key of IDi is determined as

di =

�
Abort, T = 1,
uiP1, T = 0

(15)

T = 1 indicates that no answer to the query. When
T = 0, note that di = api follows the distribution of
real secret key.

(3) H2 queries: Assuming that F keeps a list L2
that stores any previously defined H2(hi). Given
(IDi, M, Ui), F first checks whether H2(hi) has been
defined (e.g., Hi). If so, the defined value will be

returned. Otherwise, F randomly picks vi
R
 � Z�q ,

and determine H2(hi) as,

H2(hi) =

�
vi, not defined in L2,
Hi, already defined in L2

(16)

(4) Signature queries: A randomly chooses �i
R
 � Z�q

and �i
R
 � Z�q . Then set Ui = �ig and Vi = �ig1.

Define H2(hi) = (uiP2)–1(�ig – Ui) 2 Z�q . The pair

�i =
˝
Ui, Vi

˛
appears as a valid signature.

�i =

� ˝
Ui, Vi

˛
, H2(hi) not defined in L2,

Abort, H2(hi) defined in L2
(17)

(5) Signature forgery: Given a message M and an iden-

tity ID, A forges a signature
˝
U, V

˛
. F recovers

(ID, u, T) L1

If T = 0 then abort. Otherwise (i.e., T = 1), the
list L2 must contain an entry (ID, M, U, v) with over-
whelming probability. Because H2(hID) has been
defined as v, if A succeeds in the game then F knows
that

Oe(g, V) = Oe(g1, pIDhID + U)

With hID = v, pID = uP2, where u and v are known,
then F also finds that

Oe(g, V) = Oe(g1, pIDh1 + U)

= Oe(g1, pIDhID)Oe(g1, U)

= Oe(P1, uP2v)Oe(P1, U)

) Oe(g, V – vP1) = Oe(P1, vuP2)

And (vu)–1(V – vP1) is the solution to the CDH
instance (P1, P2).

From Lemma 1, we know that the probability of F not
aborting in the process of key extraction query is at least
1/e(qE + 1). Moreover, F aborts in the process of signature
queries is at most qS(qH2 +qS)/q because of conflict on H2,
where q is the size of G1. Overall, F has an advantage at

least �0 �
�–qS(qH2 +qS)/q

e(qE+1) . That completes the proof.

6. PERFORMANCE ANALYSIS OF
THE PROPOSED SCHEMES

6.1. Analysis

Performance of the proposed schemes is based on the
number of operations and the efficiency of each type of
operations. Table II lists the number of operations of each
algorithm. Among them, mul indicates standard multi-
plication in G1. Because the addition in G1 and XOR

Table II. Computation complexity.

# of Oe # of mul # of H1 # of H2 # of H3

Signcrypt 1 5 1 2 1
Decrypt 1 0 0 0 1
Sign 0 3 1 0 0
Verify 3 1 1 1 0
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are simple and efficient operations, they are not listed in
the table.

Hash functions can be computed efficiently in general.
In practice, H2 and H3 are easy to find. However, it is hard
to build H1 : {0, 1} ! G�1 . In the analysis, we relax H1
into two steps.

(1) H1 : {0, 1}� ! I � {0, 1}�;
(2) H01 : I ! G�1

In step 1, I is a finite set, H01 is an encoding function
that is computable. Note that after the relaxation, the pub-
lic key for a give ID and time is pID = H01(H1(ID||time)). In
the proposed IBSC scheme, public keys can be computed
at the beginning of each session and cached for the entire
session. Therefore, the relaxation of H1 does not intro-
duce more computation cost in reality. Because of that,
performance of the IBSC and IBS schemes will be consid-
ered efficient if bilinear pairing Oe and multiplication in G1
can be computed efficiently. Because the Weil pairing can
be performed efficiently using Miller’s algorithm [26], the
bilinear map Oe can be performed efficiently as well.

To analyze the performance of the IBSC scheme, we
apply two bilinear pairing functions, that is, modified Weil
pairing and Tate pairing over supersingular elliptic curve
E : {y2 = x3 + 1|x, y 2 Fp}. We first construct G1. Let p be
a prime number s.t. p � 2 mod 3 and p = aq – 1 for some
prime q and positive integer a. Then G1 is the subgroup
of order q of F�

p2 . CCH problem is hard in the group G1

[25,27]. However, it is worth mentioning that decisional
Diffie–Hellman problem is an easy one for bilinear map Oe.
This is because with given P, aP, bP, cP 2 G1, 8a, b, c 2
Z�q , we can easily check if c � ab mod q by comparing
Oe(aP, bP) with Oe(P, cP).

The Weil pairing e has the properties of bilinearity and
computability; however, it does not have non-degeneracy.
Therefore, we adopt a modified Weil pairing Oe : G1 �

G1 ! G2 s.t. Oe(P, Q) = e(P,�(Q)), where � is an auto-
morphism on the group of points of supersingular elliptic
curve E : {y2 = x3 + 1|x, y 2 Fp}, that is, �(x, y) = (�x, y),
where � is a primitive cube root of unity in Fp. Thus,
y2 = (�x)3 + 1 = �3x3 + 1 = x3 + 1 ) �(P1) + �(P2) =
�(P1 +P2),8P1, P2 2 G1. The bilinear map Oe is calculated
as a Weil pairing with an additional standard multiplication
on the curve E. According to [25], Oe is believed to satisfy
the BDH problem. However, computing discrete logarithm
in F�p is sufficient for computing discrete logarithm in G1.
Therefore, in order to make it sufficiently hard in practice,
q needs to be at least 512-bit long.

6.2. Numerical results

We evaluate the proposed identity-based schemes with
modified Weil pairing Oe using Mathematica 10.0 with a
computer equipped with an Intel Core i5-2400 @ 3.1 GHz
and 12 GB RAM. We first show the computational cost of
each operation. Because H1, H2, and H3 do not have much

difference in computational time and the added encoding
function H01 is more efficient than H1, the hash functions
are excluded from the performance analysis.

First, we evaluate the computational time for bilinear
pairing Oe. Two sets of evaluation are given, that is, for
q = 256 bits and q = 385 bits. Each evaluation is the aver-
age value from 10 000 calculations. With q = 256 bits,
one Oe takes about 7.44 ms. With q = 385 bits, one Oe takes
about 13.25 ms. We then evaluate the computational time
of standard multiplication over G1 (i.e., kpP 2 G1). The
computational time of kpP 2 G1 mainly depends on the
size of kp (assuming q = 256 bits). The computational time
of each evaluation is averaged from 10 000 calculations.
With kp = 128/256/512 bits, a standard multiplication
operation takes about 3.25/6.43/12.29 ms. Note that in the
proposed IBSC, kp is the output of some hash functions,
therefore, kp usually is 256 bits or 512 bits, where the com-
putation is efficient. The evaluation results are summarized
in Table III.

Based on the evaluations we have for each operation,
we then show the total operational time for each algorithm.
In practice, public keys are computed once and cached
for the entire session. Computational time of each algo-
rithm is listed in Table IV. It is shown that the proposed
IBSC performs efficiently for delay tolerable and even near
real-time data transmission, for example, metering data
transmission. However, for real-time monitoring data, for
example, PMU data, identity-based schemes alone may
not be a good solution. Without sufficient computational
resources, faster security protocols and schemes are recom-
mended, for instance, traditional symmetric ciphers. The
proposed IBSC can be applied for initial authentication and
key distribution of the chosen symmetric ciphers.

Table III. Computational time for each operation.

Bilinear pairing Oe

q = 256 bits q = 385 bits
7.44 ms 13.25 ms

Standard multiplication
kp = 256 bits kp = 512 bits
6.43 ms 12.29 ms

Table IV. Computational time of each algorithm.

q = 256 bits q = 256 bits
kp = 256 bits kp = 512 bits

Signcrypt 39.59 ms 68.89 ms
Decrypt 7.44 ms 7.44 ms
Sign 19.29 ms 36.87 ms
Verify 28.75 ms 34.61 ms

q = 385 bits q = 385 bits
q = 256 bits q = 512 bits

Signcrypt 45.4 ms 74.7 ms
Decrypt 13.25 ms 13.25 ms
Sign 19.29 ms 36.87 ms
Verify 46.18 ms 52.04 ms
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7. CONCLUSION

In this paper, we proposed a big data-driven, cloud-based
ICT framework for smart grid communication infrastruc-
ture. Taking into consideration the security requirements
of each message, we proposed an ID-based signcryption
security scheme to secure the transmissions in the ICT
framework. The proposed IBSC scheme performs simulta-
neously the functions of encryption and digital signature.
Therefore, confidentiality, non-repudiation as well as data
integrity are provided. The proposed IBSC scheme was
also reduced to an ID-based digital signature scheme. To
further enhance the computational performance, symmet-
ric ciphers are introduced to the IBSC. In addition, signing
right delegation from one LCC to another (or a few)
LCC is achieved by identity-based schemes. The security
of the proposed IBSC is studied. The numerical results
showed that the proposed IBSC scheme is able to perform
efficiently with security guarantee in the CPS of smart
grid. In the future, we will focus on the researches of
big data analytics in implementing the ICT framework in
smart grid.
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