4,948 research outputs found

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Using Column Generation to Solve Extensions to the Markowitz Model

    Full text link
    We introduce a solution scheme for portfolio optimization problems with cardinality constraints. Typical portfolio optimization problems are extensions of the classical Markowitz mean-variance portfolio optimization model. We solve such type of problems using a method similar to column generation. In this scheme, the original problem is restricted to a subset of the assets resulting in a master convex quadratic problem. Then the dual information of the master problem is used in a sub-problem to propose more assets to consider. We also consider other extensions to the Markowitz model to diversify the portfolio selection within the given intervals for active weights.Comment: 16 pages, 3 figures, 2 tables, 1 pseudocod

    Multi-Modal Mean-Fields via Cardinality-Based Clamping

    Get PDF
    Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probability distribution as a product of marginal probabilities, it may fail to properly account for important dependencies between variables. We therefore replace the fully factorized distribution of Mean Field by a weighted mixture of such distributions, that similarly minimizes the KL-Divergence to the true posterior. By introducing two new ideas, namely, conditioning on groups of variables instead of single ones and using a parameter of the conditional random field potentials, that we identify to the temperature in the sense of statistical physics to select such groups, we can perform this minimization efficiently. Our extension of the clamping method proposed in previous works allows us to both produce a more descriptive approximation of the true posterior and, inspired by the diverse MAP paradigms, fit a mixture of Mean Field approximations. We demonstrate that this positively impacts real-world algorithms that initially relied on mean fields.Comment: Submitted for review to CVPR 201

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)

    A similarity measure for the cardinality constrained frontier in the mean-variance optimization model

    Full text link
    [EN] This paper proposes a new measure to find the cardinality constrained frontier in the meanvariance portfolio optimization problem. In previous research, assets belonging to the cardinality constrained portfolio change according to the desired level of expected return, so that the cardinality constraint can actually be violated if the fund manager wants to satisfy clients with different return requirements. We introduce a perceptual approach in the meanvariance cardinality constrained portfolio optimization problem by considering a novel similarity measure, which compares the cardinality constrained frontier with the unconstrained mean-variance frontier. We assume that the closer the cardinality constrained frontier to the mean-variance frontier, the more appealing it is for the decision maker. This makes the assets included in the portfolio invariant to any specific level of return, through focusing not on the optimal portfolio but on the optimal frontier.Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean-variance optimization model. Journal of the Operational Research Society. 69(6):928-945. doi:10.1057/s41274-017-0276-6S92894569
    • …
    corecore