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“Nothing in life is quite as important as you think it is

while you’re thinking about it.”
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Abstract

The behaviourally based portfolio selection problem with investor’s loss aversion
and risk aversion biases in portfolio choice under uncertainty are studied. The
main results of this work are developed heuristic approaches for the prospect the-
ory and cumulative prospect theory models proposed by Kahneman and Tversky
in 1979 and 1992 as well as an empirical comparative analysis of these models and
the traditional mean variance and index tracking models. The crucial assumption
is that behavioural features of the (cumulative) prospect theory model provide
better downside protection than traditional approaches to the portfolio selection
problem.

In this research the large scale computational results for the (cumulative) prospect
theory model have been obtained. Previously, as far as we aware, only small
laboratory (2-3 artificial assets) tests has been presented in the literature. In order
to investigate empirically the performance of the behaviourally based models, a
differential evolution algorithm and a genetic algorithm which are capable to
deal with large universe of assets have been developed. The specific breeding and
mutation as well as normalisation have been implemented in the algorithms. A
tabulated comparative analysis of the algorithms’ parameter choice is presented.

The performance of the studied models have been tested out-of-sample in different
conditions using the bootstrap method as well as simulation of the distribution of
a growing market and simulation of the t-distribution with fat tails which char-
acterises the dynamics of a decreasing or crisis market. A cardinality and CVaR
constraints have been implemented to the basic mean variance and prospect the-
ory models. The comparative analysis of the empirical results has been made
using several criteria such as CPU time, ratio between mean portfolio return and
standart deviation, mean portfolio return, standard deviation σ, VaR and CVaR
as alternative measures of risk. The strong influence of the reference point, loss
aversion and risk aversion on the prospect theory model’s results have been found.

The prospect theory model with the reference point being the index is compared
to the index tracking model. The portfolio diversification benefit has been found.
However, the aggressive behaviour in terms of returns of the prospect theory
model with the reference point being the index leads to worse performance of this
model in a bearish market compared to the index tracking model. The tabulated
comparative analysis of the performance of all studied models is provided in this
research for in-sample and out-of-sample tests.
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Chapter 1

Introduction

1.1 Portfolio selection: history and development

The portfolio optimisation problem is a two objective problem. On the one hand,

it is a question of how to determine an amount (proportion, weight) of money to

invest in each type of asset within the portfolio in order to receive the highest

possible return (or utility) by the end of the investment period. While on the other

hand, an appropriate level of risk should be achieved together for an acceptable

level of return.

Modern Portfolio Theory (MPT) began with a paper [53] and a book [54] written

by the Nobel laureate Harry Markowitz. Many researchers consider the emer-

gence of this theory as the birth of modern financial economics (see, for example

[70]). The cornerstones of Markowitz’s theory are the concepts of return, risk

and diversification. It is widely accepted [70] that an investment portfolio is a

collection of income-producing assets that have been acquired to meet a financial

goal. However, an investment portfolio as a concept did not exist before the late

1950s.

In 1938 John Burr Williams in his book “The Theory of Investment Value”

[86] introduced the dividend discount model. The author suggested to solve the

investment problem by finding a good stock and buying it at the best price. Many

1



Chapter 1. Introduction 2

investors followed this advice and investing was perceived as a form of gambling

for the rich people.

In 1949 Benjamin Graham wrote the book “The Intelligent Investor” [35], in

which he advised that the investors in their decisions should take into account

a company‘s fundamentals, i.e. company shares’ real (supported by the value

of the company assets) price. The investor’s goal then according to Graham’s

investing philosophy is to find fundamentally good companies’ shares at a cheap

price. This concept is known as “margin of safety”.

Markowitz in 1952 used mean return, variance (as a risk measure of the distribu-

tion of returns) and covariance (as a measure of the degree to which returns on

two risky assets move in tandem [53]) to derive an efficient frontier where for each

optimal portfolio its variance is minimised for a given portfolio expected return

(or, inversely, portfolio expected return is maximised for a given variance). Hence,

the optimal portfolio can be chosen in accordance with the investor’s preferences

and their attitude to risk and return.

One of Markowitz biggest contributions to the financial theory is the concept of

diversification as a way to reduce risk. Scientific thoughts from previous years

encouraged Markowitz and his followers to conceptualise the framework of port-

folio selection, and, eventually, led to the solution of the portfolio optimisation

problem.

Remarkably, there is a long history behind the Expected Utility Theory (EUT)

that started in 1738 when Daniel Bernoulli investigated the St. Petersburg para-

dox. He was the first scientist who separated the definitions of “price” and

“utility” in terms of determining an item’s value. Price is an assessment of an

item and depends only on the item itself and its characteristics, i.e. price is the

objective value. In contrast, utility is subjective and “is dependent on the par-

ticular circumstances of the person making the estimate” [15]. EUT follows the

assumptions of the neoclassical theory of individual choice in cases when risk ap-

pears. It was formally developed by John von Neumann and Oscar Morgenstern

in their book “Theory of Games and Economic Behavior”(1944) [57].
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The theory’s main concern is the representation of individual attitudes towards

risk [46]. Since the 1950s, several papers appeared showing that the empirical

evidence on individuals’ patterns of choice under risk are inconsistent with the

expected utility theory, see e.g. [62]. It is also shown [65] that the players’

behaviour systematically violates the independence axiom. At the same time the

EUT is unable to explain many paradoxes that take place in economic practice

(for example, Allais Paradox [6]).

The number of EUT’s drawbacks led to the appearance of the Behavioural Port-

folio Theory (BPT) – a new fundamental framework which was designed to com-

pensate for the misguidings of the EUT. To date it is the best theory explaining

the behaviour of the players and investors in the experiment in decision making

under risk. In contrast to EUT, BPT fills in some gaps in explaining controversial

economic phenomena, such as Ellsberg Paradox [26].

The recent financial crisis has shown the shortcomings of the individual market

instruments and the low level of validity in investment decisions. This can be

explained by the dismissive investors’ attitude in assessing the real risks, they

usually just follow their own intuition. In the investment practice, the situation

of unaccounted risks is fairly common, hence, the investors need to have a reliable

mathematical tool for justification of investment decisions. In this thesis we

consider BPT as a tool which takes into account the behavioural errors.

BPT was developed by Shefrin and Statman in 2000 [74]. The main idea of

the theory is the maximisation of the value of the investor’s portfolio in which

several goals are met and these goals are considered with different levels of risk

aversion. BPT is based on two main theories: Security-Potential/Aspiration

Theory (SP/A) and Prospect Theory (PT). SP/A theory, established by Lola

Lopez in 1987 (see [51]), is a general choice (not only financial) risk framework

and not specified for the portfolio selection problem. In our research we focus

on the PT [45] devoted to human behaviour in financial decision making under

uncertainty.
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PT adopts the main idea from the expected utility theory and adds up the vital

psychological components, which take into account human behaviour in the de-

cision making process. It also fixes different types of inaccuracies that took place

in previously developed behaviour based theories, e.g the independence axiom

and the inconsistence assumption of a uniform attitude towards risk, see [74].

As far as we aware, despite many papers devoted to PT, only a few of them

have considered its practical application in economics, in particular, in financial

markets. It can be explained, according to Barberis [10], by the fact, that PT is

not ready to be used as a real economic model.

In this thesis, we apply the PT model to several empirical and experimental data

sets in order to find an optimal solution to the portfolio selection problem. We

also test the results out-of-sample and compare the PT model’s performance with

the results obtained in the framework of the Markowitz mean variance model and

the index tracking problem.

1.2 Main objectives of the thesis

The goal of this thesis is to identify potential benefits of behaviourally based

prospect theory model depending on different market situations in comparison

with traditionally accepted portfolio optimisation models. The main objectives

according to the main goal are as follows:

• Development of the appropriate solution approaches to prospect theory and

its extended version, cumulative prospect theory;

• To identify the optimal solution approach by means of comparative analysis

and selection of optimal parameters;

• To investigate the performance of the studied models (prospect theory and

cumulative prospect theory models) in comparison with mean variance and

index tracking models in different settings:



Chapter 1. Introduction 5

– to consider them with a cardinality constraint;

– to consider them with a CVaR constraint;

• To analyse the performance of the models in out-of-sample data for differ-

ent market conditions (using simulated data of bullish and bearish market

dynamics).

1.3 Thesis structure

The thesis consists of five chapters, a bibliography and appendices. Chapter 1

is an auxiliary part of the work that provides introductory knowledge, the main

objectives and motivation. This chapter contains a brief insight into the history

of the portfolio selection problem.

Chapter 2 provides a literature survey for the main theories separately and math-

ematical formulations of the considered portfolio optimisation models as well as

the definitions of some risk measures.

In Chapter 3 we develop several solution approaches for nonlinear portfolio op-

timisation problems. In Section 3.1 we describe two basic heuristic algorithms,

namely the differential evolution algorithm and the genetic algorithm. These

are able to deal with prospect theory and cumulative prospect theory problems

which are non-convex problems as well as with cardinality and CVaR constrained

prospect theory problems. We use an extended version of the differential evolu-

tion algorithm namely the differential evolution algorithm with smoothing of the

utility function using splines in order to verify the solution and find the optimal

solution approach. In Section 3.2 solution approach to the mean-variance-CVaR

model is considered.

In Chapter 4 we present our empirical study and comparative analysis. Section

4.1 is devoted to basic settings for our empirical studies such as data used in the

research, parameters of the models and parameters of the heuristic solution ap-

proaches. In Section 4.2 the performance of the mean variance and behaviourally
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based models is analysed. We split the models into 3 groups: basic models, models

with cardinality constraints and models with a CVaR constraint. The empirical

results obtained for each model are analysed in-sample and out-of-sample. We

simulate the dynamics of a bullish and bearish market for the out-of-sample tests

as well as apply the bootstrap method. In Section 4.3 the empirical results and

comparative analysis of the index tracking model and prospect theory model with

index tracking are presented.

We describe the most important findings and conclusion in Chapter 5. The main

contribution of this thesis as well as the ideas for future work are presented in

this chapter.

The research was part funded by RFBR (grant 14-01-00140) in 2014. The results

given in this thesis were published in Izvestia of the Saratov University, which is

recommended by the Higher Attestation Commission (VAK) to be included in the

list of leading scientific magazines and editions in Russia Federation. Also part

of empirical study has been submitted to Quantitative Finance and presented at

Applied Mathematical Optimization and Modelling - APMOD 2012, Paderborn,

Germany and XXVI EURO - INFORMS 26th European Conference on Oper-

ational Research 2013, Rome, Italy. Several talks and presentations based on

results presented in this thesis were made:

1. “Prospect Theory Based Portfolio Optimisation: an Empirical Study and

Analysis”, at Research Student Symposium, School of Information Systems,

Computing and Mathematics, Brunel University, London, UK, 2014

2. “Behavioural finance and mathematical modelling”, at Student Mobility

Programme, Brunel Business School, Brunel University, London, UK, 2014

3. “Portfolio Optimisation Model with Prospect Theory Investor Preferences:

Benefits and Difficulties”, at the School of Management, Keele University,

Keele, UK, 2013



Chapter 1. Introduction 7

4. “Portfolio Optimisation with Prospect Theory Investor Preferences” at Re-

search Student Symposium, School of Information Systems, Computing and

Mathematics, Brunel University, London, UK, 2012



Chapter 2

Literature review

First we set out some general notation that we use for all of our models. In this

chapter and in the rest of the thesis, we will use the following notation:

N - number of assets,

S - number of scenarios (time periods),

K - cardinality limit (desirable number of assets in the portfolio),

ps - probability of scenario s,
∑
s

ps = 1,

r̄i - mean return of asset i,

ris - return of asset i in scenario s, i = 1, . . . , N, s = 1, . . . , S,

r0 - reference point,

ωi ≥ 0 - weight of asset i in the portfolio,

x = (ω1, . . . , ωN) - a portfolio and
N∑
i=1

ωi = 1,

X = {x = (ω1, . . . , ωN) ∈ RN
+} - set of all portfolios,

rs(x) - return of portfolio x in scenario s,

d - desirable level of return,

z - constraint on CVaR,

� denotes a preference relation over the set of prospects, wherein � is a strict

preference relation and ∼ is an indifference relation.

8
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2.1 Modern portfolio theory

In this section we consider several basic assumptions of modern portfolio theory

that are important for our research. MPT says that investors act rationally

and that they are risk-averse. This assumption comes from the efficient market

hypothesis and means that people choose alternatives that are economically more

beneficial for them. Originally, Markowitz explained rationality of an investor in

terms of certainty and return. He devoted his technique to people who prefer

certainty to uncertainty and who prefer higher return to less return. At the same

time, he accepted that there is a type of investor who acts more as a speculator.

However, he did not assume that even a rational investor becomes risk seeking

in specific circumstances. According to Markowitz the MPT does not work for

such cases [54].

Among the latest attempts to incorporate human mentality into a logical and

practical mean variance scheme we would like to mention the results published in

“Portfolio Optimization with Mental Accounts” (2010). In this study the authors

considered a portfolio as a set of subportfolios with different financial goals and

risk/return investor preferences. Mathematically the idea is to use the mean vari-

ance quadratic utility function with a risk aversion coefficient. Then they implied

different levels of risk-aversion depending on the specific goals of the subportfolio

into the Markowitz model [24]. “These generalizations of MVT (Mean-Variance

Portfolio Theory) and BPT (Behavioural Portfolio Theory) via a unified MA

(Mental Accounting) framework result in a fruitful connection between investor

consumption goals and portfolio production” [24]. However, some questions are

still left unanswered. For example, the diversification problem was completely

ignored in the paper.

In general, the diversification problem is a question of how many assets in the

portfolio will be necessary and sufficient to provide an efficient portfolio in respect

of the transaction costs. Moreover, the optimal level of diversification should

provide convenience for the portfolio management. We will consider this problem

in further discussions.
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Modern portfolio theory works under the assumption that asset returns are jointly

normally distributed random variables [42]. However, in the early 1960s several

scientists demonstrated that the Gaussian distribution is not suitable for the de-

scription of the return distribution. For example, Mandelbrot [52] and Fama [28]

presented the models of the empirical heavy tailed character of the financial asset

returns. These empirical returns demonstrated significant kurtosis, asymmetric

skewness and heavy tails.

Nowadays, it is a widely accepted fact that return distributions have fat tails

(leptokurtic returns). These fat tails are defined as rare but significant market

events which can cause extreme gains or losses in a portfolio. In the normal

distribution framework the probability of such an event is equal to 0.1%, in

reality, these fat-tail events occur more frequently.

It is known that the Markowitz mean variance model provides an optimisation

procedure which is based on historical average returns in order to estimate future

portfolio returns. It means that the mean variance portfolio is calculated using

mean and covariance matrices on data which reflects market trends in the past.

However, historical estimates often provide poor prediction of future behavior

of the assets in the real market conditions [16]. That is why many empirical

studies of the portfolio selection problem include not only in-sample results but

out-of-sample testings.

Another weakness of the MPT are unaccounted transaction costs, which could

affect significantly the financial performance of the portfolio in the investment

process [60]. On the one hand, in fast changing market conditions the rebalancing

stage plays a very important role in keeping the portfolio optimal. This activity

leads to an increase in the transaction costs and, hence, decrease in the current

profit. On the other hand, ignoring the transaction cost in a portfolio selection

model often leads to an inefficient portfolio in practice [59].

In this thesis we show how to solve this problem in terms of the investor’s pref-

erences of diversification level. Using a cardinality constraint in the problem
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formulation which is a limit on the number of assets in the portfolio, we restrict

the transaction costs.

It is empirically confirmed that diversification beyond the level of 8-10 assets in a

portfolio may not be rewarding [32], [27], [43]. From a mathematical point of view

the optimal portfolio in MPT is always well-diversified because risk minimisation

depends on the covariance matrix of return. The larger the number of assets held

in the portfolio the greater the combined value of the risk becomes for the stocks

with different parameters of the return distribution. It is found [77], [73], that

the variance-covariance matrix of returns of a large size portfolio tends to conceal

significant singularities or near-singularities, hence, the number of securities in

the portfolio should be limited.

Taking into account the assumptions considered above we can conclude that

MPT is both sufficiently general and static for a significant range of practical

situations and simple enough for theoretical analysis and numerical solution. At

the same time, the portfolio selection problem becomes even more complicated in

modern economic conditions which demand more flexible and multi-factor models

and tools to satisfy investor’s preferences while MPT’s assumptions lead to some

serious limitations. MPT “is very useful, but it is descriptive, not prescriptive,

and relies on assumptions that may not always be valid”, according to Curtis

[22].

Below we mathematically formulate the mean variance model with a cardinality

constraint.

2.1.1 Formulation of the mean variance model

The variance of r(x) is defined as σ2(r(x)) = E[(r(x)−E(r(x)))2]. The variance

of the portfolio return r(x) = ω1r1 + . . . + ωNrN is derived from the vector
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x = (ω1, . . . , ωN) and can be written as:

σ2(r(x)) =
N∑
i=1

N∑
j=1

σij ωi ωj,

where σij = σi σj %ij (here %ij is the correlation coefficient between ri and rj)

is the covariance of ri and rj and x is the vector of variable weights (unknown

quantities) ωi, i = 1, . . . , N, of assets in the portfolio.

In our research we consider the mean variance model [53] where variance is min-

imised with a fixed (prescribed) level of portfolio expected return. This model

allows the investor to include all the available assets in the market. In the case

when the number of assets in the portfolio is restricted by the investor preferences,

the cardinality constraint should be introduced.

Let K be the desirable number of assets in the portfolio, let us define the indicator

ϕi, i = 1, . . . , N :

ϕi =

 1, if asset i is included in the portfolio,

0, otherwise,

with li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N,

where li and ui are a numerical boundaries which reflect the lower and upper

level of investment in the asset if the asset is to be invested in.

It should be noted that one can transfer this model with a cardinality constraint

into the basic MV model if we put K = N . For the sake of simplicity we can use a

unified formulation for both, basic and cardinality constrained MV model. Then

the mean variance portfolio optimisation problem with a cardinality constraint

can be written as:

minimise MVcc(x) =
N∑
i=1

N∑
j=1

σij ωi ωj, (2.1)
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subject to constraints:

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.2)

N∑
i=1

ωi = 1, (2.3)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.4)

N∑
i=1

ϕi ≤ K, (2.5)

ϕi ∈ {0, 1}, i = 1, . . . , N. (2.6)

Here constraint (2.2) ensures that the optimal portfolio has an expected return

d, constraint (2.3) imposes that the investment weights sum to one (budget con-

straint). Inequality (2.4) describes a buy-in threshold and restricts asset invest-

ment. It is easy to see that if an asset i is not held, i.e. ϕi = 0, then the

corresponding weight ωi = 0. If an asset i is held, i.e. ϕi = 1, then (2.4) ensures

that the value of ωi lies between the appropriate lower and upper limits, li and

ui respectively [87]. Inequality (2.5) ensures that the number of assets in the

optimal portfolio is at most K. The binary definition (2.6) reflects the inclusion

(or exclusion) of an asset in the portfolio.

According to the problem formulation and theoretical basis the mean variance

model manages the risk of the portfolio taking into account the covariance matrix

and standard deviation of assets. Modern portfolio theory and the work of Harry

Markowitz on diversification and risk of a portfolio established the Capital Asset

Pricing Model (CAPM) which distinguishes two types of portfolio risk: system-

atic and unsystematic. Systematic risk is considered as a market risk, i.e. is

undiversifiable and common for all assets in the market while unsystematic risk

is associated with each security. In terms of CAPM the optimal portfolio which

aims to achieve the lowest risk together with any possible return is the market

portfolio which, in fact, could be a market index. Following the assumption of

CAPM the index tracking problem for portfolio selection is a replication of the

“ideal” market portfolio in order to reduce unsystematic risk. In the next section
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we consider the index tracking portfolio selection problem.

2.2 Formulation of the index tracking model

Index tracking, known as a form of passive fund management, aims to produce

optimal portfolios which replicate the index dynamics providing a balance be-

tween risk and return. However, the index tracking model normally includes

almost all available assets in the market that leads to large transaction costs and

a portfolio which is very difficult to manage because of its diversity [13]. Thus,

the cardinality constrained index tracking model is also considered in this thesis.

We explore this model in comparison with behaviourally based models in terms

of diversification and tracking error issues.

In our research we use a simple index tracking model in the form of full replication

as we are minimising the tracking error in order to reduce the difference between

the index return and the portfolio return.

Let at time s

rms - index return,

os = max(rs(x)− rms, 0) - portfolio return amount over the index return,

us = max(rms − rs(x), 0) - portfolio return amount under the index return.

Tracking error (TE) for a given time period is equal to |rs(x)− rms|. Clearly, at

time s at least one of os or us is equal to 0, i.e. we can define a new quantity

TEs = os + us =

 os, if os ≥ 0,

us, otherwise.
(2.7)

Let us define the tracking error in the simplest possible way: as the difference

between the index and portfolio returns over all time periods s = 1, . . . , S:

TE =
S∑
s=1

TEs. (2.8)
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Here we would like to mention that tracking error can be defined in different

ways, for example, in [68] the tracking error is defined as the root mean square

of the difference between index and portfolio returns.

As was mentioned previously we can use the formulation of the cardinality con-

strained model for the basic model as well when we put K = N . Then the index

tracking problem with cardinality constraint can be formulated as [64]:

minimise ITcc(x) = minimise TE(x) =
S∑
s=1

(os + us), (2.9)

subject to the constraints

N∑
i=1

ωiris = rms + os − us, s = 1, . . . , S (2.10)

N∑
i=1

ωi = 1, (2.11)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.12)

N∑
i=1

ϕi ≤ K, (2.13)

ϕi ∈ {0, 1}, i = 1, . . . , N, (2.14)

ωi ≥ 0, i = 1, . . . , N, (2.15)

os, us ≥ 0, s = 1, . . . , S. (2.16)

Equations (2.10) check the difference between returns of the optimal portfolio and

the index for each time period. Constraint (2.11) imposes that the investment

weights sum to one (budget constraint) similar to the MV model. The constraints

(2.12), (2.13) and (2.14) are formulated similar to the MV model and are used

for restricting the number of assets in the portfolio.
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2.3 Prospect theory

Prospect theory is a behavioural economic theory that describes decisions between

alternatives that involve risk, where the probabilities of outcomes are known. It

was developed as a descriptive model of decision making under uncertainty by

two psychologists, Daniel Kahneman and Amos Tversky, and published in the

Econometrica in 1979 [45]. The authors relied on a series of small experiments

to identify the manner in which people make choice in the face of risk. The

theory says that people make decisions based on the potential value of losses and

gains rather than the final outcome, and that people evaluate these losses and

gains using heuristics. Although the original formulation of prospect theory was

only defined for lotteries with two non-zero outcomes, it can be generalised to n

outcomes. Generalisations have been used by various authors (see, for example

[72], [18], [29], [82]).

The original PT choice process consists of two phases. During the first phase,

which is called editing, an agent defines their own (subjective) meaning of a gain

and a loss by setting a reference point r0 for the portfolio return, which represents

zero gain (or zero loss) for this particular person. During the second stage, which

is called the evaluating phase, our investor calculates the values of the prospect

theory utility based on the potential outcomes and their respective probabilities,

and chooses the maximal one.

Together with the original version of prospect theory in this section we also con-

sider its extended version called Cumulative Prospect Theory (CPT), proposed

in 1992 by Tversky and Kahneman [79]. According to the authors, CPT can be

applied not only for the discrete, but also for the continuous distributions, and it

allows incorporation of different decision weights for gains and losses. However,

some researchers believe that CPT may be descriptively not as strong as PT (see,

e.g. [65]). In this research we investigate the performance of both versions (PT

and CPT) in order to identify the best models for different types of experimental

data according to several criteria.



Chapter 2. Literature review 17

We would like to note, that only a few (C)PT studies contain numerical results. It

can be explained by the computational difficulties connected to the complexity of

the (C)PT objective function. Due to this fact only simple cases (2-3 artificially

created assets) of the portfolio selection problem are available in the literature.

Among them [45], [34], [39], [49], [50] for the prospect theory and [9], [14], [38],

[89], [62] for cumulative prospect theory. Moreover, as far as we aware, all of them

were based on normally distributed testing data. However, it is well known, that

many asset allocation problems involve non-normally distributed returns since

commodities typically have fat tails and are skewed. Our research aims to fill in

this gap.

Clearly, the lack of numerical data for (cumulative) prospect theory leads to

the lack of comparison analysis of traditional (mean-variance) approaches with

behaviourally based approaches (PT and CPT). The first effort to compare these

two models was made in 2004 [50]. The idea was to select the portfolio with the

highest prospect theory utility amongst the other portfolios in the mean variance

efficient frontier. Following this route, Pirvu and Schulze in 2012 presented the

results confirming that an analytical solution is mostly equivalent to maximising

the CPT objective function along the mean variance efficient frontier [62]. In this

thesis we compare performances of both models separately using different types

of data and simulation tests.

Below we mathematically formulate both the PT and CPT models with and

without cardinality constraint.

2.3.1 Formulation of the prospect theory model

Consider the game:

(r−m, p−m), (r−m+1, p−m+1), . . . , (r0, p0), . . . , (rn−1, pn−1), (rn, pn), (2.17)

where (rs, ps), s = −m,−m + 1, . . . ,−1, 0, 1, . . . , n − 1, n, means that the

gambler wins rs with probability ps, of course, the sum of all probabilities is
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equal to 1, i.e.
n∑

s=−m

ps = 1; r0 denotes some numerical boundary called the

reference point (constant) which depends on the investor’s preference. Let rs

define the outcomes of the game (2.17) such that:

• if s = 0, i.e. rs = r0, then the investor’s gain is 0,

• if s > 0, then rs > r0, hence the investor won from this investment,

• if s < 0, then rs < r0, hence the investor lost.

According to the prospect theory one needs to make additional mental adjust-

ments in the original probability and outcome value functions p and r, which is

equivalent to replacing a standard utility function by the prospect theory utility

function. In order to do so we transform the original p and r into the prospect the-

ory probability weight function π(p) and value function v(r). Figure 2.1 contains

the graphs for the value function v(r).

The prospect theory probability weighting function π(p) measures, according to

[45], “the impact of events on the desirability of prospects, and not merely the

perceived likelihood of these events”, i.e. expresses the weights of the decisions

to the probabilities. Let us mention that π(p) is an increasing function, π(0) = 0,

π(1) = 1, and for very small values of probability p we have π(p) ≥ p. The

probability weighting function based on the observation that most people tend

to overweigh small probabilities and underweigh large probabilities.

The prospect theory value function v(r) describes the (behavioural) value of the

gain/loss outcome. Kahneman and Tversky experimentally obtained the value

function which was dependent on the initial value deviation. This function is

usually asymmetric with respect to a given reference point r0 (which reflects

different investor’s attitude to gains and losses), it is concave upward for gains

and convex downward for losses. Moreover, generally the value function v(r)

grows steeper for losses than for gains, i.e. for s > 0 we have v(rs) ≤ −v(r−s).
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Figure 2.1: Prospect theory value function v(r) with
α = β = 0.88 and λ = 2.25

The explicit formula for the prospect theory value function v(r), given in [79], is:

v (r) =

 (r − r0)α, if r ≥ r0,

−λ (r0 − r)β, if r < r0,
(2.18)

where α = β = 0.88 are risk aversion coefficients with respect to gains and losses

accordingly, λ = 2.25 is the loss aversion coefficient which underlines differences

in the investor‘s perception of gains and losses. We note that the value function

(2.18) is nonlinear with respect to return r and, hence, the portfolio variable x.

The prospect theory utility function can be written in terms of π and v as:

PTU =
n∑

s=−m

π(ps) v(rs) =
n∑

s=−m

ps v

(
N∑
i=1

rsi ωi

)
. (2.19)

Clearly, the formula (2.19) consists of two parts. The part in the gain domain

(i.e. when r ≥ r0) is concave and the part in the loss domain (i.e. when r ≤ r0)

is convex, capturing the risk-averse tendency for gains and risk-seeking tendency

for losses as seen by many decision makers [65]. Let as mention, that for the sake

of simplicity in our study we use π(p) = p. Clearly, the prospect theory utility

function (2.19) is a nonlinear function.
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The prospect theory model aims to find the best (optimal) portfolio which max-

imises the prospect theory utility function where decision variables are weights

of available assets ω subject to constraints on a desirable level of return, budget

and short sales. This is a nonlinear and non convex optimisation model as the

objective function is nonlinear and non convex. In order to solve this problem

we use heuristics which are an inexact solution approach.

According to the prospect theory portfolio selection problem looks as follows:

maximise PT(x) =
S∑
s=1

ps v

(
N∑
i=1

rsi ωi

)
, (2.20)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.21)

N∑
i=1

ωi = 1, (2.22)

ωi ≥ 0, i = 1, . . . , N. (2.23)

We now detail some mathematical properties of the prospect theory model.

1. Completeness:

For all portfolios x1, x2 x1 � x2 or x2 � x1.

2. Transitiveness:

x1 � x2, x2 � x3 ⇒ x1 � x3.

3. Independence:

∀x1, x2, x3 ∀ς ∈ (0, 1) : x1 � x2 ⇔ ςx1 + (1− ς)x3 � ςx2 + (1− ς)x3.

For more details and proof of the properties given above see [79] and [84].
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2.3.2 Formulation of the cumulative prospect theory model

Consider the game (2.17) under the following condition:

r1 ≤ . . . ≤ rk ≤ r0 ≤ rk+1 ≤ . . . ≤ rS,

i.e. all outcomes of the game (r1, . . . , rS) are arranged in ascending order. There-

fore, for j = 1, . . . , k the loss is r0 − rj and for j = k + 1, . . . , S the gain is

rj − r0.

Let us introduce the probability weighting function π, which is strictly increasing

on [0, 1], π(0) = 0, π(1) = 1. For any prospect j, we define a positive prospect

weights π+ or a negative prospect weights π− depending on the corresponding

outcome. We now define the probability weighting functions π− and π+, which

describe decision weights for gains and losses.

π−(pj) =
pδj

(pδj + (1− pj)δ)1/δ
,where j = 1, . . . , k, (2.24)

and

π+(pj) =
pγj

(pγj + (1− pj)γ)1/γ
,where j = k + 1, . . . , S, (2.25)

where δ, γ ∈ (0, 1) reflect quantitative values of risk seeking for losses and risk

aversion for gains. These probability weighting functions π−(·) and π+(·) cap-

ture the overweighing of low probabilities if we put δ = 0.61, γ = 0.69 in accor-

dance with [79]. Figure 2.2 illustrates the cumulative prospect theory probability

weighting function.

We would like to note that in the prospect theory model π+ = π−, hence, prospect

theory assumes that decision weights for gains and losses are equal. In this

connection we can consider CPT as a particular case of the prospect theory.
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Figure 2.2: Cumulative prospect theory weighting function w

The portfolio optimisation problem for the cumulative prospect theory (CPT)

model can be formulated as:

maximise CPT(x) =
S∑
s=1

π(ps) v

(
N∑
i=1

rsi ωi

)
, (2.26)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.27)

N∑
i=1

ωi = 1, (2.28)

ωi ≥ 0, i = 1, . . . , N, (2.29)

where

π(ps) =


π−

(
s∑
j=1

pj

)
− π−

(
s−1∑
j=1

pj

)
, s = 1, . . . , k,

π+

(
S∑
j=s

pj

)
− π+

(
S∑

j=s+1

pj

)
, s = k + 1, . . . , S,

(2.30)

where pj is the probability.
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Here k is such that

r1 � . . . � rk � r0 � rk+1 � . . . � rS, (2.31)

and v(r(x)) is the function of outcomes assessment defined by the following for-

mula

v (r(x)) =

 (r(x)− r0)α, if r(x) ≥ r0,

−λ (r0 − r(x))β, if r(x) < r0.
(2.32)

Let us mention that the CPT model possesses all the mathematical properties

of the prospect theory model described in Section 2.3.1, namely, completeness,

transitivity and independence. It also has a very important property, which is

stochastic dominance of the preference relation [21], i.e. if for portfolios x1 and

x2 we have rj(x1) � rj(x2) ∀j and rj(x1) � rj(x2) for at least one j with pj > 0

then (r1(x1), p1(x1); . . . ; rn(x1), pn(x1)) � (r1(x2), p1(x2); . . . ; rn(x2), pn(x2)).

2.3.3 Prospect theory model with a cardinality constraint

Following the logic and notation of Section 2.1.1 we formulate the prospect theory

model with a cardinality constraint as:

maximise PTcc(x) =
S∑
s=1

ps v

(
N∑
i=1

rsi ωi

)
, (2.33)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.34)

N∑
i=1

ωi = 1, (2.35)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.36)

N∑
i=1

ϕi ≤ K, (2.37)



Chapter 2. Literature review 24

ϕi ∈ {0, 1}, i = 1, . . . , N. (2.38)

2.3.4 Prospect theory model for index tracking

Studying the prospect theory problem we found that the principle of the model

is very similar to that of the index tracking portfolio optimisation problem. The

main common feature is that behaviourally based models use a reference point as

the limit for desired level of returns in each time period similar to an index track-

ing model which uses the index as a reference point. Thus it is easy to implement

the idea of the index tracking problem into prospect theory by changing the value

of the reference point. In this case we let r0 be a vector of the index value for

each time period of the data set not a scalar as it is in the original version of

(cumulative) prospect theory. We also remove the limit on the desirable level of

returns similar to the index tracking problem which focuses on the index value

as a level of return for each time period. We call this model prospect theory with

index tracking (PT with IT).

We also implemented a cardinality constraint in these models to address the issue

of too diversified a portfolio. It is very interesting to compare not only the IT

and PT with index tracking problems but these models with the limit on the

number of the assets in the portfolio. We formulate the prospect theory model

with index tracking and with a cardinality constraint as:

maximise PT+ITcc(x) =
S∑
s=1

ps v

(
N∑
i=1

rsi ωi, rms

)
, (2.39)

subject to the constraints
N∑
i=1

ωi = 1, (2.40)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.41)

N∑
i=1

ϕi ≤ K, (2.42)

ϕi ∈ {0, 1}, i = 1, . . . , N, (2.43)
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where

v (r(x), rms) =

 (r(x)− rms)
α, if r(x) ≥ rms,

−λ (rms − r(x))β, if r(x) < rms.
(2.44)

As one can see in equation (2.44) the value function for the prosect theory model

with index tracking is defined as a dynamic not constant due to the fact that

instead of a constant reference point r0 here we use a dynamic index rm which

takes different values in each scenario (time period).

2.4 Measures of risk

The concept of risk plays one of the major roles in the portfolio selection problem.

Markowitz was the first scientist who postulated the dependence between risk

level and returns. He suggested to minimise risk subject to a desirable level of

expected return and its dispersion. Some of the researchers supposed that it is

possible to reach zero level of risk (see, for example, [86] and others). However,

the truth is that risk can be reduced with the help of diversification, but not fully

eliminated without changing the return [70].

In this study we consider one symmetric measure of risk, which is variance and

two asymmetric ones, called Value-at-Risk (VaR) and Conditional Value-at-Risk

(CVaR).

Definition 2.1. Variance

Consider a continuous random variable x̃ with density f = fx̃, distribution F =

Fx̃ and expected return µ := E(x̃) :=

∫ +∞

−∞
xf(x)dx. Then we define the variance

of the variable x̃ as:

σ2 :=

∫ +∞

−∞
(x− µ)2f(x)dx (2.45)

and its standard deviation is:

σ :=

[∫ +∞

−∞
(x− µ)2f(x)dx

]1/2
. (2.46)
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Irving Fisher was probably the first scientist who suggested to use variance as a

measure of risk in his paper [31] (see also [70]).

The variance as a measure of risk has an advantage of being simple. As already

discussed, computational simplicity is very important for the portfolio selection

problem. However, there are limitations for this case.

The first limitation is that it is not sensitive to higher moments (for example

skewness, kurtosis) of the probability distribution and there are many distribu-

tions that have the same mean and same variance. In other words, the mean

variance framework does not capture the complexity of risk.

Another issue is that in the mean variance framework gains and losses are consid-

ered symmetrical. Many statistical measures of risk do so but they do not seem

to be adequate for finance: investors do not treat gains and losses symmetrically

[45]. They care about “downside risk” (investor are loss averse).

The asymmetric nature of risk is not the only reason why a focus on the downside

is important. If we assume that financial returns follow a multivariate normal

(or elliptical) distribution, then any downside risk measures can be expressed as

a function of mean and variance (or some other measure of scale when variance

is undefined). As a consequence, under these assumptions, measuring variance

would be sufficient. Empirical research (see, for example, [52] and [28]), however,

has demonstrated that financial returns, and hedge fund returns in particular,

are skewed and fat-tailed which means that the focus on the downside cannot be

understated.

Definition 2.2. VaR

Let r be the specific level with which the value x of a given portfolio will be

compared to, at the end of a given time period. If x < r, then there is a loss,

whose value is r − x. The portfolio’s loss is thus given by the random variable

l̃ := r − x̃. (2.47)



Chapter 2. Literature review 27

The probability that l̃ ≤ l is given by the distribution function

Fl̃(l) := P (l̃ ≤ l) =

∫ l

−∞
fl̃(t)dt. (2.48)

Using the loss distribution (2.48) for a given time period and a given confidence

level 1− α, 0 ≤ α ≤ 1, the VaR of x̃ is defined as:

VaR(x̃) := F−1
l̃

(1− α), (2.49)

where (1− α) · 100% is a quantile of the portfolio’s loss distribution.

The reasons and grounds for the development of VaR include the regulators’

pressure for better control of financial risks, financial markets globalisation, which

exposed institutions to more sources of risk, and technological developments that

contributed to enterprise-wide risk management [44].

Basel III issued by the Basel Committee on Banking Supervision accumulates two

years of regulatory reform including Basel 2.5. It introduced a new regulatory

regime for capital, liquidity and banking supervision, where VaR is described as

a compulsory measure of risk.

In the academic literature the most used two confidence levels are 95% and 99%.

Researchers do not have preferences which level to apply in their models and cal-

culations. However, in real economic application most financial institutes choose

only 99% in order to protect their investments with higher level of reliability.

VaR is a single, summary, statistical measure of possible portfolio losses. For a

given time horizon and a confidence level 1− α the VaR of a portfolio is the loss

of market value over the time horizon that is exceeded by the portfolio only with

probability α.

In comparison to traditional measures of risk, VaR represents an aggregate view

of a portfolio risk considering leverage, correlations, and positions. VaR can be

applied to a variety of financial instruments, including derivatives [44].
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Despite the fact that VaR is a very popular risk measure, it has some mathemati-

cal characteristics which are unfavorable for application of this measure of risk to

real world financial problems. For instance, it has no subadditivity or convexity

properties. This drawback is highly criticised due to the fact that according to the

diversification principle of modern portfolio theory, a subadditive measure should

generate lower measured risk for those portfolios which are diversified than for a

nondiversified one [23]. As for the economy, under specific circumstances it can

be more useful to divide a large company into two smaller ones and the VaR risk

measure is not suitable for this case [78].

Also VaR is most often defined in terms of net outcomes or profit/loss. However,

the money value is not constant through time in a financial market. This cre-

ates ignorance of the difference between the monetary value at one date and the

monetary value at another date. However, for small time periods and a single

currency it performs well. As VaR uses quantiles, it is necessary to pay atten-

tion to discontinuities and intervals of quantile numbers. However, VaR fails to

account for concentration of risks [8].

Another point is that VaR is adequate only based on standard deviation of normal

distributions. In this case it is proportional to the standard deviation. The VaR

for a combination of two portfolios can be greater than the sum of the risks of

the portfolios separately. Also, VaR is difficult to optimise in the situation when

it is calculated using scenarios. In contrast to VaR, CVaR is known to have more

beneficial properties than VaR in these cases [66].

Definition 2.3. CVaR

Let x̃ be a random variable responsible for the return of a portfolio x over a

specified holding period and A% = α ∈ (0, 1) is a percentage representing a

sample of the worst case scenarios for the outcomes of x̃ (so called confidence

interval, usually chosen as α = 0.01 or α = 0.05). Thus, figuratively CVaR at a

specified level α is the “average losses in the worst A% of cases” [3], where “loss”

means negative outcome of x̃. The CVaR at a level α of x̃ is a negative value

of the mean of the α-tail distribution of x̃ (with respect to the extreme adverse
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outcomes) and its distribution function is rescaled to span [0, 1]:

CVaRα(x̃) :=

∫ ∞
−∞

zdF α
x̃ (z), (2.50)

where

Fα
x̃ (z) =

 0, if z > VaRα(x̃),

Fx̃(z)−α
1−α , otherwise,

for more details see, for example, [66] or [69].

There is an alternative definition of CVaR, called “upper CVaR” which reflects

the conditional expectation of x̃ subject to x̃ > VaRα(x̃):

CVaR+
α (x̃) = E[x̃|x̃ > VaRα(x̃)].

Mathematical properties of CVaR

Let c ∈ R and ỹ, ỹ1, ỹ2 be random variables representing the returns of the

portfolios y, y1 and y2 respectively, then CVaR has the following properties [3]:

1. Monotonicity: If ỹ1 ≤ ỹ2, then CVaRα(ỹ1) ≤ CVaRα(ỹ2).

2. Sub-additivity: CVaRα(ỹ1 + ỹ2) ≤ CVaRα(ỹ1) + CVaRα(ỹ2).

3. Translation invariance: CVaRα(ỹ + c) = CVaRα(ỹ) + c.

4. Positive homogeneity: CVaRα(c ỹ) = c CVaRα(ỹ), for c > 0.

5. Convexity: CVaRα(λỹ1 + (1− λ)ỹ2) ≤ λ CVaRα(ỹ1) + (1− λ) CVaRα(ỹ2),

for 0 < λ < 1.

It is known [61] that properties 2 and 4 are equivalent to convexity. It is important

to note that VaR does not satisfy these properties. This issue leads to limitation

to its application.

The Basel Committee proposed in 2012 the use of expected shortfall (also known

as CVaR) instead of VaR in market risk management. They suggest moving from

VaR to expected shortfall, a risk measure that better captures “tail risk” [58].
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Figure 2.3: Value-at-Risk and Conditional Value-at-Risk on probability den-
sity function of asset returns

CVaR is an alternative measure of risk which quantifies the losses in the tail of

the distribution. CVaR is often used together with VaR and this combination of

instruments can be applied to the risk estimation for non-symmetric loss distri-

butions (with high or low skewness). Figure 2.3 reflects the meaning of VaR and

CVaR in terms of the distribution of returns.

CVaR and the formula for its minimisation were first delivered in the paper of

Rockafellar and Uryasev in 2000. They showed numerical effectiveness using case

studies, involving portfolio optimisation and option hedging [66].

Additionally, it was shown that imposing a CVaR constraint in the portfolio

selection problem can deliver better results than imposing a VaR constraint. VaR

does not show the extent of the losses that might occur beyond the threshold

amount suggested by VaR. Unlike VaR, CVaR does quantify those losses that

might occur in the tail of the distribution. CVaR is the expected loss given the

loss is greater that or equal to VaR (see definition of CVaR) [7].

In order to be fair, it is necessary to provide examples of disadvantages of CVaR.

It has implementation problems because CVaR is very sensitive to estimation
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error of the market observations (more sensitive than VaR, for example) and ap-

proximation error (this issue is unique to every scenario optimisation problem

and does not exist in the MV approach). Also CVaR accuracy depends on accu-

racy of tail modeling. For more discussion about disadvantages of CVaR see [88]

and [81].

The more significant issue is conceptional problems of CVaR, for instance, the

fact that CVaR cannot integrate into the way investors consider risks. The reason

is that CVaR averages both small and extremely large losses, hence it gives them

the same weight in terms of the risk calculation, therefore it does not account for

increasing risk aversion against extreme losses [71].

CVaR is used in return-risk analyses similar to Markowitz’s (1952) mean-variance

approach. For instance, it is easy to calculate a portfolio with a specified level of

return and minimal CVaR or to impose a constraint on CVaR and find a portfolio

with maximal expected return. In addition, we can impose several constraints on

CVaR simultaneously with specifying different confidence levels (shaping the loss

distribution by this). Hence, it represents a flexible and useful risk management

tool [80].

One of the most important properties of CVaR in terms of applications is that

CVaR can be expressed by a convenient minimisation (or maximisation) formula.

This formula can be incorporated into optimisation problems with respect to

x ∈ X which are minimising risk or shaping it within bounds. Convexity is pre-

served in this case. If the random variables, under consideration, are discrete, the

number of outcomes is finite, which can be represented as various outcomes under

various scenarios, then CVaR optimisation is represented as a linear programming

model of finite dimension [67].

2.4.1 Mean-CVaR model

Let r(x) be a random variable that depends on a decision vector

x = (ω1, ω2, · · · , ωN) ∈ A, where A is a feasible set of portfolios, r(x) = ω1r1 +
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. . .+ ωNrN . Consider a function [67]:

Fα(x, v) =
1

α
E{[−r(x) + v]+} − v, (2.51)

where α ∈ (0, 1), [u]+ =

 u, if u ≥ 0,

0, if u < 0.

Let us note that:

1. Function Fα defined in (2.51) is finite, continuous and convex with respect

to v and CVaRα(r(x)) = min
v∈R

Fα(x, v). We also would like to mention that

the set Aα(x) (set of all the values of v such that the minimum is achieved)

is a non-empty, compact (closed and bounded) and could possibly consist

of one point.

2. Minimising CVaRα with respect to x ∈ A is equivalent to minimising Fα

with respect to (x, v) ∈ A× R, i.e.:

min
x∈A

CVaRα(r(x)) = min
(x,v)∈A×R

Fα(x, v). (2.52)

It is important to note here, that a pair (x∗, v∗) minimises the right hand

side of (2.52) if and only if x∗ minimises its left hand side, v∗ ∈ Aα(x∗).

3. CVaRα(r(x)) is convex with respect to x as well as Fα(x, v) is convex with

respect to (x, v).

Let r(x) be a discrete random variable with S possible outcomes (scenarios)

r1(x), . . . , rS(x) with probabilities p1, . . . , pS respectively. In this the case we let

the reference point r0 = 0 and rewrite formula (2.51) as:

Fα(x, v) =
1

α

S∑
s=1

ps[v − rs(x)]+ − v =
1

α

S∑
s=1

ps

[
v −

N∑
i=1

ωiris

]+
− v. (2.53)
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Hence, we can formulate the mean-CVaR model for the portfolio selection prob-

lem [69]:

minimise CVaR(x) =
1

α

S∑
s=1

ps ys − v, (2.54)

subject to constraints:

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.55)

N∑
i=1

ωi = 1, (2.56)

ωi ≥ 0, i = 1, . . . , N, (2.57)

v −
N∑
i=1

ωiris ≤ ys, s = 1, . . . , S, (2.58)

ys ≥ 0, s = 1, . . . , S, (2.59)

where v is the VaR and ys is the amount beyond VaR for scenario s.

2.4.2 Mean-variance-CVaR model

Modern approaches to the portfolio selection problem often lead to the creation

of new mathematical models which take into account several risk measures si-

multaneously (see, for example [47], [48], [85], [37]). In this section we give a

formulation for the portfolio selection problem in which random variables are

described by three statistics [69]: expected value E(r(x)), variance σ2(r(x)) and

the CVaR at a specified confidence level α ∈ (0, 1). The mean-variance-CVaR

model gives an optimal solution as a tradeoff between the mean variance efficient

frontier and the mean-CVaR efficient frontier.

Let us define a preference relation for random variables r(x) in terms of mean-

variance-CVaR model as follows. Consider the portfolio selection problem with
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random variables r(x1) and r(x2) which are returns of portfolios x1 and x2 re-

spectively, x1, x2 ∈ A. We say that r(x1) � r(x2) (i.e. portfolio x1 is pre-

ferred to portfolio x2) if and only if E(r(x1)) ≥ E(r(x2)), σ
2(r(x1)) ≤ σ2(r(x2)),

CVaRα(r(x1)) ≤ CVaRα(r(x2)), where at least one inequality must be strict [69].

Hence, the non-dominated (efficient) solutions of the mean-variance-CVaR model

are the Pareto efficient solutions of a multi-objective problem, where the expected

value is maximised while the variance and the CVaR are minimised. Generally,

the problem can be written as follows:

maximise [E(r(x)), − σ2(r(x)), − CVaRα(r(x))] (2.60)

for x ∈ A [67].

Let us consider a portfolio selection problem with S scenarios and N assets. Using

formula (2.53) we formulate the mean-variance-CVaR model as:

minimise MVCVaR(x) =
N∑
i=1

N∑
j=1

σij ωi ωj, (2.61)

subject to constraints:

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.62)

N∑
i=1

ωi = 1, (2.63)

ωi ≥ 0, i = 1, . . . , N, (2.64)

v −
N∑
i=1

ωiris ≤ ys, s = 1, . . . , S, (2.65)

1

α

S∑
s=1

ρs ys − v ≤ z, (2.66)

ys ≥ 0, s = 1, . . . , S, (2.67)

where v, (ω1, . . . , ωN), (y1, . . . , yS) are decision variables, z is a real number con-

straint on CVaR level which lies between the zmin (the minimum possible level of
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CVaR) and zmax (the maximum possible level of CVaR) [69].

2.4.3 Prospect theory model with CVaR constraint

Solution of the PT-CVaR model is a single-objective problem, where the expected

prospect theory utility function is maximised with desirable level of return and a

given level of CVaR on the return distribution.

Following the logic of Sections 2.3.1 the prospect theory model with limited CVaR

is formulated as follows:

maximise PTCVaR(x) =
S∑
s=1

πs vs(r(x)), (2.68)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.69)

N∑
i=1

ωi = 1, (2.70)

ωi ≥ 0, i = 1, . . . , N, (2.71)

v −
N∑
i=1

ωiris ≤ ys, s = 1, . . . , S, (2.72)

1

α

S∑
s=1

ρs ys − v ≤ z, (2.73)

ys ≥ 0, s = 1, . . . , S. (2.74)

Summary

In this chapter we consider 9 models which will be used for further testing and

analysis. These models take into account the investor’s preferences in different

forms. Generally, the following human behavioural preferences which is imple-

mented in the models will be studied:
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1. tradeoff between risk and return;

2. loss aversion;

3. risk aversion;

4. level of diversification.

On the one hand, it is interesting to analyse the performance of rationally based

and behaviourally based optimal portfolios from the return and risk point of

view, while on the other hand, the solution approach to mathematically com-

plicated portfolio optimisation problems with nonlinear objective functions and

constraints is significantly valuable.
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Solution approach

In the previous chapter we considered four basic models: mean variance, index

tracking, prospect theory and cumulative prospect theory models. The mean

variance problem is convex and can be solved easily with a built-in solver using

different software as well as the index tracking problem which is simple to deal

with using a standard solver such as FortMP in AMPL. In contrast, the prospect

theory and the cumulative prospect theory models are non-convex. Hence, the

solution approach becomes more challenging.

We also consider a cardinality constraint as a limit on the number of assets in

the optimal portfolio. We suppose that the investor may prefer a certain amount

of stocks in their optimal portfolio instead of the entire set of assets available

in the market. While, the portfolio optimisation problem with a cardinality

constraint takes into account the investor’s behavioural preferences, it leads to a

very challenging mathematical problem from the solution approach point of view.

The mean variance and prospect theory portfolio optimisation problem with a

limit on the number of assets is a non-linear mixed-integer program [19], [87].

Generally there are two approaches of formulation for solving the cardinality

constrained mean variance problem. The basic approach is to formulate it as

classic Markowitz problem subject to standard linking constraints on thresholds

37
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plus the cardinality constraint. In this case different heuristic methods or stan-

dard simplex method which are suitable for non-linear problems are applied [87].

An alternative approach is to reformulate it directly as a bi-objective problem.

This technique allows the investor to analyse the tradeoff between cardinality and

mean-variance. Such an approach determines the set of nondominated points of

the bi-objective problems in which an objective is smooth and combines mean and

variance in the form of a quadratic function and the other is non-smooth. For the

solution of the bi-objective optimisation problem a derivative free optimisation

algorithm was chosen [17].

In our research we use the first (basic) approach because of two reasons. The first

issue is the problem formulation. We need a unified form of problem formulations

because our comparative analysis involves more then one model. It is easier to

implement a new constraint to the standard problem instead of changing the

objective function each time.

The second reason is the solution approach. Some of our models are very complex

and require specific algorithms. Heuristic approaches can deal with these types

of problems even when it is extended with new constraints.

For the MV and IT cardinality constrained models we use the standard solver

CPLEX (AMPL) which is developed to deal with integer, mixed-integer, linear

programming and quadratic problems, including problems with quadratic con-

straints possibly involving integer variables. For the behaviourally based models

we have developed an approach specified for non-convex objective function with

complex behavioural component. We found that a heuristic is an appropriate

solution approach for our task.
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3.1 Behaviourally based models

It is important to note that problems (2.20)–(2.23), (2.26)–(2.29) and (2.33)–

(2.43) are non convex and functions (2.20), (2.26) and (2.33) are non differ-

entiable. In addition we consider the cardinality constrained PT model which

potentially makes the problem more complex for solving. As long as it is very

difficult to find an optimal solution for this type of problem many researchers

and traders use heuristics that are inexact methods to solve this sort of portfolio

optimisation problems.

In our research we have used two heuristic solution approaches for the basic and

cardinality constrained portfolio optimisation problems with behavioural compo-

nent. The first is based on the differential evolution algorithm and the second is

a genetic algorithm. We consider the traditional differential evolution algorithm

and the differential evolution with the smoothing non-convex objective function

using spline interpolation. Also in the development of paper [20], we suggest the

genetic algorithm which is based on meta-heuristic approaches [40], in order to

find the “optimal” solution for the cardinality constrained portfolio optimisation

problem.

For the sake of simplicity in our calculations we define the prospect theory weight-

ing function as π(p) = p and use the original value function v(r) as proposed in

[79]:

v (r) =

 (r − r0)α, if r ≥ r0,

−λ (r0 − r)β, if r < r0.
(3.1)

3.1.1 Differential evolution

A recent addition to the class of evolutionary heuristics is a method of differential

evolution proposed by R. Storn and K. Price [76], [63]. In our research to solve the

problem (2.33)–(2.43) we use this algorithm which is based on the evolutionary

principle. In this section, we consider a differential evolution approach which aims

to obtain an “optimal” solution for the (cumulative) prospect theory problem.
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Let N be the number of all available assets. We need to find an optimal value

of a uniformly distributed variable x = (ω1, ω2, . . . , ωN) ∈ DK ⊆ RN , where DK

is a set of feasible objective function values, i.e. we are looking for the value of

x ∈ DK , which provides a solution for the problem (2.20) and (2.26). In order to

find this optimal value of x we need to maximise the expected value of PTcc(r(x))

(which is equivalent to (C)PT(r(x)) if K = N) using the following steps.

1. Initialisation. We define the set

DK = {v ∈ D, such that exactly K components of vector v are positive}.

Let P ∈ N. We generate an initial population vi = (ωi1, . . . , ωiN), ∀ i =

1, . . . , P 2 vi ∈ DK .

2. Mutation and Crossover. Choose vectors va, vb, vc randomly from the

vectors vl, l = 1, . . . , P 2, such that they do not coincide with vi and each other.

Also pick a random number R ∈ {1, . . . , N}. We construct the components of a

new vector ṽi ∈ D as follows. With probability CR and if R = j, j = 1, . . . , N

for the jth component, vector ṽij = vaj + (F + z1)(vbj − vcj + z2) and ṽij = vij

otherwise. Here parameters F ∈ [0, 2] and CR ∈ [0, 1] are called the differential

weight and the crossover probability respectively and should be chosen by the

user; quantities z1 and z2 are either zero with a low probability (e.g. 0.0001 and

0.0002, respectively), or are normally distributed random variables with a mean

of zero and a small standard deviation (for example 0.02). The parameters z1

and z2 are optional for the differential evolution algorithm. They are used to add

up some “noise” to the calculation of the resulting vector and avoid getting into

local extrema.

3. Selection. Using equation (2.33) we calculate the values PTcc(vi) and

PTcc(ṽi) and choose the maximum called max(vi) to proceed to the new popula-

tion which is used in the next generation until the stopping criteria (e.g. number

of generations, precision, etc.) is met.
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4. Final Assessment. In the last generation g = G find the vector which

v∗i = {vi|max{PTcc(v1), . . . ,PTcc(vP 2)}, E(max PTcc(vi)) ≥ d} (d constraint

check). The vector v∗i then is our best solution [41].

3.1.2 Differential evolution with smoothing of the utility

function using splines

In this thesis we implement spline interpolation for the prospect theory utility

function into our differential evolution approach in order to solve the prospect

theory problem. We simply smooth the original utility function and apply the

differential evolution algorithm to solve the problem.

Smoothing splines often apply for discrete or noisy data to provide smooth curves.

We obtain a practical, effective method for estimating the optimum amount of

smoothing from the data. Derivatives can be estimated from the data by differ-

entiating the resulting (nearly) optimal smoothing spline [83].

Note that the function (2.20) is not differentiable at the point r = r0. This alter-

native approach to the calculation of an efficient portfolio according to prospect

theory, based on the smoothing of the objective function was proposed in [25].

The idea is to use a cubic spline instead of the value function (2.18) in a δ-

neighbourhood of the point r = r0, δ > 0. In other words, one can replace the

value function (2.18) by its smoothed version:

vδ (r) =

 v(r), if r /∈ (r0 − δ, r0 + δ),

v(r), if r ∈ (r0 − δ, r0 + δ),
(3.2)

where v(r) = ar3 + br2 + cr + d. Since the values of functions v(r) and v(r) and

their derivatives should coincide at the endpoints of the δ-neighbourhood, i.e. at

points r0 − δ and r0 + δ, we can calculate the coefficients a, b, c, d, of the cubic
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polynomial v(r) from the system of linear equations:

v(−δ + r0) = v(−δ + r0),

v′(−δ + r0) = v′(−δ + r0),

v(δ + r0) = v(δ + r0),

v′(δ + r0) = v′(δ + r0).

(3.3)

So, we can rewrite the formula (2.20) as:

PT(vδ(r(x)))→ max
x∈D

. (3.4)

The function vδ(r) is smooth and differentiable at a point r = r0.

3.1.3 Genetic algorithm

A genetic algorithm is a searching mechanism which is based on evolutionary

principles of natural selection and genetics. The theoretical background of genetic

algorithms was developed by Holland [40]. It works with populations of solutions

and uses the principles of survival of the fittest. In genetic algorithms the variables

of the solution are coded into chromosomes. To make a natural selection and

get good solutions, chromosomes are evaluated by a fitness-criterion. In the

considered optimisation problems the measure of fitness is usually connected with

the objective function. For more information see [55], [12], [2].

To maximise the objective function or utility function PTcc(x) given in formula

(2.33) using a genetic algorithm we need to make the following steps.

1. Initialisation. We define the set

DK = {x ∈ D, such that exactly K components of vector x are positive}.

Let P ∈ N. We generate an initial population xi = (ωi1, . . . , ωiN), ∀ i =

1, . . . , P 2 xi ∈ DK .
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2. Selection. At each generation g = 1, . . . , G we calculate values

PTcc(x1), . . . ,PTcc(xP 2) and put them in decreasing order, i.e. we obtain a de-

creasing sequence (
PTcc(xm1) ≥ . . . ≥ PTcc(xmP2 )

)
,

where set xm1 , . . . , xmP2 is a permutation of the initial set x1, . . . , xP 2 . We fix

the maximum value of the objective function max PTcc(xi). Only the first 2P

elements move to the new population without changes, i.e. xm1 , . . . , xm2P
. Denote

this elements of a new population y1, . . . , y2P .

3. Crossover and mutation. We randomly choose two vectors x̃j and x̂k

in the set {xm2P+1
, . . . , xmP2} and breed them to produce a “child”. In order

to do this we construct the l−th element (l = 1, . . . , N) of the new vectors

ai = (ai1, . . . , aiN), i = 2P + 1, . . . , P 2, ai ∈ DK , from vectors x̃j and x̂k, ∀j, k =

2P + 1, . . . , P 2, by choosing between x̃jl and x̂kl following the rules:

• if x̃jl = ωj and x̂kl = ωk (i.e. the asset is in both parents portfolios), than

the asset in the child is as follows ail = χ · ωj + (1 − χ) · ωk, where χ is

randomly generated number in [0,1];

• if x̃jl = 0 and x̂kl = 0 (i.e. the asset is not in either parent portfolios), than

ail = 0 (this asset is not in the child);

• if x̃jl = ωj and x̂kl = 0 (i.e. the asset is in only one of the parent portfolios),

than with probability π ail = ωj (i.e. this asset is included in the portfolio

with probability π).

To introduce mutation we change each element of the constructed vector ai with

a given small probability ζ > 0 for the randomly generated number from [0,1].

Then we ensure that the number of non-zero elements of the new vector is less

than or equal to K and normalise the elements of this vector. We also find the

maximum of the vectors ai, x̃j, x̂k and denote this as yi. This is the most fit vector

and now move this to the new population. Continue while the last yP 2 element

of the new population matrix have been processed.
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4. Assessment. We calculate the values PTcc(y1), . . . ,PTcc(yP 2) and com-

pare the maximum values of the obtained objective function max PTcc(yi) to

max PTcc(xi). The new population proceeds to the new generation (if g < G) if

and only if max PTcc(yi) ≥ max PTcc(xi).

5. Final Assessment. In the last generation g = G find the vector y∗i =

{yi|max{PTcc(y1), . . . ,PTcc(yP 2)}, E(max PTcc(yi)) ≥ d} (d constraint check).

The vector y∗i then is the best solution.

The implementation of both algorithms: the differential algorithm and the ge-

netic algorithm, basic and with the extension constraints and modification, are

presented in Appendix A.

3.2 Models with the CVaR constraint

It is well known that CVaR is an efficient measure of risk in modern finance [80],

[7], [67]. We discussed its advantages in Chapter 2. In this section the solution

approach to the basic models such as mean variance and prospect theory with a

CVaR constraint are presented.

Unlike the single-objective mean variance and (cumulative) prospect theory mod-

els considered in section 2.4.2 the mean-variance-CVaR model is multi-objective,

because one needs to minimise two objectives, namely variance and CVaR, sub-

ject to a desirable mean return. In order to simplify the calculations we transform

it into a single-objective problem following the logic of the Pareto efficiency [36],

[75]. As a result, we formulate problem (2.61)–(2.67), where for a desired level

of portfolio return (like in the mean variance model) we minimise only variance,

but with additional constraints on CVaR (see section 2.4.2 for details).

It is known that (see, e.g. [69]) the value x∗ is a Pareto optimal solution of the

problem (2.60) if and only if x∗ is an optimal solution of the problem (2.61)–

(2.67) with z = CVaRα(x∗) and d = E(x∗) if the covariance matrix is positive

definite. Note, that the positive definiteness of the covariance matrix ensures
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strict convexity of the objective function (variance) and, hence, guarantees the

uniqueness of the optimal solution.

We deal with the mean-variance-CVaR model by doing the following steps.

1. Calculate minCVaR.

We find the minimum value of CVaR for the specified data sample without

constraining the mean portfolio return. The output is an optimal objective

value denoted as minCVaR.

2. Calculate dminCVaR.

The maximum expected return (mean) acceptable for the CVaR-minimised

portfolio (i. e. portfolio with CVaR = minCVaR calculated in the previ-

ous step) can be derived by solving the problem of maximising the mean

portfolio return subject to CVaR lower limit equal to minCVaR. Obtained

value of maximum mean is denoted by dminCVaR.

3. Calculate dminvar.

We calculate the maximum value of expected return that is obtained by

solving the classical Markowitz optimisation problem (with no constraint

on expected return), i. e. minimising variance, and denote it as dminvar.

4. Calculate [dmin, dmax] and choose d∗.

Choose dmin as the maximum of dminvar and dminCVaR.

dmax = max(r̄(x)) is the maximum possible expected return that can be

found as the optimal objective value in the problem of maximising port-

folio’s expected return without additional constraints, except compulsory

constraint on asset weights sum in the portfolio,
N∑
i=1

ωi = 1.

Choose d∗ ∈ [dmin, dmax].

5. Calculate [zmin, zmax] and choose z∗.

We solve the optimisation problem min CVaR subject to portfolio return

level d∗ and denote the result as zmin.

We minimise variance subject to portfolio return level d∗ and define the
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optimal solution as x∗. Then we calculate the CVaR for the found portfolio

x∗ and denote the result as zmax.

Choose z∗ ∈ [zmin, zmax].

6. Solution of the problem.

Solve the problem (2.61)–(2.67) subject to the obtained portfolio mean

return value d∗ and chosen value of CVaR z∗.

We implement a CVaR constraint into the prospect theory model in order to

analyse the performance and to compare the results with the mean-variance-

CVaR model. The problem (2.68)–(2.74) can be solved using heuristic approaches

developed in Section 3.1.



Chapter 4

Computational results

4.1 Empirical study

4.1.1 Data

We have solved the portfolio optimisation problems using publicly available data

relating to five major market indices, available from the OR-Library [11]. The

five market indices are the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE

100 (UK), S&P 100 (USA) and the Nikkei 225 (Japan) for 290 time periods each

(weekly data), taken from: http://people.brunel.ac.uk/m̃astjjb/jeb/orlib/portinfo.

html. All of these problems were considered previously by Chang et al. (2000)

(see [19]) and Woodside-Oriakhi at al. (see [87]). The size of these five test

problems ranged from N = 31 (Hang Seng) to N = 225 (Nikkei 225) and are

presented in Table 4.1.

Data set Number of stocks N Number of time periods S
1 Hang Seng 31 290
2 DAX 100 85 290
3 FTSE 100 89 290
4 S&P 100 98 290
5 Nikkei 225 225 290

Table 4.1: Test problem dimension

47
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The data used in this thesis is given in the form of matrices of asset prices. We

transformed the original data sets into matrices of asset returns. It is widely

accepted to use logarithm of the price ratio in order to derive the rate of returns,

instead of using absolute asset price relations [56]. In our research the rate of

return r is calculated using the prices p for each time period s as follows:

ri = ln

(
pis
pis−1

)
, i = 1, . . . , N, s = 1, . . . , S,

where N is the number of assets and S is the total number of time periods.

The in-sample computational results reported in this research are obtained using

the first 100 time periods of the data sets described above. The remaining time

periods (190) are used in bootstrap out-of-sample tests.

In this research we apply simulation of the data with a particular type of distribu-

tion as an out-of-sample test data for our models. We are interested in so called

“bullish” market dynamics which indicates the investor’s confidence that the pos-

itive trend of the prices will continue. It also characterises increasing investments

and high activity of exchange trades which follows from a stable economic sit-

uation. In contrast a “bearish” market demonstrates pessimistic expectations

which leads to stagnation and long-term decreasing of the prices. In order to in-

vestigate the performance of the models in different conditions we simulate these

two trends in the matrix of the asset returns.

The out-of-sample data set which simulates bullish and bearish markets were

obtained using the built in functions available in the Statistics Toolbox in Matlab.

For bullish market simulations we apply the function datasample. This function

y = datasample(data, k) returns k observations sampled uniformly at random,

with replacement, from the specific data set in data. In order to obtain the data

set which possesses properties of a bullish market we simulate the returns based

on historical data of market growth (data form 4.01.2005 to 30.12.2005; 252 time

periods in total).
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Bearish market simulations are made using the command mvtrnd. The statement

r = mvtrnd(kR, df, cases) returns a matrix of random numbers chosen from the

multivariate t-distribution, where kR is matrix of historical returns from the crisis

period, df is the degrees of freedom (in our computational study df = 5) and it

is either a scalar (like we use in this research) or could be a vector with cases

elements (case is the number of lines, equal to 100 for these tests). We chose

a t-distribution because the tails of a Student t-distribution tend to zero slower

than the tails of the normal distribution which reflects more the real market

situation. For the simulations of bearish market we used historical data related

to the FTSE 100 index of the global crisis period in 2008 available in Bloomberg

Database (data from 1.01.2008 to 31.12.2008; 261 time periods in total) as an

initial matrix for simulation. So we apply both, crisis historical data as a sample

of data and a t-distribution simulation in order to underline the contrast in two

different types of return distributions, bullish and bearish.

The mean variance and the index tracking models (basic formulation and with

additional constraints) were solved using AMPL software with CPLEX (version

12.5.1.0) as a software package for solving large-scale optimisation problems. The

prospect theory and cumulative prospect theory portfolio selection problems (ba-

sic formulation and with additional constraints) were implemented using Matlab

software, as well as built-in and specially developed functions. All simulations

and bootstraping were run in Matlab. The system runs under MS Windows 7

64-bit SP 1 and in our computational work we used an Intel Core i3-2310M pc

with a 2.10 GHz processor and 8.0 GB RAM.

4.1.2 Parameters of the models

Hereinafter, we consider the prospect theory and the cumulative prospect theory

models as a class of behaviourally based models for the sake of convenience be-

cause their properties investigated in the analysis are similar. For these models

(also with additional constraints and index tracking) we use constant values of

the parameters λ = 2.25, α = β = 0.88 as proposed by Tversky and Kahneman



Chapter 4. Computational results 50

in their paper [79]. For equations (??) and (??) we put δ = 0.61, γ = 0.69 in

accordance with [79].

Tversky and Kahneman consider cumulative prospect theory as a complex choice

model. Estimation of such types of problems is very difficult because of the

large number of parameters. In order to reduce this number they “focused on

the qualitative properties of the data rather than on parameter estimates and

measures of fit” [79] by using a nonlinear regression procedure for estimation of

the parameters of equation (2.18), they found that “the median exponent of the

value function was 0.88 for both gains and losses, in accordance with diminishing

sensitivity” and “the median λ was 2.25 . . . and the median values of δ and γ,

respectively, were 0.61 and 0.69”[79].

In order to compare the performance of different models we used the same level

of desired portfolio return d for basic and cardinality constrained models only.

For each data set the parameter d = max r̄− (max r̄−min r̄) · 0.25, where max r̄

and min r̄ are maximum and minimum mean of assets returns for the specific

data set. It should be mentioned that as one can see this level was chosen to

be high enough to consider this condition as extreme for the proposed models.

Taking into account the character of the prospect theory model which chooses

more aggressive portfolios with high level of returns the choice of a high d is

justified (see the discussion of the results in Section 4.2). For some sets of data

(especially for big data sets) we have to adjust the parameter d (reduce the value

of d) in order to provide the feasibility of the optimal portfolio for behaviourally

based models.

The values of the parameter d can be seen in Table 4.2 which also includes the

reference point and the bank interest rate. It should be noted, that the reference

point in Table 4.2 is used for the behaviourally based models, basic and with

other additional constraint except index tracking. These values for the reference

point reflect average interest rate (IR) for different market economies (depends

on corresponding market index of used data set). Following the definition of the

prospect theory value function parameter r0 is set for each time period and in
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the case of basic models (with and without cardinality and CVaR constraints) is

constant. In contrast, for the index tracking problem it is dynamic and changes

for each time period depending on the index value.

We used K as a parameter for cardinality constrained models (basic models MV

and PT). In order to distinguish the index tracking problem from the other models

let K∗ be a limit on the number of assets for these index tracking problems. As

diversification levels of the basic models and the index tracking based models

are different we use different values for the parameters K and K∗. Cardinality

constraint models according to its formulation have lower and upper limits on

the asset weight. We use li = 0.01 and ui = 1 for these limits.

Data set d IR r0 K K∗

Hang Seng 0.0118 0.005 0.00005 7 15
DAX 100 0.006 0.0025 0.000025 10 20
FTSE 100 0.0077 0.0025 0.000025 10 25
S&P 100 0.0109 0.005 0.00005 5 25

Nikkei 225 0.0005 0.0001 0.000001 3 25

Table 4.2: Tabulated values of model parameters

For models with a CVaR constraint it is necessary to define the feasible set of

solutions for parameter d∗ (expected return) and z∗ (CVaR constraint) for each

data set as was described in Section 3.2. Testing MV and PT models with a

CVaR constraint we found that the feasible set for the target return which was

defined for MV is also suitable for the PT model. However, parameter z has

different feasible sets for these two problems, so, it is impossible to define the

same z∗ for them. Complexity and particular properties as well as behaviour of

the prospect theory objective function compared to the mean variance problem

lead to different feasible sets for the solution for these two models.

Thus, we define zmin and zmax for the prospect theory separately as the real

minimum and maximum value of CVaR for the prospect theory model without a

constraint on CVaR based on G observations (in each generation). In Table 4.3

boundaries of feasible sets for parameter z and chosen z∗ for the MV model as

well as boundaries for the parameter d (which are dmin and dmax) and d∗ for both,
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MV and PT with CVaR constraint models (due to the similarity) are presented.

The boundaries of feasible sets of solutions with parameter z and chosen value

for z∗ for PT model with CVaR constraint are shown in Table 4.4.

We calculate CVaR for considered models with confidence level α = 95% in this

research.

Data set dmin dmax d∗ zmin zmax z∗

Hang Seng 0.0081 0.0153 0.011 0.0472 0.0570 0.056
DAX 100 0.0034 0.01008 0.007 0.0124 0.0191 0.019
FTSE 100 0.0054 0.0119 0.007 0.0102 0.0149 0.014
S&P 100 0.0030 0.0169 0.006 0.0082 0.0145 0.014

Nikkei 225 0.0018 0.0056 0.002 0.0287 0.0364 0.036

Table 4.3: Tabulated values of parameters d∗ and z∗ for MV model with
CVaR constraint

Data set zmin zmax z∗

Hang Seng 0.0631 0.0754 0.0727
DAX 100 0.0233 0.0273 0.0268
FTSE 100 0.0242 0.0378 0.025
S&P 100 0.0218 0.041 0.038

Nikkei 225 0.0392 0.0542 0.0487

Table 4.4: Tabulated values of parameter z∗ for PT model with CVaR con-
straint

4.1.3 Parameters of the heuristic approaches

Previously we note that both, prospect theory and cumulative prospect theory

models, are mathematically complex problems and therefore they are difficult to

deal with. In Section 3.1 we proposed different solution approaches to these mod-

els. In order to obtain an “optimal” solution for the behaviourally based models

we use differential evolution, differential evolution with spline interpolation and

a genetic algorithm.

It is known that the parameters of heuristics and metaheuristic algorithms have

a great influence on the effectiveness and efficiency of these algorithms (see for
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example [4]). It is important to find correct parameter settings for each problem

and data set. To obtain the best solution for the problems we illustrate this here

with the algorithms using the first data set (Hang Seng) trying to choose the

most appropriate value for each parameter and analyse the effectiveness of each

algorithm in order to define the best for our research. The analysis and selection

of the parameters for the chosen algorithm for the other sets of data are presented

in Appendix B.

Our choice of parameter is based on three comparison criteria: computational

time, utility as the value of the objective function PT(x) and range of PT(x)

as a difference ξ = max PT(x) − min PT(x). In order to study the stability of

the algorithm we test each combination of parameters 10 times and compare

mean CPU time, mean utility and ξ in the form of the difference max PT(x) −

min PT(x).

The optimal solution of the prospect theory problem is typically unknown and we

have no benchmark for comparative analysis. So we define the optimal solution

to be the best in the set of solutions we have obtained in our tests. In this section

we also consider the performance of different approaches to the prospect theory

problem in order to define the best in terms of several indicators described above.

Much research has been devoted to using heuristic approaches as an effective tool

for dealing with non-convex problems. Maringer in 2008 presented a comparative

analysis of quadratic, power and the prospect theory utility function performance

with different levels of loss aversion [49]. He used a differential evolution approach

in order to get a solution for the prospect theory model. The paper focused more

on performance of the models and parameters of the optimal portfolio return

distribution but not on the solution approach itself.

To the best of our knowledge there are no studies where the differential evolu-

tion with spline interpolation and a genetic algorithm have been applied to the

prospect theory problem. From the mathematical point of view it is interesting to

investigate the performance of different solution approaches applied to problem

(2.33)–(2.43) which is non convex and function (2.33) which is non differentiable.
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Differential evolution algorithm

The differential evolution algorithm efficiency depends on parameters such as the

differential weight F , the crossover probability CR, the population size P and

the number of generations G. It is necessary to start with the F parameter

because the differential weight is the key parameter for the differential evolution

algorithm. As we noticed this value significantly influences the mean value of

the objective function and its dispersion. It is known that F ∈ [0, 2] (see Section

3.1.1), however, in our case a value larger than 1 gives us a very unstable solution.

Thus, we define the following values to test: 0.05, 0.15, 0.5 and 0.95. In the

calculations in Table 4.5 for our specific function, the smaller the value of the

differential weight the higher the value of objective function (utility) and the

smaller the range of the solution (ξ = 0 leads to the best quality of the solution).

The value 0.05 gives us the best results according to all three criteria.

It should be mentioned that in choosing parameter F = 0.05 we set CR =

0.5, P = 20 and G = 100. This choice is based on preliminary analysis and

recommendations available in the literature [63], [30]. Hereinafter while testing

each parameter one by one we fix the values of other parameters (F = 0.05,

CR = 0.5, P = 20 and G = 100) in order to show the difference in the results.

The next step is to choose the optimal value for the crossover probability. It

is known that the CR ∈ [0, 1] (see Section 3.1.1). We analyse three values for

CR = 0.3, 0.5, 0.8. The results in Table 4.5 confirms that CR = 0.5 provides an

acceptable CPU time (better than CR = 0.8) and a stable utility (better than

CR = 0.3) which leads to a stable solution.

The parameters F and CR should be chosen for the specific objective function

and features of the problem. In contrast, the values of G and P primarily depend

on the size of the problem. For example, for a data set with 32 assets (including

the index as an asset) we define values for G and P , so, for larger scale problems

we use values in proportion to the best we find here. We consider the values of

these parameters as a function of problem size. We now explain the choice of

these parameters only for the smallest data set Hang Seng.
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We test values P = 15, 20, 25 in order to define suitable parameters in terms

of CPU time and optimality of the solution. As one can see in Table 4.5 the

population size of 20 provides the best utility (quantitatively and in terms of

stability) with reasonable computational time. The value P = 25 requires more

time (+35.6 seconds) compared to P = 20, providing the same utility while a

smaller population size leads to an unstable solution.

Within the DE algorithm we need to decide which number of generations is

the best for this problem size. We define three points to test which are G =

70, 100, 130 in order to find a balance between solution quality and computational

time. We choose 100 because it provides maximum utility with range 0 in an

acceptable CPU time as shown in Table 4.5.

Parameter Parameter value CPU time PT (x) ξ
F 0.05 61.8 0.6237 0

0.15 64.4 0.6235 0.0003
0.5 66 0.62084 0.0013
0.95 69.2 0.56534 0.0269

CR 0.3 61.6 0.62356 0.0002
0.5 61.8 0.6237 0
0.8 65.4 0.6237 0

P 15 35.2 0.62302 0.0031
20 61.8 0.6237 0
25 97.4 0.6237 0

G 70 43.2 0.62342 0.0005
100 61.8 0.6237 0
130 80.6 0.6237 0

Table 4.5: Differential evolution parameter comparison (Hang Seng data set)

Differential evolution algorithm with spline interpolation

Due to the fact that the principles of the DE with spline interpolation algorithm

is identical to that of the DE, the results of testing provide the same trend. We

only changed the value of the differential weight F = 0.1 because it gives better

CPU time. One can find the results of testing in Table 4.6. Finally, the chosen

parameters for the DE with spline interpolation algorithm applied to the PT

model are F = 0.1, CR = 0.5, P = 20 and G = 100.
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Parameter Parameter value CPU time PT (x) ξ
F 0.1 63.5 0.6237 0

0.15 65.4 0.6235 0.0005
0.5 67 0.62084 0.0017
0.95 69.2 0.56534 0.036

CR 0.3 62.7 0.6134 0.0024
0.5 63.5 0.6237 0
0.8 67.3 0.6237 0

P 15 41.6 0.62302 0.0043
20 63.5 0.6237 0
25 103.8 0.6237 0

G 70 43.2 0.62342 0.0005
100 63.5 0.6237 0
130 85.7 0.6237 0

Table 4.6: Differential evolution with spline interpolation parameter com-
parison (Hang Seng data set)

Genetic algorithm

There are three main parameters in the genetic algorithm: the mutation probabil-

ity z, the population size P and the number of generations G. These parameters

are the most influencing on the outcome of the algorithm.

As shown in Table 4.7 we tested different values for each of these parameters in

order to find the optimal settings. In the analysis we used constant parameters

z = 0.5, P = 15 and G = 70 for the Hang Seng (Hong Kong) data set while

testing each parameter in order to show the difference in the results. This choice

is based on preliminary analysis and recommendations available in the literature.

First of all the mutation probability should be chosen. We took several different

values for the parameter z. As one can see in Table 4.7 the CPU time does not

change much and does not depend on the value of this parameter. It is obvious

that z = 0.5 gives us a necessary and sufficient mutation component to obtain

the best stability of the solution. The values larger (z = 0.7) or smaller (z = 0.3)

provide the solution with lower level of stability. In addition, the value of the

objective function in this case is not the best as well.
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Population size is a very important parameter for any heuristic algorithm. One

should find the right value of P for the specific problem. There are many rec-

ommendations in the literature which can help to choose suitable parameters for

the genetic algorithm (see for example [33]) according to the specific objective

function. Most of the guides suggest to use the number of variables and multiply

it by 10 for such complex objective functions such as prospect theory. At the

same time for the portfolio optimisation problem the recommended population

size is around 100-200 [5]. In our case there are 32 assets (including the index as

an asset) in a data set and we found testing the model that reasonable interval

for the search is [10, 20] for such a small matrix. Taking into account that in

our algorithm we use population size P 2 we obtained an interval [100, 400] which

covers the first recommendation (32 · 10 = 320) and the second one ([100,200]).

The population size greatly affects the CPU time. Again we are searching for

a balance between computational time and stability because the quality is not

improving much with an increasing value of P . However, the solution becomes

more volatile once you decrease the population size (see results for P = 10 in the

Table 4.7). We define P = 15 as the best for our experiments because it gives

optimal utility and saves computational time compared to P = 20. Also P = 15

provides a good search space for exploration.

We study the interval [40,100] in order to define the optimal parameter value for

the number of generations. Previously, we tested extremely high values such as

300 and 400 and the quality of the solution did not change much versus the value

of 100 but the CPU time increases dramatically. One can see in Table 4.7 that

the difference between the results obtained using G = 70 and G = 100 is not

much too, so, we can save time for approximately the same range of the solution

and the value of objective function while decreasing the value of G results in a

deteriation the solution.

As was mentioned previously, we consider values of P and G parameters as a

function of the problem size for the heuristic approaches and one should choose
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it proportionally to the problem size. The values of G and P parameters for the

genetic algorithm for different sized problems can be found in Appendix B.

Parameter Parameter value CPU time PT (x) ξ
z 0.3 36.6 0.6219 0.0084

0.5 36.2 0.62354 0.0002
0.7 36.8 0.62352 0.0004

P 10 15.6 0.60916 0.0713
15 36.2 0.62354 0.0002
20 67.4 0.62361 0.0002

G 40 25.6 0.6235 0.0034
70 36.2 0.62354 0.0002
100 47.2 0.62358 0.0001

Table 4.7: Genetic algorithm parameter comparison (Hang Seng data set)

It is important to note that all three different algorithms give us the same value

of the objective function. This fact verifies the solution obtained with the pro-

posed solution approaches and confirms the accuracy of the implementation of

the prospect theory model into heuristic approaches.

We notice that the value of criterion ξ for the genetic algorithm is slightly worse

than the results achieved when testing the differential evolution algorithm. At the

same time the CPU time of the GA is much less which gives a benefit compared

to the DE. This benefit defines the choice of this solution approach for further

computational study for this research.

4.2 Comparative analysis of the performance of

the models

4.2.1 Connection to previous research

We would like to distinguish two empirical studies in the literature which con-

tributes to the development and application of the behaviourally based models.
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Maringer [49] studied PT investor’s risk aversion and loss aversion using higher

order moments such as skewness and kurtosis. He found and proved empirically

that “higher level of risk aversion might lead to an investment with more, not less

volatility” [49]. It can be explained by sensitiveness towards increasing positive

skewness and decreasing kurtosis. The more loss aversion increases, the more

risk seeking appears and the more aggressive the portfolio that is chosen when

behavioural investors face losses.

The preferences of some assets under the CPT assumptions in terms of specific

characteristics of the assets was researched by Barberis and Huang in 2008 [9].

They found that positively skewed securities are more preferable in the CPT

optimal portfolios in comparison with the MV model. They proposed that this

fact is the effect of the probability weighting function [9]. The same result was

obtained by Bernard and Ghossoub in 2010 [14].

4.2.2 Comparative analysis of the basic models

The summary of the mean variance, prospect theory and cumulative prospect

theory basic models performance in-sample is displayed in Table 4.8. This table

shows the ratio r̄/σ, mean portfolio r̄, standard deviation σ, VaR and CVaR as

well as the number of assets n in the optimal portfolio and CPU time in seconds

(CPU) which is significant for the heuristic approaches.

As was mentioned before (in Section 2.4) the VaR and the CVaR are often used

together and the application of this combination of two risk measures can be

beneficial to the risk estimation for non-symmetric loss distributions which are

characteristics for real market conditions.

Obviously, computational time for the heuristic approach used for behaviourally

based models is much higher than for quadratic linear programming which is

applied for the mean variance model. Computational complexity of cumulative

prospect theory makes it even worse. The CPU time is triple that for the prospect

theory.
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Usually the quality of the heuristic approach for smaller problems can be mea-

sured in deviation of the heuristic solution from the optimal solution [87]. How-

ever, the efficient frontier for prospect theory portfolio optimisation problem is

unknown. As can be noticed in Table 4.8 it is very difficult to compare the

portfolios average return and risk using different models because the PT model‘s

behaviour is more aggressive in terms of mean return and respectively gets higher

risk. In this case we suggest to use the ratio r̄/σ as a unified measure of per-

formance of the portfolio which includes the mean portfolio and a risk measure.

The larger the value of r̄/σ the more efficient the portfolio.

We proposed previously that the mean variance model will be used as a bench-

mark in this research. It is justified by the fact that the mean variance model

provides the optimal solution in terms of return and variance. One can see that

in each data set the ratio r̄/σ of the MV model is the best among the others.

Only in the Nikkei 225 data set the PT model did achieve a higher ratio because

it found the best portfolio with an extremely high mean return and it is hard to

compare the results in this case. If we set this high level of portfolio mean return

as d in the constraint for expected return for the mean variance model the ratio

r̄/σ is higher than achieved for the prospect theory model due to the smaller σ.

As was mentioned previously we treat the index as a normal asset and allow it to

be chosen as an asset in an optimal portfolio in order to check its attractiveness for

the investigated models. We suppose that the index should be an efficient asset.

According to our experiments only cumulative prospect theory chooses the index

in two data sets out of five. In spite of the poor results in most of the parameters,

CPT shows a better CVaR value compared to the PT model. This model shows

mostly conservative investment behaviour according to the risk measure σ and

CVaR when compared to the PT model.

It is easy to see that according to the in-sample computational results the prospect

theory model achieved higher mean portfolio return in each data set (especially

in the Nikkei 225 data set) than MV and CPT models. In spite of this PT and

CPT model got mostly the best value of the VaR parameter which indicates good
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downside protection and agrees with the theoretical concept of BPT. However, PT

and CPT models demonstrate less diversification of their portfolios in comparison

with the mean variance model.

Data set Model CPU n r̄/σ r̄ σ VaR CVaR

Hang Seng MV 0.015 9 0.3926 0.0118 0.0301 -0.0373 -0.0644
d=0.0118 PT 36.2 8 0.3922 0.0131 0.0335 -0.0371 -0.0727

CPT 104 5 0.3616 0.0130 0.0359 -0.0500 -0.0668
DAX 100 MV 0.031 16 0.4683 0.0060 0.0128 -0.0141 -0.0197
d=0.006 PT 550 12 0.4529 0.0083 0.0183 -0.0145 -0.0248

CPT 1790 7 0.4369 0.0080 0.0183 -0.0144 -0.0206
FTSE 100 MV 0.031 14 0.5636 0.0077 0.0137 -0.0121 -0.0178
d=0.0077 PT 630 17 0.4797 0.0090 0.0188 -0.0114 -0.0272

CPT 1904 22 0.4933 0.0085 0.0171 -0.0153 -0.0163
S&P 100 MV 0.046 11 0.5115 0.0109 0.0213 -0.0279 -0.0328
d=0.0109 PT 721 6 0.4940 0.0109 0.0221 -0.0267 -0.0391

CPT 1994 7 0.4717 0.0105 0.0222 -0.0265 -0.0265
Nikkei 225 MV 0.14 13 0.0159 0.0005 0.0196 -0.0349 -0.0395
d=0.0005 PT 1179 4 0.1434 0.0034 0.0238 -0.0338 -0.0384

CPT 4862 4 0.1598 0.0039 0.0246 -0.0325 -0.0326

Table 4.8: Comparative analysis of basic models (in-sample). Summary

In summary, the main findings are:

• The PT model, mostly, is more aggressive than MV and CPT because it

chooses portfolios with higher level of returns. Probably, the reference point

forces this model to focus more on the assets with high returns. In spite of

the similarity of the PT and CPT models the cumulative prospect theory is

not so aggressive because of the probability weight function which prevents

the appearance of high risk in the optimal portfolio.

• The PT model is more efficient than CPT according to the r̄/σ indicator

in the main.

• Behaviourally based models are more beneficial in terms of VaR in compar-

ison with the MV in most of the data sets. This fact reflects the nature of

the PT model which focuses on downside protection.

• Behaviourally based models provide portfolios which are normally less di-

versified than the mean variance model.
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• The index as an asset, generally, was not attractive for all the three models

in our data sets. In a volatile market, the index returns are not attractive

as an investment for portfolio selection models giving less benefits than

ordinary assets.

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.6844 0.0014 0.0020 -0.0018 -0.0028

PT 0.5388 0.0012 0.0021 -0.0023 -0.0031
CPT 0.4260 0.0009 0.0021 -0.0026 -0.0035

DAX 100 MV 1.9785 0.0024 0.0012 0.0004 -0.0001
PT 1.7766 0.0024 0.0013 0.0005 -0.0005

CPT 2.4833 0.0033 0.0013 0.0012 0.0006
FTSE 100 MV 1.1103 0.0016 0.0014 -0.0008 -0.0014

PT 1.6570 0.0023 0.0014 0.0000 -0.0006
CPT 1.8717 0.0024 0.0013 0.0002 -0.0003

S&P 100 MV 0.7232 0.0013 0.0019 -0.0017 -0.0024
PT 0.8441 0.0016 0.0019 -0.0015 -0.0023

CPT 0.9175 0.0017 0.0019 -0.0012 -0.0021
Nikkei 225 MV 0.3317 0.0005 0.0016 -0.0021 -0.0029

PT 0.9804 0.0019 0.0020 -0.0014 -0.0022
CPT 0.9960 0.0019 0.0020 -0.0013 -0.0022

Table 4.9: Comparative analysis of basic models (out-of-sample: bootstrap).
Summary

We now investigate the performance and behaviour of the models for out-of-

sample tests. We applied bootstraping, using the data sets with the time periods

from 101 to 290. We randomly choose observations from the specified range to

obtain out-of-sample data set. We repeat this iteration 1000 times and statisti-

cally obtain portfolio characteristics in the form of mean return, risk, VaR and

CVaR. We would like to draw the riders attention that here and further on val-

ues of VaR and CVaR are calculated with respect to return (instead of loss). It

means that starting from Table 4.9 the higher the values or these risk measures

the better.

As shown in Table 4.9, behaviourally based models maintain the leading position

in terms of portfolio returns in most of the data sets while the MV is better in the

risk parameter σ. In looking at the ratio r̄/σ, one can notice that the cumulative
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 22.3694 0.0795 0.0036 0.0736 0.0722

PT 19.5623 0.0792 0.0040 0.0727 0.0724
CPT 15.0646 0.0794 0.0053 0.0705 0.0686

DAX 100 MV 31.5966 0.1582 0.0050 0.1501 0.1478
PT 22.6324 0.1583 0.0070 0.1471 0.1443

CPT 21.0312 0.1584 0.0075 0.1458 0.1430
FTSE 100 MV 22.9827 0.1189 0.0052 0.1106 0.1084

PT 27.4194 0.1187 0.0043 0.1115 0.1099
CPT 30.1336 0.1188 0.0039 0.1120 0.1103

S&P 100 MV 23.7931 0.0986 0.0041 0.0918 0.0901
PT 22.1445 0.0991 0.0045 0.0917 0.0894

CPT 24.0876 0.0991 0.0041 0.0924 0.0904
Nikkei 225 MV 26.3628 0.1385 0.0053 0.1263 0.1236

PT 18.3664 0.1388 0.0076 0.1301 0.1272
CPT 17.5419 0.1382 0.0079 0.1248 0.1217

Table 4.10: Comparative analysis of basic models (out-of-sample: simulation
of bullish market). Summary

prospect theory is better compared to the other models. Also this model shows

better performance according to the VaR and CVaR parameters.

To investigate further, we extended our out-of-sample tests to look at the models

performance for both bullish and bearish market data. In out-of-sample simula-

tion of bullish market tests based on a distribution which is typical for increasing

market in the period of economic growth, the results are shown in Table 4.10.

According to Table 4.10, behaviourally based models, especially the PT model,

shows best results in terms of mean return of the portfolio as well as VaR and

CVaR parameters. The cumulative prospect theory model also shows better VaR

and CVaR statistics compared to MV. At the same time, the MV model is more

beneficial from the risk parameter (σ) point of view and also better in the ratio

r̄/σ.

Our out-of-sample simulation of bearish market tests based on a distribution

which is typical for a decreasing market in the period of economic crisis. As one

can see in Table 4.11, surprisingly, behaviourally based models, especially the PT

model, look mostly better in terms of VaR and CVaR but are worse in σ and the
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.2580 0.0004 0.0015 -0.0022 -0.0026

PT 0.2187 0.0003 0.0016 -0.0022 -0.0030
CPT 0.2659 0.0004 0.0016 -0.0023 -0.0030

DAX 100 MV -0.1797 -0.0007 0.0036 -0.0067 -0.0081
PT -0.1460 -0.0006 0.0039 -0.0066 -0.0075

CPT -0.1912 -0.0008 0.0040 -0.0074 -0.0088
FTSE 100 MV -0.0235 -0.0001 0.0035 -0.0061 -0.0075

PT -0.1712 -0.0004 0.0026 -0.0047 -0.0057
CPT -0.0619 -0.0002 0.0031 -0.0052 -0.0064

S&P 100 MV -0.1088 -0.0003 0.0031 -0.0054 -0.0066
PT -0.0956 -0.0003 0.0030 -0.0054 -0.0065

CPT -0.2678 -0.0008 0.0032 -0.0060 -0.0074
Nikkei 225 MV -0.0658 -0.0002 0.0038 -0.0064 -0.0079

PT 0.0420 0.0002 0.0037 -0.0062 -0.0074
CPT -0.2317 -0.0009 0.0039 -0.0069 -0.0083

Table 4.11: Comparative analysis of basic models (out-of-sample: simulation
of bearish market). Summary

r̄/σ indicator in comparison with the MV model. According to the ratio r̄/σ, VaR

and CVaR parameters, the PT is more beneficial than the CPT in the bearish

market. Generally, the cumulative prospect theory model demonstrates the worst

results in these tests, especially in the ratio r̄/σ, VaR and CVaR parameters. Also

it is hard to say which model performed better in terms of mean returns because

the results for this parameter fluctuates between different models.

Tests on simulated bearish market data show the benefits of PT model in terms

of VaR and CVaR risk measures which are significantly important in decreasing

market conditions. It means that the behavioural component of PT model pro-

vides better downside protection in critical market situations in comparison with

the traditional mean variance approach.

The results for all tests with higher order moments values (skewness and kurtosis

indicators) can be found in Appendix C.
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4.2.3 Comparative analysis of the models with cardinality

constraint

As was proposed previously we investigate the performance of a cardinality con-

strained mean variance and prospect theory models in this section. In-sample

results for these models are presented in Table 4.12. We noticed that CPU time

for cardinality constrained prospect theory model is slightly less than for the basic

version. The genetic algorithm works faster in this case because the parameter

K restricts the searching space. It is interesting to see that the PT model does

not reach the maximum of the allowed number of assets in the portfolio in 3

sets while the MV model takes the opportunity to include as many assets as is

allowed.

Similar to in-sample results for the basic models the cardinality constrained MV

model showed better values of σ, the ratio r̄/σ and CVaR while the PT model was

better in mean portfolio return and VaR parameters. We can conclude that the

behavior of the prospect theory model does not change much with the additional

cardinality constraint and it demonstrates the aggressive portfolio choice.

Data set Model CPU K n r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.09 7 7 0.3919 0.0118 0.0301 -0.0363 -0.0643
d=0.0118 PT 37 7 6 0.3915 0.0132 0.0338 -0.0363 -0.0731
DAX 100 MV 0.25 10 10 0.4604 0.0060 0.0130 -0.0159 -0.0191
d=0.006 PT 520 10 8 0.4484 0.0080 0.0179 -0.0141 -0.0250

FTSE 100 MV 0.11 10 10 0.5631 0.0077 0.0137 -0.0122 -0.0180
d=0077 PT 600 10 8 0.5218 0.0096 0.0184 -0.0107 -0.0269
S&P 100 MV 0.14 5 5 0.4911 0.0109 0.0222 -0.0263 -0.0371
d=0.0109 PT 690 5 5 0.4729 0.0120 0.0253 -0.0255 -0.0413
Nikkei 225 MV 0.89 3 3 0.0023 0.0000 0.0209 -0.0381 -0.0439
d=0.0005 PT 1105 3 3 0.1420 0.0034 0.0239 -0.0327 -0.0369

Table 4.12: Comparative analysis of cardinality constrained models (in-
sample). Summary

The performance of the models out-of-sample using the bootstrap method are

presented in Table 4.13. The prospect theory model again is better in terms of

portfolio mean return and VaR as compared to the MV while the mean variance

model shows benefit in σ and mostly in CVaR parameters. At the same time the
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resulting values of the ratio r̄/σ are difficult to analyse due to the ambiguity of

the results.

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.5302 0.0011 0.0021 -0.0023 -0.0023

PT 0.4391 0.0009 0.0022 -0.0027 -0.0035
DAX 100 MV 2.2284 0.0027 0.0012 0.0007 0.0002

PT 2.1879 0.0028 0.0013 0.0008 0.0001
FTSE 100 MV 1.2833 0.0017 0.0014 -0.0005 -0.0011

PT 1.6132 0.0025 0.0015 0.0000 -0.0006
S&P 100 MV 0.8257 0.0016 0.0020 -0.0017 -0.0024

PT 0.9538 0.0021 0.0022 -0.0017 -0.0035
Nikkei 225 MV 0.1783 0.0003 0.0019 -0.0027 -0.0035

PT 0.8366 0.0015 0.0018 -0.0015 -0.0022

Table 4.13: Comparative analysis of cardinality constrained models (out-of-
sample: bootstrap). Summary

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 20.2696 0.0792 0.0039 0.0729 0.0715

PT 20.2971 0.0792 0.0039 0.0727 0.0716
DAX 100 MV 27.3371 0.1585 0.0058 0.1491 0.1463

PT 23.1736 0.1582 0.0068 0.1469 0.1465
FTSE 100 MV 22.9842 0.1187 0.0052 0.1103 0.1085

PT 22.8369 0.1191 0.0052 0.1103 0.1088
S&P 100 MV 20.9687 0.0993 0.0047 0.0910 0.0890

PT 20.4622 0.0994 0.0049 0.0910 0.0892
Nikkei 225 MV 16.6797 0.1393 0.0083 0.1246 0.1210

PT 16.1642 0.1387 0.0086 0.1241 0.1214

Table 4.14: Comparative analysis of cardinality constrained models (out-of-
sample: simulation of bullish market). Summary

According to the out-of-sample test results (simulation of bullish and bearish mar-

ket) which are shown in Table 4.14 and Table 4.15 similar conclusions regarding

the behaviour of the two studied models can be made. The mean variance model

is mostly better in σ and the ratio r̄/σ criteria in a bullish market while in a

bearish market it demonstrates the CVaR is slightly worse than the prospect

theory. The advantage of the ratio r̄/σ and mean return for the models in a

bearish market changes from one data set to another which underlines the high

volatility of the returns in such type of market situations. However, the prospect
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.1935 0.0003 0.0015 -0.0022 -0.0028

PT 0.1988 0.0003 0.0015 -0.0023 -0.0030
DAX 100 MV -0.2595 -0.0010 0.0037 -0.0070 -0.0089

PT -0.2159 -0.0008 0.0037 -0.0066 -0.0084
FTSE 100 MV 0.0603 0.0002 0.0035 -0.0056 -0.0068

PT -0.0764 -0.0002 0.0033 -0.0056 -0.0068
S&P 100 MV -0.2076 -0.0006 0.0031 -0.0056 -0.0069

PT -0.4262 -0.0013 0.0031 -0.0063 -0.0068
Nikkei 225 MV -0.2621 -0.0011 0.0043 -0.0082 -0.0100

PT -0.0329 -0.0002 0.0046 -0.0076 -0.0094

Table 4.15: Comparative analysis of cardinality constrained models (out-of-
sample: simulation of bearish market). Summary

theory model demonstrates the benefit in r̄ in the bullish market and slightly

better VaR and CVaR in both types of market similar to the performance of the

basic model.

4.2.4 Comparative analysis of the models with a CVaR

constraint

Analysing the performance of the basic and cardinality constrained models we

notice that behaviourally based models are generally better on the CVaR criteria

compared to the mean variance model. Thus, it is interesting to see the perfor-

mance of the prospect theory and mean variance models with a limit on CVaR.

In this section we consider the results of the two models (MV and PT models)

with a CVaR constraint as formulated in Section 2.4.

As can be seen in Table 4.16 the implemented CVaR constraint increases the CPU

time for the prospect theory model dramatically. We can conclude that the target

return constraint together with a limit on the CVaR makes the search space for

the solution too tight in the region of the intersection of feasible sets. The genetic

algorithm requires much more time to overcome local optimum because of less

freedom. We also notice that the diversification of the portfolios for the prospect

theory model is not changed much when compared to the basic version.
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Similar to the previous in-sample results the prospect theory model has larger r̄ in

the portfolios than the mean variance portfolios losing out in σ, VaR and CVaR

parameters due to the fact that z∗ (which is point up the CVaR constraint)

for PT model is much lower then for the MV one because of feasibility of the

solutions. The mean variance model also gains in the ratio r̄/σ criteria in each

set except the largest one. In addition, for that data set, the PT model shows

better diversification as well.

Data set Model z∗ CPU n r̄/σ r̄ σ VaR CVaR

Hang Seng MV -0.056 0.03 8 0.380 0.011 0.029 -0.038 -0.056
d=0.011 PT -0.073 40 5 0.392 0.013 0.034 -0.039 -0.070
DAX 100 MV -0.019 0.09 14 0.468 0.007 0.015 -0.013 -0.019
d=0.007 PT -0.027 647 5 0.442 0.009 0.020 -0.019 -0.024

FTSE 100 MV -0.014 0.11 15 0.541 0.007 0.013 -0.012 -0.014
d=0.007 PT -0.025 754 18 0.513 0.009 0.018 -0.019 -0.025
S&P 100 MV -0.014 0.12 23 0.550 0.006 0.011 -0.012 -0.014
d=0.006 PT -0.038 685 18 0.494 0.009 0.018 -0.023 -0.033

Nikkei 225 MV -0.036 0.41 13 0.098 0.002 0.021 -0.030 -0.036
d=0.002 PT -0.049 2553 24 0.119 0.003 0.023 -0.033 -0.040

Table 4.16: Comparative analysis of models with CVaR constraint (in-
sample). Summary

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.6665 0.0013 0.0019 -0.0021 -0.0029

PT 0.0760 0.0002 0.0022 -0.0035 -0.0043
DAX 100 MV 2.2560 0.0028 0.0013 0.0009 0.0003

PT 1.7529 0.0024 0.0014 0.0001 -0.0004
FTSE 100 MV 1.2400 0.0016 0.0013 -0.0006 -0.0011

PT 1.7619 0.0024 0.0014 0.0001 -0.0005
S&P 100 MV 1.6640 0.0021 0.0012 0.0000 -0.0004

PT 1.2857 0.0025 0.0019 -0.0007 -0.0015
Nikkei 225 MV 0.5530 0.0009 0.0016 -0.0017 -0.0024

PT 0.9456 0.0015 0.0016 -0.0012 -0.0018

Table 4.17: Comparative analysis of models with CVaR constraint (out-of-
sample: bootstrap). Summary

Out-of-sample bootstrap tests results for the models with a CVaR constraint are

presented in Table 4.17. The mean variance model demonstrates better values of

σ while the prospect theory model holds the leading position with regard to the

largest r̄ for each set of data which is predictable due to the previous analysis.



Chapter 4. Computational results 69

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 19.7664 0.0793 0.0040 0.0727 0.0712

PT 17.6371 0.0793 0.0045 0.0730 0.0716
DAX 100 MV 26.4675 0.1582 0.0060 0.1479 0.1457

PT 20.4444 0.1579 0.0077 0.1477 0.1461
FTSE 100 MV 25.6109 0.1187 0.0046 0.1110 0.1089

PT 25.9197 0.1189 0.0046 0.1114 0.1091
S&P 100 MV 38.2829 0.0990 0.0026 0.0947 0.0936

PT 24.0364 0.0992 0.0041 0.0943 0.0938
Nikkei 225 MV 25.6196 0.1387 0.0054 0.1298 0.1271

PT 27.5647 0.1381 0.0050 0.1294 0.1276

Table 4.18: Comparative analysis of models with CVaR constraint (out-of-
sample: simulation of bullish market). Summary

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.4767 0.0005 0.0011 -0.0013 -0.0017

PT 0.3905 0.0004 0.0011 -0.0014 -0.0017
DAX 100 MV -0.1402 -0.0005 0.0037 -0.0064 -0.0079

PT -0.1175 -0.0004 0.0038 -0.0068 -0.0078
FTSE 100 MV -0.1006 -0.0003 0.0034 -0.0057 -0.0071

PT -0.1472 -0.0004 0.0030 -0.0054 -0.0067
S&P 100 MV -0.1560 -0.0004 0.0028 -0.0050 -0.0062

PT -0.3418 -0.0009 0.0027 -0.0054 -0.0060
Nikkei 225 MV -0.1673 -0.0007 0.0042 -0.0077 -0.0090

PT -0.1905 -0.0007 0.0039 -0.0071 -0.0085

Table 4.19: Comparative analysis of models with CVaR constraint (out-of-
sample: simulation of bearish market). Summary

At the same time other criteria can not tell us much about the behaviour of these

models. The results are too inconsistent to draw any conclusions.

The other out-of-sample tests which are simulation of bullish and bearish markets

are presented in Table 4.18 and Table 4.19, and mostly confirm the findings

obtained previously. In a bullish market we notice the trend that the prospect

theory model shows better performance in terms of r̄ and CVaR while the mean

variance model is better according to the ratio r̄/σ and the σ criteria. In the

bearish market the MV model with CVaR constraint is still the best in the ratio

r̄/σ, however, it mostly loses the advantage in the σ when compared to PT.

It is interesting to see that in the bearish market the prospect theory model with
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CVaR constraint shows more benefits in the CVaR criterion than the MV model.

In spite of the lower z∗ constraint compared to MV model the PT model manages

to exceed the results of the traditional approach in terms of CVaR. Surprisingly,

behaviourally based models are more useful in the specific crisis market condition

in terms of downside protection than traditional portfolio selection approach.

4.3 The index tracking problem and prospect

theory model

The index tracking problem usually chooses many assets in the optimal portfolio

which is very difficult to manage and rebalance. That is why the IT has a

cardinality constraint which then becomes a computationally challenging problem

for researchers. In this section we discuss empirical results of in-sample and out-

of-sample performance of the IT and PT with index tracking problems (with and

without cardinality constraint). As out-of-sample tests we use only simulation

of bullish and bearish market. We do not apply bootstrap method because our

in-sample tests include all available observations (all 290 time periods of used

data sets).

4.3.1 Basic index tracking and prospect theory models

The computational results presented in this section for index tracking problems

were obtained using five data sets described earlier but with all 290 time periods.

The first asset in each data set is the index and is not included in the investment

universe of assets. We also use a methodology described above for simulation of

bullish and bearish markets in out-of-sample tests.

We analyse the performance of the results by several criteria such as CPU time,

the number of assets in the portfolio n, tracking error TE, tracking error over

the index TE o, tracking error under the index TE u. It should be noted that we
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use absolute values of TE, TE o, TE u for our analysis. Table 4.20 reflects the

empirical results of the experiment for the used sets of data.

Data set Model CPU time n TE TE o TE u
Hang Seng IT 0.047 30 0.4290 0.2444 0.1845

PT+IT 70 20 0.8420 0.5690 0.2730
DAX 100 IT 0.109 69 0.3354 0.1835 0.1519

PT+IT 242 51 1.1763 0.7336 0.4427
FTSE 100 IT 0.141 81 0.2855 0.1657 0.1198

PT+IT 250 46 1.1463 0.7919 0.3544
S&P 100 IT 0.125 83 0.2682 0.1553 0.1130

PT+IT 347 67 0.9409 0.5881 0.3529
Nikkei 225 IT 0.266 159 0.1686 0.0921 0.0765

PT+IT 1803 69 0.9802 0.6300 0.3501

Table 4.20: Comparative analysis of the index tracking and prospect theory
with index tracking problem (in-sample)

It is easy to see from the table that the number of assets in the PT with IT

optimal portfolios is approximately half those in the IT portfolios. This issue

gives a good advantage to the PT with IT in comparison with the IT model

because of transaction costs and convenience of portfolio management.

It is obvious that the tracking error of the IT model solution is always less than

in PT with IT optimal portfolios but it is still comparable. One can notice that

the beneficial difference between parameters TE o for IT and PT with IT models

is much greater (in proportion to the tracking error) than between parameters

TE u for these models. This means that the PT with IT model chooses assets

with higher return than the IT model using the reference point (index) only as a

starting point but not as a benchmark. These facts confirm that the PT with IT

model focuses more penalty on not achieving the reference point compared with

exceeding it.

We test the performance of the two models using out-of-sample simulations and

use the same criteria for analysis. Firstly, we simulate on a bullish market. Table

4.21 reflects the empirical results of the experiment.

We should note that the behaviour of the investigated models in the bullish

market is very similar to the in-sample performance. According to the tracking



Chapter 4. Computational results 72

Data set Model TE TE o TE u
Hang Seng IT 0.1292 0.1292 0

PT+IT 0.3589 0.3589 0
DAX 100 IT 0.0934 0.0918 0.0016

PT+IT 0.5470 0.5470 0
FTSE 100 IT 0.1304 0.1304 0

PT+IT 0.6335 0.6335 0
S&P 100 IT 0.1271 0.1271 0

PT+IT 0.4432 0.4432 0
Nikkei 225 IT 0.1225 0.1225 0

PT+IT 0.5660 0.5660 0

Table 4.21: Comparative analysis of the index tracking and prospect theory
with index tracking problem (out-of-sample: simulation of bullish market)

error parameter the PT with IT portfolios show smaller value compare to the

in-sample results.

We also test the performance of two models using an out-of-sample simulation

on a bearish market. It is interesting to explore the performance of the models

in opposite conditions. In Table 4.22 one can find the out-of-sample empirical

results.

Data set Model TE TE o TE u
Hang Seng IT 0.1960 0.1960 0

PT+IT 0.1806 0.1806 0
DAX 100 IT 0.2991 0.1673 0.1317

PT+IT 0.2928 0.1481 0.1446
FTSE 100 IT 0.3013 0.1217 0.1795

PT+IT 0.3136 0.1164 0.1972
S&P 100 IT 0.3026 0.1172 0.1854

PT+IT 0.2984 0.1085 0.1899
Nikkei 225 IT 0.2750 0.1342 0.1408

PT+IT 0.3017 0.0880 0.2137

Table 4.22: Comparative analysis of the index tracking and prospect theory
with index tracking problem (out-of-sample: simulation of bearish market)

In contrast with the previous results, PT with IT model fails to show a good

outcome. This model performs worse in each data set for each parameter when

compared to the IT. Only tracking error of the prospect theory improved and

becomes even less then for IT model portfolios.
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Finally, we can conclude that the prospect theory model with index tracking as

the reference point is very effective in an increasing market due to its mathemati-

cal formulation which makes it desirable to exceed the reference point (in our case

it is the index values). In addition it is more beneficial in terms of lower number

of assets in the optimal portfolio. However, in a crisis market situation PT with

IT model performs worse than IT. Thus, the prospect theory model adjusted for

index tracking works well in a stable or increasing market condition.

4.3.2 Cardinality constrained index tracking and prospect

theory with index tracking models

The index tracking model with a cardinality constraint is a very computationally

challenging problem. On the one hand, the optimal solution is unknown and

one should set the termination criteria very carefully to obtain the best results.

On the other hand, the CPU time required is significantly large versus the non

cardinality constrained model.

For the index tracking and prospect theory with index tracking models with

cardinality constraint we used similar asset thresholds li = 0.01, ui = 1 (i =

1, . . . , N) as described in Section 4.1.2 and parameter K∗ which is the number of

assets allowed to be included in the optimal portfolio.

Tables 4.23, 4.24 and 4.25 show the performance of the IT and PT with IT models

with the cardinality constraint in-sample, out-of-sample (simulation of bullish

market) and out-of-sample (simulation of bearish market) empirical results.

As displayed in the tables the behaviour of the models with the cardinality con-

straint is completely similar to the behaviour of the non-cardinality constrained

IT and PT with IT models in different conditions. It should be noted that CPU

time for behavioural models with the additional constraint does not change much

and it implies that the genetic algorithm deals well with such type of complex

problems. So, the cardinality constrained models results confirms the conclusion

about the character of compared models made above.
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Data set Model CPU time K∗ n TE TE o TE u
Hang Seng IT 102 15 15 0.5760 0.3316 0.2448

PT+IT 74 15 15 1.1871 0.7828 0.4044
DAX 100 IT 200 20 20 0.5889 0.3280 0.2609

PT+IT 275 20 20 1.3309 0.9616 0.3693
FTSE 100 IT 193 25 25 0.6650 0.3819 0.2831

PT+IT 323 25 24 1.4432 1.0323 0.4109
S&P 100 IT 176 25 25 0.5555 0.3223 0.2332

PT+IT 459 25 22 1.2972 0.9111 0.3861
Nikkei 225 IT 612 25 25 0.7211 0.3845 0.3367

PT+IT 2780 25 25 1.3179 0.9637 0.3542

Table 4.23: Comparative analysis of index tracking and prospect theory with
index tracking problem with cardinality constraint (in-sample)

Data set Model TE TE o TE u
Hang Seng IT 0.1519 0.1519 0

PT+IT 0.3915 0.3915 0
DAX 100 IT 0.1202 0.1195 0.0007

PT+IT 0.7190 0.7190 0
FTSE 100 IT 0.1826 0.1826 0

PT+IT 0.7285 0.7285 0
S&P 100 IT 0.1674 0.1674 0

PT+IT 0.6149 0.6149 0
Nikkei 225 IT 0.1296 0.1296 0

PT+IT 0.6326 0.6326 0

Table 4.24: Comparative analysis of index tracking and prospect theory with
index tracking problem with cardinality constraint (out-of-sample: simulation

of bullish market)

Summary.

In this chapter the empirical study and analysis are presented. We discuss the

parameters of the models and the constraints as well as define parameters for

developed heuristic algorithms applied to the prospect theory and cumulative

prospect theory model. We mentioned above that using heuristic solution ap-

proaches the parameters of these algorithms is very important for an accurate

solution.

We also tested MV, PT and CPT basic models as well as with cardinality and

CVaR constraints in different market conditions. It is interesting to note that
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Data set Model TE TE o TE u
Hang Seng IT 0.2484 0.2484 0

PT+IT 0.1992 0.1992 0
DAX 100 IT 0.2907 0.1761 0.1145

PT+IT 0.3343 0.1652 0.1691
FTSE 100 IT 0.3248 0.1165 0.2083

PT+IT 0.3268 0.0954 0.2313
S&P 100 IT 0.2795 0.1208 0.1586

PT+IT 0.3066 0.0876 0.2189
Nikkei 225 IT 0.2939 0.1720 0.1219

PT+IT 0.3366 0.0943 0.2423

Table 4.25: Comparative analysis of the index tracking and prospect the-
ory with index tracking problem with cardinality constraint (out-of-sample:

simulation of bearish market)

behaviourally based models (with and without additional constraints) mostly

were better in terms of returns, VaR and CVaR in all tests. The reference point

in these models leads to more aggressive portfolios and higher level of returns.

However, CPT is not as aggressive as the PT model because it focuses not only

on loss aversion but on transformed probabilities too which take into account the

number of returns below and above the reference point. This affects portfolio

selection providing the portfolios with good downside protection (see the CVaR

criterion of CPT model in-sample and out-of-sample).

We found that even in a bearish market (out-of-sample test) the prospect theory

model was more beneficial in terms of the VaR and CVaR than the traditional

mean variance model. Significantly this conclusion is valid for the model with

CVaR constraint. We can assume that loss aversion and risk aversion which are

used in the prospect theory model help to reduce the risk of portfolios in the form

of the VaR and CVaR.

In unpredictable market conditions the index tracking portfolio selection problem

becomes very popular. We investigated the prospect theory model with the index

as the reference point (with and without cardinality) compared to the basic index

tracking model. It has been found that PT model is more beneficial in terms of

lower number of assets in the portfolio than index tracking (for models without
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cardinality constraint) that reduces transaction costs and makes rebalancing of

the portfolio more convenient. We also noticed that returns of the PT with index

tracking model mostly exceed the index returns which confirms our previous

conclusion about the impact of the reference point. However, in a bearish market

the prospect theory model shows greater losses compared to the index tracking

model.



Chapter 5

Conclusion

The behavioural approach to portfolio theory has become very popular in the

last decade because the market has demonstrated significant instability. There is

much theoretical evidence in the literature that behaviourally based models could

help to decrease the risk of the portfolio since they take into account natural loss

aversion and risk aversion biases of the investors. However, we found that there

is a lack of practical and empirical studies in the literature which could show

and prove these benefits and shed light on the performance of these models in

different market situations.

5.1 The main contribution

In this research we studied behaviourally based models such as the prospect the-

ory model and its extended version cumulative prospect theory using comparative

analysis with the traditional mean variance and index tracking models. In order

to investigate the benefits of a behavioural approach we implemented cardinality

and CVaR constraints to these models and tested the results out-of-sample using

the bootstrap method and simulation of bullish and bearish return distributions.

The results were presented for five publicly available data sets which reflect the

dynamics of major world markets.

77
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We developed several solution approaches for the prospect theory and cumulative

prospect theory models to obtain the accurate solution using heuristics. The dif-

ferential evolution algorithm and genetic algorithm were implemented in Matlab

in order to do this. We also justify the parameter choice for these models using an

empirical study due to the importance of the parameters in heuristic algorithms

application.

Both applications of the prospect theory model to portfolio optimisation and

index tracking problems show the model obtains higher returns in comparison

with the mean variance approach and index tracking model. It can be explained

by the effect of the reference point. The prospect theory wants to exceed the

reference point (for example, risk free rate) as much as possible which reflects

the psychological biases. So, this reference point steers the model to choose the

assets with higher returns no matter which desired level of return for the whole

period is set.

Out-of-sample tests also confirm that application of the prospect theory model

in a bullish market is beneficial in terms of returns. At the same time, in a crisis

market situation the returns of the PT and CPT models are worse in contrast

with the mean variance but not significantly.

The main finding here is that behaviourally based models (with and without pro-

posed constraints) outperform traditional portfolio optimisation model in terms

of VaR and CVaR for almost all out-of-sample tests. We showed empirically that

the psychological biases used in these models provide secure downside risk pro-

tection and leads to a better VaR and CVaR as measures that better captures

“tail risk” compared to variance.

In this thesis the prospect theory with index tracking has also been investigated.

We can conclude that prospect theory optimal portfolios performed better in

terms of returns than index tracking model and the index itself in-sample and in

a bullish market. However, the PT model was slightly worse in a bearish trend

compared to the index tracking model. At the same time it has been found that
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the PT with IT model is normally less diversified than the IT model which is a

benefit in terms of transaction costs and portfolio management issues.

The main contributions in this thesis are:

1. The heuristic solution approaches (the differential evolution (basic and with

spline interpolation) and the genetic algorithm) which are developed partic-

ularly for the behaviourally based models and can deal with a large universe

of assets.

2. Empirical evidence of VaR and CVaR benefits of behaviourally based mod-

els is compared to the mean variance model. The prospect theory model

then can be considered as a proxy of mean-CVaR model.

3. Diversification benefit of the prospect theory with index tracking model

compared to the traditional index tracking model has been empirically ver-

ified.

4. In-sample and out-of-sample results show that the prospect theory with

index tracking model has better returns then the index tracking model (with

and without cardinality constraint). We can conclude that the prospect

theory with index tracking model is a proxy for enhanced index tracking

model.

We would like to point that, in this thesis prospect theory was applied to a

large universe of assets. Previously, only small experiments were presented in the

literature (for example 2-3 assets). Thus, this empirical study aims to encourage

the use of prospect theory in practice along with mean variance and index tracking

models for specific real market conditions.
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5.2 Ideas for the future research

It should be noted that the problem of portfolio optimisation using a behavioural

approach is very challenging. There are different ways to investigate its solution

and performance.

As was proposed in this research we developed several heuristic solution ap-

proaches for the prospect theory model taking into account the specific features

of the model. As an idea for future work, one can bring more intelligent choice of

the assets in the portfolio into the breeding stage of the genetic algorithm based

on the observations and preferences of the studied model. In each generation

one distinguishes the assets which is included in the best portfolio and use this

information for the breeding stage in the next generation. Instead of checking

all assets in the data the algorithm could faster find the preferable one using

the information about frequency of appearance of assets in previous best portfo-

lios. It could help to decrease the CPU time for this algorithm by reducing the

search space of suitable assets for the best portfolios and decreasing the number

of generations.

In this thesis we used coefficients of risk aversion, loss aversion and for probability

weighting function obtained by Tversky and Kahneman in [79]. In our tests we

noticed that the results of the prospect theory and cumulative prospect theory

models are very sensitive to the values of α, β, λ, γ and δ. We propose that

these parameters will change depending on real market conditions. Previously

we discussed irrationality of the investor because he/she becomes risk seeking

(not risk aversive) when faces losses. Therefore, risk aversion coefficient in a

bullish market tend to be greater than that in a bearish market. It is interesting

to test the prospect theory model with different values of these parameters in

order to define appropriate values for different market conditions.

Also we investigated the performance of the prospect theory model with several

constraints and in different conditions. However, it could be interesting to add

a non-risky asset (i.e., cash account) in the data set to research its influence on
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the behaviour of the model’s choice. As for the out-of-sample testing it would

be useful to obtain and analyse the performance of the prospect theory model in

simulation trading which includes holding periods and rebalacing thereafter. One

can run the model using 1, . . . , 100 time periods and obtain the best portfolio.

Then another run using 10, . . . , 110 should be made which imitates rebalacing

stage. Sequential repetition of these steps provide the performance of the model

obtained by technique which is close to real market trading including revision of

chosen portfolio in several steps.



Appendix A

Implementation of the solution

approaches

A.1 Differential evolution algorithm

Pseudo-code of the differential evolution algorithm for the prospect theory port-

folio optimisation problem with cardinality constraint is given below.

Generate initial population vi ∈ DK, i = 1, . . . , P 2,

cycle of G generations

for each vi in population P

choose 3 random vectors va 6= vb 6= vc 6= vi

for each component j of vi do

with probability π1 : z1 ← N(0, σ1), else z1 = 0

with probability π2 : z2 ← N(0, σ2), else z2 = 0

pick uj ∼ U(0, 1)

if uj < CR or j = R

then ṽij = vaj + (F + z1)(vbj − vcj + z2)
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else ṽij = vij

if PT (ṽi) > PT (vi)

then xi = ṽi

else xi = vi

In g = G find x∗i = {xi|max{PTcc(x1), . . . ,PTcc(xP 2)}, E(max PTcc(xi)) ≥ d}.

In the beginning of the script file we set the CPU time counter. Then all the

prescribed parameters and constants are introduced. We use the matrix of asset

returns as input data, so, we load a file with the necessary data set, count return

means for each asset and define the size of the vector of assets. We also calculate d

for a specific data set using a range of possible returns for this set. The main script

file follows the steps of the differential evolution algorithm invoking developed

functions for generating an initial population, breeding and mutation, calculating

the objective function and expected returns.

The first function generates an initial population (matrix N × P 2) with limit on

the number of assets K which are chosen for each vector randomly from [3, K].

Each element of this matrix is generated randomly following the rule 0.1+0.9∗ν,

where ν ∈ U(0, 1) in order to reduce the appearance of small values. Then we

normalise each vector of the initial population to provide the condition
N∑
i=1

ωi = 1

and check the buy-in threshold constraint li and ui.

In each generation of the algorithm we apply differential evolution breeding and

mutation. For each vector in the population using the developed function of

choice we randomly choose 3 integer numbers of vectors which are distinct from

the given one and each other. Then we find z1 and z2 with prescribed probabilities

and do differential evolution crossover following the rules described in Section

3.1.1. We normalise the absolute value of the obtained vector, check for the

buy-in threshold constraint li and ui and the cardinality constraint. After this

it is necessary to normalise again. The specifics of the algorithm is that because

of the crossover formula the weights are spread all over the set and became too

small. That is why we normalise twice, before and after checking the mentioned
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constraints. Then we choose a more fittest vector according to the maximum

objective function criteria. The developed function provides the value of the

prospect theory value in accordance with problem formulation (2.18). The new

population is then created.

In the last generation g = G we choose the solution from the last population

which has the maximum value of the objective function and satisfies the d con-

straint. We use the developed function for calculating the expected returns for

each potential solution.

Remark.

When dealing with large scale data sets, the differential evolution algorithm fails

to find a best solution for the chosen d. In this case we use some neighborhood

for the parameter d in the form of d − n. We start to select the right n from

0.00002 and increase each time by multiplying by 10 if the programme still does

not find an optimal solution.

For the differential evolution with spline interpolation solution approach we mod-

ify the function which calculates the prospect theory utility. In the new function

we identify the values of the utility which are very close to the origin from both

sides, negative and positive, and implement the spline interpolation in order to

smooth the objective function using the coefficients obtained in (3.3).

It is easy to change the standard prospect theory problem to the prospect theory

with index tracking problem. We simply change the scalar value of the reference

point r0 into dynamic values of the index. We also remove the d constraint check

from the main script.

The prospect theory with CVaR can be solved using the same main script where

the final assessment stage is modified in order to choose the solution which sat-

isfies not only the target return constraint but the CVaR limit as well. We

developed the function for calculation of the CVaR of portfolio.
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It should be noticed that for the basic prospect theory model (without cardinality

constraint) we put K = N thereby making the cardinality constraint redundant.

A.2 Genetic algorithm

Pseudo-code of the genetic algorithm for the prospect theory portfolio optimisa-

tion problem with a cardinality constraint is given below.

Generate initial population xi ∈ DK, i = 1, . . . , P 2,

cycle of G generations

calculate values PTcc(x1), . . . ,PTcc(xP 2)

sort PTcc(xm1) ≥ . . . ≥ PTcc(xmP2 )

save max PTcc(xi)

xm1 , . . . , xm2P
= y1, . . . , y2P proceed to the next generation

randomly pick x̃j and x̂k in the set {xm2P
, · · · , xmP2 }

∀ i, j, k, l, i, j, k = 2P + 1, . . . , P 2, l = 1, . . . , N

if x̃jl = ωj and x̂kl = ωk

then ail = χ · ωj + (1− χ) · ωk, χ ∈ U(0, 1)

else if x̃jl = 0 and x̂kl = 0

then ail = 0

else if x̃jl = ωj and x̂kl = 0

then with π ail = ωj

with mutation probability ζ > 0

ail ← âij, âil ∈ U(0, 1)

choose maxPTcc(yi) = max{(ai, x̃j , x̂k)}

find PTcc(yi) = max{PTcc(y1), . . . ,PTcc(yP 2)}
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choose PTcc(y
∗
i ) = max{max PTcc(yi),max PTcc(xi)}

y∗i is an optimal solution

For this algorithm we develop four functions in order to create an initial popu-

lation, to calculate the objective function (the prospect theory utility), to breed

and mutate the elements of the new population and to calculate the expected

return of each vector of asset weights. All these functions are used in the main

script which follows the steps of the genetic algorithm discribed in Section 3.1.3.

As all functions except for the breeding and mutation are similar to the differen-

tial evolution algorithm we will now describe only the second function which is

specific for the genetic algorithm.

The function of breeding and mutation was developed in order to create a new

population from the 2P best elements of the initial population which are not

changed and from the P 2− 2P elements which are used for breeding. In the case

when an element is in both parents we randomly choose χ ∈ U(0, 1) and apply the

formula ail = χ ·ωj +(1−χ) ·ωk in order to decide which weight this asset should

take. In our opinion, it must be different from the parents’ weights. In the case if

the element is not in both parents we simply put it 0 for the child. If it is only in

one parent, we include this element with its weight to the child vector with the

chosen probability π. The probability π = 10% was chosen because of the asset

selection feature of this particular solution approach. It converges to a solution

with a low number of assets with high returns. A higher level of probability here

might increase the CPU time of the algorithm without any improvement in the

solution.

In this function we also implement mutation. It should be noted that we mutate

only zeros elements. Then we check the cardinality condition in two ways. If

the number of non zero elements n in the vector is greater then K we define

the difference δ = n − K and in a cycle of δ repetitions we randomly choose

the element in this vector and if it is greater then zero make it zero. If n < 3

(because we are not interesting in portfolios of 2 elements) we randomly choose a

zero element and generate the value using the rule 0.1+0.9∗ν, where ν ∈ U(0, 1)
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as in the first function. Then we normalise the child vectors and check the buy-in

threshold constraint. It is necessary to define which vector, mum, dad or child,

will go to the new population. We choose by the maximum value of the objective

function.

All extensions for prospect theory models (index tracking, cumulative prospect

theory utility and CVaR constraint) can be made using modified functions for

calculating the prospect theory utility or applying the developed function for the

CVaR constraint to the main script similar as described in the previous section.

Also the cardinality constraint can be removed by making K = N .

A.3 Other implementations

Apart form the methods described above we tried other implementations. For

example, we started with the genetic algorithm built in solver ga in Global Opti-

mization Toolbox in Matlab. This solver finds the minimum of a function using

a genetic algorithm. In our case it was difficult to define and set up the most

important parameters which impact on the solution. The best portfolio obtained

using this approach included only one asset which is not a suitable result for this

analysis. The same problem appears when we used the psoptimset solver (pattern

search algorithm) in the Global Optimization Toolbox in Matlab. This function

optimises the objective function subject to linear constraints. We were not happy

with the diversification of the best portfolio obtained using the psoptimset solver.

We also tried to develop the differential evolution algorithm and the genetic

algorithm in AMPL but we found that it is difficult to implement some particular

stages and specific rules of breeding in this programming language when compared

to Matlab.
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Parameters G and P of the

heuristic approaches

Parameter Parameter value CPU time PT (x) ξ
G 150 444 0.5937 0.0152

180 550 0.6442 0.0002
210 652 0.6243 0.0001

P 35 415 0.5694 0.0032
40 550 0.6442 0.0002
45 697 0.6437 0.0001

Table B.1: Genetic algorithm parameter comparison for the DAX 100 data
set

Parameter Parameter value CPU time PT (x) ξ
G 160 532 0.823 0.0043

185 630 0.8429 0.0004
220 718 0.8429 0.0002

P 37 479 0.8423 0.0164
42 630 0.8429 0.0004
47 755 0.8431 0.0002

Table B.2: Genetic algorithm parameter comparison for the FTSE 100 data
set

Remark. The parameters of G and P for the Nikkei 225 data set is equal to the

S&P 100 data set in our empirical study because specifically for these returns
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Parameter Parameter value CPU time PT (x) ξ
G 160 586 0.7353 0.0172

190 721 0.7822 0.0006
220 953 0.7853 0.0004

P 40 542 0.7421 0.0043
45 721 0.7822 0.0006
50 994 0.7864 0.0003

Table B.3: Genetic algorithm parameter comparison for the S&P 100 data
set

Parameter Parameter value CPU time PT (x) ξ
G 160 1050 -0.9555 0.0001

190 1179 -0.9894 0
220 1547 -0.9894 0

P 40 939 -0.9468 0.0021
45 1179 -0.9894 0
50 1486 -0.9894 0

Table B.4: Genetic algorithm parameter comparison for the Nikkei 225 data
set

(the Nikkei 225 set) the genetic algorithm finds the best solution quickly enough.

So, we do not need to increase the number of generation and population size.

The resulting portfolio is undiversified compare to the number of assets available

in total. The algorithm defines the preferable assets very fast and the rest of time

just plays with the weights.
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Performance of the models

Analysis of higher order moments.

We notice that the cumulative prospect theory model mostly has greater value

of skewness in-sample and out-of-sample tests compared to other studied basic

models. In contrast, the mean variance model obtained lower positive skewness

and greater negative skewness. This indicates that behaviourally based models

have longer and a fatter tail on the right hand side and smaller tail on the left

hand side compared to the traditional mean variance model. We can conclude

that the PT and CPT models have lower risk in the left tail which leads to the

lower CVaR value for these portfolios. Moreover, CPT has lower value of kurtosis

which also indicates thinner tails compared to other basic models.

Cardinality and CVaR constrained models demonstrate inconsistent results and

we can notice a trend only in-sample. The negative skewness of the prospect

theory model is always less than the negative skewness of the MV model. This

provides good downside protection of behaviourally based portfolios. It is difficult

to draw any conclusions when comparing the kurtosis of the PT and the MV

models with additional constraints. The results change from one data set to

another. Only for the CVaR constrained models it is most likely that the PT

model has slightly lower kurtosis compared to MV model.
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C.1 Basic models

Data set Model CPU n r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.015 9 0.3926 0.0118 0.0301 -0.0373 -0.0644 -0.7680 4.5608

PT 36 8 0.3922 0.0131 0.0335 -0.0371 -0.0727 -0.8875 5.5543
CPT 104 5 0.3616 0.0130 0.0359 -0.0500 -0.0668 -0.0902 3.4314

DAX 100 MV 0.031 16 0.4683 0.0060 0.0128 -0.0141 -0.0197 0.3862 3.9497
PT 550 12 0.4529 0.0083 0.0183 -0.0145 -0.0248 0.9056 4.9426

CPT 1790 7 0.4369 0.0080 0.0183 -0.0144 -0.0206 1.2203 5.9422
FTSE 100 MV 0.031 14 0.5636 0.0077 0.0137 -0.0121 -0.0178 0.4545 3.0106

PT 630 17 0.4797 0.0090 0.0188 -0.0114 -0.0272 0.5584 3.6605
CPT 1904 22 0.4933 0.0085 0.0171 -0.0153 -0.0163 0.9358 3.8126

S&P 100 MV 0.046 11 0.5115 0.0109 0.0213 -0.0279 -0.0328 -0.1170 2.5519
PT 721 6 0.4940 0.0109 0.0221 -0.0267 -0.0391 -0.2376 3.1125

CPT 1994 7 0.4717 0.0105 0.0222 -0.0265 -0.0265 0.1630 2.5377
Nikkei 225 MV 0.14 13 0.0159 0.0003 0.0196 -0.0349 -0.0395 0.2528 3.1046

PT 1179 4 0.1434 0.0034 0.0238 -0.0338 -0.0384 0.4089 3.1774
CPT 4862 4 0.1598 0.0039 0.0246 -0.0325 -0.0326 0.4674 2.5090

Table C.1: Comparative analysis of basic models (in-sample)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.6844 0.0014 0.0020 -0.0018 -0.0028 -0.0643 2.8745

PT 0.5388 0.0012 0.0021 -0.0023 -0.0031 0.0597 2.9079
CPT 0.4260 0.0009 0.0021 -0.0026 -0.0035 -0.0179 3.0211

DAX 100 MV 1.9785 0.0024 0.0012 0.0004 -0.0001 0.0886 3.1530
PT 1.7766 0.0024 0.0013 0.0005 -0.0005 -0.1066 3.0137

CPT 2.4833 0.0033 0.0013 0.0012 0.0006 0.0271 2.9207
FTSE 100 MV 1.1103 0.0016 0.0014 -0.0008 -0.0014 0.0003 3.0648

PT 1.6570 0.0023 0.0014 0.0000 -0.0006 -0.0860 2.8541
CPT 1.8717 0.0024 0.0013 0.0002 -0.0003 -0.0985 3.1009

S&P 100 MV 0.7232 0.0013 0.0019 -0.0017 -0.0024 0.0242 3.1616
PT 0.8441 0.0016 0.0019 -0.0015 -0.0023 0.0090 3.0802

CPT 0.9175 0.0017 0.0019 -0.0012 -0.0021 0.0520 2.9262
Nikkei 225 MV 0.3317 0.0005 0.0016 -0.0021 -0.0029 -0.1178 3.1631

PT 0,9804 0,0019 0,0020 -0,0014 -0,0022 -0.0796 3.0106
CPT 0.9960 0.0019 0.0020 -0.0013 -0.0022 -0.0470 3.2628

Table C.2: Comparative analysis of basic models (out-of-sample: bootstrap)
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Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 22.3694 0.0795 0.0036 0.0736 0.0722 0.0077 2.9332

PT 19.5623 0.0792 0.0040 0.0727 0.0724 -0.0733 2.8786
CPT 15.0646 0.0794 0.0053 0.0705 0.0686 0.0415 3.0163

DAX 100 MV 31.5966 0.1582 0.0050 0.1501 0.1478 -0.1712 3.2582
PT 22.6324 0.1583 0.0070 0.1471 0.1443 -0.0164 2.6740

CPT 21.0312 0.1584 0.0075 0.1458 0.1430 0.0159 3.0393
FTSE 100 MV 22.9827 0.1189 0.0052 0.1106 0.1084 0.0645 2.9462

PT 27.4194 0.1187 0.0043 0.1115 0.1099 0.0363 2.9529
CPT 30.1336 0.1188 0.0039 0.1120 0.1103 -0.1184 3.0554

S&P 100 MV 23.7931 0.0986 0.0041 0.0918 0.0901 -0.0690 3.1821
PT 22.1445 0.0991 0.0045 0.0917 0.0894 -0.1353 3.0277

CPT 24.0876 0.0991 0.0041 0.0924 0.0904 -0.0349 3.0953
Nikkei 225 MV 26.3628 0.1385 0.0053 0.1263 0.1236 -0.1799 3.0711

PT 18.3664 0.1388 0.0076 0.1301 0.1272 0.0396 2.9534
CPT 17.5419 0.1382 0.0079 0.1248 0.1217 -0.0604 2.9483

Table C.3: Comparative analysis of basic models (out-of-sample: simulation
of bullish market)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.2580 0.0004 0.0015 -0.0022 -0.0026 0.1180 2.9394

PT 0.2187 0.0003 0.0016 -0.0022 -0.0030 -0.0006 3.1120
CPT 0.2659 0.0004 0.0016 -0.0023 -0.0030 -0.0475 3.0858

DAX 100 MV -0.1797 -0.0007 0.0036 -0.0067 -0.0081 0.0224 2.9247
PT -0.1460 -0.0006 0.0039 -0.0066 -0.0075 0.0936 3.2210

CPT -0.1912 -0.0008 0.0040 -0.0074 -0.0088 0.0864 2.8924
FTSE 100 MV -0.0235 -0.0001 0.0035 -0.0061 -0.0075 -0.0557 3.1055

PT -0.1712 -0.0004 0.0026 -0.0047 -0.0057 0.0261 2.7377
CPT -0.0619 -0.0002 0.0031 -0.0052 -0.0064 0.0311 2.8292

S&P 100 MV -0.1088 -0.0003 0.0031 -0.0054 -0.0066 -0.0098 2.8096
PT -0.0956 -0.0003 0.0030 -0.0054 -0.0065 -0.0253 3.0193

CPT -0.2678 -0.0008 0.0032 -0.0060 -0.0074 0.1160 3.4702
Nikkei 225 MV -0.0658 -0.0002 0.0038 -0.0064 -0.0079 0.1018 2.9981

PT 0.0420 0.0002 0.0037 -0.0062 -0.0074 0.0569 2.9714
CPT -0.2317 -0.0009 0.0039 -0.0069 -0.0083 0.2360 2.9105

Table C.4: Comparative analysis of basic models (out-of-sample: simulation
of bearish market)



Appendix C. Performance of the models 93

C.2 Cardinality constrained models

Data set Model CPU K n r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.09 7 7 0.3919 0.0118 0.0301 -0.0363 -0.0643 -0.7415 4.5296

PT 37 7 6 0.3915 0.0132 0.0338 -0.0363 -0.0731 -0.9107 5.7858
DAX 100 MV 0.25 10 10 0.4604 0.0060 0.0130 -0.0159 -0.0191 0.5002 4.2193

PT 520 10 8 0.4484 0.0080 0.0179 -0.0141 -0.0250 1.0201 5.4878
FTSE 100 MV 0.11 10 10 0.5631 0.0077 0.0137 -0.0122 -0.0180 0.4317 2.9809

PT 600 10 8 0.5218 0.0096 0.0184 -0.0107 -0.0269 0.2667 3.0293
S&P 100 MV 0.14 5 5 0.4911 0.0109 0.0222 -0.0263 -0.0371 -0.2159 2.8623

PT 690 5 5 0.4729 0.0120 0.0253 -0.0255 -0.0413 -0.1791 2.8395
Nikkei 225 MV 0.89 3 3 0.0023 0.0000 0.0209 -0.0381 -0.0439 0.2057 3.4939

PT 2597 3 3 0.1420 0.0034 0.0239 -0.0327 -0.0369 0.4254 2.9207

Table C.5: Comparative analysis of cardinality constrained models (in-
sample)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.5302 0.0011 0.0021 -0.0023 -0.0023 -0.0626 3.0993

PT 0.4391 0.0009 0.0022 -0.0027 -0.0035 00549 2.9751
DAX 100 MV 2.2284 0.0027 0.0012 0.0007 0.0002 0.0580 2.8808

PT 2.1879 0.0028 0.0013 0.0008 0.0001 0.0533 3.1195
FTSE 100 MV 1.2833 0.0017 0.0014 -0.0005 -0.0011 -0.0076 2.8525

PT 1.6132 0.0025 0.0015 0.0000 -0.0006 0.0746 3.0577
S&P 100 MV 0.8257 0.0016 0.0020 -0.0017 -0.0024 0.0175 3.0635

PT 0.9538 0.0021 0.0022 -0.0017 -0.0035 0.0083 2.8979
Nikkei 225 MV 0.1783 0.0003 0.0019 -0.0027 -0.0035 0.0701 3.1857

PT 0.8366 0.0015 0.0018 -0.0015 -0.0022 -0.0003 3.0719

Table C.6: Comparative analysis of cardinality constrained models (out-of-
sample: bootstrap)
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Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 20.2696 0.0792 0.0039 0.0729 0.0715 0.0667 2.7705

PT 20.2971 0.0792 0.0039 0.0727 0.0716 0.0255 3.1279
DAX 100 MV 27.3371 0.1585 0.0058 0.1491 0.1463 -0.0617 3.0681

PT 23.1736 0.1582 0.0068 0.1469 0.1465 -0.0722 3.0509
FTSE 100 MV 22.9842 0.1187 0.0052 0.1103 0.1085 0.0468 2.6911

PT 22.8369 0.1191 0.0052 0.1103 0.1088 -0.1554 3.0641
S&P 100 MV 20.9687 0.0993 0.0047 0.0910 0.0890 -0.1045 3.0191

PT 20.4622 0.0994 0.0049 0.0910 0.0892 -0.0721 2.9410
Nikkei 225 MV 16.6797 0.1393 0.0083 0.1246 0.1210 -0.2357 2.9273

PT 16.1642 0.1387 0.0086 0.1241 0.1214 -0.0476 3.5053

Table C.7: Comparative analysis of cardinality constrained models (out-of-
sample: simulation of bullish market)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.1935 0.0003 0.0015 -0.0022 -0.0028 0.0173 2.9740

PT 0.1988 0.0003 0.0015 -0.0023 -0.0030 -0.1112 3.0485
DAX 100 MV -0.2595 -0.0010 0.0037 -0.0070 -0.0089 -0.0577 3.0591

PT -0.2159 -0.0008 0.0037 -0.0066 -0.0084 -0.0563 3.0952
FTSE 100 MV 0.0603 0.0002 0.0035 -0.0056 -0.0068 0.1463 2.9910

PT -0.0764 -0.0002 0.0033 -0.0056 -0.0068 0.1090 2.8824
S&P 100 MV -0.2076 -0.0006 0.0031 -0.0056 -0.0069 0.0738 3.1490

PT -0,4262 -0,0013 0,0031 -0,0063 -0,0068 0.0145 3.0402
Nikkei 225 MV -0.2621 -0.0011 0.0043 -0.0082 -0.0100 0.0001 3.0062

PT -0.0329 -0.0002 0.0046 -0.0076 -0.0094 0.1757 3.2297

Table C.8: Comparative analysis of cardinality constrained models (out-of-
sample: simulation of bearish market)
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C.3 Models with the CVaR constraint

Data set Model CPU n r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.03 8 0.3803 0.0110 0.0289 -0.0379 -0.0560 -0.4039 3.7601

PT 40 5 0.3916 0.0134 0.0343 -0.0389 -0.0695 -0.6682 4.9819
DAX 100 MV 0.09 14 0.4681 0.0070 0.0150 -0.0125 -0.0190 0.8177 4.7537

PT 647 5 0.4422 0.0087 0.0196 -0.0189 -0.0236 1.0310 4.9838
FTSE 100 MV 0.11 15 0.5405 0.0070 0.0129 -0.0121 -0.0140 0.6732 3.2146

PT 754 18 0.5127 0.0090 0.0176 -0.0193 -0.0246 0.5455 3.4378
S&P 100 MV 0.12 23 0.5502 0.0060 0.0109 -0.0120 -0.0140 -0.1668 2.5543

PT 685 18 0.4940 0.0091 0.0184 -0.0228 -0.0326 -0.2698 3.2304
Nikkei 225 MV 0.41 13 0.0976 0.0020 0.0205 -0.0303 -0.0359 0.3086 2.8616

PT 2553 24 0.1192 0.0027 0.0226 -0.0333 -0.0398 0.3268 2.9935

Table C.9: Comparative analysis of models with CVaR constraint (in-sample)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.6665 0.0013 0.0019 -0.0021 -0.0029 -0.1827 3.0386

PT 0.0760 0.0002 0.0022 -0.0035 -0.0043 0.0276 3.0790
DAX 100 MV 2.2560 0.0028 0.0013 0.0009 0.0003 0.1613 3.4775

PT 1.7529 0.0024 0.0014 0.0001 -0.0004 -0.0045 2.9947
FTSE 100 MV 1.2400 0.0016 0.0013 -0.0006 -0.0011 -0.1315 2.8959

PT 1.7619 0.0024 0.0014 0.0001 -0.0005 -0.0070 3.0636
S&P 100 MV 1.6640 0.0021 0.0012 0.0000 -0.0004 0.0636 2.9329

PT 1.2857 0.0025 0.0019 -0.0007 -0.0015 0.0631 3.0299
Nikkei 225 MV 0.5530 0.0009 0.0016 -0.0017 -0.0024 -0.0866 2.8032

PT 0.9456 0.0015 0.0016 -0.0012 -0.0018 -0.0131 2.8478

Table C.10: Comparative analysis of models with CVaR constraint (out-of-
sample: bootstrap)
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Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 19.7664 0.0793 0.0040 0.0727 0.0712 0.0963 2.8726

PT 17.6371 0.0793 0.0045 0.0730 0.0716 -0.0638 2.9289
DAX 100 MV 26.4675 0.1582 0.0060 0.1479 0.1457 0.0123 3.0686

PT 20.4444 0.1579 0.0077 0.1477 0.1461 0.0799 2.6602
FTSE 100 MV 25.6109 0.1187 0.0046 0.1110 0.1089 -0.0580 3.1282

PT 25.9197 0.1189 0.0046 0.1114 0.1091 -0.0336 3.0600
S&P 100 MV 38.2829 0.0990 0.0026 0.0947 0.0936 -0.0364 2.8962

PT 24,0364 0.0992 0.0041 0.0943 0.0938 -0.1241 3.0880
Nikkei 225 MV 25.6196 0.1387 0.0054 0.1298 0.1271 -0.1693 3.0234

PT 27.5647 0.1381 0.0050 0.1294 0.1276 -0.0939 2.9247

Table C.11: Comparative analysis of models with CVaR constraint (out-of-
sample: simulation of bullish market)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.4767 0.0005 0.0011 -0.0013 -0.0017 -0.0812 3.1465

PT 0.3905 0.0004 0.0011 -0.0014 -0.0017 -0.0050 3.1637
DAX 100 MV -0.1402 -0.0005 0.0037 -0.0064 -0.0079 0.1444 3.5092

PT -0.1175 -0.0004 0.0038 -0.0068 -0.0078 0.1031 3.2481
FTSE 100 MV -0.1006 -0.0003 0.0034 -0.0057 -0.0071 0.2879 3.3762

PT -0.1472 -0.0004 0.0030 -0.0054 -0.0067 0.0371 3.2816
S&P 100 MV -0.1560 -0.0004 0.0028 -0.0050 -0.0062 0.0431 3.1581

PT -0.3418 -0.0009 0.0027 -0.0054 -0.0060 0.0466 3.2402
Nikkei 225 MV -0.1673 -0.0007 0.0042 -0.0077 -0.0090 0.1943 3.2532

PT -0.1905 -0.0007 0.0039 -0.0071 -0.0085 0.0980 2.9356

Table C.12: Comparative analysis of models with CVaR constraint (out-of-
sample: simulation of bearish market)
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C.4 Graphs of distributions of portfolio returns

(an example)

Graphs C.1, C.2, C.3 and C.4 show the distribution of returns of the mean vari-

ance, prospect theory and cumulative prospect theory models in-sample and out-

of-sample in the S&P 100 data set as an example. This illustrates the conclusion

which is made in the thesis and in the analysis of higher order moments that

behaviourally based models have thicker left tails and higher returns compared

to the traditional mean variance model out-of-sample. According to graph C.1

MV model has slightly thicker left tail than PT and CPT models, thus, all models

demonstrate very similar distribution of portfolio returns. However, in bootstrap

test the cumulative prospect theory has an advantage in left tail compared to

other models (see graph C.2). At the same time the prospect theory shows ben-

efit in bullish and bearish market in terms of distribution on the left tail which

leads to smaller CVaR risk measure (see graphs C.3 and C.4).

MV - the mean variance model;

PT - the prospect theory model;

CPT - the cumulative prospect theory model.
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Figure C.1: S&P 100. Basic models. In-sample.

Figure C.2: S&P 100. Basic models. Out-of-sample (bootstrap).
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Figure C.3: S&P 100. Basic models. Out-of-sample (simulation of bullish
market).

Figure C.4: S&P 100. Basic models. Out-of-sample (simulation of bearish
market).
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