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Abstract

Mean Field inference is central to statistical physics. It
has attracted much interest in the Computer Vision com-
munity to efficiently solve problems expressible in terms of
large Conditional Random Fields. However, since it mod-
els the posterior probability distribution as a product of
marginal probabilities, it may fail to properly account for
important dependencies between variables.

We therefore replace the fully factorized distribution of
Mean Field by a weighted mixture of such distributions, that
similarly minimizes the KL-Divergence to the true poste-
rior. By introducing two new ideas, namely, conditioning on
groups of variables instead of single ones and using a pa-
rameter of the conditional random field potentials, that we
identify to the temperature in the sense of statistical physics
to select such groups, we can perform this minimization ef-
ficiently. Our extension of the clamping method proposed in
previous works allows us to both produce a more descrip-
tive approximation of the true posterior and, inspired by the
diverse MAP paradigms, fit a mixture of Mean Field ap-
proximations. We demonstrate that this positively impacts
real-world algorithms that initially relied on mean fields.

1. Introduction

Mean Field (MF) is a modeling technique that has been
central to statistical physics for a century. Its ability to
handle stochastic models involving millions of variables
and dense graphs has attracted much attention in our com-
munity. It is routinely used for tasks as diverse as de-
tection [14, 2], segmentation [31, 23, 10, 43], denois-
ing [11, 27, 25], depth from stereo [15, 23] and pose-
estimation [35].

MF approximates a “true” probability distribution by a
fully-factorized one that is easy to encode and manipu-
late [22]. The true distribution is usually defined in prac-
tice through a Conditional Random Field (CRF), and may
not be representable explicitly, as it involves complex inter-
dependencies between variables. In such a case the MF ap-

proximation is an extremely useful tool.

While this drastic approximation often conveys the in-
formation of interest, the true distribution may concentrate
on configurations that are very different, equally likely, and
that cannot be jointly encoded by a product law. Section 3
depicts such a case where groups of variables are correlated
and may take one among many values with equal probabil-
ity. In this situation, MF will simply pick one valid con-
figuration, which we call a mode, and ignore the others.
So-called structured Mean Field methods [32, 7] can help
overcome this limitation. This can be effective but requires
arbitrary choices in the design of a simplified sub-graph for
each new problem, which can be impractical especially if
the initial CRF is very densely connected.

Here we introduce a novel way to automatically add
structure to the MF approximation and show how it can be
used to return several potentially valid answers in ambigu-
ous situations. Instead of relying on a single fully factor-
ized probability distribution, we introduce a mixture of such
distributions, which we will refer to as Multi-Modal Mean
Field (MMMF).

We compute this MMMEF by partitioning the state space
into subsets in which a standard MF approximation suffices.
This is similar in spirit to the approach of [39] but a key
difference is that our clamping acts simultaneously on ar-
bitrarily sized groups of variables, as opposed to one at a
time. We will show that when dealing with large CRFs
with strong correlations, this is essential. The key to the
efficiency of MMMF is how we choose these groups. To
this end, we introduce a temperature parameter that con-
trols how much we smooth the original probability distri-
bution before the MF approximation. By doing so for sev-
eral temperatures, we spot groups of variables that may take
different labels in different modes of the distribution. We
then force the optimizer to explore alternative solutions by
clamping them, that is, forcing them to take different values.
Our temperature-based approach, unlike the one of [39],
does not require a priori knowledge of the CRF structure
and is therefore compatible with “black box” models.

In the remainder of the paper, we will describe both MF
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and MMMF in more details. We will then demonstrate that
MMMF outperforms both MF and the clamping method
of [39] on a range of tasks.

2. Background and Related Work

Conditional Random Fields (CRFs) are often used to
represent correlations between variables [37]. Mean Field
inference is a means to approximate them in a computation-
ally efficient way. We briefly review both techniques below.

2.1. Conditional Random Fields

Let X = (X1,...,Xn) represent hidden variables and
I an image evidence. A CREF relates the ones to the others
via a posterior probability distribution

P(X | T) = exp (~E(X | T) ~log(Z(D)) , (1)

where £(X | I) is an energy function that is the sum of
terms known as potentials ¢.(-) defined on a set of graph
cliques ¢ € C, log(Z(I)) is the log-partition function that
normalizes the distribution. From now on, we will omit the
dependency with respect to I.

2.2. Mean Field Inference

The set of all possible configurations of X, that we de-
note by X, is exponentially large, which makes the explicit
computation of marginals, Maximum-A-Posteriori (MAP)
or Z intractable and a wide range of variational methods
have been proposed to approximate P(X) [19]. Among
those, Mean Field (MF) inference is one of the most popu-
lar [38, 33]. It involves introducing a distribution ) written
as

N
QX = (z1,...,28)) = [ [ ai(=:) , )
where ¢;( . ) is a categorical discrete distribution defined for
x; in a possible labels space £. The g; are estimated by
minimizing the KL-divergence
QX =x
KL(@QIIP) = Y Q(X = x)log 22 =)

xeX

3)

Since @ is fully factorized, the terms of the KL-divergence
can be recombined as a sum of an expected energy, con-
taining as many terms as there are potentials and a convex
negative entropy containing one term per variable. Opti-
mization can then be performed using a provably conver-
gent gradient-descent scheme [3].

As will be shown in Section 3, this simplification some-
times comes at the cost of downplaying the dependencies
between variables. The DivMBest methods [29, 4, 9] ad-
dress this issue starting from the following observation:
When looking for an assignment in a graphical model, the
resulting MAP is not necessarily the best because the prob-
abilistic model may not capture all that is known about the

problem. Furthermore, optimizers can get stuck in local
minima. The proposed solution is to sequentially find sev-
eral local optima and force them to be different from each
other by introducing diversity constraints in the objective
function. It has recently been shown that it is provably
more effective to solve for diverse MAPs jointly but un-
der the same set of constraints [20]. However, none of these
methods provide a generic and practical way to choose local
constraints to be enforced over variable sub-groups. Fur-
thermore, they only return a set of MAPs. By contrast, our
approach yields a multi-modal approximation of the pos-
terior distribution, which is a much richer description and
which we will show to be useful.

Another approach to improving the MF approximation is
to decompose it into a mixture of product laws by “clamp-
ing” some of the variables to fixed values, and finding for
each set of values the best factorized distribution under the
resulting deterministic conditioning. By summing the re-
sulting approximations of the partition function, one can
provably improve the approximation of the true partition
function [39]. This procedure can then be repeated itera-
tively by clamping successive variables but is only practical
for relatively small CRFs. At each iteration, the variable to
be clamped is chosen on the basis of the graphical model
weights, which requires intimate knowledge about its inter-
nals, which is not always available.

Our own approach is in the same spirit but can clamp
multiple variables at a time without requiring any knowl-
edge of the graph structure or weights.

Finally, DivMBest approaches do not provide a way to
choose the best solution without looking at the ground-
truth, except for the one of [41] that relies on training a
new classifier for that purpose. By contrast, we will show
that the multi modal Bayesian nature of our output induces a
principled way to use temporal consistency to solve directly
practical problems.

3. Motivation

To motivate our approach, we present here a toy exam-
ple that illustrates a typical failure mode of the standard MF
technique, which ours is designed to prevent. Fig. 1 depicts
a CRF where each pixel represents a binary variable con-
nected to its neighbors by attractive pairwise potentials.

For the sake of illustration, we split the grid into four
zones as follows. The attractive terms are weak on left side
but strong on the right. Similarly, in the top part, the unary
terms favor value of 1 while being completely random in
the bottom part.

The unary potentials are depicted at the top left of Fig. 1
and the result of the standard MF approximation at the bot-
tom in terms of the probability of the pixels being assigned
the label 1. In the bottom right corner of the grid, because
the interaction potentials are strong, all pixels end up being



assigned high probabilities of being 1 by MF, where they
could just as well have all been assigned high probabilities
to be zero. We explain below how our MMMF algorithm
can produce two equally likely modes, one with all pixels
being zero with high probability and the other with all pixel
being one with high probability.
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Pairwise Pairwise

Input Entropy drop
Prior
Biased
toward 1

Prior
not
biased

MF MMMF
Figure 1. A typical failure mode of MF resolved by MMME. Grey
levels indicate marginal probabilities, under the prior (Input) and
under the product laws (MF and MMMF).

4. Multi-Modal Mean Fields

Given a CRF defined with respect to a graphical model
and the probability P(X = x) for all states in X, the state
space introduced in Section 2.1, the standard MF approxi-
mation only models a single mode of the P, as discussed
in Section 2.2. We therefore propose to create a richer
representation that accounts for potential multiple modes
by replacing the fully factorized distribution of Eq. 2 by a
weighted mixture of such distributions that better minimizes
the KL-divergence to P.

The potential roadblock is the increased difficulty of
the minimization problem. In this section, we present an
overview of our approach to solving it, and discuss its key
aspects in the following two.

Formally, let us assume that we have partitioned X into
disjoint subsets X}, for 1 < k < K. We replace the original
Mean Field (MF) approximation by one of the form

P(X=x) ~ Qum(X=x) =Y mpQu(x), @
k
Qr(x) = HQf(xi) ;

where )y, is a MF approximation for the states x € X} with
individual probabilities ¢F that variable i can take value z;
in a set of labels £, and my, is the probability that a state
belongs to A;.

We can evaluate the my, and ¢¥ values by minimizing
the KL-divergence between Qs and P. The key to mak-
ing this computation tractable is to guarantee that we can
evaluate the ¢¥ parameters on each subset separately by per-
forming a standard MF approximation for each. One way

to achieve that is to constrain the support of the )y, distri-
butions to be disjoint, that is,

VE#K,Qu (X) = 0. (5)

In other words, each MF approximation is specialized on
a subset A, of the state space and is computed to minimize
the KL-Divergence there. In practice, we enrich our approx-
imation by recursively splitting a set of states X}, among our
partition X7, ..., Xk into two subsets X} and X to obtain
the new partition X1,...,Xx_1, X}, X2, Xpt1, ..., Xk,
which is then reindexed from 1 to K + 1. Initially, X}, repre-
sents the whole state space. Then we take it to be the newly
created subset in a breadth-first order until a preset num-
ber of subsets has been reached. Each time, the algorithm
proceeds through the following steps:

o It finds groups of variables likely to have different values
in different modes of the distribution using an entropy-
based criterion for the ¢F.

e [t partitions the set into two disjoint subsets according to
a clause that sets a threshold on the number of variables
in this group that take a specific label. X;' will contain
the states among X}, that meet this clause and X the
others.

e It performs an MF approximation within each subset
independently to compute parameters qf ! and qf 2 for
each of them. This is done by a standard MF approxi-
mation, to which we add the disjointness constraint 5.

This yields a binary tree whose leaves are the X}, subsets
forming the desired state-space partition. Given this parti-
tion, we can finally evaluate the my. In Section 5, we intro-
duce our cardinality based criterion and show that it makes
minimization of the KL-divergence possible. In Section 6,
we show how our entropy-based criterion selects, at each
iteration, the groups of variables on which the clauses de-
pend.

5. Partitioning the State Space

In this section, we describe the cardinality-based crite-
rion we use to recursively split state spaces and explain
why it allows efficient optimization of the KL-divergence
KL(Qra||P), where Q sz is the mixture of Eq. 4.

5.1. Cardinality Based Clamping

The state space partition &}, | 1<ip<x introduced above
is at the heart of our approximation and its quality and
tractability critically depend on how well chosen it is.
In [39], each split is obtained by clamping to zero or one
the value of a single binary variable. In other words, given
a set of states X to be split, it is broken into subsets
X! = {x € Xlz; = 0} and AP = {x € Xy|z; = 1},



where i is the index of a specific variable. To compute a
Mean Field approximation to P on each of these subspaces,
one only needs to perform a standard Mean Field approxi-
mation while constraining the g; probability assigned to the
clamped variable to be either zero or one. However, this
is limiting for the large and dense CRFs used in practice
because clamping only one variable among many at a time
may have very little influence overall. Pushing the solution
towards a qualitatively different minimum that corresponds
to a distinct mode may require simultaneously clamping
many variables.

To remedy this, we retain the clamping idea but apply it
to groups of variables instead of individual ones so as to find
new modes of the posterior while keeping the estimation of
the parameters my, and ¢ computationally tractable. More
specifically, given a set of states X to be split, we will say
that the split into X! and X7 is cardinality-based if

={x € A st Z 1(x;, =vy,)>C}, (6)
u=1...L

X ={xe€ st Z I(x;, =v,) <C}, (1)
u=1...L

where the i1, . . . , i, denote groups of variables that are cho-
sen by the entropy-based criterion and vy, ..., vy, is a set of
labels in L. In other words, in one of the splits, more than
C of the variables have the assigned values and in the other
less than C do. For example, for semantic segmentation X7}
would be the set of all segmentations in X} for which at
least C pixels in a region take a given label, and X the set
of all segmentations for which less than C pixels do.

We will refer to this approach as cardinality clamp-
ing and will propose a practical way to select appropriate
1, ,ir and vy, ..., vy, for each split in Section 6.

5.2. Instantiating the Multi-Modal Approximation

The cardinality clamping scheme introduced above
yields a state space partition X}  1<p<x. We now show
that given such a partition, minimizing the KL-divergence
KL(Qpm || P) using the multi-modal approximation of
Eq. 4 under the disjointness constraint, becomes tractable.

In practice, we relax the constraint 5 to near disjointness
vk 7& kl? Qk’ (Xk) S €, (8)

where € is a small constant. It makes the optimization prob-
lem better behaved and removes the need to tightly con-
strain any individual variable, while retaining the ability to
compute the KL divergence up to O(elog(e)).

Let m and ¢ stand for all the m;, and qf parameters that

appear in Eq. 4. We compute them as

min KL(Qnu || P) = rmn Z Z miQr(x) log (M)
e Tl ex k<K P(x)
= mln Z mg log(myg) Z mrAr , (9)
k<K h<i
h A 1 eiE(x>
where — ma. Oloe [ N 10
* qf,i:l}.(..zverXQk( )log (Qk(X))( )

where Ay is maximized under the near-disjointness con-
straint of Eq. 8.

As proved formally in the supplementary material, the
second equality of Eq. 9 is valid up to a constant and after
neglecting a term of order O(eloge) which appears under
the near disjointness assumption of the supports. Given the
Ay, terms of Eq. 10 and under the constraints that the mix-
ture probabilities 7 sum to one, we must have

1)

and we now turn to the computation of these Ay terms. We
formulate it in terms of a constrained optimization problem
as follows.

5.2.1 Handling Two Modes

Let us first consider the case where we generate only two
modes modeled by Q;(x) [Tql(x:) and Q2(x) =
[T ¢%(z;) and we seek to estimate the g, probabilities. The
q? probabilities are evaluated similarly.

Recall from Section 5.2 that the ¢} must be such that the
A; term of Eq. 10 is maximized subject to the near disjoint-
ness constraint of Eq. 8, which becomes

Q1< > 1<Xiu=vu><0> <e, (12

u=1...L

under our cardinality-based clamping scheme defined by
Eq. 7. Performing this maximization using a standard La-
grangian Dual procedure [8] requires evaluating the con-
straint and its derivatives. Despite the potentially exponen-
tially large number of terms involved, we can do this in one
of two ways. In both cases, the Lagrangian Dual procedure
reduces to a series of unconstrained Mean Field minimiza-
tions with well known additional potentials.

1. When C'is close to 0 or to L, the Lagrangian term can
be treated as a specific form of pattern-based higher-
order potentials, as in [36, 14, 21, 1].

2. When C' is both substantially greater than zero and
smaller than L, we treat >, _, ; 1(X;, = v,)asa
large sum of independent random variables under Q.



We therefore use a Gaussian approximation to replace
the cardinality constraint by a simpler linear one, and
finally add unary potentials to the MF problem. Details
are provided in the supplementary material.

We will encounter the first situation when tracking pedes-
trians and the second when performing semantic segmenta-
tion, as will be discussed in the results section.

5.2.2 Handling an Arbitrary Number of Nodes

Recall from Section 5 that, in the general case, there can
be an arbitrary number of modes. They correspond to
the leaves of a binary tree created by a succession of
cardinality-based splits. Let us therefore consider mode k
for 1 < k < K. Let B be the set of branching points on the
path leading to it. The near disjointness 8, can be enforced
with only |B| constraints. For each b € B, there is a list
of variables 7%, . .. ,ibLb, a list of values v}, ... ,v%b, a car-
dinality threshold C?, and a sign for the inequality >; that
define a constraint

Qk< 31Xy =b) >bcb><e (13)

u=1...Lb

of the same form as that of Eq. 12. It ensures disjointness
with all the modes in the subtree on the side of b that mode k
does not belong to. Therefore, we can solve the constrained
maximization problem of Eq. 10, as in Section 5.2.1, but
with | B| constraints instead of only one.

6. Selecting Variables to Clamp

We now present an approach to choosing the variables
i1,...,%tr, and the values vy, ..., vy, which define the car-
dinality splits of Eqgs. 6 and 7, that relies on phase transitions
in the graphical model.

To this end, we first introduce a temperature parameter
in our model that lets us smooth the probability distribu-
tion we want to approximate. This well known parameter
for physicists [ 18] was used in a different context in vision
by [28]. We study its influence on the corresponding MF
approximation and how we can exploit the resulting behav-
ior to select appropriate values for our variables.

6.1. Temperature and its Influence on Convexity

We take the temperature 7' to be a number that we use to
redefine the probability distribution of Eq. 1 as

1 15
T (%)

PT(x) = 77 , (14)
where Z7' is the partition function that normalizes P so

that its integral is one. For T' = 1, PT reduces to P. As

T goes to infinity, it always yields the same Maximum-A-
Posteriori value but becomes increasingly smooth. When
performing the MF approximation at high 7, the first term
of the KL-Divergence, the convex negative entropy, domi-
nates and makes the problem convex. As T decreases, the
second term of the KL-Divergence, the expected energy, be-
comes dominant, the function stops being convex, and local
minima can start to appear. In the supplementary material,
we introduce a physics-inspired proof that, in the case of a
dense Gaussian CRF [23], we can approximate and upper-
bound, in closed-form, the critical temperature T, at which
the KL divergence stops being convex. We validate experi-
mentally this prediction, using directly the denseCRF code
from [23]. This makes it easy to define a temperature range
[1, T)naz] within which to look for T,.. For a generic CRF,
no such computation may be possible and the range must be
determined empirically.

6.2. Entropy-Based Splitting

We describe here our approach to splitting X into X7 and
X, at the root node of the tree. The subsequent splits are
done in exactly the same way. The variables to be clamped
are those whose value change from one local minimum to
another so that we can force the exploration of both minima.

To find them, we start at T},,,, a temperature high
enough for the KL divergence to be convex and progres-
sively reduce it. For each successive temperature, we per-
form the MF approximation starting with the estimate for
the previous one to speed up the computation. When look-
ing at the resulting set of approximations starting from the
lowest temperature ones 1" = 1, a telltale sign of increas-
ing convexity is that the assignment of some variables that
were very definite suddenly becomes uncertain. Intuitively,
this happens when the CRF terms that bind variables is
overcome by the entropy terms that encourage uncertainty.
In physical terms, this can be viewed as a local phase-
transition [18].

Let T be a temperature greater than 1 and let Q7 and
Q! be the corresponding Mean Field approximations, with
their marginal probabilities ¢/ and ¢! for each variable i.
To detect such phase transitions, we compute

6i(T) = 1[H(q]) > hnign)1[H(q}) < hiow] ,  (15)

for all 7, where H denotes the individual entropy.
All variables and labels with positive J; become candi-

dates for clamping. If there are none, we increase the tem-
perature. If there are several, we can either pick one at ran-
dom or use domain knowledge to pick the most suitable sub-
set and values as will be discussed in the Results Section.

7. Results

We first use synthetic data to demonstrate that MMMF
can approximate a multi-modal probability density func-



tion better than both standard MF and the recent approach
of [39], which also relies on clamping to explore multi-
ple modes. We then demonstrate that this translates to an
actual performance gain for two real-world algorithms—
one for people detection [14] and the other for segmenta-
tion [10, 42]—both relying on a traditional Mean Field ap-
proach. We will make all our code and test datasets publicly
available.

The parameters that control MMMEF are the number of
modes we use, the cardinality threshold C' at each split, the
e value of Eq. 8, the entropy thresholds hjo,, and Apggp of
Eq. 15, and the temperature 7Ti,,,x introduced in Section 6.
In all our experiments, we use € = 1074, hyow = 0.3, and
hhigh = 0.7. As discussed in Section 6, when the CRF
is a dense Gaussian CRF, we can approximate and upper
bound the critical temperature 7, in closed-form and we
simply take Ti,ax to be this upper bound to guarantee that
Thax > T.. Otherwise, we choose Ty, empirically on a
small validation-set and fix it during testing.

7.1. Synthetic Data

To demonstrate that our approach minimizes the KL-
Divergence better than both standard MF and the clamp-
ing one of [39], we use the same experimental protocol to
generate conditional random fields with random weights as
in [13, 40, 39]. Our task is then to find the MMMF approx-
imation with lowest KL-Divergence for any given number
of nodes. When that number is one, it reduces to MF. Note
that the authors of [39] look for an approximation of the log-
partition function, which is strictly the same as minimizing
the KL-Divergence, as demonstrated in the supplementary
material. Because it involves randomly chosen positive and
negative weights, this problem effectively mimics difficult
real-world ones with repulsive terms, uncontrolled loops,
and strong correlations.

In Fig. 2, we plot the KL-Divergence as a function of
the number of modes used to approximate the distribution
on the standard benchmarks. These modes are obtained us-
ing either our entropy-based criterion as described in Sec-
tion 6, or the MaxW one of [39], which we will refer to as
BASELINE-MAXW. It involves sequentially clamping the
variable having the largest sum of absolute values of pair-
wise potentials for edges linking it to its neighbors. It was
shown to be one of the best methods among several others,
which all performed roughly similarly. In our experi-
ments, we used the phase-transition criterion of Section 6
to select candidate variables to clamp. We then either ran-
domly chose the group of L variables to clamp or used the
MaxW criterion of [39] to select the best L variables. We
will refer to the first as OURS-RANDOM and to the sec-
ond as OURS-MAXW. Finally, in all cases, C' = L and the
values v,, correspond to the ones taken by the MAP of the
mode split.

In Fig. 2, we plot the resulting curves for L = 1 and
L = 3, evaluated on 100 instances. OURS-RANDOM per-
forms better than the method BASELINE-MAXW in most
cases, even though it does not use any knowledge of the
CRF internals, and OURS-MAXW, which does, performs
even better. The results on the 13 x 13 grid demonstrate the
advantage of clamping variables by groups when the CRF
gets larger.

7.2. Multi-modal Probabilistic Occupancy Maps

The Probabilistic Occupancy Map (POM) method [14]
relies on Mean Field inference for pedestrian detection.
More specifically, given several cameras with overlapping
fields of view of a discretized ground plane, the algorithm
first performs background subtraction. It then estimates the
probabilities of occupancy at every discrete location as the
marginals of a product law minimizing the KL divergence
from the “true” conditional posterior distribution, formu-
lated as in Eq. 1 by defining an energy function. Its value
is computed by using a generative model: It represents hu-
mans as simple cylinders projecting to rectangles in the var-
ious images. Given the probability of presence or absence
of people at different locations and known camera models,
this produces synthetic images whose proximity to the cor-
responding background subtraction images is measured and
used to define the energy.

This algorithm is usually very robust but can fail when
multiple interpretations of a background subtraction image
are possible. This stems from the limited modeling power of
the standard MF approximation, as illustrated in the supple-
mentary material. We show here that, in such cases, replac-
ing MF by MMMF while retaining the rest of the framework
yields multiple interpretations, among which the correct one
is usually to be found.

Fig. 3 depicts what happens when we replace MF by
MMMF to approximate the true posterior, while changing
nothing else to the algorithm. To generate new branches of
the binary tree of Section 5, we find potential variables to
clamp as described in Section 6. Among those, we clamp
the one with the largest entropy gap—H(gl) — H(q}), us-
ing the notations of Eq. 15—and its neighbors on the grid.
When evaluating our cardinality constraint, we take C' to
be 1, meaning that one branch of the tree corresponds to
no one in the neighborhood of the selected location and
the other to at least one person being present in this neigh-
borhood. Since we typically create those locations by dis-
cretizing the ground plane into 10cm x 10cm grid cells,
this forces the two newly instantiated modes to be signifi-
cantly different as opposed to featuring the same detection
shifted by a few centimeters. In Fig. 3, we plot the results
as dotted curves representing the MODA scores as functions
of the distance threshold used to compute them [6]. In all
cases, we used 4 modes for the MMMF approximation and
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Figure 2. KL-divergence using either our clamping method or that of [
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] averaged over 100 trials. The vertical bars represent standard

deviations. Attractive means that pairwise terms are drawn uniformly from [0, 6] whereas Repulsive means drawn from [—6, 6]. Grid
indicates a grid topology for the CRF, whereas Random indicates that the connections are chosen randomly such that there are as many as
in the grids. We ran our experiments with both 7 x 7 and 13 x 13 variables CRFs.

followed the DivMBest evaluation metric [4] to produce a
score by selecting among the 4 detection maps correspond-
ing to each mode the one yielding the highest MODA score.
This produces red dotted MMMEF curves that are systemat-
ically above the blue dotted MF.

However, to turn this improvement into a practical tech-
nique, we need a way to choose among the 4 possible inter-
pretations without using the ground truth. We use temporal
consistency to jointly find the best sequence of modes, and
reconstruct trajectories from this sequence. In the orig-
inal algorithm, the POMs computed at successive instants
were used to produce consistent trajectories using the a K-
Shortest Path (KSP) algorithm [5]. This involves building a
graph in which each ground location at each time step corre-
sponds to a node and neighboring locations at consecutive
time steps are connected. KSP then finds a set of node-
disjoint shortest paths in this graph where the cost of go-
ing through a location is proportional to the negative log-
probability of the location in the POM [34]. Since MMMF
produces multiple POMs, we then solve a multiple shortest-
path problem in this new graph, with the additional con-
straint that at each time step all the paths have to go through
copies of the nodes corresponding to the same mode, as de-
scribed in more details in the supplementary material.

The solid blue lines in Fig. 3 depict the MODA scores
when using KSP and the red ones the multi-modal version,
which we label as KSP*. The MMMF curves are again
above the MF ones. This makes sense because ambiguous
situations rarely persist for more than a few a frames. As a
result, enforcing temporal consistency eliminates them.

7.3. Multi-Modal Semantic Segmentation

CRF-based semantic segmentation is one of best known
application of MF inference in Computer Vision and many
recent algorithms rely on dense CRF’s [23] for this pur-
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— POM + KsP
— MMPOM + KsP

Spatial threshold Spatial threshold
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Figure 3. Replacing MF by MMMF in the POM algorithm [14].
The blue curves are MODA scores [6] obtained using MF and the
red ones scores using MMMEF. They are shown as solid lines when
temporal consistency was enforced and as dotted lines otherwise.
Note that the red MMMF lines are above corresponding blue MF
ones in all cases. (a) 1000 frames from the MVL5 [26] dataset
using a single camera. (b) 400 frames from the Terrace dataset [5]
using two cameras. (c) 80 frames of the EPFL-Lab dataset [5] us-
ing a single camera. (d) 80 frames from the EPFL-Lab dataset [5]
using two cameras.

pose. We demonstrate here that our MMMF approximation
can enhance the inference component of two such recent
algorithms [10, 42] on the Pascal VOC 2012 segmentation
dataset and the MPI video segmentation one [16].

Individual VOC Images We write the posterior in terms
of the CRF of [10], which we try to approximate. To create
a branch of the binary tree of Section 5, we first find the
potential variables to clamp as described in Section 6. As
in 7.2, we select the ones in the sliding window with the
largest entropy gap, H(ql) — H(q}). We then take C to

K2
be L/2 when evaluating our cardinality constraint, meaning



that we seek the dominant label among the selected vari-
ables and split the state space into those for which more
than half these variables take this value and those in which
less than half do.

(c) (d)

Figure 4. Qualitative semantic segmentation. (a) Original image.
(b) Entropy gap. (c) Labels with maximum a Posteriori Probability
after MF approximation. (d) Labels with maximum a Posteriori
Probability for the best mode of the MMMF approximation.

Fig. 4 illustrates the results on an image of the VOC
dataset. To evaluate such results quantitatively, we first use
the DivMBest metric [4], as we did in Section 7.2. We as-
sume we have an oracle that can select the best mode of
our multi-modal approximation by looking at the ground
truth. Fig. 5(a) depicts the results on the validation set of
the VOC 2012 Pascal dataset in terms of the average in-
tersection over union (IU) score as a function of the num-
ber of modes. When only 1 mode is used, the result boils
down to standard MF inference as in [10]. Using 32 yields
a 2.5% improvement over the MF approximation. This may
seem small until one considers that we only modify the al-
gorithm’s inference engine and leave the unary terms un-
changed. In [10, 43], this engine has been shown to con-
tribute approximately 3% to the overall performance, which
means that we almost double its effectiveness. For analysis
purposes, we implemented two baselines:

e Instead of clamping groups of variables, we only
clamp the variable with the maximum entropy gap at
each step. As depicted by the red curve in Fig. 5(a),
this has absolutely no effect and illustrates the impor-
tance of clamping groups of variable instead of single
ones as in [39].

e The DivMBest approach [4] first computes a MAP and
then adds a penalty term to the energy function to find
another MAP that is different from the first. It then re-
peats the process. We adapted this approach for MF
inference. The green curve in Fig. 5(a) depicts the re-
sult, which MMMF outperforms by 1.5%.

0755

Method U
- MF 44.9%
2o [39] + Temp 44.9%
e o MMMF + Temp | 47.3%
e MMMEF + Oracle | 53.2 %
(a) (b)

Figure 5. Quantitative semantic segmentation (a) VOC 2012. U
score for best mode as a function of the number of modes. MMMF
in blue, baselines in red and green. (b) MPI dataset [16].

Semantic Video Segmentation. We ran the same ex-
periment on the images of the MPI video segmentation
dataset [16] using the CRF of [42]. In this case, we can
exploit temporal consistency to avoid having to use an or-
acle and nevertheless get an exploitable result, as we did
in Section 7.2. Furthermore, we can do this in spite of the
relatively low frame-rate of about 1Hz.

More specifically, we first define a compatibility mea-
sure between consecutive modes based on label probabili-
ties of matching key-points, which we compute using a key-
point matching algorithm [30]. We then compute a shortest
path over the sequence of modes, taking into account in-
dividual mode probabilities given by Eq. 11. Finally, we
use only the MAP corresponding to the mode chosen by
the shortest path algorithm to produce the segmentation. In
Fig. 5(b), we again report the results in terms of IU score.
This time the improvement is around 2.4%, which indicates
that imposing temporal consistency very substantially im-
proves the quality of the inference. To the best of our knowl-
edge, other state of the art video semantic segmentation
methods are not applicable for such image sequences. [17]
requires non-moving scenes and a super-pixel decomposi-
tion, which prevents using all the dense CRF-based image
segmentors. [24] was only applied to street scenes and re-
quires a much higher frame rate to provide an accurate flow
estimation.

8. Conclusion

We have shown that our MMMF aproach makes it pos-
sible to add structure to the standard MF approximation of
CRFs and to increase the performance of algorithms that
depend on it. In effect, our algorithm creates several al-
ternative MF approximations with probabilities assigned to
them, which effectively models complex situations in which
more than one interpretation is possible.

Since MF has recently been integrated into structured
learning architectures through the Back Mean-Field proce-
dure [12, 25, 43, 1], future work will aim to replace MF by
MMMF in this context as well.

This work was supported in part by the Swiss National Science Foun-
dation, under the grant CRSII2-147693 “Tracking in the Wild”.
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