935 research outputs found

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning

    Get PDF
    This thesis focuses on the effective classification of the behavior of users accessing computing devices to authenticate them. The authentication is based on keystroke dynamics, which captures the users behavioral biometric and applies machine learning concepts to classify them. The users type a strong passcode ”.tie5Roanl” to record their typing pattern. In order to confirm identity, anonymous data from 94 users were collected to carry out the research. Given the raw data, features were extracted from the attributes based on the button pressed and action timestamp events. The support vector machine classifier uses multi-class classification with one vs. one decision shape function to classify different users. To reduce the classification error, it is essential to identify the important features from the raw data. In an effort to confront the generation of features from attributes an efficient feature extraction algorithm has been developed, obtaining high classification performance are now being sought. To handle the multi-class problem, the random forest classifier is used to identify the users effectively. In addition, mRMR feature selection has been applied to increase the classification performance metrics and to confirm the identity of the users based on the way they access computing devices. From the results, we conclude that device information and touch pressure effectively contribute to identifying each user. Out of them, features that contain device information are responsible for increasing the performance metrics of the system by adding a token-based authentication layer. Based upon the results, random forest yields better classification results for this dataset. The research will contribute significantly to the field of cyber-security by forming a robust authentication system using machine learning algorithms

    Low-Quality Fingerprint Classification

    Get PDF
    Traditsioonilised sĂ”rmejĂ€lgede tuvastamise sĂŒsteemid kasutavad otsuste tegemisel minutiae punktide informatsiooni. Nagu selgub paljude varasemate tööde pĂ”hjal, ei ole sĂ”rmejĂ€lgede pildid mitte alati piisava kvaliteediga, et neid saaks kasutada automaatsetes sĂ”rmejĂ€ljetuvastuse sĂŒsteemides. Selle takistuse ĂŒletamiseks keskendub magistritöö vĂ€ga madala kvaliteediga sĂ”rmejĂ€lgede piltide tuvastusele – sellistel piltidel on mitmed ĂŒldteada moonutused, nagu kuivus, mĂ€rgus, fĂŒĂŒsiline vigastatus, punktide olemasolu ja hĂ€gusus. Töö eesmĂ€rk on vĂ€lja töötada efektiivne ja kĂ”rge tĂ€psusega sĂŒgaval nĂ€rvivĂ”rgul pĂ”hinev algoritm, mis tunneb sĂ”rmejĂ€lje Ă€ra selliselt madala kvaliteediga pildilt. Eksperimentaalsed katsed sĂŒgavĂ”ppepĂ”hise meetodiga nĂ€itavad kĂ”rget tulemuslikkust ja robustsust, olles rakendatud praktikast kogutud madala kvaliteediga sĂ”rmejĂ€lgede andmebaasil. VGG16 baseeruv sĂŒgavĂ”ppe nĂ€rvivĂ”rk saavutas kĂ”rgeima tulemuslikkuse kuivade (93%) ja madalaima tulemuslikkuse hĂ€guste (84%) piltide klassifitseerimisel.Fingerprint recognition systems mainly use minutiae points information. As shown in many previous research works, fingerprint images do not always have good quality to be used by automatic fingerprint recognition systems. To tackle this challenge, in this thesis, we are focusing on very low-quality fingerprint images, which contain several well-known distortions such as dryness, wetness, physical damage, presence of dots, and blurriness. We develop an efficient, with high accuracy, deep neural network algorithm, which recognizes such low-quality fingerprints. The experimental results have been conducted on real low-quality fingerprint database, and the achieved results show the high performance and robustness of the introduced deep network technique. The VGG16 based deep network achieves the highest performance of 93% for dry and the lowest of 84% for blurred fingerprint classes

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    FV-GAN: Finger Vein Representation Using Generative Adversarial Networks

    Get PDF
    In finger vein verification, the most important and challenging part is to robustly extract finger vein patterns from low-contrast infrared finger images with limited a priori knowledge. Although recent convolutional neural network (CNN)-based methods for finger vein verification have shown powerful capacity for feature representation and promising perspective in this area, they still have two critical issues to address. First, these CNN-based methods unexceptionally utilize fully connected layers, which restrict the size of finger vein images to process and increase the processing time. Second, the capacity of CNN for feature representation generally suffers from the low quality of finger vein ground-truth pattern maps for training, particularly due to outliers and vessel breaks. To address these issues, in this paper, we propose a novel approach termed FV-GAN to finger vein extraction and verification, based on generative adversarial network (GAN), as the first attempt in this area. Unlike the CNN-based methods, FV-GAN learns from the joint distribution of finger vein images and pattern maps rather than the direct mapping between them, with the aim at achieving stronger robustness against outliers and vessel breaks. Moreover, FV-GAN adopts fully convolutional networks as the basic architecture and discards fully connected layers, which relaxes the constraint on the input image size and reduces the computational expenditure for feature extraction. Furthermore, we design an adversarial training strategy and propose a hybrid loss function for FV-GAN. The experimental results on two public databases show significant improvement by FV-GAN in finger vein verification in terms of both verification accuracy and equal error rate

    Authentication and Authorization for Mobile IoT Devices Using Biofeatures: Recent Advances and Future Trends

    Get PDF
    Biofeatures are fast becoming a key tool to authenticate the IoT devices; in this sense, the purpose of this investigation is to summarise the factors that hinder biometrics models’ development and deployment on a large scale, including human physiological (e.g., face, eyes, fingerprints-palm, or electrocardiogram) and behavioral features (e.g., signature, voice, gait, or keystroke). The different machine learning and data mining methods used by authentication and authorization schemes for mobile IoT devices are provided. Threat models and countermeasures used by biometrics-based authentication schemes for mobile IoT devices are also presented. More specifically, we analyze the state of the art of the existing biometric-based authentication schemes for IoT devices. Based on the current taxonomy, we conclude our paper with different types of challenges for future research efforts in biometrics-based authentication schemes for IoT devices

    Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation

    Get PDF
    Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.Fil: Merk, Timon. CharitĂ© – UniversitĂ€tsmedizin Berlin; AlemaniaFil: Peterson, Victoria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de MatemĂĄtica Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de MatemĂĄtica Aplicada del Litoral; Argentina. Harvard Medical School; Estados UnidosFil: Köhler, Richard. CharitĂ© – UniversitĂ€tsmedizin Berlin; AlemaniaFil: Haufe, Stefan. CharitĂ© – UniversitĂ€tsmedizin Berlin; AlemaniaFil: Richardson, R. Mark. Harvard Medical School; Estados UnidosFil: Neumann, Wolf Julian. CharitĂ© – UniversitĂ€tsmedizin Berlin; Alemani
    • 

    corecore